xref: /linux/mm/nommu.c (revision 253f68f413a87a4e2bd93e61b00410e5e1b7b774)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/nommu.c
4  *
5  *  Replacement code for mm functions to support CPU's that don't
6  *  have any form of memory management unit (thus no virtual memory).
7  *
8  *  See Documentation/admin-guide/mm/nommu-mmap.rst
9  *
10  *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
11  *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
12  *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
13  *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
14  *  Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
15  */
16 
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 
19 #include <linux/export.h>
20 #include <linux/mm.h>
21 #include <linux/sched/mm.h>
22 #include <linux/mman.h>
23 #include <linux/swap.h>
24 #include <linux/file.h>
25 #include <linux/highmem.h>
26 #include <linux/pagemap.h>
27 #include <linux/slab.h>
28 #include <linux/vmalloc.h>
29 #include <linux/backing-dev.h>
30 #include <linux/compiler.h>
31 #include <linux/mount.h>
32 #include <linux/personality.h>
33 #include <linux/security.h>
34 #include <linux/syscalls.h>
35 #include <linux/audit.h>
36 #include <linux/printk.h>
37 
38 #include <linux/uaccess.h>
39 #include <linux/uio.h>
40 #include <asm/tlb.h>
41 #include <asm/tlbflush.h>
42 #include <asm/mmu_context.h>
43 #include "internal.h"
44 
45 void *high_memory;
46 EXPORT_SYMBOL(high_memory);
47 struct page *mem_map;
48 unsigned long max_mapnr;
49 EXPORT_SYMBOL(max_mapnr);
50 unsigned long highest_memmap_pfn;
51 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
52 int heap_stack_gap = 0;
53 
54 atomic_long_t mmap_pages_allocated;
55 
56 EXPORT_SYMBOL(mem_map);
57 
58 /* list of mapped, potentially shareable regions */
59 static struct kmem_cache *vm_region_jar;
60 struct rb_root nommu_region_tree = RB_ROOT;
61 DECLARE_RWSEM(nommu_region_sem);
62 
63 const struct vm_operations_struct generic_file_vm_ops = {
64 };
65 
66 /*
67  * Return the total memory allocated for this pointer, not
68  * just what the caller asked for.
69  *
70  * Doesn't have to be accurate, i.e. may have races.
71  */
72 unsigned int kobjsize(const void *objp)
73 {
74 	struct page *page;
75 
76 	/*
77 	 * If the object we have should not have ksize performed on it,
78 	 * return size of 0
79 	 */
80 	if (!objp || !virt_addr_valid(objp))
81 		return 0;
82 
83 	page = virt_to_head_page(objp);
84 
85 	/*
86 	 * If the allocator sets PageSlab, we know the pointer came from
87 	 * kmalloc().
88 	 */
89 	if (PageSlab(page))
90 		return ksize(objp);
91 
92 	/*
93 	 * If it's not a compound page, see if we have a matching VMA
94 	 * region. This test is intentionally done in reverse order,
95 	 * so if there's no VMA, we still fall through and hand back
96 	 * PAGE_SIZE for 0-order pages.
97 	 */
98 	if (!PageCompound(page)) {
99 		struct vm_area_struct *vma;
100 
101 		vma = find_vma(current->mm, (unsigned long)objp);
102 		if (vma)
103 			return vma->vm_end - vma->vm_start;
104 	}
105 
106 	/*
107 	 * The ksize() function is only guaranteed to work for pointers
108 	 * returned by kmalloc(). So handle arbitrary pointers here.
109 	 */
110 	return page_size(page);
111 }
112 
113 /**
114  * follow_pfn - look up PFN at a user virtual address
115  * @vma: memory mapping
116  * @address: user virtual address
117  * @pfn: location to store found PFN
118  *
119  * Only IO mappings and raw PFN mappings are allowed.
120  *
121  * Returns zero and the pfn at @pfn on success, -ve otherwise.
122  */
123 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
124 	unsigned long *pfn)
125 {
126 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
127 		return -EINVAL;
128 
129 	*pfn = address >> PAGE_SHIFT;
130 	return 0;
131 }
132 EXPORT_SYMBOL(follow_pfn);
133 
134 LIST_HEAD(vmap_area_list);
135 
136 void vfree(const void *addr)
137 {
138 	kfree(addr);
139 }
140 EXPORT_SYMBOL(vfree);
141 
142 void *__vmalloc(unsigned long size, gfp_t gfp_mask)
143 {
144 	/*
145 	 *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
146 	 * returns only a logical address.
147 	 */
148 	return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
149 }
150 EXPORT_SYMBOL(__vmalloc);
151 
152 void *__vmalloc_node_range(unsigned long size, unsigned long align,
153 		unsigned long start, unsigned long end, gfp_t gfp_mask,
154 		pgprot_t prot, unsigned long vm_flags, int node,
155 		const void *caller)
156 {
157 	return __vmalloc(size, gfp_mask);
158 }
159 
160 void *__vmalloc_node(unsigned long size, unsigned long align, gfp_t gfp_mask,
161 		int node, const void *caller)
162 {
163 	return __vmalloc(size, gfp_mask);
164 }
165 
166 static void *__vmalloc_user_flags(unsigned long size, gfp_t flags)
167 {
168 	void *ret;
169 
170 	ret = __vmalloc(size, flags);
171 	if (ret) {
172 		struct vm_area_struct *vma;
173 
174 		mmap_write_lock(current->mm);
175 		vma = find_vma(current->mm, (unsigned long)ret);
176 		if (vma)
177 			vm_flags_set(vma, VM_USERMAP);
178 		mmap_write_unlock(current->mm);
179 	}
180 
181 	return ret;
182 }
183 
184 void *vmalloc_user(unsigned long size)
185 {
186 	return __vmalloc_user_flags(size, GFP_KERNEL | __GFP_ZERO);
187 }
188 EXPORT_SYMBOL(vmalloc_user);
189 
190 struct page *vmalloc_to_page(const void *addr)
191 {
192 	return virt_to_page(addr);
193 }
194 EXPORT_SYMBOL(vmalloc_to_page);
195 
196 unsigned long vmalloc_to_pfn(const void *addr)
197 {
198 	return page_to_pfn(virt_to_page(addr));
199 }
200 EXPORT_SYMBOL(vmalloc_to_pfn);
201 
202 long vread_iter(struct iov_iter *iter, const char *addr, size_t count)
203 {
204 	/* Don't allow overflow */
205 	if ((unsigned long) addr + count < count)
206 		count = -(unsigned long) addr;
207 
208 	return copy_to_iter(addr, count, iter);
209 }
210 
211 /*
212  *	vmalloc  -  allocate virtually contiguous memory
213  *
214  *	@size:		allocation size
215  *
216  *	Allocate enough pages to cover @size from the page level
217  *	allocator and map them into contiguous kernel virtual space.
218  *
219  *	For tight control over page level allocator and protection flags
220  *	use __vmalloc() instead.
221  */
222 void *vmalloc(unsigned long size)
223 {
224 	return __vmalloc(size, GFP_KERNEL);
225 }
226 EXPORT_SYMBOL(vmalloc);
227 
228 void *vmalloc_huge(unsigned long size, gfp_t gfp_mask) __weak __alias(__vmalloc);
229 
230 /*
231  *	vzalloc - allocate virtually contiguous memory with zero fill
232  *
233  *	@size:		allocation size
234  *
235  *	Allocate enough pages to cover @size from the page level
236  *	allocator and map them into contiguous kernel virtual space.
237  *	The memory allocated is set to zero.
238  *
239  *	For tight control over page level allocator and protection flags
240  *	use __vmalloc() instead.
241  */
242 void *vzalloc(unsigned long size)
243 {
244 	return __vmalloc(size, GFP_KERNEL | __GFP_ZERO);
245 }
246 EXPORT_SYMBOL(vzalloc);
247 
248 /**
249  * vmalloc_node - allocate memory on a specific node
250  * @size:	allocation size
251  * @node:	numa node
252  *
253  * Allocate enough pages to cover @size from the page level
254  * allocator and map them into contiguous kernel virtual space.
255  *
256  * For tight control over page level allocator and protection flags
257  * use __vmalloc() instead.
258  */
259 void *vmalloc_node(unsigned long size, int node)
260 {
261 	return vmalloc(size);
262 }
263 EXPORT_SYMBOL(vmalloc_node);
264 
265 /**
266  * vzalloc_node - allocate memory on a specific node with zero fill
267  * @size:	allocation size
268  * @node:	numa node
269  *
270  * Allocate enough pages to cover @size from the page level
271  * allocator and map them into contiguous kernel virtual space.
272  * The memory allocated is set to zero.
273  *
274  * For tight control over page level allocator and protection flags
275  * use __vmalloc() instead.
276  */
277 void *vzalloc_node(unsigned long size, int node)
278 {
279 	return vzalloc(size);
280 }
281 EXPORT_SYMBOL(vzalloc_node);
282 
283 /**
284  * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
285  *	@size:		allocation size
286  *
287  *	Allocate enough 32bit PA addressable pages to cover @size from the
288  *	page level allocator and map them into contiguous kernel virtual space.
289  */
290 void *vmalloc_32(unsigned long size)
291 {
292 	return __vmalloc(size, GFP_KERNEL);
293 }
294 EXPORT_SYMBOL(vmalloc_32);
295 
296 /**
297  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
298  *	@size:		allocation size
299  *
300  * The resulting memory area is 32bit addressable and zeroed so it can be
301  * mapped to userspace without leaking data.
302  *
303  * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
304  * remap_vmalloc_range() are permissible.
305  */
306 void *vmalloc_32_user(unsigned long size)
307 {
308 	/*
309 	 * We'll have to sort out the ZONE_DMA bits for 64-bit,
310 	 * but for now this can simply use vmalloc_user() directly.
311 	 */
312 	return vmalloc_user(size);
313 }
314 EXPORT_SYMBOL(vmalloc_32_user);
315 
316 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
317 {
318 	BUG();
319 	return NULL;
320 }
321 EXPORT_SYMBOL(vmap);
322 
323 void vunmap(const void *addr)
324 {
325 	BUG();
326 }
327 EXPORT_SYMBOL(vunmap);
328 
329 void *vm_map_ram(struct page **pages, unsigned int count, int node)
330 {
331 	BUG();
332 	return NULL;
333 }
334 EXPORT_SYMBOL(vm_map_ram);
335 
336 void vm_unmap_ram(const void *mem, unsigned int count)
337 {
338 	BUG();
339 }
340 EXPORT_SYMBOL(vm_unmap_ram);
341 
342 void vm_unmap_aliases(void)
343 {
344 }
345 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
346 
347 void free_vm_area(struct vm_struct *area)
348 {
349 	BUG();
350 }
351 EXPORT_SYMBOL_GPL(free_vm_area);
352 
353 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
354 		   struct page *page)
355 {
356 	return -EINVAL;
357 }
358 EXPORT_SYMBOL(vm_insert_page);
359 
360 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
361 			unsigned long num)
362 {
363 	return -EINVAL;
364 }
365 EXPORT_SYMBOL(vm_map_pages);
366 
367 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
368 				unsigned long num)
369 {
370 	return -EINVAL;
371 }
372 EXPORT_SYMBOL(vm_map_pages_zero);
373 
374 /*
375  *  sys_brk() for the most part doesn't need the global kernel
376  *  lock, except when an application is doing something nasty
377  *  like trying to un-brk an area that has already been mapped
378  *  to a regular file.  in this case, the unmapping will need
379  *  to invoke file system routines that need the global lock.
380  */
381 SYSCALL_DEFINE1(brk, unsigned long, brk)
382 {
383 	struct mm_struct *mm = current->mm;
384 
385 	if (brk < mm->start_brk || brk > mm->context.end_brk)
386 		return mm->brk;
387 
388 	if (mm->brk == brk)
389 		return mm->brk;
390 
391 	/*
392 	 * Always allow shrinking brk
393 	 */
394 	if (brk <= mm->brk) {
395 		mm->brk = brk;
396 		return brk;
397 	}
398 
399 	/*
400 	 * Ok, looks good - let it rip.
401 	 */
402 	flush_icache_user_range(mm->brk, brk);
403 	return mm->brk = brk;
404 }
405 
406 /*
407  * initialise the percpu counter for VM and region record slabs
408  */
409 void __init mmap_init(void)
410 {
411 	int ret;
412 
413 	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
414 	VM_BUG_ON(ret);
415 	vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT);
416 }
417 
418 /*
419  * validate the region tree
420  * - the caller must hold the region lock
421  */
422 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
423 static noinline void validate_nommu_regions(void)
424 {
425 	struct vm_region *region, *last;
426 	struct rb_node *p, *lastp;
427 
428 	lastp = rb_first(&nommu_region_tree);
429 	if (!lastp)
430 		return;
431 
432 	last = rb_entry(lastp, struct vm_region, vm_rb);
433 	BUG_ON(last->vm_end <= last->vm_start);
434 	BUG_ON(last->vm_top < last->vm_end);
435 
436 	while ((p = rb_next(lastp))) {
437 		region = rb_entry(p, struct vm_region, vm_rb);
438 		last = rb_entry(lastp, struct vm_region, vm_rb);
439 
440 		BUG_ON(region->vm_end <= region->vm_start);
441 		BUG_ON(region->vm_top < region->vm_end);
442 		BUG_ON(region->vm_start < last->vm_top);
443 
444 		lastp = p;
445 	}
446 }
447 #else
448 static void validate_nommu_regions(void)
449 {
450 }
451 #endif
452 
453 /*
454  * add a region into the global tree
455  */
456 static void add_nommu_region(struct vm_region *region)
457 {
458 	struct vm_region *pregion;
459 	struct rb_node **p, *parent;
460 
461 	validate_nommu_regions();
462 
463 	parent = NULL;
464 	p = &nommu_region_tree.rb_node;
465 	while (*p) {
466 		parent = *p;
467 		pregion = rb_entry(parent, struct vm_region, vm_rb);
468 		if (region->vm_start < pregion->vm_start)
469 			p = &(*p)->rb_left;
470 		else if (region->vm_start > pregion->vm_start)
471 			p = &(*p)->rb_right;
472 		else if (pregion == region)
473 			return;
474 		else
475 			BUG();
476 	}
477 
478 	rb_link_node(&region->vm_rb, parent, p);
479 	rb_insert_color(&region->vm_rb, &nommu_region_tree);
480 
481 	validate_nommu_regions();
482 }
483 
484 /*
485  * delete a region from the global tree
486  */
487 static void delete_nommu_region(struct vm_region *region)
488 {
489 	BUG_ON(!nommu_region_tree.rb_node);
490 
491 	validate_nommu_regions();
492 	rb_erase(&region->vm_rb, &nommu_region_tree);
493 	validate_nommu_regions();
494 }
495 
496 /*
497  * free a contiguous series of pages
498  */
499 static void free_page_series(unsigned long from, unsigned long to)
500 {
501 	for (; from < to; from += PAGE_SIZE) {
502 		struct page *page = virt_to_page((void *)from);
503 
504 		atomic_long_dec(&mmap_pages_allocated);
505 		put_page(page);
506 	}
507 }
508 
509 /*
510  * release a reference to a region
511  * - the caller must hold the region semaphore for writing, which this releases
512  * - the region may not have been added to the tree yet, in which case vm_top
513  *   will equal vm_start
514  */
515 static void __put_nommu_region(struct vm_region *region)
516 	__releases(nommu_region_sem)
517 {
518 	BUG_ON(!nommu_region_tree.rb_node);
519 
520 	if (--region->vm_usage == 0) {
521 		if (region->vm_top > region->vm_start)
522 			delete_nommu_region(region);
523 		up_write(&nommu_region_sem);
524 
525 		if (region->vm_file)
526 			fput(region->vm_file);
527 
528 		/* IO memory and memory shared directly out of the pagecache
529 		 * from ramfs/tmpfs mustn't be released here */
530 		if (region->vm_flags & VM_MAPPED_COPY)
531 			free_page_series(region->vm_start, region->vm_top);
532 		kmem_cache_free(vm_region_jar, region);
533 	} else {
534 		up_write(&nommu_region_sem);
535 	}
536 }
537 
538 /*
539  * release a reference to a region
540  */
541 static void put_nommu_region(struct vm_region *region)
542 {
543 	down_write(&nommu_region_sem);
544 	__put_nommu_region(region);
545 }
546 
547 static void setup_vma_to_mm(struct vm_area_struct *vma, struct mm_struct *mm)
548 {
549 	vma->vm_mm = mm;
550 
551 	/* add the VMA to the mapping */
552 	if (vma->vm_file) {
553 		struct address_space *mapping = vma->vm_file->f_mapping;
554 
555 		i_mmap_lock_write(mapping);
556 		flush_dcache_mmap_lock(mapping);
557 		vma_interval_tree_insert(vma, &mapping->i_mmap);
558 		flush_dcache_mmap_unlock(mapping);
559 		i_mmap_unlock_write(mapping);
560 	}
561 }
562 
563 static void cleanup_vma_from_mm(struct vm_area_struct *vma)
564 {
565 	vma->vm_mm->map_count--;
566 	/* remove the VMA from the mapping */
567 	if (vma->vm_file) {
568 		struct address_space *mapping;
569 		mapping = vma->vm_file->f_mapping;
570 
571 		i_mmap_lock_write(mapping);
572 		flush_dcache_mmap_lock(mapping);
573 		vma_interval_tree_remove(vma, &mapping->i_mmap);
574 		flush_dcache_mmap_unlock(mapping);
575 		i_mmap_unlock_write(mapping);
576 	}
577 }
578 
579 /*
580  * delete a VMA from its owning mm_struct and address space
581  */
582 static int delete_vma_from_mm(struct vm_area_struct *vma)
583 {
584 	VMA_ITERATOR(vmi, vma->vm_mm, vma->vm_start);
585 
586 	vma_iter_config(&vmi, vma->vm_start, vma->vm_end);
587 	if (vma_iter_prealloc(&vmi, vma)) {
588 		pr_warn("Allocation of vma tree for process %d failed\n",
589 		       current->pid);
590 		return -ENOMEM;
591 	}
592 	cleanup_vma_from_mm(vma);
593 
594 	/* remove from the MM's tree and list */
595 	vma_iter_clear(&vmi);
596 	return 0;
597 }
598 /*
599  * destroy a VMA record
600  */
601 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
602 {
603 	if (vma->vm_ops && vma->vm_ops->close)
604 		vma->vm_ops->close(vma);
605 	if (vma->vm_file)
606 		fput(vma->vm_file);
607 	put_nommu_region(vma->vm_region);
608 	vm_area_free(vma);
609 }
610 
611 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
612 					     unsigned long start_addr,
613 					     unsigned long end_addr)
614 {
615 	unsigned long index = start_addr;
616 
617 	mmap_assert_locked(mm);
618 	return mt_find(&mm->mm_mt, &index, end_addr - 1);
619 }
620 EXPORT_SYMBOL(find_vma_intersection);
621 
622 /*
623  * look up the first VMA in which addr resides, NULL if none
624  * - should be called with mm->mmap_lock at least held readlocked
625  */
626 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
627 {
628 	VMA_ITERATOR(vmi, mm, addr);
629 
630 	return vma_iter_load(&vmi);
631 }
632 EXPORT_SYMBOL(find_vma);
633 
634 /*
635  * At least xtensa ends up having protection faults even with no
636  * MMU.. No stack expansion, at least.
637  */
638 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
639 			unsigned long addr, struct pt_regs *regs)
640 {
641 	struct vm_area_struct *vma;
642 
643 	mmap_read_lock(mm);
644 	vma = vma_lookup(mm, addr);
645 	if (!vma)
646 		mmap_read_unlock(mm);
647 	return vma;
648 }
649 
650 /*
651  * expand a stack to a given address
652  * - not supported under NOMMU conditions
653  */
654 int expand_stack_locked(struct vm_area_struct *vma, unsigned long addr)
655 {
656 	return -ENOMEM;
657 }
658 
659 struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr)
660 {
661 	mmap_read_unlock(mm);
662 	return NULL;
663 }
664 
665 /*
666  * look up the first VMA exactly that exactly matches addr
667  * - should be called with mm->mmap_lock at least held readlocked
668  */
669 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
670 					     unsigned long addr,
671 					     unsigned long len)
672 {
673 	struct vm_area_struct *vma;
674 	unsigned long end = addr + len;
675 	VMA_ITERATOR(vmi, mm, addr);
676 
677 	vma = vma_iter_load(&vmi);
678 	if (!vma)
679 		return NULL;
680 	if (vma->vm_start != addr)
681 		return NULL;
682 	if (vma->vm_end != end)
683 		return NULL;
684 
685 	return vma;
686 }
687 
688 /*
689  * determine whether a mapping should be permitted and, if so, what sort of
690  * mapping we're capable of supporting
691  */
692 static int validate_mmap_request(struct file *file,
693 				 unsigned long addr,
694 				 unsigned long len,
695 				 unsigned long prot,
696 				 unsigned long flags,
697 				 unsigned long pgoff,
698 				 unsigned long *_capabilities)
699 {
700 	unsigned long capabilities, rlen;
701 	int ret;
702 
703 	/* do the simple checks first */
704 	if (flags & MAP_FIXED)
705 		return -EINVAL;
706 
707 	if ((flags & MAP_TYPE) != MAP_PRIVATE &&
708 	    (flags & MAP_TYPE) != MAP_SHARED)
709 		return -EINVAL;
710 
711 	if (!len)
712 		return -EINVAL;
713 
714 	/* Careful about overflows.. */
715 	rlen = PAGE_ALIGN(len);
716 	if (!rlen || rlen > TASK_SIZE)
717 		return -ENOMEM;
718 
719 	/* offset overflow? */
720 	if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
721 		return -EOVERFLOW;
722 
723 	if (file) {
724 		/* files must support mmap */
725 		if (!file->f_op->mmap)
726 			return -ENODEV;
727 
728 		/* work out if what we've got could possibly be shared
729 		 * - we support chardevs that provide their own "memory"
730 		 * - we support files/blockdevs that are memory backed
731 		 */
732 		if (file->f_op->mmap_capabilities) {
733 			capabilities = file->f_op->mmap_capabilities(file);
734 		} else {
735 			/* no explicit capabilities set, so assume some
736 			 * defaults */
737 			switch (file_inode(file)->i_mode & S_IFMT) {
738 			case S_IFREG:
739 			case S_IFBLK:
740 				capabilities = NOMMU_MAP_COPY;
741 				break;
742 
743 			case S_IFCHR:
744 				capabilities =
745 					NOMMU_MAP_DIRECT |
746 					NOMMU_MAP_READ |
747 					NOMMU_MAP_WRITE;
748 				break;
749 
750 			default:
751 				return -EINVAL;
752 			}
753 		}
754 
755 		/* eliminate any capabilities that we can't support on this
756 		 * device */
757 		if (!file->f_op->get_unmapped_area)
758 			capabilities &= ~NOMMU_MAP_DIRECT;
759 		if (!(file->f_mode & FMODE_CAN_READ))
760 			capabilities &= ~NOMMU_MAP_COPY;
761 
762 		/* The file shall have been opened with read permission. */
763 		if (!(file->f_mode & FMODE_READ))
764 			return -EACCES;
765 
766 		if (flags & MAP_SHARED) {
767 			/* do checks for writing, appending and locking */
768 			if ((prot & PROT_WRITE) &&
769 			    !(file->f_mode & FMODE_WRITE))
770 				return -EACCES;
771 
772 			if (IS_APPEND(file_inode(file)) &&
773 			    (file->f_mode & FMODE_WRITE))
774 				return -EACCES;
775 
776 			if (!(capabilities & NOMMU_MAP_DIRECT))
777 				return -ENODEV;
778 
779 			/* we mustn't privatise shared mappings */
780 			capabilities &= ~NOMMU_MAP_COPY;
781 		} else {
782 			/* we're going to read the file into private memory we
783 			 * allocate */
784 			if (!(capabilities & NOMMU_MAP_COPY))
785 				return -ENODEV;
786 
787 			/* we don't permit a private writable mapping to be
788 			 * shared with the backing device */
789 			if (prot & PROT_WRITE)
790 				capabilities &= ~NOMMU_MAP_DIRECT;
791 		}
792 
793 		if (capabilities & NOMMU_MAP_DIRECT) {
794 			if (((prot & PROT_READ)  && !(capabilities & NOMMU_MAP_READ))  ||
795 			    ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
796 			    ((prot & PROT_EXEC)  && !(capabilities & NOMMU_MAP_EXEC))
797 			    ) {
798 				capabilities &= ~NOMMU_MAP_DIRECT;
799 				if (flags & MAP_SHARED) {
800 					pr_warn("MAP_SHARED not completely supported on !MMU\n");
801 					return -EINVAL;
802 				}
803 			}
804 		}
805 
806 		/* handle executable mappings and implied executable
807 		 * mappings */
808 		if (path_noexec(&file->f_path)) {
809 			if (prot & PROT_EXEC)
810 				return -EPERM;
811 		} else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
812 			/* handle implication of PROT_EXEC by PROT_READ */
813 			if (current->personality & READ_IMPLIES_EXEC) {
814 				if (capabilities & NOMMU_MAP_EXEC)
815 					prot |= PROT_EXEC;
816 			}
817 		} else if ((prot & PROT_READ) &&
818 			 (prot & PROT_EXEC) &&
819 			 !(capabilities & NOMMU_MAP_EXEC)
820 			 ) {
821 			/* backing file is not executable, try to copy */
822 			capabilities &= ~NOMMU_MAP_DIRECT;
823 		}
824 	} else {
825 		/* anonymous mappings are always memory backed and can be
826 		 * privately mapped
827 		 */
828 		capabilities = NOMMU_MAP_COPY;
829 
830 		/* handle PROT_EXEC implication by PROT_READ */
831 		if ((prot & PROT_READ) &&
832 		    (current->personality & READ_IMPLIES_EXEC))
833 			prot |= PROT_EXEC;
834 	}
835 
836 	/* allow the security API to have its say */
837 	ret = security_mmap_addr(addr);
838 	if (ret < 0)
839 		return ret;
840 
841 	/* looks okay */
842 	*_capabilities = capabilities;
843 	return 0;
844 }
845 
846 /*
847  * we've determined that we can make the mapping, now translate what we
848  * now know into VMA flags
849  */
850 static unsigned long determine_vm_flags(struct file *file,
851 					unsigned long prot,
852 					unsigned long flags,
853 					unsigned long capabilities)
854 {
855 	unsigned long vm_flags;
856 
857 	vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags);
858 
859 	if (!file) {
860 		/*
861 		 * MAP_ANONYMOUS. MAP_SHARED is mapped to MAP_PRIVATE, because
862 		 * there is no fork().
863 		 */
864 		vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
865 	} else if (flags & MAP_PRIVATE) {
866 		/* MAP_PRIVATE file mapping */
867 		if (capabilities & NOMMU_MAP_DIRECT)
868 			vm_flags |= (capabilities & NOMMU_VMFLAGS);
869 		else
870 			vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
871 
872 		if (!(prot & PROT_WRITE) && !current->ptrace)
873 			/*
874 			 * R/O private file mapping which cannot be used to
875 			 * modify memory, especially also not via active ptrace
876 			 * (e.g., set breakpoints) or later by upgrading
877 			 * permissions (no mprotect()). We can try overlaying
878 			 * the file mapping, which will work e.g., on chardevs,
879 			 * ramfs/tmpfs/shmfs and romfs/cramf.
880 			 */
881 			vm_flags |= VM_MAYOVERLAY;
882 	} else {
883 		/* MAP_SHARED file mapping: NOMMU_MAP_DIRECT is set. */
884 		vm_flags |= VM_SHARED | VM_MAYSHARE |
885 			    (capabilities & NOMMU_VMFLAGS);
886 	}
887 
888 	return vm_flags;
889 }
890 
891 /*
892  * set up a shared mapping on a file (the driver or filesystem provides and
893  * pins the storage)
894  */
895 static int do_mmap_shared_file(struct vm_area_struct *vma)
896 {
897 	int ret;
898 
899 	ret = call_mmap(vma->vm_file, vma);
900 	if (ret == 0) {
901 		vma->vm_region->vm_top = vma->vm_region->vm_end;
902 		return 0;
903 	}
904 	if (ret != -ENOSYS)
905 		return ret;
906 
907 	/* getting -ENOSYS indicates that direct mmap isn't possible (as
908 	 * opposed to tried but failed) so we can only give a suitable error as
909 	 * it's not possible to make a private copy if MAP_SHARED was given */
910 	return -ENODEV;
911 }
912 
913 /*
914  * set up a private mapping or an anonymous shared mapping
915  */
916 static int do_mmap_private(struct vm_area_struct *vma,
917 			   struct vm_region *region,
918 			   unsigned long len,
919 			   unsigned long capabilities)
920 {
921 	unsigned long total, point;
922 	void *base;
923 	int ret, order;
924 
925 	/*
926 	 * Invoke the file's mapping function so that it can keep track of
927 	 * shared mappings on devices or memory. VM_MAYOVERLAY will be set if
928 	 * it may attempt to share, which will make is_nommu_shared_mapping()
929 	 * happy.
930 	 */
931 	if (capabilities & NOMMU_MAP_DIRECT) {
932 		ret = call_mmap(vma->vm_file, vma);
933 		/* shouldn't return success if we're not sharing */
934 		if (WARN_ON_ONCE(!is_nommu_shared_mapping(vma->vm_flags)))
935 			ret = -ENOSYS;
936 		if (ret == 0) {
937 			vma->vm_region->vm_top = vma->vm_region->vm_end;
938 			return 0;
939 		}
940 		if (ret != -ENOSYS)
941 			return ret;
942 
943 		/* getting an ENOSYS error indicates that direct mmap isn't
944 		 * possible (as opposed to tried but failed) so we'll try to
945 		 * make a private copy of the data and map that instead */
946 	}
947 
948 
949 	/* allocate some memory to hold the mapping
950 	 * - note that this may not return a page-aligned address if the object
951 	 *   we're allocating is smaller than a page
952 	 */
953 	order = get_order(len);
954 	total = 1 << order;
955 	point = len >> PAGE_SHIFT;
956 
957 	/* we don't want to allocate a power-of-2 sized page set */
958 	if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages)
959 		total = point;
960 
961 	base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL);
962 	if (!base)
963 		goto enomem;
964 
965 	atomic_long_add(total, &mmap_pages_allocated);
966 
967 	vm_flags_set(vma, VM_MAPPED_COPY);
968 	region->vm_flags = vma->vm_flags;
969 	region->vm_start = (unsigned long) base;
970 	region->vm_end   = region->vm_start + len;
971 	region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
972 
973 	vma->vm_start = region->vm_start;
974 	vma->vm_end   = region->vm_start + len;
975 
976 	if (vma->vm_file) {
977 		/* read the contents of a file into the copy */
978 		loff_t fpos;
979 
980 		fpos = vma->vm_pgoff;
981 		fpos <<= PAGE_SHIFT;
982 
983 		ret = kernel_read(vma->vm_file, base, len, &fpos);
984 		if (ret < 0)
985 			goto error_free;
986 
987 		/* clear the last little bit */
988 		if (ret < len)
989 			memset(base + ret, 0, len - ret);
990 
991 	} else {
992 		vma_set_anonymous(vma);
993 	}
994 
995 	return 0;
996 
997 error_free:
998 	free_page_series(region->vm_start, region->vm_top);
999 	region->vm_start = vma->vm_start = 0;
1000 	region->vm_end   = vma->vm_end = 0;
1001 	region->vm_top   = 0;
1002 	return ret;
1003 
1004 enomem:
1005 	pr_err("Allocation of length %lu from process %d (%s) failed\n",
1006 	       len, current->pid, current->comm);
1007 	show_mem();
1008 	return -ENOMEM;
1009 }
1010 
1011 /*
1012  * handle mapping creation for uClinux
1013  */
1014 unsigned long do_mmap(struct file *file,
1015 			unsigned long addr,
1016 			unsigned long len,
1017 			unsigned long prot,
1018 			unsigned long flags,
1019 			vm_flags_t vm_flags,
1020 			unsigned long pgoff,
1021 			unsigned long *populate,
1022 			struct list_head *uf)
1023 {
1024 	struct vm_area_struct *vma;
1025 	struct vm_region *region;
1026 	struct rb_node *rb;
1027 	unsigned long capabilities, result;
1028 	int ret;
1029 	VMA_ITERATOR(vmi, current->mm, 0);
1030 
1031 	*populate = 0;
1032 
1033 	/* decide whether we should attempt the mapping, and if so what sort of
1034 	 * mapping */
1035 	ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1036 				    &capabilities);
1037 	if (ret < 0)
1038 		return ret;
1039 
1040 	/* we ignore the address hint */
1041 	addr = 0;
1042 	len = PAGE_ALIGN(len);
1043 
1044 	/* we've determined that we can make the mapping, now translate what we
1045 	 * now know into VMA flags */
1046 	vm_flags |= determine_vm_flags(file, prot, flags, capabilities);
1047 
1048 
1049 	/* we're going to need to record the mapping */
1050 	region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1051 	if (!region)
1052 		goto error_getting_region;
1053 
1054 	vma = vm_area_alloc(current->mm);
1055 	if (!vma)
1056 		goto error_getting_vma;
1057 
1058 	region->vm_usage = 1;
1059 	region->vm_flags = vm_flags;
1060 	region->vm_pgoff = pgoff;
1061 
1062 	vm_flags_init(vma, vm_flags);
1063 	vma->vm_pgoff = pgoff;
1064 
1065 	if (file) {
1066 		region->vm_file = get_file(file);
1067 		vma->vm_file = get_file(file);
1068 	}
1069 
1070 	down_write(&nommu_region_sem);
1071 
1072 	/* if we want to share, we need to check for regions created by other
1073 	 * mmap() calls that overlap with our proposed mapping
1074 	 * - we can only share with a superset match on most regular files
1075 	 * - shared mappings on character devices and memory backed files are
1076 	 *   permitted to overlap inexactly as far as we are concerned for in
1077 	 *   these cases, sharing is handled in the driver or filesystem rather
1078 	 *   than here
1079 	 */
1080 	if (is_nommu_shared_mapping(vm_flags)) {
1081 		struct vm_region *pregion;
1082 		unsigned long pglen, rpglen, pgend, rpgend, start;
1083 
1084 		pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1085 		pgend = pgoff + pglen;
1086 
1087 		for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1088 			pregion = rb_entry(rb, struct vm_region, vm_rb);
1089 
1090 			if (!is_nommu_shared_mapping(pregion->vm_flags))
1091 				continue;
1092 
1093 			/* search for overlapping mappings on the same file */
1094 			if (file_inode(pregion->vm_file) !=
1095 			    file_inode(file))
1096 				continue;
1097 
1098 			if (pregion->vm_pgoff >= pgend)
1099 				continue;
1100 
1101 			rpglen = pregion->vm_end - pregion->vm_start;
1102 			rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1103 			rpgend = pregion->vm_pgoff + rpglen;
1104 			if (pgoff >= rpgend)
1105 				continue;
1106 
1107 			/* handle inexactly overlapping matches between
1108 			 * mappings */
1109 			if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1110 			    !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1111 				/* new mapping is not a subset of the region */
1112 				if (!(capabilities & NOMMU_MAP_DIRECT))
1113 					goto sharing_violation;
1114 				continue;
1115 			}
1116 
1117 			/* we've found a region we can share */
1118 			pregion->vm_usage++;
1119 			vma->vm_region = pregion;
1120 			start = pregion->vm_start;
1121 			start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1122 			vma->vm_start = start;
1123 			vma->vm_end = start + len;
1124 
1125 			if (pregion->vm_flags & VM_MAPPED_COPY)
1126 				vm_flags_set(vma, VM_MAPPED_COPY);
1127 			else {
1128 				ret = do_mmap_shared_file(vma);
1129 				if (ret < 0) {
1130 					vma->vm_region = NULL;
1131 					vma->vm_start = 0;
1132 					vma->vm_end = 0;
1133 					pregion->vm_usage--;
1134 					pregion = NULL;
1135 					goto error_just_free;
1136 				}
1137 			}
1138 			fput(region->vm_file);
1139 			kmem_cache_free(vm_region_jar, region);
1140 			region = pregion;
1141 			result = start;
1142 			goto share;
1143 		}
1144 
1145 		/* obtain the address at which to make a shared mapping
1146 		 * - this is the hook for quasi-memory character devices to
1147 		 *   tell us the location of a shared mapping
1148 		 */
1149 		if (capabilities & NOMMU_MAP_DIRECT) {
1150 			addr = file->f_op->get_unmapped_area(file, addr, len,
1151 							     pgoff, flags);
1152 			if (IS_ERR_VALUE(addr)) {
1153 				ret = addr;
1154 				if (ret != -ENOSYS)
1155 					goto error_just_free;
1156 
1157 				/* the driver refused to tell us where to site
1158 				 * the mapping so we'll have to attempt to copy
1159 				 * it */
1160 				ret = -ENODEV;
1161 				if (!(capabilities & NOMMU_MAP_COPY))
1162 					goto error_just_free;
1163 
1164 				capabilities &= ~NOMMU_MAP_DIRECT;
1165 			} else {
1166 				vma->vm_start = region->vm_start = addr;
1167 				vma->vm_end = region->vm_end = addr + len;
1168 			}
1169 		}
1170 	}
1171 
1172 	vma->vm_region = region;
1173 
1174 	/* set up the mapping
1175 	 * - the region is filled in if NOMMU_MAP_DIRECT is still set
1176 	 */
1177 	if (file && vma->vm_flags & VM_SHARED)
1178 		ret = do_mmap_shared_file(vma);
1179 	else
1180 		ret = do_mmap_private(vma, region, len, capabilities);
1181 	if (ret < 0)
1182 		goto error_just_free;
1183 	add_nommu_region(region);
1184 
1185 	/* clear anonymous mappings that don't ask for uninitialized data */
1186 	if (!vma->vm_file &&
1187 	    (!IS_ENABLED(CONFIG_MMAP_ALLOW_UNINITIALIZED) ||
1188 	     !(flags & MAP_UNINITIALIZED)))
1189 		memset((void *)region->vm_start, 0,
1190 		       region->vm_end - region->vm_start);
1191 
1192 	/* okay... we have a mapping; now we have to register it */
1193 	result = vma->vm_start;
1194 
1195 	current->mm->total_vm += len >> PAGE_SHIFT;
1196 
1197 share:
1198 	BUG_ON(!vma->vm_region);
1199 	vma_iter_config(&vmi, vma->vm_start, vma->vm_end);
1200 	if (vma_iter_prealloc(&vmi, vma))
1201 		goto error_just_free;
1202 
1203 	setup_vma_to_mm(vma, current->mm);
1204 	current->mm->map_count++;
1205 	/* add the VMA to the tree */
1206 	vma_iter_store(&vmi, vma);
1207 
1208 	/* we flush the region from the icache only when the first executable
1209 	 * mapping of it is made  */
1210 	if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1211 		flush_icache_user_range(region->vm_start, region->vm_end);
1212 		region->vm_icache_flushed = true;
1213 	}
1214 
1215 	up_write(&nommu_region_sem);
1216 
1217 	return result;
1218 
1219 error_just_free:
1220 	up_write(&nommu_region_sem);
1221 error:
1222 	vma_iter_free(&vmi);
1223 	if (region->vm_file)
1224 		fput(region->vm_file);
1225 	kmem_cache_free(vm_region_jar, region);
1226 	if (vma->vm_file)
1227 		fput(vma->vm_file);
1228 	vm_area_free(vma);
1229 	return ret;
1230 
1231 sharing_violation:
1232 	up_write(&nommu_region_sem);
1233 	pr_warn("Attempt to share mismatched mappings\n");
1234 	ret = -EINVAL;
1235 	goto error;
1236 
1237 error_getting_vma:
1238 	kmem_cache_free(vm_region_jar, region);
1239 	pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n",
1240 			len, current->pid);
1241 	show_mem();
1242 	return -ENOMEM;
1243 
1244 error_getting_region:
1245 	pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n",
1246 			len, current->pid);
1247 	show_mem();
1248 	return -ENOMEM;
1249 }
1250 
1251 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1252 			      unsigned long prot, unsigned long flags,
1253 			      unsigned long fd, unsigned long pgoff)
1254 {
1255 	struct file *file = NULL;
1256 	unsigned long retval = -EBADF;
1257 
1258 	audit_mmap_fd(fd, flags);
1259 	if (!(flags & MAP_ANONYMOUS)) {
1260 		file = fget(fd);
1261 		if (!file)
1262 			goto out;
1263 	}
1264 
1265 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1266 
1267 	if (file)
1268 		fput(file);
1269 out:
1270 	return retval;
1271 }
1272 
1273 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1274 		unsigned long, prot, unsigned long, flags,
1275 		unsigned long, fd, unsigned long, pgoff)
1276 {
1277 	return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1278 }
1279 
1280 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1281 struct mmap_arg_struct {
1282 	unsigned long addr;
1283 	unsigned long len;
1284 	unsigned long prot;
1285 	unsigned long flags;
1286 	unsigned long fd;
1287 	unsigned long offset;
1288 };
1289 
1290 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1291 {
1292 	struct mmap_arg_struct a;
1293 
1294 	if (copy_from_user(&a, arg, sizeof(a)))
1295 		return -EFAULT;
1296 	if (offset_in_page(a.offset))
1297 		return -EINVAL;
1298 
1299 	return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1300 			       a.offset >> PAGE_SHIFT);
1301 }
1302 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1303 
1304 /*
1305  * split a vma into two pieces at address 'addr', a new vma is allocated either
1306  * for the first part or the tail.
1307  */
1308 int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
1309 	      unsigned long addr, int new_below)
1310 {
1311 	struct vm_area_struct *new;
1312 	struct vm_region *region;
1313 	unsigned long npages;
1314 	struct mm_struct *mm;
1315 
1316 	/* we're only permitted to split anonymous regions (these should have
1317 	 * only a single usage on the region) */
1318 	if (vma->vm_file)
1319 		return -ENOMEM;
1320 
1321 	mm = vma->vm_mm;
1322 	if (mm->map_count >= sysctl_max_map_count)
1323 		return -ENOMEM;
1324 
1325 	region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1326 	if (!region)
1327 		return -ENOMEM;
1328 
1329 	new = vm_area_dup(vma);
1330 	if (!new)
1331 		goto err_vma_dup;
1332 
1333 	/* most fields are the same, copy all, and then fixup */
1334 	*region = *vma->vm_region;
1335 	new->vm_region = region;
1336 
1337 	npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1338 
1339 	if (new_below) {
1340 		region->vm_top = region->vm_end = new->vm_end = addr;
1341 	} else {
1342 		region->vm_start = new->vm_start = addr;
1343 		region->vm_pgoff = new->vm_pgoff += npages;
1344 	}
1345 
1346 	vma_iter_config(vmi, new->vm_start, new->vm_end);
1347 	if (vma_iter_prealloc(vmi, vma)) {
1348 		pr_warn("Allocation of vma tree for process %d failed\n",
1349 			current->pid);
1350 		goto err_vmi_preallocate;
1351 	}
1352 
1353 	if (new->vm_ops && new->vm_ops->open)
1354 		new->vm_ops->open(new);
1355 
1356 	down_write(&nommu_region_sem);
1357 	delete_nommu_region(vma->vm_region);
1358 	if (new_below) {
1359 		vma->vm_region->vm_start = vma->vm_start = addr;
1360 		vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1361 	} else {
1362 		vma->vm_region->vm_end = vma->vm_end = addr;
1363 		vma->vm_region->vm_top = addr;
1364 	}
1365 	add_nommu_region(vma->vm_region);
1366 	add_nommu_region(new->vm_region);
1367 	up_write(&nommu_region_sem);
1368 
1369 	setup_vma_to_mm(vma, mm);
1370 	setup_vma_to_mm(new, mm);
1371 	vma_iter_store(vmi, new);
1372 	mm->map_count++;
1373 	return 0;
1374 
1375 err_vmi_preallocate:
1376 	vm_area_free(new);
1377 err_vma_dup:
1378 	kmem_cache_free(vm_region_jar, region);
1379 	return -ENOMEM;
1380 }
1381 
1382 /*
1383  * shrink a VMA by removing the specified chunk from either the beginning or
1384  * the end
1385  */
1386 static int vmi_shrink_vma(struct vma_iterator *vmi,
1387 		      struct vm_area_struct *vma,
1388 		      unsigned long from, unsigned long to)
1389 {
1390 	struct vm_region *region;
1391 
1392 	/* adjust the VMA's pointers, which may reposition it in the MM's tree
1393 	 * and list */
1394 	if (from > vma->vm_start) {
1395 		if (vma_iter_clear_gfp(vmi, from, vma->vm_end, GFP_KERNEL))
1396 			return -ENOMEM;
1397 		vma->vm_end = from;
1398 	} else {
1399 		if (vma_iter_clear_gfp(vmi, vma->vm_start, to, GFP_KERNEL))
1400 			return -ENOMEM;
1401 		vma->vm_start = to;
1402 	}
1403 
1404 	/* cut the backing region down to size */
1405 	region = vma->vm_region;
1406 	BUG_ON(region->vm_usage != 1);
1407 
1408 	down_write(&nommu_region_sem);
1409 	delete_nommu_region(region);
1410 	if (from > region->vm_start) {
1411 		to = region->vm_top;
1412 		region->vm_top = region->vm_end = from;
1413 	} else {
1414 		region->vm_start = to;
1415 	}
1416 	add_nommu_region(region);
1417 	up_write(&nommu_region_sem);
1418 
1419 	free_page_series(from, to);
1420 	return 0;
1421 }
1422 
1423 /*
1424  * release a mapping
1425  * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1426  *   VMA, though it need not cover the whole VMA
1427  */
1428 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf)
1429 {
1430 	VMA_ITERATOR(vmi, mm, start);
1431 	struct vm_area_struct *vma;
1432 	unsigned long end;
1433 	int ret = 0;
1434 
1435 	len = PAGE_ALIGN(len);
1436 	if (len == 0)
1437 		return -EINVAL;
1438 
1439 	end = start + len;
1440 
1441 	/* find the first potentially overlapping VMA */
1442 	vma = vma_find(&vmi, end);
1443 	if (!vma) {
1444 		static int limit;
1445 		if (limit < 5) {
1446 			pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n",
1447 					current->pid, current->comm,
1448 					start, start + len - 1);
1449 			limit++;
1450 		}
1451 		return -EINVAL;
1452 	}
1453 
1454 	/* we're allowed to split an anonymous VMA but not a file-backed one */
1455 	if (vma->vm_file) {
1456 		do {
1457 			if (start > vma->vm_start)
1458 				return -EINVAL;
1459 			if (end == vma->vm_end)
1460 				goto erase_whole_vma;
1461 			vma = vma_find(&vmi, end);
1462 		} while (vma);
1463 		return -EINVAL;
1464 	} else {
1465 		/* the chunk must be a subset of the VMA found */
1466 		if (start == vma->vm_start && end == vma->vm_end)
1467 			goto erase_whole_vma;
1468 		if (start < vma->vm_start || end > vma->vm_end)
1469 			return -EINVAL;
1470 		if (offset_in_page(start))
1471 			return -EINVAL;
1472 		if (end != vma->vm_end && offset_in_page(end))
1473 			return -EINVAL;
1474 		if (start != vma->vm_start && end != vma->vm_end) {
1475 			ret = split_vma(&vmi, vma, start, 1);
1476 			if (ret < 0)
1477 				return ret;
1478 		}
1479 		return vmi_shrink_vma(&vmi, vma, start, end);
1480 	}
1481 
1482 erase_whole_vma:
1483 	if (delete_vma_from_mm(vma))
1484 		ret = -ENOMEM;
1485 	else
1486 		delete_vma(mm, vma);
1487 	return ret;
1488 }
1489 
1490 int vm_munmap(unsigned long addr, size_t len)
1491 {
1492 	struct mm_struct *mm = current->mm;
1493 	int ret;
1494 
1495 	mmap_write_lock(mm);
1496 	ret = do_munmap(mm, addr, len, NULL);
1497 	mmap_write_unlock(mm);
1498 	return ret;
1499 }
1500 EXPORT_SYMBOL(vm_munmap);
1501 
1502 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1503 {
1504 	return vm_munmap(addr, len);
1505 }
1506 
1507 /*
1508  * release all the mappings made in a process's VM space
1509  */
1510 void exit_mmap(struct mm_struct *mm)
1511 {
1512 	VMA_ITERATOR(vmi, mm, 0);
1513 	struct vm_area_struct *vma;
1514 
1515 	if (!mm)
1516 		return;
1517 
1518 	mm->total_vm = 0;
1519 
1520 	/*
1521 	 * Lock the mm to avoid assert complaining even though this is the only
1522 	 * user of the mm
1523 	 */
1524 	mmap_write_lock(mm);
1525 	for_each_vma(vmi, vma) {
1526 		cleanup_vma_from_mm(vma);
1527 		delete_vma(mm, vma);
1528 		cond_resched();
1529 	}
1530 	__mt_destroy(&mm->mm_mt);
1531 	mmap_write_unlock(mm);
1532 }
1533 
1534 int vm_brk(unsigned long addr, unsigned long len)
1535 {
1536 	return -ENOMEM;
1537 }
1538 
1539 /*
1540  * expand (or shrink) an existing mapping, potentially moving it at the same
1541  * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1542  *
1543  * under NOMMU conditions, we only permit changing a mapping's size, and only
1544  * as long as it stays within the region allocated by do_mmap_private() and the
1545  * block is not shareable
1546  *
1547  * MREMAP_FIXED is not supported under NOMMU conditions
1548  */
1549 static unsigned long do_mremap(unsigned long addr,
1550 			unsigned long old_len, unsigned long new_len,
1551 			unsigned long flags, unsigned long new_addr)
1552 {
1553 	struct vm_area_struct *vma;
1554 
1555 	/* insanity checks first */
1556 	old_len = PAGE_ALIGN(old_len);
1557 	new_len = PAGE_ALIGN(new_len);
1558 	if (old_len == 0 || new_len == 0)
1559 		return (unsigned long) -EINVAL;
1560 
1561 	if (offset_in_page(addr))
1562 		return -EINVAL;
1563 
1564 	if (flags & MREMAP_FIXED && new_addr != addr)
1565 		return (unsigned long) -EINVAL;
1566 
1567 	vma = find_vma_exact(current->mm, addr, old_len);
1568 	if (!vma)
1569 		return (unsigned long) -EINVAL;
1570 
1571 	if (vma->vm_end != vma->vm_start + old_len)
1572 		return (unsigned long) -EFAULT;
1573 
1574 	if (is_nommu_shared_mapping(vma->vm_flags))
1575 		return (unsigned long) -EPERM;
1576 
1577 	if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1578 		return (unsigned long) -ENOMEM;
1579 
1580 	/* all checks complete - do it */
1581 	vma->vm_end = vma->vm_start + new_len;
1582 	return vma->vm_start;
1583 }
1584 
1585 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1586 		unsigned long, new_len, unsigned long, flags,
1587 		unsigned long, new_addr)
1588 {
1589 	unsigned long ret;
1590 
1591 	mmap_write_lock(current->mm);
1592 	ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1593 	mmap_write_unlock(current->mm);
1594 	return ret;
1595 }
1596 
1597 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1598 			 unsigned int foll_flags)
1599 {
1600 	return NULL;
1601 }
1602 
1603 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1604 		unsigned long pfn, unsigned long size, pgprot_t prot)
1605 {
1606 	if (addr != (pfn << PAGE_SHIFT))
1607 		return -EINVAL;
1608 
1609 	vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
1610 	return 0;
1611 }
1612 EXPORT_SYMBOL(remap_pfn_range);
1613 
1614 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1615 {
1616 	unsigned long pfn = start >> PAGE_SHIFT;
1617 	unsigned long vm_len = vma->vm_end - vma->vm_start;
1618 
1619 	pfn += vma->vm_pgoff;
1620 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1621 }
1622 EXPORT_SYMBOL(vm_iomap_memory);
1623 
1624 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1625 			unsigned long pgoff)
1626 {
1627 	unsigned int size = vma->vm_end - vma->vm_start;
1628 
1629 	if (!(vma->vm_flags & VM_USERMAP))
1630 		return -EINVAL;
1631 
1632 	vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1633 	vma->vm_end = vma->vm_start + size;
1634 
1635 	return 0;
1636 }
1637 EXPORT_SYMBOL(remap_vmalloc_range);
1638 
1639 vm_fault_t filemap_fault(struct vm_fault *vmf)
1640 {
1641 	BUG();
1642 	return 0;
1643 }
1644 EXPORT_SYMBOL(filemap_fault);
1645 
1646 vm_fault_t filemap_map_pages(struct vm_fault *vmf,
1647 		pgoff_t start_pgoff, pgoff_t end_pgoff)
1648 {
1649 	BUG();
1650 	return 0;
1651 }
1652 EXPORT_SYMBOL(filemap_map_pages);
1653 
1654 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
1655 		       int len, unsigned int gup_flags)
1656 {
1657 	struct vm_area_struct *vma;
1658 	int write = gup_flags & FOLL_WRITE;
1659 
1660 	if (mmap_read_lock_killable(mm))
1661 		return 0;
1662 
1663 	/* the access must start within one of the target process's mappings */
1664 	vma = find_vma(mm, addr);
1665 	if (vma) {
1666 		/* don't overrun this mapping */
1667 		if (addr + len >= vma->vm_end)
1668 			len = vma->vm_end - addr;
1669 
1670 		/* only read or write mappings where it is permitted */
1671 		if (write && vma->vm_flags & VM_MAYWRITE)
1672 			copy_to_user_page(vma, NULL, addr,
1673 					 (void *) addr, buf, len);
1674 		else if (!write && vma->vm_flags & VM_MAYREAD)
1675 			copy_from_user_page(vma, NULL, addr,
1676 					    buf, (void *) addr, len);
1677 		else
1678 			len = 0;
1679 	} else {
1680 		len = 0;
1681 	}
1682 
1683 	mmap_read_unlock(mm);
1684 
1685 	return len;
1686 }
1687 
1688 /**
1689  * access_remote_vm - access another process' address space
1690  * @mm:		the mm_struct of the target address space
1691  * @addr:	start address to access
1692  * @buf:	source or destination buffer
1693  * @len:	number of bytes to transfer
1694  * @gup_flags:	flags modifying lookup behaviour
1695  *
1696  * The caller must hold a reference on @mm.
1697  */
1698 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1699 		void *buf, int len, unsigned int gup_flags)
1700 {
1701 	return __access_remote_vm(mm, addr, buf, len, gup_flags);
1702 }
1703 
1704 /*
1705  * Access another process' address space.
1706  * - source/target buffer must be kernel space
1707  */
1708 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1709 		unsigned int gup_flags)
1710 {
1711 	struct mm_struct *mm;
1712 
1713 	if (addr + len < addr)
1714 		return 0;
1715 
1716 	mm = get_task_mm(tsk);
1717 	if (!mm)
1718 		return 0;
1719 
1720 	len = __access_remote_vm(mm, addr, buf, len, gup_flags);
1721 
1722 	mmput(mm);
1723 	return len;
1724 }
1725 EXPORT_SYMBOL_GPL(access_process_vm);
1726 
1727 /**
1728  * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
1729  * @inode: The inode to check
1730  * @size: The current filesize of the inode
1731  * @newsize: The proposed filesize of the inode
1732  *
1733  * Check the shared mappings on an inode on behalf of a shrinking truncate to
1734  * make sure that any outstanding VMAs aren't broken and then shrink the
1735  * vm_regions that extend beyond so that do_mmap() doesn't
1736  * automatically grant mappings that are too large.
1737  */
1738 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
1739 				size_t newsize)
1740 {
1741 	struct vm_area_struct *vma;
1742 	struct vm_region *region;
1743 	pgoff_t low, high;
1744 	size_t r_size, r_top;
1745 
1746 	low = newsize >> PAGE_SHIFT;
1747 	high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1748 
1749 	down_write(&nommu_region_sem);
1750 	i_mmap_lock_read(inode->i_mapping);
1751 
1752 	/* search for VMAs that fall within the dead zone */
1753 	vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
1754 		/* found one - only interested if it's shared out of the page
1755 		 * cache */
1756 		if (vma->vm_flags & VM_SHARED) {
1757 			i_mmap_unlock_read(inode->i_mapping);
1758 			up_write(&nommu_region_sem);
1759 			return -ETXTBSY; /* not quite true, but near enough */
1760 		}
1761 	}
1762 
1763 	/* reduce any regions that overlap the dead zone - if in existence,
1764 	 * these will be pointed to by VMAs that don't overlap the dead zone
1765 	 *
1766 	 * we don't check for any regions that start beyond the EOF as there
1767 	 * shouldn't be any
1768 	 */
1769 	vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
1770 		if (!(vma->vm_flags & VM_SHARED))
1771 			continue;
1772 
1773 		region = vma->vm_region;
1774 		r_size = region->vm_top - region->vm_start;
1775 		r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
1776 
1777 		if (r_top > newsize) {
1778 			region->vm_top -= r_top - newsize;
1779 			if (region->vm_end > region->vm_top)
1780 				region->vm_end = region->vm_top;
1781 		}
1782 	}
1783 
1784 	i_mmap_unlock_read(inode->i_mapping);
1785 	up_write(&nommu_region_sem);
1786 	return 0;
1787 }
1788 
1789 /*
1790  * Initialise sysctl_user_reserve_kbytes.
1791  *
1792  * This is intended to prevent a user from starting a single memory hogging
1793  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
1794  * mode.
1795  *
1796  * The default value is min(3% of free memory, 128MB)
1797  * 128MB is enough to recover with sshd/login, bash, and top/kill.
1798  */
1799 static int __meminit init_user_reserve(void)
1800 {
1801 	unsigned long free_kbytes;
1802 
1803 	free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
1804 
1805 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
1806 	return 0;
1807 }
1808 subsys_initcall(init_user_reserve);
1809 
1810 /*
1811  * Initialise sysctl_admin_reserve_kbytes.
1812  *
1813  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
1814  * to log in and kill a memory hogging process.
1815  *
1816  * Systems with more than 256MB will reserve 8MB, enough to recover
1817  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
1818  * only reserve 3% of free pages by default.
1819  */
1820 static int __meminit init_admin_reserve(void)
1821 {
1822 	unsigned long free_kbytes;
1823 
1824 	free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
1825 
1826 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
1827 	return 0;
1828 }
1829 subsys_initcall(init_admin_reserve);
1830