1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/nommu.c 4 * 5 * Replacement code for mm functions to support CPU's that don't 6 * have any form of memory management unit (thus no virtual memory). 7 * 8 * See Documentation/admin-guide/mm/nommu-mmap.rst 9 * 10 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com> 11 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com> 12 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org> 13 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com> 14 * Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org> 15 */ 16 17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 18 19 #include <linux/export.h> 20 #include <linux/mm.h> 21 #include <linux/sched/mm.h> 22 #include <linux/vmacache.h> 23 #include <linux/mman.h> 24 #include <linux/swap.h> 25 #include <linux/file.h> 26 #include <linux/highmem.h> 27 #include <linux/pagemap.h> 28 #include <linux/slab.h> 29 #include <linux/vmalloc.h> 30 #include <linux/blkdev.h> 31 #include <linux/backing-dev.h> 32 #include <linux/compiler.h> 33 #include <linux/mount.h> 34 #include <linux/personality.h> 35 #include <linux/security.h> 36 #include <linux/syscalls.h> 37 #include <linux/audit.h> 38 #include <linux/printk.h> 39 40 #include <linux/uaccess.h> 41 #include <asm/tlb.h> 42 #include <asm/tlbflush.h> 43 #include <asm/mmu_context.h> 44 #include "internal.h" 45 46 void *high_memory; 47 EXPORT_SYMBOL(high_memory); 48 struct page *mem_map; 49 unsigned long max_mapnr; 50 EXPORT_SYMBOL(max_mapnr); 51 unsigned long highest_memmap_pfn; 52 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS; 53 int heap_stack_gap = 0; 54 55 atomic_long_t mmap_pages_allocated; 56 57 EXPORT_SYMBOL(mem_map); 58 59 /* list of mapped, potentially shareable regions */ 60 static struct kmem_cache *vm_region_jar; 61 struct rb_root nommu_region_tree = RB_ROOT; 62 DECLARE_RWSEM(nommu_region_sem); 63 64 const struct vm_operations_struct generic_file_vm_ops = { 65 }; 66 67 /* 68 * Return the total memory allocated for this pointer, not 69 * just what the caller asked for. 70 * 71 * Doesn't have to be accurate, i.e. may have races. 72 */ 73 unsigned int kobjsize(const void *objp) 74 { 75 struct page *page; 76 77 /* 78 * If the object we have should not have ksize performed on it, 79 * return size of 0 80 */ 81 if (!objp || !virt_addr_valid(objp)) 82 return 0; 83 84 page = virt_to_head_page(objp); 85 86 /* 87 * If the allocator sets PageSlab, we know the pointer came from 88 * kmalloc(). 89 */ 90 if (PageSlab(page)) 91 return ksize(objp); 92 93 /* 94 * If it's not a compound page, see if we have a matching VMA 95 * region. This test is intentionally done in reverse order, 96 * so if there's no VMA, we still fall through and hand back 97 * PAGE_SIZE for 0-order pages. 98 */ 99 if (!PageCompound(page)) { 100 struct vm_area_struct *vma; 101 102 vma = find_vma(current->mm, (unsigned long)objp); 103 if (vma) 104 return vma->vm_end - vma->vm_start; 105 } 106 107 /* 108 * The ksize() function is only guaranteed to work for pointers 109 * returned by kmalloc(). So handle arbitrary pointers here. 110 */ 111 return page_size(page); 112 } 113 114 /** 115 * follow_pfn - look up PFN at a user virtual address 116 * @vma: memory mapping 117 * @address: user virtual address 118 * @pfn: location to store found PFN 119 * 120 * Only IO mappings and raw PFN mappings are allowed. 121 * 122 * Returns zero and the pfn at @pfn on success, -ve otherwise. 123 */ 124 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 125 unsigned long *pfn) 126 { 127 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 128 return -EINVAL; 129 130 *pfn = address >> PAGE_SHIFT; 131 return 0; 132 } 133 EXPORT_SYMBOL(follow_pfn); 134 135 LIST_HEAD(vmap_area_list); 136 137 void vfree(const void *addr) 138 { 139 kfree(addr); 140 } 141 EXPORT_SYMBOL(vfree); 142 143 void *__vmalloc(unsigned long size, gfp_t gfp_mask) 144 { 145 /* 146 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc() 147 * returns only a logical address. 148 */ 149 return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM); 150 } 151 EXPORT_SYMBOL(__vmalloc); 152 153 void *__vmalloc_node_range(unsigned long size, unsigned long align, 154 unsigned long start, unsigned long end, gfp_t gfp_mask, 155 pgprot_t prot, unsigned long vm_flags, int node, 156 const void *caller) 157 { 158 return __vmalloc(size, gfp_mask); 159 } 160 161 void *__vmalloc_node(unsigned long size, unsigned long align, gfp_t gfp_mask, 162 int node, const void *caller) 163 { 164 return __vmalloc(size, gfp_mask); 165 } 166 167 static void *__vmalloc_user_flags(unsigned long size, gfp_t flags) 168 { 169 void *ret; 170 171 ret = __vmalloc(size, flags); 172 if (ret) { 173 struct vm_area_struct *vma; 174 175 mmap_write_lock(current->mm); 176 vma = find_vma(current->mm, (unsigned long)ret); 177 if (vma) 178 vma->vm_flags |= VM_USERMAP; 179 mmap_write_unlock(current->mm); 180 } 181 182 return ret; 183 } 184 185 void *vmalloc_user(unsigned long size) 186 { 187 return __vmalloc_user_flags(size, GFP_KERNEL | __GFP_ZERO); 188 } 189 EXPORT_SYMBOL(vmalloc_user); 190 191 struct page *vmalloc_to_page(const void *addr) 192 { 193 return virt_to_page(addr); 194 } 195 EXPORT_SYMBOL(vmalloc_to_page); 196 197 unsigned long vmalloc_to_pfn(const void *addr) 198 { 199 return page_to_pfn(virt_to_page(addr)); 200 } 201 EXPORT_SYMBOL(vmalloc_to_pfn); 202 203 long vread(char *buf, char *addr, unsigned long count) 204 { 205 /* Don't allow overflow */ 206 if ((unsigned long) buf + count < count) 207 count = -(unsigned long) buf; 208 209 memcpy(buf, addr, count); 210 return count; 211 } 212 213 /* 214 * vmalloc - allocate virtually contiguous memory 215 * 216 * @size: allocation size 217 * 218 * Allocate enough pages to cover @size from the page level 219 * allocator and map them into contiguous kernel virtual space. 220 * 221 * For tight control over page level allocator and protection flags 222 * use __vmalloc() instead. 223 */ 224 void *vmalloc(unsigned long size) 225 { 226 return __vmalloc(size, GFP_KERNEL); 227 } 228 EXPORT_SYMBOL(vmalloc); 229 230 /* 231 * vzalloc - allocate virtually contiguous memory with zero fill 232 * 233 * @size: allocation size 234 * 235 * Allocate enough pages to cover @size from the page level 236 * allocator and map them into contiguous kernel virtual space. 237 * The memory allocated is set to zero. 238 * 239 * For tight control over page level allocator and protection flags 240 * use __vmalloc() instead. 241 */ 242 void *vzalloc(unsigned long size) 243 { 244 return __vmalloc(size, GFP_KERNEL | __GFP_ZERO); 245 } 246 EXPORT_SYMBOL(vzalloc); 247 248 /** 249 * vmalloc_node - allocate memory on a specific node 250 * @size: allocation size 251 * @node: numa node 252 * 253 * Allocate enough pages to cover @size from the page level 254 * allocator and map them into contiguous kernel virtual space. 255 * 256 * For tight control over page level allocator and protection flags 257 * use __vmalloc() instead. 258 */ 259 void *vmalloc_node(unsigned long size, int node) 260 { 261 return vmalloc(size); 262 } 263 EXPORT_SYMBOL(vmalloc_node); 264 265 /** 266 * vzalloc_node - allocate memory on a specific node with zero fill 267 * @size: allocation size 268 * @node: numa node 269 * 270 * Allocate enough pages to cover @size from the page level 271 * allocator and map them into contiguous kernel virtual space. 272 * The memory allocated is set to zero. 273 * 274 * For tight control over page level allocator and protection flags 275 * use __vmalloc() instead. 276 */ 277 void *vzalloc_node(unsigned long size, int node) 278 { 279 return vzalloc(size); 280 } 281 EXPORT_SYMBOL(vzalloc_node); 282 283 /** 284 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 285 * @size: allocation size 286 * 287 * Allocate enough 32bit PA addressable pages to cover @size from the 288 * page level allocator and map them into contiguous kernel virtual space. 289 */ 290 void *vmalloc_32(unsigned long size) 291 { 292 return __vmalloc(size, GFP_KERNEL); 293 } 294 EXPORT_SYMBOL(vmalloc_32); 295 296 /** 297 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 298 * @size: allocation size 299 * 300 * The resulting memory area is 32bit addressable and zeroed so it can be 301 * mapped to userspace without leaking data. 302 * 303 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to 304 * remap_vmalloc_range() are permissible. 305 */ 306 void *vmalloc_32_user(unsigned long size) 307 { 308 /* 309 * We'll have to sort out the ZONE_DMA bits for 64-bit, 310 * but for now this can simply use vmalloc_user() directly. 311 */ 312 return vmalloc_user(size); 313 } 314 EXPORT_SYMBOL(vmalloc_32_user); 315 316 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot) 317 { 318 BUG(); 319 return NULL; 320 } 321 EXPORT_SYMBOL(vmap); 322 323 void vunmap(const void *addr) 324 { 325 BUG(); 326 } 327 EXPORT_SYMBOL(vunmap); 328 329 void *vm_map_ram(struct page **pages, unsigned int count, int node) 330 { 331 BUG(); 332 return NULL; 333 } 334 EXPORT_SYMBOL(vm_map_ram); 335 336 void vm_unmap_ram(const void *mem, unsigned int count) 337 { 338 BUG(); 339 } 340 EXPORT_SYMBOL(vm_unmap_ram); 341 342 void vm_unmap_aliases(void) 343 { 344 } 345 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 346 347 void free_vm_area(struct vm_struct *area) 348 { 349 BUG(); 350 } 351 EXPORT_SYMBOL_GPL(free_vm_area); 352 353 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 354 struct page *page) 355 { 356 return -EINVAL; 357 } 358 EXPORT_SYMBOL(vm_insert_page); 359 360 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 361 unsigned long num) 362 { 363 return -EINVAL; 364 } 365 EXPORT_SYMBOL(vm_map_pages); 366 367 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 368 unsigned long num) 369 { 370 return -EINVAL; 371 } 372 EXPORT_SYMBOL(vm_map_pages_zero); 373 374 /* 375 * sys_brk() for the most part doesn't need the global kernel 376 * lock, except when an application is doing something nasty 377 * like trying to un-brk an area that has already been mapped 378 * to a regular file. in this case, the unmapping will need 379 * to invoke file system routines that need the global lock. 380 */ 381 SYSCALL_DEFINE1(brk, unsigned long, brk) 382 { 383 struct mm_struct *mm = current->mm; 384 385 if (brk < mm->start_brk || brk > mm->context.end_brk) 386 return mm->brk; 387 388 if (mm->brk == brk) 389 return mm->brk; 390 391 /* 392 * Always allow shrinking brk 393 */ 394 if (brk <= mm->brk) { 395 mm->brk = brk; 396 return brk; 397 } 398 399 /* 400 * Ok, looks good - let it rip. 401 */ 402 flush_icache_user_range(mm->brk, brk); 403 return mm->brk = brk; 404 } 405 406 /* 407 * initialise the percpu counter for VM and region record slabs 408 */ 409 void __init mmap_init(void) 410 { 411 int ret; 412 413 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL); 414 VM_BUG_ON(ret); 415 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT); 416 } 417 418 /* 419 * validate the region tree 420 * - the caller must hold the region lock 421 */ 422 #ifdef CONFIG_DEBUG_NOMMU_REGIONS 423 static noinline void validate_nommu_regions(void) 424 { 425 struct vm_region *region, *last; 426 struct rb_node *p, *lastp; 427 428 lastp = rb_first(&nommu_region_tree); 429 if (!lastp) 430 return; 431 432 last = rb_entry(lastp, struct vm_region, vm_rb); 433 BUG_ON(last->vm_end <= last->vm_start); 434 BUG_ON(last->vm_top < last->vm_end); 435 436 while ((p = rb_next(lastp))) { 437 region = rb_entry(p, struct vm_region, vm_rb); 438 last = rb_entry(lastp, struct vm_region, vm_rb); 439 440 BUG_ON(region->vm_end <= region->vm_start); 441 BUG_ON(region->vm_top < region->vm_end); 442 BUG_ON(region->vm_start < last->vm_top); 443 444 lastp = p; 445 } 446 } 447 #else 448 static void validate_nommu_regions(void) 449 { 450 } 451 #endif 452 453 /* 454 * add a region into the global tree 455 */ 456 static void add_nommu_region(struct vm_region *region) 457 { 458 struct vm_region *pregion; 459 struct rb_node **p, *parent; 460 461 validate_nommu_regions(); 462 463 parent = NULL; 464 p = &nommu_region_tree.rb_node; 465 while (*p) { 466 parent = *p; 467 pregion = rb_entry(parent, struct vm_region, vm_rb); 468 if (region->vm_start < pregion->vm_start) 469 p = &(*p)->rb_left; 470 else if (region->vm_start > pregion->vm_start) 471 p = &(*p)->rb_right; 472 else if (pregion == region) 473 return; 474 else 475 BUG(); 476 } 477 478 rb_link_node(®ion->vm_rb, parent, p); 479 rb_insert_color(®ion->vm_rb, &nommu_region_tree); 480 481 validate_nommu_regions(); 482 } 483 484 /* 485 * delete a region from the global tree 486 */ 487 static void delete_nommu_region(struct vm_region *region) 488 { 489 BUG_ON(!nommu_region_tree.rb_node); 490 491 validate_nommu_regions(); 492 rb_erase(®ion->vm_rb, &nommu_region_tree); 493 validate_nommu_regions(); 494 } 495 496 /* 497 * free a contiguous series of pages 498 */ 499 static void free_page_series(unsigned long from, unsigned long to) 500 { 501 for (; from < to; from += PAGE_SIZE) { 502 struct page *page = virt_to_page(from); 503 504 atomic_long_dec(&mmap_pages_allocated); 505 put_page(page); 506 } 507 } 508 509 /* 510 * release a reference to a region 511 * - the caller must hold the region semaphore for writing, which this releases 512 * - the region may not have been added to the tree yet, in which case vm_top 513 * will equal vm_start 514 */ 515 static void __put_nommu_region(struct vm_region *region) 516 __releases(nommu_region_sem) 517 { 518 BUG_ON(!nommu_region_tree.rb_node); 519 520 if (--region->vm_usage == 0) { 521 if (region->vm_top > region->vm_start) 522 delete_nommu_region(region); 523 up_write(&nommu_region_sem); 524 525 if (region->vm_file) 526 fput(region->vm_file); 527 528 /* IO memory and memory shared directly out of the pagecache 529 * from ramfs/tmpfs mustn't be released here */ 530 if (region->vm_flags & VM_MAPPED_COPY) 531 free_page_series(region->vm_start, region->vm_top); 532 kmem_cache_free(vm_region_jar, region); 533 } else { 534 up_write(&nommu_region_sem); 535 } 536 } 537 538 /* 539 * release a reference to a region 540 */ 541 static void put_nommu_region(struct vm_region *region) 542 { 543 down_write(&nommu_region_sem); 544 __put_nommu_region(region); 545 } 546 547 /* 548 * add a VMA into a process's mm_struct in the appropriate place in the list 549 * and tree and add to the address space's page tree also if not an anonymous 550 * page 551 * - should be called with mm->mmap_lock held writelocked 552 */ 553 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma) 554 { 555 struct vm_area_struct *pvma, *prev; 556 struct address_space *mapping; 557 struct rb_node **p, *parent, *rb_prev; 558 559 BUG_ON(!vma->vm_region); 560 561 mm->map_count++; 562 vma->vm_mm = mm; 563 564 /* add the VMA to the mapping */ 565 if (vma->vm_file) { 566 mapping = vma->vm_file->f_mapping; 567 568 i_mmap_lock_write(mapping); 569 flush_dcache_mmap_lock(mapping); 570 vma_interval_tree_insert(vma, &mapping->i_mmap); 571 flush_dcache_mmap_unlock(mapping); 572 i_mmap_unlock_write(mapping); 573 } 574 575 /* add the VMA to the tree */ 576 parent = rb_prev = NULL; 577 p = &mm->mm_rb.rb_node; 578 while (*p) { 579 parent = *p; 580 pvma = rb_entry(parent, struct vm_area_struct, vm_rb); 581 582 /* sort by: start addr, end addr, VMA struct addr in that order 583 * (the latter is necessary as we may get identical VMAs) */ 584 if (vma->vm_start < pvma->vm_start) 585 p = &(*p)->rb_left; 586 else if (vma->vm_start > pvma->vm_start) { 587 rb_prev = parent; 588 p = &(*p)->rb_right; 589 } else if (vma->vm_end < pvma->vm_end) 590 p = &(*p)->rb_left; 591 else if (vma->vm_end > pvma->vm_end) { 592 rb_prev = parent; 593 p = &(*p)->rb_right; 594 } else if (vma < pvma) 595 p = &(*p)->rb_left; 596 else if (vma > pvma) { 597 rb_prev = parent; 598 p = &(*p)->rb_right; 599 } else 600 BUG(); 601 } 602 603 rb_link_node(&vma->vm_rb, parent, p); 604 rb_insert_color(&vma->vm_rb, &mm->mm_rb); 605 606 /* add VMA to the VMA list also */ 607 prev = NULL; 608 if (rb_prev) 609 prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); 610 611 __vma_link_list(mm, vma, prev); 612 } 613 614 /* 615 * delete a VMA from its owning mm_struct and address space 616 */ 617 static void delete_vma_from_mm(struct vm_area_struct *vma) 618 { 619 int i; 620 struct address_space *mapping; 621 struct mm_struct *mm = vma->vm_mm; 622 struct task_struct *curr = current; 623 624 mm->map_count--; 625 for (i = 0; i < VMACACHE_SIZE; i++) { 626 /* if the vma is cached, invalidate the entire cache */ 627 if (curr->vmacache.vmas[i] == vma) { 628 vmacache_invalidate(mm); 629 break; 630 } 631 } 632 633 /* remove the VMA from the mapping */ 634 if (vma->vm_file) { 635 mapping = vma->vm_file->f_mapping; 636 637 i_mmap_lock_write(mapping); 638 flush_dcache_mmap_lock(mapping); 639 vma_interval_tree_remove(vma, &mapping->i_mmap); 640 flush_dcache_mmap_unlock(mapping); 641 i_mmap_unlock_write(mapping); 642 } 643 644 /* remove from the MM's tree and list */ 645 rb_erase(&vma->vm_rb, &mm->mm_rb); 646 647 __vma_unlink_list(mm, vma); 648 } 649 650 /* 651 * destroy a VMA record 652 */ 653 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma) 654 { 655 if (vma->vm_ops && vma->vm_ops->close) 656 vma->vm_ops->close(vma); 657 if (vma->vm_file) 658 fput(vma->vm_file); 659 put_nommu_region(vma->vm_region); 660 vm_area_free(vma); 661 } 662 663 /* 664 * look up the first VMA in which addr resides, NULL if none 665 * - should be called with mm->mmap_lock at least held readlocked 666 */ 667 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 668 { 669 struct vm_area_struct *vma; 670 671 /* check the cache first */ 672 vma = vmacache_find(mm, addr); 673 if (likely(vma)) 674 return vma; 675 676 /* trawl the list (there may be multiple mappings in which addr 677 * resides) */ 678 for (vma = mm->mmap; vma; vma = vma->vm_next) { 679 if (vma->vm_start > addr) 680 return NULL; 681 if (vma->vm_end > addr) { 682 vmacache_update(addr, vma); 683 return vma; 684 } 685 } 686 687 return NULL; 688 } 689 EXPORT_SYMBOL(find_vma); 690 691 /* 692 * find a VMA 693 * - we don't extend stack VMAs under NOMMU conditions 694 */ 695 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr) 696 { 697 return find_vma(mm, addr); 698 } 699 700 /* 701 * expand a stack to a given address 702 * - not supported under NOMMU conditions 703 */ 704 int expand_stack(struct vm_area_struct *vma, unsigned long address) 705 { 706 return -ENOMEM; 707 } 708 709 /* 710 * look up the first VMA exactly that exactly matches addr 711 * - should be called with mm->mmap_lock at least held readlocked 712 */ 713 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm, 714 unsigned long addr, 715 unsigned long len) 716 { 717 struct vm_area_struct *vma; 718 unsigned long end = addr + len; 719 720 /* check the cache first */ 721 vma = vmacache_find_exact(mm, addr, end); 722 if (vma) 723 return vma; 724 725 /* trawl the list (there may be multiple mappings in which addr 726 * resides) */ 727 for (vma = mm->mmap; vma; vma = vma->vm_next) { 728 if (vma->vm_start < addr) 729 continue; 730 if (vma->vm_start > addr) 731 return NULL; 732 if (vma->vm_end == end) { 733 vmacache_update(addr, vma); 734 return vma; 735 } 736 } 737 738 return NULL; 739 } 740 741 /* 742 * determine whether a mapping should be permitted and, if so, what sort of 743 * mapping we're capable of supporting 744 */ 745 static int validate_mmap_request(struct file *file, 746 unsigned long addr, 747 unsigned long len, 748 unsigned long prot, 749 unsigned long flags, 750 unsigned long pgoff, 751 unsigned long *_capabilities) 752 { 753 unsigned long capabilities, rlen; 754 int ret; 755 756 /* do the simple checks first */ 757 if (flags & MAP_FIXED) 758 return -EINVAL; 759 760 if ((flags & MAP_TYPE) != MAP_PRIVATE && 761 (flags & MAP_TYPE) != MAP_SHARED) 762 return -EINVAL; 763 764 if (!len) 765 return -EINVAL; 766 767 /* Careful about overflows.. */ 768 rlen = PAGE_ALIGN(len); 769 if (!rlen || rlen > TASK_SIZE) 770 return -ENOMEM; 771 772 /* offset overflow? */ 773 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff) 774 return -EOVERFLOW; 775 776 if (file) { 777 /* files must support mmap */ 778 if (!file->f_op->mmap) 779 return -ENODEV; 780 781 /* work out if what we've got could possibly be shared 782 * - we support chardevs that provide their own "memory" 783 * - we support files/blockdevs that are memory backed 784 */ 785 if (file->f_op->mmap_capabilities) { 786 capabilities = file->f_op->mmap_capabilities(file); 787 } else { 788 /* no explicit capabilities set, so assume some 789 * defaults */ 790 switch (file_inode(file)->i_mode & S_IFMT) { 791 case S_IFREG: 792 case S_IFBLK: 793 capabilities = NOMMU_MAP_COPY; 794 break; 795 796 case S_IFCHR: 797 capabilities = 798 NOMMU_MAP_DIRECT | 799 NOMMU_MAP_READ | 800 NOMMU_MAP_WRITE; 801 break; 802 803 default: 804 return -EINVAL; 805 } 806 } 807 808 /* eliminate any capabilities that we can't support on this 809 * device */ 810 if (!file->f_op->get_unmapped_area) 811 capabilities &= ~NOMMU_MAP_DIRECT; 812 if (!(file->f_mode & FMODE_CAN_READ)) 813 capabilities &= ~NOMMU_MAP_COPY; 814 815 /* The file shall have been opened with read permission. */ 816 if (!(file->f_mode & FMODE_READ)) 817 return -EACCES; 818 819 if (flags & MAP_SHARED) { 820 /* do checks for writing, appending and locking */ 821 if ((prot & PROT_WRITE) && 822 !(file->f_mode & FMODE_WRITE)) 823 return -EACCES; 824 825 if (IS_APPEND(file_inode(file)) && 826 (file->f_mode & FMODE_WRITE)) 827 return -EACCES; 828 829 if (!(capabilities & NOMMU_MAP_DIRECT)) 830 return -ENODEV; 831 832 /* we mustn't privatise shared mappings */ 833 capabilities &= ~NOMMU_MAP_COPY; 834 } else { 835 /* we're going to read the file into private memory we 836 * allocate */ 837 if (!(capabilities & NOMMU_MAP_COPY)) 838 return -ENODEV; 839 840 /* we don't permit a private writable mapping to be 841 * shared with the backing device */ 842 if (prot & PROT_WRITE) 843 capabilities &= ~NOMMU_MAP_DIRECT; 844 } 845 846 if (capabilities & NOMMU_MAP_DIRECT) { 847 if (((prot & PROT_READ) && !(capabilities & NOMMU_MAP_READ)) || 848 ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) || 849 ((prot & PROT_EXEC) && !(capabilities & NOMMU_MAP_EXEC)) 850 ) { 851 capabilities &= ~NOMMU_MAP_DIRECT; 852 if (flags & MAP_SHARED) { 853 pr_warn("MAP_SHARED not completely supported on !MMU\n"); 854 return -EINVAL; 855 } 856 } 857 } 858 859 /* handle executable mappings and implied executable 860 * mappings */ 861 if (path_noexec(&file->f_path)) { 862 if (prot & PROT_EXEC) 863 return -EPERM; 864 } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) { 865 /* handle implication of PROT_EXEC by PROT_READ */ 866 if (current->personality & READ_IMPLIES_EXEC) { 867 if (capabilities & NOMMU_MAP_EXEC) 868 prot |= PROT_EXEC; 869 } 870 } else if ((prot & PROT_READ) && 871 (prot & PROT_EXEC) && 872 !(capabilities & NOMMU_MAP_EXEC) 873 ) { 874 /* backing file is not executable, try to copy */ 875 capabilities &= ~NOMMU_MAP_DIRECT; 876 } 877 } else { 878 /* anonymous mappings are always memory backed and can be 879 * privately mapped 880 */ 881 capabilities = NOMMU_MAP_COPY; 882 883 /* handle PROT_EXEC implication by PROT_READ */ 884 if ((prot & PROT_READ) && 885 (current->personality & READ_IMPLIES_EXEC)) 886 prot |= PROT_EXEC; 887 } 888 889 /* allow the security API to have its say */ 890 ret = security_mmap_addr(addr); 891 if (ret < 0) 892 return ret; 893 894 /* looks okay */ 895 *_capabilities = capabilities; 896 return 0; 897 } 898 899 /* 900 * we've determined that we can make the mapping, now translate what we 901 * now know into VMA flags 902 */ 903 static unsigned long determine_vm_flags(struct file *file, 904 unsigned long prot, 905 unsigned long flags, 906 unsigned long capabilities) 907 { 908 unsigned long vm_flags; 909 910 vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags); 911 /* vm_flags |= mm->def_flags; */ 912 913 if (!(capabilities & NOMMU_MAP_DIRECT)) { 914 /* attempt to share read-only copies of mapped file chunks */ 915 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 916 if (file && !(prot & PROT_WRITE)) 917 vm_flags |= VM_MAYSHARE; 918 } else { 919 /* overlay a shareable mapping on the backing device or inode 920 * if possible - used for chardevs, ramfs/tmpfs/shmfs and 921 * romfs/cramfs */ 922 vm_flags |= VM_MAYSHARE | (capabilities & NOMMU_VMFLAGS); 923 if (flags & MAP_SHARED) 924 vm_flags |= VM_SHARED; 925 } 926 927 /* refuse to let anyone share private mappings with this process if 928 * it's being traced - otherwise breakpoints set in it may interfere 929 * with another untraced process 930 */ 931 if ((flags & MAP_PRIVATE) && current->ptrace) 932 vm_flags &= ~VM_MAYSHARE; 933 934 return vm_flags; 935 } 936 937 /* 938 * set up a shared mapping on a file (the driver or filesystem provides and 939 * pins the storage) 940 */ 941 static int do_mmap_shared_file(struct vm_area_struct *vma) 942 { 943 int ret; 944 945 ret = call_mmap(vma->vm_file, vma); 946 if (ret == 0) { 947 vma->vm_region->vm_top = vma->vm_region->vm_end; 948 return 0; 949 } 950 if (ret != -ENOSYS) 951 return ret; 952 953 /* getting -ENOSYS indicates that direct mmap isn't possible (as 954 * opposed to tried but failed) so we can only give a suitable error as 955 * it's not possible to make a private copy if MAP_SHARED was given */ 956 return -ENODEV; 957 } 958 959 /* 960 * set up a private mapping or an anonymous shared mapping 961 */ 962 static int do_mmap_private(struct vm_area_struct *vma, 963 struct vm_region *region, 964 unsigned long len, 965 unsigned long capabilities) 966 { 967 unsigned long total, point; 968 void *base; 969 int ret, order; 970 971 /* invoke the file's mapping function so that it can keep track of 972 * shared mappings on devices or memory 973 * - VM_MAYSHARE will be set if it may attempt to share 974 */ 975 if (capabilities & NOMMU_MAP_DIRECT) { 976 ret = call_mmap(vma->vm_file, vma); 977 if (ret == 0) { 978 /* shouldn't return success if we're not sharing */ 979 BUG_ON(!(vma->vm_flags & VM_MAYSHARE)); 980 vma->vm_region->vm_top = vma->vm_region->vm_end; 981 return 0; 982 } 983 if (ret != -ENOSYS) 984 return ret; 985 986 /* getting an ENOSYS error indicates that direct mmap isn't 987 * possible (as opposed to tried but failed) so we'll try to 988 * make a private copy of the data and map that instead */ 989 } 990 991 992 /* allocate some memory to hold the mapping 993 * - note that this may not return a page-aligned address if the object 994 * we're allocating is smaller than a page 995 */ 996 order = get_order(len); 997 total = 1 << order; 998 point = len >> PAGE_SHIFT; 999 1000 /* we don't want to allocate a power-of-2 sized page set */ 1001 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) 1002 total = point; 1003 1004 base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL); 1005 if (!base) 1006 goto enomem; 1007 1008 atomic_long_add(total, &mmap_pages_allocated); 1009 1010 region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY; 1011 region->vm_start = (unsigned long) base; 1012 region->vm_end = region->vm_start + len; 1013 region->vm_top = region->vm_start + (total << PAGE_SHIFT); 1014 1015 vma->vm_start = region->vm_start; 1016 vma->vm_end = region->vm_start + len; 1017 1018 if (vma->vm_file) { 1019 /* read the contents of a file into the copy */ 1020 loff_t fpos; 1021 1022 fpos = vma->vm_pgoff; 1023 fpos <<= PAGE_SHIFT; 1024 1025 ret = kernel_read(vma->vm_file, base, len, &fpos); 1026 if (ret < 0) 1027 goto error_free; 1028 1029 /* clear the last little bit */ 1030 if (ret < len) 1031 memset(base + ret, 0, len - ret); 1032 1033 } else { 1034 vma_set_anonymous(vma); 1035 } 1036 1037 return 0; 1038 1039 error_free: 1040 free_page_series(region->vm_start, region->vm_top); 1041 region->vm_start = vma->vm_start = 0; 1042 region->vm_end = vma->vm_end = 0; 1043 region->vm_top = 0; 1044 return ret; 1045 1046 enomem: 1047 pr_err("Allocation of length %lu from process %d (%s) failed\n", 1048 len, current->pid, current->comm); 1049 show_free_areas(0, NULL); 1050 return -ENOMEM; 1051 } 1052 1053 /* 1054 * handle mapping creation for uClinux 1055 */ 1056 unsigned long do_mmap(struct file *file, 1057 unsigned long addr, 1058 unsigned long len, 1059 unsigned long prot, 1060 unsigned long flags, 1061 unsigned long pgoff, 1062 unsigned long *populate, 1063 struct list_head *uf) 1064 { 1065 struct vm_area_struct *vma; 1066 struct vm_region *region; 1067 struct rb_node *rb; 1068 vm_flags_t vm_flags; 1069 unsigned long capabilities, result; 1070 int ret; 1071 1072 *populate = 0; 1073 1074 /* decide whether we should attempt the mapping, and if so what sort of 1075 * mapping */ 1076 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff, 1077 &capabilities); 1078 if (ret < 0) 1079 return ret; 1080 1081 /* we ignore the address hint */ 1082 addr = 0; 1083 len = PAGE_ALIGN(len); 1084 1085 /* we've determined that we can make the mapping, now translate what we 1086 * now know into VMA flags */ 1087 vm_flags = determine_vm_flags(file, prot, flags, capabilities); 1088 1089 /* we're going to need to record the mapping */ 1090 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL); 1091 if (!region) 1092 goto error_getting_region; 1093 1094 vma = vm_area_alloc(current->mm); 1095 if (!vma) 1096 goto error_getting_vma; 1097 1098 region->vm_usage = 1; 1099 region->vm_flags = vm_flags; 1100 region->vm_pgoff = pgoff; 1101 1102 vma->vm_flags = vm_flags; 1103 vma->vm_pgoff = pgoff; 1104 1105 if (file) { 1106 region->vm_file = get_file(file); 1107 vma->vm_file = get_file(file); 1108 } 1109 1110 down_write(&nommu_region_sem); 1111 1112 /* if we want to share, we need to check for regions created by other 1113 * mmap() calls that overlap with our proposed mapping 1114 * - we can only share with a superset match on most regular files 1115 * - shared mappings on character devices and memory backed files are 1116 * permitted to overlap inexactly as far as we are concerned for in 1117 * these cases, sharing is handled in the driver or filesystem rather 1118 * than here 1119 */ 1120 if (vm_flags & VM_MAYSHARE) { 1121 struct vm_region *pregion; 1122 unsigned long pglen, rpglen, pgend, rpgend, start; 1123 1124 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1125 pgend = pgoff + pglen; 1126 1127 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) { 1128 pregion = rb_entry(rb, struct vm_region, vm_rb); 1129 1130 if (!(pregion->vm_flags & VM_MAYSHARE)) 1131 continue; 1132 1133 /* search for overlapping mappings on the same file */ 1134 if (file_inode(pregion->vm_file) != 1135 file_inode(file)) 1136 continue; 1137 1138 if (pregion->vm_pgoff >= pgend) 1139 continue; 1140 1141 rpglen = pregion->vm_end - pregion->vm_start; 1142 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT; 1143 rpgend = pregion->vm_pgoff + rpglen; 1144 if (pgoff >= rpgend) 1145 continue; 1146 1147 /* handle inexactly overlapping matches between 1148 * mappings */ 1149 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) && 1150 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) { 1151 /* new mapping is not a subset of the region */ 1152 if (!(capabilities & NOMMU_MAP_DIRECT)) 1153 goto sharing_violation; 1154 continue; 1155 } 1156 1157 /* we've found a region we can share */ 1158 pregion->vm_usage++; 1159 vma->vm_region = pregion; 1160 start = pregion->vm_start; 1161 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT; 1162 vma->vm_start = start; 1163 vma->vm_end = start + len; 1164 1165 if (pregion->vm_flags & VM_MAPPED_COPY) 1166 vma->vm_flags |= VM_MAPPED_COPY; 1167 else { 1168 ret = do_mmap_shared_file(vma); 1169 if (ret < 0) { 1170 vma->vm_region = NULL; 1171 vma->vm_start = 0; 1172 vma->vm_end = 0; 1173 pregion->vm_usage--; 1174 pregion = NULL; 1175 goto error_just_free; 1176 } 1177 } 1178 fput(region->vm_file); 1179 kmem_cache_free(vm_region_jar, region); 1180 region = pregion; 1181 result = start; 1182 goto share; 1183 } 1184 1185 /* obtain the address at which to make a shared mapping 1186 * - this is the hook for quasi-memory character devices to 1187 * tell us the location of a shared mapping 1188 */ 1189 if (capabilities & NOMMU_MAP_DIRECT) { 1190 addr = file->f_op->get_unmapped_area(file, addr, len, 1191 pgoff, flags); 1192 if (IS_ERR_VALUE(addr)) { 1193 ret = addr; 1194 if (ret != -ENOSYS) 1195 goto error_just_free; 1196 1197 /* the driver refused to tell us where to site 1198 * the mapping so we'll have to attempt to copy 1199 * it */ 1200 ret = -ENODEV; 1201 if (!(capabilities & NOMMU_MAP_COPY)) 1202 goto error_just_free; 1203 1204 capabilities &= ~NOMMU_MAP_DIRECT; 1205 } else { 1206 vma->vm_start = region->vm_start = addr; 1207 vma->vm_end = region->vm_end = addr + len; 1208 } 1209 } 1210 } 1211 1212 vma->vm_region = region; 1213 1214 /* set up the mapping 1215 * - the region is filled in if NOMMU_MAP_DIRECT is still set 1216 */ 1217 if (file && vma->vm_flags & VM_SHARED) 1218 ret = do_mmap_shared_file(vma); 1219 else 1220 ret = do_mmap_private(vma, region, len, capabilities); 1221 if (ret < 0) 1222 goto error_just_free; 1223 add_nommu_region(region); 1224 1225 /* clear anonymous mappings that don't ask for uninitialized data */ 1226 if (!vma->vm_file && 1227 (!IS_ENABLED(CONFIG_MMAP_ALLOW_UNINITIALIZED) || 1228 !(flags & MAP_UNINITIALIZED))) 1229 memset((void *)region->vm_start, 0, 1230 region->vm_end - region->vm_start); 1231 1232 /* okay... we have a mapping; now we have to register it */ 1233 result = vma->vm_start; 1234 1235 current->mm->total_vm += len >> PAGE_SHIFT; 1236 1237 share: 1238 add_vma_to_mm(current->mm, vma); 1239 1240 /* we flush the region from the icache only when the first executable 1241 * mapping of it is made */ 1242 if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) { 1243 flush_icache_user_range(region->vm_start, region->vm_end); 1244 region->vm_icache_flushed = true; 1245 } 1246 1247 up_write(&nommu_region_sem); 1248 1249 return result; 1250 1251 error_just_free: 1252 up_write(&nommu_region_sem); 1253 error: 1254 if (region->vm_file) 1255 fput(region->vm_file); 1256 kmem_cache_free(vm_region_jar, region); 1257 if (vma->vm_file) 1258 fput(vma->vm_file); 1259 vm_area_free(vma); 1260 return ret; 1261 1262 sharing_violation: 1263 up_write(&nommu_region_sem); 1264 pr_warn("Attempt to share mismatched mappings\n"); 1265 ret = -EINVAL; 1266 goto error; 1267 1268 error_getting_vma: 1269 kmem_cache_free(vm_region_jar, region); 1270 pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n", 1271 len, current->pid); 1272 show_free_areas(0, NULL); 1273 return -ENOMEM; 1274 1275 error_getting_region: 1276 pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n", 1277 len, current->pid); 1278 show_free_areas(0, NULL); 1279 return -ENOMEM; 1280 } 1281 1282 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len, 1283 unsigned long prot, unsigned long flags, 1284 unsigned long fd, unsigned long pgoff) 1285 { 1286 struct file *file = NULL; 1287 unsigned long retval = -EBADF; 1288 1289 audit_mmap_fd(fd, flags); 1290 if (!(flags & MAP_ANONYMOUS)) { 1291 file = fget(fd); 1292 if (!file) 1293 goto out; 1294 } 1295 1296 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1297 1298 if (file) 1299 fput(file); 1300 out: 1301 return retval; 1302 } 1303 1304 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1305 unsigned long, prot, unsigned long, flags, 1306 unsigned long, fd, unsigned long, pgoff) 1307 { 1308 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff); 1309 } 1310 1311 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1312 struct mmap_arg_struct { 1313 unsigned long addr; 1314 unsigned long len; 1315 unsigned long prot; 1316 unsigned long flags; 1317 unsigned long fd; 1318 unsigned long offset; 1319 }; 1320 1321 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1322 { 1323 struct mmap_arg_struct a; 1324 1325 if (copy_from_user(&a, arg, sizeof(a))) 1326 return -EFAULT; 1327 if (offset_in_page(a.offset)) 1328 return -EINVAL; 1329 1330 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1331 a.offset >> PAGE_SHIFT); 1332 } 1333 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1334 1335 /* 1336 * split a vma into two pieces at address 'addr', a new vma is allocated either 1337 * for the first part or the tail. 1338 */ 1339 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 1340 unsigned long addr, int new_below) 1341 { 1342 struct vm_area_struct *new; 1343 struct vm_region *region; 1344 unsigned long npages; 1345 1346 /* we're only permitted to split anonymous regions (these should have 1347 * only a single usage on the region) */ 1348 if (vma->vm_file) 1349 return -ENOMEM; 1350 1351 if (mm->map_count >= sysctl_max_map_count) 1352 return -ENOMEM; 1353 1354 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL); 1355 if (!region) 1356 return -ENOMEM; 1357 1358 new = vm_area_dup(vma); 1359 if (!new) { 1360 kmem_cache_free(vm_region_jar, region); 1361 return -ENOMEM; 1362 } 1363 1364 /* most fields are the same, copy all, and then fixup */ 1365 *region = *vma->vm_region; 1366 new->vm_region = region; 1367 1368 npages = (addr - vma->vm_start) >> PAGE_SHIFT; 1369 1370 if (new_below) { 1371 region->vm_top = region->vm_end = new->vm_end = addr; 1372 } else { 1373 region->vm_start = new->vm_start = addr; 1374 region->vm_pgoff = new->vm_pgoff += npages; 1375 } 1376 1377 if (new->vm_ops && new->vm_ops->open) 1378 new->vm_ops->open(new); 1379 1380 delete_vma_from_mm(vma); 1381 down_write(&nommu_region_sem); 1382 delete_nommu_region(vma->vm_region); 1383 if (new_below) { 1384 vma->vm_region->vm_start = vma->vm_start = addr; 1385 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages; 1386 } else { 1387 vma->vm_region->vm_end = vma->vm_end = addr; 1388 vma->vm_region->vm_top = addr; 1389 } 1390 add_nommu_region(vma->vm_region); 1391 add_nommu_region(new->vm_region); 1392 up_write(&nommu_region_sem); 1393 add_vma_to_mm(mm, vma); 1394 add_vma_to_mm(mm, new); 1395 return 0; 1396 } 1397 1398 /* 1399 * shrink a VMA by removing the specified chunk from either the beginning or 1400 * the end 1401 */ 1402 static int shrink_vma(struct mm_struct *mm, 1403 struct vm_area_struct *vma, 1404 unsigned long from, unsigned long to) 1405 { 1406 struct vm_region *region; 1407 1408 /* adjust the VMA's pointers, which may reposition it in the MM's tree 1409 * and list */ 1410 delete_vma_from_mm(vma); 1411 if (from > vma->vm_start) 1412 vma->vm_end = from; 1413 else 1414 vma->vm_start = to; 1415 add_vma_to_mm(mm, vma); 1416 1417 /* cut the backing region down to size */ 1418 region = vma->vm_region; 1419 BUG_ON(region->vm_usage != 1); 1420 1421 down_write(&nommu_region_sem); 1422 delete_nommu_region(region); 1423 if (from > region->vm_start) { 1424 to = region->vm_top; 1425 region->vm_top = region->vm_end = from; 1426 } else { 1427 region->vm_start = to; 1428 } 1429 add_nommu_region(region); 1430 up_write(&nommu_region_sem); 1431 1432 free_page_series(from, to); 1433 return 0; 1434 } 1435 1436 /* 1437 * release a mapping 1438 * - under NOMMU conditions the chunk to be unmapped must be backed by a single 1439 * VMA, though it need not cover the whole VMA 1440 */ 1441 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf) 1442 { 1443 struct vm_area_struct *vma; 1444 unsigned long end; 1445 int ret; 1446 1447 len = PAGE_ALIGN(len); 1448 if (len == 0) 1449 return -EINVAL; 1450 1451 end = start + len; 1452 1453 /* find the first potentially overlapping VMA */ 1454 vma = find_vma(mm, start); 1455 if (!vma) { 1456 static int limit; 1457 if (limit < 5) { 1458 pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n", 1459 current->pid, current->comm, 1460 start, start + len - 1); 1461 limit++; 1462 } 1463 return -EINVAL; 1464 } 1465 1466 /* we're allowed to split an anonymous VMA but not a file-backed one */ 1467 if (vma->vm_file) { 1468 do { 1469 if (start > vma->vm_start) 1470 return -EINVAL; 1471 if (end == vma->vm_end) 1472 goto erase_whole_vma; 1473 vma = vma->vm_next; 1474 } while (vma); 1475 return -EINVAL; 1476 } else { 1477 /* the chunk must be a subset of the VMA found */ 1478 if (start == vma->vm_start && end == vma->vm_end) 1479 goto erase_whole_vma; 1480 if (start < vma->vm_start || end > vma->vm_end) 1481 return -EINVAL; 1482 if (offset_in_page(start)) 1483 return -EINVAL; 1484 if (end != vma->vm_end && offset_in_page(end)) 1485 return -EINVAL; 1486 if (start != vma->vm_start && end != vma->vm_end) { 1487 ret = split_vma(mm, vma, start, 1); 1488 if (ret < 0) 1489 return ret; 1490 } 1491 return shrink_vma(mm, vma, start, end); 1492 } 1493 1494 erase_whole_vma: 1495 delete_vma_from_mm(vma); 1496 delete_vma(mm, vma); 1497 return 0; 1498 } 1499 1500 int vm_munmap(unsigned long addr, size_t len) 1501 { 1502 struct mm_struct *mm = current->mm; 1503 int ret; 1504 1505 mmap_write_lock(mm); 1506 ret = do_munmap(mm, addr, len, NULL); 1507 mmap_write_unlock(mm); 1508 return ret; 1509 } 1510 EXPORT_SYMBOL(vm_munmap); 1511 1512 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 1513 { 1514 return vm_munmap(addr, len); 1515 } 1516 1517 /* 1518 * release all the mappings made in a process's VM space 1519 */ 1520 void exit_mmap(struct mm_struct *mm) 1521 { 1522 struct vm_area_struct *vma; 1523 1524 if (!mm) 1525 return; 1526 1527 mm->total_vm = 0; 1528 1529 while ((vma = mm->mmap)) { 1530 mm->mmap = vma->vm_next; 1531 delete_vma_from_mm(vma); 1532 delete_vma(mm, vma); 1533 cond_resched(); 1534 } 1535 } 1536 1537 int vm_brk(unsigned long addr, unsigned long len) 1538 { 1539 return -ENOMEM; 1540 } 1541 1542 /* 1543 * expand (or shrink) an existing mapping, potentially moving it at the same 1544 * time (controlled by the MREMAP_MAYMOVE flag and available VM space) 1545 * 1546 * under NOMMU conditions, we only permit changing a mapping's size, and only 1547 * as long as it stays within the region allocated by do_mmap_private() and the 1548 * block is not shareable 1549 * 1550 * MREMAP_FIXED is not supported under NOMMU conditions 1551 */ 1552 static unsigned long do_mremap(unsigned long addr, 1553 unsigned long old_len, unsigned long new_len, 1554 unsigned long flags, unsigned long new_addr) 1555 { 1556 struct vm_area_struct *vma; 1557 1558 /* insanity checks first */ 1559 old_len = PAGE_ALIGN(old_len); 1560 new_len = PAGE_ALIGN(new_len); 1561 if (old_len == 0 || new_len == 0) 1562 return (unsigned long) -EINVAL; 1563 1564 if (offset_in_page(addr)) 1565 return -EINVAL; 1566 1567 if (flags & MREMAP_FIXED && new_addr != addr) 1568 return (unsigned long) -EINVAL; 1569 1570 vma = find_vma_exact(current->mm, addr, old_len); 1571 if (!vma) 1572 return (unsigned long) -EINVAL; 1573 1574 if (vma->vm_end != vma->vm_start + old_len) 1575 return (unsigned long) -EFAULT; 1576 1577 if (vma->vm_flags & VM_MAYSHARE) 1578 return (unsigned long) -EPERM; 1579 1580 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start) 1581 return (unsigned long) -ENOMEM; 1582 1583 /* all checks complete - do it */ 1584 vma->vm_end = vma->vm_start + new_len; 1585 return vma->vm_start; 1586 } 1587 1588 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len, 1589 unsigned long, new_len, unsigned long, flags, 1590 unsigned long, new_addr) 1591 { 1592 unsigned long ret; 1593 1594 mmap_write_lock(current->mm); 1595 ret = do_mremap(addr, old_len, new_len, flags, new_addr); 1596 mmap_write_unlock(current->mm); 1597 return ret; 1598 } 1599 1600 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 1601 unsigned int foll_flags) 1602 { 1603 return NULL; 1604 } 1605 1606 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 1607 unsigned long pfn, unsigned long size, pgprot_t prot) 1608 { 1609 if (addr != (pfn << PAGE_SHIFT)) 1610 return -EINVAL; 1611 1612 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; 1613 return 0; 1614 } 1615 EXPORT_SYMBOL(remap_pfn_range); 1616 1617 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 1618 { 1619 unsigned long pfn = start >> PAGE_SHIFT; 1620 unsigned long vm_len = vma->vm_end - vma->vm_start; 1621 1622 pfn += vma->vm_pgoff; 1623 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 1624 } 1625 EXPORT_SYMBOL(vm_iomap_memory); 1626 1627 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 1628 unsigned long pgoff) 1629 { 1630 unsigned int size = vma->vm_end - vma->vm_start; 1631 1632 if (!(vma->vm_flags & VM_USERMAP)) 1633 return -EINVAL; 1634 1635 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT)); 1636 vma->vm_end = vma->vm_start + size; 1637 1638 return 0; 1639 } 1640 EXPORT_SYMBOL(remap_vmalloc_range); 1641 1642 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr, 1643 unsigned long len, unsigned long pgoff, unsigned long flags) 1644 { 1645 return -ENOMEM; 1646 } 1647 1648 vm_fault_t filemap_fault(struct vm_fault *vmf) 1649 { 1650 BUG(); 1651 return 0; 1652 } 1653 EXPORT_SYMBOL(filemap_fault); 1654 1655 vm_fault_t filemap_map_pages(struct vm_fault *vmf, 1656 pgoff_t start_pgoff, pgoff_t end_pgoff) 1657 { 1658 BUG(); 1659 return 0; 1660 } 1661 EXPORT_SYMBOL(filemap_map_pages); 1662 1663 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf, 1664 int len, unsigned int gup_flags) 1665 { 1666 struct vm_area_struct *vma; 1667 int write = gup_flags & FOLL_WRITE; 1668 1669 if (mmap_read_lock_killable(mm)) 1670 return 0; 1671 1672 /* the access must start within one of the target process's mappings */ 1673 vma = find_vma(mm, addr); 1674 if (vma) { 1675 /* don't overrun this mapping */ 1676 if (addr + len >= vma->vm_end) 1677 len = vma->vm_end - addr; 1678 1679 /* only read or write mappings where it is permitted */ 1680 if (write && vma->vm_flags & VM_MAYWRITE) 1681 copy_to_user_page(vma, NULL, addr, 1682 (void *) addr, buf, len); 1683 else if (!write && vma->vm_flags & VM_MAYREAD) 1684 copy_from_user_page(vma, NULL, addr, 1685 buf, (void *) addr, len); 1686 else 1687 len = 0; 1688 } else { 1689 len = 0; 1690 } 1691 1692 mmap_read_unlock(mm); 1693 1694 return len; 1695 } 1696 1697 /** 1698 * access_remote_vm - access another process' address space 1699 * @mm: the mm_struct of the target address space 1700 * @addr: start address to access 1701 * @buf: source or destination buffer 1702 * @len: number of bytes to transfer 1703 * @gup_flags: flags modifying lookup behaviour 1704 * 1705 * The caller must hold a reference on @mm. 1706 */ 1707 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1708 void *buf, int len, unsigned int gup_flags) 1709 { 1710 return __access_remote_vm(mm, addr, buf, len, gup_flags); 1711 } 1712 1713 /* 1714 * Access another process' address space. 1715 * - source/target buffer must be kernel space 1716 */ 1717 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, 1718 unsigned int gup_flags) 1719 { 1720 struct mm_struct *mm; 1721 1722 if (addr + len < addr) 1723 return 0; 1724 1725 mm = get_task_mm(tsk); 1726 if (!mm) 1727 return 0; 1728 1729 len = __access_remote_vm(mm, addr, buf, len, gup_flags); 1730 1731 mmput(mm); 1732 return len; 1733 } 1734 EXPORT_SYMBOL_GPL(access_process_vm); 1735 1736 /** 1737 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode 1738 * @inode: The inode to check 1739 * @size: The current filesize of the inode 1740 * @newsize: The proposed filesize of the inode 1741 * 1742 * Check the shared mappings on an inode on behalf of a shrinking truncate to 1743 * make sure that any outstanding VMAs aren't broken and then shrink the 1744 * vm_regions that extend beyond so that do_mmap() doesn't 1745 * automatically grant mappings that are too large. 1746 */ 1747 int nommu_shrink_inode_mappings(struct inode *inode, size_t size, 1748 size_t newsize) 1749 { 1750 struct vm_area_struct *vma; 1751 struct vm_region *region; 1752 pgoff_t low, high; 1753 size_t r_size, r_top; 1754 1755 low = newsize >> PAGE_SHIFT; 1756 high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 1757 1758 down_write(&nommu_region_sem); 1759 i_mmap_lock_read(inode->i_mapping); 1760 1761 /* search for VMAs that fall within the dead zone */ 1762 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) { 1763 /* found one - only interested if it's shared out of the page 1764 * cache */ 1765 if (vma->vm_flags & VM_SHARED) { 1766 i_mmap_unlock_read(inode->i_mapping); 1767 up_write(&nommu_region_sem); 1768 return -ETXTBSY; /* not quite true, but near enough */ 1769 } 1770 } 1771 1772 /* reduce any regions that overlap the dead zone - if in existence, 1773 * these will be pointed to by VMAs that don't overlap the dead zone 1774 * 1775 * we don't check for any regions that start beyond the EOF as there 1776 * shouldn't be any 1777 */ 1778 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) { 1779 if (!(vma->vm_flags & VM_SHARED)) 1780 continue; 1781 1782 region = vma->vm_region; 1783 r_size = region->vm_top - region->vm_start; 1784 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size; 1785 1786 if (r_top > newsize) { 1787 region->vm_top -= r_top - newsize; 1788 if (region->vm_end > region->vm_top) 1789 region->vm_end = region->vm_top; 1790 } 1791 } 1792 1793 i_mmap_unlock_read(inode->i_mapping); 1794 up_write(&nommu_region_sem); 1795 return 0; 1796 } 1797 1798 /* 1799 * Initialise sysctl_user_reserve_kbytes. 1800 * 1801 * This is intended to prevent a user from starting a single memory hogging 1802 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER 1803 * mode. 1804 * 1805 * The default value is min(3% of free memory, 128MB) 1806 * 128MB is enough to recover with sshd/login, bash, and top/kill. 1807 */ 1808 static int __meminit init_user_reserve(void) 1809 { 1810 unsigned long free_kbytes; 1811 1812 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 1813 1814 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17); 1815 return 0; 1816 } 1817 subsys_initcall(init_user_reserve); 1818 1819 /* 1820 * Initialise sysctl_admin_reserve_kbytes. 1821 * 1822 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin 1823 * to log in and kill a memory hogging process. 1824 * 1825 * Systems with more than 256MB will reserve 8MB, enough to recover 1826 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will 1827 * only reserve 3% of free pages by default. 1828 */ 1829 static int __meminit init_admin_reserve(void) 1830 { 1831 unsigned long free_kbytes; 1832 1833 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 1834 1835 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13); 1836 return 0; 1837 } 1838 subsys_initcall(init_admin_reserve); 1839