xref: /linux/mm/nommu.c (revision 606b2f490fb80e55d05cf0e6cec0b6c0ff0fc18f)
1 /*
2  *  linux/mm/nommu.c
3  *
4  *  Replacement code for mm functions to support CPU's that don't
5  *  have any form of memory management unit (thus no virtual memory).
6  *
7  *  See Documentation/nommu-mmap.txt
8  *
9  *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10  *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11  *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12  *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
13  *  Copyright (c) 2007-2009 Paul Mundt <lethal@linux-sh.org>
14  */
15 
16 #include <linux/module.h>
17 #include <linux/mm.h>
18 #include <linux/mman.h>
19 #include <linux/swap.h>
20 #include <linux/file.h>
21 #include <linux/highmem.h>
22 #include <linux/pagemap.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/tracehook.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mount.h>
29 #include <linux/personality.h>
30 #include <linux/security.h>
31 #include <linux/syscalls.h>
32 
33 #include <asm/uaccess.h>
34 #include <asm/tlb.h>
35 #include <asm/tlbflush.h>
36 #include <asm/mmu_context.h>
37 #include "internal.h"
38 
39 #if 0
40 #define kenter(FMT, ...) \
41 	printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
42 #define kleave(FMT, ...) \
43 	printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
44 #define kdebug(FMT, ...) \
45 	printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__)
46 #else
47 #define kenter(FMT, ...) \
48 	no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
49 #define kleave(FMT, ...) \
50 	no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
51 #define kdebug(FMT, ...) \
52 	no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__)
53 #endif
54 
55 void *high_memory;
56 struct page *mem_map;
57 unsigned long max_mapnr;
58 unsigned long num_physpages;
59 unsigned long highest_memmap_pfn;
60 struct percpu_counter vm_committed_as;
61 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
62 int sysctl_overcommit_ratio = 50; /* default is 50% */
63 int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT;
64 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
65 int heap_stack_gap = 0;
66 
67 atomic_long_t mmap_pages_allocated;
68 
69 EXPORT_SYMBOL(mem_map);
70 EXPORT_SYMBOL(num_physpages);
71 
72 /* list of mapped, potentially shareable regions */
73 static struct kmem_cache *vm_region_jar;
74 struct rb_root nommu_region_tree = RB_ROOT;
75 DECLARE_RWSEM(nommu_region_sem);
76 
77 const struct vm_operations_struct generic_file_vm_ops = {
78 };
79 
80 /*
81  * Return the total memory allocated for this pointer, not
82  * just what the caller asked for.
83  *
84  * Doesn't have to be accurate, i.e. may have races.
85  */
86 unsigned int kobjsize(const void *objp)
87 {
88 	struct page *page;
89 
90 	/*
91 	 * If the object we have should not have ksize performed on it,
92 	 * return size of 0
93 	 */
94 	if (!objp || !virt_addr_valid(objp))
95 		return 0;
96 
97 	page = virt_to_head_page(objp);
98 
99 	/*
100 	 * If the allocator sets PageSlab, we know the pointer came from
101 	 * kmalloc().
102 	 */
103 	if (PageSlab(page))
104 		return ksize(objp);
105 
106 	/*
107 	 * If it's not a compound page, see if we have a matching VMA
108 	 * region. This test is intentionally done in reverse order,
109 	 * so if there's no VMA, we still fall through and hand back
110 	 * PAGE_SIZE for 0-order pages.
111 	 */
112 	if (!PageCompound(page)) {
113 		struct vm_area_struct *vma;
114 
115 		vma = find_vma(current->mm, (unsigned long)objp);
116 		if (vma)
117 			return vma->vm_end - vma->vm_start;
118 	}
119 
120 	/*
121 	 * The ksize() function is only guaranteed to work for pointers
122 	 * returned by kmalloc(). So handle arbitrary pointers here.
123 	 */
124 	return PAGE_SIZE << compound_order(page);
125 }
126 
127 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
128 		     unsigned long start, int nr_pages, unsigned int foll_flags,
129 		     struct page **pages, struct vm_area_struct **vmas)
130 {
131 	struct vm_area_struct *vma;
132 	unsigned long vm_flags;
133 	int i;
134 
135 	/* calculate required read or write permissions.
136 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
137 	 */
138 	vm_flags  = (foll_flags & FOLL_WRITE) ?
139 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
140 	vm_flags &= (foll_flags & FOLL_FORCE) ?
141 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
142 
143 	for (i = 0; i < nr_pages; i++) {
144 		vma = find_vma(mm, start);
145 		if (!vma)
146 			goto finish_or_fault;
147 
148 		/* protect what we can, including chardevs */
149 		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
150 		    !(vm_flags & vma->vm_flags))
151 			goto finish_or_fault;
152 
153 		if (pages) {
154 			pages[i] = virt_to_page(start);
155 			if (pages[i])
156 				page_cache_get(pages[i]);
157 		}
158 		if (vmas)
159 			vmas[i] = vma;
160 		start = (start + PAGE_SIZE) & PAGE_MASK;
161 	}
162 
163 	return i;
164 
165 finish_or_fault:
166 	return i ? : -EFAULT;
167 }
168 
169 /*
170  * get a list of pages in an address range belonging to the specified process
171  * and indicate the VMA that covers each page
172  * - this is potentially dodgy as we may end incrementing the page count of a
173  *   slab page or a secondary page from a compound page
174  * - don't permit access to VMAs that don't support it, such as I/O mappings
175  */
176 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
177 	unsigned long start, int nr_pages, int write, int force,
178 	struct page **pages, struct vm_area_struct **vmas)
179 {
180 	int flags = 0;
181 
182 	if (write)
183 		flags |= FOLL_WRITE;
184 	if (force)
185 		flags |= FOLL_FORCE;
186 
187 	return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas);
188 }
189 EXPORT_SYMBOL(get_user_pages);
190 
191 /**
192  * follow_pfn - look up PFN at a user virtual address
193  * @vma: memory mapping
194  * @address: user virtual address
195  * @pfn: location to store found PFN
196  *
197  * Only IO mappings and raw PFN mappings are allowed.
198  *
199  * Returns zero and the pfn at @pfn on success, -ve otherwise.
200  */
201 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
202 	unsigned long *pfn)
203 {
204 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
205 		return -EINVAL;
206 
207 	*pfn = address >> PAGE_SHIFT;
208 	return 0;
209 }
210 EXPORT_SYMBOL(follow_pfn);
211 
212 DEFINE_RWLOCK(vmlist_lock);
213 struct vm_struct *vmlist;
214 
215 void vfree(const void *addr)
216 {
217 	kfree(addr);
218 }
219 EXPORT_SYMBOL(vfree);
220 
221 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
222 {
223 	/*
224 	 *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
225 	 * returns only a logical address.
226 	 */
227 	return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
228 }
229 EXPORT_SYMBOL(__vmalloc);
230 
231 void *vmalloc_user(unsigned long size)
232 {
233 	void *ret;
234 
235 	ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
236 			PAGE_KERNEL);
237 	if (ret) {
238 		struct vm_area_struct *vma;
239 
240 		down_write(&current->mm->mmap_sem);
241 		vma = find_vma(current->mm, (unsigned long)ret);
242 		if (vma)
243 			vma->vm_flags |= VM_USERMAP;
244 		up_write(&current->mm->mmap_sem);
245 	}
246 
247 	return ret;
248 }
249 EXPORT_SYMBOL(vmalloc_user);
250 
251 struct page *vmalloc_to_page(const void *addr)
252 {
253 	return virt_to_page(addr);
254 }
255 EXPORT_SYMBOL(vmalloc_to_page);
256 
257 unsigned long vmalloc_to_pfn(const void *addr)
258 {
259 	return page_to_pfn(virt_to_page(addr));
260 }
261 EXPORT_SYMBOL(vmalloc_to_pfn);
262 
263 long vread(char *buf, char *addr, unsigned long count)
264 {
265 	memcpy(buf, addr, count);
266 	return count;
267 }
268 
269 long vwrite(char *buf, char *addr, unsigned long count)
270 {
271 	/* Don't allow overflow */
272 	if ((unsigned long) addr + count < count)
273 		count = -(unsigned long) addr;
274 
275 	memcpy(addr, buf, count);
276 	return(count);
277 }
278 
279 /*
280  *	vmalloc  -  allocate virtually continguos memory
281  *
282  *	@size:		allocation size
283  *
284  *	Allocate enough pages to cover @size from the page level
285  *	allocator and map them into continguos kernel virtual space.
286  *
287  *	For tight control over page level allocator and protection flags
288  *	use __vmalloc() instead.
289  */
290 void *vmalloc(unsigned long size)
291 {
292        return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
293 }
294 EXPORT_SYMBOL(vmalloc);
295 
296 void *vmalloc_node(unsigned long size, int node)
297 {
298 	return vmalloc(size);
299 }
300 EXPORT_SYMBOL(vmalloc_node);
301 
302 #ifndef PAGE_KERNEL_EXEC
303 # define PAGE_KERNEL_EXEC PAGE_KERNEL
304 #endif
305 
306 /**
307  *	vmalloc_exec  -  allocate virtually contiguous, executable memory
308  *	@size:		allocation size
309  *
310  *	Kernel-internal function to allocate enough pages to cover @size
311  *	the page level allocator and map them into contiguous and
312  *	executable kernel virtual space.
313  *
314  *	For tight control over page level allocator and protection flags
315  *	use __vmalloc() instead.
316  */
317 
318 void *vmalloc_exec(unsigned long size)
319 {
320 	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
321 }
322 
323 /**
324  * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
325  *	@size:		allocation size
326  *
327  *	Allocate enough 32bit PA addressable pages to cover @size from the
328  *	page level allocator and map them into continguos kernel virtual space.
329  */
330 void *vmalloc_32(unsigned long size)
331 {
332 	return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
333 }
334 EXPORT_SYMBOL(vmalloc_32);
335 
336 /**
337  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
338  *	@size:		allocation size
339  *
340  * The resulting memory area is 32bit addressable and zeroed so it can be
341  * mapped to userspace without leaking data.
342  *
343  * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
344  * remap_vmalloc_range() are permissible.
345  */
346 void *vmalloc_32_user(unsigned long size)
347 {
348 	/*
349 	 * We'll have to sort out the ZONE_DMA bits for 64-bit,
350 	 * but for now this can simply use vmalloc_user() directly.
351 	 */
352 	return vmalloc_user(size);
353 }
354 EXPORT_SYMBOL(vmalloc_32_user);
355 
356 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
357 {
358 	BUG();
359 	return NULL;
360 }
361 EXPORT_SYMBOL(vmap);
362 
363 void vunmap(const void *addr)
364 {
365 	BUG();
366 }
367 EXPORT_SYMBOL(vunmap);
368 
369 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
370 {
371 	BUG();
372 	return NULL;
373 }
374 EXPORT_SYMBOL(vm_map_ram);
375 
376 void vm_unmap_ram(const void *mem, unsigned int count)
377 {
378 	BUG();
379 }
380 EXPORT_SYMBOL(vm_unmap_ram);
381 
382 void vm_unmap_aliases(void)
383 {
384 }
385 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
386 
387 /*
388  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
389  * have one.
390  */
391 void  __attribute__((weak)) vmalloc_sync_all(void)
392 {
393 }
394 
395 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
396 		   struct page *page)
397 {
398 	return -EINVAL;
399 }
400 EXPORT_SYMBOL(vm_insert_page);
401 
402 /*
403  *  sys_brk() for the most part doesn't need the global kernel
404  *  lock, except when an application is doing something nasty
405  *  like trying to un-brk an area that has already been mapped
406  *  to a regular file.  in this case, the unmapping will need
407  *  to invoke file system routines that need the global lock.
408  */
409 SYSCALL_DEFINE1(brk, unsigned long, brk)
410 {
411 	struct mm_struct *mm = current->mm;
412 
413 	if (brk < mm->start_brk || brk > mm->context.end_brk)
414 		return mm->brk;
415 
416 	if (mm->brk == brk)
417 		return mm->brk;
418 
419 	/*
420 	 * Always allow shrinking brk
421 	 */
422 	if (brk <= mm->brk) {
423 		mm->brk = brk;
424 		return brk;
425 	}
426 
427 	/*
428 	 * Ok, looks good - let it rip.
429 	 */
430 	flush_icache_range(mm->brk, brk);
431 	return mm->brk = brk;
432 }
433 
434 /*
435  * initialise the VMA and region record slabs
436  */
437 void __init mmap_init(void)
438 {
439 	int ret;
440 
441 	ret = percpu_counter_init(&vm_committed_as, 0);
442 	VM_BUG_ON(ret);
443 	vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC);
444 }
445 
446 /*
447  * validate the region tree
448  * - the caller must hold the region lock
449  */
450 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
451 static noinline void validate_nommu_regions(void)
452 {
453 	struct vm_region *region, *last;
454 	struct rb_node *p, *lastp;
455 
456 	lastp = rb_first(&nommu_region_tree);
457 	if (!lastp)
458 		return;
459 
460 	last = rb_entry(lastp, struct vm_region, vm_rb);
461 	BUG_ON(unlikely(last->vm_end <= last->vm_start));
462 	BUG_ON(unlikely(last->vm_top < last->vm_end));
463 
464 	while ((p = rb_next(lastp))) {
465 		region = rb_entry(p, struct vm_region, vm_rb);
466 		last = rb_entry(lastp, struct vm_region, vm_rb);
467 
468 		BUG_ON(unlikely(region->vm_end <= region->vm_start));
469 		BUG_ON(unlikely(region->vm_top < region->vm_end));
470 		BUG_ON(unlikely(region->vm_start < last->vm_top));
471 
472 		lastp = p;
473 	}
474 }
475 #else
476 static void validate_nommu_regions(void)
477 {
478 }
479 #endif
480 
481 /*
482  * add a region into the global tree
483  */
484 static void add_nommu_region(struct vm_region *region)
485 {
486 	struct vm_region *pregion;
487 	struct rb_node **p, *parent;
488 
489 	validate_nommu_regions();
490 
491 	parent = NULL;
492 	p = &nommu_region_tree.rb_node;
493 	while (*p) {
494 		parent = *p;
495 		pregion = rb_entry(parent, struct vm_region, vm_rb);
496 		if (region->vm_start < pregion->vm_start)
497 			p = &(*p)->rb_left;
498 		else if (region->vm_start > pregion->vm_start)
499 			p = &(*p)->rb_right;
500 		else if (pregion == region)
501 			return;
502 		else
503 			BUG();
504 	}
505 
506 	rb_link_node(&region->vm_rb, parent, p);
507 	rb_insert_color(&region->vm_rb, &nommu_region_tree);
508 
509 	validate_nommu_regions();
510 }
511 
512 /*
513  * delete a region from the global tree
514  */
515 static void delete_nommu_region(struct vm_region *region)
516 {
517 	BUG_ON(!nommu_region_tree.rb_node);
518 
519 	validate_nommu_regions();
520 	rb_erase(&region->vm_rb, &nommu_region_tree);
521 	validate_nommu_regions();
522 }
523 
524 /*
525  * free a contiguous series of pages
526  */
527 static void free_page_series(unsigned long from, unsigned long to)
528 {
529 	for (; from < to; from += PAGE_SIZE) {
530 		struct page *page = virt_to_page(from);
531 
532 		kdebug("- free %lx", from);
533 		atomic_long_dec(&mmap_pages_allocated);
534 		if (page_count(page) != 1)
535 			kdebug("free page %p: refcount not one: %d",
536 			       page, page_count(page));
537 		put_page(page);
538 	}
539 }
540 
541 /*
542  * release a reference to a region
543  * - the caller must hold the region semaphore for writing, which this releases
544  * - the region may not have been added to the tree yet, in which case vm_top
545  *   will equal vm_start
546  */
547 static void __put_nommu_region(struct vm_region *region)
548 	__releases(nommu_region_sem)
549 {
550 	kenter("%p{%d}", region, region->vm_usage);
551 
552 	BUG_ON(!nommu_region_tree.rb_node);
553 
554 	if (--region->vm_usage == 0) {
555 		if (region->vm_top > region->vm_start)
556 			delete_nommu_region(region);
557 		up_write(&nommu_region_sem);
558 
559 		if (region->vm_file)
560 			fput(region->vm_file);
561 
562 		/* IO memory and memory shared directly out of the pagecache
563 		 * from ramfs/tmpfs mustn't be released here */
564 		if (region->vm_flags & VM_MAPPED_COPY) {
565 			kdebug("free series");
566 			free_page_series(region->vm_start, region->vm_top);
567 		}
568 		kmem_cache_free(vm_region_jar, region);
569 	} else {
570 		up_write(&nommu_region_sem);
571 	}
572 }
573 
574 /*
575  * release a reference to a region
576  */
577 static void put_nommu_region(struct vm_region *region)
578 {
579 	down_write(&nommu_region_sem);
580 	__put_nommu_region(region);
581 }
582 
583 /*
584  * update protection on a vma
585  */
586 static void protect_vma(struct vm_area_struct *vma, unsigned long flags)
587 {
588 #ifdef CONFIG_MPU
589 	struct mm_struct *mm = vma->vm_mm;
590 	long start = vma->vm_start & PAGE_MASK;
591 	while (start < vma->vm_end) {
592 		protect_page(mm, start, flags);
593 		start += PAGE_SIZE;
594 	}
595 	update_protections(mm);
596 #endif
597 }
598 
599 /*
600  * add a VMA into a process's mm_struct in the appropriate place in the list
601  * and tree and add to the address space's page tree also if not an anonymous
602  * page
603  * - should be called with mm->mmap_sem held writelocked
604  */
605 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
606 {
607 	struct vm_area_struct *pvma, **pp, *next;
608 	struct address_space *mapping;
609 	struct rb_node **p, *parent;
610 
611 	kenter(",%p", vma);
612 
613 	BUG_ON(!vma->vm_region);
614 
615 	mm->map_count++;
616 	vma->vm_mm = mm;
617 
618 	protect_vma(vma, vma->vm_flags);
619 
620 	/* add the VMA to the mapping */
621 	if (vma->vm_file) {
622 		mapping = vma->vm_file->f_mapping;
623 
624 		flush_dcache_mmap_lock(mapping);
625 		vma_prio_tree_insert(vma, &mapping->i_mmap);
626 		flush_dcache_mmap_unlock(mapping);
627 	}
628 
629 	/* add the VMA to the tree */
630 	parent = NULL;
631 	p = &mm->mm_rb.rb_node;
632 	while (*p) {
633 		parent = *p;
634 		pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
635 
636 		/* sort by: start addr, end addr, VMA struct addr in that order
637 		 * (the latter is necessary as we may get identical VMAs) */
638 		if (vma->vm_start < pvma->vm_start)
639 			p = &(*p)->rb_left;
640 		else if (vma->vm_start > pvma->vm_start)
641 			p = &(*p)->rb_right;
642 		else if (vma->vm_end < pvma->vm_end)
643 			p = &(*p)->rb_left;
644 		else if (vma->vm_end > pvma->vm_end)
645 			p = &(*p)->rb_right;
646 		else if (vma < pvma)
647 			p = &(*p)->rb_left;
648 		else if (vma > pvma)
649 			p = &(*p)->rb_right;
650 		else
651 			BUG();
652 	}
653 
654 	rb_link_node(&vma->vm_rb, parent, p);
655 	rb_insert_color(&vma->vm_rb, &mm->mm_rb);
656 
657 	/* add VMA to the VMA list also */
658 	for (pp = &mm->mmap; (pvma = *pp); pp = &(*pp)->vm_next) {
659 		if (pvma->vm_start > vma->vm_start)
660 			break;
661 		if (pvma->vm_start < vma->vm_start)
662 			continue;
663 		if (pvma->vm_end < vma->vm_end)
664 			break;
665 	}
666 
667 	next = *pp;
668 	*pp = vma;
669 	vma->vm_next = next;
670 	if (next)
671 		next->vm_prev = vma;
672 }
673 
674 /*
675  * delete a VMA from its owning mm_struct and address space
676  */
677 static void delete_vma_from_mm(struct vm_area_struct *vma)
678 {
679 	struct vm_area_struct **pp;
680 	struct address_space *mapping;
681 	struct mm_struct *mm = vma->vm_mm;
682 
683 	kenter("%p", vma);
684 
685 	protect_vma(vma, 0);
686 
687 	mm->map_count--;
688 	if (mm->mmap_cache == vma)
689 		mm->mmap_cache = NULL;
690 
691 	/* remove the VMA from the mapping */
692 	if (vma->vm_file) {
693 		mapping = vma->vm_file->f_mapping;
694 
695 		flush_dcache_mmap_lock(mapping);
696 		vma_prio_tree_remove(vma, &mapping->i_mmap);
697 		flush_dcache_mmap_unlock(mapping);
698 	}
699 
700 	/* remove from the MM's tree and list */
701 	rb_erase(&vma->vm_rb, &mm->mm_rb);
702 	for (pp = &mm->mmap; *pp; pp = &(*pp)->vm_next) {
703 		if (*pp == vma) {
704 			*pp = vma->vm_next;
705 			break;
706 		}
707 	}
708 
709 	vma->vm_mm = NULL;
710 }
711 
712 /*
713  * destroy a VMA record
714  */
715 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
716 {
717 	kenter("%p", vma);
718 	if (vma->vm_ops && vma->vm_ops->close)
719 		vma->vm_ops->close(vma);
720 	if (vma->vm_file) {
721 		fput(vma->vm_file);
722 		if (vma->vm_flags & VM_EXECUTABLE)
723 			removed_exe_file_vma(mm);
724 	}
725 	put_nommu_region(vma->vm_region);
726 	kmem_cache_free(vm_area_cachep, vma);
727 }
728 
729 /*
730  * look up the first VMA in which addr resides, NULL if none
731  * - should be called with mm->mmap_sem at least held readlocked
732  */
733 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
734 {
735 	struct vm_area_struct *vma;
736 	struct rb_node *n = mm->mm_rb.rb_node;
737 
738 	/* check the cache first */
739 	vma = mm->mmap_cache;
740 	if (vma && vma->vm_start <= addr && vma->vm_end > addr)
741 		return vma;
742 
743 	/* trawl the tree (there may be multiple mappings in which addr
744 	 * resides) */
745 	for (n = rb_first(&mm->mm_rb); n; n = rb_next(n)) {
746 		vma = rb_entry(n, struct vm_area_struct, vm_rb);
747 		if (vma->vm_start > addr)
748 			return NULL;
749 		if (vma->vm_end > addr) {
750 			mm->mmap_cache = vma;
751 			return vma;
752 		}
753 	}
754 
755 	return NULL;
756 }
757 EXPORT_SYMBOL(find_vma);
758 
759 /*
760  * find a VMA
761  * - we don't extend stack VMAs under NOMMU conditions
762  */
763 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
764 {
765 	return find_vma(mm, addr);
766 }
767 
768 /*
769  * expand a stack to a given address
770  * - not supported under NOMMU conditions
771  */
772 int expand_stack(struct vm_area_struct *vma, unsigned long address)
773 {
774 	return -ENOMEM;
775 }
776 
777 /*
778  * look up the first VMA exactly that exactly matches addr
779  * - should be called with mm->mmap_sem at least held readlocked
780  */
781 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
782 					     unsigned long addr,
783 					     unsigned long len)
784 {
785 	struct vm_area_struct *vma;
786 	struct rb_node *n = mm->mm_rb.rb_node;
787 	unsigned long end = addr + len;
788 
789 	/* check the cache first */
790 	vma = mm->mmap_cache;
791 	if (vma && vma->vm_start == addr && vma->vm_end == end)
792 		return vma;
793 
794 	/* trawl the tree (there may be multiple mappings in which addr
795 	 * resides) */
796 	for (n = rb_first(&mm->mm_rb); n; n = rb_next(n)) {
797 		vma = rb_entry(n, struct vm_area_struct, vm_rb);
798 		if (vma->vm_start < addr)
799 			continue;
800 		if (vma->vm_start > addr)
801 			return NULL;
802 		if (vma->vm_end == end) {
803 			mm->mmap_cache = vma;
804 			return vma;
805 		}
806 	}
807 
808 	return NULL;
809 }
810 
811 /*
812  * determine whether a mapping should be permitted and, if so, what sort of
813  * mapping we're capable of supporting
814  */
815 static int validate_mmap_request(struct file *file,
816 				 unsigned long addr,
817 				 unsigned long len,
818 				 unsigned long prot,
819 				 unsigned long flags,
820 				 unsigned long pgoff,
821 				 unsigned long *_capabilities)
822 {
823 	unsigned long capabilities, rlen;
824 	unsigned long reqprot = prot;
825 	int ret;
826 
827 	/* do the simple checks first */
828 	if (flags & MAP_FIXED) {
829 		printk(KERN_DEBUG
830 		       "%d: Can't do fixed-address/overlay mmap of RAM\n",
831 		       current->pid);
832 		return -EINVAL;
833 	}
834 
835 	if ((flags & MAP_TYPE) != MAP_PRIVATE &&
836 	    (flags & MAP_TYPE) != MAP_SHARED)
837 		return -EINVAL;
838 
839 	if (!len)
840 		return -EINVAL;
841 
842 	/* Careful about overflows.. */
843 	rlen = PAGE_ALIGN(len);
844 	if (!rlen || rlen > TASK_SIZE)
845 		return -ENOMEM;
846 
847 	/* offset overflow? */
848 	if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
849 		return -EOVERFLOW;
850 
851 	if (file) {
852 		/* validate file mapping requests */
853 		struct address_space *mapping;
854 
855 		/* files must support mmap */
856 		if (!file->f_op || !file->f_op->mmap)
857 			return -ENODEV;
858 
859 		/* work out if what we've got could possibly be shared
860 		 * - we support chardevs that provide their own "memory"
861 		 * - we support files/blockdevs that are memory backed
862 		 */
863 		mapping = file->f_mapping;
864 		if (!mapping)
865 			mapping = file->f_path.dentry->d_inode->i_mapping;
866 
867 		capabilities = 0;
868 		if (mapping && mapping->backing_dev_info)
869 			capabilities = mapping->backing_dev_info->capabilities;
870 
871 		if (!capabilities) {
872 			/* no explicit capabilities set, so assume some
873 			 * defaults */
874 			switch (file->f_path.dentry->d_inode->i_mode & S_IFMT) {
875 			case S_IFREG:
876 			case S_IFBLK:
877 				capabilities = BDI_CAP_MAP_COPY;
878 				break;
879 
880 			case S_IFCHR:
881 				capabilities =
882 					BDI_CAP_MAP_DIRECT |
883 					BDI_CAP_READ_MAP |
884 					BDI_CAP_WRITE_MAP;
885 				break;
886 
887 			default:
888 				return -EINVAL;
889 			}
890 		}
891 
892 		/* eliminate any capabilities that we can't support on this
893 		 * device */
894 		if (!file->f_op->get_unmapped_area)
895 			capabilities &= ~BDI_CAP_MAP_DIRECT;
896 		if (!file->f_op->read)
897 			capabilities &= ~BDI_CAP_MAP_COPY;
898 
899 		/* The file shall have been opened with read permission. */
900 		if (!(file->f_mode & FMODE_READ))
901 			return -EACCES;
902 
903 		if (flags & MAP_SHARED) {
904 			/* do checks for writing, appending and locking */
905 			if ((prot & PROT_WRITE) &&
906 			    !(file->f_mode & FMODE_WRITE))
907 				return -EACCES;
908 
909 			if (IS_APPEND(file->f_path.dentry->d_inode) &&
910 			    (file->f_mode & FMODE_WRITE))
911 				return -EACCES;
912 
913 			if (locks_verify_locked(file->f_path.dentry->d_inode))
914 				return -EAGAIN;
915 
916 			if (!(capabilities & BDI_CAP_MAP_DIRECT))
917 				return -ENODEV;
918 
919 			/* we mustn't privatise shared mappings */
920 			capabilities &= ~BDI_CAP_MAP_COPY;
921 		}
922 		else {
923 			/* we're going to read the file into private memory we
924 			 * allocate */
925 			if (!(capabilities & BDI_CAP_MAP_COPY))
926 				return -ENODEV;
927 
928 			/* we don't permit a private writable mapping to be
929 			 * shared with the backing device */
930 			if (prot & PROT_WRITE)
931 				capabilities &= ~BDI_CAP_MAP_DIRECT;
932 		}
933 
934 		if (capabilities & BDI_CAP_MAP_DIRECT) {
935 			if (((prot & PROT_READ)  && !(capabilities & BDI_CAP_READ_MAP))  ||
936 			    ((prot & PROT_WRITE) && !(capabilities & BDI_CAP_WRITE_MAP)) ||
937 			    ((prot & PROT_EXEC)  && !(capabilities & BDI_CAP_EXEC_MAP))
938 			    ) {
939 				capabilities &= ~BDI_CAP_MAP_DIRECT;
940 				if (flags & MAP_SHARED) {
941 					printk(KERN_WARNING
942 					       "MAP_SHARED not completely supported on !MMU\n");
943 					return -EINVAL;
944 				}
945 			}
946 		}
947 
948 		/* handle executable mappings and implied executable
949 		 * mappings */
950 		if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
951 			if (prot & PROT_EXEC)
952 				return -EPERM;
953 		}
954 		else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
955 			/* handle implication of PROT_EXEC by PROT_READ */
956 			if (current->personality & READ_IMPLIES_EXEC) {
957 				if (capabilities & BDI_CAP_EXEC_MAP)
958 					prot |= PROT_EXEC;
959 			}
960 		}
961 		else if ((prot & PROT_READ) &&
962 			 (prot & PROT_EXEC) &&
963 			 !(capabilities & BDI_CAP_EXEC_MAP)
964 			 ) {
965 			/* backing file is not executable, try to copy */
966 			capabilities &= ~BDI_CAP_MAP_DIRECT;
967 		}
968 	}
969 	else {
970 		/* anonymous mappings are always memory backed and can be
971 		 * privately mapped
972 		 */
973 		capabilities = BDI_CAP_MAP_COPY;
974 
975 		/* handle PROT_EXEC implication by PROT_READ */
976 		if ((prot & PROT_READ) &&
977 		    (current->personality & READ_IMPLIES_EXEC))
978 			prot |= PROT_EXEC;
979 	}
980 
981 	/* allow the security API to have its say */
982 	ret = security_file_mmap(file, reqprot, prot, flags, addr, 0);
983 	if (ret < 0)
984 		return ret;
985 
986 	/* looks okay */
987 	*_capabilities = capabilities;
988 	return 0;
989 }
990 
991 /*
992  * we've determined that we can make the mapping, now translate what we
993  * now know into VMA flags
994  */
995 static unsigned long determine_vm_flags(struct file *file,
996 					unsigned long prot,
997 					unsigned long flags,
998 					unsigned long capabilities)
999 {
1000 	unsigned long vm_flags;
1001 
1002 	vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags);
1003 	/* vm_flags |= mm->def_flags; */
1004 
1005 	if (!(capabilities & BDI_CAP_MAP_DIRECT)) {
1006 		/* attempt to share read-only copies of mapped file chunks */
1007 		vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1008 		if (file && !(prot & PROT_WRITE))
1009 			vm_flags |= VM_MAYSHARE;
1010 	} else {
1011 		/* overlay a shareable mapping on the backing device or inode
1012 		 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1013 		 * romfs/cramfs */
1014 		vm_flags |= VM_MAYSHARE | (capabilities & BDI_CAP_VMFLAGS);
1015 		if (flags & MAP_SHARED)
1016 			vm_flags |= VM_SHARED;
1017 	}
1018 
1019 	/* refuse to let anyone share private mappings with this process if
1020 	 * it's being traced - otherwise breakpoints set in it may interfere
1021 	 * with another untraced process
1022 	 */
1023 	if ((flags & MAP_PRIVATE) && tracehook_expect_breakpoints(current))
1024 		vm_flags &= ~VM_MAYSHARE;
1025 
1026 	return vm_flags;
1027 }
1028 
1029 /*
1030  * set up a shared mapping on a file (the driver or filesystem provides and
1031  * pins the storage)
1032  */
1033 static int do_mmap_shared_file(struct vm_area_struct *vma)
1034 {
1035 	int ret;
1036 
1037 	ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1038 	if (ret == 0) {
1039 		vma->vm_region->vm_top = vma->vm_region->vm_end;
1040 		return 0;
1041 	}
1042 	if (ret != -ENOSYS)
1043 		return ret;
1044 
1045 	/* getting -ENOSYS indicates that direct mmap isn't possible (as
1046 	 * opposed to tried but failed) so we can only give a suitable error as
1047 	 * it's not possible to make a private copy if MAP_SHARED was given */
1048 	return -ENODEV;
1049 }
1050 
1051 /*
1052  * set up a private mapping or an anonymous shared mapping
1053  */
1054 static int do_mmap_private(struct vm_area_struct *vma,
1055 			   struct vm_region *region,
1056 			   unsigned long len,
1057 			   unsigned long capabilities)
1058 {
1059 	struct page *pages;
1060 	unsigned long total, point, n, rlen;
1061 	void *base;
1062 	int ret, order;
1063 
1064 	/* invoke the file's mapping function so that it can keep track of
1065 	 * shared mappings on devices or memory
1066 	 * - VM_MAYSHARE will be set if it may attempt to share
1067 	 */
1068 	if (capabilities & BDI_CAP_MAP_DIRECT) {
1069 		ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1070 		if (ret == 0) {
1071 			/* shouldn't return success if we're not sharing */
1072 			BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1073 			vma->vm_region->vm_top = vma->vm_region->vm_end;
1074 			return 0;
1075 		}
1076 		if (ret != -ENOSYS)
1077 			return ret;
1078 
1079 		/* getting an ENOSYS error indicates that direct mmap isn't
1080 		 * possible (as opposed to tried but failed) so we'll try to
1081 		 * make a private copy of the data and map that instead */
1082 	}
1083 
1084 	rlen = PAGE_ALIGN(len);
1085 
1086 	/* allocate some memory to hold the mapping
1087 	 * - note that this may not return a page-aligned address if the object
1088 	 *   we're allocating is smaller than a page
1089 	 */
1090 	order = get_order(rlen);
1091 	kdebug("alloc order %d for %lx", order, len);
1092 
1093 	pages = alloc_pages(GFP_KERNEL, order);
1094 	if (!pages)
1095 		goto enomem;
1096 
1097 	total = 1 << order;
1098 	atomic_long_add(total, &mmap_pages_allocated);
1099 
1100 	point = rlen >> PAGE_SHIFT;
1101 
1102 	/* we allocated a power-of-2 sized page set, so we may want to trim off
1103 	 * the excess */
1104 	if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) {
1105 		while (total > point) {
1106 			order = ilog2(total - point);
1107 			n = 1 << order;
1108 			kdebug("shave %lu/%lu @%lu", n, total - point, total);
1109 			atomic_long_sub(n, &mmap_pages_allocated);
1110 			total -= n;
1111 			set_page_refcounted(pages + total);
1112 			__free_pages(pages + total, order);
1113 		}
1114 	}
1115 
1116 	for (point = 1; point < total; point++)
1117 		set_page_refcounted(&pages[point]);
1118 
1119 	base = page_address(pages);
1120 	region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1121 	region->vm_start = (unsigned long) base;
1122 	region->vm_end   = region->vm_start + rlen;
1123 	region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
1124 
1125 	vma->vm_start = region->vm_start;
1126 	vma->vm_end   = region->vm_start + len;
1127 
1128 	if (vma->vm_file) {
1129 		/* read the contents of a file into the copy */
1130 		mm_segment_t old_fs;
1131 		loff_t fpos;
1132 
1133 		fpos = vma->vm_pgoff;
1134 		fpos <<= PAGE_SHIFT;
1135 
1136 		old_fs = get_fs();
1137 		set_fs(KERNEL_DS);
1138 		ret = vma->vm_file->f_op->read(vma->vm_file, base, rlen, &fpos);
1139 		set_fs(old_fs);
1140 
1141 		if (ret < 0)
1142 			goto error_free;
1143 
1144 		/* clear the last little bit */
1145 		if (ret < rlen)
1146 			memset(base + ret, 0, rlen - ret);
1147 
1148 	}
1149 
1150 	return 0;
1151 
1152 error_free:
1153 	free_page_series(region->vm_start, region->vm_end);
1154 	region->vm_start = vma->vm_start = 0;
1155 	region->vm_end   = vma->vm_end = 0;
1156 	region->vm_top   = 0;
1157 	return ret;
1158 
1159 enomem:
1160 	printk("Allocation of length %lu from process %d (%s) failed\n",
1161 	       len, current->pid, current->comm);
1162 	show_free_areas();
1163 	return -ENOMEM;
1164 }
1165 
1166 /*
1167  * handle mapping creation for uClinux
1168  */
1169 unsigned long do_mmap_pgoff(struct file *file,
1170 			    unsigned long addr,
1171 			    unsigned long len,
1172 			    unsigned long prot,
1173 			    unsigned long flags,
1174 			    unsigned long pgoff)
1175 {
1176 	struct vm_area_struct *vma;
1177 	struct vm_region *region;
1178 	struct rb_node *rb;
1179 	unsigned long capabilities, vm_flags, result;
1180 	int ret;
1181 
1182 	kenter(",%lx,%lx,%lx,%lx,%lx", addr, len, prot, flags, pgoff);
1183 
1184 	/* decide whether we should attempt the mapping, and if so what sort of
1185 	 * mapping */
1186 	ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1187 				    &capabilities);
1188 	if (ret < 0) {
1189 		kleave(" = %d [val]", ret);
1190 		return ret;
1191 	}
1192 
1193 	/* we ignore the address hint */
1194 	addr = 0;
1195 
1196 	/* we've determined that we can make the mapping, now translate what we
1197 	 * now know into VMA flags */
1198 	vm_flags = determine_vm_flags(file, prot, flags, capabilities);
1199 
1200 	/* we're going to need to record the mapping */
1201 	region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1202 	if (!region)
1203 		goto error_getting_region;
1204 
1205 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1206 	if (!vma)
1207 		goto error_getting_vma;
1208 
1209 	region->vm_usage = 1;
1210 	region->vm_flags = vm_flags;
1211 	region->vm_pgoff = pgoff;
1212 
1213 	INIT_LIST_HEAD(&vma->anon_vma_chain);
1214 	vma->vm_flags = vm_flags;
1215 	vma->vm_pgoff = pgoff;
1216 
1217 	if (file) {
1218 		region->vm_file = file;
1219 		get_file(file);
1220 		vma->vm_file = file;
1221 		get_file(file);
1222 		if (vm_flags & VM_EXECUTABLE) {
1223 			added_exe_file_vma(current->mm);
1224 			vma->vm_mm = current->mm;
1225 		}
1226 	}
1227 
1228 	down_write(&nommu_region_sem);
1229 
1230 	/* if we want to share, we need to check for regions created by other
1231 	 * mmap() calls that overlap with our proposed mapping
1232 	 * - we can only share with a superset match on most regular files
1233 	 * - shared mappings on character devices and memory backed files are
1234 	 *   permitted to overlap inexactly as far as we are concerned for in
1235 	 *   these cases, sharing is handled in the driver or filesystem rather
1236 	 *   than here
1237 	 */
1238 	if (vm_flags & VM_MAYSHARE) {
1239 		struct vm_region *pregion;
1240 		unsigned long pglen, rpglen, pgend, rpgend, start;
1241 
1242 		pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1243 		pgend = pgoff + pglen;
1244 
1245 		for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1246 			pregion = rb_entry(rb, struct vm_region, vm_rb);
1247 
1248 			if (!(pregion->vm_flags & VM_MAYSHARE))
1249 				continue;
1250 
1251 			/* search for overlapping mappings on the same file */
1252 			if (pregion->vm_file->f_path.dentry->d_inode !=
1253 			    file->f_path.dentry->d_inode)
1254 				continue;
1255 
1256 			if (pregion->vm_pgoff >= pgend)
1257 				continue;
1258 
1259 			rpglen = pregion->vm_end - pregion->vm_start;
1260 			rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1261 			rpgend = pregion->vm_pgoff + rpglen;
1262 			if (pgoff >= rpgend)
1263 				continue;
1264 
1265 			/* handle inexactly overlapping matches between
1266 			 * mappings */
1267 			if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1268 			    !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1269 				/* new mapping is not a subset of the region */
1270 				if (!(capabilities & BDI_CAP_MAP_DIRECT))
1271 					goto sharing_violation;
1272 				continue;
1273 			}
1274 
1275 			/* we've found a region we can share */
1276 			pregion->vm_usage++;
1277 			vma->vm_region = pregion;
1278 			start = pregion->vm_start;
1279 			start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1280 			vma->vm_start = start;
1281 			vma->vm_end = start + len;
1282 
1283 			if (pregion->vm_flags & VM_MAPPED_COPY) {
1284 				kdebug("share copy");
1285 				vma->vm_flags |= VM_MAPPED_COPY;
1286 			} else {
1287 				kdebug("share mmap");
1288 				ret = do_mmap_shared_file(vma);
1289 				if (ret < 0) {
1290 					vma->vm_region = NULL;
1291 					vma->vm_start = 0;
1292 					vma->vm_end = 0;
1293 					pregion->vm_usage--;
1294 					pregion = NULL;
1295 					goto error_just_free;
1296 				}
1297 			}
1298 			fput(region->vm_file);
1299 			kmem_cache_free(vm_region_jar, region);
1300 			region = pregion;
1301 			result = start;
1302 			goto share;
1303 		}
1304 
1305 		/* obtain the address at which to make a shared mapping
1306 		 * - this is the hook for quasi-memory character devices to
1307 		 *   tell us the location of a shared mapping
1308 		 */
1309 		if (capabilities & BDI_CAP_MAP_DIRECT) {
1310 			addr = file->f_op->get_unmapped_area(file, addr, len,
1311 							     pgoff, flags);
1312 			if (IS_ERR((void *) addr)) {
1313 				ret = addr;
1314 				if (ret != (unsigned long) -ENOSYS)
1315 					goto error_just_free;
1316 
1317 				/* the driver refused to tell us where to site
1318 				 * the mapping so we'll have to attempt to copy
1319 				 * it */
1320 				ret = (unsigned long) -ENODEV;
1321 				if (!(capabilities & BDI_CAP_MAP_COPY))
1322 					goto error_just_free;
1323 
1324 				capabilities &= ~BDI_CAP_MAP_DIRECT;
1325 			} else {
1326 				vma->vm_start = region->vm_start = addr;
1327 				vma->vm_end = region->vm_end = addr + len;
1328 			}
1329 		}
1330 	}
1331 
1332 	vma->vm_region = region;
1333 
1334 	/* set up the mapping
1335 	 * - the region is filled in if BDI_CAP_MAP_DIRECT is still set
1336 	 */
1337 	if (file && vma->vm_flags & VM_SHARED)
1338 		ret = do_mmap_shared_file(vma);
1339 	else
1340 		ret = do_mmap_private(vma, region, len, capabilities);
1341 	if (ret < 0)
1342 		goto error_just_free;
1343 	add_nommu_region(region);
1344 
1345 	/* clear anonymous mappings that don't ask for uninitialized data */
1346 	if (!vma->vm_file && !(flags & MAP_UNINITIALIZED))
1347 		memset((void *)region->vm_start, 0,
1348 		       region->vm_end - region->vm_start);
1349 
1350 	/* okay... we have a mapping; now we have to register it */
1351 	result = vma->vm_start;
1352 
1353 	current->mm->total_vm += len >> PAGE_SHIFT;
1354 
1355 share:
1356 	add_vma_to_mm(current->mm, vma);
1357 
1358 	/* we flush the region from the icache only when the first executable
1359 	 * mapping of it is made  */
1360 	if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1361 		flush_icache_range(region->vm_start, region->vm_end);
1362 		region->vm_icache_flushed = true;
1363 	}
1364 
1365 	up_write(&nommu_region_sem);
1366 
1367 	kleave(" = %lx", result);
1368 	return result;
1369 
1370 error_just_free:
1371 	up_write(&nommu_region_sem);
1372 error:
1373 	if (region->vm_file)
1374 		fput(region->vm_file);
1375 	kmem_cache_free(vm_region_jar, region);
1376 	if (vma->vm_file)
1377 		fput(vma->vm_file);
1378 	if (vma->vm_flags & VM_EXECUTABLE)
1379 		removed_exe_file_vma(vma->vm_mm);
1380 	kmem_cache_free(vm_area_cachep, vma);
1381 	kleave(" = %d", ret);
1382 	return ret;
1383 
1384 sharing_violation:
1385 	up_write(&nommu_region_sem);
1386 	printk(KERN_WARNING "Attempt to share mismatched mappings\n");
1387 	ret = -EINVAL;
1388 	goto error;
1389 
1390 error_getting_vma:
1391 	kmem_cache_free(vm_region_jar, region);
1392 	printk(KERN_WARNING "Allocation of vma for %lu byte allocation"
1393 	       " from process %d failed\n",
1394 	       len, current->pid);
1395 	show_free_areas();
1396 	return -ENOMEM;
1397 
1398 error_getting_region:
1399 	printk(KERN_WARNING "Allocation of vm region for %lu byte allocation"
1400 	       " from process %d failed\n",
1401 	       len, current->pid);
1402 	show_free_areas();
1403 	return -ENOMEM;
1404 }
1405 EXPORT_SYMBOL(do_mmap_pgoff);
1406 
1407 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1408 		unsigned long, prot, unsigned long, flags,
1409 		unsigned long, fd, unsigned long, pgoff)
1410 {
1411 	struct file *file = NULL;
1412 	unsigned long retval = -EBADF;
1413 
1414 	if (!(flags & MAP_ANONYMOUS)) {
1415 		file = fget(fd);
1416 		if (!file)
1417 			goto out;
1418 	}
1419 
1420 	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1421 
1422 	down_write(&current->mm->mmap_sem);
1423 	retval = do_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1424 	up_write(&current->mm->mmap_sem);
1425 
1426 	if (file)
1427 		fput(file);
1428 out:
1429 	return retval;
1430 }
1431 
1432 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1433 struct mmap_arg_struct {
1434 	unsigned long addr;
1435 	unsigned long len;
1436 	unsigned long prot;
1437 	unsigned long flags;
1438 	unsigned long fd;
1439 	unsigned long offset;
1440 };
1441 
1442 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1443 {
1444 	struct mmap_arg_struct a;
1445 
1446 	if (copy_from_user(&a, arg, sizeof(a)))
1447 		return -EFAULT;
1448 	if (a.offset & ~PAGE_MASK)
1449 		return -EINVAL;
1450 
1451 	return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1452 			      a.offset >> PAGE_SHIFT);
1453 }
1454 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1455 
1456 /*
1457  * split a vma into two pieces at address 'addr', a new vma is allocated either
1458  * for the first part or the tail.
1459  */
1460 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1461 	      unsigned long addr, int new_below)
1462 {
1463 	struct vm_area_struct *new;
1464 	struct vm_region *region;
1465 	unsigned long npages;
1466 
1467 	kenter("");
1468 
1469 	/* we're only permitted to split anonymous regions (these should have
1470 	 * only a single usage on the region) */
1471 	if (vma->vm_file)
1472 		return -ENOMEM;
1473 
1474 	if (mm->map_count >= sysctl_max_map_count)
1475 		return -ENOMEM;
1476 
1477 	region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1478 	if (!region)
1479 		return -ENOMEM;
1480 
1481 	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1482 	if (!new) {
1483 		kmem_cache_free(vm_region_jar, region);
1484 		return -ENOMEM;
1485 	}
1486 
1487 	/* most fields are the same, copy all, and then fixup */
1488 	*new = *vma;
1489 	*region = *vma->vm_region;
1490 	new->vm_region = region;
1491 
1492 	npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1493 
1494 	if (new_below) {
1495 		region->vm_top = region->vm_end = new->vm_end = addr;
1496 	} else {
1497 		region->vm_start = new->vm_start = addr;
1498 		region->vm_pgoff = new->vm_pgoff += npages;
1499 	}
1500 
1501 	if (new->vm_ops && new->vm_ops->open)
1502 		new->vm_ops->open(new);
1503 
1504 	delete_vma_from_mm(vma);
1505 	down_write(&nommu_region_sem);
1506 	delete_nommu_region(vma->vm_region);
1507 	if (new_below) {
1508 		vma->vm_region->vm_start = vma->vm_start = addr;
1509 		vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1510 	} else {
1511 		vma->vm_region->vm_end = vma->vm_end = addr;
1512 		vma->vm_region->vm_top = addr;
1513 	}
1514 	add_nommu_region(vma->vm_region);
1515 	add_nommu_region(new->vm_region);
1516 	up_write(&nommu_region_sem);
1517 	add_vma_to_mm(mm, vma);
1518 	add_vma_to_mm(mm, new);
1519 	return 0;
1520 }
1521 
1522 /*
1523  * shrink a VMA by removing the specified chunk from either the beginning or
1524  * the end
1525  */
1526 static int shrink_vma(struct mm_struct *mm,
1527 		      struct vm_area_struct *vma,
1528 		      unsigned long from, unsigned long to)
1529 {
1530 	struct vm_region *region;
1531 
1532 	kenter("");
1533 
1534 	/* adjust the VMA's pointers, which may reposition it in the MM's tree
1535 	 * and list */
1536 	delete_vma_from_mm(vma);
1537 	if (from > vma->vm_start)
1538 		vma->vm_end = from;
1539 	else
1540 		vma->vm_start = to;
1541 	add_vma_to_mm(mm, vma);
1542 
1543 	/* cut the backing region down to size */
1544 	region = vma->vm_region;
1545 	BUG_ON(region->vm_usage != 1);
1546 
1547 	down_write(&nommu_region_sem);
1548 	delete_nommu_region(region);
1549 	if (from > region->vm_start) {
1550 		to = region->vm_top;
1551 		region->vm_top = region->vm_end = from;
1552 	} else {
1553 		region->vm_start = to;
1554 	}
1555 	add_nommu_region(region);
1556 	up_write(&nommu_region_sem);
1557 
1558 	free_page_series(from, to);
1559 	return 0;
1560 }
1561 
1562 /*
1563  * release a mapping
1564  * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1565  *   VMA, though it need not cover the whole VMA
1566  */
1567 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1568 {
1569 	struct vm_area_struct *vma;
1570 	struct rb_node *rb;
1571 	unsigned long end = start + len;
1572 	int ret;
1573 
1574 	kenter(",%lx,%zx", start, len);
1575 
1576 	if (len == 0)
1577 		return -EINVAL;
1578 
1579 	/* find the first potentially overlapping VMA */
1580 	vma = find_vma(mm, start);
1581 	if (!vma) {
1582 		static int limit = 0;
1583 		if (limit < 5) {
1584 			printk(KERN_WARNING
1585 			       "munmap of memory not mmapped by process %d"
1586 			       " (%s): 0x%lx-0x%lx\n",
1587 			       current->pid, current->comm,
1588 			       start, start + len - 1);
1589 			limit++;
1590 		}
1591 		return -EINVAL;
1592 	}
1593 
1594 	/* we're allowed to split an anonymous VMA but not a file-backed one */
1595 	if (vma->vm_file) {
1596 		do {
1597 			if (start > vma->vm_start) {
1598 				kleave(" = -EINVAL [miss]");
1599 				return -EINVAL;
1600 			}
1601 			if (end == vma->vm_end)
1602 				goto erase_whole_vma;
1603 			rb = rb_next(&vma->vm_rb);
1604 			vma = rb_entry(rb, struct vm_area_struct, vm_rb);
1605 		} while (rb);
1606 		kleave(" = -EINVAL [split file]");
1607 		return -EINVAL;
1608 	} else {
1609 		/* the chunk must be a subset of the VMA found */
1610 		if (start == vma->vm_start && end == vma->vm_end)
1611 			goto erase_whole_vma;
1612 		if (start < vma->vm_start || end > vma->vm_end) {
1613 			kleave(" = -EINVAL [superset]");
1614 			return -EINVAL;
1615 		}
1616 		if (start & ~PAGE_MASK) {
1617 			kleave(" = -EINVAL [unaligned start]");
1618 			return -EINVAL;
1619 		}
1620 		if (end != vma->vm_end && end & ~PAGE_MASK) {
1621 			kleave(" = -EINVAL [unaligned split]");
1622 			return -EINVAL;
1623 		}
1624 		if (start != vma->vm_start && end != vma->vm_end) {
1625 			ret = split_vma(mm, vma, start, 1);
1626 			if (ret < 0) {
1627 				kleave(" = %d [split]", ret);
1628 				return ret;
1629 			}
1630 		}
1631 		return shrink_vma(mm, vma, start, end);
1632 	}
1633 
1634 erase_whole_vma:
1635 	delete_vma_from_mm(vma);
1636 	delete_vma(mm, vma);
1637 	kleave(" = 0");
1638 	return 0;
1639 }
1640 EXPORT_SYMBOL(do_munmap);
1641 
1642 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1643 {
1644 	int ret;
1645 	struct mm_struct *mm = current->mm;
1646 
1647 	down_write(&mm->mmap_sem);
1648 	ret = do_munmap(mm, addr, len);
1649 	up_write(&mm->mmap_sem);
1650 	return ret;
1651 }
1652 
1653 /*
1654  * release all the mappings made in a process's VM space
1655  */
1656 void exit_mmap(struct mm_struct *mm)
1657 {
1658 	struct vm_area_struct *vma;
1659 
1660 	if (!mm)
1661 		return;
1662 
1663 	kenter("");
1664 
1665 	mm->total_vm = 0;
1666 
1667 	while ((vma = mm->mmap)) {
1668 		mm->mmap = vma->vm_next;
1669 		delete_vma_from_mm(vma);
1670 		delete_vma(mm, vma);
1671 	}
1672 
1673 	kleave("");
1674 }
1675 
1676 unsigned long do_brk(unsigned long addr, unsigned long len)
1677 {
1678 	return -ENOMEM;
1679 }
1680 
1681 /*
1682  * expand (or shrink) an existing mapping, potentially moving it at the same
1683  * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1684  *
1685  * under NOMMU conditions, we only permit changing a mapping's size, and only
1686  * as long as it stays within the region allocated by do_mmap_private() and the
1687  * block is not shareable
1688  *
1689  * MREMAP_FIXED is not supported under NOMMU conditions
1690  */
1691 unsigned long do_mremap(unsigned long addr,
1692 			unsigned long old_len, unsigned long new_len,
1693 			unsigned long flags, unsigned long new_addr)
1694 {
1695 	struct vm_area_struct *vma;
1696 
1697 	/* insanity checks first */
1698 	if (old_len == 0 || new_len == 0)
1699 		return (unsigned long) -EINVAL;
1700 
1701 	if (addr & ~PAGE_MASK)
1702 		return -EINVAL;
1703 
1704 	if (flags & MREMAP_FIXED && new_addr != addr)
1705 		return (unsigned long) -EINVAL;
1706 
1707 	vma = find_vma_exact(current->mm, addr, old_len);
1708 	if (!vma)
1709 		return (unsigned long) -EINVAL;
1710 
1711 	if (vma->vm_end != vma->vm_start + old_len)
1712 		return (unsigned long) -EFAULT;
1713 
1714 	if (vma->vm_flags & VM_MAYSHARE)
1715 		return (unsigned long) -EPERM;
1716 
1717 	if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1718 		return (unsigned long) -ENOMEM;
1719 
1720 	/* all checks complete - do it */
1721 	vma->vm_end = vma->vm_start + new_len;
1722 	return vma->vm_start;
1723 }
1724 EXPORT_SYMBOL(do_mremap);
1725 
1726 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1727 		unsigned long, new_len, unsigned long, flags,
1728 		unsigned long, new_addr)
1729 {
1730 	unsigned long ret;
1731 
1732 	down_write(&current->mm->mmap_sem);
1733 	ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1734 	up_write(&current->mm->mmap_sem);
1735 	return ret;
1736 }
1737 
1738 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1739 			unsigned int foll_flags)
1740 {
1741 	return NULL;
1742 }
1743 
1744 int remap_pfn_range(struct vm_area_struct *vma, unsigned long from,
1745 		unsigned long to, unsigned long size, pgprot_t prot)
1746 {
1747 	vma->vm_start = vma->vm_pgoff << PAGE_SHIFT;
1748 	return 0;
1749 }
1750 EXPORT_SYMBOL(remap_pfn_range);
1751 
1752 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1753 			unsigned long pgoff)
1754 {
1755 	unsigned int size = vma->vm_end - vma->vm_start;
1756 
1757 	if (!(vma->vm_flags & VM_USERMAP))
1758 		return -EINVAL;
1759 
1760 	vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1761 	vma->vm_end = vma->vm_start + size;
1762 
1763 	return 0;
1764 }
1765 EXPORT_SYMBOL(remap_vmalloc_range);
1766 
1767 void swap_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1768 {
1769 }
1770 
1771 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1772 	unsigned long len, unsigned long pgoff, unsigned long flags)
1773 {
1774 	return -ENOMEM;
1775 }
1776 
1777 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1778 {
1779 }
1780 
1781 void unmap_mapping_range(struct address_space *mapping,
1782 			 loff_t const holebegin, loff_t const holelen,
1783 			 int even_cows)
1784 {
1785 }
1786 EXPORT_SYMBOL(unmap_mapping_range);
1787 
1788 /*
1789  * Check that a process has enough memory to allocate a new virtual
1790  * mapping. 0 means there is enough memory for the allocation to
1791  * succeed and -ENOMEM implies there is not.
1792  *
1793  * We currently support three overcommit policies, which are set via the
1794  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
1795  *
1796  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1797  * Additional code 2002 Jul 20 by Robert Love.
1798  *
1799  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1800  *
1801  * Note this is a helper function intended to be used by LSMs which
1802  * wish to use this logic.
1803  */
1804 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
1805 {
1806 	unsigned long free, allowed;
1807 
1808 	vm_acct_memory(pages);
1809 
1810 	/*
1811 	 * Sometimes we want to use more memory than we have
1812 	 */
1813 	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
1814 		return 0;
1815 
1816 	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
1817 		unsigned long n;
1818 
1819 		free = global_page_state(NR_FILE_PAGES);
1820 		free += nr_swap_pages;
1821 
1822 		/*
1823 		 * Any slabs which are created with the
1824 		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
1825 		 * which are reclaimable, under pressure.  The dentry
1826 		 * cache and most inode caches should fall into this
1827 		 */
1828 		free += global_page_state(NR_SLAB_RECLAIMABLE);
1829 
1830 		/*
1831 		 * Leave the last 3% for root
1832 		 */
1833 		if (!cap_sys_admin)
1834 			free -= free / 32;
1835 
1836 		if (free > pages)
1837 			return 0;
1838 
1839 		/*
1840 		 * nr_free_pages() is very expensive on large systems,
1841 		 * only call if we're about to fail.
1842 		 */
1843 		n = nr_free_pages();
1844 
1845 		/*
1846 		 * Leave reserved pages. The pages are not for anonymous pages.
1847 		 */
1848 		if (n <= totalreserve_pages)
1849 			goto error;
1850 		else
1851 			n -= totalreserve_pages;
1852 
1853 		/*
1854 		 * Leave the last 3% for root
1855 		 */
1856 		if (!cap_sys_admin)
1857 			n -= n / 32;
1858 		free += n;
1859 
1860 		if (free > pages)
1861 			return 0;
1862 
1863 		goto error;
1864 	}
1865 
1866 	allowed = totalram_pages * sysctl_overcommit_ratio / 100;
1867 	/*
1868 	 * Leave the last 3% for root
1869 	 */
1870 	if (!cap_sys_admin)
1871 		allowed -= allowed / 32;
1872 	allowed += total_swap_pages;
1873 
1874 	/* Don't let a single process grow too big:
1875 	   leave 3% of the size of this process for other processes */
1876 	if (mm)
1877 		allowed -= mm->total_vm / 32;
1878 
1879 	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
1880 		return 0;
1881 
1882 error:
1883 	vm_unacct_memory(pages);
1884 
1885 	return -ENOMEM;
1886 }
1887 
1888 int in_gate_area_no_task(unsigned long addr)
1889 {
1890 	return 0;
1891 }
1892 
1893 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1894 {
1895 	BUG();
1896 	return 0;
1897 }
1898 EXPORT_SYMBOL(filemap_fault);
1899 
1900 /*
1901  * Access another process' address space.
1902  * - source/target buffer must be kernel space
1903  */
1904 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
1905 {
1906 	struct vm_area_struct *vma;
1907 	struct mm_struct *mm;
1908 
1909 	if (addr + len < addr)
1910 		return 0;
1911 
1912 	mm = get_task_mm(tsk);
1913 	if (!mm)
1914 		return 0;
1915 
1916 	down_read(&mm->mmap_sem);
1917 
1918 	/* the access must start within one of the target process's mappings */
1919 	vma = find_vma(mm, addr);
1920 	if (vma) {
1921 		/* don't overrun this mapping */
1922 		if (addr + len >= vma->vm_end)
1923 			len = vma->vm_end - addr;
1924 
1925 		/* only read or write mappings where it is permitted */
1926 		if (write && vma->vm_flags & VM_MAYWRITE)
1927 			copy_to_user_page(vma, NULL, addr,
1928 					 (void *) addr, buf, len);
1929 		else if (!write && vma->vm_flags & VM_MAYREAD)
1930 			copy_from_user_page(vma, NULL, addr,
1931 					    buf, (void *) addr, len);
1932 		else
1933 			len = 0;
1934 	} else {
1935 		len = 0;
1936 	}
1937 
1938 	up_read(&mm->mmap_sem);
1939 	mmput(mm);
1940 	return len;
1941 }
1942 
1943 /**
1944  * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
1945  * @inode: The inode to check
1946  * @size: The current filesize of the inode
1947  * @newsize: The proposed filesize of the inode
1948  *
1949  * Check the shared mappings on an inode on behalf of a shrinking truncate to
1950  * make sure that that any outstanding VMAs aren't broken and then shrink the
1951  * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
1952  * automatically grant mappings that are too large.
1953  */
1954 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
1955 				size_t newsize)
1956 {
1957 	struct vm_area_struct *vma;
1958 	struct prio_tree_iter iter;
1959 	struct vm_region *region;
1960 	pgoff_t low, high;
1961 	size_t r_size, r_top;
1962 
1963 	low = newsize >> PAGE_SHIFT;
1964 	high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1965 
1966 	down_write(&nommu_region_sem);
1967 
1968 	/* search for VMAs that fall within the dead zone */
1969 	vma_prio_tree_foreach(vma, &iter, &inode->i_mapping->i_mmap,
1970 			      low, high) {
1971 		/* found one - only interested if it's shared out of the page
1972 		 * cache */
1973 		if (vma->vm_flags & VM_SHARED) {
1974 			up_write(&nommu_region_sem);
1975 			return -ETXTBSY; /* not quite true, but near enough */
1976 		}
1977 	}
1978 
1979 	/* reduce any regions that overlap the dead zone - if in existence,
1980 	 * these will be pointed to by VMAs that don't overlap the dead zone
1981 	 *
1982 	 * we don't check for any regions that start beyond the EOF as there
1983 	 * shouldn't be any
1984 	 */
1985 	vma_prio_tree_foreach(vma, &iter, &inode->i_mapping->i_mmap,
1986 			      0, ULONG_MAX) {
1987 		if (!(vma->vm_flags & VM_SHARED))
1988 			continue;
1989 
1990 		region = vma->vm_region;
1991 		r_size = region->vm_top - region->vm_start;
1992 		r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
1993 
1994 		if (r_top > newsize) {
1995 			region->vm_top -= r_top - newsize;
1996 			if (region->vm_end > region->vm_top)
1997 				region->vm_end = region->vm_top;
1998 		}
1999 	}
2000 
2001 	up_write(&nommu_region_sem);
2002 	return 0;
2003 }
2004