xref: /linux/mm/nommu.c (revision 566ab427f827b0256d3e8ce0235d088e6a9c28bd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/nommu.c
4  *
5  *  Replacement code for mm functions to support CPU's that don't
6  *  have any form of memory management unit (thus no virtual memory).
7  *
8  *  See Documentation/admin-guide/mm/nommu-mmap.rst
9  *
10  *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
11  *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
12  *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
13  *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
14  *  Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
15  */
16 
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 
19 #include <linux/export.h>
20 #include <linux/mm.h>
21 #include <linux/sched/mm.h>
22 #include <linux/mman.h>
23 #include <linux/swap.h>
24 #include <linux/file.h>
25 #include <linux/highmem.h>
26 #include <linux/pagemap.h>
27 #include <linux/slab.h>
28 #include <linux/vmalloc.h>
29 #include <linux/backing-dev.h>
30 #include <linux/compiler.h>
31 #include <linux/mount.h>
32 #include <linux/personality.h>
33 #include <linux/security.h>
34 #include <linux/syscalls.h>
35 #include <linux/audit.h>
36 #include <linux/printk.h>
37 
38 #include <linux/uaccess.h>
39 #include <linux/uio.h>
40 #include <asm/tlb.h>
41 #include <asm/tlbflush.h>
42 #include <asm/mmu_context.h>
43 #include "internal.h"
44 
45 void *high_memory;
46 EXPORT_SYMBOL(high_memory);
47 struct page *mem_map;
48 unsigned long max_mapnr;
49 EXPORT_SYMBOL(max_mapnr);
50 unsigned long highest_memmap_pfn;
51 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
52 int heap_stack_gap = 0;
53 
54 atomic_long_t mmap_pages_allocated;
55 
56 EXPORT_SYMBOL(mem_map);
57 
58 /* list of mapped, potentially shareable regions */
59 static struct kmem_cache *vm_region_jar;
60 struct rb_root nommu_region_tree = RB_ROOT;
61 DECLARE_RWSEM(nommu_region_sem);
62 
63 const struct vm_operations_struct generic_file_vm_ops = {
64 };
65 
66 /*
67  * Return the total memory allocated for this pointer, not
68  * just what the caller asked for.
69  *
70  * Doesn't have to be accurate, i.e. may have races.
71  */
72 unsigned int kobjsize(const void *objp)
73 {
74 	struct page *page;
75 
76 	/*
77 	 * If the object we have should not have ksize performed on it,
78 	 * return size of 0
79 	 */
80 	if (!objp || !virt_addr_valid(objp))
81 		return 0;
82 
83 	page = virt_to_head_page(objp);
84 
85 	/*
86 	 * If the allocator sets PageSlab, we know the pointer came from
87 	 * kmalloc().
88 	 */
89 	if (PageSlab(page))
90 		return ksize(objp);
91 
92 	/*
93 	 * If it's not a compound page, see if we have a matching VMA
94 	 * region. This test is intentionally done in reverse order,
95 	 * so if there's no VMA, we still fall through and hand back
96 	 * PAGE_SIZE for 0-order pages.
97 	 */
98 	if (!PageCompound(page)) {
99 		struct vm_area_struct *vma;
100 
101 		vma = find_vma(current->mm, (unsigned long)objp);
102 		if (vma)
103 			return vma->vm_end - vma->vm_start;
104 	}
105 
106 	/*
107 	 * The ksize() function is only guaranteed to work for pointers
108 	 * returned by kmalloc(). So handle arbitrary pointers here.
109 	 */
110 	return page_size(page);
111 }
112 
113 void vfree(const void *addr)
114 {
115 	kfree(addr);
116 }
117 EXPORT_SYMBOL(vfree);
118 
119 void *__vmalloc_noprof(unsigned long size, gfp_t gfp_mask)
120 {
121 	/*
122 	 *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
123 	 * returns only a logical address.
124 	 */
125 	return kmalloc_noprof(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
126 }
127 EXPORT_SYMBOL(__vmalloc_noprof);
128 
129 void *vrealloc_noprof(const void *p, size_t size, gfp_t flags)
130 {
131 	return krealloc_noprof(p, size, (flags | __GFP_COMP) & ~__GFP_HIGHMEM);
132 }
133 
134 void *__vmalloc_node_range_noprof(unsigned long size, unsigned long align,
135 		unsigned long start, unsigned long end, gfp_t gfp_mask,
136 		pgprot_t prot, unsigned long vm_flags, int node,
137 		const void *caller)
138 {
139 	return __vmalloc_noprof(size, gfp_mask);
140 }
141 
142 void *__vmalloc_node_noprof(unsigned long size, unsigned long align, gfp_t gfp_mask,
143 		int node, const void *caller)
144 {
145 	return __vmalloc_noprof(size, gfp_mask);
146 }
147 
148 static void *__vmalloc_user_flags(unsigned long size, gfp_t flags)
149 {
150 	void *ret;
151 
152 	ret = __vmalloc(size, flags);
153 	if (ret) {
154 		struct vm_area_struct *vma;
155 
156 		mmap_write_lock(current->mm);
157 		vma = find_vma(current->mm, (unsigned long)ret);
158 		if (vma)
159 			vm_flags_set(vma, VM_USERMAP);
160 		mmap_write_unlock(current->mm);
161 	}
162 
163 	return ret;
164 }
165 
166 void *vmalloc_user_noprof(unsigned long size)
167 {
168 	return __vmalloc_user_flags(size, GFP_KERNEL | __GFP_ZERO);
169 }
170 EXPORT_SYMBOL(vmalloc_user_noprof);
171 
172 struct page *vmalloc_to_page(const void *addr)
173 {
174 	return virt_to_page(addr);
175 }
176 EXPORT_SYMBOL(vmalloc_to_page);
177 
178 unsigned long vmalloc_to_pfn(const void *addr)
179 {
180 	return page_to_pfn(virt_to_page(addr));
181 }
182 EXPORT_SYMBOL(vmalloc_to_pfn);
183 
184 long vread_iter(struct iov_iter *iter, const char *addr, size_t count)
185 {
186 	/* Don't allow overflow */
187 	if ((unsigned long) addr + count < count)
188 		count = -(unsigned long) addr;
189 
190 	return copy_to_iter(addr, count, iter);
191 }
192 
193 /*
194  *	vmalloc  -  allocate virtually contiguous memory
195  *
196  *	@size:		allocation size
197  *
198  *	Allocate enough pages to cover @size from the page level
199  *	allocator and map them into contiguous kernel virtual space.
200  *
201  *	For tight control over page level allocator and protection flags
202  *	use __vmalloc() instead.
203  */
204 void *vmalloc_noprof(unsigned long size)
205 {
206 	return __vmalloc_noprof(size, GFP_KERNEL);
207 }
208 EXPORT_SYMBOL(vmalloc_noprof);
209 
210 void *vmalloc_huge_noprof(unsigned long size, gfp_t gfp_mask) __weak __alias(__vmalloc_noprof);
211 
212 /*
213  *	vzalloc - allocate virtually contiguous memory with zero fill
214  *
215  *	@size:		allocation size
216  *
217  *	Allocate enough pages to cover @size from the page level
218  *	allocator and map them into contiguous kernel virtual space.
219  *	The memory allocated is set to zero.
220  *
221  *	For tight control over page level allocator and protection flags
222  *	use __vmalloc() instead.
223  */
224 void *vzalloc_noprof(unsigned long size)
225 {
226 	return __vmalloc_noprof(size, GFP_KERNEL | __GFP_ZERO);
227 }
228 EXPORT_SYMBOL(vzalloc_noprof);
229 
230 /**
231  * vmalloc_node - allocate memory on a specific node
232  * @size:	allocation size
233  * @node:	numa node
234  *
235  * Allocate enough pages to cover @size from the page level
236  * allocator and map them into contiguous kernel virtual space.
237  *
238  * For tight control over page level allocator and protection flags
239  * use __vmalloc() instead.
240  */
241 void *vmalloc_node_noprof(unsigned long size, int node)
242 {
243 	return vmalloc_noprof(size);
244 }
245 EXPORT_SYMBOL(vmalloc_node_noprof);
246 
247 /**
248  * vzalloc_node - allocate memory on a specific node with zero fill
249  * @size:	allocation size
250  * @node:	numa node
251  *
252  * Allocate enough pages to cover @size from the page level
253  * allocator and map them into contiguous kernel virtual space.
254  * The memory allocated is set to zero.
255  *
256  * For tight control over page level allocator and protection flags
257  * use __vmalloc() instead.
258  */
259 void *vzalloc_node_noprof(unsigned long size, int node)
260 {
261 	return vzalloc_noprof(size);
262 }
263 EXPORT_SYMBOL(vzalloc_node_noprof);
264 
265 /**
266  * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
267  *	@size:		allocation size
268  *
269  *	Allocate enough 32bit PA addressable pages to cover @size from the
270  *	page level allocator and map them into contiguous kernel virtual space.
271  */
272 void *vmalloc_32_noprof(unsigned long size)
273 {
274 	return __vmalloc_noprof(size, GFP_KERNEL);
275 }
276 EXPORT_SYMBOL(vmalloc_32_noprof);
277 
278 /**
279  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
280  *	@size:		allocation size
281  *
282  * The resulting memory area is 32bit addressable and zeroed so it can be
283  * mapped to userspace without leaking data.
284  *
285  * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
286  * remap_vmalloc_range() are permissible.
287  */
288 void *vmalloc_32_user_noprof(unsigned long size)
289 {
290 	/*
291 	 * We'll have to sort out the ZONE_DMA bits for 64-bit,
292 	 * but for now this can simply use vmalloc_user() directly.
293 	 */
294 	return vmalloc_user_noprof(size);
295 }
296 EXPORT_SYMBOL(vmalloc_32_user_noprof);
297 
298 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
299 {
300 	BUG();
301 	return NULL;
302 }
303 EXPORT_SYMBOL(vmap);
304 
305 void vunmap(const void *addr)
306 {
307 	BUG();
308 }
309 EXPORT_SYMBOL(vunmap);
310 
311 void *vm_map_ram(struct page **pages, unsigned int count, int node)
312 {
313 	BUG();
314 	return NULL;
315 }
316 EXPORT_SYMBOL(vm_map_ram);
317 
318 void vm_unmap_ram(const void *mem, unsigned int count)
319 {
320 	BUG();
321 }
322 EXPORT_SYMBOL(vm_unmap_ram);
323 
324 void vm_unmap_aliases(void)
325 {
326 }
327 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
328 
329 void free_vm_area(struct vm_struct *area)
330 {
331 	BUG();
332 }
333 EXPORT_SYMBOL_GPL(free_vm_area);
334 
335 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
336 		   struct page *page)
337 {
338 	return -EINVAL;
339 }
340 EXPORT_SYMBOL(vm_insert_page);
341 
342 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
343 			struct page **pages, unsigned long *num)
344 {
345 	return -EINVAL;
346 }
347 EXPORT_SYMBOL(vm_insert_pages);
348 
349 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
350 			unsigned long num)
351 {
352 	return -EINVAL;
353 }
354 EXPORT_SYMBOL(vm_map_pages);
355 
356 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
357 				unsigned long num)
358 {
359 	return -EINVAL;
360 }
361 EXPORT_SYMBOL(vm_map_pages_zero);
362 
363 /*
364  *  sys_brk() for the most part doesn't need the global kernel
365  *  lock, except when an application is doing something nasty
366  *  like trying to un-brk an area that has already been mapped
367  *  to a regular file.  in this case, the unmapping will need
368  *  to invoke file system routines that need the global lock.
369  */
370 SYSCALL_DEFINE1(brk, unsigned long, brk)
371 {
372 	struct mm_struct *mm = current->mm;
373 
374 	if (brk < mm->start_brk || brk > mm->context.end_brk)
375 		return mm->brk;
376 
377 	if (mm->brk == brk)
378 		return mm->brk;
379 
380 	/*
381 	 * Always allow shrinking brk
382 	 */
383 	if (brk <= mm->brk) {
384 		mm->brk = brk;
385 		return brk;
386 	}
387 
388 	/*
389 	 * Ok, looks good - let it rip.
390 	 */
391 	flush_icache_user_range(mm->brk, brk);
392 	return mm->brk = brk;
393 }
394 
395 /*
396  * initialise the percpu counter for VM and region record slabs
397  */
398 void __init mmap_init(void)
399 {
400 	int ret;
401 
402 	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
403 	VM_BUG_ON(ret);
404 	vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT);
405 }
406 
407 /*
408  * validate the region tree
409  * - the caller must hold the region lock
410  */
411 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
412 static noinline void validate_nommu_regions(void)
413 {
414 	struct vm_region *region, *last;
415 	struct rb_node *p, *lastp;
416 
417 	lastp = rb_first(&nommu_region_tree);
418 	if (!lastp)
419 		return;
420 
421 	last = rb_entry(lastp, struct vm_region, vm_rb);
422 	BUG_ON(last->vm_end <= last->vm_start);
423 	BUG_ON(last->vm_top < last->vm_end);
424 
425 	while ((p = rb_next(lastp))) {
426 		region = rb_entry(p, struct vm_region, vm_rb);
427 		last = rb_entry(lastp, struct vm_region, vm_rb);
428 
429 		BUG_ON(region->vm_end <= region->vm_start);
430 		BUG_ON(region->vm_top < region->vm_end);
431 		BUG_ON(region->vm_start < last->vm_top);
432 
433 		lastp = p;
434 	}
435 }
436 #else
437 static void validate_nommu_regions(void)
438 {
439 }
440 #endif
441 
442 /*
443  * add a region into the global tree
444  */
445 static void add_nommu_region(struct vm_region *region)
446 {
447 	struct vm_region *pregion;
448 	struct rb_node **p, *parent;
449 
450 	validate_nommu_regions();
451 
452 	parent = NULL;
453 	p = &nommu_region_tree.rb_node;
454 	while (*p) {
455 		parent = *p;
456 		pregion = rb_entry(parent, struct vm_region, vm_rb);
457 		if (region->vm_start < pregion->vm_start)
458 			p = &(*p)->rb_left;
459 		else if (region->vm_start > pregion->vm_start)
460 			p = &(*p)->rb_right;
461 		else if (pregion == region)
462 			return;
463 		else
464 			BUG();
465 	}
466 
467 	rb_link_node(&region->vm_rb, parent, p);
468 	rb_insert_color(&region->vm_rb, &nommu_region_tree);
469 
470 	validate_nommu_regions();
471 }
472 
473 /*
474  * delete a region from the global tree
475  */
476 static void delete_nommu_region(struct vm_region *region)
477 {
478 	BUG_ON(!nommu_region_tree.rb_node);
479 
480 	validate_nommu_regions();
481 	rb_erase(&region->vm_rb, &nommu_region_tree);
482 	validate_nommu_regions();
483 }
484 
485 /*
486  * free a contiguous series of pages
487  */
488 static void free_page_series(unsigned long from, unsigned long to)
489 {
490 	for (; from < to; from += PAGE_SIZE) {
491 		struct page *page = virt_to_page((void *)from);
492 
493 		atomic_long_dec(&mmap_pages_allocated);
494 		put_page(page);
495 	}
496 }
497 
498 /*
499  * release a reference to a region
500  * - the caller must hold the region semaphore for writing, which this releases
501  * - the region may not have been added to the tree yet, in which case vm_top
502  *   will equal vm_start
503  */
504 static void __put_nommu_region(struct vm_region *region)
505 	__releases(nommu_region_sem)
506 {
507 	BUG_ON(!nommu_region_tree.rb_node);
508 
509 	if (--region->vm_usage == 0) {
510 		if (region->vm_top > region->vm_start)
511 			delete_nommu_region(region);
512 		up_write(&nommu_region_sem);
513 
514 		if (region->vm_file)
515 			fput(region->vm_file);
516 
517 		/* IO memory and memory shared directly out of the pagecache
518 		 * from ramfs/tmpfs mustn't be released here */
519 		if (region->vm_flags & VM_MAPPED_COPY)
520 			free_page_series(region->vm_start, region->vm_top);
521 		kmem_cache_free(vm_region_jar, region);
522 	} else {
523 		up_write(&nommu_region_sem);
524 	}
525 }
526 
527 /*
528  * release a reference to a region
529  */
530 static void put_nommu_region(struct vm_region *region)
531 {
532 	down_write(&nommu_region_sem);
533 	__put_nommu_region(region);
534 }
535 
536 static void setup_vma_to_mm(struct vm_area_struct *vma, struct mm_struct *mm)
537 {
538 	vma->vm_mm = mm;
539 
540 	/* add the VMA to the mapping */
541 	if (vma->vm_file) {
542 		struct address_space *mapping = vma->vm_file->f_mapping;
543 
544 		i_mmap_lock_write(mapping);
545 		flush_dcache_mmap_lock(mapping);
546 		vma_interval_tree_insert(vma, &mapping->i_mmap);
547 		flush_dcache_mmap_unlock(mapping);
548 		i_mmap_unlock_write(mapping);
549 	}
550 }
551 
552 static void cleanup_vma_from_mm(struct vm_area_struct *vma)
553 {
554 	vma->vm_mm->map_count--;
555 	/* remove the VMA from the mapping */
556 	if (vma->vm_file) {
557 		struct address_space *mapping;
558 		mapping = vma->vm_file->f_mapping;
559 
560 		i_mmap_lock_write(mapping);
561 		flush_dcache_mmap_lock(mapping);
562 		vma_interval_tree_remove(vma, &mapping->i_mmap);
563 		flush_dcache_mmap_unlock(mapping);
564 		i_mmap_unlock_write(mapping);
565 	}
566 }
567 
568 /*
569  * delete a VMA from its owning mm_struct and address space
570  */
571 static int delete_vma_from_mm(struct vm_area_struct *vma)
572 {
573 	VMA_ITERATOR(vmi, vma->vm_mm, vma->vm_start);
574 
575 	vma_iter_config(&vmi, vma->vm_start, vma->vm_end);
576 	if (vma_iter_prealloc(&vmi, vma)) {
577 		pr_warn("Allocation of vma tree for process %d failed\n",
578 		       current->pid);
579 		return -ENOMEM;
580 	}
581 	cleanup_vma_from_mm(vma);
582 
583 	/* remove from the MM's tree and list */
584 	vma_iter_clear(&vmi);
585 	return 0;
586 }
587 /*
588  * destroy a VMA record
589  */
590 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
591 {
592 	if (vma->vm_ops && vma->vm_ops->close)
593 		vma->vm_ops->close(vma);
594 	if (vma->vm_file)
595 		fput(vma->vm_file);
596 	put_nommu_region(vma->vm_region);
597 	vm_area_free(vma);
598 }
599 
600 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
601 					     unsigned long start_addr,
602 					     unsigned long end_addr)
603 {
604 	unsigned long index = start_addr;
605 
606 	mmap_assert_locked(mm);
607 	return mt_find(&mm->mm_mt, &index, end_addr - 1);
608 }
609 EXPORT_SYMBOL(find_vma_intersection);
610 
611 /*
612  * look up the first VMA in which addr resides, NULL if none
613  * - should be called with mm->mmap_lock at least held readlocked
614  */
615 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
616 {
617 	VMA_ITERATOR(vmi, mm, addr);
618 
619 	return vma_iter_load(&vmi);
620 }
621 EXPORT_SYMBOL(find_vma);
622 
623 /*
624  * At least xtensa ends up having protection faults even with no
625  * MMU.. No stack expansion, at least.
626  */
627 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
628 			unsigned long addr, struct pt_regs *regs)
629 {
630 	struct vm_area_struct *vma;
631 
632 	mmap_read_lock(mm);
633 	vma = vma_lookup(mm, addr);
634 	if (!vma)
635 		mmap_read_unlock(mm);
636 	return vma;
637 }
638 
639 /*
640  * expand a stack to a given address
641  * - not supported under NOMMU conditions
642  */
643 int expand_stack_locked(struct vm_area_struct *vma, unsigned long addr)
644 {
645 	return -ENOMEM;
646 }
647 
648 struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr)
649 {
650 	mmap_read_unlock(mm);
651 	return NULL;
652 }
653 
654 /*
655  * look up the first VMA exactly that exactly matches addr
656  * - should be called with mm->mmap_lock at least held readlocked
657  */
658 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
659 					     unsigned long addr,
660 					     unsigned long len)
661 {
662 	struct vm_area_struct *vma;
663 	unsigned long end = addr + len;
664 	VMA_ITERATOR(vmi, mm, addr);
665 
666 	vma = vma_iter_load(&vmi);
667 	if (!vma)
668 		return NULL;
669 	if (vma->vm_start != addr)
670 		return NULL;
671 	if (vma->vm_end != end)
672 		return NULL;
673 
674 	return vma;
675 }
676 
677 /*
678  * determine whether a mapping should be permitted and, if so, what sort of
679  * mapping we're capable of supporting
680  */
681 static int validate_mmap_request(struct file *file,
682 				 unsigned long addr,
683 				 unsigned long len,
684 				 unsigned long prot,
685 				 unsigned long flags,
686 				 unsigned long pgoff,
687 				 unsigned long *_capabilities)
688 {
689 	unsigned long capabilities, rlen;
690 	int ret;
691 
692 	/* do the simple checks first */
693 	if (flags & MAP_FIXED)
694 		return -EINVAL;
695 
696 	if ((flags & MAP_TYPE) != MAP_PRIVATE &&
697 	    (flags & MAP_TYPE) != MAP_SHARED)
698 		return -EINVAL;
699 
700 	if (!len)
701 		return -EINVAL;
702 
703 	/* Careful about overflows.. */
704 	rlen = PAGE_ALIGN(len);
705 	if (!rlen || rlen > TASK_SIZE)
706 		return -ENOMEM;
707 
708 	/* offset overflow? */
709 	if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
710 		return -EOVERFLOW;
711 
712 	if (file) {
713 		/* files must support mmap */
714 		if (!file->f_op->mmap)
715 			return -ENODEV;
716 
717 		/* work out if what we've got could possibly be shared
718 		 * - we support chardevs that provide their own "memory"
719 		 * - we support files/blockdevs that are memory backed
720 		 */
721 		if (file->f_op->mmap_capabilities) {
722 			capabilities = file->f_op->mmap_capabilities(file);
723 		} else {
724 			/* no explicit capabilities set, so assume some
725 			 * defaults */
726 			switch (file_inode(file)->i_mode & S_IFMT) {
727 			case S_IFREG:
728 			case S_IFBLK:
729 				capabilities = NOMMU_MAP_COPY;
730 				break;
731 
732 			case S_IFCHR:
733 				capabilities =
734 					NOMMU_MAP_DIRECT |
735 					NOMMU_MAP_READ |
736 					NOMMU_MAP_WRITE;
737 				break;
738 
739 			default:
740 				return -EINVAL;
741 			}
742 		}
743 
744 		/* eliminate any capabilities that we can't support on this
745 		 * device */
746 		if (!file->f_op->get_unmapped_area)
747 			capabilities &= ~NOMMU_MAP_DIRECT;
748 		if (!(file->f_mode & FMODE_CAN_READ))
749 			capabilities &= ~NOMMU_MAP_COPY;
750 
751 		/* The file shall have been opened with read permission. */
752 		if (!(file->f_mode & FMODE_READ))
753 			return -EACCES;
754 
755 		if (flags & MAP_SHARED) {
756 			/* do checks for writing, appending and locking */
757 			if ((prot & PROT_WRITE) &&
758 			    !(file->f_mode & FMODE_WRITE))
759 				return -EACCES;
760 
761 			if (IS_APPEND(file_inode(file)) &&
762 			    (file->f_mode & FMODE_WRITE))
763 				return -EACCES;
764 
765 			if (!(capabilities & NOMMU_MAP_DIRECT))
766 				return -ENODEV;
767 
768 			/* we mustn't privatise shared mappings */
769 			capabilities &= ~NOMMU_MAP_COPY;
770 		} else {
771 			/* we're going to read the file into private memory we
772 			 * allocate */
773 			if (!(capabilities & NOMMU_MAP_COPY))
774 				return -ENODEV;
775 
776 			/* we don't permit a private writable mapping to be
777 			 * shared with the backing device */
778 			if (prot & PROT_WRITE)
779 				capabilities &= ~NOMMU_MAP_DIRECT;
780 		}
781 
782 		if (capabilities & NOMMU_MAP_DIRECT) {
783 			if (((prot & PROT_READ)  && !(capabilities & NOMMU_MAP_READ))  ||
784 			    ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
785 			    ((prot & PROT_EXEC)  && !(capabilities & NOMMU_MAP_EXEC))
786 			    ) {
787 				capabilities &= ~NOMMU_MAP_DIRECT;
788 				if (flags & MAP_SHARED) {
789 					pr_warn("MAP_SHARED not completely supported on !MMU\n");
790 					return -EINVAL;
791 				}
792 			}
793 		}
794 
795 		/* handle executable mappings and implied executable
796 		 * mappings */
797 		if (path_noexec(&file->f_path)) {
798 			if (prot & PROT_EXEC)
799 				return -EPERM;
800 		} else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
801 			/* handle implication of PROT_EXEC by PROT_READ */
802 			if (current->personality & READ_IMPLIES_EXEC) {
803 				if (capabilities & NOMMU_MAP_EXEC)
804 					prot |= PROT_EXEC;
805 			}
806 		} else if ((prot & PROT_READ) &&
807 			 (prot & PROT_EXEC) &&
808 			 !(capabilities & NOMMU_MAP_EXEC)
809 			 ) {
810 			/* backing file is not executable, try to copy */
811 			capabilities &= ~NOMMU_MAP_DIRECT;
812 		}
813 	} else {
814 		/* anonymous mappings are always memory backed and can be
815 		 * privately mapped
816 		 */
817 		capabilities = NOMMU_MAP_COPY;
818 
819 		/* handle PROT_EXEC implication by PROT_READ */
820 		if ((prot & PROT_READ) &&
821 		    (current->personality & READ_IMPLIES_EXEC))
822 			prot |= PROT_EXEC;
823 	}
824 
825 	/* allow the security API to have its say */
826 	ret = security_mmap_addr(addr);
827 	if (ret < 0)
828 		return ret;
829 
830 	/* looks okay */
831 	*_capabilities = capabilities;
832 	return 0;
833 }
834 
835 /*
836  * we've determined that we can make the mapping, now translate what we
837  * now know into VMA flags
838  */
839 static unsigned long determine_vm_flags(struct file *file,
840 					unsigned long prot,
841 					unsigned long flags,
842 					unsigned long capabilities)
843 {
844 	unsigned long vm_flags;
845 
846 	vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags);
847 
848 	if (!file) {
849 		/*
850 		 * MAP_ANONYMOUS. MAP_SHARED is mapped to MAP_PRIVATE, because
851 		 * there is no fork().
852 		 */
853 		vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
854 	} else if (flags & MAP_PRIVATE) {
855 		/* MAP_PRIVATE file mapping */
856 		if (capabilities & NOMMU_MAP_DIRECT)
857 			vm_flags |= (capabilities & NOMMU_VMFLAGS);
858 		else
859 			vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
860 
861 		if (!(prot & PROT_WRITE) && !current->ptrace)
862 			/*
863 			 * R/O private file mapping which cannot be used to
864 			 * modify memory, especially also not via active ptrace
865 			 * (e.g., set breakpoints) or later by upgrading
866 			 * permissions (no mprotect()). We can try overlaying
867 			 * the file mapping, which will work e.g., on chardevs,
868 			 * ramfs/tmpfs/shmfs and romfs/cramf.
869 			 */
870 			vm_flags |= VM_MAYOVERLAY;
871 	} else {
872 		/* MAP_SHARED file mapping: NOMMU_MAP_DIRECT is set. */
873 		vm_flags |= VM_SHARED | VM_MAYSHARE |
874 			    (capabilities & NOMMU_VMFLAGS);
875 	}
876 
877 	return vm_flags;
878 }
879 
880 /*
881  * set up a shared mapping on a file (the driver or filesystem provides and
882  * pins the storage)
883  */
884 static int do_mmap_shared_file(struct vm_area_struct *vma)
885 {
886 	int ret;
887 
888 	ret = call_mmap(vma->vm_file, vma);
889 	if (ret == 0) {
890 		vma->vm_region->vm_top = vma->vm_region->vm_end;
891 		return 0;
892 	}
893 	if (ret != -ENOSYS)
894 		return ret;
895 
896 	/* getting -ENOSYS indicates that direct mmap isn't possible (as
897 	 * opposed to tried but failed) so we can only give a suitable error as
898 	 * it's not possible to make a private copy if MAP_SHARED was given */
899 	return -ENODEV;
900 }
901 
902 /*
903  * set up a private mapping or an anonymous shared mapping
904  */
905 static int do_mmap_private(struct vm_area_struct *vma,
906 			   struct vm_region *region,
907 			   unsigned long len,
908 			   unsigned long capabilities)
909 {
910 	unsigned long total, point;
911 	void *base;
912 	int ret, order;
913 
914 	/*
915 	 * Invoke the file's mapping function so that it can keep track of
916 	 * shared mappings on devices or memory. VM_MAYOVERLAY will be set if
917 	 * it may attempt to share, which will make is_nommu_shared_mapping()
918 	 * happy.
919 	 */
920 	if (capabilities & NOMMU_MAP_DIRECT) {
921 		ret = call_mmap(vma->vm_file, vma);
922 		/* shouldn't return success if we're not sharing */
923 		if (WARN_ON_ONCE(!is_nommu_shared_mapping(vma->vm_flags)))
924 			ret = -ENOSYS;
925 		if (ret == 0) {
926 			vma->vm_region->vm_top = vma->vm_region->vm_end;
927 			return 0;
928 		}
929 		if (ret != -ENOSYS)
930 			return ret;
931 
932 		/* getting an ENOSYS error indicates that direct mmap isn't
933 		 * possible (as opposed to tried but failed) so we'll try to
934 		 * make a private copy of the data and map that instead */
935 	}
936 
937 
938 	/* allocate some memory to hold the mapping
939 	 * - note that this may not return a page-aligned address if the object
940 	 *   we're allocating is smaller than a page
941 	 */
942 	order = get_order(len);
943 	total = 1 << order;
944 	point = len >> PAGE_SHIFT;
945 
946 	/* we don't want to allocate a power-of-2 sized page set */
947 	if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages)
948 		total = point;
949 
950 	base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL);
951 	if (!base)
952 		goto enomem;
953 
954 	atomic_long_add(total, &mmap_pages_allocated);
955 
956 	vm_flags_set(vma, VM_MAPPED_COPY);
957 	region->vm_flags = vma->vm_flags;
958 	region->vm_start = (unsigned long) base;
959 	region->vm_end   = region->vm_start + len;
960 	region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
961 
962 	vma->vm_start = region->vm_start;
963 	vma->vm_end   = region->vm_start + len;
964 
965 	if (vma->vm_file) {
966 		/* read the contents of a file into the copy */
967 		loff_t fpos;
968 
969 		fpos = vma->vm_pgoff;
970 		fpos <<= PAGE_SHIFT;
971 
972 		ret = kernel_read(vma->vm_file, base, len, &fpos);
973 		if (ret < 0)
974 			goto error_free;
975 
976 		/* clear the last little bit */
977 		if (ret < len)
978 			memset(base + ret, 0, len - ret);
979 
980 	} else {
981 		vma_set_anonymous(vma);
982 	}
983 
984 	return 0;
985 
986 error_free:
987 	free_page_series(region->vm_start, region->vm_top);
988 	region->vm_start = vma->vm_start = 0;
989 	region->vm_end   = vma->vm_end = 0;
990 	region->vm_top   = 0;
991 	return ret;
992 
993 enomem:
994 	pr_err("Allocation of length %lu from process %d (%s) failed\n",
995 	       len, current->pid, current->comm);
996 	show_mem();
997 	return -ENOMEM;
998 }
999 
1000 /*
1001  * handle mapping creation for uClinux
1002  */
1003 unsigned long do_mmap(struct file *file,
1004 			unsigned long addr,
1005 			unsigned long len,
1006 			unsigned long prot,
1007 			unsigned long flags,
1008 			vm_flags_t vm_flags,
1009 			unsigned long pgoff,
1010 			unsigned long *populate,
1011 			struct list_head *uf)
1012 {
1013 	struct vm_area_struct *vma;
1014 	struct vm_region *region;
1015 	struct rb_node *rb;
1016 	unsigned long capabilities, result;
1017 	int ret;
1018 	VMA_ITERATOR(vmi, current->mm, 0);
1019 
1020 	*populate = 0;
1021 
1022 	/* decide whether we should attempt the mapping, and if so what sort of
1023 	 * mapping */
1024 	ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1025 				    &capabilities);
1026 	if (ret < 0)
1027 		return ret;
1028 
1029 	/* we ignore the address hint */
1030 	addr = 0;
1031 	len = PAGE_ALIGN(len);
1032 
1033 	/* we've determined that we can make the mapping, now translate what we
1034 	 * now know into VMA flags */
1035 	vm_flags |= determine_vm_flags(file, prot, flags, capabilities);
1036 
1037 
1038 	/* we're going to need to record the mapping */
1039 	region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1040 	if (!region)
1041 		goto error_getting_region;
1042 
1043 	vma = vm_area_alloc(current->mm);
1044 	if (!vma)
1045 		goto error_getting_vma;
1046 
1047 	region->vm_usage = 1;
1048 	region->vm_flags = vm_flags;
1049 	region->vm_pgoff = pgoff;
1050 
1051 	vm_flags_init(vma, vm_flags);
1052 	vma->vm_pgoff = pgoff;
1053 
1054 	if (file) {
1055 		region->vm_file = get_file(file);
1056 		vma->vm_file = get_file(file);
1057 	}
1058 
1059 	down_write(&nommu_region_sem);
1060 
1061 	/* if we want to share, we need to check for regions created by other
1062 	 * mmap() calls that overlap with our proposed mapping
1063 	 * - we can only share with a superset match on most regular files
1064 	 * - shared mappings on character devices and memory backed files are
1065 	 *   permitted to overlap inexactly as far as we are concerned for in
1066 	 *   these cases, sharing is handled in the driver or filesystem rather
1067 	 *   than here
1068 	 */
1069 	if (is_nommu_shared_mapping(vm_flags)) {
1070 		struct vm_region *pregion;
1071 		unsigned long pglen, rpglen, pgend, rpgend, start;
1072 
1073 		pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1074 		pgend = pgoff + pglen;
1075 
1076 		for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1077 			pregion = rb_entry(rb, struct vm_region, vm_rb);
1078 
1079 			if (!is_nommu_shared_mapping(pregion->vm_flags))
1080 				continue;
1081 
1082 			/* search for overlapping mappings on the same file */
1083 			if (file_inode(pregion->vm_file) !=
1084 			    file_inode(file))
1085 				continue;
1086 
1087 			if (pregion->vm_pgoff >= pgend)
1088 				continue;
1089 
1090 			rpglen = pregion->vm_end - pregion->vm_start;
1091 			rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1092 			rpgend = pregion->vm_pgoff + rpglen;
1093 			if (pgoff >= rpgend)
1094 				continue;
1095 
1096 			/* handle inexactly overlapping matches between
1097 			 * mappings */
1098 			if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1099 			    !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1100 				/* new mapping is not a subset of the region */
1101 				if (!(capabilities & NOMMU_MAP_DIRECT))
1102 					goto sharing_violation;
1103 				continue;
1104 			}
1105 
1106 			/* we've found a region we can share */
1107 			pregion->vm_usage++;
1108 			vma->vm_region = pregion;
1109 			start = pregion->vm_start;
1110 			start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1111 			vma->vm_start = start;
1112 			vma->vm_end = start + len;
1113 
1114 			if (pregion->vm_flags & VM_MAPPED_COPY)
1115 				vm_flags_set(vma, VM_MAPPED_COPY);
1116 			else {
1117 				ret = do_mmap_shared_file(vma);
1118 				if (ret < 0) {
1119 					vma->vm_region = NULL;
1120 					vma->vm_start = 0;
1121 					vma->vm_end = 0;
1122 					pregion->vm_usage--;
1123 					pregion = NULL;
1124 					goto error_just_free;
1125 				}
1126 			}
1127 			fput(region->vm_file);
1128 			kmem_cache_free(vm_region_jar, region);
1129 			region = pregion;
1130 			result = start;
1131 			goto share;
1132 		}
1133 
1134 		/* obtain the address at which to make a shared mapping
1135 		 * - this is the hook for quasi-memory character devices to
1136 		 *   tell us the location of a shared mapping
1137 		 */
1138 		if (capabilities & NOMMU_MAP_DIRECT) {
1139 			addr = file->f_op->get_unmapped_area(file, addr, len,
1140 							     pgoff, flags);
1141 			if (IS_ERR_VALUE(addr)) {
1142 				ret = addr;
1143 				if (ret != -ENOSYS)
1144 					goto error_just_free;
1145 
1146 				/* the driver refused to tell us where to site
1147 				 * the mapping so we'll have to attempt to copy
1148 				 * it */
1149 				ret = -ENODEV;
1150 				if (!(capabilities & NOMMU_MAP_COPY))
1151 					goto error_just_free;
1152 
1153 				capabilities &= ~NOMMU_MAP_DIRECT;
1154 			} else {
1155 				vma->vm_start = region->vm_start = addr;
1156 				vma->vm_end = region->vm_end = addr + len;
1157 			}
1158 		}
1159 	}
1160 
1161 	vma->vm_region = region;
1162 
1163 	/* set up the mapping
1164 	 * - the region is filled in if NOMMU_MAP_DIRECT is still set
1165 	 */
1166 	if (file && vma->vm_flags & VM_SHARED)
1167 		ret = do_mmap_shared_file(vma);
1168 	else
1169 		ret = do_mmap_private(vma, region, len, capabilities);
1170 	if (ret < 0)
1171 		goto error_just_free;
1172 	add_nommu_region(region);
1173 
1174 	/* clear anonymous mappings that don't ask for uninitialized data */
1175 	if (!vma->vm_file &&
1176 	    (!IS_ENABLED(CONFIG_MMAP_ALLOW_UNINITIALIZED) ||
1177 	     !(flags & MAP_UNINITIALIZED)))
1178 		memset((void *)region->vm_start, 0,
1179 		       region->vm_end - region->vm_start);
1180 
1181 	/* okay... we have a mapping; now we have to register it */
1182 	result = vma->vm_start;
1183 
1184 	current->mm->total_vm += len >> PAGE_SHIFT;
1185 
1186 share:
1187 	BUG_ON(!vma->vm_region);
1188 	vma_iter_config(&vmi, vma->vm_start, vma->vm_end);
1189 	if (vma_iter_prealloc(&vmi, vma))
1190 		goto error_just_free;
1191 
1192 	setup_vma_to_mm(vma, current->mm);
1193 	current->mm->map_count++;
1194 	/* add the VMA to the tree */
1195 	vma_iter_store(&vmi, vma);
1196 
1197 	/* we flush the region from the icache only when the first executable
1198 	 * mapping of it is made  */
1199 	if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1200 		flush_icache_user_range(region->vm_start, region->vm_end);
1201 		region->vm_icache_flushed = true;
1202 	}
1203 
1204 	up_write(&nommu_region_sem);
1205 
1206 	return result;
1207 
1208 error_just_free:
1209 	up_write(&nommu_region_sem);
1210 error:
1211 	vma_iter_free(&vmi);
1212 	if (region->vm_file)
1213 		fput(region->vm_file);
1214 	kmem_cache_free(vm_region_jar, region);
1215 	if (vma->vm_file)
1216 		fput(vma->vm_file);
1217 	vm_area_free(vma);
1218 	return ret;
1219 
1220 sharing_violation:
1221 	up_write(&nommu_region_sem);
1222 	pr_warn("Attempt to share mismatched mappings\n");
1223 	ret = -EINVAL;
1224 	goto error;
1225 
1226 error_getting_vma:
1227 	kmem_cache_free(vm_region_jar, region);
1228 	pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n",
1229 			len, current->pid);
1230 	show_mem();
1231 	return -ENOMEM;
1232 
1233 error_getting_region:
1234 	pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n",
1235 			len, current->pid);
1236 	show_mem();
1237 	return -ENOMEM;
1238 }
1239 
1240 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1241 			      unsigned long prot, unsigned long flags,
1242 			      unsigned long fd, unsigned long pgoff)
1243 {
1244 	struct file *file = NULL;
1245 	unsigned long retval = -EBADF;
1246 
1247 	audit_mmap_fd(fd, flags);
1248 	if (!(flags & MAP_ANONYMOUS)) {
1249 		file = fget(fd);
1250 		if (!file)
1251 			goto out;
1252 	}
1253 
1254 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1255 
1256 	if (file)
1257 		fput(file);
1258 out:
1259 	return retval;
1260 }
1261 
1262 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1263 		unsigned long, prot, unsigned long, flags,
1264 		unsigned long, fd, unsigned long, pgoff)
1265 {
1266 	return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1267 }
1268 
1269 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1270 struct mmap_arg_struct {
1271 	unsigned long addr;
1272 	unsigned long len;
1273 	unsigned long prot;
1274 	unsigned long flags;
1275 	unsigned long fd;
1276 	unsigned long offset;
1277 };
1278 
1279 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1280 {
1281 	struct mmap_arg_struct a;
1282 
1283 	if (copy_from_user(&a, arg, sizeof(a)))
1284 		return -EFAULT;
1285 	if (offset_in_page(a.offset))
1286 		return -EINVAL;
1287 
1288 	return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1289 			       a.offset >> PAGE_SHIFT);
1290 }
1291 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1292 
1293 /*
1294  * split a vma into two pieces at address 'addr', a new vma is allocated either
1295  * for the first part or the tail.
1296  */
1297 static int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
1298 		     unsigned long addr, int new_below)
1299 {
1300 	struct vm_area_struct *new;
1301 	struct vm_region *region;
1302 	unsigned long npages;
1303 	struct mm_struct *mm;
1304 
1305 	/* we're only permitted to split anonymous regions (these should have
1306 	 * only a single usage on the region) */
1307 	if (vma->vm_file)
1308 		return -ENOMEM;
1309 
1310 	mm = vma->vm_mm;
1311 	if (mm->map_count >= sysctl_max_map_count)
1312 		return -ENOMEM;
1313 
1314 	region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1315 	if (!region)
1316 		return -ENOMEM;
1317 
1318 	new = vm_area_dup(vma);
1319 	if (!new)
1320 		goto err_vma_dup;
1321 
1322 	/* most fields are the same, copy all, and then fixup */
1323 	*region = *vma->vm_region;
1324 	new->vm_region = region;
1325 
1326 	npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1327 
1328 	if (new_below) {
1329 		region->vm_top = region->vm_end = new->vm_end = addr;
1330 	} else {
1331 		region->vm_start = new->vm_start = addr;
1332 		region->vm_pgoff = new->vm_pgoff += npages;
1333 	}
1334 
1335 	vma_iter_config(vmi, new->vm_start, new->vm_end);
1336 	if (vma_iter_prealloc(vmi, vma)) {
1337 		pr_warn("Allocation of vma tree for process %d failed\n",
1338 			current->pid);
1339 		goto err_vmi_preallocate;
1340 	}
1341 
1342 	if (new->vm_ops && new->vm_ops->open)
1343 		new->vm_ops->open(new);
1344 
1345 	down_write(&nommu_region_sem);
1346 	delete_nommu_region(vma->vm_region);
1347 	if (new_below) {
1348 		vma->vm_region->vm_start = vma->vm_start = addr;
1349 		vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1350 	} else {
1351 		vma->vm_region->vm_end = vma->vm_end = addr;
1352 		vma->vm_region->vm_top = addr;
1353 	}
1354 	add_nommu_region(vma->vm_region);
1355 	add_nommu_region(new->vm_region);
1356 	up_write(&nommu_region_sem);
1357 
1358 	setup_vma_to_mm(vma, mm);
1359 	setup_vma_to_mm(new, mm);
1360 	vma_iter_store(vmi, new);
1361 	mm->map_count++;
1362 	return 0;
1363 
1364 err_vmi_preallocate:
1365 	vm_area_free(new);
1366 err_vma_dup:
1367 	kmem_cache_free(vm_region_jar, region);
1368 	return -ENOMEM;
1369 }
1370 
1371 /*
1372  * shrink a VMA by removing the specified chunk from either the beginning or
1373  * the end
1374  */
1375 static int vmi_shrink_vma(struct vma_iterator *vmi,
1376 		      struct vm_area_struct *vma,
1377 		      unsigned long from, unsigned long to)
1378 {
1379 	struct vm_region *region;
1380 
1381 	/* adjust the VMA's pointers, which may reposition it in the MM's tree
1382 	 * and list */
1383 	if (from > vma->vm_start) {
1384 		if (vma_iter_clear_gfp(vmi, from, vma->vm_end, GFP_KERNEL))
1385 			return -ENOMEM;
1386 		vma->vm_end = from;
1387 	} else {
1388 		if (vma_iter_clear_gfp(vmi, vma->vm_start, to, GFP_KERNEL))
1389 			return -ENOMEM;
1390 		vma->vm_start = to;
1391 	}
1392 
1393 	/* cut the backing region down to size */
1394 	region = vma->vm_region;
1395 	BUG_ON(region->vm_usage != 1);
1396 
1397 	down_write(&nommu_region_sem);
1398 	delete_nommu_region(region);
1399 	if (from > region->vm_start) {
1400 		to = region->vm_top;
1401 		region->vm_top = region->vm_end = from;
1402 	} else {
1403 		region->vm_start = to;
1404 	}
1405 	add_nommu_region(region);
1406 	up_write(&nommu_region_sem);
1407 
1408 	free_page_series(from, to);
1409 	return 0;
1410 }
1411 
1412 /*
1413  * release a mapping
1414  * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1415  *   VMA, though it need not cover the whole VMA
1416  */
1417 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf)
1418 {
1419 	VMA_ITERATOR(vmi, mm, start);
1420 	struct vm_area_struct *vma;
1421 	unsigned long end;
1422 	int ret = 0;
1423 
1424 	len = PAGE_ALIGN(len);
1425 	if (len == 0)
1426 		return -EINVAL;
1427 
1428 	end = start + len;
1429 
1430 	/* find the first potentially overlapping VMA */
1431 	vma = vma_find(&vmi, end);
1432 	if (!vma) {
1433 		static int limit;
1434 		if (limit < 5) {
1435 			pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n",
1436 					current->pid, current->comm,
1437 					start, start + len - 1);
1438 			limit++;
1439 		}
1440 		return -EINVAL;
1441 	}
1442 
1443 	/* we're allowed to split an anonymous VMA but not a file-backed one */
1444 	if (vma->vm_file) {
1445 		do {
1446 			if (start > vma->vm_start)
1447 				return -EINVAL;
1448 			if (end == vma->vm_end)
1449 				goto erase_whole_vma;
1450 			vma = vma_find(&vmi, end);
1451 		} while (vma);
1452 		return -EINVAL;
1453 	} else {
1454 		/* the chunk must be a subset of the VMA found */
1455 		if (start == vma->vm_start && end == vma->vm_end)
1456 			goto erase_whole_vma;
1457 		if (start < vma->vm_start || end > vma->vm_end)
1458 			return -EINVAL;
1459 		if (offset_in_page(start))
1460 			return -EINVAL;
1461 		if (end != vma->vm_end && offset_in_page(end))
1462 			return -EINVAL;
1463 		if (start != vma->vm_start && end != vma->vm_end) {
1464 			ret = split_vma(&vmi, vma, start, 1);
1465 			if (ret < 0)
1466 				return ret;
1467 		}
1468 		return vmi_shrink_vma(&vmi, vma, start, end);
1469 	}
1470 
1471 erase_whole_vma:
1472 	if (delete_vma_from_mm(vma))
1473 		ret = -ENOMEM;
1474 	else
1475 		delete_vma(mm, vma);
1476 	return ret;
1477 }
1478 
1479 int vm_munmap(unsigned long addr, size_t len)
1480 {
1481 	struct mm_struct *mm = current->mm;
1482 	int ret;
1483 
1484 	mmap_write_lock(mm);
1485 	ret = do_munmap(mm, addr, len, NULL);
1486 	mmap_write_unlock(mm);
1487 	return ret;
1488 }
1489 EXPORT_SYMBOL(vm_munmap);
1490 
1491 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1492 {
1493 	return vm_munmap(addr, len);
1494 }
1495 
1496 /*
1497  * release all the mappings made in a process's VM space
1498  */
1499 void exit_mmap(struct mm_struct *mm)
1500 {
1501 	VMA_ITERATOR(vmi, mm, 0);
1502 	struct vm_area_struct *vma;
1503 
1504 	if (!mm)
1505 		return;
1506 
1507 	mm->total_vm = 0;
1508 
1509 	/*
1510 	 * Lock the mm to avoid assert complaining even though this is the only
1511 	 * user of the mm
1512 	 */
1513 	mmap_write_lock(mm);
1514 	for_each_vma(vmi, vma) {
1515 		cleanup_vma_from_mm(vma);
1516 		delete_vma(mm, vma);
1517 		cond_resched();
1518 	}
1519 	__mt_destroy(&mm->mm_mt);
1520 	mmap_write_unlock(mm);
1521 }
1522 
1523 /*
1524  * expand (or shrink) an existing mapping, potentially moving it at the same
1525  * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1526  *
1527  * under NOMMU conditions, we only permit changing a mapping's size, and only
1528  * as long as it stays within the region allocated by do_mmap_private() and the
1529  * block is not shareable
1530  *
1531  * MREMAP_FIXED is not supported under NOMMU conditions
1532  */
1533 static unsigned long do_mremap(unsigned long addr,
1534 			unsigned long old_len, unsigned long new_len,
1535 			unsigned long flags, unsigned long new_addr)
1536 {
1537 	struct vm_area_struct *vma;
1538 
1539 	/* insanity checks first */
1540 	old_len = PAGE_ALIGN(old_len);
1541 	new_len = PAGE_ALIGN(new_len);
1542 	if (old_len == 0 || new_len == 0)
1543 		return (unsigned long) -EINVAL;
1544 
1545 	if (offset_in_page(addr))
1546 		return -EINVAL;
1547 
1548 	if (flags & MREMAP_FIXED && new_addr != addr)
1549 		return (unsigned long) -EINVAL;
1550 
1551 	vma = find_vma_exact(current->mm, addr, old_len);
1552 	if (!vma)
1553 		return (unsigned long) -EINVAL;
1554 
1555 	if (vma->vm_end != vma->vm_start + old_len)
1556 		return (unsigned long) -EFAULT;
1557 
1558 	if (is_nommu_shared_mapping(vma->vm_flags))
1559 		return (unsigned long) -EPERM;
1560 
1561 	if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1562 		return (unsigned long) -ENOMEM;
1563 
1564 	/* all checks complete - do it */
1565 	vma->vm_end = vma->vm_start + new_len;
1566 	return vma->vm_start;
1567 }
1568 
1569 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1570 		unsigned long, new_len, unsigned long, flags,
1571 		unsigned long, new_addr)
1572 {
1573 	unsigned long ret;
1574 
1575 	mmap_write_lock(current->mm);
1576 	ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1577 	mmap_write_unlock(current->mm);
1578 	return ret;
1579 }
1580 
1581 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1582 		unsigned long pfn, unsigned long size, pgprot_t prot)
1583 {
1584 	if (addr != (pfn << PAGE_SHIFT))
1585 		return -EINVAL;
1586 
1587 	vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
1588 	return 0;
1589 }
1590 EXPORT_SYMBOL(remap_pfn_range);
1591 
1592 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1593 {
1594 	unsigned long pfn = start >> PAGE_SHIFT;
1595 	unsigned long vm_len = vma->vm_end - vma->vm_start;
1596 
1597 	pfn += vma->vm_pgoff;
1598 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1599 }
1600 EXPORT_SYMBOL(vm_iomap_memory);
1601 
1602 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1603 			unsigned long pgoff)
1604 {
1605 	unsigned int size = vma->vm_end - vma->vm_start;
1606 
1607 	if (!(vma->vm_flags & VM_USERMAP))
1608 		return -EINVAL;
1609 
1610 	vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1611 	vma->vm_end = vma->vm_start + size;
1612 
1613 	return 0;
1614 }
1615 EXPORT_SYMBOL(remap_vmalloc_range);
1616 
1617 vm_fault_t filemap_fault(struct vm_fault *vmf)
1618 {
1619 	BUG();
1620 	return 0;
1621 }
1622 EXPORT_SYMBOL(filemap_fault);
1623 
1624 vm_fault_t filemap_map_pages(struct vm_fault *vmf,
1625 		pgoff_t start_pgoff, pgoff_t end_pgoff)
1626 {
1627 	BUG();
1628 	return 0;
1629 }
1630 EXPORT_SYMBOL(filemap_map_pages);
1631 
1632 static int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
1633 			      void *buf, int len, unsigned int gup_flags)
1634 {
1635 	struct vm_area_struct *vma;
1636 	int write = gup_flags & FOLL_WRITE;
1637 
1638 	if (mmap_read_lock_killable(mm))
1639 		return 0;
1640 
1641 	/* the access must start within one of the target process's mappings */
1642 	vma = find_vma(mm, addr);
1643 	if (vma) {
1644 		/* don't overrun this mapping */
1645 		if (addr + len >= vma->vm_end)
1646 			len = vma->vm_end - addr;
1647 
1648 		/* only read or write mappings where it is permitted */
1649 		if (write && vma->vm_flags & VM_MAYWRITE)
1650 			copy_to_user_page(vma, NULL, addr,
1651 					 (void *) addr, buf, len);
1652 		else if (!write && vma->vm_flags & VM_MAYREAD)
1653 			copy_from_user_page(vma, NULL, addr,
1654 					    buf, (void *) addr, len);
1655 		else
1656 			len = 0;
1657 	} else {
1658 		len = 0;
1659 	}
1660 
1661 	mmap_read_unlock(mm);
1662 
1663 	return len;
1664 }
1665 
1666 /**
1667  * access_remote_vm - access another process' address space
1668  * @mm:		the mm_struct of the target address space
1669  * @addr:	start address to access
1670  * @buf:	source or destination buffer
1671  * @len:	number of bytes to transfer
1672  * @gup_flags:	flags modifying lookup behaviour
1673  *
1674  * The caller must hold a reference on @mm.
1675  */
1676 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1677 		void *buf, int len, unsigned int gup_flags)
1678 {
1679 	return __access_remote_vm(mm, addr, buf, len, gup_flags);
1680 }
1681 
1682 /*
1683  * Access another process' address space.
1684  * - source/target buffer must be kernel space
1685  */
1686 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1687 		unsigned int gup_flags)
1688 {
1689 	struct mm_struct *mm;
1690 
1691 	if (addr + len < addr)
1692 		return 0;
1693 
1694 	mm = get_task_mm(tsk);
1695 	if (!mm)
1696 		return 0;
1697 
1698 	len = __access_remote_vm(mm, addr, buf, len, gup_flags);
1699 
1700 	mmput(mm);
1701 	return len;
1702 }
1703 EXPORT_SYMBOL_GPL(access_process_vm);
1704 
1705 /**
1706  * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
1707  * @inode: The inode to check
1708  * @size: The current filesize of the inode
1709  * @newsize: The proposed filesize of the inode
1710  *
1711  * Check the shared mappings on an inode on behalf of a shrinking truncate to
1712  * make sure that any outstanding VMAs aren't broken and then shrink the
1713  * vm_regions that extend beyond so that do_mmap() doesn't
1714  * automatically grant mappings that are too large.
1715  */
1716 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
1717 				size_t newsize)
1718 {
1719 	struct vm_area_struct *vma;
1720 	struct vm_region *region;
1721 	pgoff_t low, high;
1722 	size_t r_size, r_top;
1723 
1724 	low = newsize >> PAGE_SHIFT;
1725 	high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1726 
1727 	down_write(&nommu_region_sem);
1728 	i_mmap_lock_read(inode->i_mapping);
1729 
1730 	/* search for VMAs that fall within the dead zone */
1731 	vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
1732 		/* found one - only interested if it's shared out of the page
1733 		 * cache */
1734 		if (vma->vm_flags & VM_SHARED) {
1735 			i_mmap_unlock_read(inode->i_mapping);
1736 			up_write(&nommu_region_sem);
1737 			return -ETXTBSY; /* not quite true, but near enough */
1738 		}
1739 	}
1740 
1741 	/* reduce any regions that overlap the dead zone - if in existence,
1742 	 * these will be pointed to by VMAs that don't overlap the dead zone
1743 	 *
1744 	 * we don't check for any regions that start beyond the EOF as there
1745 	 * shouldn't be any
1746 	 */
1747 	vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
1748 		if (!(vma->vm_flags & VM_SHARED))
1749 			continue;
1750 
1751 		region = vma->vm_region;
1752 		r_size = region->vm_top - region->vm_start;
1753 		r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
1754 
1755 		if (r_top > newsize) {
1756 			region->vm_top -= r_top - newsize;
1757 			if (region->vm_end > region->vm_top)
1758 				region->vm_end = region->vm_top;
1759 		}
1760 	}
1761 
1762 	i_mmap_unlock_read(inode->i_mapping);
1763 	up_write(&nommu_region_sem);
1764 	return 0;
1765 }
1766 
1767 /*
1768  * Initialise sysctl_user_reserve_kbytes.
1769  *
1770  * This is intended to prevent a user from starting a single memory hogging
1771  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
1772  * mode.
1773  *
1774  * The default value is min(3% of free memory, 128MB)
1775  * 128MB is enough to recover with sshd/login, bash, and top/kill.
1776  */
1777 static int __meminit init_user_reserve(void)
1778 {
1779 	unsigned long free_kbytes;
1780 
1781 	free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
1782 
1783 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
1784 	return 0;
1785 }
1786 subsys_initcall(init_user_reserve);
1787 
1788 /*
1789  * Initialise sysctl_admin_reserve_kbytes.
1790  *
1791  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
1792  * to log in and kill a memory hogging process.
1793  *
1794  * Systems with more than 256MB will reserve 8MB, enough to recover
1795  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
1796  * only reserve 3% of free pages by default.
1797  */
1798 static int __meminit init_admin_reserve(void)
1799 {
1800 	unsigned long free_kbytes;
1801 
1802 	free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
1803 
1804 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
1805 	return 0;
1806 }
1807 subsys_initcall(init_admin_reserve);
1808