1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/nommu.c 4 * 5 * Replacement code for mm functions to support CPU's that don't 6 * have any form of memory management unit (thus no virtual memory). 7 * 8 * See Documentation/admin-guide/mm/nommu-mmap.rst 9 * 10 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com> 11 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com> 12 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org> 13 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com> 14 * Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org> 15 */ 16 17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 18 19 #include <linux/export.h> 20 #include <linux/mm.h> 21 #include <linux/sched/mm.h> 22 #include <linux/mman.h> 23 #include <linux/swap.h> 24 #include <linux/file.h> 25 #include <linux/highmem.h> 26 #include <linux/pagemap.h> 27 #include <linux/slab.h> 28 #include <linux/vmalloc.h> 29 #include <linux/backing-dev.h> 30 #include <linux/compiler.h> 31 #include <linux/mount.h> 32 #include <linux/personality.h> 33 #include <linux/security.h> 34 #include <linux/syscalls.h> 35 #include <linux/audit.h> 36 #include <linux/printk.h> 37 38 #include <linux/uaccess.h> 39 #include <linux/uio.h> 40 #include <asm/tlb.h> 41 #include <asm/tlbflush.h> 42 #include <asm/mmu_context.h> 43 #include "internal.h" 44 45 void *high_memory; 46 EXPORT_SYMBOL(high_memory); 47 struct page *mem_map; 48 unsigned long max_mapnr; 49 EXPORT_SYMBOL(max_mapnr); 50 unsigned long highest_memmap_pfn; 51 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS; 52 int heap_stack_gap = 0; 53 54 atomic_long_t mmap_pages_allocated; 55 56 EXPORT_SYMBOL(mem_map); 57 58 /* list of mapped, potentially shareable regions */ 59 static struct kmem_cache *vm_region_jar; 60 struct rb_root nommu_region_tree = RB_ROOT; 61 DECLARE_RWSEM(nommu_region_sem); 62 63 const struct vm_operations_struct generic_file_vm_ops = { 64 }; 65 66 /* 67 * Return the total memory allocated for this pointer, not 68 * just what the caller asked for. 69 * 70 * Doesn't have to be accurate, i.e. may have races. 71 */ 72 unsigned int kobjsize(const void *objp) 73 { 74 struct page *page; 75 76 /* 77 * If the object we have should not have ksize performed on it, 78 * return size of 0 79 */ 80 if (!objp || !virt_addr_valid(objp)) 81 return 0; 82 83 page = virt_to_head_page(objp); 84 85 /* 86 * If the allocator sets PageSlab, we know the pointer came from 87 * kmalloc(). 88 */ 89 if (PageSlab(page)) 90 return ksize(objp); 91 92 /* 93 * If it's not a compound page, see if we have a matching VMA 94 * region. This test is intentionally done in reverse order, 95 * so if there's no VMA, we still fall through and hand back 96 * PAGE_SIZE for 0-order pages. 97 */ 98 if (!PageCompound(page)) { 99 struct vm_area_struct *vma; 100 101 vma = find_vma(current->mm, (unsigned long)objp); 102 if (vma) 103 return vma->vm_end - vma->vm_start; 104 } 105 106 /* 107 * The ksize() function is only guaranteed to work for pointers 108 * returned by kmalloc(). So handle arbitrary pointers here. 109 */ 110 return page_size(page); 111 } 112 113 void vfree(const void *addr) 114 { 115 kfree(addr); 116 } 117 EXPORT_SYMBOL(vfree); 118 119 void *__vmalloc_noprof(unsigned long size, gfp_t gfp_mask) 120 { 121 /* 122 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc() 123 * returns only a logical address. 124 */ 125 return kmalloc_noprof(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM); 126 } 127 EXPORT_SYMBOL(__vmalloc_noprof); 128 129 void *vrealloc_noprof(const void *p, size_t size, gfp_t flags) 130 { 131 return krealloc_noprof(p, size, (flags | __GFP_COMP) & ~__GFP_HIGHMEM); 132 } 133 134 void *__vmalloc_node_range_noprof(unsigned long size, unsigned long align, 135 unsigned long start, unsigned long end, gfp_t gfp_mask, 136 pgprot_t prot, unsigned long vm_flags, int node, 137 const void *caller) 138 { 139 return __vmalloc_noprof(size, gfp_mask); 140 } 141 142 void *__vmalloc_node_noprof(unsigned long size, unsigned long align, gfp_t gfp_mask, 143 int node, const void *caller) 144 { 145 return __vmalloc_noprof(size, gfp_mask); 146 } 147 148 static void *__vmalloc_user_flags(unsigned long size, gfp_t flags) 149 { 150 void *ret; 151 152 ret = __vmalloc(size, flags); 153 if (ret) { 154 struct vm_area_struct *vma; 155 156 mmap_write_lock(current->mm); 157 vma = find_vma(current->mm, (unsigned long)ret); 158 if (vma) 159 vm_flags_set(vma, VM_USERMAP); 160 mmap_write_unlock(current->mm); 161 } 162 163 return ret; 164 } 165 166 void *vmalloc_user_noprof(unsigned long size) 167 { 168 return __vmalloc_user_flags(size, GFP_KERNEL | __GFP_ZERO); 169 } 170 EXPORT_SYMBOL(vmalloc_user_noprof); 171 172 struct page *vmalloc_to_page(const void *addr) 173 { 174 return virt_to_page(addr); 175 } 176 EXPORT_SYMBOL(vmalloc_to_page); 177 178 unsigned long vmalloc_to_pfn(const void *addr) 179 { 180 return page_to_pfn(virt_to_page(addr)); 181 } 182 EXPORT_SYMBOL(vmalloc_to_pfn); 183 184 long vread_iter(struct iov_iter *iter, const char *addr, size_t count) 185 { 186 /* Don't allow overflow */ 187 if ((unsigned long) addr + count < count) 188 count = -(unsigned long) addr; 189 190 return copy_to_iter(addr, count, iter); 191 } 192 193 /* 194 * vmalloc - allocate virtually contiguous memory 195 * 196 * @size: allocation size 197 * 198 * Allocate enough pages to cover @size from the page level 199 * allocator and map them into contiguous kernel virtual space. 200 * 201 * For tight control over page level allocator and protection flags 202 * use __vmalloc() instead. 203 */ 204 void *vmalloc_noprof(unsigned long size) 205 { 206 return __vmalloc_noprof(size, GFP_KERNEL); 207 } 208 EXPORT_SYMBOL(vmalloc_noprof); 209 210 void *vmalloc_huge_noprof(unsigned long size, gfp_t gfp_mask) __weak __alias(__vmalloc_noprof); 211 212 /* 213 * vzalloc - allocate virtually contiguous memory with zero fill 214 * 215 * @size: allocation size 216 * 217 * Allocate enough pages to cover @size from the page level 218 * allocator and map them into contiguous kernel virtual space. 219 * The memory allocated is set to zero. 220 * 221 * For tight control over page level allocator and protection flags 222 * use __vmalloc() instead. 223 */ 224 void *vzalloc_noprof(unsigned long size) 225 { 226 return __vmalloc_noprof(size, GFP_KERNEL | __GFP_ZERO); 227 } 228 EXPORT_SYMBOL(vzalloc_noprof); 229 230 /** 231 * vmalloc_node - allocate memory on a specific node 232 * @size: allocation size 233 * @node: numa node 234 * 235 * Allocate enough pages to cover @size from the page level 236 * allocator and map them into contiguous kernel virtual space. 237 * 238 * For tight control over page level allocator and protection flags 239 * use __vmalloc() instead. 240 */ 241 void *vmalloc_node_noprof(unsigned long size, int node) 242 { 243 return vmalloc_noprof(size); 244 } 245 EXPORT_SYMBOL(vmalloc_node_noprof); 246 247 /** 248 * vzalloc_node - allocate memory on a specific node with zero fill 249 * @size: allocation size 250 * @node: numa node 251 * 252 * Allocate enough pages to cover @size from the page level 253 * allocator and map them into contiguous kernel virtual space. 254 * The memory allocated is set to zero. 255 * 256 * For tight control over page level allocator and protection flags 257 * use __vmalloc() instead. 258 */ 259 void *vzalloc_node_noprof(unsigned long size, int node) 260 { 261 return vzalloc_noprof(size); 262 } 263 EXPORT_SYMBOL(vzalloc_node_noprof); 264 265 /** 266 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 267 * @size: allocation size 268 * 269 * Allocate enough 32bit PA addressable pages to cover @size from the 270 * page level allocator and map them into contiguous kernel virtual space. 271 */ 272 void *vmalloc_32_noprof(unsigned long size) 273 { 274 return __vmalloc_noprof(size, GFP_KERNEL); 275 } 276 EXPORT_SYMBOL(vmalloc_32_noprof); 277 278 /** 279 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 280 * @size: allocation size 281 * 282 * The resulting memory area is 32bit addressable and zeroed so it can be 283 * mapped to userspace without leaking data. 284 * 285 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to 286 * remap_vmalloc_range() are permissible. 287 */ 288 void *vmalloc_32_user_noprof(unsigned long size) 289 { 290 /* 291 * We'll have to sort out the ZONE_DMA bits for 64-bit, 292 * but for now this can simply use vmalloc_user() directly. 293 */ 294 return vmalloc_user_noprof(size); 295 } 296 EXPORT_SYMBOL(vmalloc_32_user_noprof); 297 298 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot) 299 { 300 BUG(); 301 return NULL; 302 } 303 EXPORT_SYMBOL(vmap); 304 305 void vunmap(const void *addr) 306 { 307 BUG(); 308 } 309 EXPORT_SYMBOL(vunmap); 310 311 void *vm_map_ram(struct page **pages, unsigned int count, int node) 312 { 313 BUG(); 314 return NULL; 315 } 316 EXPORT_SYMBOL(vm_map_ram); 317 318 void vm_unmap_ram(const void *mem, unsigned int count) 319 { 320 BUG(); 321 } 322 EXPORT_SYMBOL(vm_unmap_ram); 323 324 void vm_unmap_aliases(void) 325 { 326 } 327 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 328 329 void free_vm_area(struct vm_struct *area) 330 { 331 BUG(); 332 } 333 EXPORT_SYMBOL_GPL(free_vm_area); 334 335 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 336 struct page *page) 337 { 338 return -EINVAL; 339 } 340 EXPORT_SYMBOL(vm_insert_page); 341 342 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 343 struct page **pages, unsigned long *num) 344 { 345 return -EINVAL; 346 } 347 EXPORT_SYMBOL(vm_insert_pages); 348 349 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 350 unsigned long num) 351 { 352 return -EINVAL; 353 } 354 EXPORT_SYMBOL(vm_map_pages); 355 356 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 357 unsigned long num) 358 { 359 return -EINVAL; 360 } 361 EXPORT_SYMBOL(vm_map_pages_zero); 362 363 /* 364 * sys_brk() for the most part doesn't need the global kernel 365 * lock, except when an application is doing something nasty 366 * like trying to un-brk an area that has already been mapped 367 * to a regular file. in this case, the unmapping will need 368 * to invoke file system routines that need the global lock. 369 */ 370 SYSCALL_DEFINE1(brk, unsigned long, brk) 371 { 372 struct mm_struct *mm = current->mm; 373 374 if (brk < mm->start_brk || brk > mm->context.end_brk) 375 return mm->brk; 376 377 if (mm->brk == brk) 378 return mm->brk; 379 380 /* 381 * Always allow shrinking brk 382 */ 383 if (brk <= mm->brk) { 384 mm->brk = brk; 385 return brk; 386 } 387 388 /* 389 * Ok, looks good - let it rip. 390 */ 391 flush_icache_user_range(mm->brk, brk); 392 return mm->brk = brk; 393 } 394 395 /* 396 * initialise the percpu counter for VM and region record slabs 397 */ 398 void __init mmap_init(void) 399 { 400 int ret; 401 402 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL); 403 VM_BUG_ON(ret); 404 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT); 405 } 406 407 /* 408 * validate the region tree 409 * - the caller must hold the region lock 410 */ 411 #ifdef CONFIG_DEBUG_NOMMU_REGIONS 412 static noinline void validate_nommu_regions(void) 413 { 414 struct vm_region *region, *last; 415 struct rb_node *p, *lastp; 416 417 lastp = rb_first(&nommu_region_tree); 418 if (!lastp) 419 return; 420 421 last = rb_entry(lastp, struct vm_region, vm_rb); 422 BUG_ON(last->vm_end <= last->vm_start); 423 BUG_ON(last->vm_top < last->vm_end); 424 425 while ((p = rb_next(lastp))) { 426 region = rb_entry(p, struct vm_region, vm_rb); 427 last = rb_entry(lastp, struct vm_region, vm_rb); 428 429 BUG_ON(region->vm_end <= region->vm_start); 430 BUG_ON(region->vm_top < region->vm_end); 431 BUG_ON(region->vm_start < last->vm_top); 432 433 lastp = p; 434 } 435 } 436 #else 437 static void validate_nommu_regions(void) 438 { 439 } 440 #endif 441 442 /* 443 * add a region into the global tree 444 */ 445 static void add_nommu_region(struct vm_region *region) 446 { 447 struct vm_region *pregion; 448 struct rb_node **p, *parent; 449 450 validate_nommu_regions(); 451 452 parent = NULL; 453 p = &nommu_region_tree.rb_node; 454 while (*p) { 455 parent = *p; 456 pregion = rb_entry(parent, struct vm_region, vm_rb); 457 if (region->vm_start < pregion->vm_start) 458 p = &(*p)->rb_left; 459 else if (region->vm_start > pregion->vm_start) 460 p = &(*p)->rb_right; 461 else if (pregion == region) 462 return; 463 else 464 BUG(); 465 } 466 467 rb_link_node(®ion->vm_rb, parent, p); 468 rb_insert_color(®ion->vm_rb, &nommu_region_tree); 469 470 validate_nommu_regions(); 471 } 472 473 /* 474 * delete a region from the global tree 475 */ 476 static void delete_nommu_region(struct vm_region *region) 477 { 478 BUG_ON(!nommu_region_tree.rb_node); 479 480 validate_nommu_regions(); 481 rb_erase(®ion->vm_rb, &nommu_region_tree); 482 validate_nommu_regions(); 483 } 484 485 /* 486 * free a contiguous series of pages 487 */ 488 static void free_page_series(unsigned long from, unsigned long to) 489 { 490 for (; from < to; from += PAGE_SIZE) { 491 struct page *page = virt_to_page((void *)from); 492 493 atomic_long_dec(&mmap_pages_allocated); 494 put_page(page); 495 } 496 } 497 498 /* 499 * release a reference to a region 500 * - the caller must hold the region semaphore for writing, which this releases 501 * - the region may not have been added to the tree yet, in which case vm_top 502 * will equal vm_start 503 */ 504 static void __put_nommu_region(struct vm_region *region) 505 __releases(nommu_region_sem) 506 { 507 BUG_ON(!nommu_region_tree.rb_node); 508 509 if (--region->vm_usage == 0) { 510 if (region->vm_top > region->vm_start) 511 delete_nommu_region(region); 512 up_write(&nommu_region_sem); 513 514 if (region->vm_file) 515 fput(region->vm_file); 516 517 /* IO memory and memory shared directly out of the pagecache 518 * from ramfs/tmpfs mustn't be released here */ 519 if (region->vm_flags & VM_MAPPED_COPY) 520 free_page_series(region->vm_start, region->vm_top); 521 kmem_cache_free(vm_region_jar, region); 522 } else { 523 up_write(&nommu_region_sem); 524 } 525 } 526 527 /* 528 * release a reference to a region 529 */ 530 static void put_nommu_region(struct vm_region *region) 531 { 532 down_write(&nommu_region_sem); 533 __put_nommu_region(region); 534 } 535 536 static void setup_vma_to_mm(struct vm_area_struct *vma, struct mm_struct *mm) 537 { 538 vma->vm_mm = mm; 539 540 /* add the VMA to the mapping */ 541 if (vma->vm_file) { 542 struct address_space *mapping = vma->vm_file->f_mapping; 543 544 i_mmap_lock_write(mapping); 545 flush_dcache_mmap_lock(mapping); 546 vma_interval_tree_insert(vma, &mapping->i_mmap); 547 flush_dcache_mmap_unlock(mapping); 548 i_mmap_unlock_write(mapping); 549 } 550 } 551 552 static void cleanup_vma_from_mm(struct vm_area_struct *vma) 553 { 554 vma->vm_mm->map_count--; 555 /* remove the VMA from the mapping */ 556 if (vma->vm_file) { 557 struct address_space *mapping; 558 mapping = vma->vm_file->f_mapping; 559 560 i_mmap_lock_write(mapping); 561 flush_dcache_mmap_lock(mapping); 562 vma_interval_tree_remove(vma, &mapping->i_mmap); 563 flush_dcache_mmap_unlock(mapping); 564 i_mmap_unlock_write(mapping); 565 } 566 } 567 568 /* 569 * delete a VMA from its owning mm_struct and address space 570 */ 571 static int delete_vma_from_mm(struct vm_area_struct *vma) 572 { 573 VMA_ITERATOR(vmi, vma->vm_mm, vma->vm_start); 574 575 vma_iter_config(&vmi, vma->vm_start, vma->vm_end); 576 if (vma_iter_prealloc(&vmi, vma)) { 577 pr_warn("Allocation of vma tree for process %d failed\n", 578 current->pid); 579 return -ENOMEM; 580 } 581 cleanup_vma_from_mm(vma); 582 583 /* remove from the MM's tree and list */ 584 vma_iter_clear(&vmi); 585 return 0; 586 } 587 /* 588 * destroy a VMA record 589 */ 590 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma) 591 { 592 if (vma->vm_ops && vma->vm_ops->close) 593 vma->vm_ops->close(vma); 594 if (vma->vm_file) 595 fput(vma->vm_file); 596 put_nommu_region(vma->vm_region); 597 vm_area_free(vma); 598 } 599 600 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm, 601 unsigned long start_addr, 602 unsigned long end_addr) 603 { 604 unsigned long index = start_addr; 605 606 mmap_assert_locked(mm); 607 return mt_find(&mm->mm_mt, &index, end_addr - 1); 608 } 609 EXPORT_SYMBOL(find_vma_intersection); 610 611 /* 612 * look up the first VMA in which addr resides, NULL if none 613 * - should be called with mm->mmap_lock at least held readlocked 614 */ 615 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 616 { 617 VMA_ITERATOR(vmi, mm, addr); 618 619 return vma_iter_load(&vmi); 620 } 621 EXPORT_SYMBOL(find_vma); 622 623 /* 624 * At least xtensa ends up having protection faults even with no 625 * MMU.. No stack expansion, at least. 626 */ 627 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm, 628 unsigned long addr, struct pt_regs *regs) 629 { 630 struct vm_area_struct *vma; 631 632 mmap_read_lock(mm); 633 vma = vma_lookup(mm, addr); 634 if (!vma) 635 mmap_read_unlock(mm); 636 return vma; 637 } 638 639 /* 640 * expand a stack to a given address 641 * - not supported under NOMMU conditions 642 */ 643 int expand_stack_locked(struct vm_area_struct *vma, unsigned long addr) 644 { 645 return -ENOMEM; 646 } 647 648 struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr) 649 { 650 mmap_read_unlock(mm); 651 return NULL; 652 } 653 654 /* 655 * look up the first VMA exactly that exactly matches addr 656 * - should be called with mm->mmap_lock at least held readlocked 657 */ 658 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm, 659 unsigned long addr, 660 unsigned long len) 661 { 662 struct vm_area_struct *vma; 663 unsigned long end = addr + len; 664 VMA_ITERATOR(vmi, mm, addr); 665 666 vma = vma_iter_load(&vmi); 667 if (!vma) 668 return NULL; 669 if (vma->vm_start != addr) 670 return NULL; 671 if (vma->vm_end != end) 672 return NULL; 673 674 return vma; 675 } 676 677 /* 678 * determine whether a mapping should be permitted and, if so, what sort of 679 * mapping we're capable of supporting 680 */ 681 static int validate_mmap_request(struct file *file, 682 unsigned long addr, 683 unsigned long len, 684 unsigned long prot, 685 unsigned long flags, 686 unsigned long pgoff, 687 unsigned long *_capabilities) 688 { 689 unsigned long capabilities, rlen; 690 int ret; 691 692 /* do the simple checks first */ 693 if (flags & MAP_FIXED) 694 return -EINVAL; 695 696 if ((flags & MAP_TYPE) != MAP_PRIVATE && 697 (flags & MAP_TYPE) != MAP_SHARED) 698 return -EINVAL; 699 700 if (!len) 701 return -EINVAL; 702 703 /* Careful about overflows.. */ 704 rlen = PAGE_ALIGN(len); 705 if (!rlen || rlen > TASK_SIZE) 706 return -ENOMEM; 707 708 /* offset overflow? */ 709 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff) 710 return -EOVERFLOW; 711 712 if (file) { 713 /* files must support mmap */ 714 if (!file->f_op->mmap) 715 return -ENODEV; 716 717 /* work out if what we've got could possibly be shared 718 * - we support chardevs that provide their own "memory" 719 * - we support files/blockdevs that are memory backed 720 */ 721 if (file->f_op->mmap_capabilities) { 722 capabilities = file->f_op->mmap_capabilities(file); 723 } else { 724 /* no explicit capabilities set, so assume some 725 * defaults */ 726 switch (file_inode(file)->i_mode & S_IFMT) { 727 case S_IFREG: 728 case S_IFBLK: 729 capabilities = NOMMU_MAP_COPY; 730 break; 731 732 case S_IFCHR: 733 capabilities = 734 NOMMU_MAP_DIRECT | 735 NOMMU_MAP_READ | 736 NOMMU_MAP_WRITE; 737 break; 738 739 default: 740 return -EINVAL; 741 } 742 } 743 744 /* eliminate any capabilities that we can't support on this 745 * device */ 746 if (!file->f_op->get_unmapped_area) 747 capabilities &= ~NOMMU_MAP_DIRECT; 748 if (!(file->f_mode & FMODE_CAN_READ)) 749 capabilities &= ~NOMMU_MAP_COPY; 750 751 /* The file shall have been opened with read permission. */ 752 if (!(file->f_mode & FMODE_READ)) 753 return -EACCES; 754 755 if (flags & MAP_SHARED) { 756 /* do checks for writing, appending and locking */ 757 if ((prot & PROT_WRITE) && 758 !(file->f_mode & FMODE_WRITE)) 759 return -EACCES; 760 761 if (IS_APPEND(file_inode(file)) && 762 (file->f_mode & FMODE_WRITE)) 763 return -EACCES; 764 765 if (!(capabilities & NOMMU_MAP_DIRECT)) 766 return -ENODEV; 767 768 /* we mustn't privatise shared mappings */ 769 capabilities &= ~NOMMU_MAP_COPY; 770 } else { 771 /* we're going to read the file into private memory we 772 * allocate */ 773 if (!(capabilities & NOMMU_MAP_COPY)) 774 return -ENODEV; 775 776 /* we don't permit a private writable mapping to be 777 * shared with the backing device */ 778 if (prot & PROT_WRITE) 779 capabilities &= ~NOMMU_MAP_DIRECT; 780 } 781 782 if (capabilities & NOMMU_MAP_DIRECT) { 783 if (((prot & PROT_READ) && !(capabilities & NOMMU_MAP_READ)) || 784 ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) || 785 ((prot & PROT_EXEC) && !(capabilities & NOMMU_MAP_EXEC)) 786 ) { 787 capabilities &= ~NOMMU_MAP_DIRECT; 788 if (flags & MAP_SHARED) { 789 pr_warn("MAP_SHARED not completely supported on !MMU\n"); 790 return -EINVAL; 791 } 792 } 793 } 794 795 /* handle executable mappings and implied executable 796 * mappings */ 797 if (path_noexec(&file->f_path)) { 798 if (prot & PROT_EXEC) 799 return -EPERM; 800 } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) { 801 /* handle implication of PROT_EXEC by PROT_READ */ 802 if (current->personality & READ_IMPLIES_EXEC) { 803 if (capabilities & NOMMU_MAP_EXEC) 804 prot |= PROT_EXEC; 805 } 806 } else if ((prot & PROT_READ) && 807 (prot & PROT_EXEC) && 808 !(capabilities & NOMMU_MAP_EXEC) 809 ) { 810 /* backing file is not executable, try to copy */ 811 capabilities &= ~NOMMU_MAP_DIRECT; 812 } 813 } else { 814 /* anonymous mappings are always memory backed and can be 815 * privately mapped 816 */ 817 capabilities = NOMMU_MAP_COPY; 818 819 /* handle PROT_EXEC implication by PROT_READ */ 820 if ((prot & PROT_READ) && 821 (current->personality & READ_IMPLIES_EXEC)) 822 prot |= PROT_EXEC; 823 } 824 825 /* allow the security API to have its say */ 826 ret = security_mmap_addr(addr); 827 if (ret < 0) 828 return ret; 829 830 /* looks okay */ 831 *_capabilities = capabilities; 832 return 0; 833 } 834 835 /* 836 * we've determined that we can make the mapping, now translate what we 837 * now know into VMA flags 838 */ 839 static unsigned long determine_vm_flags(struct file *file, 840 unsigned long prot, 841 unsigned long flags, 842 unsigned long capabilities) 843 { 844 unsigned long vm_flags; 845 846 vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags); 847 848 if (!file) { 849 /* 850 * MAP_ANONYMOUS. MAP_SHARED is mapped to MAP_PRIVATE, because 851 * there is no fork(). 852 */ 853 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 854 } else if (flags & MAP_PRIVATE) { 855 /* MAP_PRIVATE file mapping */ 856 if (capabilities & NOMMU_MAP_DIRECT) 857 vm_flags |= (capabilities & NOMMU_VMFLAGS); 858 else 859 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 860 861 if (!(prot & PROT_WRITE) && !current->ptrace) 862 /* 863 * R/O private file mapping which cannot be used to 864 * modify memory, especially also not via active ptrace 865 * (e.g., set breakpoints) or later by upgrading 866 * permissions (no mprotect()). We can try overlaying 867 * the file mapping, which will work e.g., on chardevs, 868 * ramfs/tmpfs/shmfs and romfs/cramf. 869 */ 870 vm_flags |= VM_MAYOVERLAY; 871 } else { 872 /* MAP_SHARED file mapping: NOMMU_MAP_DIRECT is set. */ 873 vm_flags |= VM_SHARED | VM_MAYSHARE | 874 (capabilities & NOMMU_VMFLAGS); 875 } 876 877 return vm_flags; 878 } 879 880 /* 881 * set up a shared mapping on a file (the driver or filesystem provides and 882 * pins the storage) 883 */ 884 static int do_mmap_shared_file(struct vm_area_struct *vma) 885 { 886 int ret; 887 888 ret = call_mmap(vma->vm_file, vma); 889 if (ret == 0) { 890 vma->vm_region->vm_top = vma->vm_region->vm_end; 891 return 0; 892 } 893 if (ret != -ENOSYS) 894 return ret; 895 896 /* getting -ENOSYS indicates that direct mmap isn't possible (as 897 * opposed to tried but failed) so we can only give a suitable error as 898 * it's not possible to make a private copy if MAP_SHARED was given */ 899 return -ENODEV; 900 } 901 902 /* 903 * set up a private mapping or an anonymous shared mapping 904 */ 905 static int do_mmap_private(struct vm_area_struct *vma, 906 struct vm_region *region, 907 unsigned long len, 908 unsigned long capabilities) 909 { 910 unsigned long total, point; 911 void *base; 912 int ret, order; 913 914 /* 915 * Invoke the file's mapping function so that it can keep track of 916 * shared mappings on devices or memory. VM_MAYOVERLAY will be set if 917 * it may attempt to share, which will make is_nommu_shared_mapping() 918 * happy. 919 */ 920 if (capabilities & NOMMU_MAP_DIRECT) { 921 ret = call_mmap(vma->vm_file, vma); 922 /* shouldn't return success if we're not sharing */ 923 if (WARN_ON_ONCE(!is_nommu_shared_mapping(vma->vm_flags))) 924 ret = -ENOSYS; 925 if (ret == 0) { 926 vma->vm_region->vm_top = vma->vm_region->vm_end; 927 return 0; 928 } 929 if (ret != -ENOSYS) 930 return ret; 931 932 /* getting an ENOSYS error indicates that direct mmap isn't 933 * possible (as opposed to tried but failed) so we'll try to 934 * make a private copy of the data and map that instead */ 935 } 936 937 938 /* allocate some memory to hold the mapping 939 * - note that this may not return a page-aligned address if the object 940 * we're allocating is smaller than a page 941 */ 942 order = get_order(len); 943 total = 1 << order; 944 point = len >> PAGE_SHIFT; 945 946 /* we don't want to allocate a power-of-2 sized page set */ 947 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) 948 total = point; 949 950 base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL); 951 if (!base) 952 goto enomem; 953 954 atomic_long_add(total, &mmap_pages_allocated); 955 956 vm_flags_set(vma, VM_MAPPED_COPY); 957 region->vm_flags = vma->vm_flags; 958 region->vm_start = (unsigned long) base; 959 region->vm_end = region->vm_start + len; 960 region->vm_top = region->vm_start + (total << PAGE_SHIFT); 961 962 vma->vm_start = region->vm_start; 963 vma->vm_end = region->vm_start + len; 964 965 if (vma->vm_file) { 966 /* read the contents of a file into the copy */ 967 loff_t fpos; 968 969 fpos = vma->vm_pgoff; 970 fpos <<= PAGE_SHIFT; 971 972 ret = kernel_read(vma->vm_file, base, len, &fpos); 973 if (ret < 0) 974 goto error_free; 975 976 /* clear the last little bit */ 977 if (ret < len) 978 memset(base + ret, 0, len - ret); 979 980 } else { 981 vma_set_anonymous(vma); 982 } 983 984 return 0; 985 986 error_free: 987 free_page_series(region->vm_start, region->vm_top); 988 region->vm_start = vma->vm_start = 0; 989 region->vm_end = vma->vm_end = 0; 990 region->vm_top = 0; 991 return ret; 992 993 enomem: 994 pr_err("Allocation of length %lu from process %d (%s) failed\n", 995 len, current->pid, current->comm); 996 show_mem(); 997 return -ENOMEM; 998 } 999 1000 /* 1001 * handle mapping creation for uClinux 1002 */ 1003 unsigned long do_mmap(struct file *file, 1004 unsigned long addr, 1005 unsigned long len, 1006 unsigned long prot, 1007 unsigned long flags, 1008 vm_flags_t vm_flags, 1009 unsigned long pgoff, 1010 unsigned long *populate, 1011 struct list_head *uf) 1012 { 1013 struct vm_area_struct *vma; 1014 struct vm_region *region; 1015 struct rb_node *rb; 1016 unsigned long capabilities, result; 1017 int ret; 1018 VMA_ITERATOR(vmi, current->mm, 0); 1019 1020 *populate = 0; 1021 1022 /* decide whether we should attempt the mapping, and if so what sort of 1023 * mapping */ 1024 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff, 1025 &capabilities); 1026 if (ret < 0) 1027 return ret; 1028 1029 /* we ignore the address hint */ 1030 addr = 0; 1031 len = PAGE_ALIGN(len); 1032 1033 /* we've determined that we can make the mapping, now translate what we 1034 * now know into VMA flags */ 1035 vm_flags |= determine_vm_flags(file, prot, flags, capabilities); 1036 1037 1038 /* we're going to need to record the mapping */ 1039 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL); 1040 if (!region) 1041 goto error_getting_region; 1042 1043 vma = vm_area_alloc(current->mm); 1044 if (!vma) 1045 goto error_getting_vma; 1046 1047 region->vm_usage = 1; 1048 region->vm_flags = vm_flags; 1049 region->vm_pgoff = pgoff; 1050 1051 vm_flags_init(vma, vm_flags); 1052 vma->vm_pgoff = pgoff; 1053 1054 if (file) { 1055 region->vm_file = get_file(file); 1056 vma->vm_file = get_file(file); 1057 } 1058 1059 down_write(&nommu_region_sem); 1060 1061 /* if we want to share, we need to check for regions created by other 1062 * mmap() calls that overlap with our proposed mapping 1063 * - we can only share with a superset match on most regular files 1064 * - shared mappings on character devices and memory backed files are 1065 * permitted to overlap inexactly as far as we are concerned for in 1066 * these cases, sharing is handled in the driver or filesystem rather 1067 * than here 1068 */ 1069 if (is_nommu_shared_mapping(vm_flags)) { 1070 struct vm_region *pregion; 1071 unsigned long pglen, rpglen, pgend, rpgend, start; 1072 1073 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1074 pgend = pgoff + pglen; 1075 1076 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) { 1077 pregion = rb_entry(rb, struct vm_region, vm_rb); 1078 1079 if (!is_nommu_shared_mapping(pregion->vm_flags)) 1080 continue; 1081 1082 /* search for overlapping mappings on the same file */ 1083 if (file_inode(pregion->vm_file) != 1084 file_inode(file)) 1085 continue; 1086 1087 if (pregion->vm_pgoff >= pgend) 1088 continue; 1089 1090 rpglen = pregion->vm_end - pregion->vm_start; 1091 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT; 1092 rpgend = pregion->vm_pgoff + rpglen; 1093 if (pgoff >= rpgend) 1094 continue; 1095 1096 /* handle inexactly overlapping matches between 1097 * mappings */ 1098 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) && 1099 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) { 1100 /* new mapping is not a subset of the region */ 1101 if (!(capabilities & NOMMU_MAP_DIRECT)) 1102 goto sharing_violation; 1103 continue; 1104 } 1105 1106 /* we've found a region we can share */ 1107 pregion->vm_usage++; 1108 vma->vm_region = pregion; 1109 start = pregion->vm_start; 1110 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT; 1111 vma->vm_start = start; 1112 vma->vm_end = start + len; 1113 1114 if (pregion->vm_flags & VM_MAPPED_COPY) 1115 vm_flags_set(vma, VM_MAPPED_COPY); 1116 else { 1117 ret = do_mmap_shared_file(vma); 1118 if (ret < 0) { 1119 vma->vm_region = NULL; 1120 vma->vm_start = 0; 1121 vma->vm_end = 0; 1122 pregion->vm_usage--; 1123 pregion = NULL; 1124 goto error_just_free; 1125 } 1126 } 1127 fput(region->vm_file); 1128 kmem_cache_free(vm_region_jar, region); 1129 region = pregion; 1130 result = start; 1131 goto share; 1132 } 1133 1134 /* obtain the address at which to make a shared mapping 1135 * - this is the hook for quasi-memory character devices to 1136 * tell us the location of a shared mapping 1137 */ 1138 if (capabilities & NOMMU_MAP_DIRECT) { 1139 addr = file->f_op->get_unmapped_area(file, addr, len, 1140 pgoff, flags); 1141 if (IS_ERR_VALUE(addr)) { 1142 ret = addr; 1143 if (ret != -ENOSYS) 1144 goto error_just_free; 1145 1146 /* the driver refused to tell us where to site 1147 * the mapping so we'll have to attempt to copy 1148 * it */ 1149 ret = -ENODEV; 1150 if (!(capabilities & NOMMU_MAP_COPY)) 1151 goto error_just_free; 1152 1153 capabilities &= ~NOMMU_MAP_DIRECT; 1154 } else { 1155 vma->vm_start = region->vm_start = addr; 1156 vma->vm_end = region->vm_end = addr + len; 1157 } 1158 } 1159 } 1160 1161 vma->vm_region = region; 1162 1163 /* set up the mapping 1164 * - the region is filled in if NOMMU_MAP_DIRECT is still set 1165 */ 1166 if (file && vma->vm_flags & VM_SHARED) 1167 ret = do_mmap_shared_file(vma); 1168 else 1169 ret = do_mmap_private(vma, region, len, capabilities); 1170 if (ret < 0) 1171 goto error_just_free; 1172 add_nommu_region(region); 1173 1174 /* clear anonymous mappings that don't ask for uninitialized data */ 1175 if (!vma->vm_file && 1176 (!IS_ENABLED(CONFIG_MMAP_ALLOW_UNINITIALIZED) || 1177 !(flags & MAP_UNINITIALIZED))) 1178 memset((void *)region->vm_start, 0, 1179 region->vm_end - region->vm_start); 1180 1181 /* okay... we have a mapping; now we have to register it */ 1182 result = vma->vm_start; 1183 1184 current->mm->total_vm += len >> PAGE_SHIFT; 1185 1186 share: 1187 BUG_ON(!vma->vm_region); 1188 vma_iter_config(&vmi, vma->vm_start, vma->vm_end); 1189 if (vma_iter_prealloc(&vmi, vma)) 1190 goto error_just_free; 1191 1192 setup_vma_to_mm(vma, current->mm); 1193 current->mm->map_count++; 1194 /* add the VMA to the tree */ 1195 vma_iter_store(&vmi, vma); 1196 1197 /* we flush the region from the icache only when the first executable 1198 * mapping of it is made */ 1199 if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) { 1200 flush_icache_user_range(region->vm_start, region->vm_end); 1201 region->vm_icache_flushed = true; 1202 } 1203 1204 up_write(&nommu_region_sem); 1205 1206 return result; 1207 1208 error_just_free: 1209 up_write(&nommu_region_sem); 1210 error: 1211 vma_iter_free(&vmi); 1212 if (region->vm_file) 1213 fput(region->vm_file); 1214 kmem_cache_free(vm_region_jar, region); 1215 if (vma->vm_file) 1216 fput(vma->vm_file); 1217 vm_area_free(vma); 1218 return ret; 1219 1220 sharing_violation: 1221 up_write(&nommu_region_sem); 1222 pr_warn("Attempt to share mismatched mappings\n"); 1223 ret = -EINVAL; 1224 goto error; 1225 1226 error_getting_vma: 1227 kmem_cache_free(vm_region_jar, region); 1228 pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n", 1229 len, current->pid); 1230 show_mem(); 1231 return -ENOMEM; 1232 1233 error_getting_region: 1234 pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n", 1235 len, current->pid); 1236 show_mem(); 1237 return -ENOMEM; 1238 } 1239 1240 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len, 1241 unsigned long prot, unsigned long flags, 1242 unsigned long fd, unsigned long pgoff) 1243 { 1244 struct file *file = NULL; 1245 unsigned long retval = -EBADF; 1246 1247 audit_mmap_fd(fd, flags); 1248 if (!(flags & MAP_ANONYMOUS)) { 1249 file = fget(fd); 1250 if (!file) 1251 goto out; 1252 } 1253 1254 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1255 1256 if (file) 1257 fput(file); 1258 out: 1259 return retval; 1260 } 1261 1262 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1263 unsigned long, prot, unsigned long, flags, 1264 unsigned long, fd, unsigned long, pgoff) 1265 { 1266 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff); 1267 } 1268 1269 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1270 struct mmap_arg_struct { 1271 unsigned long addr; 1272 unsigned long len; 1273 unsigned long prot; 1274 unsigned long flags; 1275 unsigned long fd; 1276 unsigned long offset; 1277 }; 1278 1279 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1280 { 1281 struct mmap_arg_struct a; 1282 1283 if (copy_from_user(&a, arg, sizeof(a))) 1284 return -EFAULT; 1285 if (offset_in_page(a.offset)) 1286 return -EINVAL; 1287 1288 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1289 a.offset >> PAGE_SHIFT); 1290 } 1291 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1292 1293 /* 1294 * split a vma into two pieces at address 'addr', a new vma is allocated either 1295 * for the first part or the tail. 1296 */ 1297 static int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma, 1298 unsigned long addr, int new_below) 1299 { 1300 struct vm_area_struct *new; 1301 struct vm_region *region; 1302 unsigned long npages; 1303 struct mm_struct *mm; 1304 1305 /* we're only permitted to split anonymous regions (these should have 1306 * only a single usage on the region) */ 1307 if (vma->vm_file) 1308 return -ENOMEM; 1309 1310 mm = vma->vm_mm; 1311 if (mm->map_count >= sysctl_max_map_count) 1312 return -ENOMEM; 1313 1314 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL); 1315 if (!region) 1316 return -ENOMEM; 1317 1318 new = vm_area_dup(vma); 1319 if (!new) 1320 goto err_vma_dup; 1321 1322 /* most fields are the same, copy all, and then fixup */ 1323 *region = *vma->vm_region; 1324 new->vm_region = region; 1325 1326 npages = (addr - vma->vm_start) >> PAGE_SHIFT; 1327 1328 if (new_below) { 1329 region->vm_top = region->vm_end = new->vm_end = addr; 1330 } else { 1331 region->vm_start = new->vm_start = addr; 1332 region->vm_pgoff = new->vm_pgoff += npages; 1333 } 1334 1335 vma_iter_config(vmi, new->vm_start, new->vm_end); 1336 if (vma_iter_prealloc(vmi, vma)) { 1337 pr_warn("Allocation of vma tree for process %d failed\n", 1338 current->pid); 1339 goto err_vmi_preallocate; 1340 } 1341 1342 if (new->vm_ops && new->vm_ops->open) 1343 new->vm_ops->open(new); 1344 1345 down_write(&nommu_region_sem); 1346 delete_nommu_region(vma->vm_region); 1347 if (new_below) { 1348 vma->vm_region->vm_start = vma->vm_start = addr; 1349 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages; 1350 } else { 1351 vma->vm_region->vm_end = vma->vm_end = addr; 1352 vma->vm_region->vm_top = addr; 1353 } 1354 add_nommu_region(vma->vm_region); 1355 add_nommu_region(new->vm_region); 1356 up_write(&nommu_region_sem); 1357 1358 setup_vma_to_mm(vma, mm); 1359 setup_vma_to_mm(new, mm); 1360 vma_iter_store(vmi, new); 1361 mm->map_count++; 1362 return 0; 1363 1364 err_vmi_preallocate: 1365 vm_area_free(new); 1366 err_vma_dup: 1367 kmem_cache_free(vm_region_jar, region); 1368 return -ENOMEM; 1369 } 1370 1371 /* 1372 * shrink a VMA by removing the specified chunk from either the beginning or 1373 * the end 1374 */ 1375 static int vmi_shrink_vma(struct vma_iterator *vmi, 1376 struct vm_area_struct *vma, 1377 unsigned long from, unsigned long to) 1378 { 1379 struct vm_region *region; 1380 1381 /* adjust the VMA's pointers, which may reposition it in the MM's tree 1382 * and list */ 1383 if (from > vma->vm_start) { 1384 if (vma_iter_clear_gfp(vmi, from, vma->vm_end, GFP_KERNEL)) 1385 return -ENOMEM; 1386 vma->vm_end = from; 1387 } else { 1388 if (vma_iter_clear_gfp(vmi, vma->vm_start, to, GFP_KERNEL)) 1389 return -ENOMEM; 1390 vma->vm_start = to; 1391 } 1392 1393 /* cut the backing region down to size */ 1394 region = vma->vm_region; 1395 BUG_ON(region->vm_usage != 1); 1396 1397 down_write(&nommu_region_sem); 1398 delete_nommu_region(region); 1399 if (from > region->vm_start) { 1400 to = region->vm_top; 1401 region->vm_top = region->vm_end = from; 1402 } else { 1403 region->vm_start = to; 1404 } 1405 add_nommu_region(region); 1406 up_write(&nommu_region_sem); 1407 1408 free_page_series(from, to); 1409 return 0; 1410 } 1411 1412 /* 1413 * release a mapping 1414 * - under NOMMU conditions the chunk to be unmapped must be backed by a single 1415 * VMA, though it need not cover the whole VMA 1416 */ 1417 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf) 1418 { 1419 VMA_ITERATOR(vmi, mm, start); 1420 struct vm_area_struct *vma; 1421 unsigned long end; 1422 int ret = 0; 1423 1424 len = PAGE_ALIGN(len); 1425 if (len == 0) 1426 return -EINVAL; 1427 1428 end = start + len; 1429 1430 /* find the first potentially overlapping VMA */ 1431 vma = vma_find(&vmi, end); 1432 if (!vma) { 1433 static int limit; 1434 if (limit < 5) { 1435 pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n", 1436 current->pid, current->comm, 1437 start, start + len - 1); 1438 limit++; 1439 } 1440 return -EINVAL; 1441 } 1442 1443 /* we're allowed to split an anonymous VMA but not a file-backed one */ 1444 if (vma->vm_file) { 1445 do { 1446 if (start > vma->vm_start) 1447 return -EINVAL; 1448 if (end == vma->vm_end) 1449 goto erase_whole_vma; 1450 vma = vma_find(&vmi, end); 1451 } while (vma); 1452 return -EINVAL; 1453 } else { 1454 /* the chunk must be a subset of the VMA found */ 1455 if (start == vma->vm_start && end == vma->vm_end) 1456 goto erase_whole_vma; 1457 if (start < vma->vm_start || end > vma->vm_end) 1458 return -EINVAL; 1459 if (offset_in_page(start)) 1460 return -EINVAL; 1461 if (end != vma->vm_end && offset_in_page(end)) 1462 return -EINVAL; 1463 if (start != vma->vm_start && end != vma->vm_end) { 1464 ret = split_vma(&vmi, vma, start, 1); 1465 if (ret < 0) 1466 return ret; 1467 } 1468 return vmi_shrink_vma(&vmi, vma, start, end); 1469 } 1470 1471 erase_whole_vma: 1472 if (delete_vma_from_mm(vma)) 1473 ret = -ENOMEM; 1474 else 1475 delete_vma(mm, vma); 1476 return ret; 1477 } 1478 1479 int vm_munmap(unsigned long addr, size_t len) 1480 { 1481 struct mm_struct *mm = current->mm; 1482 int ret; 1483 1484 mmap_write_lock(mm); 1485 ret = do_munmap(mm, addr, len, NULL); 1486 mmap_write_unlock(mm); 1487 return ret; 1488 } 1489 EXPORT_SYMBOL(vm_munmap); 1490 1491 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 1492 { 1493 return vm_munmap(addr, len); 1494 } 1495 1496 /* 1497 * release all the mappings made in a process's VM space 1498 */ 1499 void exit_mmap(struct mm_struct *mm) 1500 { 1501 VMA_ITERATOR(vmi, mm, 0); 1502 struct vm_area_struct *vma; 1503 1504 if (!mm) 1505 return; 1506 1507 mm->total_vm = 0; 1508 1509 /* 1510 * Lock the mm to avoid assert complaining even though this is the only 1511 * user of the mm 1512 */ 1513 mmap_write_lock(mm); 1514 for_each_vma(vmi, vma) { 1515 cleanup_vma_from_mm(vma); 1516 delete_vma(mm, vma); 1517 cond_resched(); 1518 } 1519 __mt_destroy(&mm->mm_mt); 1520 mmap_write_unlock(mm); 1521 } 1522 1523 /* 1524 * expand (or shrink) an existing mapping, potentially moving it at the same 1525 * time (controlled by the MREMAP_MAYMOVE flag and available VM space) 1526 * 1527 * under NOMMU conditions, we only permit changing a mapping's size, and only 1528 * as long as it stays within the region allocated by do_mmap_private() and the 1529 * block is not shareable 1530 * 1531 * MREMAP_FIXED is not supported under NOMMU conditions 1532 */ 1533 static unsigned long do_mremap(unsigned long addr, 1534 unsigned long old_len, unsigned long new_len, 1535 unsigned long flags, unsigned long new_addr) 1536 { 1537 struct vm_area_struct *vma; 1538 1539 /* insanity checks first */ 1540 old_len = PAGE_ALIGN(old_len); 1541 new_len = PAGE_ALIGN(new_len); 1542 if (old_len == 0 || new_len == 0) 1543 return (unsigned long) -EINVAL; 1544 1545 if (offset_in_page(addr)) 1546 return -EINVAL; 1547 1548 if (flags & MREMAP_FIXED && new_addr != addr) 1549 return (unsigned long) -EINVAL; 1550 1551 vma = find_vma_exact(current->mm, addr, old_len); 1552 if (!vma) 1553 return (unsigned long) -EINVAL; 1554 1555 if (vma->vm_end != vma->vm_start + old_len) 1556 return (unsigned long) -EFAULT; 1557 1558 if (is_nommu_shared_mapping(vma->vm_flags)) 1559 return (unsigned long) -EPERM; 1560 1561 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start) 1562 return (unsigned long) -ENOMEM; 1563 1564 /* all checks complete - do it */ 1565 vma->vm_end = vma->vm_start + new_len; 1566 return vma->vm_start; 1567 } 1568 1569 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len, 1570 unsigned long, new_len, unsigned long, flags, 1571 unsigned long, new_addr) 1572 { 1573 unsigned long ret; 1574 1575 mmap_write_lock(current->mm); 1576 ret = do_mremap(addr, old_len, new_len, flags, new_addr); 1577 mmap_write_unlock(current->mm); 1578 return ret; 1579 } 1580 1581 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 1582 unsigned long pfn, unsigned long size, pgprot_t prot) 1583 { 1584 if (addr != (pfn << PAGE_SHIFT)) 1585 return -EINVAL; 1586 1587 vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP); 1588 return 0; 1589 } 1590 EXPORT_SYMBOL(remap_pfn_range); 1591 1592 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 1593 { 1594 unsigned long pfn = start >> PAGE_SHIFT; 1595 unsigned long vm_len = vma->vm_end - vma->vm_start; 1596 1597 pfn += vma->vm_pgoff; 1598 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 1599 } 1600 EXPORT_SYMBOL(vm_iomap_memory); 1601 1602 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 1603 unsigned long pgoff) 1604 { 1605 unsigned int size = vma->vm_end - vma->vm_start; 1606 1607 if (!(vma->vm_flags & VM_USERMAP)) 1608 return -EINVAL; 1609 1610 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT)); 1611 vma->vm_end = vma->vm_start + size; 1612 1613 return 0; 1614 } 1615 EXPORT_SYMBOL(remap_vmalloc_range); 1616 1617 vm_fault_t filemap_fault(struct vm_fault *vmf) 1618 { 1619 BUG(); 1620 return 0; 1621 } 1622 EXPORT_SYMBOL(filemap_fault); 1623 1624 vm_fault_t filemap_map_pages(struct vm_fault *vmf, 1625 pgoff_t start_pgoff, pgoff_t end_pgoff) 1626 { 1627 BUG(); 1628 return 0; 1629 } 1630 EXPORT_SYMBOL(filemap_map_pages); 1631 1632 static int __access_remote_vm(struct mm_struct *mm, unsigned long addr, 1633 void *buf, int len, unsigned int gup_flags) 1634 { 1635 struct vm_area_struct *vma; 1636 int write = gup_flags & FOLL_WRITE; 1637 1638 if (mmap_read_lock_killable(mm)) 1639 return 0; 1640 1641 /* the access must start within one of the target process's mappings */ 1642 vma = find_vma(mm, addr); 1643 if (vma) { 1644 /* don't overrun this mapping */ 1645 if (addr + len >= vma->vm_end) 1646 len = vma->vm_end - addr; 1647 1648 /* only read or write mappings where it is permitted */ 1649 if (write && vma->vm_flags & VM_MAYWRITE) 1650 copy_to_user_page(vma, NULL, addr, 1651 (void *) addr, buf, len); 1652 else if (!write && vma->vm_flags & VM_MAYREAD) 1653 copy_from_user_page(vma, NULL, addr, 1654 buf, (void *) addr, len); 1655 else 1656 len = 0; 1657 } else { 1658 len = 0; 1659 } 1660 1661 mmap_read_unlock(mm); 1662 1663 return len; 1664 } 1665 1666 /** 1667 * access_remote_vm - access another process' address space 1668 * @mm: the mm_struct of the target address space 1669 * @addr: start address to access 1670 * @buf: source or destination buffer 1671 * @len: number of bytes to transfer 1672 * @gup_flags: flags modifying lookup behaviour 1673 * 1674 * The caller must hold a reference on @mm. 1675 */ 1676 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1677 void *buf, int len, unsigned int gup_flags) 1678 { 1679 return __access_remote_vm(mm, addr, buf, len, gup_flags); 1680 } 1681 1682 /* 1683 * Access another process' address space. 1684 * - source/target buffer must be kernel space 1685 */ 1686 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, 1687 unsigned int gup_flags) 1688 { 1689 struct mm_struct *mm; 1690 1691 if (addr + len < addr) 1692 return 0; 1693 1694 mm = get_task_mm(tsk); 1695 if (!mm) 1696 return 0; 1697 1698 len = __access_remote_vm(mm, addr, buf, len, gup_flags); 1699 1700 mmput(mm); 1701 return len; 1702 } 1703 EXPORT_SYMBOL_GPL(access_process_vm); 1704 1705 /** 1706 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode 1707 * @inode: The inode to check 1708 * @size: The current filesize of the inode 1709 * @newsize: The proposed filesize of the inode 1710 * 1711 * Check the shared mappings on an inode on behalf of a shrinking truncate to 1712 * make sure that any outstanding VMAs aren't broken and then shrink the 1713 * vm_regions that extend beyond so that do_mmap() doesn't 1714 * automatically grant mappings that are too large. 1715 */ 1716 int nommu_shrink_inode_mappings(struct inode *inode, size_t size, 1717 size_t newsize) 1718 { 1719 struct vm_area_struct *vma; 1720 struct vm_region *region; 1721 pgoff_t low, high; 1722 size_t r_size, r_top; 1723 1724 low = newsize >> PAGE_SHIFT; 1725 high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 1726 1727 down_write(&nommu_region_sem); 1728 i_mmap_lock_read(inode->i_mapping); 1729 1730 /* search for VMAs that fall within the dead zone */ 1731 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) { 1732 /* found one - only interested if it's shared out of the page 1733 * cache */ 1734 if (vma->vm_flags & VM_SHARED) { 1735 i_mmap_unlock_read(inode->i_mapping); 1736 up_write(&nommu_region_sem); 1737 return -ETXTBSY; /* not quite true, but near enough */ 1738 } 1739 } 1740 1741 /* reduce any regions that overlap the dead zone - if in existence, 1742 * these will be pointed to by VMAs that don't overlap the dead zone 1743 * 1744 * we don't check for any regions that start beyond the EOF as there 1745 * shouldn't be any 1746 */ 1747 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) { 1748 if (!(vma->vm_flags & VM_SHARED)) 1749 continue; 1750 1751 region = vma->vm_region; 1752 r_size = region->vm_top - region->vm_start; 1753 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size; 1754 1755 if (r_top > newsize) { 1756 region->vm_top -= r_top - newsize; 1757 if (region->vm_end > region->vm_top) 1758 region->vm_end = region->vm_top; 1759 } 1760 } 1761 1762 i_mmap_unlock_read(inode->i_mapping); 1763 up_write(&nommu_region_sem); 1764 return 0; 1765 } 1766 1767 /* 1768 * Initialise sysctl_user_reserve_kbytes. 1769 * 1770 * This is intended to prevent a user from starting a single memory hogging 1771 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER 1772 * mode. 1773 * 1774 * The default value is min(3% of free memory, 128MB) 1775 * 128MB is enough to recover with sshd/login, bash, and top/kill. 1776 */ 1777 static int __meminit init_user_reserve(void) 1778 { 1779 unsigned long free_kbytes; 1780 1781 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES)); 1782 1783 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17); 1784 return 0; 1785 } 1786 subsys_initcall(init_user_reserve); 1787 1788 /* 1789 * Initialise sysctl_admin_reserve_kbytes. 1790 * 1791 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin 1792 * to log in and kill a memory hogging process. 1793 * 1794 * Systems with more than 256MB will reserve 8MB, enough to recover 1795 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will 1796 * only reserve 3% of free pages by default. 1797 */ 1798 static int __meminit init_admin_reserve(void) 1799 { 1800 unsigned long free_kbytes; 1801 1802 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES)); 1803 1804 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13); 1805 return 0; 1806 } 1807 subsys_initcall(init_admin_reserve); 1808