xref: /linux/mm/nommu.c (revision 2277ab4a1df50e05bc732fe9488d4e902bb8399a)
1 /*
2  *  linux/mm/nommu.c
3  *
4  *  Replacement code for mm functions to support CPU's that don't
5  *  have any form of memory management unit (thus no virtual memory).
6  *
7  *  See Documentation/nommu-mmap.txt
8  *
9  *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10  *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11  *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12  *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
13  *  Copyright (c) 2007-2009 Paul Mundt <lethal@linux-sh.org>
14  */
15 
16 #include <linux/module.h>
17 #include <linux/mm.h>
18 #include <linux/mman.h>
19 #include <linux/swap.h>
20 #include <linux/file.h>
21 #include <linux/highmem.h>
22 #include <linux/pagemap.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/tracehook.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mount.h>
29 #include <linux/personality.h>
30 #include <linux/security.h>
31 #include <linux/syscalls.h>
32 
33 #include <asm/uaccess.h>
34 #include <asm/tlb.h>
35 #include <asm/tlbflush.h>
36 #include "internal.h"
37 
38 static inline __attribute__((format(printf, 1, 2)))
39 void no_printk(const char *fmt, ...)
40 {
41 }
42 
43 #if 0
44 #define kenter(FMT, ...) \
45 	printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
46 #define kleave(FMT, ...) \
47 	printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
48 #define kdebug(FMT, ...) \
49 	printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__)
50 #else
51 #define kenter(FMT, ...) \
52 	no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
53 #define kleave(FMT, ...) \
54 	no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
55 #define kdebug(FMT, ...) \
56 	no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__)
57 #endif
58 
59 #include "internal.h"
60 
61 void *high_memory;
62 struct page *mem_map;
63 unsigned long max_mapnr;
64 unsigned long num_physpages;
65 struct percpu_counter vm_committed_as;
66 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
67 int sysctl_overcommit_ratio = 50; /* default is 50% */
68 int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT;
69 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
70 int heap_stack_gap = 0;
71 
72 /* amount of vm to protect from userspace access */
73 unsigned long mmap_min_addr = CONFIG_DEFAULT_MMAP_MIN_ADDR;
74 
75 atomic_long_t mmap_pages_allocated;
76 
77 EXPORT_SYMBOL(mem_map);
78 EXPORT_SYMBOL(num_physpages);
79 
80 /* list of mapped, potentially shareable regions */
81 static struct kmem_cache *vm_region_jar;
82 struct rb_root nommu_region_tree = RB_ROOT;
83 DECLARE_RWSEM(nommu_region_sem);
84 
85 struct vm_operations_struct generic_file_vm_ops = {
86 };
87 
88 /*
89  * Handle all mappings that got truncated by a "truncate()"
90  * system call.
91  *
92  * NOTE! We have to be ready to update the memory sharing
93  * between the file and the memory map for a potential last
94  * incomplete page.  Ugly, but necessary.
95  */
96 int vmtruncate(struct inode *inode, loff_t offset)
97 {
98 	struct address_space *mapping = inode->i_mapping;
99 	unsigned long limit;
100 
101 	if (inode->i_size < offset)
102 		goto do_expand;
103 	i_size_write(inode, offset);
104 
105 	truncate_inode_pages(mapping, offset);
106 	goto out_truncate;
107 
108 do_expand:
109 	limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
110 	if (limit != RLIM_INFINITY && offset > limit)
111 		goto out_sig;
112 	if (offset > inode->i_sb->s_maxbytes)
113 		goto out;
114 	i_size_write(inode, offset);
115 
116 out_truncate:
117 	if (inode->i_op->truncate)
118 		inode->i_op->truncate(inode);
119 	return 0;
120 out_sig:
121 	send_sig(SIGXFSZ, current, 0);
122 out:
123 	return -EFBIG;
124 }
125 
126 EXPORT_SYMBOL(vmtruncate);
127 
128 /*
129  * Return the total memory allocated for this pointer, not
130  * just what the caller asked for.
131  *
132  * Doesn't have to be accurate, i.e. may have races.
133  */
134 unsigned int kobjsize(const void *objp)
135 {
136 	struct page *page;
137 
138 	/*
139 	 * If the object we have should not have ksize performed on it,
140 	 * return size of 0
141 	 */
142 	if (!objp || !virt_addr_valid(objp))
143 		return 0;
144 
145 	page = virt_to_head_page(objp);
146 
147 	/*
148 	 * If the allocator sets PageSlab, we know the pointer came from
149 	 * kmalloc().
150 	 */
151 	if (PageSlab(page))
152 		return ksize(objp);
153 
154 	/*
155 	 * If it's not a compound page, see if we have a matching VMA
156 	 * region. This test is intentionally done in reverse order,
157 	 * so if there's no VMA, we still fall through and hand back
158 	 * PAGE_SIZE for 0-order pages.
159 	 */
160 	if (!PageCompound(page)) {
161 		struct vm_area_struct *vma;
162 
163 		vma = find_vma(current->mm, (unsigned long)objp);
164 		if (vma)
165 			return vma->vm_end - vma->vm_start;
166 	}
167 
168 	/*
169 	 * The ksize() function is only guaranteed to work for pointers
170 	 * returned by kmalloc(). So handle arbitrary pointers here.
171 	 */
172 	return PAGE_SIZE << compound_order(page);
173 }
174 
175 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
176 		     unsigned long start, int nr_pages, int flags,
177 		     struct page **pages, struct vm_area_struct **vmas)
178 {
179 	struct vm_area_struct *vma;
180 	unsigned long vm_flags;
181 	int i;
182 	int write = !!(flags & GUP_FLAGS_WRITE);
183 	int force = !!(flags & GUP_FLAGS_FORCE);
184 	int ignore = !!(flags & GUP_FLAGS_IGNORE_VMA_PERMISSIONS);
185 
186 	/* calculate required read or write permissions.
187 	 * - if 'force' is set, we only require the "MAY" flags.
188 	 */
189 	vm_flags  = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
190 	vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
191 
192 	for (i = 0; i < nr_pages; i++) {
193 		vma = find_vma(mm, start);
194 		if (!vma)
195 			goto finish_or_fault;
196 
197 		/* protect what we can, including chardevs */
198 		if (vma->vm_flags & (VM_IO | VM_PFNMAP) ||
199 		    (!ignore && !(vm_flags & vma->vm_flags)))
200 			goto finish_or_fault;
201 
202 		if (pages) {
203 			pages[i] = virt_to_page(start);
204 			if (pages[i])
205 				page_cache_get(pages[i]);
206 		}
207 		if (vmas)
208 			vmas[i] = vma;
209 		start += PAGE_SIZE;
210 	}
211 
212 	return i;
213 
214 finish_or_fault:
215 	return i ? : -EFAULT;
216 }
217 
218 
219 /*
220  * get a list of pages in an address range belonging to the specified process
221  * and indicate the VMA that covers each page
222  * - this is potentially dodgy as we may end incrementing the page count of a
223  *   slab page or a secondary page from a compound page
224  * - don't permit access to VMAs that don't support it, such as I/O mappings
225  */
226 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
227 	unsigned long start, int nr_pages, int write, int force,
228 	struct page **pages, struct vm_area_struct **vmas)
229 {
230 	int flags = 0;
231 
232 	if (write)
233 		flags |= GUP_FLAGS_WRITE;
234 	if (force)
235 		flags |= GUP_FLAGS_FORCE;
236 
237 	return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas);
238 }
239 EXPORT_SYMBOL(get_user_pages);
240 
241 /**
242  * follow_pfn - look up PFN at a user virtual address
243  * @vma: memory mapping
244  * @address: user virtual address
245  * @pfn: location to store found PFN
246  *
247  * Only IO mappings and raw PFN mappings are allowed.
248  *
249  * Returns zero and the pfn at @pfn on success, -ve otherwise.
250  */
251 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
252 	unsigned long *pfn)
253 {
254 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
255 		return -EINVAL;
256 
257 	*pfn = address >> PAGE_SHIFT;
258 	return 0;
259 }
260 EXPORT_SYMBOL(follow_pfn);
261 
262 DEFINE_RWLOCK(vmlist_lock);
263 struct vm_struct *vmlist;
264 
265 void vfree(const void *addr)
266 {
267 	kfree(addr);
268 }
269 EXPORT_SYMBOL(vfree);
270 
271 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
272 {
273 	/*
274 	 *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
275 	 * returns only a logical address.
276 	 */
277 	return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
278 }
279 EXPORT_SYMBOL(__vmalloc);
280 
281 void *vmalloc_user(unsigned long size)
282 {
283 	void *ret;
284 
285 	ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
286 			PAGE_KERNEL);
287 	if (ret) {
288 		struct vm_area_struct *vma;
289 
290 		down_write(&current->mm->mmap_sem);
291 		vma = find_vma(current->mm, (unsigned long)ret);
292 		if (vma)
293 			vma->vm_flags |= VM_USERMAP;
294 		up_write(&current->mm->mmap_sem);
295 	}
296 
297 	return ret;
298 }
299 EXPORT_SYMBOL(vmalloc_user);
300 
301 struct page *vmalloc_to_page(const void *addr)
302 {
303 	return virt_to_page(addr);
304 }
305 EXPORT_SYMBOL(vmalloc_to_page);
306 
307 unsigned long vmalloc_to_pfn(const void *addr)
308 {
309 	return page_to_pfn(virt_to_page(addr));
310 }
311 EXPORT_SYMBOL(vmalloc_to_pfn);
312 
313 long vread(char *buf, char *addr, unsigned long count)
314 {
315 	memcpy(buf, addr, count);
316 	return count;
317 }
318 
319 long vwrite(char *buf, char *addr, unsigned long count)
320 {
321 	/* Don't allow overflow */
322 	if ((unsigned long) addr + count < count)
323 		count = -(unsigned long) addr;
324 
325 	memcpy(addr, buf, count);
326 	return(count);
327 }
328 
329 /*
330  *	vmalloc  -  allocate virtually continguos memory
331  *
332  *	@size:		allocation size
333  *
334  *	Allocate enough pages to cover @size from the page level
335  *	allocator and map them into continguos kernel virtual space.
336  *
337  *	For tight control over page level allocator and protection flags
338  *	use __vmalloc() instead.
339  */
340 void *vmalloc(unsigned long size)
341 {
342        return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
343 }
344 EXPORT_SYMBOL(vmalloc);
345 
346 void *vmalloc_node(unsigned long size, int node)
347 {
348 	return vmalloc(size);
349 }
350 EXPORT_SYMBOL(vmalloc_node);
351 
352 #ifndef PAGE_KERNEL_EXEC
353 # define PAGE_KERNEL_EXEC PAGE_KERNEL
354 #endif
355 
356 /**
357  *	vmalloc_exec  -  allocate virtually contiguous, executable memory
358  *	@size:		allocation size
359  *
360  *	Kernel-internal function to allocate enough pages to cover @size
361  *	the page level allocator and map them into contiguous and
362  *	executable kernel virtual space.
363  *
364  *	For tight control over page level allocator and protection flags
365  *	use __vmalloc() instead.
366  */
367 
368 void *vmalloc_exec(unsigned long size)
369 {
370 	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
371 }
372 
373 /**
374  * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
375  *	@size:		allocation size
376  *
377  *	Allocate enough 32bit PA addressable pages to cover @size from the
378  *	page level allocator and map them into continguos kernel virtual space.
379  */
380 void *vmalloc_32(unsigned long size)
381 {
382 	return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
383 }
384 EXPORT_SYMBOL(vmalloc_32);
385 
386 /**
387  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
388  *	@size:		allocation size
389  *
390  * The resulting memory area is 32bit addressable and zeroed so it can be
391  * mapped to userspace without leaking data.
392  *
393  * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
394  * remap_vmalloc_range() are permissible.
395  */
396 void *vmalloc_32_user(unsigned long size)
397 {
398 	/*
399 	 * We'll have to sort out the ZONE_DMA bits for 64-bit,
400 	 * but for now this can simply use vmalloc_user() directly.
401 	 */
402 	return vmalloc_user(size);
403 }
404 EXPORT_SYMBOL(vmalloc_32_user);
405 
406 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
407 {
408 	BUG();
409 	return NULL;
410 }
411 EXPORT_SYMBOL(vmap);
412 
413 void vunmap(const void *addr)
414 {
415 	BUG();
416 }
417 EXPORT_SYMBOL(vunmap);
418 
419 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
420 {
421 	BUG();
422 	return NULL;
423 }
424 EXPORT_SYMBOL(vm_map_ram);
425 
426 void vm_unmap_ram(const void *mem, unsigned int count)
427 {
428 	BUG();
429 }
430 EXPORT_SYMBOL(vm_unmap_ram);
431 
432 void vm_unmap_aliases(void)
433 {
434 }
435 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
436 
437 /*
438  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
439  * have one.
440  */
441 void  __attribute__((weak)) vmalloc_sync_all(void)
442 {
443 }
444 
445 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
446 		   struct page *page)
447 {
448 	return -EINVAL;
449 }
450 EXPORT_SYMBOL(vm_insert_page);
451 
452 /*
453  *  sys_brk() for the most part doesn't need the global kernel
454  *  lock, except when an application is doing something nasty
455  *  like trying to un-brk an area that has already been mapped
456  *  to a regular file.  in this case, the unmapping will need
457  *  to invoke file system routines that need the global lock.
458  */
459 SYSCALL_DEFINE1(brk, unsigned long, brk)
460 {
461 	struct mm_struct *mm = current->mm;
462 
463 	if (brk < mm->start_brk || brk > mm->context.end_brk)
464 		return mm->brk;
465 
466 	if (mm->brk == brk)
467 		return mm->brk;
468 
469 	/*
470 	 * Always allow shrinking brk
471 	 */
472 	if (brk <= mm->brk) {
473 		mm->brk = brk;
474 		return brk;
475 	}
476 
477 	/*
478 	 * Ok, looks good - let it rip.
479 	 */
480 	return mm->brk = brk;
481 }
482 
483 /*
484  * initialise the VMA and region record slabs
485  */
486 void __init mmap_init(void)
487 {
488 	int ret;
489 
490 	ret = percpu_counter_init(&vm_committed_as, 0);
491 	VM_BUG_ON(ret);
492 	vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC);
493 }
494 
495 /*
496  * validate the region tree
497  * - the caller must hold the region lock
498  */
499 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
500 static noinline void validate_nommu_regions(void)
501 {
502 	struct vm_region *region, *last;
503 	struct rb_node *p, *lastp;
504 
505 	lastp = rb_first(&nommu_region_tree);
506 	if (!lastp)
507 		return;
508 
509 	last = rb_entry(lastp, struct vm_region, vm_rb);
510 	BUG_ON(unlikely(last->vm_end <= last->vm_start));
511 	BUG_ON(unlikely(last->vm_top < last->vm_end));
512 
513 	while ((p = rb_next(lastp))) {
514 		region = rb_entry(p, struct vm_region, vm_rb);
515 		last = rb_entry(lastp, struct vm_region, vm_rb);
516 
517 		BUG_ON(unlikely(region->vm_end <= region->vm_start));
518 		BUG_ON(unlikely(region->vm_top < region->vm_end));
519 		BUG_ON(unlikely(region->vm_start < last->vm_top));
520 
521 		lastp = p;
522 	}
523 }
524 #else
525 static void validate_nommu_regions(void)
526 {
527 }
528 #endif
529 
530 /*
531  * add a region into the global tree
532  */
533 static void add_nommu_region(struct vm_region *region)
534 {
535 	struct vm_region *pregion;
536 	struct rb_node **p, *parent;
537 
538 	validate_nommu_regions();
539 
540 	parent = NULL;
541 	p = &nommu_region_tree.rb_node;
542 	while (*p) {
543 		parent = *p;
544 		pregion = rb_entry(parent, struct vm_region, vm_rb);
545 		if (region->vm_start < pregion->vm_start)
546 			p = &(*p)->rb_left;
547 		else if (region->vm_start > pregion->vm_start)
548 			p = &(*p)->rb_right;
549 		else if (pregion == region)
550 			return;
551 		else
552 			BUG();
553 	}
554 
555 	rb_link_node(&region->vm_rb, parent, p);
556 	rb_insert_color(&region->vm_rb, &nommu_region_tree);
557 
558 	validate_nommu_regions();
559 }
560 
561 /*
562  * delete a region from the global tree
563  */
564 static void delete_nommu_region(struct vm_region *region)
565 {
566 	BUG_ON(!nommu_region_tree.rb_node);
567 
568 	validate_nommu_regions();
569 	rb_erase(&region->vm_rb, &nommu_region_tree);
570 	validate_nommu_regions();
571 }
572 
573 /*
574  * free a contiguous series of pages
575  */
576 static void free_page_series(unsigned long from, unsigned long to)
577 {
578 	for (; from < to; from += PAGE_SIZE) {
579 		struct page *page = virt_to_page(from);
580 
581 		kdebug("- free %lx", from);
582 		atomic_long_dec(&mmap_pages_allocated);
583 		if (page_count(page) != 1)
584 			kdebug("free page %p: refcount not one: %d",
585 			       page, page_count(page));
586 		put_page(page);
587 	}
588 }
589 
590 /*
591  * release a reference to a region
592  * - the caller must hold the region semaphore for writing, which this releases
593  * - the region may not have been added to the tree yet, in which case vm_top
594  *   will equal vm_start
595  */
596 static void __put_nommu_region(struct vm_region *region)
597 	__releases(nommu_region_sem)
598 {
599 	kenter("%p{%d}", region, atomic_read(&region->vm_usage));
600 
601 	BUG_ON(!nommu_region_tree.rb_node);
602 
603 	if (atomic_dec_and_test(&region->vm_usage)) {
604 		if (region->vm_top > region->vm_start)
605 			delete_nommu_region(region);
606 		up_write(&nommu_region_sem);
607 
608 		if (region->vm_file)
609 			fput(region->vm_file);
610 
611 		/* IO memory and memory shared directly out of the pagecache
612 		 * from ramfs/tmpfs mustn't be released here */
613 		if (region->vm_flags & VM_MAPPED_COPY) {
614 			kdebug("free series");
615 			free_page_series(region->vm_start, region->vm_top);
616 		}
617 		kmem_cache_free(vm_region_jar, region);
618 	} else {
619 		up_write(&nommu_region_sem);
620 	}
621 }
622 
623 /*
624  * release a reference to a region
625  */
626 static void put_nommu_region(struct vm_region *region)
627 {
628 	down_write(&nommu_region_sem);
629 	__put_nommu_region(region);
630 }
631 
632 /*
633  * add a VMA into a process's mm_struct in the appropriate place in the list
634  * and tree and add to the address space's page tree also if not an anonymous
635  * page
636  * - should be called with mm->mmap_sem held writelocked
637  */
638 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
639 {
640 	struct vm_area_struct *pvma, **pp;
641 	struct address_space *mapping;
642 	struct rb_node **p, *parent;
643 
644 	kenter(",%p", vma);
645 
646 	BUG_ON(!vma->vm_region);
647 
648 	mm->map_count++;
649 	vma->vm_mm = mm;
650 
651 	/* add the VMA to the mapping */
652 	if (vma->vm_file) {
653 		mapping = vma->vm_file->f_mapping;
654 
655 		flush_dcache_mmap_lock(mapping);
656 		vma_prio_tree_insert(vma, &mapping->i_mmap);
657 		flush_dcache_mmap_unlock(mapping);
658 	}
659 
660 	/* add the VMA to the tree */
661 	parent = NULL;
662 	p = &mm->mm_rb.rb_node;
663 	while (*p) {
664 		parent = *p;
665 		pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
666 
667 		/* sort by: start addr, end addr, VMA struct addr in that order
668 		 * (the latter is necessary as we may get identical VMAs) */
669 		if (vma->vm_start < pvma->vm_start)
670 			p = &(*p)->rb_left;
671 		else if (vma->vm_start > pvma->vm_start)
672 			p = &(*p)->rb_right;
673 		else if (vma->vm_end < pvma->vm_end)
674 			p = &(*p)->rb_left;
675 		else if (vma->vm_end > pvma->vm_end)
676 			p = &(*p)->rb_right;
677 		else if (vma < pvma)
678 			p = &(*p)->rb_left;
679 		else if (vma > pvma)
680 			p = &(*p)->rb_right;
681 		else
682 			BUG();
683 	}
684 
685 	rb_link_node(&vma->vm_rb, parent, p);
686 	rb_insert_color(&vma->vm_rb, &mm->mm_rb);
687 
688 	/* add VMA to the VMA list also */
689 	for (pp = &mm->mmap; (pvma = *pp); pp = &(*pp)->vm_next) {
690 		if (pvma->vm_start > vma->vm_start)
691 			break;
692 		if (pvma->vm_start < vma->vm_start)
693 			continue;
694 		if (pvma->vm_end < vma->vm_end)
695 			break;
696 	}
697 
698 	vma->vm_next = *pp;
699 	*pp = vma;
700 }
701 
702 /*
703  * delete a VMA from its owning mm_struct and address space
704  */
705 static void delete_vma_from_mm(struct vm_area_struct *vma)
706 {
707 	struct vm_area_struct **pp;
708 	struct address_space *mapping;
709 	struct mm_struct *mm = vma->vm_mm;
710 
711 	kenter("%p", vma);
712 
713 	mm->map_count--;
714 	if (mm->mmap_cache == vma)
715 		mm->mmap_cache = NULL;
716 
717 	/* remove the VMA from the mapping */
718 	if (vma->vm_file) {
719 		mapping = vma->vm_file->f_mapping;
720 
721 		flush_dcache_mmap_lock(mapping);
722 		vma_prio_tree_remove(vma, &mapping->i_mmap);
723 		flush_dcache_mmap_unlock(mapping);
724 	}
725 
726 	/* remove from the MM's tree and list */
727 	rb_erase(&vma->vm_rb, &mm->mm_rb);
728 	for (pp = &mm->mmap; *pp; pp = &(*pp)->vm_next) {
729 		if (*pp == vma) {
730 			*pp = vma->vm_next;
731 			break;
732 		}
733 	}
734 
735 	vma->vm_mm = NULL;
736 }
737 
738 /*
739  * destroy a VMA record
740  */
741 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
742 {
743 	kenter("%p", vma);
744 	if (vma->vm_ops && vma->vm_ops->close)
745 		vma->vm_ops->close(vma);
746 	if (vma->vm_file) {
747 		fput(vma->vm_file);
748 		if (vma->vm_flags & VM_EXECUTABLE)
749 			removed_exe_file_vma(mm);
750 	}
751 	put_nommu_region(vma->vm_region);
752 	kmem_cache_free(vm_area_cachep, vma);
753 }
754 
755 /*
756  * look up the first VMA in which addr resides, NULL if none
757  * - should be called with mm->mmap_sem at least held readlocked
758  */
759 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
760 {
761 	struct vm_area_struct *vma;
762 	struct rb_node *n = mm->mm_rb.rb_node;
763 
764 	/* check the cache first */
765 	vma = mm->mmap_cache;
766 	if (vma && vma->vm_start <= addr && vma->vm_end > addr)
767 		return vma;
768 
769 	/* trawl the tree (there may be multiple mappings in which addr
770 	 * resides) */
771 	for (n = rb_first(&mm->mm_rb); n; n = rb_next(n)) {
772 		vma = rb_entry(n, struct vm_area_struct, vm_rb);
773 		if (vma->vm_start > addr)
774 			return NULL;
775 		if (vma->vm_end > addr) {
776 			mm->mmap_cache = vma;
777 			return vma;
778 		}
779 	}
780 
781 	return NULL;
782 }
783 EXPORT_SYMBOL(find_vma);
784 
785 /*
786  * find a VMA
787  * - we don't extend stack VMAs under NOMMU conditions
788  */
789 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
790 {
791 	return find_vma(mm, addr);
792 }
793 
794 /*
795  * expand a stack to a given address
796  * - not supported under NOMMU conditions
797  */
798 int expand_stack(struct vm_area_struct *vma, unsigned long address)
799 {
800 	return -ENOMEM;
801 }
802 
803 /*
804  * look up the first VMA exactly that exactly matches addr
805  * - should be called with mm->mmap_sem at least held readlocked
806  */
807 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
808 					     unsigned long addr,
809 					     unsigned long len)
810 {
811 	struct vm_area_struct *vma;
812 	struct rb_node *n = mm->mm_rb.rb_node;
813 	unsigned long end = addr + len;
814 
815 	/* check the cache first */
816 	vma = mm->mmap_cache;
817 	if (vma && vma->vm_start == addr && vma->vm_end == end)
818 		return vma;
819 
820 	/* trawl the tree (there may be multiple mappings in which addr
821 	 * resides) */
822 	for (n = rb_first(&mm->mm_rb); n; n = rb_next(n)) {
823 		vma = rb_entry(n, struct vm_area_struct, vm_rb);
824 		if (vma->vm_start < addr)
825 			continue;
826 		if (vma->vm_start > addr)
827 			return NULL;
828 		if (vma->vm_end == end) {
829 			mm->mmap_cache = vma;
830 			return vma;
831 		}
832 	}
833 
834 	return NULL;
835 }
836 
837 /*
838  * determine whether a mapping should be permitted and, if so, what sort of
839  * mapping we're capable of supporting
840  */
841 static int validate_mmap_request(struct file *file,
842 				 unsigned long addr,
843 				 unsigned long len,
844 				 unsigned long prot,
845 				 unsigned long flags,
846 				 unsigned long pgoff,
847 				 unsigned long *_capabilities)
848 {
849 	unsigned long capabilities, rlen;
850 	unsigned long reqprot = prot;
851 	int ret;
852 
853 	/* do the simple checks first */
854 	if (flags & MAP_FIXED || addr) {
855 		printk(KERN_DEBUG
856 		       "%d: Can't do fixed-address/overlay mmap of RAM\n",
857 		       current->pid);
858 		return -EINVAL;
859 	}
860 
861 	if ((flags & MAP_TYPE) != MAP_PRIVATE &&
862 	    (flags & MAP_TYPE) != MAP_SHARED)
863 		return -EINVAL;
864 
865 	if (!len)
866 		return -EINVAL;
867 
868 	/* Careful about overflows.. */
869 	rlen = PAGE_ALIGN(len);
870 	if (!rlen || rlen > TASK_SIZE)
871 		return -ENOMEM;
872 
873 	/* offset overflow? */
874 	if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
875 		return -EOVERFLOW;
876 
877 	if (file) {
878 		/* validate file mapping requests */
879 		struct address_space *mapping;
880 
881 		/* files must support mmap */
882 		if (!file->f_op || !file->f_op->mmap)
883 			return -ENODEV;
884 
885 		/* work out if what we've got could possibly be shared
886 		 * - we support chardevs that provide their own "memory"
887 		 * - we support files/blockdevs that are memory backed
888 		 */
889 		mapping = file->f_mapping;
890 		if (!mapping)
891 			mapping = file->f_path.dentry->d_inode->i_mapping;
892 
893 		capabilities = 0;
894 		if (mapping && mapping->backing_dev_info)
895 			capabilities = mapping->backing_dev_info->capabilities;
896 
897 		if (!capabilities) {
898 			/* no explicit capabilities set, so assume some
899 			 * defaults */
900 			switch (file->f_path.dentry->d_inode->i_mode & S_IFMT) {
901 			case S_IFREG:
902 			case S_IFBLK:
903 				capabilities = BDI_CAP_MAP_COPY;
904 				break;
905 
906 			case S_IFCHR:
907 				capabilities =
908 					BDI_CAP_MAP_DIRECT |
909 					BDI_CAP_READ_MAP |
910 					BDI_CAP_WRITE_MAP;
911 				break;
912 
913 			default:
914 				return -EINVAL;
915 			}
916 		}
917 
918 		/* eliminate any capabilities that we can't support on this
919 		 * device */
920 		if (!file->f_op->get_unmapped_area)
921 			capabilities &= ~BDI_CAP_MAP_DIRECT;
922 		if (!file->f_op->read)
923 			capabilities &= ~BDI_CAP_MAP_COPY;
924 
925 		if (flags & MAP_SHARED) {
926 			/* do checks for writing, appending and locking */
927 			if ((prot & PROT_WRITE) &&
928 			    !(file->f_mode & FMODE_WRITE))
929 				return -EACCES;
930 
931 			if (IS_APPEND(file->f_path.dentry->d_inode) &&
932 			    (file->f_mode & FMODE_WRITE))
933 				return -EACCES;
934 
935 			if (locks_verify_locked(file->f_path.dentry->d_inode))
936 				return -EAGAIN;
937 
938 			if (!(capabilities & BDI_CAP_MAP_DIRECT))
939 				return -ENODEV;
940 
941 			if (((prot & PROT_READ)  && !(capabilities & BDI_CAP_READ_MAP))  ||
942 			    ((prot & PROT_WRITE) && !(capabilities & BDI_CAP_WRITE_MAP)) ||
943 			    ((prot & PROT_EXEC)  && !(capabilities & BDI_CAP_EXEC_MAP))
944 			    ) {
945 				printk("MAP_SHARED not completely supported on !MMU\n");
946 				return -EINVAL;
947 			}
948 
949 			/* we mustn't privatise shared mappings */
950 			capabilities &= ~BDI_CAP_MAP_COPY;
951 		}
952 		else {
953 			/* we're going to read the file into private memory we
954 			 * allocate */
955 			if (!(capabilities & BDI_CAP_MAP_COPY))
956 				return -ENODEV;
957 
958 			/* we don't permit a private writable mapping to be
959 			 * shared with the backing device */
960 			if (prot & PROT_WRITE)
961 				capabilities &= ~BDI_CAP_MAP_DIRECT;
962 		}
963 
964 		/* handle executable mappings and implied executable
965 		 * mappings */
966 		if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
967 			if (prot & PROT_EXEC)
968 				return -EPERM;
969 		}
970 		else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
971 			/* handle implication of PROT_EXEC by PROT_READ */
972 			if (current->personality & READ_IMPLIES_EXEC) {
973 				if (capabilities & BDI_CAP_EXEC_MAP)
974 					prot |= PROT_EXEC;
975 			}
976 		}
977 		else if ((prot & PROT_READ) &&
978 			 (prot & PROT_EXEC) &&
979 			 !(capabilities & BDI_CAP_EXEC_MAP)
980 			 ) {
981 			/* backing file is not executable, try to copy */
982 			capabilities &= ~BDI_CAP_MAP_DIRECT;
983 		}
984 	}
985 	else {
986 		/* anonymous mappings are always memory backed and can be
987 		 * privately mapped
988 		 */
989 		capabilities = BDI_CAP_MAP_COPY;
990 
991 		/* handle PROT_EXEC implication by PROT_READ */
992 		if ((prot & PROT_READ) &&
993 		    (current->personality & READ_IMPLIES_EXEC))
994 			prot |= PROT_EXEC;
995 	}
996 
997 	/* allow the security API to have its say */
998 	ret = security_file_mmap(file, reqprot, prot, flags, addr, 0);
999 	if (ret < 0)
1000 		return ret;
1001 
1002 	/* looks okay */
1003 	*_capabilities = capabilities;
1004 	return 0;
1005 }
1006 
1007 /*
1008  * we've determined that we can make the mapping, now translate what we
1009  * now know into VMA flags
1010  */
1011 static unsigned long determine_vm_flags(struct file *file,
1012 					unsigned long prot,
1013 					unsigned long flags,
1014 					unsigned long capabilities)
1015 {
1016 	unsigned long vm_flags;
1017 
1018 	vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags);
1019 	vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1020 	/* vm_flags |= mm->def_flags; */
1021 
1022 	if (!(capabilities & BDI_CAP_MAP_DIRECT)) {
1023 		/* attempt to share read-only copies of mapped file chunks */
1024 		if (file && !(prot & PROT_WRITE))
1025 			vm_flags |= VM_MAYSHARE;
1026 	}
1027 	else {
1028 		/* overlay a shareable mapping on the backing device or inode
1029 		 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1030 		 * romfs/cramfs */
1031 		if (flags & MAP_SHARED)
1032 			vm_flags |= VM_MAYSHARE | VM_SHARED;
1033 		else if ((((vm_flags & capabilities) ^ vm_flags) & BDI_CAP_VMFLAGS) == 0)
1034 			vm_flags |= VM_MAYSHARE;
1035 	}
1036 
1037 	/* refuse to let anyone share private mappings with this process if
1038 	 * it's being traced - otherwise breakpoints set in it may interfere
1039 	 * with another untraced process
1040 	 */
1041 	if ((flags & MAP_PRIVATE) && tracehook_expect_breakpoints(current))
1042 		vm_flags &= ~VM_MAYSHARE;
1043 
1044 	return vm_flags;
1045 }
1046 
1047 /*
1048  * set up a shared mapping on a file (the driver or filesystem provides and
1049  * pins the storage)
1050  */
1051 static int do_mmap_shared_file(struct vm_area_struct *vma)
1052 {
1053 	int ret;
1054 
1055 	ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1056 	if (ret == 0) {
1057 		vma->vm_region->vm_top = vma->vm_region->vm_end;
1058 		return ret;
1059 	}
1060 	if (ret != -ENOSYS)
1061 		return ret;
1062 
1063 	/* getting an ENOSYS error indicates that direct mmap isn't
1064 	 * possible (as opposed to tried but failed) so we'll fall
1065 	 * through to making a private copy of the data and mapping
1066 	 * that if we can */
1067 	return -ENODEV;
1068 }
1069 
1070 /*
1071  * set up a private mapping or an anonymous shared mapping
1072  */
1073 static int do_mmap_private(struct vm_area_struct *vma,
1074 			   struct vm_region *region,
1075 			   unsigned long len)
1076 {
1077 	struct page *pages;
1078 	unsigned long total, point, n, rlen;
1079 	void *base;
1080 	int ret, order;
1081 
1082 	/* invoke the file's mapping function so that it can keep track of
1083 	 * shared mappings on devices or memory
1084 	 * - VM_MAYSHARE will be set if it may attempt to share
1085 	 */
1086 	if (vma->vm_file) {
1087 		ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1088 		if (ret == 0) {
1089 			/* shouldn't return success if we're not sharing */
1090 			BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1091 			vma->vm_region->vm_top = vma->vm_region->vm_end;
1092 			return ret;
1093 		}
1094 		if (ret != -ENOSYS)
1095 			return ret;
1096 
1097 		/* getting an ENOSYS error indicates that direct mmap isn't
1098 		 * possible (as opposed to tried but failed) so we'll try to
1099 		 * make a private copy of the data and map that instead */
1100 	}
1101 
1102 	rlen = PAGE_ALIGN(len);
1103 
1104 	/* allocate some memory to hold the mapping
1105 	 * - note that this may not return a page-aligned address if the object
1106 	 *   we're allocating is smaller than a page
1107 	 */
1108 	order = get_order(rlen);
1109 	kdebug("alloc order %d for %lx", order, len);
1110 
1111 	pages = alloc_pages(GFP_KERNEL, order);
1112 	if (!pages)
1113 		goto enomem;
1114 
1115 	total = 1 << order;
1116 	atomic_long_add(total, &mmap_pages_allocated);
1117 
1118 	point = rlen >> PAGE_SHIFT;
1119 
1120 	/* we allocated a power-of-2 sized page set, so we may want to trim off
1121 	 * the excess */
1122 	if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) {
1123 		while (total > point) {
1124 			order = ilog2(total - point);
1125 			n = 1 << order;
1126 			kdebug("shave %lu/%lu @%lu", n, total - point, total);
1127 			atomic_long_sub(n, &mmap_pages_allocated);
1128 			total -= n;
1129 			set_page_refcounted(pages + total);
1130 			__free_pages(pages + total, order);
1131 		}
1132 	}
1133 
1134 	for (point = 1; point < total; point++)
1135 		set_page_refcounted(&pages[point]);
1136 
1137 	base = page_address(pages);
1138 	region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1139 	region->vm_start = (unsigned long) base;
1140 	region->vm_end   = region->vm_start + rlen;
1141 	region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
1142 
1143 	vma->vm_start = region->vm_start;
1144 	vma->vm_end   = region->vm_start + len;
1145 
1146 	if (vma->vm_file) {
1147 		/* read the contents of a file into the copy */
1148 		mm_segment_t old_fs;
1149 		loff_t fpos;
1150 
1151 		fpos = vma->vm_pgoff;
1152 		fpos <<= PAGE_SHIFT;
1153 
1154 		old_fs = get_fs();
1155 		set_fs(KERNEL_DS);
1156 		ret = vma->vm_file->f_op->read(vma->vm_file, base, rlen, &fpos);
1157 		set_fs(old_fs);
1158 
1159 		if (ret < 0)
1160 			goto error_free;
1161 
1162 		/* clear the last little bit */
1163 		if (ret < rlen)
1164 			memset(base + ret, 0, rlen - ret);
1165 
1166 	} else {
1167 		/* if it's an anonymous mapping, then just clear it */
1168 		memset(base, 0, rlen);
1169 	}
1170 
1171 	return 0;
1172 
1173 error_free:
1174 	free_page_series(region->vm_start, region->vm_end);
1175 	region->vm_start = vma->vm_start = 0;
1176 	region->vm_end   = vma->vm_end = 0;
1177 	region->vm_top   = 0;
1178 	return ret;
1179 
1180 enomem:
1181 	printk("Allocation of length %lu from process %d (%s) failed\n",
1182 	       len, current->pid, current->comm);
1183 	show_free_areas();
1184 	return -ENOMEM;
1185 }
1186 
1187 /*
1188  * handle mapping creation for uClinux
1189  */
1190 unsigned long do_mmap_pgoff(struct file *file,
1191 			    unsigned long addr,
1192 			    unsigned long len,
1193 			    unsigned long prot,
1194 			    unsigned long flags,
1195 			    unsigned long pgoff)
1196 {
1197 	struct vm_area_struct *vma;
1198 	struct vm_region *region;
1199 	struct rb_node *rb;
1200 	unsigned long capabilities, vm_flags, result;
1201 	int ret;
1202 
1203 	kenter(",%lx,%lx,%lx,%lx,%lx", addr, len, prot, flags, pgoff);
1204 
1205 	if (!(flags & MAP_FIXED))
1206 		addr = round_hint_to_min(addr);
1207 
1208 	/* decide whether we should attempt the mapping, and if so what sort of
1209 	 * mapping */
1210 	ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1211 				    &capabilities);
1212 	if (ret < 0) {
1213 		kleave(" = %d [val]", ret);
1214 		return ret;
1215 	}
1216 
1217 	/* we've determined that we can make the mapping, now translate what we
1218 	 * now know into VMA flags */
1219 	vm_flags = determine_vm_flags(file, prot, flags, capabilities);
1220 
1221 	/* we're going to need to record the mapping */
1222 	region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1223 	if (!region)
1224 		goto error_getting_region;
1225 
1226 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1227 	if (!vma)
1228 		goto error_getting_vma;
1229 
1230 	atomic_set(&region->vm_usage, 1);
1231 	region->vm_flags = vm_flags;
1232 	region->vm_pgoff = pgoff;
1233 
1234 	INIT_LIST_HEAD(&vma->anon_vma_node);
1235 	vma->vm_flags = vm_flags;
1236 	vma->vm_pgoff = pgoff;
1237 
1238 	if (file) {
1239 		region->vm_file = file;
1240 		get_file(file);
1241 		vma->vm_file = file;
1242 		get_file(file);
1243 		if (vm_flags & VM_EXECUTABLE) {
1244 			added_exe_file_vma(current->mm);
1245 			vma->vm_mm = current->mm;
1246 		}
1247 	}
1248 
1249 	down_write(&nommu_region_sem);
1250 
1251 	/* if we want to share, we need to check for regions created by other
1252 	 * mmap() calls that overlap with our proposed mapping
1253 	 * - we can only share with a superset match on most regular files
1254 	 * - shared mappings on character devices and memory backed files are
1255 	 *   permitted to overlap inexactly as far as we are concerned for in
1256 	 *   these cases, sharing is handled in the driver or filesystem rather
1257 	 *   than here
1258 	 */
1259 	if (vm_flags & VM_MAYSHARE) {
1260 		struct vm_region *pregion;
1261 		unsigned long pglen, rpglen, pgend, rpgend, start;
1262 
1263 		pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1264 		pgend = pgoff + pglen;
1265 
1266 		for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1267 			pregion = rb_entry(rb, struct vm_region, vm_rb);
1268 
1269 			if (!(pregion->vm_flags & VM_MAYSHARE))
1270 				continue;
1271 
1272 			/* search for overlapping mappings on the same file */
1273 			if (pregion->vm_file->f_path.dentry->d_inode !=
1274 			    file->f_path.dentry->d_inode)
1275 				continue;
1276 
1277 			if (pregion->vm_pgoff >= pgend)
1278 				continue;
1279 
1280 			rpglen = pregion->vm_end - pregion->vm_start;
1281 			rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1282 			rpgend = pregion->vm_pgoff + rpglen;
1283 			if (pgoff >= rpgend)
1284 				continue;
1285 
1286 			/* handle inexactly overlapping matches between
1287 			 * mappings */
1288 			if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1289 			    !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1290 				/* new mapping is not a subset of the region */
1291 				if (!(capabilities & BDI_CAP_MAP_DIRECT))
1292 					goto sharing_violation;
1293 				continue;
1294 			}
1295 
1296 			/* we've found a region we can share */
1297 			atomic_inc(&pregion->vm_usage);
1298 			vma->vm_region = pregion;
1299 			start = pregion->vm_start;
1300 			start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1301 			vma->vm_start = start;
1302 			vma->vm_end = start + len;
1303 
1304 			if (pregion->vm_flags & VM_MAPPED_COPY) {
1305 				kdebug("share copy");
1306 				vma->vm_flags |= VM_MAPPED_COPY;
1307 			} else {
1308 				kdebug("share mmap");
1309 				ret = do_mmap_shared_file(vma);
1310 				if (ret < 0) {
1311 					vma->vm_region = NULL;
1312 					vma->vm_start = 0;
1313 					vma->vm_end = 0;
1314 					atomic_dec(&pregion->vm_usage);
1315 					pregion = NULL;
1316 					goto error_just_free;
1317 				}
1318 			}
1319 			fput(region->vm_file);
1320 			kmem_cache_free(vm_region_jar, region);
1321 			region = pregion;
1322 			result = start;
1323 			goto share;
1324 		}
1325 
1326 		/* obtain the address at which to make a shared mapping
1327 		 * - this is the hook for quasi-memory character devices to
1328 		 *   tell us the location of a shared mapping
1329 		 */
1330 		if (file && file->f_op->get_unmapped_area) {
1331 			addr = file->f_op->get_unmapped_area(file, addr, len,
1332 							     pgoff, flags);
1333 			if (IS_ERR((void *) addr)) {
1334 				ret = addr;
1335 				if (ret != (unsigned long) -ENOSYS)
1336 					goto error_just_free;
1337 
1338 				/* the driver refused to tell us where to site
1339 				 * the mapping so we'll have to attempt to copy
1340 				 * it */
1341 				ret = (unsigned long) -ENODEV;
1342 				if (!(capabilities & BDI_CAP_MAP_COPY))
1343 					goto error_just_free;
1344 
1345 				capabilities &= ~BDI_CAP_MAP_DIRECT;
1346 			} else {
1347 				vma->vm_start = region->vm_start = addr;
1348 				vma->vm_end = region->vm_end = addr + len;
1349 			}
1350 		}
1351 	}
1352 
1353 	vma->vm_region = region;
1354 
1355 	/* set up the mapping */
1356 	if (file && vma->vm_flags & VM_SHARED)
1357 		ret = do_mmap_shared_file(vma);
1358 	else
1359 		ret = do_mmap_private(vma, region, len);
1360 	if (ret < 0)
1361 		goto error_put_region;
1362 
1363 	add_nommu_region(region);
1364 
1365 	/* okay... we have a mapping; now we have to register it */
1366 	result = vma->vm_start;
1367 
1368 	current->mm->total_vm += len >> PAGE_SHIFT;
1369 
1370 share:
1371 	add_vma_to_mm(current->mm, vma);
1372 
1373 	up_write(&nommu_region_sem);
1374 
1375 	if (prot & PROT_EXEC)
1376 		flush_icache_range(result, result + len);
1377 
1378 	kleave(" = %lx", result);
1379 	return result;
1380 
1381 error_put_region:
1382 	__put_nommu_region(region);
1383 	if (vma) {
1384 		if (vma->vm_file) {
1385 			fput(vma->vm_file);
1386 			if (vma->vm_flags & VM_EXECUTABLE)
1387 				removed_exe_file_vma(vma->vm_mm);
1388 		}
1389 		kmem_cache_free(vm_area_cachep, vma);
1390 	}
1391 	kleave(" = %d [pr]", ret);
1392 	return ret;
1393 
1394 error_just_free:
1395 	up_write(&nommu_region_sem);
1396 error:
1397 	fput(region->vm_file);
1398 	kmem_cache_free(vm_region_jar, region);
1399 	fput(vma->vm_file);
1400 	if (vma->vm_flags & VM_EXECUTABLE)
1401 		removed_exe_file_vma(vma->vm_mm);
1402 	kmem_cache_free(vm_area_cachep, vma);
1403 	kleave(" = %d", ret);
1404 	return ret;
1405 
1406 sharing_violation:
1407 	up_write(&nommu_region_sem);
1408 	printk(KERN_WARNING "Attempt to share mismatched mappings\n");
1409 	ret = -EINVAL;
1410 	goto error;
1411 
1412 error_getting_vma:
1413 	kmem_cache_free(vm_region_jar, region);
1414 	printk(KERN_WARNING "Allocation of vma for %lu byte allocation"
1415 	       " from process %d failed\n",
1416 	       len, current->pid);
1417 	show_free_areas();
1418 	return -ENOMEM;
1419 
1420 error_getting_region:
1421 	printk(KERN_WARNING "Allocation of vm region for %lu byte allocation"
1422 	       " from process %d failed\n",
1423 	       len, current->pid);
1424 	show_free_areas();
1425 	return -ENOMEM;
1426 }
1427 EXPORT_SYMBOL(do_mmap_pgoff);
1428 
1429 /*
1430  * split a vma into two pieces at address 'addr', a new vma is allocated either
1431  * for the first part or the tail.
1432  */
1433 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1434 	      unsigned long addr, int new_below)
1435 {
1436 	struct vm_area_struct *new;
1437 	struct vm_region *region;
1438 	unsigned long npages;
1439 
1440 	kenter("");
1441 
1442 	/* we're only permitted to split anonymous regions that have a single
1443 	 * owner */
1444 	if (vma->vm_file ||
1445 	    atomic_read(&vma->vm_region->vm_usage) != 1)
1446 		return -ENOMEM;
1447 
1448 	if (mm->map_count >= sysctl_max_map_count)
1449 		return -ENOMEM;
1450 
1451 	region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1452 	if (!region)
1453 		return -ENOMEM;
1454 
1455 	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1456 	if (!new) {
1457 		kmem_cache_free(vm_region_jar, region);
1458 		return -ENOMEM;
1459 	}
1460 
1461 	/* most fields are the same, copy all, and then fixup */
1462 	*new = *vma;
1463 	*region = *vma->vm_region;
1464 	new->vm_region = region;
1465 
1466 	npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1467 
1468 	if (new_below) {
1469 		region->vm_top = region->vm_end = new->vm_end = addr;
1470 	} else {
1471 		region->vm_start = new->vm_start = addr;
1472 		region->vm_pgoff = new->vm_pgoff += npages;
1473 	}
1474 
1475 	if (new->vm_ops && new->vm_ops->open)
1476 		new->vm_ops->open(new);
1477 
1478 	delete_vma_from_mm(vma);
1479 	down_write(&nommu_region_sem);
1480 	delete_nommu_region(vma->vm_region);
1481 	if (new_below) {
1482 		vma->vm_region->vm_start = vma->vm_start = addr;
1483 		vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1484 	} else {
1485 		vma->vm_region->vm_end = vma->vm_end = addr;
1486 		vma->vm_region->vm_top = addr;
1487 	}
1488 	add_nommu_region(vma->vm_region);
1489 	add_nommu_region(new->vm_region);
1490 	up_write(&nommu_region_sem);
1491 	add_vma_to_mm(mm, vma);
1492 	add_vma_to_mm(mm, new);
1493 	return 0;
1494 }
1495 
1496 /*
1497  * shrink a VMA by removing the specified chunk from either the beginning or
1498  * the end
1499  */
1500 static int shrink_vma(struct mm_struct *mm,
1501 		      struct vm_area_struct *vma,
1502 		      unsigned long from, unsigned long to)
1503 {
1504 	struct vm_region *region;
1505 
1506 	kenter("");
1507 
1508 	/* adjust the VMA's pointers, which may reposition it in the MM's tree
1509 	 * and list */
1510 	delete_vma_from_mm(vma);
1511 	if (from > vma->vm_start)
1512 		vma->vm_end = from;
1513 	else
1514 		vma->vm_start = to;
1515 	add_vma_to_mm(mm, vma);
1516 
1517 	/* cut the backing region down to size */
1518 	region = vma->vm_region;
1519 	BUG_ON(atomic_read(&region->vm_usage) != 1);
1520 
1521 	down_write(&nommu_region_sem);
1522 	delete_nommu_region(region);
1523 	if (from > region->vm_start) {
1524 		to = region->vm_top;
1525 		region->vm_top = region->vm_end = from;
1526 	} else {
1527 		region->vm_start = to;
1528 	}
1529 	add_nommu_region(region);
1530 	up_write(&nommu_region_sem);
1531 
1532 	free_page_series(from, to);
1533 	return 0;
1534 }
1535 
1536 /*
1537  * release a mapping
1538  * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1539  *   VMA, though it need not cover the whole VMA
1540  */
1541 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1542 {
1543 	struct vm_area_struct *vma;
1544 	struct rb_node *rb;
1545 	unsigned long end = start + len;
1546 	int ret;
1547 
1548 	kenter(",%lx,%zx", start, len);
1549 
1550 	if (len == 0)
1551 		return -EINVAL;
1552 
1553 	/* find the first potentially overlapping VMA */
1554 	vma = find_vma(mm, start);
1555 	if (!vma) {
1556 		static int limit = 0;
1557 		if (limit < 5) {
1558 			printk(KERN_WARNING
1559 			       "munmap of memory not mmapped by process %d"
1560 			       " (%s): 0x%lx-0x%lx\n",
1561 			       current->pid, current->comm,
1562 			       start, start + len - 1);
1563 			limit++;
1564 		}
1565 		return -EINVAL;
1566 	}
1567 
1568 	/* we're allowed to split an anonymous VMA but not a file-backed one */
1569 	if (vma->vm_file) {
1570 		do {
1571 			if (start > vma->vm_start) {
1572 				kleave(" = -EINVAL [miss]");
1573 				return -EINVAL;
1574 			}
1575 			if (end == vma->vm_end)
1576 				goto erase_whole_vma;
1577 			rb = rb_next(&vma->vm_rb);
1578 			vma = rb_entry(rb, struct vm_area_struct, vm_rb);
1579 		} while (rb);
1580 		kleave(" = -EINVAL [split file]");
1581 		return -EINVAL;
1582 	} else {
1583 		/* the chunk must be a subset of the VMA found */
1584 		if (start == vma->vm_start && end == vma->vm_end)
1585 			goto erase_whole_vma;
1586 		if (start < vma->vm_start || end > vma->vm_end) {
1587 			kleave(" = -EINVAL [superset]");
1588 			return -EINVAL;
1589 		}
1590 		if (start & ~PAGE_MASK) {
1591 			kleave(" = -EINVAL [unaligned start]");
1592 			return -EINVAL;
1593 		}
1594 		if (end != vma->vm_end && end & ~PAGE_MASK) {
1595 			kleave(" = -EINVAL [unaligned split]");
1596 			return -EINVAL;
1597 		}
1598 		if (start != vma->vm_start && end != vma->vm_end) {
1599 			ret = split_vma(mm, vma, start, 1);
1600 			if (ret < 0) {
1601 				kleave(" = %d [split]", ret);
1602 				return ret;
1603 			}
1604 		}
1605 		return shrink_vma(mm, vma, start, end);
1606 	}
1607 
1608 erase_whole_vma:
1609 	delete_vma_from_mm(vma);
1610 	delete_vma(mm, vma);
1611 	kleave(" = 0");
1612 	return 0;
1613 }
1614 EXPORT_SYMBOL(do_munmap);
1615 
1616 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1617 {
1618 	int ret;
1619 	struct mm_struct *mm = current->mm;
1620 
1621 	down_write(&mm->mmap_sem);
1622 	ret = do_munmap(mm, addr, len);
1623 	up_write(&mm->mmap_sem);
1624 	return ret;
1625 }
1626 
1627 /*
1628  * release all the mappings made in a process's VM space
1629  */
1630 void exit_mmap(struct mm_struct *mm)
1631 {
1632 	struct vm_area_struct *vma;
1633 
1634 	if (!mm)
1635 		return;
1636 
1637 	kenter("");
1638 
1639 	mm->total_vm = 0;
1640 
1641 	while ((vma = mm->mmap)) {
1642 		mm->mmap = vma->vm_next;
1643 		delete_vma_from_mm(vma);
1644 		delete_vma(mm, vma);
1645 	}
1646 
1647 	kleave("");
1648 }
1649 
1650 unsigned long do_brk(unsigned long addr, unsigned long len)
1651 {
1652 	return -ENOMEM;
1653 }
1654 
1655 /*
1656  * expand (or shrink) an existing mapping, potentially moving it at the same
1657  * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1658  *
1659  * under NOMMU conditions, we only permit changing a mapping's size, and only
1660  * as long as it stays within the region allocated by do_mmap_private() and the
1661  * block is not shareable
1662  *
1663  * MREMAP_FIXED is not supported under NOMMU conditions
1664  */
1665 unsigned long do_mremap(unsigned long addr,
1666 			unsigned long old_len, unsigned long new_len,
1667 			unsigned long flags, unsigned long new_addr)
1668 {
1669 	struct vm_area_struct *vma;
1670 
1671 	/* insanity checks first */
1672 	if (old_len == 0 || new_len == 0)
1673 		return (unsigned long) -EINVAL;
1674 
1675 	if (addr & ~PAGE_MASK)
1676 		return -EINVAL;
1677 
1678 	if (flags & MREMAP_FIXED && new_addr != addr)
1679 		return (unsigned long) -EINVAL;
1680 
1681 	vma = find_vma_exact(current->mm, addr, old_len);
1682 	if (!vma)
1683 		return (unsigned long) -EINVAL;
1684 
1685 	if (vma->vm_end != vma->vm_start + old_len)
1686 		return (unsigned long) -EFAULT;
1687 
1688 	if (vma->vm_flags & VM_MAYSHARE)
1689 		return (unsigned long) -EPERM;
1690 
1691 	if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1692 		return (unsigned long) -ENOMEM;
1693 
1694 	/* all checks complete - do it */
1695 	vma->vm_end = vma->vm_start + new_len;
1696 	return vma->vm_start;
1697 }
1698 EXPORT_SYMBOL(do_mremap);
1699 
1700 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1701 		unsigned long, new_len, unsigned long, flags,
1702 		unsigned long, new_addr)
1703 {
1704 	unsigned long ret;
1705 
1706 	down_write(&current->mm->mmap_sem);
1707 	ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1708 	up_write(&current->mm->mmap_sem);
1709 	return ret;
1710 }
1711 
1712 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1713 			unsigned int foll_flags)
1714 {
1715 	return NULL;
1716 }
1717 
1718 int remap_pfn_range(struct vm_area_struct *vma, unsigned long from,
1719 		unsigned long to, unsigned long size, pgprot_t prot)
1720 {
1721 	vma->vm_start = vma->vm_pgoff << PAGE_SHIFT;
1722 	return 0;
1723 }
1724 EXPORT_SYMBOL(remap_pfn_range);
1725 
1726 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1727 			unsigned long pgoff)
1728 {
1729 	unsigned int size = vma->vm_end - vma->vm_start;
1730 
1731 	if (!(vma->vm_flags & VM_USERMAP))
1732 		return -EINVAL;
1733 
1734 	vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1735 	vma->vm_end = vma->vm_start + size;
1736 
1737 	return 0;
1738 }
1739 EXPORT_SYMBOL(remap_vmalloc_range);
1740 
1741 void swap_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1742 {
1743 }
1744 
1745 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1746 	unsigned long len, unsigned long pgoff, unsigned long flags)
1747 {
1748 	return -ENOMEM;
1749 }
1750 
1751 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1752 {
1753 }
1754 
1755 void unmap_mapping_range(struct address_space *mapping,
1756 			 loff_t const holebegin, loff_t const holelen,
1757 			 int even_cows)
1758 {
1759 }
1760 EXPORT_SYMBOL(unmap_mapping_range);
1761 
1762 /*
1763  * ask for an unmapped area at which to create a mapping on a file
1764  */
1765 unsigned long get_unmapped_area(struct file *file, unsigned long addr,
1766 				unsigned long len, unsigned long pgoff,
1767 				unsigned long flags)
1768 {
1769 	unsigned long (*get_area)(struct file *, unsigned long, unsigned long,
1770 				  unsigned long, unsigned long);
1771 
1772 	get_area = current->mm->get_unmapped_area;
1773 	if (file && file->f_op && file->f_op->get_unmapped_area)
1774 		get_area = file->f_op->get_unmapped_area;
1775 
1776 	if (!get_area)
1777 		return -ENOSYS;
1778 
1779 	return get_area(file, addr, len, pgoff, flags);
1780 }
1781 EXPORT_SYMBOL(get_unmapped_area);
1782 
1783 /*
1784  * Check that a process has enough memory to allocate a new virtual
1785  * mapping. 0 means there is enough memory for the allocation to
1786  * succeed and -ENOMEM implies there is not.
1787  *
1788  * We currently support three overcommit policies, which are set via the
1789  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
1790  *
1791  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1792  * Additional code 2002 Jul 20 by Robert Love.
1793  *
1794  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1795  *
1796  * Note this is a helper function intended to be used by LSMs which
1797  * wish to use this logic.
1798  */
1799 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
1800 {
1801 	unsigned long free, allowed;
1802 
1803 	vm_acct_memory(pages);
1804 
1805 	/*
1806 	 * Sometimes we want to use more memory than we have
1807 	 */
1808 	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
1809 		return 0;
1810 
1811 	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
1812 		unsigned long n;
1813 
1814 		free = global_page_state(NR_FILE_PAGES);
1815 		free += nr_swap_pages;
1816 
1817 		/*
1818 		 * Any slabs which are created with the
1819 		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
1820 		 * which are reclaimable, under pressure.  The dentry
1821 		 * cache and most inode caches should fall into this
1822 		 */
1823 		free += global_page_state(NR_SLAB_RECLAIMABLE);
1824 
1825 		/*
1826 		 * Leave the last 3% for root
1827 		 */
1828 		if (!cap_sys_admin)
1829 			free -= free / 32;
1830 
1831 		if (free > pages)
1832 			return 0;
1833 
1834 		/*
1835 		 * nr_free_pages() is very expensive on large systems,
1836 		 * only call if we're about to fail.
1837 		 */
1838 		n = nr_free_pages();
1839 
1840 		/*
1841 		 * Leave reserved pages. The pages are not for anonymous pages.
1842 		 */
1843 		if (n <= totalreserve_pages)
1844 			goto error;
1845 		else
1846 			n -= totalreserve_pages;
1847 
1848 		/*
1849 		 * Leave the last 3% for root
1850 		 */
1851 		if (!cap_sys_admin)
1852 			n -= n / 32;
1853 		free += n;
1854 
1855 		if (free > pages)
1856 			return 0;
1857 
1858 		goto error;
1859 	}
1860 
1861 	allowed = totalram_pages * sysctl_overcommit_ratio / 100;
1862 	/*
1863 	 * Leave the last 3% for root
1864 	 */
1865 	if (!cap_sys_admin)
1866 		allowed -= allowed / 32;
1867 	allowed += total_swap_pages;
1868 
1869 	/* Don't let a single process grow too big:
1870 	   leave 3% of the size of this process for other processes */
1871 	if (mm)
1872 		allowed -= mm->total_vm / 32;
1873 
1874 	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
1875 		return 0;
1876 
1877 error:
1878 	vm_unacct_memory(pages);
1879 
1880 	return -ENOMEM;
1881 }
1882 
1883 int in_gate_area_no_task(unsigned long addr)
1884 {
1885 	return 0;
1886 }
1887 
1888 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1889 {
1890 	BUG();
1891 	return 0;
1892 }
1893 EXPORT_SYMBOL(filemap_fault);
1894 
1895 /*
1896  * Access another process' address space.
1897  * - source/target buffer must be kernel space
1898  */
1899 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
1900 {
1901 	struct vm_area_struct *vma;
1902 	struct mm_struct *mm;
1903 
1904 	if (addr + len < addr)
1905 		return 0;
1906 
1907 	mm = get_task_mm(tsk);
1908 	if (!mm)
1909 		return 0;
1910 
1911 	down_read(&mm->mmap_sem);
1912 
1913 	/* the access must start within one of the target process's mappings */
1914 	vma = find_vma(mm, addr);
1915 	if (vma) {
1916 		/* don't overrun this mapping */
1917 		if (addr + len >= vma->vm_end)
1918 			len = vma->vm_end - addr;
1919 
1920 		/* only read or write mappings where it is permitted */
1921 		if (write && vma->vm_flags & VM_MAYWRITE)
1922 			len -= copy_to_user((void *) addr, buf, len);
1923 		else if (!write && vma->vm_flags & VM_MAYREAD)
1924 			len -= copy_from_user(buf, (void *) addr, len);
1925 		else
1926 			len = 0;
1927 	} else {
1928 		len = 0;
1929 	}
1930 
1931 	up_read(&mm->mmap_sem);
1932 	mmput(mm);
1933 	return len;
1934 }
1935