xref: /linux/mm/nommu.c (revision 4f372263ef92ed2af55a8c226750b72021ff8d0f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/nommu.c
4  *
5  *  Replacement code for mm functions to support CPU's that don't
6  *  have any form of memory management unit (thus no virtual memory).
7  *
8  *  See Documentation/admin-guide/mm/nommu-mmap.rst
9  *
10  *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
11  *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
12  *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
13  *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
14  *  Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
15  */
16 
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 
19 #include <linux/export.h>
20 #include <linux/mm.h>
21 #include <linux/sched/mm.h>
22 #include <linux/mman.h>
23 #include <linux/swap.h>
24 #include <linux/file.h>
25 #include <linux/highmem.h>
26 #include <linux/pagemap.h>
27 #include <linux/slab.h>
28 #include <linux/vmalloc.h>
29 #include <linux/backing-dev.h>
30 #include <linux/compiler.h>
31 #include <linux/mount.h>
32 #include <linux/personality.h>
33 #include <linux/security.h>
34 #include <linux/syscalls.h>
35 #include <linux/audit.h>
36 #include <linux/printk.h>
37 
38 #include <linux/uaccess.h>
39 #include <linux/uio.h>
40 #include <asm/tlb.h>
41 #include <asm/tlbflush.h>
42 #include <asm/mmu_context.h>
43 #include "internal.h"
44 
45 unsigned long highest_memmap_pfn;
46 int heap_stack_gap = 0;
47 
48 atomic_long_t mmap_pages_allocated;
49 
50 
51 /* list of mapped, potentially shareable regions */
52 static struct kmem_cache *vm_region_jar;
53 struct rb_root nommu_region_tree = RB_ROOT;
54 DECLARE_RWSEM(nommu_region_sem);
55 
56 const struct vm_operations_struct generic_file_vm_ops = {
57 };
58 
59 /*
60  * Return the total memory allocated for this pointer, not
61  * just what the caller asked for.
62  *
63  * Doesn't have to be accurate, i.e. may have races.
64  */
65 unsigned int kobjsize(const void *objp)
66 {
67 	struct page *page;
68 
69 	/*
70 	 * If the object we have should not have ksize performed on it,
71 	 * return size of 0
72 	 */
73 	if (!objp || !virt_addr_valid(objp))
74 		return 0;
75 
76 	page = virt_to_head_page(objp);
77 
78 	/*
79 	 * If the allocator sets PageSlab, we know the pointer came from
80 	 * kmalloc().
81 	 */
82 	if (PageSlab(page))
83 		return ksize(objp);
84 
85 	/*
86 	 * If it's not a compound page, see if we have a matching VMA
87 	 * region. This test is intentionally done in reverse order,
88 	 * so if there's no VMA, we still fall through and hand back
89 	 * PAGE_SIZE for 0-order pages.
90 	 */
91 	if (!PageCompound(page)) {
92 		struct vm_area_struct *vma;
93 
94 		vma = find_vma(current->mm, (unsigned long)objp);
95 		if (vma)
96 			return vma->vm_end - vma->vm_start;
97 	}
98 
99 	/*
100 	 * The ksize() function is only guaranteed to work for pointers
101 	 * returned by kmalloc(). So handle arbitrary pointers here.
102 	 */
103 	return page_size(page);
104 }
105 
106 void vfree(const void *addr)
107 {
108 	kfree(addr);
109 }
110 EXPORT_SYMBOL(vfree);
111 
112 void *__vmalloc_noprof(unsigned long size, gfp_t gfp_mask)
113 {
114 	/*
115 	 *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
116 	 * returns only a logical address.
117 	 */
118 	return kmalloc_noprof(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
119 }
120 EXPORT_SYMBOL(__vmalloc_noprof);
121 
122 void *vrealloc_noprof(const void *p, size_t size, gfp_t flags)
123 {
124 	return krealloc_noprof(p, size, (flags | __GFP_COMP) & ~__GFP_HIGHMEM);
125 }
126 
127 void *__vmalloc_node_range_noprof(unsigned long size, unsigned long align,
128 		unsigned long start, unsigned long end, gfp_t gfp_mask,
129 		pgprot_t prot, unsigned long vm_flags, int node,
130 		const void *caller)
131 {
132 	return __vmalloc_noprof(size, gfp_mask);
133 }
134 
135 void *__vmalloc_node_noprof(unsigned long size, unsigned long align, gfp_t gfp_mask,
136 		int node, const void *caller)
137 {
138 	return __vmalloc_noprof(size, gfp_mask);
139 }
140 
141 static void *__vmalloc_user_flags(unsigned long size, gfp_t flags)
142 {
143 	void *ret;
144 
145 	ret = __vmalloc(size, flags);
146 	if (ret) {
147 		struct vm_area_struct *vma;
148 
149 		mmap_write_lock(current->mm);
150 		vma = find_vma(current->mm, (unsigned long)ret);
151 		if (vma)
152 			vm_flags_set(vma, VM_USERMAP);
153 		mmap_write_unlock(current->mm);
154 	}
155 
156 	return ret;
157 }
158 
159 void *vmalloc_user_noprof(unsigned long size)
160 {
161 	return __vmalloc_user_flags(size, GFP_KERNEL | __GFP_ZERO);
162 }
163 EXPORT_SYMBOL(vmalloc_user_noprof);
164 
165 struct page *vmalloc_to_page(const void *addr)
166 {
167 	return virt_to_page(addr);
168 }
169 EXPORT_SYMBOL(vmalloc_to_page);
170 
171 unsigned long vmalloc_to_pfn(const void *addr)
172 {
173 	return page_to_pfn(virt_to_page(addr));
174 }
175 EXPORT_SYMBOL(vmalloc_to_pfn);
176 
177 long vread_iter(struct iov_iter *iter, const char *addr, size_t count)
178 {
179 	/* Don't allow overflow */
180 	if ((unsigned long) addr + count < count)
181 		count = -(unsigned long) addr;
182 
183 	return copy_to_iter(addr, count, iter);
184 }
185 
186 /*
187  *	vmalloc  -  allocate virtually contiguous memory
188  *
189  *	@size:		allocation size
190  *
191  *	Allocate enough pages to cover @size from the page level
192  *	allocator and map them into contiguous kernel virtual space.
193  *
194  *	For tight control over page level allocator and protection flags
195  *	use __vmalloc() instead.
196  */
197 void *vmalloc_noprof(unsigned long size)
198 {
199 	return __vmalloc_noprof(size, GFP_KERNEL);
200 }
201 EXPORT_SYMBOL(vmalloc_noprof);
202 
203 /*
204  *	vmalloc_huge_node  -  allocate virtually contiguous memory, on a node
205  *
206  *	@size:		allocation size
207  *	@gfp_mask:	flags for the page level allocator
208  *	@node:          node to use for allocation or NUMA_NO_NODE
209  *
210  *	Allocate enough pages to cover @size from the page level
211  *	allocator and map them into contiguous kernel virtual space.
212  *
213  *	Due to NOMMU implications the node argument and HUGE page attribute is
214  *	ignored.
215  */
216 void *vmalloc_huge_node_noprof(unsigned long size, gfp_t gfp_mask, int node)
217 {
218 	return __vmalloc_noprof(size, gfp_mask);
219 }
220 
221 /*
222  *	vzalloc - allocate virtually contiguous memory with zero fill
223  *
224  *	@size:		allocation size
225  *
226  *	Allocate enough pages to cover @size from the page level
227  *	allocator and map them into contiguous kernel virtual space.
228  *	The memory allocated is set to zero.
229  *
230  *	For tight control over page level allocator and protection flags
231  *	use __vmalloc() instead.
232  */
233 void *vzalloc_noprof(unsigned long size)
234 {
235 	return __vmalloc_noprof(size, GFP_KERNEL | __GFP_ZERO);
236 }
237 EXPORT_SYMBOL(vzalloc_noprof);
238 
239 /**
240  * vmalloc_node - allocate memory on a specific node
241  * @size:	allocation size
242  * @node:	numa node
243  *
244  * Allocate enough pages to cover @size from the page level
245  * allocator and map them into contiguous kernel virtual space.
246  *
247  * For tight control over page level allocator and protection flags
248  * use __vmalloc() instead.
249  */
250 void *vmalloc_node_noprof(unsigned long size, int node)
251 {
252 	return vmalloc_noprof(size);
253 }
254 EXPORT_SYMBOL(vmalloc_node_noprof);
255 
256 /**
257  * vzalloc_node - allocate memory on a specific node with zero fill
258  * @size:	allocation size
259  * @node:	numa node
260  *
261  * Allocate enough pages to cover @size from the page level
262  * allocator and map them into contiguous kernel virtual space.
263  * The memory allocated is set to zero.
264  *
265  * For tight control over page level allocator and protection flags
266  * use __vmalloc() instead.
267  */
268 void *vzalloc_node_noprof(unsigned long size, int node)
269 {
270 	return vzalloc_noprof(size);
271 }
272 EXPORT_SYMBOL(vzalloc_node_noprof);
273 
274 /**
275  * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
276  *	@size:		allocation size
277  *
278  *	Allocate enough 32bit PA addressable pages to cover @size from the
279  *	page level allocator and map them into contiguous kernel virtual space.
280  */
281 void *vmalloc_32_noprof(unsigned long size)
282 {
283 	return __vmalloc_noprof(size, GFP_KERNEL);
284 }
285 EXPORT_SYMBOL(vmalloc_32_noprof);
286 
287 /**
288  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
289  *	@size:		allocation size
290  *
291  * The resulting memory area is 32bit addressable and zeroed so it can be
292  * mapped to userspace without leaking data.
293  *
294  * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
295  * remap_vmalloc_range() are permissible.
296  */
297 void *vmalloc_32_user_noprof(unsigned long size)
298 {
299 	/*
300 	 * We'll have to sort out the ZONE_DMA bits for 64-bit,
301 	 * but for now this can simply use vmalloc_user() directly.
302 	 */
303 	return vmalloc_user_noprof(size);
304 }
305 EXPORT_SYMBOL(vmalloc_32_user_noprof);
306 
307 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
308 {
309 	BUG();
310 	return NULL;
311 }
312 EXPORT_SYMBOL(vmap);
313 
314 void vunmap(const void *addr)
315 {
316 	BUG();
317 }
318 EXPORT_SYMBOL(vunmap);
319 
320 void *vm_map_ram(struct page **pages, unsigned int count, int node)
321 {
322 	BUG();
323 	return NULL;
324 }
325 EXPORT_SYMBOL(vm_map_ram);
326 
327 void vm_unmap_ram(const void *mem, unsigned int count)
328 {
329 	BUG();
330 }
331 EXPORT_SYMBOL(vm_unmap_ram);
332 
333 void vm_unmap_aliases(void)
334 {
335 }
336 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
337 
338 void free_vm_area(struct vm_struct *area)
339 {
340 	BUG();
341 }
342 EXPORT_SYMBOL_GPL(free_vm_area);
343 
344 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
345 		   struct page *page)
346 {
347 	return -EINVAL;
348 }
349 EXPORT_SYMBOL(vm_insert_page);
350 
351 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
352 			struct page **pages, unsigned long *num)
353 {
354 	return -EINVAL;
355 }
356 EXPORT_SYMBOL(vm_insert_pages);
357 
358 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
359 			unsigned long num)
360 {
361 	return -EINVAL;
362 }
363 EXPORT_SYMBOL(vm_map_pages);
364 
365 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
366 				unsigned long num)
367 {
368 	return -EINVAL;
369 }
370 EXPORT_SYMBOL(vm_map_pages_zero);
371 
372 /*
373  *  sys_brk() for the most part doesn't need the global kernel
374  *  lock, except when an application is doing something nasty
375  *  like trying to un-brk an area that has already been mapped
376  *  to a regular file.  in this case, the unmapping will need
377  *  to invoke file system routines that need the global lock.
378  */
379 SYSCALL_DEFINE1(brk, unsigned long, brk)
380 {
381 	struct mm_struct *mm = current->mm;
382 
383 	if (brk < mm->start_brk || brk > mm->context.end_brk)
384 		return mm->brk;
385 
386 	if (mm->brk == brk)
387 		return mm->brk;
388 
389 	/*
390 	 * Always allow shrinking brk
391 	 */
392 	if (brk <= mm->brk) {
393 		mm->brk = brk;
394 		return brk;
395 	}
396 
397 	/*
398 	 * Ok, looks good - let it rip.
399 	 */
400 	flush_icache_user_range(mm->brk, brk);
401 	return mm->brk = brk;
402 }
403 
404 static int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
405 
406 static const struct ctl_table nommu_table[] = {
407 	{
408 		.procname	= "nr_trim_pages",
409 		.data		= &sysctl_nr_trim_pages,
410 		.maxlen		= sizeof(sysctl_nr_trim_pages),
411 		.mode		= 0644,
412 		.proc_handler	= proc_dointvec_minmax,
413 		.extra1		= SYSCTL_ZERO,
414 	},
415 };
416 
417 /*
418  * initialise the percpu counter for VM and region record slabs
419  */
420 void __init mmap_init(void)
421 {
422 	int ret;
423 
424 	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
425 	VM_BUG_ON(ret);
426 	vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT);
427 	register_sysctl_init("vm", nommu_table);
428 }
429 
430 /*
431  * validate the region tree
432  * - the caller must hold the region lock
433  */
434 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
435 static noinline void validate_nommu_regions(void)
436 {
437 	struct vm_region *region, *last;
438 	struct rb_node *p, *lastp;
439 
440 	lastp = rb_first(&nommu_region_tree);
441 	if (!lastp)
442 		return;
443 
444 	last = rb_entry(lastp, struct vm_region, vm_rb);
445 	BUG_ON(last->vm_end <= last->vm_start);
446 	BUG_ON(last->vm_top < last->vm_end);
447 
448 	while ((p = rb_next(lastp))) {
449 		region = rb_entry(p, struct vm_region, vm_rb);
450 		last = rb_entry(lastp, struct vm_region, vm_rb);
451 
452 		BUG_ON(region->vm_end <= region->vm_start);
453 		BUG_ON(region->vm_top < region->vm_end);
454 		BUG_ON(region->vm_start < last->vm_top);
455 
456 		lastp = p;
457 	}
458 }
459 #else
460 static void validate_nommu_regions(void)
461 {
462 }
463 #endif
464 
465 /*
466  * add a region into the global tree
467  */
468 static void add_nommu_region(struct vm_region *region)
469 {
470 	struct vm_region *pregion;
471 	struct rb_node **p, *parent;
472 
473 	validate_nommu_regions();
474 
475 	parent = NULL;
476 	p = &nommu_region_tree.rb_node;
477 	while (*p) {
478 		parent = *p;
479 		pregion = rb_entry(parent, struct vm_region, vm_rb);
480 		if (region->vm_start < pregion->vm_start)
481 			p = &(*p)->rb_left;
482 		else if (region->vm_start > pregion->vm_start)
483 			p = &(*p)->rb_right;
484 		else if (pregion == region)
485 			return;
486 		else
487 			BUG();
488 	}
489 
490 	rb_link_node(&region->vm_rb, parent, p);
491 	rb_insert_color(&region->vm_rb, &nommu_region_tree);
492 
493 	validate_nommu_regions();
494 }
495 
496 /*
497  * delete a region from the global tree
498  */
499 static void delete_nommu_region(struct vm_region *region)
500 {
501 	BUG_ON(!nommu_region_tree.rb_node);
502 
503 	validate_nommu_regions();
504 	rb_erase(&region->vm_rb, &nommu_region_tree);
505 	validate_nommu_regions();
506 }
507 
508 /*
509  * free a contiguous series of pages
510  */
511 static void free_page_series(unsigned long from, unsigned long to)
512 {
513 	for (; from < to; from += PAGE_SIZE) {
514 		struct page *page = virt_to_page((void *)from);
515 
516 		atomic_long_dec(&mmap_pages_allocated);
517 		put_page(page);
518 	}
519 }
520 
521 /*
522  * release a reference to a region
523  * - the caller must hold the region semaphore for writing, which this releases
524  * - the region may not have been added to the tree yet, in which case vm_top
525  *   will equal vm_start
526  */
527 static void __put_nommu_region(struct vm_region *region)
528 	__releases(nommu_region_sem)
529 {
530 	BUG_ON(!nommu_region_tree.rb_node);
531 
532 	if (--region->vm_usage == 0) {
533 		if (region->vm_top > region->vm_start)
534 			delete_nommu_region(region);
535 		up_write(&nommu_region_sem);
536 
537 		if (region->vm_file)
538 			fput(region->vm_file);
539 
540 		/* IO memory and memory shared directly out of the pagecache
541 		 * from ramfs/tmpfs mustn't be released here */
542 		if (region->vm_flags & VM_MAPPED_COPY)
543 			free_page_series(region->vm_start, region->vm_top);
544 		kmem_cache_free(vm_region_jar, region);
545 	} else {
546 		up_write(&nommu_region_sem);
547 	}
548 }
549 
550 /*
551  * release a reference to a region
552  */
553 static void put_nommu_region(struct vm_region *region)
554 {
555 	down_write(&nommu_region_sem);
556 	__put_nommu_region(region);
557 }
558 
559 static void setup_vma_to_mm(struct vm_area_struct *vma, struct mm_struct *mm)
560 {
561 	vma->vm_mm = mm;
562 
563 	/* add the VMA to the mapping */
564 	if (vma->vm_file) {
565 		struct address_space *mapping = vma->vm_file->f_mapping;
566 
567 		i_mmap_lock_write(mapping);
568 		flush_dcache_mmap_lock(mapping);
569 		vma_interval_tree_insert(vma, &mapping->i_mmap);
570 		flush_dcache_mmap_unlock(mapping);
571 		i_mmap_unlock_write(mapping);
572 	}
573 }
574 
575 static void cleanup_vma_from_mm(struct vm_area_struct *vma)
576 {
577 	vma->vm_mm->map_count--;
578 	/* remove the VMA from the mapping */
579 	if (vma->vm_file) {
580 		struct address_space *mapping;
581 		mapping = vma->vm_file->f_mapping;
582 
583 		i_mmap_lock_write(mapping);
584 		flush_dcache_mmap_lock(mapping);
585 		vma_interval_tree_remove(vma, &mapping->i_mmap);
586 		flush_dcache_mmap_unlock(mapping);
587 		i_mmap_unlock_write(mapping);
588 	}
589 }
590 
591 /*
592  * delete a VMA from its owning mm_struct and address space
593  */
594 static int delete_vma_from_mm(struct vm_area_struct *vma)
595 {
596 	VMA_ITERATOR(vmi, vma->vm_mm, vma->vm_start);
597 
598 	vma_iter_config(&vmi, vma->vm_start, vma->vm_end);
599 	if (vma_iter_prealloc(&vmi, NULL)) {
600 		pr_warn("Allocation of vma tree for process %d failed\n",
601 		       current->pid);
602 		return -ENOMEM;
603 	}
604 	cleanup_vma_from_mm(vma);
605 
606 	/* remove from the MM's tree and list */
607 	vma_iter_clear(&vmi);
608 	return 0;
609 }
610 /*
611  * destroy a VMA record
612  */
613 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
614 {
615 	vma_close(vma);
616 	if (vma->vm_file)
617 		fput(vma->vm_file);
618 	put_nommu_region(vma->vm_region);
619 	vm_area_free(vma);
620 }
621 
622 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
623 					     unsigned long start_addr,
624 					     unsigned long end_addr)
625 {
626 	unsigned long index = start_addr;
627 
628 	mmap_assert_locked(mm);
629 	return mt_find(&mm->mm_mt, &index, end_addr - 1);
630 }
631 EXPORT_SYMBOL(find_vma_intersection);
632 
633 /*
634  * look up the first VMA in which addr resides, NULL if none
635  * - should be called with mm->mmap_lock at least held readlocked
636  */
637 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
638 {
639 	VMA_ITERATOR(vmi, mm, addr);
640 
641 	return vma_iter_load(&vmi);
642 }
643 EXPORT_SYMBOL(find_vma);
644 
645 /*
646  * At least xtensa ends up having protection faults even with no
647  * MMU.. No stack expansion, at least.
648  */
649 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
650 			unsigned long addr, struct pt_regs *regs)
651 {
652 	struct vm_area_struct *vma;
653 
654 	mmap_read_lock(mm);
655 	vma = vma_lookup(mm, addr);
656 	if (!vma)
657 		mmap_read_unlock(mm);
658 	return vma;
659 }
660 
661 /*
662  * expand a stack to a given address
663  * - not supported under NOMMU conditions
664  */
665 int expand_stack_locked(struct vm_area_struct *vma, unsigned long addr)
666 {
667 	return -ENOMEM;
668 }
669 
670 struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr)
671 {
672 	mmap_read_unlock(mm);
673 	return NULL;
674 }
675 
676 /*
677  * look up the first VMA exactly that exactly matches addr
678  * - should be called with mm->mmap_lock at least held readlocked
679  */
680 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
681 					     unsigned long addr,
682 					     unsigned long len)
683 {
684 	struct vm_area_struct *vma;
685 	unsigned long end = addr + len;
686 	VMA_ITERATOR(vmi, mm, addr);
687 
688 	vma = vma_iter_load(&vmi);
689 	if (!vma)
690 		return NULL;
691 	if (vma->vm_start != addr)
692 		return NULL;
693 	if (vma->vm_end != end)
694 		return NULL;
695 
696 	return vma;
697 }
698 
699 /*
700  * determine whether a mapping should be permitted and, if so, what sort of
701  * mapping we're capable of supporting
702  */
703 static int validate_mmap_request(struct file *file,
704 				 unsigned long addr,
705 				 unsigned long len,
706 				 unsigned long prot,
707 				 unsigned long flags,
708 				 unsigned long pgoff,
709 				 unsigned long *_capabilities)
710 {
711 	unsigned long capabilities, rlen;
712 	int ret;
713 
714 	/* do the simple checks first */
715 	if (flags & MAP_FIXED)
716 		return -EINVAL;
717 
718 	if ((flags & MAP_TYPE) != MAP_PRIVATE &&
719 	    (flags & MAP_TYPE) != MAP_SHARED)
720 		return -EINVAL;
721 
722 	if (!len)
723 		return -EINVAL;
724 
725 	/* Careful about overflows.. */
726 	rlen = PAGE_ALIGN(len);
727 	if (!rlen || rlen > TASK_SIZE)
728 		return -ENOMEM;
729 
730 	/* offset overflow? */
731 	if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
732 		return -EOVERFLOW;
733 
734 	if (file) {
735 		/* files must support mmap */
736 		if (!file->f_op->mmap)
737 			return -ENODEV;
738 
739 		/* work out if what we've got could possibly be shared
740 		 * - we support chardevs that provide their own "memory"
741 		 * - we support files/blockdevs that are memory backed
742 		 */
743 		if (file->f_op->mmap_capabilities) {
744 			capabilities = file->f_op->mmap_capabilities(file);
745 		} else {
746 			/* no explicit capabilities set, so assume some
747 			 * defaults */
748 			switch (file_inode(file)->i_mode & S_IFMT) {
749 			case S_IFREG:
750 			case S_IFBLK:
751 				capabilities = NOMMU_MAP_COPY;
752 				break;
753 
754 			case S_IFCHR:
755 				capabilities =
756 					NOMMU_MAP_DIRECT |
757 					NOMMU_MAP_READ |
758 					NOMMU_MAP_WRITE;
759 				break;
760 
761 			default:
762 				return -EINVAL;
763 			}
764 		}
765 
766 		/* eliminate any capabilities that we can't support on this
767 		 * device */
768 		if (!file->f_op->get_unmapped_area)
769 			capabilities &= ~NOMMU_MAP_DIRECT;
770 		if (!(file->f_mode & FMODE_CAN_READ))
771 			capabilities &= ~NOMMU_MAP_COPY;
772 
773 		/* The file shall have been opened with read permission. */
774 		if (!(file->f_mode & FMODE_READ))
775 			return -EACCES;
776 
777 		if (flags & MAP_SHARED) {
778 			/* do checks for writing, appending and locking */
779 			if ((prot & PROT_WRITE) &&
780 			    !(file->f_mode & FMODE_WRITE))
781 				return -EACCES;
782 
783 			if (IS_APPEND(file_inode(file)) &&
784 			    (file->f_mode & FMODE_WRITE))
785 				return -EACCES;
786 
787 			if (!(capabilities & NOMMU_MAP_DIRECT))
788 				return -ENODEV;
789 
790 			/* we mustn't privatise shared mappings */
791 			capabilities &= ~NOMMU_MAP_COPY;
792 		} else {
793 			/* we're going to read the file into private memory we
794 			 * allocate */
795 			if (!(capabilities & NOMMU_MAP_COPY))
796 				return -ENODEV;
797 
798 			/* we don't permit a private writable mapping to be
799 			 * shared with the backing device */
800 			if (prot & PROT_WRITE)
801 				capabilities &= ~NOMMU_MAP_DIRECT;
802 		}
803 
804 		if (capabilities & NOMMU_MAP_DIRECT) {
805 			if (((prot & PROT_READ)  && !(capabilities & NOMMU_MAP_READ))  ||
806 			    ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
807 			    ((prot & PROT_EXEC)  && !(capabilities & NOMMU_MAP_EXEC))
808 			    ) {
809 				capabilities &= ~NOMMU_MAP_DIRECT;
810 				if (flags & MAP_SHARED) {
811 					pr_warn("MAP_SHARED not completely supported on !MMU\n");
812 					return -EINVAL;
813 				}
814 			}
815 		}
816 
817 		/* handle executable mappings and implied executable
818 		 * mappings */
819 		if (path_noexec(&file->f_path)) {
820 			if (prot & PROT_EXEC)
821 				return -EPERM;
822 		} else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
823 			/* handle implication of PROT_EXEC by PROT_READ */
824 			if (current->personality & READ_IMPLIES_EXEC) {
825 				if (capabilities & NOMMU_MAP_EXEC)
826 					prot |= PROT_EXEC;
827 			}
828 		} else if ((prot & PROT_READ) &&
829 			 (prot & PROT_EXEC) &&
830 			 !(capabilities & NOMMU_MAP_EXEC)
831 			 ) {
832 			/* backing file is not executable, try to copy */
833 			capabilities &= ~NOMMU_MAP_DIRECT;
834 		}
835 	} else {
836 		/* anonymous mappings are always memory backed and can be
837 		 * privately mapped
838 		 */
839 		capabilities = NOMMU_MAP_COPY;
840 
841 		/* handle PROT_EXEC implication by PROT_READ */
842 		if ((prot & PROT_READ) &&
843 		    (current->personality & READ_IMPLIES_EXEC))
844 			prot |= PROT_EXEC;
845 	}
846 
847 	/* allow the security API to have its say */
848 	ret = security_mmap_addr(addr);
849 	if (ret < 0)
850 		return ret;
851 
852 	/* looks okay */
853 	*_capabilities = capabilities;
854 	return 0;
855 }
856 
857 /*
858  * we've determined that we can make the mapping, now translate what we
859  * now know into VMA flags
860  */
861 static unsigned long determine_vm_flags(struct file *file,
862 					unsigned long prot,
863 					unsigned long flags,
864 					unsigned long capabilities)
865 {
866 	unsigned long vm_flags;
867 
868 	vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(file, flags);
869 
870 	if (!file) {
871 		/*
872 		 * MAP_ANONYMOUS. MAP_SHARED is mapped to MAP_PRIVATE, because
873 		 * there is no fork().
874 		 */
875 		vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
876 	} else if (flags & MAP_PRIVATE) {
877 		/* MAP_PRIVATE file mapping */
878 		if (capabilities & NOMMU_MAP_DIRECT)
879 			vm_flags |= (capabilities & NOMMU_VMFLAGS);
880 		else
881 			vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
882 
883 		if (!(prot & PROT_WRITE) && !current->ptrace)
884 			/*
885 			 * R/O private file mapping which cannot be used to
886 			 * modify memory, especially also not via active ptrace
887 			 * (e.g., set breakpoints) or later by upgrading
888 			 * permissions (no mprotect()). We can try overlaying
889 			 * the file mapping, which will work e.g., on chardevs,
890 			 * ramfs/tmpfs/shmfs and romfs/cramf.
891 			 */
892 			vm_flags |= VM_MAYOVERLAY;
893 	} else {
894 		/* MAP_SHARED file mapping: NOMMU_MAP_DIRECT is set. */
895 		vm_flags |= VM_SHARED | VM_MAYSHARE |
896 			    (capabilities & NOMMU_VMFLAGS);
897 	}
898 
899 	return vm_flags;
900 }
901 
902 /*
903  * set up a shared mapping on a file (the driver or filesystem provides and
904  * pins the storage)
905  */
906 static int do_mmap_shared_file(struct vm_area_struct *vma)
907 {
908 	int ret;
909 
910 	ret = mmap_file(vma->vm_file, vma);
911 	if (ret == 0) {
912 		vma->vm_region->vm_top = vma->vm_region->vm_end;
913 		return 0;
914 	}
915 	if (ret != -ENOSYS)
916 		return ret;
917 
918 	/* getting -ENOSYS indicates that direct mmap isn't possible (as
919 	 * opposed to tried but failed) so we can only give a suitable error as
920 	 * it's not possible to make a private copy if MAP_SHARED was given */
921 	return -ENODEV;
922 }
923 
924 /*
925  * set up a private mapping or an anonymous shared mapping
926  */
927 static int do_mmap_private(struct vm_area_struct *vma,
928 			   struct vm_region *region,
929 			   unsigned long len,
930 			   unsigned long capabilities)
931 {
932 	unsigned long total, point;
933 	void *base;
934 	int ret, order;
935 
936 	/*
937 	 * Invoke the file's mapping function so that it can keep track of
938 	 * shared mappings on devices or memory. VM_MAYOVERLAY will be set if
939 	 * it may attempt to share, which will make is_nommu_shared_mapping()
940 	 * happy.
941 	 */
942 	if (capabilities & NOMMU_MAP_DIRECT) {
943 		ret = mmap_file(vma->vm_file, vma);
944 		/* shouldn't return success if we're not sharing */
945 		if (WARN_ON_ONCE(!is_nommu_shared_mapping(vma->vm_flags)))
946 			ret = -ENOSYS;
947 		if (ret == 0) {
948 			vma->vm_region->vm_top = vma->vm_region->vm_end;
949 			return 0;
950 		}
951 		if (ret != -ENOSYS)
952 			return ret;
953 
954 		/* getting an ENOSYS error indicates that direct mmap isn't
955 		 * possible (as opposed to tried but failed) so we'll try to
956 		 * make a private copy of the data and map that instead */
957 	}
958 
959 
960 	/* allocate some memory to hold the mapping
961 	 * - note that this may not return a page-aligned address if the object
962 	 *   we're allocating is smaller than a page
963 	 */
964 	order = get_order(len);
965 	total = 1 << order;
966 	point = len >> PAGE_SHIFT;
967 
968 	/* we don't want to allocate a power-of-2 sized page set */
969 	if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages)
970 		total = point;
971 
972 	base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL);
973 	if (!base)
974 		goto enomem;
975 
976 	atomic_long_add(total, &mmap_pages_allocated);
977 
978 	vm_flags_set(vma, VM_MAPPED_COPY);
979 	region->vm_flags = vma->vm_flags;
980 	region->vm_start = (unsigned long) base;
981 	region->vm_end   = region->vm_start + len;
982 	region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
983 
984 	vma->vm_start = region->vm_start;
985 	vma->vm_end   = region->vm_start + len;
986 
987 	if (vma->vm_file) {
988 		/* read the contents of a file into the copy */
989 		loff_t fpos;
990 
991 		fpos = vma->vm_pgoff;
992 		fpos <<= PAGE_SHIFT;
993 
994 		ret = kernel_read(vma->vm_file, base, len, &fpos);
995 		if (ret < 0)
996 			goto error_free;
997 
998 		/* clear the last little bit */
999 		if (ret < len)
1000 			memset(base + ret, 0, len - ret);
1001 
1002 	} else {
1003 		vma_set_anonymous(vma);
1004 	}
1005 
1006 	return 0;
1007 
1008 error_free:
1009 	free_page_series(region->vm_start, region->vm_top);
1010 	region->vm_start = vma->vm_start = 0;
1011 	region->vm_end   = vma->vm_end = 0;
1012 	region->vm_top   = 0;
1013 	return ret;
1014 
1015 enomem:
1016 	pr_err("Allocation of length %lu from process %d (%s) failed\n",
1017 	       len, current->pid, current->comm);
1018 	show_mem();
1019 	return -ENOMEM;
1020 }
1021 
1022 /*
1023  * handle mapping creation for uClinux
1024  */
1025 unsigned long do_mmap(struct file *file,
1026 			unsigned long addr,
1027 			unsigned long len,
1028 			unsigned long prot,
1029 			unsigned long flags,
1030 			vm_flags_t vm_flags,
1031 			unsigned long pgoff,
1032 			unsigned long *populate,
1033 			struct list_head *uf)
1034 {
1035 	struct vm_area_struct *vma;
1036 	struct vm_region *region;
1037 	struct rb_node *rb;
1038 	unsigned long capabilities, result;
1039 	int ret;
1040 	VMA_ITERATOR(vmi, current->mm, 0);
1041 
1042 	*populate = 0;
1043 
1044 	/* decide whether we should attempt the mapping, and if so what sort of
1045 	 * mapping */
1046 	ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1047 				    &capabilities);
1048 	if (ret < 0)
1049 		return ret;
1050 
1051 	/* we ignore the address hint */
1052 	addr = 0;
1053 	len = PAGE_ALIGN(len);
1054 
1055 	/* we've determined that we can make the mapping, now translate what we
1056 	 * now know into VMA flags */
1057 	vm_flags |= determine_vm_flags(file, prot, flags, capabilities);
1058 
1059 
1060 	/* we're going to need to record the mapping */
1061 	region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1062 	if (!region)
1063 		goto error_getting_region;
1064 
1065 	vma = vm_area_alloc(current->mm);
1066 	if (!vma)
1067 		goto error_getting_vma;
1068 
1069 	region->vm_usage = 1;
1070 	region->vm_flags = vm_flags;
1071 	region->vm_pgoff = pgoff;
1072 
1073 	vm_flags_init(vma, vm_flags);
1074 	vma->vm_pgoff = pgoff;
1075 
1076 	if (file) {
1077 		region->vm_file = get_file(file);
1078 		vma->vm_file = get_file(file);
1079 	}
1080 
1081 	down_write(&nommu_region_sem);
1082 
1083 	/* if we want to share, we need to check for regions created by other
1084 	 * mmap() calls that overlap with our proposed mapping
1085 	 * - we can only share with a superset match on most regular files
1086 	 * - shared mappings on character devices and memory backed files are
1087 	 *   permitted to overlap inexactly as far as we are concerned for in
1088 	 *   these cases, sharing is handled in the driver or filesystem rather
1089 	 *   than here
1090 	 */
1091 	if (is_nommu_shared_mapping(vm_flags)) {
1092 		struct vm_region *pregion;
1093 		unsigned long pglen, rpglen, pgend, rpgend, start;
1094 
1095 		pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1096 		pgend = pgoff + pglen;
1097 
1098 		for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1099 			pregion = rb_entry(rb, struct vm_region, vm_rb);
1100 
1101 			if (!is_nommu_shared_mapping(pregion->vm_flags))
1102 				continue;
1103 
1104 			/* search for overlapping mappings on the same file */
1105 			if (file_inode(pregion->vm_file) !=
1106 			    file_inode(file))
1107 				continue;
1108 
1109 			if (pregion->vm_pgoff >= pgend)
1110 				continue;
1111 
1112 			rpglen = pregion->vm_end - pregion->vm_start;
1113 			rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1114 			rpgend = pregion->vm_pgoff + rpglen;
1115 			if (pgoff >= rpgend)
1116 				continue;
1117 
1118 			/* handle inexactly overlapping matches between
1119 			 * mappings */
1120 			if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1121 			    !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1122 				/* new mapping is not a subset of the region */
1123 				if (!(capabilities & NOMMU_MAP_DIRECT))
1124 					goto sharing_violation;
1125 				continue;
1126 			}
1127 
1128 			/* we've found a region we can share */
1129 			pregion->vm_usage++;
1130 			vma->vm_region = pregion;
1131 			start = pregion->vm_start;
1132 			start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1133 			vma->vm_start = start;
1134 			vma->vm_end = start + len;
1135 
1136 			if (pregion->vm_flags & VM_MAPPED_COPY)
1137 				vm_flags_set(vma, VM_MAPPED_COPY);
1138 			else {
1139 				ret = do_mmap_shared_file(vma);
1140 				if (ret < 0) {
1141 					vma->vm_region = NULL;
1142 					vma->vm_start = 0;
1143 					vma->vm_end = 0;
1144 					pregion->vm_usage--;
1145 					pregion = NULL;
1146 					goto error_just_free;
1147 				}
1148 			}
1149 			fput(region->vm_file);
1150 			kmem_cache_free(vm_region_jar, region);
1151 			region = pregion;
1152 			result = start;
1153 			goto share;
1154 		}
1155 
1156 		/* obtain the address at which to make a shared mapping
1157 		 * - this is the hook for quasi-memory character devices to
1158 		 *   tell us the location of a shared mapping
1159 		 */
1160 		if (capabilities & NOMMU_MAP_DIRECT) {
1161 			addr = file->f_op->get_unmapped_area(file, addr, len,
1162 							     pgoff, flags);
1163 			if (IS_ERR_VALUE(addr)) {
1164 				ret = addr;
1165 				if (ret != -ENOSYS)
1166 					goto error_just_free;
1167 
1168 				/* the driver refused to tell us where to site
1169 				 * the mapping so we'll have to attempt to copy
1170 				 * it */
1171 				ret = -ENODEV;
1172 				if (!(capabilities & NOMMU_MAP_COPY))
1173 					goto error_just_free;
1174 
1175 				capabilities &= ~NOMMU_MAP_DIRECT;
1176 			} else {
1177 				vma->vm_start = region->vm_start = addr;
1178 				vma->vm_end = region->vm_end = addr + len;
1179 			}
1180 		}
1181 	}
1182 
1183 	vma->vm_region = region;
1184 
1185 	/* set up the mapping
1186 	 * - the region is filled in if NOMMU_MAP_DIRECT is still set
1187 	 */
1188 	if (file && vma->vm_flags & VM_SHARED)
1189 		ret = do_mmap_shared_file(vma);
1190 	else
1191 		ret = do_mmap_private(vma, region, len, capabilities);
1192 	if (ret < 0)
1193 		goto error_just_free;
1194 	add_nommu_region(region);
1195 
1196 	/* clear anonymous mappings that don't ask for uninitialized data */
1197 	if (!vma->vm_file &&
1198 	    (!IS_ENABLED(CONFIG_MMAP_ALLOW_UNINITIALIZED) ||
1199 	     !(flags & MAP_UNINITIALIZED)))
1200 		memset((void *)region->vm_start, 0,
1201 		       region->vm_end - region->vm_start);
1202 
1203 	/* okay... we have a mapping; now we have to register it */
1204 	result = vma->vm_start;
1205 
1206 	current->mm->total_vm += len >> PAGE_SHIFT;
1207 
1208 share:
1209 	BUG_ON(!vma->vm_region);
1210 	vma_iter_config(&vmi, vma->vm_start, vma->vm_end);
1211 	if (vma_iter_prealloc(&vmi, vma))
1212 		goto error_just_free;
1213 
1214 	setup_vma_to_mm(vma, current->mm);
1215 	current->mm->map_count++;
1216 	/* add the VMA to the tree */
1217 	vma_iter_store_new(&vmi, vma);
1218 
1219 	/* we flush the region from the icache only when the first executable
1220 	 * mapping of it is made  */
1221 	if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1222 		flush_icache_user_range(region->vm_start, region->vm_end);
1223 		region->vm_icache_flushed = true;
1224 	}
1225 
1226 	up_write(&nommu_region_sem);
1227 
1228 	return result;
1229 
1230 error_just_free:
1231 	up_write(&nommu_region_sem);
1232 error:
1233 	vma_iter_free(&vmi);
1234 	if (region->vm_file)
1235 		fput(region->vm_file);
1236 	kmem_cache_free(vm_region_jar, region);
1237 	if (vma->vm_file)
1238 		fput(vma->vm_file);
1239 	vm_area_free(vma);
1240 	return ret;
1241 
1242 sharing_violation:
1243 	up_write(&nommu_region_sem);
1244 	pr_warn("Attempt to share mismatched mappings\n");
1245 	ret = -EINVAL;
1246 	goto error;
1247 
1248 error_getting_vma:
1249 	kmem_cache_free(vm_region_jar, region);
1250 	pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n",
1251 			len, current->pid);
1252 	show_mem();
1253 	return -ENOMEM;
1254 
1255 error_getting_region:
1256 	pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n",
1257 			len, current->pid);
1258 	show_mem();
1259 	return -ENOMEM;
1260 }
1261 
1262 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1263 			      unsigned long prot, unsigned long flags,
1264 			      unsigned long fd, unsigned long pgoff)
1265 {
1266 	struct file *file = NULL;
1267 	unsigned long retval = -EBADF;
1268 
1269 	audit_mmap_fd(fd, flags);
1270 	if (!(flags & MAP_ANONYMOUS)) {
1271 		file = fget(fd);
1272 		if (!file)
1273 			goto out;
1274 	}
1275 
1276 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1277 
1278 	if (file)
1279 		fput(file);
1280 out:
1281 	return retval;
1282 }
1283 
1284 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1285 		unsigned long, prot, unsigned long, flags,
1286 		unsigned long, fd, unsigned long, pgoff)
1287 {
1288 	return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1289 }
1290 
1291 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1292 struct mmap_arg_struct {
1293 	unsigned long addr;
1294 	unsigned long len;
1295 	unsigned long prot;
1296 	unsigned long flags;
1297 	unsigned long fd;
1298 	unsigned long offset;
1299 };
1300 
1301 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1302 {
1303 	struct mmap_arg_struct a;
1304 
1305 	if (copy_from_user(&a, arg, sizeof(a)))
1306 		return -EFAULT;
1307 	if (offset_in_page(a.offset))
1308 		return -EINVAL;
1309 
1310 	return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1311 			       a.offset >> PAGE_SHIFT);
1312 }
1313 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1314 
1315 /*
1316  * split a vma into two pieces at address 'addr', a new vma is allocated either
1317  * for the first part or the tail.
1318  */
1319 static int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
1320 		     unsigned long addr, int new_below)
1321 {
1322 	struct vm_area_struct *new;
1323 	struct vm_region *region;
1324 	unsigned long npages;
1325 	struct mm_struct *mm;
1326 
1327 	/* we're only permitted to split anonymous regions (these should have
1328 	 * only a single usage on the region) */
1329 	if (vma->vm_file)
1330 		return -ENOMEM;
1331 
1332 	mm = vma->vm_mm;
1333 	if (mm->map_count >= sysctl_max_map_count)
1334 		return -ENOMEM;
1335 
1336 	region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1337 	if (!region)
1338 		return -ENOMEM;
1339 
1340 	new = vm_area_dup(vma);
1341 	if (!new)
1342 		goto err_vma_dup;
1343 
1344 	/* most fields are the same, copy all, and then fixup */
1345 	*region = *vma->vm_region;
1346 	new->vm_region = region;
1347 
1348 	npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1349 
1350 	if (new_below) {
1351 		region->vm_top = region->vm_end = new->vm_end = addr;
1352 	} else {
1353 		region->vm_start = new->vm_start = addr;
1354 		region->vm_pgoff = new->vm_pgoff += npages;
1355 	}
1356 
1357 	vma_iter_config(vmi, new->vm_start, new->vm_end);
1358 	if (vma_iter_prealloc(vmi, vma)) {
1359 		pr_warn("Allocation of vma tree for process %d failed\n",
1360 			current->pid);
1361 		goto err_vmi_preallocate;
1362 	}
1363 
1364 	if (new->vm_ops && new->vm_ops->open)
1365 		new->vm_ops->open(new);
1366 
1367 	down_write(&nommu_region_sem);
1368 	delete_nommu_region(vma->vm_region);
1369 	if (new_below) {
1370 		vma->vm_region->vm_start = vma->vm_start = addr;
1371 		vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1372 	} else {
1373 		vma->vm_region->vm_end = vma->vm_end = addr;
1374 		vma->vm_region->vm_top = addr;
1375 	}
1376 	add_nommu_region(vma->vm_region);
1377 	add_nommu_region(new->vm_region);
1378 	up_write(&nommu_region_sem);
1379 
1380 	setup_vma_to_mm(vma, mm);
1381 	setup_vma_to_mm(new, mm);
1382 	vma_iter_store_new(vmi, new);
1383 	mm->map_count++;
1384 	return 0;
1385 
1386 err_vmi_preallocate:
1387 	vm_area_free(new);
1388 err_vma_dup:
1389 	kmem_cache_free(vm_region_jar, region);
1390 	return -ENOMEM;
1391 }
1392 
1393 /*
1394  * shrink a VMA by removing the specified chunk from either the beginning or
1395  * the end
1396  */
1397 static int vmi_shrink_vma(struct vma_iterator *vmi,
1398 		      struct vm_area_struct *vma,
1399 		      unsigned long from, unsigned long to)
1400 {
1401 	struct vm_region *region;
1402 
1403 	/* adjust the VMA's pointers, which may reposition it in the MM's tree
1404 	 * and list */
1405 	if (from > vma->vm_start) {
1406 		if (vma_iter_clear_gfp(vmi, from, vma->vm_end, GFP_KERNEL))
1407 			return -ENOMEM;
1408 		vma->vm_end = from;
1409 	} else {
1410 		if (vma_iter_clear_gfp(vmi, vma->vm_start, to, GFP_KERNEL))
1411 			return -ENOMEM;
1412 		vma->vm_start = to;
1413 	}
1414 
1415 	/* cut the backing region down to size */
1416 	region = vma->vm_region;
1417 	BUG_ON(region->vm_usage != 1);
1418 
1419 	down_write(&nommu_region_sem);
1420 	delete_nommu_region(region);
1421 	if (from > region->vm_start) {
1422 		to = region->vm_top;
1423 		region->vm_top = region->vm_end = from;
1424 	} else {
1425 		region->vm_start = to;
1426 	}
1427 	add_nommu_region(region);
1428 	up_write(&nommu_region_sem);
1429 
1430 	free_page_series(from, to);
1431 	return 0;
1432 }
1433 
1434 /*
1435  * release a mapping
1436  * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1437  *   VMA, though it need not cover the whole VMA
1438  */
1439 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf)
1440 {
1441 	VMA_ITERATOR(vmi, mm, start);
1442 	struct vm_area_struct *vma;
1443 	unsigned long end;
1444 	int ret = 0;
1445 
1446 	len = PAGE_ALIGN(len);
1447 	if (len == 0)
1448 		return -EINVAL;
1449 
1450 	end = start + len;
1451 
1452 	/* find the first potentially overlapping VMA */
1453 	vma = vma_find(&vmi, end);
1454 	if (!vma) {
1455 		static int limit;
1456 		if (limit < 5) {
1457 			pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n",
1458 					current->pid, current->comm,
1459 					start, start + len - 1);
1460 			limit++;
1461 		}
1462 		return -EINVAL;
1463 	}
1464 
1465 	/* we're allowed to split an anonymous VMA but not a file-backed one */
1466 	if (vma->vm_file) {
1467 		do {
1468 			if (start > vma->vm_start)
1469 				return -EINVAL;
1470 			if (end == vma->vm_end)
1471 				goto erase_whole_vma;
1472 			vma = vma_find(&vmi, end);
1473 		} while (vma);
1474 		return -EINVAL;
1475 	} else {
1476 		/* the chunk must be a subset of the VMA found */
1477 		if (start == vma->vm_start && end == vma->vm_end)
1478 			goto erase_whole_vma;
1479 		if (start < vma->vm_start || end > vma->vm_end)
1480 			return -EINVAL;
1481 		if (offset_in_page(start))
1482 			return -EINVAL;
1483 		if (end != vma->vm_end && offset_in_page(end))
1484 			return -EINVAL;
1485 		if (start != vma->vm_start && end != vma->vm_end) {
1486 			ret = split_vma(&vmi, vma, start, 1);
1487 			if (ret < 0)
1488 				return ret;
1489 		}
1490 		return vmi_shrink_vma(&vmi, vma, start, end);
1491 	}
1492 
1493 erase_whole_vma:
1494 	if (delete_vma_from_mm(vma))
1495 		ret = -ENOMEM;
1496 	else
1497 		delete_vma(mm, vma);
1498 	return ret;
1499 }
1500 
1501 int vm_munmap(unsigned long addr, size_t len)
1502 {
1503 	struct mm_struct *mm = current->mm;
1504 	int ret;
1505 
1506 	mmap_write_lock(mm);
1507 	ret = do_munmap(mm, addr, len, NULL);
1508 	mmap_write_unlock(mm);
1509 	return ret;
1510 }
1511 EXPORT_SYMBOL(vm_munmap);
1512 
1513 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1514 {
1515 	return vm_munmap(addr, len);
1516 }
1517 
1518 /*
1519  * release all the mappings made in a process's VM space
1520  */
1521 void exit_mmap(struct mm_struct *mm)
1522 {
1523 	VMA_ITERATOR(vmi, mm, 0);
1524 	struct vm_area_struct *vma;
1525 
1526 	if (!mm)
1527 		return;
1528 
1529 	mm->total_vm = 0;
1530 
1531 	/*
1532 	 * Lock the mm to avoid assert complaining even though this is the only
1533 	 * user of the mm
1534 	 */
1535 	mmap_write_lock(mm);
1536 	for_each_vma(vmi, vma) {
1537 		cleanup_vma_from_mm(vma);
1538 		delete_vma(mm, vma);
1539 		cond_resched();
1540 	}
1541 	__mt_destroy(&mm->mm_mt);
1542 	mmap_write_unlock(mm);
1543 }
1544 
1545 /*
1546  * expand (or shrink) an existing mapping, potentially moving it at the same
1547  * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1548  *
1549  * under NOMMU conditions, we only permit changing a mapping's size, and only
1550  * as long as it stays within the region allocated by do_mmap_private() and the
1551  * block is not shareable
1552  *
1553  * MREMAP_FIXED is not supported under NOMMU conditions
1554  */
1555 static unsigned long do_mremap(unsigned long addr,
1556 			unsigned long old_len, unsigned long new_len,
1557 			unsigned long flags, unsigned long new_addr)
1558 {
1559 	struct vm_area_struct *vma;
1560 
1561 	/* insanity checks first */
1562 	old_len = PAGE_ALIGN(old_len);
1563 	new_len = PAGE_ALIGN(new_len);
1564 	if (old_len == 0 || new_len == 0)
1565 		return (unsigned long) -EINVAL;
1566 
1567 	if (offset_in_page(addr))
1568 		return -EINVAL;
1569 
1570 	if (flags & MREMAP_FIXED && new_addr != addr)
1571 		return (unsigned long) -EINVAL;
1572 
1573 	vma = find_vma_exact(current->mm, addr, old_len);
1574 	if (!vma)
1575 		return (unsigned long) -EINVAL;
1576 
1577 	if (vma->vm_end != vma->vm_start + old_len)
1578 		return (unsigned long) -EFAULT;
1579 
1580 	if (is_nommu_shared_mapping(vma->vm_flags))
1581 		return (unsigned long) -EPERM;
1582 
1583 	if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1584 		return (unsigned long) -ENOMEM;
1585 
1586 	/* all checks complete - do it */
1587 	vma->vm_end = vma->vm_start + new_len;
1588 	return vma->vm_start;
1589 }
1590 
1591 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1592 		unsigned long, new_len, unsigned long, flags,
1593 		unsigned long, new_addr)
1594 {
1595 	unsigned long ret;
1596 
1597 	mmap_write_lock(current->mm);
1598 	ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1599 	mmap_write_unlock(current->mm);
1600 	return ret;
1601 }
1602 
1603 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1604 		unsigned long pfn, unsigned long size, pgprot_t prot)
1605 {
1606 	if (addr != (pfn << PAGE_SHIFT))
1607 		return -EINVAL;
1608 
1609 	vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
1610 	return 0;
1611 }
1612 EXPORT_SYMBOL(remap_pfn_range);
1613 
1614 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1615 {
1616 	unsigned long pfn = start >> PAGE_SHIFT;
1617 	unsigned long vm_len = vma->vm_end - vma->vm_start;
1618 
1619 	pfn += vma->vm_pgoff;
1620 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1621 }
1622 EXPORT_SYMBOL(vm_iomap_memory);
1623 
1624 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1625 			unsigned long pgoff)
1626 {
1627 	unsigned int size = vma->vm_end - vma->vm_start;
1628 
1629 	if (!(vma->vm_flags & VM_USERMAP))
1630 		return -EINVAL;
1631 
1632 	vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1633 	vma->vm_end = vma->vm_start + size;
1634 
1635 	return 0;
1636 }
1637 EXPORT_SYMBOL(remap_vmalloc_range);
1638 
1639 vm_fault_t filemap_fault(struct vm_fault *vmf)
1640 {
1641 	BUG();
1642 	return 0;
1643 }
1644 EXPORT_SYMBOL(filemap_fault);
1645 
1646 vm_fault_t filemap_map_pages(struct vm_fault *vmf,
1647 		pgoff_t start_pgoff, pgoff_t end_pgoff)
1648 {
1649 	BUG();
1650 	return 0;
1651 }
1652 EXPORT_SYMBOL(filemap_map_pages);
1653 
1654 static int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
1655 			      void *buf, int len, unsigned int gup_flags)
1656 {
1657 	struct vm_area_struct *vma;
1658 	int write = gup_flags & FOLL_WRITE;
1659 
1660 	if (mmap_read_lock_killable(mm))
1661 		return 0;
1662 
1663 	/* the access must start within one of the target process's mappings */
1664 	vma = find_vma(mm, addr);
1665 	if (vma) {
1666 		/* don't overrun this mapping */
1667 		if (addr + len >= vma->vm_end)
1668 			len = vma->vm_end - addr;
1669 
1670 		/* only read or write mappings where it is permitted */
1671 		if (write && vma->vm_flags & VM_MAYWRITE)
1672 			copy_to_user_page(vma, NULL, addr,
1673 					 (void *) addr, buf, len);
1674 		else if (!write && vma->vm_flags & VM_MAYREAD)
1675 			copy_from_user_page(vma, NULL, addr,
1676 					    buf, (void *) addr, len);
1677 		else
1678 			len = 0;
1679 	} else {
1680 		len = 0;
1681 	}
1682 
1683 	mmap_read_unlock(mm);
1684 
1685 	return len;
1686 }
1687 
1688 /**
1689  * access_remote_vm - access another process' address space
1690  * @mm:		the mm_struct of the target address space
1691  * @addr:	start address to access
1692  * @buf:	source or destination buffer
1693  * @len:	number of bytes to transfer
1694  * @gup_flags:	flags modifying lookup behaviour
1695  *
1696  * The caller must hold a reference on @mm.
1697  */
1698 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1699 		void *buf, int len, unsigned int gup_flags)
1700 {
1701 	return __access_remote_vm(mm, addr, buf, len, gup_flags);
1702 }
1703 
1704 /*
1705  * Access another process' address space.
1706  * - source/target buffer must be kernel space
1707  */
1708 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1709 		unsigned int gup_flags)
1710 {
1711 	struct mm_struct *mm;
1712 
1713 	if (addr + len < addr)
1714 		return 0;
1715 
1716 	mm = get_task_mm(tsk);
1717 	if (!mm)
1718 		return 0;
1719 
1720 	len = __access_remote_vm(mm, addr, buf, len, gup_flags);
1721 
1722 	mmput(mm);
1723 	return len;
1724 }
1725 EXPORT_SYMBOL_GPL(access_process_vm);
1726 
1727 #ifdef CONFIG_BPF_SYSCALL
1728 /*
1729  * Copy a string from another process's address space as given in mm.
1730  * If there is any error return -EFAULT.
1731  */
1732 static int __copy_remote_vm_str(struct mm_struct *mm, unsigned long addr,
1733 				void *buf, int len)
1734 {
1735 	unsigned long addr_end;
1736 	struct vm_area_struct *vma;
1737 	int ret = -EFAULT;
1738 
1739 	*(char *)buf = '\0';
1740 
1741 	if (mmap_read_lock_killable(mm))
1742 		return ret;
1743 
1744 	/* the access must start within one of the target process's mappings */
1745 	vma = find_vma(mm, addr);
1746 	if (!vma)
1747 		goto out;
1748 
1749 	if (check_add_overflow(addr, len, &addr_end))
1750 		goto out;
1751 
1752 	/* don't overrun this mapping */
1753 	if (addr_end > vma->vm_end)
1754 		len = vma->vm_end - addr;
1755 
1756 	/* only read mappings where it is permitted */
1757 	if (vma->vm_flags & VM_MAYREAD) {
1758 		ret = strscpy(buf, (char *)addr, len);
1759 		if (ret < 0)
1760 			ret = len - 1;
1761 	}
1762 
1763 out:
1764 	mmap_read_unlock(mm);
1765 	return ret;
1766 }
1767 
1768 /**
1769  * copy_remote_vm_str - copy a string from another process's address space.
1770  * @tsk:	the task of the target address space
1771  * @addr:	start address to read from
1772  * @buf:	destination buffer
1773  * @len:	number of bytes to copy
1774  * @gup_flags:	flags modifying lookup behaviour (unused)
1775  *
1776  * The caller must hold a reference on @mm.
1777  *
1778  * Return: number of bytes copied from @addr (source) to @buf (destination);
1779  * not including the trailing NUL. Always guaranteed to leave NUL-terminated
1780  * buffer. On any error, return -EFAULT.
1781  */
1782 int copy_remote_vm_str(struct task_struct *tsk, unsigned long addr,
1783 		       void *buf, int len, unsigned int gup_flags)
1784 {
1785 	struct mm_struct *mm;
1786 	int ret;
1787 
1788 	if (unlikely(len == 0))
1789 		return 0;
1790 
1791 	mm = get_task_mm(tsk);
1792 	if (!mm) {
1793 		*(char *)buf = '\0';
1794 		return -EFAULT;
1795 	}
1796 
1797 	ret = __copy_remote_vm_str(mm, addr, buf, len);
1798 
1799 	mmput(mm);
1800 
1801 	return ret;
1802 }
1803 EXPORT_SYMBOL_GPL(copy_remote_vm_str);
1804 #endif /* CONFIG_BPF_SYSCALL */
1805 
1806 /**
1807  * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
1808  * @inode: The inode to check
1809  * @size: The current filesize of the inode
1810  * @newsize: The proposed filesize of the inode
1811  *
1812  * Check the shared mappings on an inode on behalf of a shrinking truncate to
1813  * make sure that any outstanding VMAs aren't broken and then shrink the
1814  * vm_regions that extend beyond so that do_mmap() doesn't
1815  * automatically grant mappings that are too large.
1816  */
1817 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
1818 				size_t newsize)
1819 {
1820 	struct vm_area_struct *vma;
1821 	struct vm_region *region;
1822 	pgoff_t low, high;
1823 	size_t r_size, r_top;
1824 
1825 	low = newsize >> PAGE_SHIFT;
1826 	high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1827 
1828 	down_write(&nommu_region_sem);
1829 	i_mmap_lock_read(inode->i_mapping);
1830 
1831 	/* search for VMAs that fall within the dead zone */
1832 	vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
1833 		/* found one - only interested if it's shared out of the page
1834 		 * cache */
1835 		if (vma->vm_flags & VM_SHARED) {
1836 			i_mmap_unlock_read(inode->i_mapping);
1837 			up_write(&nommu_region_sem);
1838 			return -ETXTBSY; /* not quite true, but near enough */
1839 		}
1840 	}
1841 
1842 	/* reduce any regions that overlap the dead zone - if in existence,
1843 	 * these will be pointed to by VMAs that don't overlap the dead zone
1844 	 *
1845 	 * we don't check for any regions that start beyond the EOF as there
1846 	 * shouldn't be any
1847 	 */
1848 	vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
1849 		if (!(vma->vm_flags & VM_SHARED))
1850 			continue;
1851 
1852 		region = vma->vm_region;
1853 		r_size = region->vm_top - region->vm_start;
1854 		r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
1855 
1856 		if (r_top > newsize) {
1857 			region->vm_top -= r_top - newsize;
1858 			if (region->vm_end > region->vm_top)
1859 				region->vm_end = region->vm_top;
1860 		}
1861 	}
1862 
1863 	i_mmap_unlock_read(inode->i_mapping);
1864 	up_write(&nommu_region_sem);
1865 	return 0;
1866 }
1867 
1868 /*
1869  * Initialise sysctl_user_reserve_kbytes.
1870  *
1871  * This is intended to prevent a user from starting a single memory hogging
1872  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
1873  * mode.
1874  *
1875  * The default value is min(3% of free memory, 128MB)
1876  * 128MB is enough to recover with sshd/login, bash, and top/kill.
1877  */
1878 static int __meminit init_user_reserve(void)
1879 {
1880 	unsigned long free_kbytes;
1881 
1882 	free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
1883 
1884 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
1885 	return 0;
1886 }
1887 subsys_initcall(init_user_reserve);
1888 
1889 /*
1890  * Initialise sysctl_admin_reserve_kbytes.
1891  *
1892  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
1893  * to log in and kill a memory hogging process.
1894  *
1895  * Systems with more than 256MB will reserve 8MB, enough to recover
1896  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
1897  * only reserve 3% of free pages by default.
1898  */
1899 static int __meminit init_admin_reserve(void)
1900 {
1901 	unsigned long free_kbytes;
1902 
1903 	free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
1904 
1905 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
1906 	return 0;
1907 }
1908 subsys_initcall(init_admin_reserve);
1909