1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/nommu.c 4 * 5 * Replacement code for mm functions to support CPU's that don't 6 * have any form of memory management unit (thus no virtual memory). 7 * 8 * See Documentation/admin-guide/mm/nommu-mmap.rst 9 * 10 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com> 11 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com> 12 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org> 13 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com> 14 * Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org> 15 */ 16 17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 18 19 #include <linux/export.h> 20 #include <linux/mm.h> 21 #include <linux/sched/mm.h> 22 #include <linux/mman.h> 23 #include <linux/swap.h> 24 #include <linux/file.h> 25 #include <linux/highmem.h> 26 #include <linux/pagemap.h> 27 #include <linux/slab.h> 28 #include <linux/vmalloc.h> 29 #include <linux/backing-dev.h> 30 #include <linux/compiler.h> 31 #include <linux/mount.h> 32 #include <linux/personality.h> 33 #include <linux/security.h> 34 #include <linux/syscalls.h> 35 #include <linux/audit.h> 36 #include <linux/printk.h> 37 38 #include <linux/uaccess.h> 39 #include <asm/tlb.h> 40 #include <asm/tlbflush.h> 41 #include <asm/mmu_context.h> 42 #include "internal.h" 43 44 void *high_memory; 45 EXPORT_SYMBOL(high_memory); 46 struct page *mem_map; 47 unsigned long max_mapnr; 48 EXPORT_SYMBOL(max_mapnr); 49 unsigned long highest_memmap_pfn; 50 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS; 51 int heap_stack_gap = 0; 52 53 atomic_long_t mmap_pages_allocated; 54 55 EXPORT_SYMBOL(mem_map); 56 57 /* list of mapped, potentially shareable regions */ 58 static struct kmem_cache *vm_region_jar; 59 struct rb_root nommu_region_tree = RB_ROOT; 60 DECLARE_RWSEM(nommu_region_sem); 61 62 const struct vm_operations_struct generic_file_vm_ops = { 63 }; 64 65 /* 66 * Return the total memory allocated for this pointer, not 67 * just what the caller asked for. 68 * 69 * Doesn't have to be accurate, i.e. may have races. 70 */ 71 unsigned int kobjsize(const void *objp) 72 { 73 struct page *page; 74 75 /* 76 * If the object we have should not have ksize performed on it, 77 * return size of 0 78 */ 79 if (!objp || !virt_addr_valid(objp)) 80 return 0; 81 82 page = virt_to_head_page(objp); 83 84 /* 85 * If the allocator sets PageSlab, we know the pointer came from 86 * kmalloc(). 87 */ 88 if (PageSlab(page)) 89 return ksize(objp); 90 91 /* 92 * If it's not a compound page, see if we have a matching VMA 93 * region. This test is intentionally done in reverse order, 94 * so if there's no VMA, we still fall through and hand back 95 * PAGE_SIZE for 0-order pages. 96 */ 97 if (!PageCompound(page)) { 98 struct vm_area_struct *vma; 99 100 vma = find_vma(current->mm, (unsigned long)objp); 101 if (vma) 102 return vma->vm_end - vma->vm_start; 103 } 104 105 /* 106 * The ksize() function is only guaranteed to work for pointers 107 * returned by kmalloc(). So handle arbitrary pointers here. 108 */ 109 return page_size(page); 110 } 111 112 /** 113 * follow_pfn - look up PFN at a user virtual address 114 * @vma: memory mapping 115 * @address: user virtual address 116 * @pfn: location to store found PFN 117 * 118 * Only IO mappings and raw PFN mappings are allowed. 119 * 120 * Returns zero and the pfn at @pfn on success, -ve otherwise. 121 */ 122 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 123 unsigned long *pfn) 124 { 125 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 126 return -EINVAL; 127 128 *pfn = address >> PAGE_SHIFT; 129 return 0; 130 } 131 EXPORT_SYMBOL(follow_pfn); 132 133 LIST_HEAD(vmap_area_list); 134 135 void vfree(const void *addr) 136 { 137 kfree(addr); 138 } 139 EXPORT_SYMBOL(vfree); 140 141 void *__vmalloc(unsigned long size, gfp_t gfp_mask) 142 { 143 /* 144 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc() 145 * returns only a logical address. 146 */ 147 return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM); 148 } 149 EXPORT_SYMBOL(__vmalloc); 150 151 void *__vmalloc_node_range(unsigned long size, unsigned long align, 152 unsigned long start, unsigned long end, gfp_t gfp_mask, 153 pgprot_t prot, unsigned long vm_flags, int node, 154 const void *caller) 155 { 156 return __vmalloc(size, gfp_mask); 157 } 158 159 void *__vmalloc_node(unsigned long size, unsigned long align, gfp_t gfp_mask, 160 int node, const void *caller) 161 { 162 return __vmalloc(size, gfp_mask); 163 } 164 165 static void *__vmalloc_user_flags(unsigned long size, gfp_t flags) 166 { 167 void *ret; 168 169 ret = __vmalloc(size, flags); 170 if (ret) { 171 struct vm_area_struct *vma; 172 173 mmap_write_lock(current->mm); 174 vma = find_vma(current->mm, (unsigned long)ret); 175 if (vma) 176 vma->vm_flags |= VM_USERMAP; 177 mmap_write_unlock(current->mm); 178 } 179 180 return ret; 181 } 182 183 void *vmalloc_user(unsigned long size) 184 { 185 return __vmalloc_user_flags(size, GFP_KERNEL | __GFP_ZERO); 186 } 187 EXPORT_SYMBOL(vmalloc_user); 188 189 struct page *vmalloc_to_page(const void *addr) 190 { 191 return virt_to_page(addr); 192 } 193 EXPORT_SYMBOL(vmalloc_to_page); 194 195 unsigned long vmalloc_to_pfn(const void *addr) 196 { 197 return page_to_pfn(virt_to_page(addr)); 198 } 199 EXPORT_SYMBOL(vmalloc_to_pfn); 200 201 long vread(char *buf, char *addr, unsigned long count) 202 { 203 /* Don't allow overflow */ 204 if ((unsigned long) buf + count < count) 205 count = -(unsigned long) buf; 206 207 memcpy(buf, addr, count); 208 return count; 209 } 210 211 /* 212 * vmalloc - allocate virtually contiguous memory 213 * 214 * @size: allocation size 215 * 216 * Allocate enough pages to cover @size from the page level 217 * allocator and map them into contiguous kernel virtual space. 218 * 219 * For tight control over page level allocator and protection flags 220 * use __vmalloc() instead. 221 */ 222 void *vmalloc(unsigned long size) 223 { 224 return __vmalloc(size, GFP_KERNEL); 225 } 226 EXPORT_SYMBOL(vmalloc); 227 228 void *vmalloc_huge(unsigned long size, gfp_t gfp_mask) __weak __alias(__vmalloc); 229 230 /* 231 * vzalloc - allocate virtually contiguous memory with zero fill 232 * 233 * @size: allocation size 234 * 235 * Allocate enough pages to cover @size from the page level 236 * allocator and map them into contiguous kernel virtual space. 237 * The memory allocated is set to zero. 238 * 239 * For tight control over page level allocator and protection flags 240 * use __vmalloc() instead. 241 */ 242 void *vzalloc(unsigned long size) 243 { 244 return __vmalloc(size, GFP_KERNEL | __GFP_ZERO); 245 } 246 EXPORT_SYMBOL(vzalloc); 247 248 /** 249 * vmalloc_node - allocate memory on a specific node 250 * @size: allocation size 251 * @node: numa node 252 * 253 * Allocate enough pages to cover @size from the page level 254 * allocator and map them into contiguous kernel virtual space. 255 * 256 * For tight control over page level allocator and protection flags 257 * use __vmalloc() instead. 258 */ 259 void *vmalloc_node(unsigned long size, int node) 260 { 261 return vmalloc(size); 262 } 263 EXPORT_SYMBOL(vmalloc_node); 264 265 /** 266 * vzalloc_node - allocate memory on a specific node with zero fill 267 * @size: allocation size 268 * @node: numa node 269 * 270 * Allocate enough pages to cover @size from the page level 271 * allocator and map them into contiguous kernel virtual space. 272 * The memory allocated is set to zero. 273 * 274 * For tight control over page level allocator and protection flags 275 * use __vmalloc() instead. 276 */ 277 void *vzalloc_node(unsigned long size, int node) 278 { 279 return vzalloc(size); 280 } 281 EXPORT_SYMBOL(vzalloc_node); 282 283 /** 284 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 285 * @size: allocation size 286 * 287 * Allocate enough 32bit PA addressable pages to cover @size from the 288 * page level allocator and map them into contiguous kernel virtual space. 289 */ 290 void *vmalloc_32(unsigned long size) 291 { 292 return __vmalloc(size, GFP_KERNEL); 293 } 294 EXPORT_SYMBOL(vmalloc_32); 295 296 /** 297 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 298 * @size: allocation size 299 * 300 * The resulting memory area is 32bit addressable and zeroed so it can be 301 * mapped to userspace without leaking data. 302 * 303 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to 304 * remap_vmalloc_range() are permissible. 305 */ 306 void *vmalloc_32_user(unsigned long size) 307 { 308 /* 309 * We'll have to sort out the ZONE_DMA bits for 64-bit, 310 * but for now this can simply use vmalloc_user() directly. 311 */ 312 return vmalloc_user(size); 313 } 314 EXPORT_SYMBOL(vmalloc_32_user); 315 316 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot) 317 { 318 BUG(); 319 return NULL; 320 } 321 EXPORT_SYMBOL(vmap); 322 323 void vunmap(const void *addr) 324 { 325 BUG(); 326 } 327 EXPORT_SYMBOL(vunmap); 328 329 void *vm_map_ram(struct page **pages, unsigned int count, int node) 330 { 331 BUG(); 332 return NULL; 333 } 334 EXPORT_SYMBOL(vm_map_ram); 335 336 void vm_unmap_ram(const void *mem, unsigned int count) 337 { 338 BUG(); 339 } 340 EXPORT_SYMBOL(vm_unmap_ram); 341 342 void vm_unmap_aliases(void) 343 { 344 } 345 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 346 347 void free_vm_area(struct vm_struct *area) 348 { 349 BUG(); 350 } 351 EXPORT_SYMBOL_GPL(free_vm_area); 352 353 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 354 struct page *page) 355 { 356 return -EINVAL; 357 } 358 EXPORT_SYMBOL(vm_insert_page); 359 360 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 361 unsigned long num) 362 { 363 return -EINVAL; 364 } 365 EXPORT_SYMBOL(vm_map_pages); 366 367 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 368 unsigned long num) 369 { 370 return -EINVAL; 371 } 372 EXPORT_SYMBOL(vm_map_pages_zero); 373 374 /* 375 * sys_brk() for the most part doesn't need the global kernel 376 * lock, except when an application is doing something nasty 377 * like trying to un-brk an area that has already been mapped 378 * to a regular file. in this case, the unmapping will need 379 * to invoke file system routines that need the global lock. 380 */ 381 SYSCALL_DEFINE1(brk, unsigned long, brk) 382 { 383 struct mm_struct *mm = current->mm; 384 385 if (brk < mm->start_brk || brk > mm->context.end_brk) 386 return mm->brk; 387 388 if (mm->brk == brk) 389 return mm->brk; 390 391 /* 392 * Always allow shrinking brk 393 */ 394 if (brk <= mm->brk) { 395 mm->brk = brk; 396 return brk; 397 } 398 399 /* 400 * Ok, looks good - let it rip. 401 */ 402 flush_icache_user_range(mm->brk, brk); 403 return mm->brk = brk; 404 } 405 406 /* 407 * initialise the percpu counter for VM and region record slabs 408 */ 409 void __init mmap_init(void) 410 { 411 int ret; 412 413 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL); 414 VM_BUG_ON(ret); 415 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT); 416 } 417 418 /* 419 * validate the region tree 420 * - the caller must hold the region lock 421 */ 422 #ifdef CONFIG_DEBUG_NOMMU_REGIONS 423 static noinline void validate_nommu_regions(void) 424 { 425 struct vm_region *region, *last; 426 struct rb_node *p, *lastp; 427 428 lastp = rb_first(&nommu_region_tree); 429 if (!lastp) 430 return; 431 432 last = rb_entry(lastp, struct vm_region, vm_rb); 433 BUG_ON(last->vm_end <= last->vm_start); 434 BUG_ON(last->vm_top < last->vm_end); 435 436 while ((p = rb_next(lastp))) { 437 region = rb_entry(p, struct vm_region, vm_rb); 438 last = rb_entry(lastp, struct vm_region, vm_rb); 439 440 BUG_ON(region->vm_end <= region->vm_start); 441 BUG_ON(region->vm_top < region->vm_end); 442 BUG_ON(region->vm_start < last->vm_top); 443 444 lastp = p; 445 } 446 } 447 #else 448 static void validate_nommu_regions(void) 449 { 450 } 451 #endif 452 453 /* 454 * add a region into the global tree 455 */ 456 static void add_nommu_region(struct vm_region *region) 457 { 458 struct vm_region *pregion; 459 struct rb_node **p, *parent; 460 461 validate_nommu_regions(); 462 463 parent = NULL; 464 p = &nommu_region_tree.rb_node; 465 while (*p) { 466 parent = *p; 467 pregion = rb_entry(parent, struct vm_region, vm_rb); 468 if (region->vm_start < pregion->vm_start) 469 p = &(*p)->rb_left; 470 else if (region->vm_start > pregion->vm_start) 471 p = &(*p)->rb_right; 472 else if (pregion == region) 473 return; 474 else 475 BUG(); 476 } 477 478 rb_link_node(®ion->vm_rb, parent, p); 479 rb_insert_color(®ion->vm_rb, &nommu_region_tree); 480 481 validate_nommu_regions(); 482 } 483 484 /* 485 * delete a region from the global tree 486 */ 487 static void delete_nommu_region(struct vm_region *region) 488 { 489 BUG_ON(!nommu_region_tree.rb_node); 490 491 validate_nommu_regions(); 492 rb_erase(®ion->vm_rb, &nommu_region_tree); 493 validate_nommu_regions(); 494 } 495 496 /* 497 * free a contiguous series of pages 498 */ 499 static void free_page_series(unsigned long from, unsigned long to) 500 { 501 for (; from < to; from += PAGE_SIZE) { 502 struct page *page = virt_to_page((void *)from); 503 504 atomic_long_dec(&mmap_pages_allocated); 505 put_page(page); 506 } 507 } 508 509 /* 510 * release a reference to a region 511 * - the caller must hold the region semaphore for writing, which this releases 512 * - the region may not have been added to the tree yet, in which case vm_top 513 * will equal vm_start 514 */ 515 static void __put_nommu_region(struct vm_region *region) 516 __releases(nommu_region_sem) 517 { 518 BUG_ON(!nommu_region_tree.rb_node); 519 520 if (--region->vm_usage == 0) { 521 if (region->vm_top > region->vm_start) 522 delete_nommu_region(region); 523 up_write(&nommu_region_sem); 524 525 if (region->vm_file) 526 fput(region->vm_file); 527 528 /* IO memory and memory shared directly out of the pagecache 529 * from ramfs/tmpfs mustn't be released here */ 530 if (region->vm_flags & VM_MAPPED_COPY) 531 free_page_series(region->vm_start, region->vm_top); 532 kmem_cache_free(vm_region_jar, region); 533 } else { 534 up_write(&nommu_region_sem); 535 } 536 } 537 538 /* 539 * release a reference to a region 540 */ 541 static void put_nommu_region(struct vm_region *region) 542 { 543 down_write(&nommu_region_sem); 544 __put_nommu_region(region); 545 } 546 547 void vma_mas_store(struct vm_area_struct *vma, struct ma_state *mas) 548 { 549 mas_set_range(mas, vma->vm_start, vma->vm_end - 1); 550 mas_store_prealloc(mas, vma); 551 } 552 553 void vma_mas_remove(struct vm_area_struct *vma, struct ma_state *mas) 554 { 555 mas->index = vma->vm_start; 556 mas->last = vma->vm_end - 1; 557 mas_store_prealloc(mas, NULL); 558 } 559 560 static void setup_vma_to_mm(struct vm_area_struct *vma, struct mm_struct *mm) 561 { 562 vma->vm_mm = mm; 563 564 /* add the VMA to the mapping */ 565 if (vma->vm_file) { 566 struct address_space *mapping = vma->vm_file->f_mapping; 567 568 i_mmap_lock_write(mapping); 569 flush_dcache_mmap_lock(mapping); 570 vma_interval_tree_insert(vma, &mapping->i_mmap); 571 flush_dcache_mmap_unlock(mapping); 572 i_mmap_unlock_write(mapping); 573 } 574 } 575 576 /* 577 * mas_add_vma_to_mm() - Maple state variant of add_mas_to_mm(). 578 * @mas: The maple state with preallocations. 579 * @mm: The mm_struct 580 * @vma: The vma to add 581 * 582 */ 583 static void mas_add_vma_to_mm(struct ma_state *mas, struct mm_struct *mm, 584 struct vm_area_struct *vma) 585 { 586 BUG_ON(!vma->vm_region); 587 588 setup_vma_to_mm(vma, mm); 589 mm->map_count++; 590 591 /* add the VMA to the tree */ 592 vma_mas_store(vma, mas); 593 } 594 595 /* 596 * add a VMA into a process's mm_struct in the appropriate place in the list 597 * and tree and add to the address space's page tree also if not an anonymous 598 * page 599 * - should be called with mm->mmap_lock held writelocked 600 */ 601 static int add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma) 602 { 603 MA_STATE(mas, &mm->mm_mt, vma->vm_start, vma->vm_end); 604 605 if (mas_preallocate(&mas, GFP_KERNEL)) { 606 pr_warn("Allocation of vma tree for process %d failed\n", 607 current->pid); 608 return -ENOMEM; 609 } 610 mas_add_vma_to_mm(&mas, mm, vma); 611 return 0; 612 } 613 614 static void cleanup_vma_from_mm(struct vm_area_struct *vma) 615 { 616 vma->vm_mm->map_count--; 617 /* remove the VMA from the mapping */ 618 if (vma->vm_file) { 619 struct address_space *mapping; 620 mapping = vma->vm_file->f_mapping; 621 622 i_mmap_lock_write(mapping); 623 flush_dcache_mmap_lock(mapping); 624 vma_interval_tree_remove(vma, &mapping->i_mmap); 625 flush_dcache_mmap_unlock(mapping); 626 i_mmap_unlock_write(mapping); 627 } 628 } 629 /* 630 * delete a VMA from its owning mm_struct and address space 631 */ 632 static int delete_vma_from_mm(struct vm_area_struct *vma) 633 { 634 MA_STATE(mas, &vma->vm_mm->mm_mt, 0, 0); 635 636 if (mas_preallocate(&mas, GFP_KERNEL)) { 637 pr_warn("Allocation of vma tree for process %d failed\n", 638 current->pid); 639 return -ENOMEM; 640 } 641 cleanup_vma_from_mm(vma); 642 643 /* remove from the MM's tree and list */ 644 vma_mas_remove(vma, &mas); 645 return 0; 646 } 647 648 /* 649 * destroy a VMA record 650 */ 651 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma) 652 { 653 if (vma->vm_ops && vma->vm_ops->close) 654 vma->vm_ops->close(vma); 655 if (vma->vm_file) 656 fput(vma->vm_file); 657 put_nommu_region(vma->vm_region); 658 vm_area_free(vma); 659 } 660 661 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm, 662 unsigned long start_addr, 663 unsigned long end_addr) 664 { 665 unsigned long index = start_addr; 666 667 mmap_assert_locked(mm); 668 return mt_find(&mm->mm_mt, &index, end_addr - 1); 669 } 670 EXPORT_SYMBOL(find_vma_intersection); 671 672 /* 673 * look up the first VMA in which addr resides, NULL if none 674 * - should be called with mm->mmap_lock at least held readlocked 675 */ 676 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 677 { 678 MA_STATE(mas, &mm->mm_mt, addr, addr); 679 680 return mas_walk(&mas); 681 } 682 EXPORT_SYMBOL(find_vma); 683 684 /* 685 * find a VMA 686 * - we don't extend stack VMAs under NOMMU conditions 687 */ 688 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr) 689 { 690 return find_vma(mm, addr); 691 } 692 693 /* 694 * expand a stack to a given address 695 * - not supported under NOMMU conditions 696 */ 697 int expand_stack(struct vm_area_struct *vma, unsigned long address) 698 { 699 return -ENOMEM; 700 } 701 702 /* 703 * look up the first VMA exactly that exactly matches addr 704 * - should be called with mm->mmap_lock at least held readlocked 705 */ 706 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm, 707 unsigned long addr, 708 unsigned long len) 709 { 710 struct vm_area_struct *vma; 711 unsigned long end = addr + len; 712 MA_STATE(mas, &mm->mm_mt, addr, addr); 713 714 vma = mas_walk(&mas); 715 if (!vma) 716 return NULL; 717 if (vma->vm_start != addr) 718 return NULL; 719 if (vma->vm_end != end) 720 return NULL; 721 722 return vma; 723 } 724 725 /* 726 * determine whether a mapping should be permitted and, if so, what sort of 727 * mapping we're capable of supporting 728 */ 729 static int validate_mmap_request(struct file *file, 730 unsigned long addr, 731 unsigned long len, 732 unsigned long prot, 733 unsigned long flags, 734 unsigned long pgoff, 735 unsigned long *_capabilities) 736 { 737 unsigned long capabilities, rlen; 738 int ret; 739 740 /* do the simple checks first */ 741 if (flags & MAP_FIXED) 742 return -EINVAL; 743 744 if ((flags & MAP_TYPE) != MAP_PRIVATE && 745 (flags & MAP_TYPE) != MAP_SHARED) 746 return -EINVAL; 747 748 if (!len) 749 return -EINVAL; 750 751 /* Careful about overflows.. */ 752 rlen = PAGE_ALIGN(len); 753 if (!rlen || rlen > TASK_SIZE) 754 return -ENOMEM; 755 756 /* offset overflow? */ 757 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff) 758 return -EOVERFLOW; 759 760 if (file) { 761 /* files must support mmap */ 762 if (!file->f_op->mmap) 763 return -ENODEV; 764 765 /* work out if what we've got could possibly be shared 766 * - we support chardevs that provide their own "memory" 767 * - we support files/blockdevs that are memory backed 768 */ 769 if (file->f_op->mmap_capabilities) { 770 capabilities = file->f_op->mmap_capabilities(file); 771 } else { 772 /* no explicit capabilities set, so assume some 773 * defaults */ 774 switch (file_inode(file)->i_mode & S_IFMT) { 775 case S_IFREG: 776 case S_IFBLK: 777 capabilities = NOMMU_MAP_COPY; 778 break; 779 780 case S_IFCHR: 781 capabilities = 782 NOMMU_MAP_DIRECT | 783 NOMMU_MAP_READ | 784 NOMMU_MAP_WRITE; 785 break; 786 787 default: 788 return -EINVAL; 789 } 790 } 791 792 /* eliminate any capabilities that we can't support on this 793 * device */ 794 if (!file->f_op->get_unmapped_area) 795 capabilities &= ~NOMMU_MAP_DIRECT; 796 if (!(file->f_mode & FMODE_CAN_READ)) 797 capabilities &= ~NOMMU_MAP_COPY; 798 799 /* The file shall have been opened with read permission. */ 800 if (!(file->f_mode & FMODE_READ)) 801 return -EACCES; 802 803 if (flags & MAP_SHARED) { 804 /* do checks for writing, appending and locking */ 805 if ((prot & PROT_WRITE) && 806 !(file->f_mode & FMODE_WRITE)) 807 return -EACCES; 808 809 if (IS_APPEND(file_inode(file)) && 810 (file->f_mode & FMODE_WRITE)) 811 return -EACCES; 812 813 if (!(capabilities & NOMMU_MAP_DIRECT)) 814 return -ENODEV; 815 816 /* we mustn't privatise shared mappings */ 817 capabilities &= ~NOMMU_MAP_COPY; 818 } else { 819 /* we're going to read the file into private memory we 820 * allocate */ 821 if (!(capabilities & NOMMU_MAP_COPY)) 822 return -ENODEV; 823 824 /* we don't permit a private writable mapping to be 825 * shared with the backing device */ 826 if (prot & PROT_WRITE) 827 capabilities &= ~NOMMU_MAP_DIRECT; 828 } 829 830 if (capabilities & NOMMU_MAP_DIRECT) { 831 if (((prot & PROT_READ) && !(capabilities & NOMMU_MAP_READ)) || 832 ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) || 833 ((prot & PROT_EXEC) && !(capabilities & NOMMU_MAP_EXEC)) 834 ) { 835 capabilities &= ~NOMMU_MAP_DIRECT; 836 if (flags & MAP_SHARED) { 837 pr_warn("MAP_SHARED not completely supported on !MMU\n"); 838 return -EINVAL; 839 } 840 } 841 } 842 843 /* handle executable mappings and implied executable 844 * mappings */ 845 if (path_noexec(&file->f_path)) { 846 if (prot & PROT_EXEC) 847 return -EPERM; 848 } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) { 849 /* handle implication of PROT_EXEC by PROT_READ */ 850 if (current->personality & READ_IMPLIES_EXEC) { 851 if (capabilities & NOMMU_MAP_EXEC) 852 prot |= PROT_EXEC; 853 } 854 } else if ((prot & PROT_READ) && 855 (prot & PROT_EXEC) && 856 !(capabilities & NOMMU_MAP_EXEC) 857 ) { 858 /* backing file is not executable, try to copy */ 859 capabilities &= ~NOMMU_MAP_DIRECT; 860 } 861 } else { 862 /* anonymous mappings are always memory backed and can be 863 * privately mapped 864 */ 865 capabilities = NOMMU_MAP_COPY; 866 867 /* handle PROT_EXEC implication by PROT_READ */ 868 if ((prot & PROT_READ) && 869 (current->personality & READ_IMPLIES_EXEC)) 870 prot |= PROT_EXEC; 871 } 872 873 /* allow the security API to have its say */ 874 ret = security_mmap_addr(addr); 875 if (ret < 0) 876 return ret; 877 878 /* looks okay */ 879 *_capabilities = capabilities; 880 return 0; 881 } 882 883 /* 884 * we've determined that we can make the mapping, now translate what we 885 * now know into VMA flags 886 */ 887 static unsigned long determine_vm_flags(struct file *file, 888 unsigned long prot, 889 unsigned long flags, 890 unsigned long capabilities) 891 { 892 unsigned long vm_flags; 893 894 vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags); 895 896 if (!file) { 897 /* 898 * MAP_ANONYMOUS. MAP_SHARED is mapped to MAP_PRIVATE, because 899 * there is no fork(). 900 */ 901 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 902 } else if (flags & MAP_PRIVATE) { 903 /* MAP_PRIVATE file mapping */ 904 if (capabilities & NOMMU_MAP_DIRECT) 905 vm_flags |= (capabilities & NOMMU_VMFLAGS); 906 else 907 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 908 909 if (!(prot & PROT_WRITE) && !current->ptrace) 910 /* 911 * R/O private file mapping which cannot be used to 912 * modify memory, especially also not via active ptrace 913 * (e.g., set breakpoints) or later by upgrading 914 * permissions (no mprotect()). We can try overlaying 915 * the file mapping, which will work e.g., on chardevs, 916 * ramfs/tmpfs/shmfs and romfs/cramf. 917 */ 918 vm_flags |= VM_MAYOVERLAY; 919 } else { 920 /* MAP_SHARED file mapping: NOMMU_MAP_DIRECT is set. */ 921 vm_flags |= VM_SHARED | VM_MAYSHARE | 922 (capabilities & NOMMU_VMFLAGS); 923 } 924 925 return vm_flags; 926 } 927 928 /* 929 * set up a shared mapping on a file (the driver or filesystem provides and 930 * pins the storage) 931 */ 932 static int do_mmap_shared_file(struct vm_area_struct *vma) 933 { 934 int ret; 935 936 ret = call_mmap(vma->vm_file, vma); 937 if (ret == 0) { 938 vma->vm_region->vm_top = vma->vm_region->vm_end; 939 return 0; 940 } 941 if (ret != -ENOSYS) 942 return ret; 943 944 /* getting -ENOSYS indicates that direct mmap isn't possible (as 945 * opposed to tried but failed) so we can only give a suitable error as 946 * it's not possible to make a private copy if MAP_SHARED was given */ 947 return -ENODEV; 948 } 949 950 /* 951 * set up a private mapping or an anonymous shared mapping 952 */ 953 static int do_mmap_private(struct vm_area_struct *vma, 954 struct vm_region *region, 955 unsigned long len, 956 unsigned long capabilities) 957 { 958 unsigned long total, point; 959 void *base; 960 int ret, order; 961 962 /* 963 * Invoke the file's mapping function so that it can keep track of 964 * shared mappings on devices or memory. VM_MAYOVERLAY will be set if 965 * it may attempt to share, which will make is_nommu_shared_mapping() 966 * happy. 967 */ 968 if (capabilities & NOMMU_MAP_DIRECT) { 969 ret = call_mmap(vma->vm_file, vma); 970 /* shouldn't return success if we're not sharing */ 971 if (WARN_ON_ONCE(!is_nommu_shared_mapping(vma->vm_flags))) 972 ret = -ENOSYS; 973 if (ret == 0) { 974 vma->vm_region->vm_top = vma->vm_region->vm_end; 975 return 0; 976 } 977 if (ret != -ENOSYS) 978 return ret; 979 980 /* getting an ENOSYS error indicates that direct mmap isn't 981 * possible (as opposed to tried but failed) so we'll try to 982 * make a private copy of the data and map that instead */ 983 } 984 985 986 /* allocate some memory to hold the mapping 987 * - note that this may not return a page-aligned address if the object 988 * we're allocating is smaller than a page 989 */ 990 order = get_order(len); 991 total = 1 << order; 992 point = len >> PAGE_SHIFT; 993 994 /* we don't want to allocate a power-of-2 sized page set */ 995 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) 996 total = point; 997 998 base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL); 999 if (!base) 1000 goto enomem; 1001 1002 atomic_long_add(total, &mmap_pages_allocated); 1003 1004 region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY; 1005 region->vm_start = (unsigned long) base; 1006 region->vm_end = region->vm_start + len; 1007 region->vm_top = region->vm_start + (total << PAGE_SHIFT); 1008 1009 vma->vm_start = region->vm_start; 1010 vma->vm_end = region->vm_start + len; 1011 1012 if (vma->vm_file) { 1013 /* read the contents of a file into the copy */ 1014 loff_t fpos; 1015 1016 fpos = vma->vm_pgoff; 1017 fpos <<= PAGE_SHIFT; 1018 1019 ret = kernel_read(vma->vm_file, base, len, &fpos); 1020 if (ret < 0) 1021 goto error_free; 1022 1023 /* clear the last little bit */ 1024 if (ret < len) 1025 memset(base + ret, 0, len - ret); 1026 1027 } else { 1028 vma_set_anonymous(vma); 1029 } 1030 1031 return 0; 1032 1033 error_free: 1034 free_page_series(region->vm_start, region->vm_top); 1035 region->vm_start = vma->vm_start = 0; 1036 region->vm_end = vma->vm_end = 0; 1037 region->vm_top = 0; 1038 return ret; 1039 1040 enomem: 1041 pr_err("Allocation of length %lu from process %d (%s) failed\n", 1042 len, current->pid, current->comm); 1043 show_free_areas(0, NULL); 1044 return -ENOMEM; 1045 } 1046 1047 /* 1048 * handle mapping creation for uClinux 1049 */ 1050 unsigned long do_mmap(struct file *file, 1051 unsigned long addr, 1052 unsigned long len, 1053 unsigned long prot, 1054 unsigned long flags, 1055 unsigned long pgoff, 1056 unsigned long *populate, 1057 struct list_head *uf) 1058 { 1059 struct vm_area_struct *vma; 1060 struct vm_region *region; 1061 struct rb_node *rb; 1062 vm_flags_t vm_flags; 1063 unsigned long capabilities, result; 1064 int ret; 1065 MA_STATE(mas, ¤t->mm->mm_mt, 0, 0); 1066 1067 *populate = 0; 1068 1069 /* decide whether we should attempt the mapping, and if so what sort of 1070 * mapping */ 1071 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff, 1072 &capabilities); 1073 if (ret < 0) 1074 return ret; 1075 1076 /* we ignore the address hint */ 1077 addr = 0; 1078 len = PAGE_ALIGN(len); 1079 1080 /* we've determined that we can make the mapping, now translate what we 1081 * now know into VMA flags */ 1082 vm_flags = determine_vm_flags(file, prot, flags, capabilities); 1083 1084 1085 /* we're going to need to record the mapping */ 1086 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL); 1087 if (!region) 1088 goto error_getting_region; 1089 1090 vma = vm_area_alloc(current->mm); 1091 if (!vma) 1092 goto error_getting_vma; 1093 1094 if (mas_preallocate(&mas, GFP_KERNEL)) 1095 goto error_maple_preallocate; 1096 1097 region->vm_usage = 1; 1098 region->vm_flags = vm_flags; 1099 region->vm_pgoff = pgoff; 1100 1101 vma->vm_flags = vm_flags; 1102 vma->vm_pgoff = pgoff; 1103 1104 if (file) { 1105 region->vm_file = get_file(file); 1106 vma->vm_file = get_file(file); 1107 } 1108 1109 down_write(&nommu_region_sem); 1110 1111 /* if we want to share, we need to check for regions created by other 1112 * mmap() calls that overlap with our proposed mapping 1113 * - we can only share with a superset match on most regular files 1114 * - shared mappings on character devices and memory backed files are 1115 * permitted to overlap inexactly as far as we are concerned for in 1116 * these cases, sharing is handled in the driver or filesystem rather 1117 * than here 1118 */ 1119 if (is_nommu_shared_mapping(vm_flags)) { 1120 struct vm_region *pregion; 1121 unsigned long pglen, rpglen, pgend, rpgend, start; 1122 1123 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1124 pgend = pgoff + pglen; 1125 1126 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) { 1127 pregion = rb_entry(rb, struct vm_region, vm_rb); 1128 1129 if (!is_nommu_shared_mapping(pregion->vm_flags)) 1130 continue; 1131 1132 /* search for overlapping mappings on the same file */ 1133 if (file_inode(pregion->vm_file) != 1134 file_inode(file)) 1135 continue; 1136 1137 if (pregion->vm_pgoff >= pgend) 1138 continue; 1139 1140 rpglen = pregion->vm_end - pregion->vm_start; 1141 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT; 1142 rpgend = pregion->vm_pgoff + rpglen; 1143 if (pgoff >= rpgend) 1144 continue; 1145 1146 /* handle inexactly overlapping matches between 1147 * mappings */ 1148 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) && 1149 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) { 1150 /* new mapping is not a subset of the region */ 1151 if (!(capabilities & NOMMU_MAP_DIRECT)) 1152 goto sharing_violation; 1153 continue; 1154 } 1155 1156 /* we've found a region we can share */ 1157 pregion->vm_usage++; 1158 vma->vm_region = pregion; 1159 start = pregion->vm_start; 1160 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT; 1161 vma->vm_start = start; 1162 vma->vm_end = start + len; 1163 1164 if (pregion->vm_flags & VM_MAPPED_COPY) 1165 vma->vm_flags |= VM_MAPPED_COPY; 1166 else { 1167 ret = do_mmap_shared_file(vma); 1168 if (ret < 0) { 1169 vma->vm_region = NULL; 1170 vma->vm_start = 0; 1171 vma->vm_end = 0; 1172 pregion->vm_usage--; 1173 pregion = NULL; 1174 goto error_just_free; 1175 } 1176 } 1177 fput(region->vm_file); 1178 kmem_cache_free(vm_region_jar, region); 1179 region = pregion; 1180 result = start; 1181 goto share; 1182 } 1183 1184 /* obtain the address at which to make a shared mapping 1185 * - this is the hook for quasi-memory character devices to 1186 * tell us the location of a shared mapping 1187 */ 1188 if (capabilities & NOMMU_MAP_DIRECT) { 1189 addr = file->f_op->get_unmapped_area(file, addr, len, 1190 pgoff, flags); 1191 if (IS_ERR_VALUE(addr)) { 1192 ret = addr; 1193 if (ret != -ENOSYS) 1194 goto error_just_free; 1195 1196 /* the driver refused to tell us where to site 1197 * the mapping so we'll have to attempt to copy 1198 * it */ 1199 ret = -ENODEV; 1200 if (!(capabilities & NOMMU_MAP_COPY)) 1201 goto error_just_free; 1202 1203 capabilities &= ~NOMMU_MAP_DIRECT; 1204 } else { 1205 vma->vm_start = region->vm_start = addr; 1206 vma->vm_end = region->vm_end = addr + len; 1207 } 1208 } 1209 } 1210 1211 vma->vm_region = region; 1212 1213 /* set up the mapping 1214 * - the region is filled in if NOMMU_MAP_DIRECT is still set 1215 */ 1216 if (file && vma->vm_flags & VM_SHARED) 1217 ret = do_mmap_shared_file(vma); 1218 else 1219 ret = do_mmap_private(vma, region, len, capabilities); 1220 if (ret < 0) 1221 goto error_just_free; 1222 add_nommu_region(region); 1223 1224 /* clear anonymous mappings that don't ask for uninitialized data */ 1225 if (!vma->vm_file && 1226 (!IS_ENABLED(CONFIG_MMAP_ALLOW_UNINITIALIZED) || 1227 !(flags & MAP_UNINITIALIZED))) 1228 memset((void *)region->vm_start, 0, 1229 region->vm_end - region->vm_start); 1230 1231 /* okay... we have a mapping; now we have to register it */ 1232 result = vma->vm_start; 1233 1234 current->mm->total_vm += len >> PAGE_SHIFT; 1235 1236 share: 1237 mas_add_vma_to_mm(&mas, current->mm, vma); 1238 1239 /* we flush the region from the icache only when the first executable 1240 * mapping of it is made */ 1241 if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) { 1242 flush_icache_user_range(region->vm_start, region->vm_end); 1243 region->vm_icache_flushed = true; 1244 } 1245 1246 up_write(&nommu_region_sem); 1247 1248 return result; 1249 1250 error_just_free: 1251 up_write(&nommu_region_sem); 1252 error: 1253 mas_destroy(&mas); 1254 if (region->vm_file) 1255 fput(region->vm_file); 1256 kmem_cache_free(vm_region_jar, region); 1257 if (vma->vm_file) 1258 fput(vma->vm_file); 1259 vm_area_free(vma); 1260 return ret; 1261 1262 sharing_violation: 1263 up_write(&nommu_region_sem); 1264 pr_warn("Attempt to share mismatched mappings\n"); 1265 ret = -EINVAL; 1266 goto error; 1267 1268 error_getting_vma: 1269 kmem_cache_free(vm_region_jar, region); 1270 pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n", 1271 len, current->pid); 1272 show_free_areas(0, NULL); 1273 return -ENOMEM; 1274 1275 error_getting_region: 1276 pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n", 1277 len, current->pid); 1278 show_free_areas(0, NULL); 1279 return -ENOMEM; 1280 1281 error_maple_preallocate: 1282 kmem_cache_free(vm_region_jar, region); 1283 vm_area_free(vma); 1284 pr_warn("Allocation of vma tree for process %d failed\n", current->pid); 1285 show_free_areas(0, NULL); 1286 return -ENOMEM; 1287 1288 } 1289 1290 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len, 1291 unsigned long prot, unsigned long flags, 1292 unsigned long fd, unsigned long pgoff) 1293 { 1294 struct file *file = NULL; 1295 unsigned long retval = -EBADF; 1296 1297 audit_mmap_fd(fd, flags); 1298 if (!(flags & MAP_ANONYMOUS)) { 1299 file = fget(fd); 1300 if (!file) 1301 goto out; 1302 } 1303 1304 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1305 1306 if (file) 1307 fput(file); 1308 out: 1309 return retval; 1310 } 1311 1312 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1313 unsigned long, prot, unsigned long, flags, 1314 unsigned long, fd, unsigned long, pgoff) 1315 { 1316 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff); 1317 } 1318 1319 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1320 struct mmap_arg_struct { 1321 unsigned long addr; 1322 unsigned long len; 1323 unsigned long prot; 1324 unsigned long flags; 1325 unsigned long fd; 1326 unsigned long offset; 1327 }; 1328 1329 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1330 { 1331 struct mmap_arg_struct a; 1332 1333 if (copy_from_user(&a, arg, sizeof(a))) 1334 return -EFAULT; 1335 if (offset_in_page(a.offset)) 1336 return -EINVAL; 1337 1338 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1339 a.offset >> PAGE_SHIFT); 1340 } 1341 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1342 1343 /* 1344 * split a vma into two pieces at address 'addr', a new vma is allocated either 1345 * for the first part or the tail. 1346 */ 1347 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 1348 unsigned long addr, int new_below) 1349 { 1350 struct vm_area_struct *new; 1351 struct vm_region *region; 1352 unsigned long npages; 1353 MA_STATE(mas, &mm->mm_mt, vma->vm_start, vma->vm_end); 1354 1355 /* we're only permitted to split anonymous regions (these should have 1356 * only a single usage on the region) */ 1357 if (vma->vm_file) 1358 return -ENOMEM; 1359 1360 mm = vma->vm_mm; 1361 if (mm->map_count >= sysctl_max_map_count) 1362 return -ENOMEM; 1363 1364 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL); 1365 if (!region) 1366 return -ENOMEM; 1367 1368 new = vm_area_dup(vma); 1369 if (!new) 1370 goto err_vma_dup; 1371 1372 if (mas_preallocate(&mas, GFP_KERNEL)) { 1373 pr_warn("Allocation of vma tree for process %d failed\n", 1374 current->pid); 1375 goto err_mas_preallocate; 1376 } 1377 1378 /* most fields are the same, copy all, and then fixup */ 1379 *region = *vma->vm_region; 1380 new->vm_region = region; 1381 1382 npages = (addr - vma->vm_start) >> PAGE_SHIFT; 1383 1384 if (new_below) { 1385 region->vm_top = region->vm_end = new->vm_end = addr; 1386 } else { 1387 region->vm_start = new->vm_start = addr; 1388 region->vm_pgoff = new->vm_pgoff += npages; 1389 } 1390 1391 if (new->vm_ops && new->vm_ops->open) 1392 new->vm_ops->open(new); 1393 1394 down_write(&nommu_region_sem); 1395 delete_nommu_region(vma->vm_region); 1396 if (new_below) { 1397 vma->vm_region->vm_start = vma->vm_start = addr; 1398 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages; 1399 } else { 1400 vma->vm_region->vm_end = vma->vm_end = addr; 1401 vma->vm_region->vm_top = addr; 1402 } 1403 add_nommu_region(vma->vm_region); 1404 add_nommu_region(new->vm_region); 1405 up_write(&nommu_region_sem); 1406 1407 setup_vma_to_mm(vma, mm); 1408 setup_vma_to_mm(new, mm); 1409 mas_set_range(&mas, vma->vm_start, vma->vm_end - 1); 1410 mas_store(&mas, vma); 1411 vma_mas_store(new, &mas); 1412 mm->map_count++; 1413 return 0; 1414 1415 err_mas_preallocate: 1416 vm_area_free(new); 1417 err_vma_dup: 1418 kmem_cache_free(vm_region_jar, region); 1419 return -ENOMEM; 1420 } 1421 1422 /* 1423 * shrink a VMA by removing the specified chunk from either the beginning or 1424 * the end 1425 */ 1426 static int shrink_vma(struct mm_struct *mm, 1427 struct vm_area_struct *vma, 1428 unsigned long from, unsigned long to) 1429 { 1430 struct vm_region *region; 1431 1432 /* adjust the VMA's pointers, which may reposition it in the MM's tree 1433 * and list */ 1434 if (delete_vma_from_mm(vma)) 1435 return -ENOMEM; 1436 if (from > vma->vm_start) 1437 vma->vm_end = from; 1438 else 1439 vma->vm_start = to; 1440 if (add_vma_to_mm(mm, vma)) 1441 return -ENOMEM; 1442 1443 /* cut the backing region down to size */ 1444 region = vma->vm_region; 1445 BUG_ON(region->vm_usage != 1); 1446 1447 down_write(&nommu_region_sem); 1448 delete_nommu_region(region); 1449 if (from > region->vm_start) { 1450 to = region->vm_top; 1451 region->vm_top = region->vm_end = from; 1452 } else { 1453 region->vm_start = to; 1454 } 1455 add_nommu_region(region); 1456 up_write(&nommu_region_sem); 1457 1458 free_page_series(from, to); 1459 return 0; 1460 } 1461 1462 /* 1463 * release a mapping 1464 * - under NOMMU conditions the chunk to be unmapped must be backed by a single 1465 * VMA, though it need not cover the whole VMA 1466 */ 1467 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf) 1468 { 1469 MA_STATE(mas, &mm->mm_mt, start, start); 1470 struct vm_area_struct *vma; 1471 unsigned long end; 1472 int ret = 0; 1473 1474 len = PAGE_ALIGN(len); 1475 if (len == 0) 1476 return -EINVAL; 1477 1478 end = start + len; 1479 1480 /* find the first potentially overlapping VMA */ 1481 vma = mas_find(&mas, end - 1); 1482 if (!vma) { 1483 static int limit; 1484 if (limit < 5) { 1485 pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n", 1486 current->pid, current->comm, 1487 start, start + len - 1); 1488 limit++; 1489 } 1490 return -EINVAL; 1491 } 1492 1493 /* we're allowed to split an anonymous VMA but not a file-backed one */ 1494 if (vma->vm_file) { 1495 do { 1496 if (start > vma->vm_start) 1497 return -EINVAL; 1498 if (end == vma->vm_end) 1499 goto erase_whole_vma; 1500 vma = mas_next(&mas, end - 1); 1501 } while (vma); 1502 return -EINVAL; 1503 } else { 1504 /* the chunk must be a subset of the VMA found */ 1505 if (start == vma->vm_start && end == vma->vm_end) 1506 goto erase_whole_vma; 1507 if (start < vma->vm_start || end > vma->vm_end) 1508 return -EINVAL; 1509 if (offset_in_page(start)) 1510 return -EINVAL; 1511 if (end != vma->vm_end && offset_in_page(end)) 1512 return -EINVAL; 1513 if (start != vma->vm_start && end != vma->vm_end) { 1514 ret = split_vma(mm, vma, start, 1); 1515 if (ret < 0) 1516 return ret; 1517 } 1518 return shrink_vma(mm, vma, start, end); 1519 } 1520 1521 erase_whole_vma: 1522 if (delete_vma_from_mm(vma)) 1523 ret = -ENOMEM; 1524 else 1525 delete_vma(mm, vma); 1526 return ret; 1527 } 1528 1529 int vm_munmap(unsigned long addr, size_t len) 1530 { 1531 struct mm_struct *mm = current->mm; 1532 int ret; 1533 1534 mmap_write_lock(mm); 1535 ret = do_munmap(mm, addr, len, NULL); 1536 mmap_write_unlock(mm); 1537 return ret; 1538 } 1539 EXPORT_SYMBOL(vm_munmap); 1540 1541 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 1542 { 1543 return vm_munmap(addr, len); 1544 } 1545 1546 /* 1547 * release all the mappings made in a process's VM space 1548 */ 1549 void exit_mmap(struct mm_struct *mm) 1550 { 1551 VMA_ITERATOR(vmi, mm, 0); 1552 struct vm_area_struct *vma; 1553 1554 if (!mm) 1555 return; 1556 1557 mm->total_vm = 0; 1558 1559 /* 1560 * Lock the mm to avoid assert complaining even though this is the only 1561 * user of the mm 1562 */ 1563 mmap_write_lock(mm); 1564 for_each_vma(vmi, vma) { 1565 cleanup_vma_from_mm(vma); 1566 delete_vma(mm, vma); 1567 cond_resched(); 1568 } 1569 __mt_destroy(&mm->mm_mt); 1570 mmap_write_unlock(mm); 1571 } 1572 1573 int vm_brk(unsigned long addr, unsigned long len) 1574 { 1575 return -ENOMEM; 1576 } 1577 1578 /* 1579 * expand (or shrink) an existing mapping, potentially moving it at the same 1580 * time (controlled by the MREMAP_MAYMOVE flag and available VM space) 1581 * 1582 * under NOMMU conditions, we only permit changing a mapping's size, and only 1583 * as long as it stays within the region allocated by do_mmap_private() and the 1584 * block is not shareable 1585 * 1586 * MREMAP_FIXED is not supported under NOMMU conditions 1587 */ 1588 static unsigned long do_mremap(unsigned long addr, 1589 unsigned long old_len, unsigned long new_len, 1590 unsigned long flags, unsigned long new_addr) 1591 { 1592 struct vm_area_struct *vma; 1593 1594 /* insanity checks first */ 1595 old_len = PAGE_ALIGN(old_len); 1596 new_len = PAGE_ALIGN(new_len); 1597 if (old_len == 0 || new_len == 0) 1598 return (unsigned long) -EINVAL; 1599 1600 if (offset_in_page(addr)) 1601 return -EINVAL; 1602 1603 if (flags & MREMAP_FIXED && new_addr != addr) 1604 return (unsigned long) -EINVAL; 1605 1606 vma = find_vma_exact(current->mm, addr, old_len); 1607 if (!vma) 1608 return (unsigned long) -EINVAL; 1609 1610 if (vma->vm_end != vma->vm_start + old_len) 1611 return (unsigned long) -EFAULT; 1612 1613 if (is_nommu_shared_mapping(vma->vm_flags)) 1614 return (unsigned long) -EPERM; 1615 1616 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start) 1617 return (unsigned long) -ENOMEM; 1618 1619 /* all checks complete - do it */ 1620 vma->vm_end = vma->vm_start + new_len; 1621 return vma->vm_start; 1622 } 1623 1624 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len, 1625 unsigned long, new_len, unsigned long, flags, 1626 unsigned long, new_addr) 1627 { 1628 unsigned long ret; 1629 1630 mmap_write_lock(current->mm); 1631 ret = do_mremap(addr, old_len, new_len, flags, new_addr); 1632 mmap_write_unlock(current->mm); 1633 return ret; 1634 } 1635 1636 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 1637 unsigned int foll_flags) 1638 { 1639 return NULL; 1640 } 1641 1642 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 1643 unsigned long pfn, unsigned long size, pgprot_t prot) 1644 { 1645 if (addr != (pfn << PAGE_SHIFT)) 1646 return -EINVAL; 1647 1648 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; 1649 return 0; 1650 } 1651 EXPORT_SYMBOL(remap_pfn_range); 1652 1653 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 1654 { 1655 unsigned long pfn = start >> PAGE_SHIFT; 1656 unsigned long vm_len = vma->vm_end - vma->vm_start; 1657 1658 pfn += vma->vm_pgoff; 1659 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 1660 } 1661 EXPORT_SYMBOL(vm_iomap_memory); 1662 1663 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 1664 unsigned long pgoff) 1665 { 1666 unsigned int size = vma->vm_end - vma->vm_start; 1667 1668 if (!(vma->vm_flags & VM_USERMAP)) 1669 return -EINVAL; 1670 1671 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT)); 1672 vma->vm_end = vma->vm_start + size; 1673 1674 return 0; 1675 } 1676 EXPORT_SYMBOL(remap_vmalloc_range); 1677 1678 vm_fault_t filemap_fault(struct vm_fault *vmf) 1679 { 1680 BUG(); 1681 return 0; 1682 } 1683 EXPORT_SYMBOL(filemap_fault); 1684 1685 vm_fault_t filemap_map_pages(struct vm_fault *vmf, 1686 pgoff_t start_pgoff, pgoff_t end_pgoff) 1687 { 1688 BUG(); 1689 return 0; 1690 } 1691 EXPORT_SYMBOL(filemap_map_pages); 1692 1693 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf, 1694 int len, unsigned int gup_flags) 1695 { 1696 struct vm_area_struct *vma; 1697 int write = gup_flags & FOLL_WRITE; 1698 1699 if (mmap_read_lock_killable(mm)) 1700 return 0; 1701 1702 /* the access must start within one of the target process's mappings */ 1703 vma = find_vma(mm, addr); 1704 if (vma) { 1705 /* don't overrun this mapping */ 1706 if (addr + len >= vma->vm_end) 1707 len = vma->vm_end - addr; 1708 1709 /* only read or write mappings where it is permitted */ 1710 if (write && vma->vm_flags & VM_MAYWRITE) 1711 copy_to_user_page(vma, NULL, addr, 1712 (void *) addr, buf, len); 1713 else if (!write && vma->vm_flags & VM_MAYREAD) 1714 copy_from_user_page(vma, NULL, addr, 1715 buf, (void *) addr, len); 1716 else 1717 len = 0; 1718 } else { 1719 len = 0; 1720 } 1721 1722 mmap_read_unlock(mm); 1723 1724 return len; 1725 } 1726 1727 /** 1728 * access_remote_vm - access another process' address space 1729 * @mm: the mm_struct of the target address space 1730 * @addr: start address to access 1731 * @buf: source or destination buffer 1732 * @len: number of bytes to transfer 1733 * @gup_flags: flags modifying lookup behaviour 1734 * 1735 * The caller must hold a reference on @mm. 1736 */ 1737 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1738 void *buf, int len, unsigned int gup_flags) 1739 { 1740 return __access_remote_vm(mm, addr, buf, len, gup_flags); 1741 } 1742 1743 /* 1744 * Access another process' address space. 1745 * - source/target buffer must be kernel space 1746 */ 1747 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, 1748 unsigned int gup_flags) 1749 { 1750 struct mm_struct *mm; 1751 1752 if (addr + len < addr) 1753 return 0; 1754 1755 mm = get_task_mm(tsk); 1756 if (!mm) 1757 return 0; 1758 1759 len = __access_remote_vm(mm, addr, buf, len, gup_flags); 1760 1761 mmput(mm); 1762 return len; 1763 } 1764 EXPORT_SYMBOL_GPL(access_process_vm); 1765 1766 /** 1767 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode 1768 * @inode: The inode to check 1769 * @size: The current filesize of the inode 1770 * @newsize: The proposed filesize of the inode 1771 * 1772 * Check the shared mappings on an inode on behalf of a shrinking truncate to 1773 * make sure that any outstanding VMAs aren't broken and then shrink the 1774 * vm_regions that extend beyond so that do_mmap() doesn't 1775 * automatically grant mappings that are too large. 1776 */ 1777 int nommu_shrink_inode_mappings(struct inode *inode, size_t size, 1778 size_t newsize) 1779 { 1780 struct vm_area_struct *vma; 1781 struct vm_region *region; 1782 pgoff_t low, high; 1783 size_t r_size, r_top; 1784 1785 low = newsize >> PAGE_SHIFT; 1786 high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 1787 1788 down_write(&nommu_region_sem); 1789 i_mmap_lock_read(inode->i_mapping); 1790 1791 /* search for VMAs that fall within the dead zone */ 1792 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) { 1793 /* found one - only interested if it's shared out of the page 1794 * cache */ 1795 if (vma->vm_flags & VM_SHARED) { 1796 i_mmap_unlock_read(inode->i_mapping); 1797 up_write(&nommu_region_sem); 1798 return -ETXTBSY; /* not quite true, but near enough */ 1799 } 1800 } 1801 1802 /* reduce any regions that overlap the dead zone - if in existence, 1803 * these will be pointed to by VMAs that don't overlap the dead zone 1804 * 1805 * we don't check for any regions that start beyond the EOF as there 1806 * shouldn't be any 1807 */ 1808 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) { 1809 if (!(vma->vm_flags & VM_SHARED)) 1810 continue; 1811 1812 region = vma->vm_region; 1813 r_size = region->vm_top - region->vm_start; 1814 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size; 1815 1816 if (r_top > newsize) { 1817 region->vm_top -= r_top - newsize; 1818 if (region->vm_end > region->vm_top) 1819 region->vm_end = region->vm_top; 1820 } 1821 } 1822 1823 i_mmap_unlock_read(inode->i_mapping); 1824 up_write(&nommu_region_sem); 1825 return 0; 1826 } 1827 1828 /* 1829 * Initialise sysctl_user_reserve_kbytes. 1830 * 1831 * This is intended to prevent a user from starting a single memory hogging 1832 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER 1833 * mode. 1834 * 1835 * The default value is min(3% of free memory, 128MB) 1836 * 128MB is enough to recover with sshd/login, bash, and top/kill. 1837 */ 1838 static int __meminit init_user_reserve(void) 1839 { 1840 unsigned long free_kbytes; 1841 1842 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 1843 1844 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17); 1845 return 0; 1846 } 1847 subsys_initcall(init_user_reserve); 1848 1849 /* 1850 * Initialise sysctl_admin_reserve_kbytes. 1851 * 1852 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin 1853 * to log in and kill a memory hogging process. 1854 * 1855 * Systems with more than 256MB will reserve 8MB, enough to recover 1856 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will 1857 * only reserve 3% of free pages by default. 1858 */ 1859 static int __meminit init_admin_reserve(void) 1860 { 1861 unsigned long free_kbytes; 1862 1863 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 1864 1865 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13); 1866 return 0; 1867 } 1868 subsys_initcall(init_admin_reserve); 1869