xref: /linux/mm/nommu.c (revision 4d256122945ec26623260babdeda90ab0796ecea)
1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   *  linux/mm/nommu.c
4   *
5   *  Replacement code for mm functions to support CPU's that don't
6   *  have any form of memory management unit (thus no virtual memory).
7   *
8   *  See Documentation/admin-guide/mm/nommu-mmap.rst
9   *
10   *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
11   *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
12   *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
13   *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
14   *  Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
15   */
16  
17  #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18  
19  #include <linux/export.h>
20  #include <linux/mm.h>
21  #include <linux/sched/mm.h>
22  #include <linux/mman.h>
23  #include <linux/swap.h>
24  #include <linux/file.h>
25  #include <linux/highmem.h>
26  #include <linux/pagemap.h>
27  #include <linux/slab.h>
28  #include <linux/vmalloc.h>
29  #include <linux/backing-dev.h>
30  #include <linux/compiler.h>
31  #include <linux/mount.h>
32  #include <linux/personality.h>
33  #include <linux/security.h>
34  #include <linux/syscalls.h>
35  #include <linux/audit.h>
36  #include <linux/printk.h>
37  
38  #include <linux/uaccess.h>
39  #include <linux/uio.h>
40  #include <asm/tlb.h>
41  #include <asm/tlbflush.h>
42  #include <asm/mmu_context.h>
43  #include "internal.h"
44  
45  void *high_memory;
46  EXPORT_SYMBOL(high_memory);
47  struct page *mem_map;
48  unsigned long max_mapnr;
49  EXPORT_SYMBOL(max_mapnr);
50  unsigned long highest_memmap_pfn;
51  int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
52  int heap_stack_gap = 0;
53  
54  atomic_long_t mmap_pages_allocated;
55  
56  EXPORT_SYMBOL(mem_map);
57  
58  /* list of mapped, potentially shareable regions */
59  static struct kmem_cache *vm_region_jar;
60  struct rb_root nommu_region_tree = RB_ROOT;
61  DECLARE_RWSEM(nommu_region_sem);
62  
63  const struct vm_operations_struct generic_file_vm_ops = {
64  };
65  
66  /*
67   * Return the total memory allocated for this pointer, not
68   * just what the caller asked for.
69   *
70   * Doesn't have to be accurate, i.e. may have races.
71   */
72  unsigned int kobjsize(const void *objp)
73  {
74  	struct page *page;
75  
76  	/*
77  	 * If the object we have should not have ksize performed on it,
78  	 * return size of 0
79  	 */
80  	if (!objp || !virt_addr_valid(objp))
81  		return 0;
82  
83  	page = virt_to_head_page(objp);
84  
85  	/*
86  	 * If the allocator sets PageSlab, we know the pointer came from
87  	 * kmalloc().
88  	 */
89  	if (PageSlab(page))
90  		return ksize(objp);
91  
92  	/*
93  	 * If it's not a compound page, see if we have a matching VMA
94  	 * region. This test is intentionally done in reverse order,
95  	 * so if there's no VMA, we still fall through and hand back
96  	 * PAGE_SIZE for 0-order pages.
97  	 */
98  	if (!PageCompound(page)) {
99  		struct vm_area_struct *vma;
100  
101  		vma = find_vma(current->mm, (unsigned long)objp);
102  		if (vma)
103  			return vma->vm_end - vma->vm_start;
104  	}
105  
106  	/*
107  	 * The ksize() function is only guaranteed to work for pointers
108  	 * returned by kmalloc(). So handle arbitrary pointers here.
109  	 */
110  	return page_size(page);
111  }
112  
113  /**
114   * follow_pfn - look up PFN at a user virtual address
115   * @vma: memory mapping
116   * @address: user virtual address
117   * @pfn: location to store found PFN
118   *
119   * Only IO mappings and raw PFN mappings are allowed.
120   *
121   * Returns zero and the pfn at @pfn on success, -ve otherwise.
122   */
123  int follow_pfn(struct vm_area_struct *vma, unsigned long address,
124  	unsigned long *pfn)
125  {
126  	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
127  		return -EINVAL;
128  
129  	*pfn = address >> PAGE_SHIFT;
130  	return 0;
131  }
132  EXPORT_SYMBOL(follow_pfn);
133  
134  void vfree(const void *addr)
135  {
136  	kfree(addr);
137  }
138  EXPORT_SYMBOL(vfree);
139  
140  void *__vmalloc(unsigned long size, gfp_t gfp_mask)
141  {
142  	/*
143  	 *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
144  	 * returns only a logical address.
145  	 */
146  	return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
147  }
148  EXPORT_SYMBOL(__vmalloc);
149  
150  void *__vmalloc_node_range(unsigned long size, unsigned long align,
151  		unsigned long start, unsigned long end, gfp_t gfp_mask,
152  		pgprot_t prot, unsigned long vm_flags, int node,
153  		const void *caller)
154  {
155  	return __vmalloc(size, gfp_mask);
156  }
157  
158  void *__vmalloc_node(unsigned long size, unsigned long align, gfp_t gfp_mask,
159  		int node, const void *caller)
160  {
161  	return __vmalloc(size, gfp_mask);
162  }
163  
164  static void *__vmalloc_user_flags(unsigned long size, gfp_t flags)
165  {
166  	void *ret;
167  
168  	ret = __vmalloc(size, flags);
169  	if (ret) {
170  		struct vm_area_struct *vma;
171  
172  		mmap_write_lock(current->mm);
173  		vma = find_vma(current->mm, (unsigned long)ret);
174  		if (vma)
175  			vm_flags_set(vma, VM_USERMAP);
176  		mmap_write_unlock(current->mm);
177  	}
178  
179  	return ret;
180  }
181  
182  void *vmalloc_user(unsigned long size)
183  {
184  	return __vmalloc_user_flags(size, GFP_KERNEL | __GFP_ZERO);
185  }
186  EXPORT_SYMBOL(vmalloc_user);
187  
188  struct page *vmalloc_to_page(const void *addr)
189  {
190  	return virt_to_page(addr);
191  }
192  EXPORT_SYMBOL(vmalloc_to_page);
193  
194  unsigned long vmalloc_to_pfn(const void *addr)
195  {
196  	return page_to_pfn(virt_to_page(addr));
197  }
198  EXPORT_SYMBOL(vmalloc_to_pfn);
199  
200  long vread_iter(struct iov_iter *iter, const char *addr, size_t count)
201  {
202  	/* Don't allow overflow */
203  	if ((unsigned long) addr + count < count)
204  		count = -(unsigned long) addr;
205  
206  	return copy_to_iter(addr, count, iter);
207  }
208  
209  /*
210   *	vmalloc  -  allocate virtually contiguous memory
211   *
212   *	@size:		allocation size
213   *
214   *	Allocate enough pages to cover @size from the page level
215   *	allocator and map them into contiguous kernel virtual space.
216   *
217   *	For tight control over page level allocator and protection flags
218   *	use __vmalloc() instead.
219   */
220  void *vmalloc(unsigned long size)
221  {
222  	return __vmalloc(size, GFP_KERNEL);
223  }
224  EXPORT_SYMBOL(vmalloc);
225  
226  void *vmalloc_huge(unsigned long size, gfp_t gfp_mask) __weak __alias(__vmalloc);
227  
228  /*
229   *	vzalloc - allocate virtually contiguous memory with zero fill
230   *
231   *	@size:		allocation size
232   *
233   *	Allocate enough pages to cover @size from the page level
234   *	allocator and map them into contiguous kernel virtual space.
235   *	The memory allocated is set to zero.
236   *
237   *	For tight control over page level allocator and protection flags
238   *	use __vmalloc() instead.
239   */
240  void *vzalloc(unsigned long size)
241  {
242  	return __vmalloc(size, GFP_KERNEL | __GFP_ZERO);
243  }
244  EXPORT_SYMBOL(vzalloc);
245  
246  /**
247   * vmalloc_node - allocate memory on a specific node
248   * @size:	allocation size
249   * @node:	numa node
250   *
251   * Allocate enough pages to cover @size from the page level
252   * allocator and map them into contiguous kernel virtual space.
253   *
254   * For tight control over page level allocator and protection flags
255   * use __vmalloc() instead.
256   */
257  void *vmalloc_node(unsigned long size, int node)
258  {
259  	return vmalloc(size);
260  }
261  EXPORT_SYMBOL(vmalloc_node);
262  
263  /**
264   * vzalloc_node - allocate memory on a specific node with zero fill
265   * @size:	allocation size
266   * @node:	numa node
267   *
268   * Allocate enough pages to cover @size from the page level
269   * allocator and map them into contiguous kernel virtual space.
270   * The memory allocated is set to zero.
271   *
272   * For tight control over page level allocator and protection flags
273   * use __vmalloc() instead.
274   */
275  void *vzalloc_node(unsigned long size, int node)
276  {
277  	return vzalloc(size);
278  }
279  EXPORT_SYMBOL(vzalloc_node);
280  
281  /**
282   * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
283   *	@size:		allocation size
284   *
285   *	Allocate enough 32bit PA addressable pages to cover @size from the
286   *	page level allocator and map them into contiguous kernel virtual space.
287   */
288  void *vmalloc_32(unsigned long size)
289  {
290  	return __vmalloc(size, GFP_KERNEL);
291  }
292  EXPORT_SYMBOL(vmalloc_32);
293  
294  /**
295   * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
296   *	@size:		allocation size
297   *
298   * The resulting memory area is 32bit addressable and zeroed so it can be
299   * mapped to userspace without leaking data.
300   *
301   * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
302   * remap_vmalloc_range() are permissible.
303   */
304  void *vmalloc_32_user(unsigned long size)
305  {
306  	/*
307  	 * We'll have to sort out the ZONE_DMA bits for 64-bit,
308  	 * but for now this can simply use vmalloc_user() directly.
309  	 */
310  	return vmalloc_user(size);
311  }
312  EXPORT_SYMBOL(vmalloc_32_user);
313  
314  void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
315  {
316  	BUG();
317  	return NULL;
318  }
319  EXPORT_SYMBOL(vmap);
320  
321  void vunmap(const void *addr)
322  {
323  	BUG();
324  }
325  EXPORT_SYMBOL(vunmap);
326  
327  void *vm_map_ram(struct page **pages, unsigned int count, int node)
328  {
329  	BUG();
330  	return NULL;
331  }
332  EXPORT_SYMBOL(vm_map_ram);
333  
334  void vm_unmap_ram(const void *mem, unsigned int count)
335  {
336  	BUG();
337  }
338  EXPORT_SYMBOL(vm_unmap_ram);
339  
340  void vm_unmap_aliases(void)
341  {
342  }
343  EXPORT_SYMBOL_GPL(vm_unmap_aliases);
344  
345  void free_vm_area(struct vm_struct *area)
346  {
347  	BUG();
348  }
349  EXPORT_SYMBOL_GPL(free_vm_area);
350  
351  int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
352  		   struct page *page)
353  {
354  	return -EINVAL;
355  }
356  EXPORT_SYMBOL(vm_insert_page);
357  
358  int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
359  			unsigned long num)
360  {
361  	return -EINVAL;
362  }
363  EXPORT_SYMBOL(vm_map_pages);
364  
365  int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
366  				unsigned long num)
367  {
368  	return -EINVAL;
369  }
370  EXPORT_SYMBOL(vm_map_pages_zero);
371  
372  /*
373   *  sys_brk() for the most part doesn't need the global kernel
374   *  lock, except when an application is doing something nasty
375   *  like trying to un-brk an area that has already been mapped
376   *  to a regular file.  in this case, the unmapping will need
377   *  to invoke file system routines that need the global lock.
378   */
379  SYSCALL_DEFINE1(brk, unsigned long, brk)
380  {
381  	struct mm_struct *mm = current->mm;
382  
383  	if (brk < mm->start_brk || brk > mm->context.end_brk)
384  		return mm->brk;
385  
386  	if (mm->brk == brk)
387  		return mm->brk;
388  
389  	/*
390  	 * Always allow shrinking brk
391  	 */
392  	if (brk <= mm->brk) {
393  		mm->brk = brk;
394  		return brk;
395  	}
396  
397  	/*
398  	 * Ok, looks good - let it rip.
399  	 */
400  	flush_icache_user_range(mm->brk, brk);
401  	return mm->brk = brk;
402  }
403  
404  /*
405   * initialise the percpu counter for VM and region record slabs
406   */
407  void __init mmap_init(void)
408  {
409  	int ret;
410  
411  	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
412  	VM_BUG_ON(ret);
413  	vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT);
414  }
415  
416  /*
417   * validate the region tree
418   * - the caller must hold the region lock
419   */
420  #ifdef CONFIG_DEBUG_NOMMU_REGIONS
421  static noinline void validate_nommu_regions(void)
422  {
423  	struct vm_region *region, *last;
424  	struct rb_node *p, *lastp;
425  
426  	lastp = rb_first(&nommu_region_tree);
427  	if (!lastp)
428  		return;
429  
430  	last = rb_entry(lastp, struct vm_region, vm_rb);
431  	BUG_ON(last->vm_end <= last->vm_start);
432  	BUG_ON(last->vm_top < last->vm_end);
433  
434  	while ((p = rb_next(lastp))) {
435  		region = rb_entry(p, struct vm_region, vm_rb);
436  		last = rb_entry(lastp, struct vm_region, vm_rb);
437  
438  		BUG_ON(region->vm_end <= region->vm_start);
439  		BUG_ON(region->vm_top < region->vm_end);
440  		BUG_ON(region->vm_start < last->vm_top);
441  
442  		lastp = p;
443  	}
444  }
445  #else
446  static void validate_nommu_regions(void)
447  {
448  }
449  #endif
450  
451  /*
452   * add a region into the global tree
453   */
454  static void add_nommu_region(struct vm_region *region)
455  {
456  	struct vm_region *pregion;
457  	struct rb_node **p, *parent;
458  
459  	validate_nommu_regions();
460  
461  	parent = NULL;
462  	p = &nommu_region_tree.rb_node;
463  	while (*p) {
464  		parent = *p;
465  		pregion = rb_entry(parent, struct vm_region, vm_rb);
466  		if (region->vm_start < pregion->vm_start)
467  			p = &(*p)->rb_left;
468  		else if (region->vm_start > pregion->vm_start)
469  			p = &(*p)->rb_right;
470  		else if (pregion == region)
471  			return;
472  		else
473  			BUG();
474  	}
475  
476  	rb_link_node(&region->vm_rb, parent, p);
477  	rb_insert_color(&region->vm_rb, &nommu_region_tree);
478  
479  	validate_nommu_regions();
480  }
481  
482  /*
483   * delete a region from the global tree
484   */
485  static void delete_nommu_region(struct vm_region *region)
486  {
487  	BUG_ON(!nommu_region_tree.rb_node);
488  
489  	validate_nommu_regions();
490  	rb_erase(&region->vm_rb, &nommu_region_tree);
491  	validate_nommu_regions();
492  }
493  
494  /*
495   * free a contiguous series of pages
496   */
497  static void free_page_series(unsigned long from, unsigned long to)
498  {
499  	for (; from < to; from += PAGE_SIZE) {
500  		struct page *page = virt_to_page((void *)from);
501  
502  		atomic_long_dec(&mmap_pages_allocated);
503  		put_page(page);
504  	}
505  }
506  
507  /*
508   * release a reference to a region
509   * - the caller must hold the region semaphore for writing, which this releases
510   * - the region may not have been added to the tree yet, in which case vm_top
511   *   will equal vm_start
512   */
513  static void __put_nommu_region(struct vm_region *region)
514  	__releases(nommu_region_sem)
515  {
516  	BUG_ON(!nommu_region_tree.rb_node);
517  
518  	if (--region->vm_usage == 0) {
519  		if (region->vm_top > region->vm_start)
520  			delete_nommu_region(region);
521  		up_write(&nommu_region_sem);
522  
523  		if (region->vm_file)
524  			fput(region->vm_file);
525  
526  		/* IO memory and memory shared directly out of the pagecache
527  		 * from ramfs/tmpfs mustn't be released here */
528  		if (region->vm_flags & VM_MAPPED_COPY)
529  			free_page_series(region->vm_start, region->vm_top);
530  		kmem_cache_free(vm_region_jar, region);
531  	} else {
532  		up_write(&nommu_region_sem);
533  	}
534  }
535  
536  /*
537   * release a reference to a region
538   */
539  static void put_nommu_region(struct vm_region *region)
540  {
541  	down_write(&nommu_region_sem);
542  	__put_nommu_region(region);
543  }
544  
545  static void setup_vma_to_mm(struct vm_area_struct *vma, struct mm_struct *mm)
546  {
547  	vma->vm_mm = mm;
548  
549  	/* add the VMA to the mapping */
550  	if (vma->vm_file) {
551  		struct address_space *mapping = vma->vm_file->f_mapping;
552  
553  		i_mmap_lock_write(mapping);
554  		flush_dcache_mmap_lock(mapping);
555  		vma_interval_tree_insert(vma, &mapping->i_mmap);
556  		flush_dcache_mmap_unlock(mapping);
557  		i_mmap_unlock_write(mapping);
558  	}
559  }
560  
561  static void cleanup_vma_from_mm(struct vm_area_struct *vma)
562  {
563  	vma->vm_mm->map_count--;
564  	/* remove the VMA from the mapping */
565  	if (vma->vm_file) {
566  		struct address_space *mapping;
567  		mapping = vma->vm_file->f_mapping;
568  
569  		i_mmap_lock_write(mapping);
570  		flush_dcache_mmap_lock(mapping);
571  		vma_interval_tree_remove(vma, &mapping->i_mmap);
572  		flush_dcache_mmap_unlock(mapping);
573  		i_mmap_unlock_write(mapping);
574  	}
575  }
576  
577  /*
578   * delete a VMA from its owning mm_struct and address space
579   */
580  static int delete_vma_from_mm(struct vm_area_struct *vma)
581  {
582  	VMA_ITERATOR(vmi, vma->vm_mm, vma->vm_start);
583  
584  	vma_iter_config(&vmi, vma->vm_start, vma->vm_end);
585  	if (vma_iter_prealloc(&vmi, vma)) {
586  		pr_warn("Allocation of vma tree for process %d failed\n",
587  		       current->pid);
588  		return -ENOMEM;
589  	}
590  	cleanup_vma_from_mm(vma);
591  
592  	/* remove from the MM's tree and list */
593  	vma_iter_clear(&vmi);
594  	return 0;
595  }
596  /*
597   * destroy a VMA record
598   */
599  static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
600  {
601  	if (vma->vm_ops && vma->vm_ops->close)
602  		vma->vm_ops->close(vma);
603  	if (vma->vm_file)
604  		fput(vma->vm_file);
605  	put_nommu_region(vma->vm_region);
606  	vm_area_free(vma);
607  }
608  
609  struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
610  					     unsigned long start_addr,
611  					     unsigned long end_addr)
612  {
613  	unsigned long index = start_addr;
614  
615  	mmap_assert_locked(mm);
616  	return mt_find(&mm->mm_mt, &index, end_addr - 1);
617  }
618  EXPORT_SYMBOL(find_vma_intersection);
619  
620  /*
621   * look up the first VMA in which addr resides, NULL if none
622   * - should be called with mm->mmap_lock at least held readlocked
623   */
624  struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
625  {
626  	VMA_ITERATOR(vmi, mm, addr);
627  
628  	return vma_iter_load(&vmi);
629  }
630  EXPORT_SYMBOL(find_vma);
631  
632  /*
633   * At least xtensa ends up having protection faults even with no
634   * MMU.. No stack expansion, at least.
635   */
636  struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
637  			unsigned long addr, struct pt_regs *regs)
638  {
639  	struct vm_area_struct *vma;
640  
641  	mmap_read_lock(mm);
642  	vma = vma_lookup(mm, addr);
643  	if (!vma)
644  		mmap_read_unlock(mm);
645  	return vma;
646  }
647  
648  /*
649   * expand a stack to a given address
650   * - not supported under NOMMU conditions
651   */
652  int expand_stack_locked(struct vm_area_struct *vma, unsigned long addr)
653  {
654  	return -ENOMEM;
655  }
656  
657  struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr)
658  {
659  	mmap_read_unlock(mm);
660  	return NULL;
661  }
662  
663  /*
664   * look up the first VMA exactly that exactly matches addr
665   * - should be called with mm->mmap_lock at least held readlocked
666   */
667  static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
668  					     unsigned long addr,
669  					     unsigned long len)
670  {
671  	struct vm_area_struct *vma;
672  	unsigned long end = addr + len;
673  	VMA_ITERATOR(vmi, mm, addr);
674  
675  	vma = vma_iter_load(&vmi);
676  	if (!vma)
677  		return NULL;
678  	if (vma->vm_start != addr)
679  		return NULL;
680  	if (vma->vm_end != end)
681  		return NULL;
682  
683  	return vma;
684  }
685  
686  /*
687   * determine whether a mapping should be permitted and, if so, what sort of
688   * mapping we're capable of supporting
689   */
690  static int validate_mmap_request(struct file *file,
691  				 unsigned long addr,
692  				 unsigned long len,
693  				 unsigned long prot,
694  				 unsigned long flags,
695  				 unsigned long pgoff,
696  				 unsigned long *_capabilities)
697  {
698  	unsigned long capabilities, rlen;
699  	int ret;
700  
701  	/* do the simple checks first */
702  	if (flags & MAP_FIXED)
703  		return -EINVAL;
704  
705  	if ((flags & MAP_TYPE) != MAP_PRIVATE &&
706  	    (flags & MAP_TYPE) != MAP_SHARED)
707  		return -EINVAL;
708  
709  	if (!len)
710  		return -EINVAL;
711  
712  	/* Careful about overflows.. */
713  	rlen = PAGE_ALIGN(len);
714  	if (!rlen || rlen > TASK_SIZE)
715  		return -ENOMEM;
716  
717  	/* offset overflow? */
718  	if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
719  		return -EOVERFLOW;
720  
721  	if (file) {
722  		/* files must support mmap */
723  		if (!file->f_op->mmap)
724  			return -ENODEV;
725  
726  		/* work out if what we've got could possibly be shared
727  		 * - we support chardevs that provide their own "memory"
728  		 * - we support files/blockdevs that are memory backed
729  		 */
730  		if (file->f_op->mmap_capabilities) {
731  			capabilities = file->f_op->mmap_capabilities(file);
732  		} else {
733  			/* no explicit capabilities set, so assume some
734  			 * defaults */
735  			switch (file_inode(file)->i_mode & S_IFMT) {
736  			case S_IFREG:
737  			case S_IFBLK:
738  				capabilities = NOMMU_MAP_COPY;
739  				break;
740  
741  			case S_IFCHR:
742  				capabilities =
743  					NOMMU_MAP_DIRECT |
744  					NOMMU_MAP_READ |
745  					NOMMU_MAP_WRITE;
746  				break;
747  
748  			default:
749  				return -EINVAL;
750  			}
751  		}
752  
753  		/* eliminate any capabilities that we can't support on this
754  		 * device */
755  		if (!file->f_op->get_unmapped_area)
756  			capabilities &= ~NOMMU_MAP_DIRECT;
757  		if (!(file->f_mode & FMODE_CAN_READ))
758  			capabilities &= ~NOMMU_MAP_COPY;
759  
760  		/* The file shall have been opened with read permission. */
761  		if (!(file->f_mode & FMODE_READ))
762  			return -EACCES;
763  
764  		if (flags & MAP_SHARED) {
765  			/* do checks for writing, appending and locking */
766  			if ((prot & PROT_WRITE) &&
767  			    !(file->f_mode & FMODE_WRITE))
768  				return -EACCES;
769  
770  			if (IS_APPEND(file_inode(file)) &&
771  			    (file->f_mode & FMODE_WRITE))
772  				return -EACCES;
773  
774  			if (!(capabilities & NOMMU_MAP_DIRECT))
775  				return -ENODEV;
776  
777  			/* we mustn't privatise shared mappings */
778  			capabilities &= ~NOMMU_MAP_COPY;
779  		} else {
780  			/* we're going to read the file into private memory we
781  			 * allocate */
782  			if (!(capabilities & NOMMU_MAP_COPY))
783  				return -ENODEV;
784  
785  			/* we don't permit a private writable mapping to be
786  			 * shared with the backing device */
787  			if (prot & PROT_WRITE)
788  				capabilities &= ~NOMMU_MAP_DIRECT;
789  		}
790  
791  		if (capabilities & NOMMU_MAP_DIRECT) {
792  			if (((prot & PROT_READ)  && !(capabilities & NOMMU_MAP_READ))  ||
793  			    ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
794  			    ((prot & PROT_EXEC)  && !(capabilities & NOMMU_MAP_EXEC))
795  			    ) {
796  				capabilities &= ~NOMMU_MAP_DIRECT;
797  				if (flags & MAP_SHARED) {
798  					pr_warn("MAP_SHARED not completely supported on !MMU\n");
799  					return -EINVAL;
800  				}
801  			}
802  		}
803  
804  		/* handle executable mappings and implied executable
805  		 * mappings */
806  		if (path_noexec(&file->f_path)) {
807  			if (prot & PROT_EXEC)
808  				return -EPERM;
809  		} else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
810  			/* handle implication of PROT_EXEC by PROT_READ */
811  			if (current->personality & READ_IMPLIES_EXEC) {
812  				if (capabilities & NOMMU_MAP_EXEC)
813  					prot |= PROT_EXEC;
814  			}
815  		} else if ((prot & PROT_READ) &&
816  			 (prot & PROT_EXEC) &&
817  			 !(capabilities & NOMMU_MAP_EXEC)
818  			 ) {
819  			/* backing file is not executable, try to copy */
820  			capabilities &= ~NOMMU_MAP_DIRECT;
821  		}
822  	} else {
823  		/* anonymous mappings are always memory backed and can be
824  		 * privately mapped
825  		 */
826  		capabilities = NOMMU_MAP_COPY;
827  
828  		/* handle PROT_EXEC implication by PROT_READ */
829  		if ((prot & PROT_READ) &&
830  		    (current->personality & READ_IMPLIES_EXEC))
831  			prot |= PROT_EXEC;
832  	}
833  
834  	/* allow the security API to have its say */
835  	ret = security_mmap_addr(addr);
836  	if (ret < 0)
837  		return ret;
838  
839  	/* looks okay */
840  	*_capabilities = capabilities;
841  	return 0;
842  }
843  
844  /*
845   * we've determined that we can make the mapping, now translate what we
846   * now know into VMA flags
847   */
848  static unsigned long determine_vm_flags(struct file *file,
849  					unsigned long prot,
850  					unsigned long flags,
851  					unsigned long capabilities)
852  {
853  	unsigned long vm_flags;
854  
855  	vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags);
856  
857  	if (!file) {
858  		/*
859  		 * MAP_ANONYMOUS. MAP_SHARED is mapped to MAP_PRIVATE, because
860  		 * there is no fork().
861  		 */
862  		vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
863  	} else if (flags & MAP_PRIVATE) {
864  		/* MAP_PRIVATE file mapping */
865  		if (capabilities & NOMMU_MAP_DIRECT)
866  			vm_flags |= (capabilities & NOMMU_VMFLAGS);
867  		else
868  			vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
869  
870  		if (!(prot & PROT_WRITE) && !current->ptrace)
871  			/*
872  			 * R/O private file mapping which cannot be used to
873  			 * modify memory, especially also not via active ptrace
874  			 * (e.g., set breakpoints) or later by upgrading
875  			 * permissions (no mprotect()). We can try overlaying
876  			 * the file mapping, which will work e.g., on chardevs,
877  			 * ramfs/tmpfs/shmfs and romfs/cramf.
878  			 */
879  			vm_flags |= VM_MAYOVERLAY;
880  	} else {
881  		/* MAP_SHARED file mapping: NOMMU_MAP_DIRECT is set. */
882  		vm_flags |= VM_SHARED | VM_MAYSHARE |
883  			    (capabilities & NOMMU_VMFLAGS);
884  	}
885  
886  	return vm_flags;
887  }
888  
889  /*
890   * set up a shared mapping on a file (the driver or filesystem provides and
891   * pins the storage)
892   */
893  static int do_mmap_shared_file(struct vm_area_struct *vma)
894  {
895  	int ret;
896  
897  	ret = call_mmap(vma->vm_file, vma);
898  	if (ret == 0) {
899  		vma->vm_region->vm_top = vma->vm_region->vm_end;
900  		return 0;
901  	}
902  	if (ret != -ENOSYS)
903  		return ret;
904  
905  	/* getting -ENOSYS indicates that direct mmap isn't possible (as
906  	 * opposed to tried but failed) so we can only give a suitable error as
907  	 * it's not possible to make a private copy if MAP_SHARED was given */
908  	return -ENODEV;
909  }
910  
911  /*
912   * set up a private mapping or an anonymous shared mapping
913   */
914  static int do_mmap_private(struct vm_area_struct *vma,
915  			   struct vm_region *region,
916  			   unsigned long len,
917  			   unsigned long capabilities)
918  {
919  	unsigned long total, point;
920  	void *base;
921  	int ret, order;
922  
923  	/*
924  	 * Invoke the file's mapping function so that it can keep track of
925  	 * shared mappings on devices or memory. VM_MAYOVERLAY will be set if
926  	 * it may attempt to share, which will make is_nommu_shared_mapping()
927  	 * happy.
928  	 */
929  	if (capabilities & NOMMU_MAP_DIRECT) {
930  		ret = call_mmap(vma->vm_file, vma);
931  		/* shouldn't return success if we're not sharing */
932  		if (WARN_ON_ONCE(!is_nommu_shared_mapping(vma->vm_flags)))
933  			ret = -ENOSYS;
934  		if (ret == 0) {
935  			vma->vm_region->vm_top = vma->vm_region->vm_end;
936  			return 0;
937  		}
938  		if (ret != -ENOSYS)
939  			return ret;
940  
941  		/* getting an ENOSYS error indicates that direct mmap isn't
942  		 * possible (as opposed to tried but failed) so we'll try to
943  		 * make a private copy of the data and map that instead */
944  	}
945  
946  
947  	/* allocate some memory to hold the mapping
948  	 * - note that this may not return a page-aligned address if the object
949  	 *   we're allocating is smaller than a page
950  	 */
951  	order = get_order(len);
952  	total = 1 << order;
953  	point = len >> PAGE_SHIFT;
954  
955  	/* we don't want to allocate a power-of-2 sized page set */
956  	if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages)
957  		total = point;
958  
959  	base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL);
960  	if (!base)
961  		goto enomem;
962  
963  	atomic_long_add(total, &mmap_pages_allocated);
964  
965  	vm_flags_set(vma, VM_MAPPED_COPY);
966  	region->vm_flags = vma->vm_flags;
967  	region->vm_start = (unsigned long) base;
968  	region->vm_end   = region->vm_start + len;
969  	region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
970  
971  	vma->vm_start = region->vm_start;
972  	vma->vm_end   = region->vm_start + len;
973  
974  	if (vma->vm_file) {
975  		/* read the contents of a file into the copy */
976  		loff_t fpos;
977  
978  		fpos = vma->vm_pgoff;
979  		fpos <<= PAGE_SHIFT;
980  
981  		ret = kernel_read(vma->vm_file, base, len, &fpos);
982  		if (ret < 0)
983  			goto error_free;
984  
985  		/* clear the last little bit */
986  		if (ret < len)
987  			memset(base + ret, 0, len - ret);
988  
989  	} else {
990  		vma_set_anonymous(vma);
991  	}
992  
993  	return 0;
994  
995  error_free:
996  	free_page_series(region->vm_start, region->vm_top);
997  	region->vm_start = vma->vm_start = 0;
998  	region->vm_end   = vma->vm_end = 0;
999  	region->vm_top   = 0;
1000  	return ret;
1001  
1002  enomem:
1003  	pr_err("Allocation of length %lu from process %d (%s) failed\n",
1004  	       len, current->pid, current->comm);
1005  	show_mem();
1006  	return -ENOMEM;
1007  }
1008  
1009  /*
1010   * handle mapping creation for uClinux
1011   */
1012  unsigned long do_mmap(struct file *file,
1013  			unsigned long addr,
1014  			unsigned long len,
1015  			unsigned long prot,
1016  			unsigned long flags,
1017  			vm_flags_t vm_flags,
1018  			unsigned long pgoff,
1019  			unsigned long *populate,
1020  			struct list_head *uf)
1021  {
1022  	struct vm_area_struct *vma;
1023  	struct vm_region *region;
1024  	struct rb_node *rb;
1025  	unsigned long capabilities, result;
1026  	int ret;
1027  	VMA_ITERATOR(vmi, current->mm, 0);
1028  
1029  	*populate = 0;
1030  
1031  	/* decide whether we should attempt the mapping, and if so what sort of
1032  	 * mapping */
1033  	ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1034  				    &capabilities);
1035  	if (ret < 0)
1036  		return ret;
1037  
1038  	/* we ignore the address hint */
1039  	addr = 0;
1040  	len = PAGE_ALIGN(len);
1041  
1042  	/* we've determined that we can make the mapping, now translate what we
1043  	 * now know into VMA flags */
1044  	vm_flags |= determine_vm_flags(file, prot, flags, capabilities);
1045  
1046  
1047  	/* we're going to need to record the mapping */
1048  	region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1049  	if (!region)
1050  		goto error_getting_region;
1051  
1052  	vma = vm_area_alloc(current->mm);
1053  	if (!vma)
1054  		goto error_getting_vma;
1055  
1056  	region->vm_usage = 1;
1057  	region->vm_flags = vm_flags;
1058  	region->vm_pgoff = pgoff;
1059  
1060  	vm_flags_init(vma, vm_flags);
1061  	vma->vm_pgoff = pgoff;
1062  
1063  	if (file) {
1064  		region->vm_file = get_file(file);
1065  		vma->vm_file = get_file(file);
1066  	}
1067  
1068  	down_write(&nommu_region_sem);
1069  
1070  	/* if we want to share, we need to check for regions created by other
1071  	 * mmap() calls that overlap with our proposed mapping
1072  	 * - we can only share with a superset match on most regular files
1073  	 * - shared mappings on character devices and memory backed files are
1074  	 *   permitted to overlap inexactly as far as we are concerned for in
1075  	 *   these cases, sharing is handled in the driver or filesystem rather
1076  	 *   than here
1077  	 */
1078  	if (is_nommu_shared_mapping(vm_flags)) {
1079  		struct vm_region *pregion;
1080  		unsigned long pglen, rpglen, pgend, rpgend, start;
1081  
1082  		pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1083  		pgend = pgoff + pglen;
1084  
1085  		for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1086  			pregion = rb_entry(rb, struct vm_region, vm_rb);
1087  
1088  			if (!is_nommu_shared_mapping(pregion->vm_flags))
1089  				continue;
1090  
1091  			/* search for overlapping mappings on the same file */
1092  			if (file_inode(pregion->vm_file) !=
1093  			    file_inode(file))
1094  				continue;
1095  
1096  			if (pregion->vm_pgoff >= pgend)
1097  				continue;
1098  
1099  			rpglen = pregion->vm_end - pregion->vm_start;
1100  			rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1101  			rpgend = pregion->vm_pgoff + rpglen;
1102  			if (pgoff >= rpgend)
1103  				continue;
1104  
1105  			/* handle inexactly overlapping matches between
1106  			 * mappings */
1107  			if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1108  			    !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1109  				/* new mapping is not a subset of the region */
1110  				if (!(capabilities & NOMMU_MAP_DIRECT))
1111  					goto sharing_violation;
1112  				continue;
1113  			}
1114  
1115  			/* we've found a region we can share */
1116  			pregion->vm_usage++;
1117  			vma->vm_region = pregion;
1118  			start = pregion->vm_start;
1119  			start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1120  			vma->vm_start = start;
1121  			vma->vm_end = start + len;
1122  
1123  			if (pregion->vm_flags & VM_MAPPED_COPY)
1124  				vm_flags_set(vma, VM_MAPPED_COPY);
1125  			else {
1126  				ret = do_mmap_shared_file(vma);
1127  				if (ret < 0) {
1128  					vma->vm_region = NULL;
1129  					vma->vm_start = 0;
1130  					vma->vm_end = 0;
1131  					pregion->vm_usage--;
1132  					pregion = NULL;
1133  					goto error_just_free;
1134  				}
1135  			}
1136  			fput(region->vm_file);
1137  			kmem_cache_free(vm_region_jar, region);
1138  			region = pregion;
1139  			result = start;
1140  			goto share;
1141  		}
1142  
1143  		/* obtain the address at which to make a shared mapping
1144  		 * - this is the hook for quasi-memory character devices to
1145  		 *   tell us the location of a shared mapping
1146  		 */
1147  		if (capabilities & NOMMU_MAP_DIRECT) {
1148  			addr = file->f_op->get_unmapped_area(file, addr, len,
1149  							     pgoff, flags);
1150  			if (IS_ERR_VALUE(addr)) {
1151  				ret = addr;
1152  				if (ret != -ENOSYS)
1153  					goto error_just_free;
1154  
1155  				/* the driver refused to tell us where to site
1156  				 * the mapping so we'll have to attempt to copy
1157  				 * it */
1158  				ret = -ENODEV;
1159  				if (!(capabilities & NOMMU_MAP_COPY))
1160  					goto error_just_free;
1161  
1162  				capabilities &= ~NOMMU_MAP_DIRECT;
1163  			} else {
1164  				vma->vm_start = region->vm_start = addr;
1165  				vma->vm_end = region->vm_end = addr + len;
1166  			}
1167  		}
1168  	}
1169  
1170  	vma->vm_region = region;
1171  
1172  	/* set up the mapping
1173  	 * - the region is filled in if NOMMU_MAP_DIRECT is still set
1174  	 */
1175  	if (file && vma->vm_flags & VM_SHARED)
1176  		ret = do_mmap_shared_file(vma);
1177  	else
1178  		ret = do_mmap_private(vma, region, len, capabilities);
1179  	if (ret < 0)
1180  		goto error_just_free;
1181  	add_nommu_region(region);
1182  
1183  	/* clear anonymous mappings that don't ask for uninitialized data */
1184  	if (!vma->vm_file &&
1185  	    (!IS_ENABLED(CONFIG_MMAP_ALLOW_UNINITIALIZED) ||
1186  	     !(flags & MAP_UNINITIALIZED)))
1187  		memset((void *)region->vm_start, 0,
1188  		       region->vm_end - region->vm_start);
1189  
1190  	/* okay... we have a mapping; now we have to register it */
1191  	result = vma->vm_start;
1192  
1193  	current->mm->total_vm += len >> PAGE_SHIFT;
1194  
1195  share:
1196  	BUG_ON(!vma->vm_region);
1197  	vma_iter_config(&vmi, vma->vm_start, vma->vm_end);
1198  	if (vma_iter_prealloc(&vmi, vma))
1199  		goto error_just_free;
1200  
1201  	setup_vma_to_mm(vma, current->mm);
1202  	current->mm->map_count++;
1203  	/* add the VMA to the tree */
1204  	vma_iter_store(&vmi, vma);
1205  
1206  	/* we flush the region from the icache only when the first executable
1207  	 * mapping of it is made  */
1208  	if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1209  		flush_icache_user_range(region->vm_start, region->vm_end);
1210  		region->vm_icache_flushed = true;
1211  	}
1212  
1213  	up_write(&nommu_region_sem);
1214  
1215  	return result;
1216  
1217  error_just_free:
1218  	up_write(&nommu_region_sem);
1219  error:
1220  	vma_iter_free(&vmi);
1221  	if (region->vm_file)
1222  		fput(region->vm_file);
1223  	kmem_cache_free(vm_region_jar, region);
1224  	if (vma->vm_file)
1225  		fput(vma->vm_file);
1226  	vm_area_free(vma);
1227  	return ret;
1228  
1229  sharing_violation:
1230  	up_write(&nommu_region_sem);
1231  	pr_warn("Attempt to share mismatched mappings\n");
1232  	ret = -EINVAL;
1233  	goto error;
1234  
1235  error_getting_vma:
1236  	kmem_cache_free(vm_region_jar, region);
1237  	pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n",
1238  			len, current->pid);
1239  	show_mem();
1240  	return -ENOMEM;
1241  
1242  error_getting_region:
1243  	pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n",
1244  			len, current->pid);
1245  	show_mem();
1246  	return -ENOMEM;
1247  }
1248  
1249  unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1250  			      unsigned long prot, unsigned long flags,
1251  			      unsigned long fd, unsigned long pgoff)
1252  {
1253  	struct file *file = NULL;
1254  	unsigned long retval = -EBADF;
1255  
1256  	audit_mmap_fd(fd, flags);
1257  	if (!(flags & MAP_ANONYMOUS)) {
1258  		file = fget(fd);
1259  		if (!file)
1260  			goto out;
1261  	}
1262  
1263  	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1264  
1265  	if (file)
1266  		fput(file);
1267  out:
1268  	return retval;
1269  }
1270  
1271  SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1272  		unsigned long, prot, unsigned long, flags,
1273  		unsigned long, fd, unsigned long, pgoff)
1274  {
1275  	return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1276  }
1277  
1278  #ifdef __ARCH_WANT_SYS_OLD_MMAP
1279  struct mmap_arg_struct {
1280  	unsigned long addr;
1281  	unsigned long len;
1282  	unsigned long prot;
1283  	unsigned long flags;
1284  	unsigned long fd;
1285  	unsigned long offset;
1286  };
1287  
1288  SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1289  {
1290  	struct mmap_arg_struct a;
1291  
1292  	if (copy_from_user(&a, arg, sizeof(a)))
1293  		return -EFAULT;
1294  	if (offset_in_page(a.offset))
1295  		return -EINVAL;
1296  
1297  	return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1298  			       a.offset >> PAGE_SHIFT);
1299  }
1300  #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1301  
1302  /*
1303   * split a vma into two pieces at address 'addr', a new vma is allocated either
1304   * for the first part or the tail.
1305   */
1306  static int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
1307  		     unsigned long addr, int new_below)
1308  {
1309  	struct vm_area_struct *new;
1310  	struct vm_region *region;
1311  	unsigned long npages;
1312  	struct mm_struct *mm;
1313  
1314  	/* we're only permitted to split anonymous regions (these should have
1315  	 * only a single usage on the region) */
1316  	if (vma->vm_file)
1317  		return -ENOMEM;
1318  
1319  	mm = vma->vm_mm;
1320  	if (mm->map_count >= sysctl_max_map_count)
1321  		return -ENOMEM;
1322  
1323  	region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1324  	if (!region)
1325  		return -ENOMEM;
1326  
1327  	new = vm_area_dup(vma);
1328  	if (!new)
1329  		goto err_vma_dup;
1330  
1331  	/* most fields are the same, copy all, and then fixup */
1332  	*region = *vma->vm_region;
1333  	new->vm_region = region;
1334  
1335  	npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1336  
1337  	if (new_below) {
1338  		region->vm_top = region->vm_end = new->vm_end = addr;
1339  	} else {
1340  		region->vm_start = new->vm_start = addr;
1341  		region->vm_pgoff = new->vm_pgoff += npages;
1342  	}
1343  
1344  	vma_iter_config(vmi, new->vm_start, new->vm_end);
1345  	if (vma_iter_prealloc(vmi, vma)) {
1346  		pr_warn("Allocation of vma tree for process %d failed\n",
1347  			current->pid);
1348  		goto err_vmi_preallocate;
1349  	}
1350  
1351  	if (new->vm_ops && new->vm_ops->open)
1352  		new->vm_ops->open(new);
1353  
1354  	down_write(&nommu_region_sem);
1355  	delete_nommu_region(vma->vm_region);
1356  	if (new_below) {
1357  		vma->vm_region->vm_start = vma->vm_start = addr;
1358  		vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1359  	} else {
1360  		vma->vm_region->vm_end = vma->vm_end = addr;
1361  		vma->vm_region->vm_top = addr;
1362  	}
1363  	add_nommu_region(vma->vm_region);
1364  	add_nommu_region(new->vm_region);
1365  	up_write(&nommu_region_sem);
1366  
1367  	setup_vma_to_mm(vma, mm);
1368  	setup_vma_to_mm(new, mm);
1369  	vma_iter_store(vmi, new);
1370  	mm->map_count++;
1371  	return 0;
1372  
1373  err_vmi_preallocate:
1374  	vm_area_free(new);
1375  err_vma_dup:
1376  	kmem_cache_free(vm_region_jar, region);
1377  	return -ENOMEM;
1378  }
1379  
1380  /*
1381   * shrink a VMA by removing the specified chunk from either the beginning or
1382   * the end
1383   */
1384  static int vmi_shrink_vma(struct vma_iterator *vmi,
1385  		      struct vm_area_struct *vma,
1386  		      unsigned long from, unsigned long to)
1387  {
1388  	struct vm_region *region;
1389  
1390  	/* adjust the VMA's pointers, which may reposition it in the MM's tree
1391  	 * and list */
1392  	if (from > vma->vm_start) {
1393  		if (vma_iter_clear_gfp(vmi, from, vma->vm_end, GFP_KERNEL))
1394  			return -ENOMEM;
1395  		vma->vm_end = from;
1396  	} else {
1397  		if (vma_iter_clear_gfp(vmi, vma->vm_start, to, GFP_KERNEL))
1398  			return -ENOMEM;
1399  		vma->vm_start = to;
1400  	}
1401  
1402  	/* cut the backing region down to size */
1403  	region = vma->vm_region;
1404  	BUG_ON(region->vm_usage != 1);
1405  
1406  	down_write(&nommu_region_sem);
1407  	delete_nommu_region(region);
1408  	if (from > region->vm_start) {
1409  		to = region->vm_top;
1410  		region->vm_top = region->vm_end = from;
1411  	} else {
1412  		region->vm_start = to;
1413  	}
1414  	add_nommu_region(region);
1415  	up_write(&nommu_region_sem);
1416  
1417  	free_page_series(from, to);
1418  	return 0;
1419  }
1420  
1421  /*
1422   * release a mapping
1423   * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1424   *   VMA, though it need not cover the whole VMA
1425   */
1426  int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf)
1427  {
1428  	VMA_ITERATOR(vmi, mm, start);
1429  	struct vm_area_struct *vma;
1430  	unsigned long end;
1431  	int ret = 0;
1432  
1433  	len = PAGE_ALIGN(len);
1434  	if (len == 0)
1435  		return -EINVAL;
1436  
1437  	end = start + len;
1438  
1439  	/* find the first potentially overlapping VMA */
1440  	vma = vma_find(&vmi, end);
1441  	if (!vma) {
1442  		static int limit;
1443  		if (limit < 5) {
1444  			pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n",
1445  					current->pid, current->comm,
1446  					start, start + len - 1);
1447  			limit++;
1448  		}
1449  		return -EINVAL;
1450  	}
1451  
1452  	/* we're allowed to split an anonymous VMA but not a file-backed one */
1453  	if (vma->vm_file) {
1454  		do {
1455  			if (start > vma->vm_start)
1456  				return -EINVAL;
1457  			if (end == vma->vm_end)
1458  				goto erase_whole_vma;
1459  			vma = vma_find(&vmi, end);
1460  		} while (vma);
1461  		return -EINVAL;
1462  	} else {
1463  		/* the chunk must be a subset of the VMA found */
1464  		if (start == vma->vm_start && end == vma->vm_end)
1465  			goto erase_whole_vma;
1466  		if (start < vma->vm_start || end > vma->vm_end)
1467  			return -EINVAL;
1468  		if (offset_in_page(start))
1469  			return -EINVAL;
1470  		if (end != vma->vm_end && offset_in_page(end))
1471  			return -EINVAL;
1472  		if (start != vma->vm_start && end != vma->vm_end) {
1473  			ret = split_vma(&vmi, vma, start, 1);
1474  			if (ret < 0)
1475  				return ret;
1476  		}
1477  		return vmi_shrink_vma(&vmi, vma, start, end);
1478  	}
1479  
1480  erase_whole_vma:
1481  	if (delete_vma_from_mm(vma))
1482  		ret = -ENOMEM;
1483  	else
1484  		delete_vma(mm, vma);
1485  	return ret;
1486  }
1487  
1488  int vm_munmap(unsigned long addr, size_t len)
1489  {
1490  	struct mm_struct *mm = current->mm;
1491  	int ret;
1492  
1493  	mmap_write_lock(mm);
1494  	ret = do_munmap(mm, addr, len, NULL);
1495  	mmap_write_unlock(mm);
1496  	return ret;
1497  }
1498  EXPORT_SYMBOL(vm_munmap);
1499  
1500  SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1501  {
1502  	return vm_munmap(addr, len);
1503  }
1504  
1505  /*
1506   * release all the mappings made in a process's VM space
1507   */
1508  void exit_mmap(struct mm_struct *mm)
1509  {
1510  	VMA_ITERATOR(vmi, mm, 0);
1511  	struct vm_area_struct *vma;
1512  
1513  	if (!mm)
1514  		return;
1515  
1516  	mm->total_vm = 0;
1517  
1518  	/*
1519  	 * Lock the mm to avoid assert complaining even though this is the only
1520  	 * user of the mm
1521  	 */
1522  	mmap_write_lock(mm);
1523  	for_each_vma(vmi, vma) {
1524  		cleanup_vma_from_mm(vma);
1525  		delete_vma(mm, vma);
1526  		cond_resched();
1527  	}
1528  	__mt_destroy(&mm->mm_mt);
1529  	mmap_write_unlock(mm);
1530  }
1531  
1532  /*
1533   * expand (or shrink) an existing mapping, potentially moving it at the same
1534   * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1535   *
1536   * under NOMMU conditions, we only permit changing a mapping's size, and only
1537   * as long as it stays within the region allocated by do_mmap_private() and the
1538   * block is not shareable
1539   *
1540   * MREMAP_FIXED is not supported under NOMMU conditions
1541   */
1542  static unsigned long do_mremap(unsigned long addr,
1543  			unsigned long old_len, unsigned long new_len,
1544  			unsigned long flags, unsigned long new_addr)
1545  {
1546  	struct vm_area_struct *vma;
1547  
1548  	/* insanity checks first */
1549  	old_len = PAGE_ALIGN(old_len);
1550  	new_len = PAGE_ALIGN(new_len);
1551  	if (old_len == 0 || new_len == 0)
1552  		return (unsigned long) -EINVAL;
1553  
1554  	if (offset_in_page(addr))
1555  		return -EINVAL;
1556  
1557  	if (flags & MREMAP_FIXED && new_addr != addr)
1558  		return (unsigned long) -EINVAL;
1559  
1560  	vma = find_vma_exact(current->mm, addr, old_len);
1561  	if (!vma)
1562  		return (unsigned long) -EINVAL;
1563  
1564  	if (vma->vm_end != vma->vm_start + old_len)
1565  		return (unsigned long) -EFAULT;
1566  
1567  	if (is_nommu_shared_mapping(vma->vm_flags))
1568  		return (unsigned long) -EPERM;
1569  
1570  	if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1571  		return (unsigned long) -ENOMEM;
1572  
1573  	/* all checks complete - do it */
1574  	vma->vm_end = vma->vm_start + new_len;
1575  	return vma->vm_start;
1576  }
1577  
1578  SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1579  		unsigned long, new_len, unsigned long, flags,
1580  		unsigned long, new_addr)
1581  {
1582  	unsigned long ret;
1583  
1584  	mmap_write_lock(current->mm);
1585  	ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1586  	mmap_write_unlock(current->mm);
1587  	return ret;
1588  }
1589  
1590  struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1591  			 unsigned int foll_flags)
1592  {
1593  	return NULL;
1594  }
1595  
1596  int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1597  		unsigned long pfn, unsigned long size, pgprot_t prot)
1598  {
1599  	if (addr != (pfn << PAGE_SHIFT))
1600  		return -EINVAL;
1601  
1602  	vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
1603  	return 0;
1604  }
1605  EXPORT_SYMBOL(remap_pfn_range);
1606  
1607  int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1608  {
1609  	unsigned long pfn = start >> PAGE_SHIFT;
1610  	unsigned long vm_len = vma->vm_end - vma->vm_start;
1611  
1612  	pfn += vma->vm_pgoff;
1613  	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1614  }
1615  EXPORT_SYMBOL(vm_iomap_memory);
1616  
1617  int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1618  			unsigned long pgoff)
1619  {
1620  	unsigned int size = vma->vm_end - vma->vm_start;
1621  
1622  	if (!(vma->vm_flags & VM_USERMAP))
1623  		return -EINVAL;
1624  
1625  	vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1626  	vma->vm_end = vma->vm_start + size;
1627  
1628  	return 0;
1629  }
1630  EXPORT_SYMBOL(remap_vmalloc_range);
1631  
1632  vm_fault_t filemap_fault(struct vm_fault *vmf)
1633  {
1634  	BUG();
1635  	return 0;
1636  }
1637  EXPORT_SYMBOL(filemap_fault);
1638  
1639  vm_fault_t filemap_map_pages(struct vm_fault *vmf,
1640  		pgoff_t start_pgoff, pgoff_t end_pgoff)
1641  {
1642  	BUG();
1643  	return 0;
1644  }
1645  EXPORT_SYMBOL(filemap_map_pages);
1646  
1647  static int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
1648  			      void *buf, int len, unsigned int gup_flags)
1649  {
1650  	struct vm_area_struct *vma;
1651  	int write = gup_flags & FOLL_WRITE;
1652  
1653  	if (mmap_read_lock_killable(mm))
1654  		return 0;
1655  
1656  	/* the access must start within one of the target process's mappings */
1657  	vma = find_vma(mm, addr);
1658  	if (vma) {
1659  		/* don't overrun this mapping */
1660  		if (addr + len >= vma->vm_end)
1661  			len = vma->vm_end - addr;
1662  
1663  		/* only read or write mappings where it is permitted */
1664  		if (write && vma->vm_flags & VM_MAYWRITE)
1665  			copy_to_user_page(vma, NULL, addr,
1666  					 (void *) addr, buf, len);
1667  		else if (!write && vma->vm_flags & VM_MAYREAD)
1668  			copy_from_user_page(vma, NULL, addr,
1669  					    buf, (void *) addr, len);
1670  		else
1671  			len = 0;
1672  	} else {
1673  		len = 0;
1674  	}
1675  
1676  	mmap_read_unlock(mm);
1677  
1678  	return len;
1679  }
1680  
1681  /**
1682   * access_remote_vm - access another process' address space
1683   * @mm:		the mm_struct of the target address space
1684   * @addr:	start address to access
1685   * @buf:	source or destination buffer
1686   * @len:	number of bytes to transfer
1687   * @gup_flags:	flags modifying lookup behaviour
1688   *
1689   * The caller must hold a reference on @mm.
1690   */
1691  int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1692  		void *buf, int len, unsigned int gup_flags)
1693  {
1694  	return __access_remote_vm(mm, addr, buf, len, gup_flags);
1695  }
1696  
1697  /*
1698   * Access another process' address space.
1699   * - source/target buffer must be kernel space
1700   */
1701  int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1702  		unsigned int gup_flags)
1703  {
1704  	struct mm_struct *mm;
1705  
1706  	if (addr + len < addr)
1707  		return 0;
1708  
1709  	mm = get_task_mm(tsk);
1710  	if (!mm)
1711  		return 0;
1712  
1713  	len = __access_remote_vm(mm, addr, buf, len, gup_flags);
1714  
1715  	mmput(mm);
1716  	return len;
1717  }
1718  EXPORT_SYMBOL_GPL(access_process_vm);
1719  
1720  /**
1721   * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
1722   * @inode: The inode to check
1723   * @size: The current filesize of the inode
1724   * @newsize: The proposed filesize of the inode
1725   *
1726   * Check the shared mappings on an inode on behalf of a shrinking truncate to
1727   * make sure that any outstanding VMAs aren't broken and then shrink the
1728   * vm_regions that extend beyond so that do_mmap() doesn't
1729   * automatically grant mappings that are too large.
1730   */
1731  int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
1732  				size_t newsize)
1733  {
1734  	struct vm_area_struct *vma;
1735  	struct vm_region *region;
1736  	pgoff_t low, high;
1737  	size_t r_size, r_top;
1738  
1739  	low = newsize >> PAGE_SHIFT;
1740  	high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1741  
1742  	down_write(&nommu_region_sem);
1743  	i_mmap_lock_read(inode->i_mapping);
1744  
1745  	/* search for VMAs that fall within the dead zone */
1746  	vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
1747  		/* found one - only interested if it's shared out of the page
1748  		 * cache */
1749  		if (vma->vm_flags & VM_SHARED) {
1750  			i_mmap_unlock_read(inode->i_mapping);
1751  			up_write(&nommu_region_sem);
1752  			return -ETXTBSY; /* not quite true, but near enough */
1753  		}
1754  	}
1755  
1756  	/* reduce any regions that overlap the dead zone - if in existence,
1757  	 * these will be pointed to by VMAs that don't overlap the dead zone
1758  	 *
1759  	 * we don't check for any regions that start beyond the EOF as there
1760  	 * shouldn't be any
1761  	 */
1762  	vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
1763  		if (!(vma->vm_flags & VM_SHARED))
1764  			continue;
1765  
1766  		region = vma->vm_region;
1767  		r_size = region->vm_top - region->vm_start;
1768  		r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
1769  
1770  		if (r_top > newsize) {
1771  			region->vm_top -= r_top - newsize;
1772  			if (region->vm_end > region->vm_top)
1773  				region->vm_end = region->vm_top;
1774  		}
1775  	}
1776  
1777  	i_mmap_unlock_read(inode->i_mapping);
1778  	up_write(&nommu_region_sem);
1779  	return 0;
1780  }
1781  
1782  /*
1783   * Initialise sysctl_user_reserve_kbytes.
1784   *
1785   * This is intended to prevent a user from starting a single memory hogging
1786   * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
1787   * mode.
1788   *
1789   * The default value is min(3% of free memory, 128MB)
1790   * 128MB is enough to recover with sshd/login, bash, and top/kill.
1791   */
1792  static int __meminit init_user_reserve(void)
1793  {
1794  	unsigned long free_kbytes;
1795  
1796  	free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
1797  
1798  	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
1799  	return 0;
1800  }
1801  subsys_initcall(init_user_reserve);
1802  
1803  /*
1804   * Initialise sysctl_admin_reserve_kbytes.
1805   *
1806   * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
1807   * to log in and kill a memory hogging process.
1808   *
1809   * Systems with more than 256MB will reserve 8MB, enough to recover
1810   * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
1811   * only reserve 3% of free pages by default.
1812   */
1813  static int __meminit init_admin_reserve(void)
1814  {
1815  	unsigned long free_kbytes;
1816  
1817  	free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
1818  
1819  	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
1820  	return 0;
1821  }
1822  subsys_initcall(init_admin_reserve);
1823