1 /* 2 * linux/mm/nommu.c 3 * 4 * Replacement code for mm functions to support CPU's that don't 5 * have any form of memory management unit (thus no virtual memory). 6 * 7 * See Documentation/nommu-mmap.txt 8 * 9 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com> 10 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com> 11 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org> 12 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com> 13 * Copyright (c) 2007-2009 Paul Mundt <lethal@linux-sh.org> 14 */ 15 16 #include <linux/module.h> 17 #include <linux/mm.h> 18 #include <linux/mman.h> 19 #include <linux/swap.h> 20 #include <linux/file.h> 21 #include <linux/highmem.h> 22 #include <linux/pagemap.h> 23 #include <linux/slab.h> 24 #include <linux/vmalloc.h> 25 #include <linux/tracehook.h> 26 #include <linux/blkdev.h> 27 #include <linux/backing-dev.h> 28 #include <linux/mount.h> 29 #include <linux/personality.h> 30 #include <linux/security.h> 31 #include <linux/syscalls.h> 32 33 #include <asm/uaccess.h> 34 #include <asm/tlb.h> 35 #include <asm/tlbflush.h> 36 #include <asm/mmu_context.h> 37 #include "internal.h" 38 39 #if 0 40 #define kenter(FMT, ...) \ 41 printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__) 42 #define kleave(FMT, ...) \ 43 printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__) 44 #define kdebug(FMT, ...) \ 45 printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__) 46 #else 47 #define kenter(FMT, ...) \ 48 no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__) 49 #define kleave(FMT, ...) \ 50 no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__) 51 #define kdebug(FMT, ...) \ 52 no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__) 53 #endif 54 55 void *high_memory; 56 struct page *mem_map; 57 unsigned long max_mapnr; 58 unsigned long num_physpages; 59 unsigned long highest_memmap_pfn; 60 struct percpu_counter vm_committed_as; 61 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */ 62 int sysctl_overcommit_ratio = 50; /* default is 50% */ 63 int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT; 64 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS; 65 int heap_stack_gap = 0; 66 67 atomic_long_t mmap_pages_allocated; 68 69 EXPORT_SYMBOL(mem_map); 70 EXPORT_SYMBOL(num_physpages); 71 72 /* list of mapped, potentially shareable regions */ 73 static struct kmem_cache *vm_region_jar; 74 struct rb_root nommu_region_tree = RB_ROOT; 75 DECLARE_RWSEM(nommu_region_sem); 76 77 const struct vm_operations_struct generic_file_vm_ops = { 78 }; 79 80 /* 81 * Return the total memory allocated for this pointer, not 82 * just what the caller asked for. 83 * 84 * Doesn't have to be accurate, i.e. may have races. 85 */ 86 unsigned int kobjsize(const void *objp) 87 { 88 struct page *page; 89 90 /* 91 * If the object we have should not have ksize performed on it, 92 * return size of 0 93 */ 94 if (!objp || !virt_addr_valid(objp)) 95 return 0; 96 97 page = virt_to_head_page(objp); 98 99 /* 100 * If the allocator sets PageSlab, we know the pointer came from 101 * kmalloc(). 102 */ 103 if (PageSlab(page)) 104 return ksize(objp); 105 106 /* 107 * If it's not a compound page, see if we have a matching VMA 108 * region. This test is intentionally done in reverse order, 109 * so if there's no VMA, we still fall through and hand back 110 * PAGE_SIZE for 0-order pages. 111 */ 112 if (!PageCompound(page)) { 113 struct vm_area_struct *vma; 114 115 vma = find_vma(current->mm, (unsigned long)objp); 116 if (vma) 117 return vma->vm_end - vma->vm_start; 118 } 119 120 /* 121 * The ksize() function is only guaranteed to work for pointers 122 * returned by kmalloc(). So handle arbitrary pointers here. 123 */ 124 return PAGE_SIZE << compound_order(page); 125 } 126 127 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 128 unsigned long start, int nr_pages, unsigned int foll_flags, 129 struct page **pages, struct vm_area_struct **vmas) 130 { 131 struct vm_area_struct *vma; 132 unsigned long vm_flags; 133 int i; 134 135 /* calculate required read or write permissions. 136 * If FOLL_FORCE is set, we only require the "MAY" flags. 137 */ 138 vm_flags = (foll_flags & FOLL_WRITE) ? 139 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 140 vm_flags &= (foll_flags & FOLL_FORCE) ? 141 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 142 143 for (i = 0; i < nr_pages; i++) { 144 vma = find_vma(mm, start); 145 if (!vma) 146 goto finish_or_fault; 147 148 /* protect what we can, including chardevs */ 149 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) || 150 !(vm_flags & vma->vm_flags)) 151 goto finish_or_fault; 152 153 if (pages) { 154 pages[i] = virt_to_page(start); 155 if (pages[i]) 156 page_cache_get(pages[i]); 157 } 158 if (vmas) 159 vmas[i] = vma; 160 start = (start + PAGE_SIZE) & PAGE_MASK; 161 } 162 163 return i; 164 165 finish_or_fault: 166 return i ? : -EFAULT; 167 } 168 169 /* 170 * get a list of pages in an address range belonging to the specified process 171 * and indicate the VMA that covers each page 172 * - this is potentially dodgy as we may end incrementing the page count of a 173 * slab page or a secondary page from a compound page 174 * - don't permit access to VMAs that don't support it, such as I/O mappings 175 */ 176 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 177 unsigned long start, int nr_pages, int write, int force, 178 struct page **pages, struct vm_area_struct **vmas) 179 { 180 int flags = 0; 181 182 if (write) 183 flags |= FOLL_WRITE; 184 if (force) 185 flags |= FOLL_FORCE; 186 187 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas); 188 } 189 EXPORT_SYMBOL(get_user_pages); 190 191 /** 192 * follow_pfn - look up PFN at a user virtual address 193 * @vma: memory mapping 194 * @address: user virtual address 195 * @pfn: location to store found PFN 196 * 197 * Only IO mappings and raw PFN mappings are allowed. 198 * 199 * Returns zero and the pfn at @pfn on success, -ve otherwise. 200 */ 201 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 202 unsigned long *pfn) 203 { 204 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 205 return -EINVAL; 206 207 *pfn = address >> PAGE_SHIFT; 208 return 0; 209 } 210 EXPORT_SYMBOL(follow_pfn); 211 212 DEFINE_RWLOCK(vmlist_lock); 213 struct vm_struct *vmlist; 214 215 void vfree(const void *addr) 216 { 217 kfree(addr); 218 } 219 EXPORT_SYMBOL(vfree); 220 221 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot) 222 { 223 /* 224 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc() 225 * returns only a logical address. 226 */ 227 return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM); 228 } 229 EXPORT_SYMBOL(__vmalloc); 230 231 void *vmalloc_user(unsigned long size) 232 { 233 void *ret; 234 235 ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, 236 PAGE_KERNEL); 237 if (ret) { 238 struct vm_area_struct *vma; 239 240 down_write(¤t->mm->mmap_sem); 241 vma = find_vma(current->mm, (unsigned long)ret); 242 if (vma) 243 vma->vm_flags |= VM_USERMAP; 244 up_write(¤t->mm->mmap_sem); 245 } 246 247 return ret; 248 } 249 EXPORT_SYMBOL(vmalloc_user); 250 251 struct page *vmalloc_to_page(const void *addr) 252 { 253 return virt_to_page(addr); 254 } 255 EXPORT_SYMBOL(vmalloc_to_page); 256 257 unsigned long vmalloc_to_pfn(const void *addr) 258 { 259 return page_to_pfn(virt_to_page(addr)); 260 } 261 EXPORT_SYMBOL(vmalloc_to_pfn); 262 263 long vread(char *buf, char *addr, unsigned long count) 264 { 265 memcpy(buf, addr, count); 266 return count; 267 } 268 269 long vwrite(char *buf, char *addr, unsigned long count) 270 { 271 /* Don't allow overflow */ 272 if ((unsigned long) addr + count < count) 273 count = -(unsigned long) addr; 274 275 memcpy(addr, buf, count); 276 return(count); 277 } 278 279 /* 280 * vmalloc - allocate virtually continguos memory 281 * 282 * @size: allocation size 283 * 284 * Allocate enough pages to cover @size from the page level 285 * allocator and map them into continguos kernel virtual space. 286 * 287 * For tight control over page level allocator and protection flags 288 * use __vmalloc() instead. 289 */ 290 void *vmalloc(unsigned long size) 291 { 292 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL); 293 } 294 EXPORT_SYMBOL(vmalloc); 295 296 void *vmalloc_node(unsigned long size, int node) 297 { 298 return vmalloc(size); 299 } 300 EXPORT_SYMBOL(vmalloc_node); 301 302 #ifndef PAGE_KERNEL_EXEC 303 # define PAGE_KERNEL_EXEC PAGE_KERNEL 304 #endif 305 306 /** 307 * vmalloc_exec - allocate virtually contiguous, executable memory 308 * @size: allocation size 309 * 310 * Kernel-internal function to allocate enough pages to cover @size 311 * the page level allocator and map them into contiguous and 312 * executable kernel virtual space. 313 * 314 * For tight control over page level allocator and protection flags 315 * use __vmalloc() instead. 316 */ 317 318 void *vmalloc_exec(unsigned long size) 319 { 320 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC); 321 } 322 323 /** 324 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 325 * @size: allocation size 326 * 327 * Allocate enough 32bit PA addressable pages to cover @size from the 328 * page level allocator and map them into continguos kernel virtual space. 329 */ 330 void *vmalloc_32(unsigned long size) 331 { 332 return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL); 333 } 334 EXPORT_SYMBOL(vmalloc_32); 335 336 /** 337 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 338 * @size: allocation size 339 * 340 * The resulting memory area is 32bit addressable and zeroed so it can be 341 * mapped to userspace without leaking data. 342 * 343 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to 344 * remap_vmalloc_range() are permissible. 345 */ 346 void *vmalloc_32_user(unsigned long size) 347 { 348 /* 349 * We'll have to sort out the ZONE_DMA bits for 64-bit, 350 * but for now this can simply use vmalloc_user() directly. 351 */ 352 return vmalloc_user(size); 353 } 354 EXPORT_SYMBOL(vmalloc_32_user); 355 356 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot) 357 { 358 BUG(); 359 return NULL; 360 } 361 EXPORT_SYMBOL(vmap); 362 363 void vunmap(const void *addr) 364 { 365 BUG(); 366 } 367 EXPORT_SYMBOL(vunmap); 368 369 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot) 370 { 371 BUG(); 372 return NULL; 373 } 374 EXPORT_SYMBOL(vm_map_ram); 375 376 void vm_unmap_ram(const void *mem, unsigned int count) 377 { 378 BUG(); 379 } 380 EXPORT_SYMBOL(vm_unmap_ram); 381 382 void vm_unmap_aliases(void) 383 { 384 } 385 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 386 387 /* 388 * Implement a stub for vmalloc_sync_all() if the architecture chose not to 389 * have one. 390 */ 391 void __attribute__((weak)) vmalloc_sync_all(void) 392 { 393 } 394 395 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 396 struct page *page) 397 { 398 return -EINVAL; 399 } 400 EXPORT_SYMBOL(vm_insert_page); 401 402 /* 403 * sys_brk() for the most part doesn't need the global kernel 404 * lock, except when an application is doing something nasty 405 * like trying to un-brk an area that has already been mapped 406 * to a regular file. in this case, the unmapping will need 407 * to invoke file system routines that need the global lock. 408 */ 409 SYSCALL_DEFINE1(brk, unsigned long, brk) 410 { 411 struct mm_struct *mm = current->mm; 412 413 if (brk < mm->start_brk || brk > mm->context.end_brk) 414 return mm->brk; 415 416 if (mm->brk == brk) 417 return mm->brk; 418 419 /* 420 * Always allow shrinking brk 421 */ 422 if (brk <= mm->brk) { 423 mm->brk = brk; 424 return brk; 425 } 426 427 /* 428 * Ok, looks good - let it rip. 429 */ 430 flush_icache_range(mm->brk, brk); 431 return mm->brk = brk; 432 } 433 434 /* 435 * initialise the VMA and region record slabs 436 */ 437 void __init mmap_init(void) 438 { 439 int ret; 440 441 ret = percpu_counter_init(&vm_committed_as, 0); 442 VM_BUG_ON(ret); 443 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC); 444 } 445 446 /* 447 * validate the region tree 448 * - the caller must hold the region lock 449 */ 450 #ifdef CONFIG_DEBUG_NOMMU_REGIONS 451 static noinline void validate_nommu_regions(void) 452 { 453 struct vm_region *region, *last; 454 struct rb_node *p, *lastp; 455 456 lastp = rb_first(&nommu_region_tree); 457 if (!lastp) 458 return; 459 460 last = rb_entry(lastp, struct vm_region, vm_rb); 461 BUG_ON(unlikely(last->vm_end <= last->vm_start)); 462 BUG_ON(unlikely(last->vm_top < last->vm_end)); 463 464 while ((p = rb_next(lastp))) { 465 region = rb_entry(p, struct vm_region, vm_rb); 466 last = rb_entry(lastp, struct vm_region, vm_rb); 467 468 BUG_ON(unlikely(region->vm_end <= region->vm_start)); 469 BUG_ON(unlikely(region->vm_top < region->vm_end)); 470 BUG_ON(unlikely(region->vm_start < last->vm_top)); 471 472 lastp = p; 473 } 474 } 475 #else 476 static void validate_nommu_regions(void) 477 { 478 } 479 #endif 480 481 /* 482 * add a region into the global tree 483 */ 484 static void add_nommu_region(struct vm_region *region) 485 { 486 struct vm_region *pregion; 487 struct rb_node **p, *parent; 488 489 validate_nommu_regions(); 490 491 parent = NULL; 492 p = &nommu_region_tree.rb_node; 493 while (*p) { 494 parent = *p; 495 pregion = rb_entry(parent, struct vm_region, vm_rb); 496 if (region->vm_start < pregion->vm_start) 497 p = &(*p)->rb_left; 498 else if (region->vm_start > pregion->vm_start) 499 p = &(*p)->rb_right; 500 else if (pregion == region) 501 return; 502 else 503 BUG(); 504 } 505 506 rb_link_node(®ion->vm_rb, parent, p); 507 rb_insert_color(®ion->vm_rb, &nommu_region_tree); 508 509 validate_nommu_regions(); 510 } 511 512 /* 513 * delete a region from the global tree 514 */ 515 static void delete_nommu_region(struct vm_region *region) 516 { 517 BUG_ON(!nommu_region_tree.rb_node); 518 519 validate_nommu_regions(); 520 rb_erase(®ion->vm_rb, &nommu_region_tree); 521 validate_nommu_regions(); 522 } 523 524 /* 525 * free a contiguous series of pages 526 */ 527 static void free_page_series(unsigned long from, unsigned long to) 528 { 529 for (; from < to; from += PAGE_SIZE) { 530 struct page *page = virt_to_page(from); 531 532 kdebug("- free %lx", from); 533 atomic_long_dec(&mmap_pages_allocated); 534 if (page_count(page) != 1) 535 kdebug("free page %p: refcount not one: %d", 536 page, page_count(page)); 537 put_page(page); 538 } 539 } 540 541 /* 542 * release a reference to a region 543 * - the caller must hold the region semaphore for writing, which this releases 544 * - the region may not have been added to the tree yet, in which case vm_top 545 * will equal vm_start 546 */ 547 static void __put_nommu_region(struct vm_region *region) 548 __releases(nommu_region_sem) 549 { 550 kenter("%p{%d}", region, region->vm_usage); 551 552 BUG_ON(!nommu_region_tree.rb_node); 553 554 if (--region->vm_usage == 0) { 555 if (region->vm_top > region->vm_start) 556 delete_nommu_region(region); 557 up_write(&nommu_region_sem); 558 559 if (region->vm_file) 560 fput(region->vm_file); 561 562 /* IO memory and memory shared directly out of the pagecache 563 * from ramfs/tmpfs mustn't be released here */ 564 if (region->vm_flags & VM_MAPPED_COPY) { 565 kdebug("free series"); 566 free_page_series(region->vm_start, region->vm_top); 567 } 568 kmem_cache_free(vm_region_jar, region); 569 } else { 570 up_write(&nommu_region_sem); 571 } 572 } 573 574 /* 575 * release a reference to a region 576 */ 577 static void put_nommu_region(struct vm_region *region) 578 { 579 down_write(&nommu_region_sem); 580 __put_nommu_region(region); 581 } 582 583 /* 584 * update protection on a vma 585 */ 586 static void protect_vma(struct vm_area_struct *vma, unsigned long flags) 587 { 588 #ifdef CONFIG_MPU 589 struct mm_struct *mm = vma->vm_mm; 590 long start = vma->vm_start & PAGE_MASK; 591 while (start < vma->vm_end) { 592 protect_page(mm, start, flags); 593 start += PAGE_SIZE; 594 } 595 update_protections(mm); 596 #endif 597 } 598 599 /* 600 * add a VMA into a process's mm_struct in the appropriate place in the list 601 * and tree and add to the address space's page tree also if not an anonymous 602 * page 603 * - should be called with mm->mmap_sem held writelocked 604 */ 605 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma) 606 { 607 struct vm_area_struct *pvma, **pp, *next; 608 struct address_space *mapping; 609 struct rb_node **p, *parent; 610 611 kenter(",%p", vma); 612 613 BUG_ON(!vma->vm_region); 614 615 mm->map_count++; 616 vma->vm_mm = mm; 617 618 protect_vma(vma, vma->vm_flags); 619 620 /* add the VMA to the mapping */ 621 if (vma->vm_file) { 622 mapping = vma->vm_file->f_mapping; 623 624 flush_dcache_mmap_lock(mapping); 625 vma_prio_tree_insert(vma, &mapping->i_mmap); 626 flush_dcache_mmap_unlock(mapping); 627 } 628 629 /* add the VMA to the tree */ 630 parent = NULL; 631 p = &mm->mm_rb.rb_node; 632 while (*p) { 633 parent = *p; 634 pvma = rb_entry(parent, struct vm_area_struct, vm_rb); 635 636 /* sort by: start addr, end addr, VMA struct addr in that order 637 * (the latter is necessary as we may get identical VMAs) */ 638 if (vma->vm_start < pvma->vm_start) 639 p = &(*p)->rb_left; 640 else if (vma->vm_start > pvma->vm_start) 641 p = &(*p)->rb_right; 642 else if (vma->vm_end < pvma->vm_end) 643 p = &(*p)->rb_left; 644 else if (vma->vm_end > pvma->vm_end) 645 p = &(*p)->rb_right; 646 else if (vma < pvma) 647 p = &(*p)->rb_left; 648 else if (vma > pvma) 649 p = &(*p)->rb_right; 650 else 651 BUG(); 652 } 653 654 rb_link_node(&vma->vm_rb, parent, p); 655 rb_insert_color(&vma->vm_rb, &mm->mm_rb); 656 657 /* add VMA to the VMA list also */ 658 for (pp = &mm->mmap; (pvma = *pp); pp = &(*pp)->vm_next) { 659 if (pvma->vm_start > vma->vm_start) 660 break; 661 if (pvma->vm_start < vma->vm_start) 662 continue; 663 if (pvma->vm_end < vma->vm_end) 664 break; 665 } 666 667 next = *pp; 668 *pp = vma; 669 vma->vm_next = next; 670 if (next) 671 next->vm_prev = vma; 672 } 673 674 /* 675 * delete a VMA from its owning mm_struct and address space 676 */ 677 static void delete_vma_from_mm(struct vm_area_struct *vma) 678 { 679 struct vm_area_struct **pp; 680 struct address_space *mapping; 681 struct mm_struct *mm = vma->vm_mm; 682 683 kenter("%p", vma); 684 685 protect_vma(vma, 0); 686 687 mm->map_count--; 688 if (mm->mmap_cache == vma) 689 mm->mmap_cache = NULL; 690 691 /* remove the VMA from the mapping */ 692 if (vma->vm_file) { 693 mapping = vma->vm_file->f_mapping; 694 695 flush_dcache_mmap_lock(mapping); 696 vma_prio_tree_remove(vma, &mapping->i_mmap); 697 flush_dcache_mmap_unlock(mapping); 698 } 699 700 /* remove from the MM's tree and list */ 701 rb_erase(&vma->vm_rb, &mm->mm_rb); 702 for (pp = &mm->mmap; *pp; pp = &(*pp)->vm_next) { 703 if (*pp == vma) { 704 *pp = vma->vm_next; 705 break; 706 } 707 } 708 709 vma->vm_mm = NULL; 710 } 711 712 /* 713 * destroy a VMA record 714 */ 715 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma) 716 { 717 kenter("%p", vma); 718 if (vma->vm_ops && vma->vm_ops->close) 719 vma->vm_ops->close(vma); 720 if (vma->vm_file) { 721 fput(vma->vm_file); 722 if (vma->vm_flags & VM_EXECUTABLE) 723 removed_exe_file_vma(mm); 724 } 725 put_nommu_region(vma->vm_region); 726 kmem_cache_free(vm_area_cachep, vma); 727 } 728 729 /* 730 * look up the first VMA in which addr resides, NULL if none 731 * - should be called with mm->mmap_sem at least held readlocked 732 */ 733 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 734 { 735 struct vm_area_struct *vma; 736 struct rb_node *n = mm->mm_rb.rb_node; 737 738 /* check the cache first */ 739 vma = mm->mmap_cache; 740 if (vma && vma->vm_start <= addr && vma->vm_end > addr) 741 return vma; 742 743 /* trawl the tree (there may be multiple mappings in which addr 744 * resides) */ 745 for (n = rb_first(&mm->mm_rb); n; n = rb_next(n)) { 746 vma = rb_entry(n, struct vm_area_struct, vm_rb); 747 if (vma->vm_start > addr) 748 return NULL; 749 if (vma->vm_end > addr) { 750 mm->mmap_cache = vma; 751 return vma; 752 } 753 } 754 755 return NULL; 756 } 757 EXPORT_SYMBOL(find_vma); 758 759 /* 760 * find a VMA 761 * - we don't extend stack VMAs under NOMMU conditions 762 */ 763 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr) 764 { 765 return find_vma(mm, addr); 766 } 767 768 /* 769 * expand a stack to a given address 770 * - not supported under NOMMU conditions 771 */ 772 int expand_stack(struct vm_area_struct *vma, unsigned long address) 773 { 774 return -ENOMEM; 775 } 776 777 /* 778 * look up the first VMA exactly that exactly matches addr 779 * - should be called with mm->mmap_sem at least held readlocked 780 */ 781 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm, 782 unsigned long addr, 783 unsigned long len) 784 { 785 struct vm_area_struct *vma; 786 struct rb_node *n = mm->mm_rb.rb_node; 787 unsigned long end = addr + len; 788 789 /* check the cache first */ 790 vma = mm->mmap_cache; 791 if (vma && vma->vm_start == addr && vma->vm_end == end) 792 return vma; 793 794 /* trawl the tree (there may be multiple mappings in which addr 795 * resides) */ 796 for (n = rb_first(&mm->mm_rb); n; n = rb_next(n)) { 797 vma = rb_entry(n, struct vm_area_struct, vm_rb); 798 if (vma->vm_start < addr) 799 continue; 800 if (vma->vm_start > addr) 801 return NULL; 802 if (vma->vm_end == end) { 803 mm->mmap_cache = vma; 804 return vma; 805 } 806 } 807 808 return NULL; 809 } 810 811 /* 812 * determine whether a mapping should be permitted and, if so, what sort of 813 * mapping we're capable of supporting 814 */ 815 static int validate_mmap_request(struct file *file, 816 unsigned long addr, 817 unsigned long len, 818 unsigned long prot, 819 unsigned long flags, 820 unsigned long pgoff, 821 unsigned long *_capabilities) 822 { 823 unsigned long capabilities, rlen; 824 unsigned long reqprot = prot; 825 int ret; 826 827 /* do the simple checks first */ 828 if (flags & MAP_FIXED) { 829 printk(KERN_DEBUG 830 "%d: Can't do fixed-address/overlay mmap of RAM\n", 831 current->pid); 832 return -EINVAL; 833 } 834 835 if ((flags & MAP_TYPE) != MAP_PRIVATE && 836 (flags & MAP_TYPE) != MAP_SHARED) 837 return -EINVAL; 838 839 if (!len) 840 return -EINVAL; 841 842 /* Careful about overflows.. */ 843 rlen = PAGE_ALIGN(len); 844 if (!rlen || rlen > TASK_SIZE) 845 return -ENOMEM; 846 847 /* offset overflow? */ 848 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff) 849 return -EOVERFLOW; 850 851 if (file) { 852 /* validate file mapping requests */ 853 struct address_space *mapping; 854 855 /* files must support mmap */ 856 if (!file->f_op || !file->f_op->mmap) 857 return -ENODEV; 858 859 /* work out if what we've got could possibly be shared 860 * - we support chardevs that provide their own "memory" 861 * - we support files/blockdevs that are memory backed 862 */ 863 mapping = file->f_mapping; 864 if (!mapping) 865 mapping = file->f_path.dentry->d_inode->i_mapping; 866 867 capabilities = 0; 868 if (mapping && mapping->backing_dev_info) 869 capabilities = mapping->backing_dev_info->capabilities; 870 871 if (!capabilities) { 872 /* no explicit capabilities set, so assume some 873 * defaults */ 874 switch (file->f_path.dentry->d_inode->i_mode & S_IFMT) { 875 case S_IFREG: 876 case S_IFBLK: 877 capabilities = BDI_CAP_MAP_COPY; 878 break; 879 880 case S_IFCHR: 881 capabilities = 882 BDI_CAP_MAP_DIRECT | 883 BDI_CAP_READ_MAP | 884 BDI_CAP_WRITE_MAP; 885 break; 886 887 default: 888 return -EINVAL; 889 } 890 } 891 892 /* eliminate any capabilities that we can't support on this 893 * device */ 894 if (!file->f_op->get_unmapped_area) 895 capabilities &= ~BDI_CAP_MAP_DIRECT; 896 if (!file->f_op->read) 897 capabilities &= ~BDI_CAP_MAP_COPY; 898 899 /* The file shall have been opened with read permission. */ 900 if (!(file->f_mode & FMODE_READ)) 901 return -EACCES; 902 903 if (flags & MAP_SHARED) { 904 /* do checks for writing, appending and locking */ 905 if ((prot & PROT_WRITE) && 906 !(file->f_mode & FMODE_WRITE)) 907 return -EACCES; 908 909 if (IS_APPEND(file->f_path.dentry->d_inode) && 910 (file->f_mode & FMODE_WRITE)) 911 return -EACCES; 912 913 if (locks_verify_locked(file->f_path.dentry->d_inode)) 914 return -EAGAIN; 915 916 if (!(capabilities & BDI_CAP_MAP_DIRECT)) 917 return -ENODEV; 918 919 /* we mustn't privatise shared mappings */ 920 capabilities &= ~BDI_CAP_MAP_COPY; 921 } 922 else { 923 /* we're going to read the file into private memory we 924 * allocate */ 925 if (!(capabilities & BDI_CAP_MAP_COPY)) 926 return -ENODEV; 927 928 /* we don't permit a private writable mapping to be 929 * shared with the backing device */ 930 if (prot & PROT_WRITE) 931 capabilities &= ~BDI_CAP_MAP_DIRECT; 932 } 933 934 if (capabilities & BDI_CAP_MAP_DIRECT) { 935 if (((prot & PROT_READ) && !(capabilities & BDI_CAP_READ_MAP)) || 936 ((prot & PROT_WRITE) && !(capabilities & BDI_CAP_WRITE_MAP)) || 937 ((prot & PROT_EXEC) && !(capabilities & BDI_CAP_EXEC_MAP)) 938 ) { 939 capabilities &= ~BDI_CAP_MAP_DIRECT; 940 if (flags & MAP_SHARED) { 941 printk(KERN_WARNING 942 "MAP_SHARED not completely supported on !MMU\n"); 943 return -EINVAL; 944 } 945 } 946 } 947 948 /* handle executable mappings and implied executable 949 * mappings */ 950 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) { 951 if (prot & PROT_EXEC) 952 return -EPERM; 953 } 954 else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) { 955 /* handle implication of PROT_EXEC by PROT_READ */ 956 if (current->personality & READ_IMPLIES_EXEC) { 957 if (capabilities & BDI_CAP_EXEC_MAP) 958 prot |= PROT_EXEC; 959 } 960 } 961 else if ((prot & PROT_READ) && 962 (prot & PROT_EXEC) && 963 !(capabilities & BDI_CAP_EXEC_MAP) 964 ) { 965 /* backing file is not executable, try to copy */ 966 capabilities &= ~BDI_CAP_MAP_DIRECT; 967 } 968 } 969 else { 970 /* anonymous mappings are always memory backed and can be 971 * privately mapped 972 */ 973 capabilities = BDI_CAP_MAP_COPY; 974 975 /* handle PROT_EXEC implication by PROT_READ */ 976 if ((prot & PROT_READ) && 977 (current->personality & READ_IMPLIES_EXEC)) 978 prot |= PROT_EXEC; 979 } 980 981 /* allow the security API to have its say */ 982 ret = security_file_mmap(file, reqprot, prot, flags, addr, 0); 983 if (ret < 0) 984 return ret; 985 986 /* looks okay */ 987 *_capabilities = capabilities; 988 return 0; 989 } 990 991 /* 992 * we've determined that we can make the mapping, now translate what we 993 * now know into VMA flags 994 */ 995 static unsigned long determine_vm_flags(struct file *file, 996 unsigned long prot, 997 unsigned long flags, 998 unsigned long capabilities) 999 { 1000 unsigned long vm_flags; 1001 1002 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags); 1003 /* vm_flags |= mm->def_flags; */ 1004 1005 if (!(capabilities & BDI_CAP_MAP_DIRECT)) { 1006 /* attempt to share read-only copies of mapped file chunks */ 1007 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 1008 if (file && !(prot & PROT_WRITE)) 1009 vm_flags |= VM_MAYSHARE; 1010 } else { 1011 /* overlay a shareable mapping on the backing device or inode 1012 * if possible - used for chardevs, ramfs/tmpfs/shmfs and 1013 * romfs/cramfs */ 1014 vm_flags |= VM_MAYSHARE | (capabilities & BDI_CAP_VMFLAGS); 1015 if (flags & MAP_SHARED) 1016 vm_flags |= VM_SHARED; 1017 } 1018 1019 /* refuse to let anyone share private mappings with this process if 1020 * it's being traced - otherwise breakpoints set in it may interfere 1021 * with another untraced process 1022 */ 1023 if ((flags & MAP_PRIVATE) && tracehook_expect_breakpoints(current)) 1024 vm_flags &= ~VM_MAYSHARE; 1025 1026 return vm_flags; 1027 } 1028 1029 /* 1030 * set up a shared mapping on a file (the driver or filesystem provides and 1031 * pins the storage) 1032 */ 1033 static int do_mmap_shared_file(struct vm_area_struct *vma) 1034 { 1035 int ret; 1036 1037 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma); 1038 if (ret == 0) { 1039 vma->vm_region->vm_top = vma->vm_region->vm_end; 1040 return 0; 1041 } 1042 if (ret != -ENOSYS) 1043 return ret; 1044 1045 /* getting -ENOSYS indicates that direct mmap isn't possible (as 1046 * opposed to tried but failed) so we can only give a suitable error as 1047 * it's not possible to make a private copy if MAP_SHARED was given */ 1048 return -ENODEV; 1049 } 1050 1051 /* 1052 * set up a private mapping or an anonymous shared mapping 1053 */ 1054 static int do_mmap_private(struct vm_area_struct *vma, 1055 struct vm_region *region, 1056 unsigned long len, 1057 unsigned long capabilities) 1058 { 1059 struct page *pages; 1060 unsigned long total, point, n, rlen; 1061 void *base; 1062 int ret, order; 1063 1064 /* invoke the file's mapping function so that it can keep track of 1065 * shared mappings on devices or memory 1066 * - VM_MAYSHARE will be set if it may attempt to share 1067 */ 1068 if (capabilities & BDI_CAP_MAP_DIRECT) { 1069 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma); 1070 if (ret == 0) { 1071 /* shouldn't return success if we're not sharing */ 1072 BUG_ON(!(vma->vm_flags & VM_MAYSHARE)); 1073 vma->vm_region->vm_top = vma->vm_region->vm_end; 1074 return 0; 1075 } 1076 if (ret != -ENOSYS) 1077 return ret; 1078 1079 /* getting an ENOSYS error indicates that direct mmap isn't 1080 * possible (as opposed to tried but failed) so we'll try to 1081 * make a private copy of the data and map that instead */ 1082 } 1083 1084 rlen = PAGE_ALIGN(len); 1085 1086 /* allocate some memory to hold the mapping 1087 * - note that this may not return a page-aligned address if the object 1088 * we're allocating is smaller than a page 1089 */ 1090 order = get_order(rlen); 1091 kdebug("alloc order %d for %lx", order, len); 1092 1093 pages = alloc_pages(GFP_KERNEL, order); 1094 if (!pages) 1095 goto enomem; 1096 1097 total = 1 << order; 1098 atomic_long_add(total, &mmap_pages_allocated); 1099 1100 point = rlen >> PAGE_SHIFT; 1101 1102 /* we allocated a power-of-2 sized page set, so we may want to trim off 1103 * the excess */ 1104 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) { 1105 while (total > point) { 1106 order = ilog2(total - point); 1107 n = 1 << order; 1108 kdebug("shave %lu/%lu @%lu", n, total - point, total); 1109 atomic_long_sub(n, &mmap_pages_allocated); 1110 total -= n; 1111 set_page_refcounted(pages + total); 1112 __free_pages(pages + total, order); 1113 } 1114 } 1115 1116 for (point = 1; point < total; point++) 1117 set_page_refcounted(&pages[point]); 1118 1119 base = page_address(pages); 1120 region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY; 1121 region->vm_start = (unsigned long) base; 1122 region->vm_end = region->vm_start + rlen; 1123 region->vm_top = region->vm_start + (total << PAGE_SHIFT); 1124 1125 vma->vm_start = region->vm_start; 1126 vma->vm_end = region->vm_start + len; 1127 1128 if (vma->vm_file) { 1129 /* read the contents of a file into the copy */ 1130 mm_segment_t old_fs; 1131 loff_t fpos; 1132 1133 fpos = vma->vm_pgoff; 1134 fpos <<= PAGE_SHIFT; 1135 1136 old_fs = get_fs(); 1137 set_fs(KERNEL_DS); 1138 ret = vma->vm_file->f_op->read(vma->vm_file, base, rlen, &fpos); 1139 set_fs(old_fs); 1140 1141 if (ret < 0) 1142 goto error_free; 1143 1144 /* clear the last little bit */ 1145 if (ret < rlen) 1146 memset(base + ret, 0, rlen - ret); 1147 1148 } 1149 1150 return 0; 1151 1152 error_free: 1153 free_page_series(region->vm_start, region->vm_end); 1154 region->vm_start = vma->vm_start = 0; 1155 region->vm_end = vma->vm_end = 0; 1156 region->vm_top = 0; 1157 return ret; 1158 1159 enomem: 1160 printk("Allocation of length %lu from process %d (%s) failed\n", 1161 len, current->pid, current->comm); 1162 show_free_areas(); 1163 return -ENOMEM; 1164 } 1165 1166 /* 1167 * handle mapping creation for uClinux 1168 */ 1169 unsigned long do_mmap_pgoff(struct file *file, 1170 unsigned long addr, 1171 unsigned long len, 1172 unsigned long prot, 1173 unsigned long flags, 1174 unsigned long pgoff) 1175 { 1176 struct vm_area_struct *vma; 1177 struct vm_region *region; 1178 struct rb_node *rb; 1179 unsigned long capabilities, vm_flags, result; 1180 int ret; 1181 1182 kenter(",%lx,%lx,%lx,%lx,%lx", addr, len, prot, flags, pgoff); 1183 1184 /* decide whether we should attempt the mapping, and if so what sort of 1185 * mapping */ 1186 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff, 1187 &capabilities); 1188 if (ret < 0) { 1189 kleave(" = %d [val]", ret); 1190 return ret; 1191 } 1192 1193 /* we ignore the address hint */ 1194 addr = 0; 1195 1196 /* we've determined that we can make the mapping, now translate what we 1197 * now know into VMA flags */ 1198 vm_flags = determine_vm_flags(file, prot, flags, capabilities); 1199 1200 /* we're going to need to record the mapping */ 1201 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL); 1202 if (!region) 1203 goto error_getting_region; 1204 1205 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 1206 if (!vma) 1207 goto error_getting_vma; 1208 1209 region->vm_usage = 1; 1210 region->vm_flags = vm_flags; 1211 region->vm_pgoff = pgoff; 1212 1213 INIT_LIST_HEAD(&vma->anon_vma_chain); 1214 vma->vm_flags = vm_flags; 1215 vma->vm_pgoff = pgoff; 1216 1217 if (file) { 1218 region->vm_file = file; 1219 get_file(file); 1220 vma->vm_file = file; 1221 get_file(file); 1222 if (vm_flags & VM_EXECUTABLE) { 1223 added_exe_file_vma(current->mm); 1224 vma->vm_mm = current->mm; 1225 } 1226 } 1227 1228 down_write(&nommu_region_sem); 1229 1230 /* if we want to share, we need to check for regions created by other 1231 * mmap() calls that overlap with our proposed mapping 1232 * - we can only share with a superset match on most regular files 1233 * - shared mappings on character devices and memory backed files are 1234 * permitted to overlap inexactly as far as we are concerned for in 1235 * these cases, sharing is handled in the driver or filesystem rather 1236 * than here 1237 */ 1238 if (vm_flags & VM_MAYSHARE) { 1239 struct vm_region *pregion; 1240 unsigned long pglen, rpglen, pgend, rpgend, start; 1241 1242 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1243 pgend = pgoff + pglen; 1244 1245 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) { 1246 pregion = rb_entry(rb, struct vm_region, vm_rb); 1247 1248 if (!(pregion->vm_flags & VM_MAYSHARE)) 1249 continue; 1250 1251 /* search for overlapping mappings on the same file */ 1252 if (pregion->vm_file->f_path.dentry->d_inode != 1253 file->f_path.dentry->d_inode) 1254 continue; 1255 1256 if (pregion->vm_pgoff >= pgend) 1257 continue; 1258 1259 rpglen = pregion->vm_end - pregion->vm_start; 1260 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT; 1261 rpgend = pregion->vm_pgoff + rpglen; 1262 if (pgoff >= rpgend) 1263 continue; 1264 1265 /* handle inexactly overlapping matches between 1266 * mappings */ 1267 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) && 1268 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) { 1269 /* new mapping is not a subset of the region */ 1270 if (!(capabilities & BDI_CAP_MAP_DIRECT)) 1271 goto sharing_violation; 1272 continue; 1273 } 1274 1275 /* we've found a region we can share */ 1276 pregion->vm_usage++; 1277 vma->vm_region = pregion; 1278 start = pregion->vm_start; 1279 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT; 1280 vma->vm_start = start; 1281 vma->vm_end = start + len; 1282 1283 if (pregion->vm_flags & VM_MAPPED_COPY) { 1284 kdebug("share copy"); 1285 vma->vm_flags |= VM_MAPPED_COPY; 1286 } else { 1287 kdebug("share mmap"); 1288 ret = do_mmap_shared_file(vma); 1289 if (ret < 0) { 1290 vma->vm_region = NULL; 1291 vma->vm_start = 0; 1292 vma->vm_end = 0; 1293 pregion->vm_usage--; 1294 pregion = NULL; 1295 goto error_just_free; 1296 } 1297 } 1298 fput(region->vm_file); 1299 kmem_cache_free(vm_region_jar, region); 1300 region = pregion; 1301 result = start; 1302 goto share; 1303 } 1304 1305 /* obtain the address at which to make a shared mapping 1306 * - this is the hook for quasi-memory character devices to 1307 * tell us the location of a shared mapping 1308 */ 1309 if (capabilities & BDI_CAP_MAP_DIRECT) { 1310 addr = file->f_op->get_unmapped_area(file, addr, len, 1311 pgoff, flags); 1312 if (IS_ERR((void *) addr)) { 1313 ret = addr; 1314 if (ret != (unsigned long) -ENOSYS) 1315 goto error_just_free; 1316 1317 /* the driver refused to tell us where to site 1318 * the mapping so we'll have to attempt to copy 1319 * it */ 1320 ret = (unsigned long) -ENODEV; 1321 if (!(capabilities & BDI_CAP_MAP_COPY)) 1322 goto error_just_free; 1323 1324 capabilities &= ~BDI_CAP_MAP_DIRECT; 1325 } else { 1326 vma->vm_start = region->vm_start = addr; 1327 vma->vm_end = region->vm_end = addr + len; 1328 } 1329 } 1330 } 1331 1332 vma->vm_region = region; 1333 1334 /* set up the mapping 1335 * - the region is filled in if BDI_CAP_MAP_DIRECT is still set 1336 */ 1337 if (file && vma->vm_flags & VM_SHARED) 1338 ret = do_mmap_shared_file(vma); 1339 else 1340 ret = do_mmap_private(vma, region, len, capabilities); 1341 if (ret < 0) 1342 goto error_just_free; 1343 add_nommu_region(region); 1344 1345 /* clear anonymous mappings that don't ask for uninitialized data */ 1346 if (!vma->vm_file && !(flags & MAP_UNINITIALIZED)) 1347 memset((void *)region->vm_start, 0, 1348 region->vm_end - region->vm_start); 1349 1350 /* okay... we have a mapping; now we have to register it */ 1351 result = vma->vm_start; 1352 1353 current->mm->total_vm += len >> PAGE_SHIFT; 1354 1355 share: 1356 add_vma_to_mm(current->mm, vma); 1357 1358 /* we flush the region from the icache only when the first executable 1359 * mapping of it is made */ 1360 if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) { 1361 flush_icache_range(region->vm_start, region->vm_end); 1362 region->vm_icache_flushed = true; 1363 } 1364 1365 up_write(&nommu_region_sem); 1366 1367 kleave(" = %lx", result); 1368 return result; 1369 1370 error_just_free: 1371 up_write(&nommu_region_sem); 1372 error: 1373 if (region->vm_file) 1374 fput(region->vm_file); 1375 kmem_cache_free(vm_region_jar, region); 1376 if (vma->vm_file) 1377 fput(vma->vm_file); 1378 if (vma->vm_flags & VM_EXECUTABLE) 1379 removed_exe_file_vma(vma->vm_mm); 1380 kmem_cache_free(vm_area_cachep, vma); 1381 kleave(" = %d", ret); 1382 return ret; 1383 1384 sharing_violation: 1385 up_write(&nommu_region_sem); 1386 printk(KERN_WARNING "Attempt to share mismatched mappings\n"); 1387 ret = -EINVAL; 1388 goto error; 1389 1390 error_getting_vma: 1391 kmem_cache_free(vm_region_jar, region); 1392 printk(KERN_WARNING "Allocation of vma for %lu byte allocation" 1393 " from process %d failed\n", 1394 len, current->pid); 1395 show_free_areas(); 1396 return -ENOMEM; 1397 1398 error_getting_region: 1399 printk(KERN_WARNING "Allocation of vm region for %lu byte allocation" 1400 " from process %d failed\n", 1401 len, current->pid); 1402 show_free_areas(); 1403 return -ENOMEM; 1404 } 1405 EXPORT_SYMBOL(do_mmap_pgoff); 1406 1407 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1408 unsigned long, prot, unsigned long, flags, 1409 unsigned long, fd, unsigned long, pgoff) 1410 { 1411 struct file *file = NULL; 1412 unsigned long retval = -EBADF; 1413 1414 if (!(flags & MAP_ANONYMOUS)) { 1415 file = fget(fd); 1416 if (!file) 1417 goto out; 1418 } 1419 1420 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE); 1421 1422 down_write(¤t->mm->mmap_sem); 1423 retval = do_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1424 up_write(¤t->mm->mmap_sem); 1425 1426 if (file) 1427 fput(file); 1428 out: 1429 return retval; 1430 } 1431 1432 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1433 struct mmap_arg_struct { 1434 unsigned long addr; 1435 unsigned long len; 1436 unsigned long prot; 1437 unsigned long flags; 1438 unsigned long fd; 1439 unsigned long offset; 1440 }; 1441 1442 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1443 { 1444 struct mmap_arg_struct a; 1445 1446 if (copy_from_user(&a, arg, sizeof(a))) 1447 return -EFAULT; 1448 if (a.offset & ~PAGE_MASK) 1449 return -EINVAL; 1450 1451 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1452 a.offset >> PAGE_SHIFT); 1453 } 1454 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1455 1456 /* 1457 * split a vma into two pieces at address 'addr', a new vma is allocated either 1458 * for the first part or the tail. 1459 */ 1460 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 1461 unsigned long addr, int new_below) 1462 { 1463 struct vm_area_struct *new; 1464 struct vm_region *region; 1465 unsigned long npages; 1466 1467 kenter(""); 1468 1469 /* we're only permitted to split anonymous regions (these should have 1470 * only a single usage on the region) */ 1471 if (vma->vm_file) 1472 return -ENOMEM; 1473 1474 if (mm->map_count >= sysctl_max_map_count) 1475 return -ENOMEM; 1476 1477 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL); 1478 if (!region) 1479 return -ENOMEM; 1480 1481 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 1482 if (!new) { 1483 kmem_cache_free(vm_region_jar, region); 1484 return -ENOMEM; 1485 } 1486 1487 /* most fields are the same, copy all, and then fixup */ 1488 *new = *vma; 1489 *region = *vma->vm_region; 1490 new->vm_region = region; 1491 1492 npages = (addr - vma->vm_start) >> PAGE_SHIFT; 1493 1494 if (new_below) { 1495 region->vm_top = region->vm_end = new->vm_end = addr; 1496 } else { 1497 region->vm_start = new->vm_start = addr; 1498 region->vm_pgoff = new->vm_pgoff += npages; 1499 } 1500 1501 if (new->vm_ops && new->vm_ops->open) 1502 new->vm_ops->open(new); 1503 1504 delete_vma_from_mm(vma); 1505 down_write(&nommu_region_sem); 1506 delete_nommu_region(vma->vm_region); 1507 if (new_below) { 1508 vma->vm_region->vm_start = vma->vm_start = addr; 1509 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages; 1510 } else { 1511 vma->vm_region->vm_end = vma->vm_end = addr; 1512 vma->vm_region->vm_top = addr; 1513 } 1514 add_nommu_region(vma->vm_region); 1515 add_nommu_region(new->vm_region); 1516 up_write(&nommu_region_sem); 1517 add_vma_to_mm(mm, vma); 1518 add_vma_to_mm(mm, new); 1519 return 0; 1520 } 1521 1522 /* 1523 * shrink a VMA by removing the specified chunk from either the beginning or 1524 * the end 1525 */ 1526 static int shrink_vma(struct mm_struct *mm, 1527 struct vm_area_struct *vma, 1528 unsigned long from, unsigned long to) 1529 { 1530 struct vm_region *region; 1531 1532 kenter(""); 1533 1534 /* adjust the VMA's pointers, which may reposition it in the MM's tree 1535 * and list */ 1536 delete_vma_from_mm(vma); 1537 if (from > vma->vm_start) 1538 vma->vm_end = from; 1539 else 1540 vma->vm_start = to; 1541 add_vma_to_mm(mm, vma); 1542 1543 /* cut the backing region down to size */ 1544 region = vma->vm_region; 1545 BUG_ON(region->vm_usage != 1); 1546 1547 down_write(&nommu_region_sem); 1548 delete_nommu_region(region); 1549 if (from > region->vm_start) { 1550 to = region->vm_top; 1551 region->vm_top = region->vm_end = from; 1552 } else { 1553 region->vm_start = to; 1554 } 1555 add_nommu_region(region); 1556 up_write(&nommu_region_sem); 1557 1558 free_page_series(from, to); 1559 return 0; 1560 } 1561 1562 /* 1563 * release a mapping 1564 * - under NOMMU conditions the chunk to be unmapped must be backed by a single 1565 * VMA, though it need not cover the whole VMA 1566 */ 1567 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len) 1568 { 1569 struct vm_area_struct *vma; 1570 struct rb_node *rb; 1571 unsigned long end = start + len; 1572 int ret; 1573 1574 kenter(",%lx,%zx", start, len); 1575 1576 if (len == 0) 1577 return -EINVAL; 1578 1579 /* find the first potentially overlapping VMA */ 1580 vma = find_vma(mm, start); 1581 if (!vma) { 1582 static int limit = 0; 1583 if (limit < 5) { 1584 printk(KERN_WARNING 1585 "munmap of memory not mmapped by process %d" 1586 " (%s): 0x%lx-0x%lx\n", 1587 current->pid, current->comm, 1588 start, start + len - 1); 1589 limit++; 1590 } 1591 return -EINVAL; 1592 } 1593 1594 /* we're allowed to split an anonymous VMA but not a file-backed one */ 1595 if (vma->vm_file) { 1596 do { 1597 if (start > vma->vm_start) { 1598 kleave(" = -EINVAL [miss]"); 1599 return -EINVAL; 1600 } 1601 if (end == vma->vm_end) 1602 goto erase_whole_vma; 1603 rb = rb_next(&vma->vm_rb); 1604 vma = rb_entry(rb, struct vm_area_struct, vm_rb); 1605 } while (rb); 1606 kleave(" = -EINVAL [split file]"); 1607 return -EINVAL; 1608 } else { 1609 /* the chunk must be a subset of the VMA found */ 1610 if (start == vma->vm_start && end == vma->vm_end) 1611 goto erase_whole_vma; 1612 if (start < vma->vm_start || end > vma->vm_end) { 1613 kleave(" = -EINVAL [superset]"); 1614 return -EINVAL; 1615 } 1616 if (start & ~PAGE_MASK) { 1617 kleave(" = -EINVAL [unaligned start]"); 1618 return -EINVAL; 1619 } 1620 if (end != vma->vm_end && end & ~PAGE_MASK) { 1621 kleave(" = -EINVAL [unaligned split]"); 1622 return -EINVAL; 1623 } 1624 if (start != vma->vm_start && end != vma->vm_end) { 1625 ret = split_vma(mm, vma, start, 1); 1626 if (ret < 0) { 1627 kleave(" = %d [split]", ret); 1628 return ret; 1629 } 1630 } 1631 return shrink_vma(mm, vma, start, end); 1632 } 1633 1634 erase_whole_vma: 1635 delete_vma_from_mm(vma); 1636 delete_vma(mm, vma); 1637 kleave(" = 0"); 1638 return 0; 1639 } 1640 EXPORT_SYMBOL(do_munmap); 1641 1642 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 1643 { 1644 int ret; 1645 struct mm_struct *mm = current->mm; 1646 1647 down_write(&mm->mmap_sem); 1648 ret = do_munmap(mm, addr, len); 1649 up_write(&mm->mmap_sem); 1650 return ret; 1651 } 1652 1653 /* 1654 * release all the mappings made in a process's VM space 1655 */ 1656 void exit_mmap(struct mm_struct *mm) 1657 { 1658 struct vm_area_struct *vma; 1659 1660 if (!mm) 1661 return; 1662 1663 kenter(""); 1664 1665 mm->total_vm = 0; 1666 1667 while ((vma = mm->mmap)) { 1668 mm->mmap = vma->vm_next; 1669 delete_vma_from_mm(vma); 1670 delete_vma(mm, vma); 1671 } 1672 1673 kleave(""); 1674 } 1675 1676 unsigned long do_brk(unsigned long addr, unsigned long len) 1677 { 1678 return -ENOMEM; 1679 } 1680 1681 /* 1682 * expand (or shrink) an existing mapping, potentially moving it at the same 1683 * time (controlled by the MREMAP_MAYMOVE flag and available VM space) 1684 * 1685 * under NOMMU conditions, we only permit changing a mapping's size, and only 1686 * as long as it stays within the region allocated by do_mmap_private() and the 1687 * block is not shareable 1688 * 1689 * MREMAP_FIXED is not supported under NOMMU conditions 1690 */ 1691 unsigned long do_mremap(unsigned long addr, 1692 unsigned long old_len, unsigned long new_len, 1693 unsigned long flags, unsigned long new_addr) 1694 { 1695 struct vm_area_struct *vma; 1696 1697 /* insanity checks first */ 1698 if (old_len == 0 || new_len == 0) 1699 return (unsigned long) -EINVAL; 1700 1701 if (addr & ~PAGE_MASK) 1702 return -EINVAL; 1703 1704 if (flags & MREMAP_FIXED && new_addr != addr) 1705 return (unsigned long) -EINVAL; 1706 1707 vma = find_vma_exact(current->mm, addr, old_len); 1708 if (!vma) 1709 return (unsigned long) -EINVAL; 1710 1711 if (vma->vm_end != vma->vm_start + old_len) 1712 return (unsigned long) -EFAULT; 1713 1714 if (vma->vm_flags & VM_MAYSHARE) 1715 return (unsigned long) -EPERM; 1716 1717 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start) 1718 return (unsigned long) -ENOMEM; 1719 1720 /* all checks complete - do it */ 1721 vma->vm_end = vma->vm_start + new_len; 1722 return vma->vm_start; 1723 } 1724 EXPORT_SYMBOL(do_mremap); 1725 1726 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len, 1727 unsigned long, new_len, unsigned long, flags, 1728 unsigned long, new_addr) 1729 { 1730 unsigned long ret; 1731 1732 down_write(¤t->mm->mmap_sem); 1733 ret = do_mremap(addr, old_len, new_len, flags, new_addr); 1734 up_write(¤t->mm->mmap_sem); 1735 return ret; 1736 } 1737 1738 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 1739 unsigned int foll_flags) 1740 { 1741 return NULL; 1742 } 1743 1744 int remap_pfn_range(struct vm_area_struct *vma, unsigned long from, 1745 unsigned long to, unsigned long size, pgprot_t prot) 1746 { 1747 vma->vm_start = vma->vm_pgoff << PAGE_SHIFT; 1748 return 0; 1749 } 1750 EXPORT_SYMBOL(remap_pfn_range); 1751 1752 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 1753 unsigned long pgoff) 1754 { 1755 unsigned int size = vma->vm_end - vma->vm_start; 1756 1757 if (!(vma->vm_flags & VM_USERMAP)) 1758 return -EINVAL; 1759 1760 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT)); 1761 vma->vm_end = vma->vm_start + size; 1762 1763 return 0; 1764 } 1765 EXPORT_SYMBOL(remap_vmalloc_range); 1766 1767 void swap_unplug_io_fn(struct backing_dev_info *bdi, struct page *page) 1768 { 1769 } 1770 1771 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr, 1772 unsigned long len, unsigned long pgoff, unsigned long flags) 1773 { 1774 return -ENOMEM; 1775 } 1776 1777 void arch_unmap_area(struct mm_struct *mm, unsigned long addr) 1778 { 1779 } 1780 1781 void unmap_mapping_range(struct address_space *mapping, 1782 loff_t const holebegin, loff_t const holelen, 1783 int even_cows) 1784 { 1785 } 1786 EXPORT_SYMBOL(unmap_mapping_range); 1787 1788 /* 1789 * Check that a process has enough memory to allocate a new virtual 1790 * mapping. 0 means there is enough memory for the allocation to 1791 * succeed and -ENOMEM implies there is not. 1792 * 1793 * We currently support three overcommit policies, which are set via the 1794 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting 1795 * 1796 * Strict overcommit modes added 2002 Feb 26 by Alan Cox. 1797 * Additional code 2002 Jul 20 by Robert Love. 1798 * 1799 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise. 1800 * 1801 * Note this is a helper function intended to be used by LSMs which 1802 * wish to use this logic. 1803 */ 1804 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin) 1805 { 1806 unsigned long free, allowed; 1807 1808 vm_acct_memory(pages); 1809 1810 /* 1811 * Sometimes we want to use more memory than we have 1812 */ 1813 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS) 1814 return 0; 1815 1816 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) { 1817 unsigned long n; 1818 1819 free = global_page_state(NR_FILE_PAGES); 1820 free += nr_swap_pages; 1821 1822 /* 1823 * Any slabs which are created with the 1824 * SLAB_RECLAIM_ACCOUNT flag claim to have contents 1825 * which are reclaimable, under pressure. The dentry 1826 * cache and most inode caches should fall into this 1827 */ 1828 free += global_page_state(NR_SLAB_RECLAIMABLE); 1829 1830 /* 1831 * Leave the last 3% for root 1832 */ 1833 if (!cap_sys_admin) 1834 free -= free / 32; 1835 1836 if (free > pages) 1837 return 0; 1838 1839 /* 1840 * nr_free_pages() is very expensive on large systems, 1841 * only call if we're about to fail. 1842 */ 1843 n = nr_free_pages(); 1844 1845 /* 1846 * Leave reserved pages. The pages are not for anonymous pages. 1847 */ 1848 if (n <= totalreserve_pages) 1849 goto error; 1850 else 1851 n -= totalreserve_pages; 1852 1853 /* 1854 * Leave the last 3% for root 1855 */ 1856 if (!cap_sys_admin) 1857 n -= n / 32; 1858 free += n; 1859 1860 if (free > pages) 1861 return 0; 1862 1863 goto error; 1864 } 1865 1866 allowed = totalram_pages * sysctl_overcommit_ratio / 100; 1867 /* 1868 * Leave the last 3% for root 1869 */ 1870 if (!cap_sys_admin) 1871 allowed -= allowed / 32; 1872 allowed += total_swap_pages; 1873 1874 /* Don't let a single process grow too big: 1875 leave 3% of the size of this process for other processes */ 1876 if (mm) 1877 allowed -= mm->total_vm / 32; 1878 1879 if (percpu_counter_read_positive(&vm_committed_as) < allowed) 1880 return 0; 1881 1882 error: 1883 vm_unacct_memory(pages); 1884 1885 return -ENOMEM; 1886 } 1887 1888 int in_gate_area_no_task(unsigned long addr) 1889 { 1890 return 0; 1891 } 1892 1893 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1894 { 1895 BUG(); 1896 return 0; 1897 } 1898 EXPORT_SYMBOL(filemap_fault); 1899 1900 /* 1901 * Access another process' address space. 1902 * - source/target buffer must be kernel space 1903 */ 1904 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write) 1905 { 1906 struct vm_area_struct *vma; 1907 struct mm_struct *mm; 1908 1909 if (addr + len < addr) 1910 return 0; 1911 1912 mm = get_task_mm(tsk); 1913 if (!mm) 1914 return 0; 1915 1916 down_read(&mm->mmap_sem); 1917 1918 /* the access must start within one of the target process's mappings */ 1919 vma = find_vma(mm, addr); 1920 if (vma) { 1921 /* don't overrun this mapping */ 1922 if (addr + len >= vma->vm_end) 1923 len = vma->vm_end - addr; 1924 1925 /* only read or write mappings where it is permitted */ 1926 if (write && vma->vm_flags & VM_MAYWRITE) 1927 copy_to_user_page(vma, NULL, addr, 1928 (void *) addr, buf, len); 1929 else if (!write && vma->vm_flags & VM_MAYREAD) 1930 copy_from_user_page(vma, NULL, addr, 1931 buf, (void *) addr, len); 1932 else 1933 len = 0; 1934 } else { 1935 len = 0; 1936 } 1937 1938 up_read(&mm->mmap_sem); 1939 mmput(mm); 1940 return len; 1941 } 1942 1943 /** 1944 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode 1945 * @inode: The inode to check 1946 * @size: The current filesize of the inode 1947 * @newsize: The proposed filesize of the inode 1948 * 1949 * Check the shared mappings on an inode on behalf of a shrinking truncate to 1950 * make sure that that any outstanding VMAs aren't broken and then shrink the 1951 * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't 1952 * automatically grant mappings that are too large. 1953 */ 1954 int nommu_shrink_inode_mappings(struct inode *inode, size_t size, 1955 size_t newsize) 1956 { 1957 struct vm_area_struct *vma; 1958 struct prio_tree_iter iter; 1959 struct vm_region *region; 1960 pgoff_t low, high; 1961 size_t r_size, r_top; 1962 1963 low = newsize >> PAGE_SHIFT; 1964 high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 1965 1966 down_write(&nommu_region_sem); 1967 1968 /* search for VMAs that fall within the dead zone */ 1969 vma_prio_tree_foreach(vma, &iter, &inode->i_mapping->i_mmap, 1970 low, high) { 1971 /* found one - only interested if it's shared out of the page 1972 * cache */ 1973 if (vma->vm_flags & VM_SHARED) { 1974 up_write(&nommu_region_sem); 1975 return -ETXTBSY; /* not quite true, but near enough */ 1976 } 1977 } 1978 1979 /* reduce any regions that overlap the dead zone - if in existence, 1980 * these will be pointed to by VMAs that don't overlap the dead zone 1981 * 1982 * we don't check for any regions that start beyond the EOF as there 1983 * shouldn't be any 1984 */ 1985 vma_prio_tree_foreach(vma, &iter, &inode->i_mapping->i_mmap, 1986 0, ULONG_MAX) { 1987 if (!(vma->vm_flags & VM_SHARED)) 1988 continue; 1989 1990 region = vma->vm_region; 1991 r_size = region->vm_top - region->vm_start; 1992 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size; 1993 1994 if (r_top > newsize) { 1995 region->vm_top -= r_top - newsize; 1996 if (region->vm_end > region->vm_top) 1997 region->vm_end = region->vm_top; 1998 } 1999 } 2000 2001 up_write(&nommu_region_sem); 2002 return 0; 2003 } 2004