1 /* 2 * linux/mm/nommu.c 3 * 4 * Replacement code for mm functions to support CPU's that don't 5 * have any form of memory management unit (thus no virtual memory). 6 * 7 * See Documentation/nommu-mmap.txt 8 * 9 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com> 10 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com> 11 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org> 12 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com> 13 * Copyright (c) 2007-2009 Paul Mundt <lethal@linux-sh.org> 14 */ 15 16 #include <linux/module.h> 17 #include <linux/mm.h> 18 #include <linux/mman.h> 19 #include <linux/swap.h> 20 #include <linux/file.h> 21 #include <linux/highmem.h> 22 #include <linux/pagemap.h> 23 #include <linux/slab.h> 24 #include <linux/vmalloc.h> 25 #include <linux/tracehook.h> 26 #include <linux/blkdev.h> 27 #include <linux/backing-dev.h> 28 #include <linux/mount.h> 29 #include <linux/personality.h> 30 #include <linux/security.h> 31 #include <linux/syscalls.h> 32 33 #include <asm/uaccess.h> 34 #include <asm/tlb.h> 35 #include <asm/tlbflush.h> 36 #include "internal.h" 37 38 static inline __attribute__((format(printf, 1, 2))) 39 void no_printk(const char *fmt, ...) 40 { 41 } 42 43 #if 0 44 #define kenter(FMT, ...) \ 45 printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__) 46 #define kleave(FMT, ...) \ 47 printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__) 48 #define kdebug(FMT, ...) \ 49 printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__) 50 #else 51 #define kenter(FMT, ...) \ 52 no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__) 53 #define kleave(FMT, ...) \ 54 no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__) 55 #define kdebug(FMT, ...) \ 56 no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__) 57 #endif 58 59 #include "internal.h" 60 61 void *high_memory; 62 struct page *mem_map; 63 unsigned long max_mapnr; 64 unsigned long num_physpages; 65 struct percpu_counter vm_committed_as; 66 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */ 67 int sysctl_overcommit_ratio = 50; /* default is 50% */ 68 int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT; 69 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS; 70 int heap_stack_gap = 0; 71 72 /* amount of vm to protect from userspace access */ 73 unsigned long mmap_min_addr = CONFIG_DEFAULT_MMAP_MIN_ADDR; 74 75 atomic_long_t mmap_pages_allocated; 76 77 EXPORT_SYMBOL(mem_map); 78 EXPORT_SYMBOL(num_physpages); 79 80 /* list of mapped, potentially shareable regions */ 81 static struct kmem_cache *vm_region_jar; 82 struct rb_root nommu_region_tree = RB_ROOT; 83 DECLARE_RWSEM(nommu_region_sem); 84 85 struct vm_operations_struct generic_file_vm_ops = { 86 }; 87 88 /* 89 * Handle all mappings that got truncated by a "truncate()" 90 * system call. 91 * 92 * NOTE! We have to be ready to update the memory sharing 93 * between the file and the memory map for a potential last 94 * incomplete page. Ugly, but necessary. 95 */ 96 int vmtruncate(struct inode *inode, loff_t offset) 97 { 98 struct address_space *mapping = inode->i_mapping; 99 unsigned long limit; 100 101 if (inode->i_size < offset) 102 goto do_expand; 103 i_size_write(inode, offset); 104 105 truncate_inode_pages(mapping, offset); 106 goto out_truncate; 107 108 do_expand: 109 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur; 110 if (limit != RLIM_INFINITY && offset > limit) 111 goto out_sig; 112 if (offset > inode->i_sb->s_maxbytes) 113 goto out; 114 i_size_write(inode, offset); 115 116 out_truncate: 117 if (inode->i_op->truncate) 118 inode->i_op->truncate(inode); 119 return 0; 120 out_sig: 121 send_sig(SIGXFSZ, current, 0); 122 out: 123 return -EFBIG; 124 } 125 126 EXPORT_SYMBOL(vmtruncate); 127 128 /* 129 * Return the total memory allocated for this pointer, not 130 * just what the caller asked for. 131 * 132 * Doesn't have to be accurate, i.e. may have races. 133 */ 134 unsigned int kobjsize(const void *objp) 135 { 136 struct page *page; 137 138 /* 139 * If the object we have should not have ksize performed on it, 140 * return size of 0 141 */ 142 if (!objp || !virt_addr_valid(objp)) 143 return 0; 144 145 page = virt_to_head_page(objp); 146 147 /* 148 * If the allocator sets PageSlab, we know the pointer came from 149 * kmalloc(). 150 */ 151 if (PageSlab(page)) 152 return ksize(objp); 153 154 /* 155 * If it's not a compound page, see if we have a matching VMA 156 * region. This test is intentionally done in reverse order, 157 * so if there's no VMA, we still fall through and hand back 158 * PAGE_SIZE for 0-order pages. 159 */ 160 if (!PageCompound(page)) { 161 struct vm_area_struct *vma; 162 163 vma = find_vma(current->mm, (unsigned long)objp); 164 if (vma) 165 return vma->vm_end - vma->vm_start; 166 } 167 168 /* 169 * The ksize() function is only guaranteed to work for pointers 170 * returned by kmalloc(). So handle arbitrary pointers here. 171 */ 172 return PAGE_SIZE << compound_order(page); 173 } 174 175 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 176 unsigned long start, int nr_pages, int flags, 177 struct page **pages, struct vm_area_struct **vmas) 178 { 179 struct vm_area_struct *vma; 180 unsigned long vm_flags; 181 int i; 182 int write = !!(flags & GUP_FLAGS_WRITE); 183 int force = !!(flags & GUP_FLAGS_FORCE); 184 int ignore = !!(flags & GUP_FLAGS_IGNORE_VMA_PERMISSIONS); 185 186 /* calculate required read or write permissions. 187 * - if 'force' is set, we only require the "MAY" flags. 188 */ 189 vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 190 vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 191 192 for (i = 0; i < nr_pages; i++) { 193 vma = find_vma(mm, start); 194 if (!vma) 195 goto finish_or_fault; 196 197 /* protect what we can, including chardevs */ 198 if (vma->vm_flags & (VM_IO | VM_PFNMAP) || 199 (!ignore && !(vm_flags & vma->vm_flags))) 200 goto finish_or_fault; 201 202 if (pages) { 203 pages[i] = virt_to_page(start); 204 if (pages[i]) 205 page_cache_get(pages[i]); 206 } 207 if (vmas) 208 vmas[i] = vma; 209 start += PAGE_SIZE; 210 } 211 212 return i; 213 214 finish_or_fault: 215 return i ? : -EFAULT; 216 } 217 218 219 /* 220 * get a list of pages in an address range belonging to the specified process 221 * and indicate the VMA that covers each page 222 * - this is potentially dodgy as we may end incrementing the page count of a 223 * slab page or a secondary page from a compound page 224 * - don't permit access to VMAs that don't support it, such as I/O mappings 225 */ 226 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 227 unsigned long start, int nr_pages, int write, int force, 228 struct page **pages, struct vm_area_struct **vmas) 229 { 230 int flags = 0; 231 232 if (write) 233 flags |= GUP_FLAGS_WRITE; 234 if (force) 235 flags |= GUP_FLAGS_FORCE; 236 237 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas); 238 } 239 EXPORT_SYMBOL(get_user_pages); 240 241 /** 242 * follow_pfn - look up PFN at a user virtual address 243 * @vma: memory mapping 244 * @address: user virtual address 245 * @pfn: location to store found PFN 246 * 247 * Only IO mappings and raw PFN mappings are allowed. 248 * 249 * Returns zero and the pfn at @pfn on success, -ve otherwise. 250 */ 251 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 252 unsigned long *pfn) 253 { 254 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 255 return -EINVAL; 256 257 *pfn = address >> PAGE_SHIFT; 258 return 0; 259 } 260 EXPORT_SYMBOL(follow_pfn); 261 262 DEFINE_RWLOCK(vmlist_lock); 263 struct vm_struct *vmlist; 264 265 void vfree(const void *addr) 266 { 267 kfree(addr); 268 } 269 EXPORT_SYMBOL(vfree); 270 271 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot) 272 { 273 /* 274 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc() 275 * returns only a logical address. 276 */ 277 return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM); 278 } 279 EXPORT_SYMBOL(__vmalloc); 280 281 void *vmalloc_user(unsigned long size) 282 { 283 void *ret; 284 285 ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, 286 PAGE_KERNEL); 287 if (ret) { 288 struct vm_area_struct *vma; 289 290 down_write(¤t->mm->mmap_sem); 291 vma = find_vma(current->mm, (unsigned long)ret); 292 if (vma) 293 vma->vm_flags |= VM_USERMAP; 294 up_write(¤t->mm->mmap_sem); 295 } 296 297 return ret; 298 } 299 EXPORT_SYMBOL(vmalloc_user); 300 301 struct page *vmalloc_to_page(const void *addr) 302 { 303 return virt_to_page(addr); 304 } 305 EXPORT_SYMBOL(vmalloc_to_page); 306 307 unsigned long vmalloc_to_pfn(const void *addr) 308 { 309 return page_to_pfn(virt_to_page(addr)); 310 } 311 EXPORT_SYMBOL(vmalloc_to_pfn); 312 313 long vread(char *buf, char *addr, unsigned long count) 314 { 315 memcpy(buf, addr, count); 316 return count; 317 } 318 319 long vwrite(char *buf, char *addr, unsigned long count) 320 { 321 /* Don't allow overflow */ 322 if ((unsigned long) addr + count < count) 323 count = -(unsigned long) addr; 324 325 memcpy(addr, buf, count); 326 return(count); 327 } 328 329 /* 330 * vmalloc - allocate virtually continguos memory 331 * 332 * @size: allocation size 333 * 334 * Allocate enough pages to cover @size from the page level 335 * allocator and map them into continguos kernel virtual space. 336 * 337 * For tight control over page level allocator and protection flags 338 * use __vmalloc() instead. 339 */ 340 void *vmalloc(unsigned long size) 341 { 342 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL); 343 } 344 EXPORT_SYMBOL(vmalloc); 345 346 void *vmalloc_node(unsigned long size, int node) 347 { 348 return vmalloc(size); 349 } 350 EXPORT_SYMBOL(vmalloc_node); 351 352 #ifndef PAGE_KERNEL_EXEC 353 # define PAGE_KERNEL_EXEC PAGE_KERNEL 354 #endif 355 356 /** 357 * vmalloc_exec - allocate virtually contiguous, executable memory 358 * @size: allocation size 359 * 360 * Kernel-internal function to allocate enough pages to cover @size 361 * the page level allocator and map them into contiguous and 362 * executable kernel virtual space. 363 * 364 * For tight control over page level allocator and protection flags 365 * use __vmalloc() instead. 366 */ 367 368 void *vmalloc_exec(unsigned long size) 369 { 370 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC); 371 } 372 373 /** 374 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 375 * @size: allocation size 376 * 377 * Allocate enough 32bit PA addressable pages to cover @size from the 378 * page level allocator and map them into continguos kernel virtual space. 379 */ 380 void *vmalloc_32(unsigned long size) 381 { 382 return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL); 383 } 384 EXPORT_SYMBOL(vmalloc_32); 385 386 /** 387 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 388 * @size: allocation size 389 * 390 * The resulting memory area is 32bit addressable and zeroed so it can be 391 * mapped to userspace without leaking data. 392 * 393 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to 394 * remap_vmalloc_range() are permissible. 395 */ 396 void *vmalloc_32_user(unsigned long size) 397 { 398 /* 399 * We'll have to sort out the ZONE_DMA bits for 64-bit, 400 * but for now this can simply use vmalloc_user() directly. 401 */ 402 return vmalloc_user(size); 403 } 404 EXPORT_SYMBOL(vmalloc_32_user); 405 406 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot) 407 { 408 BUG(); 409 return NULL; 410 } 411 EXPORT_SYMBOL(vmap); 412 413 void vunmap(const void *addr) 414 { 415 BUG(); 416 } 417 EXPORT_SYMBOL(vunmap); 418 419 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot) 420 { 421 BUG(); 422 return NULL; 423 } 424 EXPORT_SYMBOL(vm_map_ram); 425 426 void vm_unmap_ram(const void *mem, unsigned int count) 427 { 428 BUG(); 429 } 430 EXPORT_SYMBOL(vm_unmap_ram); 431 432 void vm_unmap_aliases(void) 433 { 434 } 435 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 436 437 /* 438 * Implement a stub for vmalloc_sync_all() if the architecture chose not to 439 * have one. 440 */ 441 void __attribute__((weak)) vmalloc_sync_all(void) 442 { 443 } 444 445 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 446 struct page *page) 447 { 448 return -EINVAL; 449 } 450 EXPORT_SYMBOL(vm_insert_page); 451 452 /* 453 * sys_brk() for the most part doesn't need the global kernel 454 * lock, except when an application is doing something nasty 455 * like trying to un-brk an area that has already been mapped 456 * to a regular file. in this case, the unmapping will need 457 * to invoke file system routines that need the global lock. 458 */ 459 SYSCALL_DEFINE1(brk, unsigned long, brk) 460 { 461 struct mm_struct *mm = current->mm; 462 463 if (brk < mm->start_brk || brk > mm->context.end_brk) 464 return mm->brk; 465 466 if (mm->brk == brk) 467 return mm->brk; 468 469 /* 470 * Always allow shrinking brk 471 */ 472 if (brk <= mm->brk) { 473 mm->brk = brk; 474 return brk; 475 } 476 477 /* 478 * Ok, looks good - let it rip. 479 */ 480 return mm->brk = brk; 481 } 482 483 /* 484 * initialise the VMA and region record slabs 485 */ 486 void __init mmap_init(void) 487 { 488 int ret; 489 490 ret = percpu_counter_init(&vm_committed_as, 0); 491 VM_BUG_ON(ret); 492 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC); 493 } 494 495 /* 496 * validate the region tree 497 * - the caller must hold the region lock 498 */ 499 #ifdef CONFIG_DEBUG_NOMMU_REGIONS 500 static noinline void validate_nommu_regions(void) 501 { 502 struct vm_region *region, *last; 503 struct rb_node *p, *lastp; 504 505 lastp = rb_first(&nommu_region_tree); 506 if (!lastp) 507 return; 508 509 last = rb_entry(lastp, struct vm_region, vm_rb); 510 BUG_ON(unlikely(last->vm_end <= last->vm_start)); 511 BUG_ON(unlikely(last->vm_top < last->vm_end)); 512 513 while ((p = rb_next(lastp))) { 514 region = rb_entry(p, struct vm_region, vm_rb); 515 last = rb_entry(lastp, struct vm_region, vm_rb); 516 517 BUG_ON(unlikely(region->vm_end <= region->vm_start)); 518 BUG_ON(unlikely(region->vm_top < region->vm_end)); 519 BUG_ON(unlikely(region->vm_start < last->vm_top)); 520 521 lastp = p; 522 } 523 } 524 #else 525 static void validate_nommu_regions(void) 526 { 527 } 528 #endif 529 530 /* 531 * add a region into the global tree 532 */ 533 static void add_nommu_region(struct vm_region *region) 534 { 535 struct vm_region *pregion; 536 struct rb_node **p, *parent; 537 538 validate_nommu_regions(); 539 540 parent = NULL; 541 p = &nommu_region_tree.rb_node; 542 while (*p) { 543 parent = *p; 544 pregion = rb_entry(parent, struct vm_region, vm_rb); 545 if (region->vm_start < pregion->vm_start) 546 p = &(*p)->rb_left; 547 else if (region->vm_start > pregion->vm_start) 548 p = &(*p)->rb_right; 549 else if (pregion == region) 550 return; 551 else 552 BUG(); 553 } 554 555 rb_link_node(®ion->vm_rb, parent, p); 556 rb_insert_color(®ion->vm_rb, &nommu_region_tree); 557 558 validate_nommu_regions(); 559 } 560 561 /* 562 * delete a region from the global tree 563 */ 564 static void delete_nommu_region(struct vm_region *region) 565 { 566 BUG_ON(!nommu_region_tree.rb_node); 567 568 validate_nommu_regions(); 569 rb_erase(®ion->vm_rb, &nommu_region_tree); 570 validate_nommu_regions(); 571 } 572 573 /* 574 * free a contiguous series of pages 575 */ 576 static void free_page_series(unsigned long from, unsigned long to) 577 { 578 for (; from < to; from += PAGE_SIZE) { 579 struct page *page = virt_to_page(from); 580 581 kdebug("- free %lx", from); 582 atomic_long_dec(&mmap_pages_allocated); 583 if (page_count(page) != 1) 584 kdebug("free page %p: refcount not one: %d", 585 page, page_count(page)); 586 put_page(page); 587 } 588 } 589 590 /* 591 * release a reference to a region 592 * - the caller must hold the region semaphore for writing, which this releases 593 * - the region may not have been added to the tree yet, in which case vm_top 594 * will equal vm_start 595 */ 596 static void __put_nommu_region(struct vm_region *region) 597 __releases(nommu_region_sem) 598 { 599 kenter("%p{%d}", region, atomic_read(®ion->vm_usage)); 600 601 BUG_ON(!nommu_region_tree.rb_node); 602 603 if (atomic_dec_and_test(®ion->vm_usage)) { 604 if (region->vm_top > region->vm_start) 605 delete_nommu_region(region); 606 up_write(&nommu_region_sem); 607 608 if (region->vm_file) 609 fput(region->vm_file); 610 611 /* IO memory and memory shared directly out of the pagecache 612 * from ramfs/tmpfs mustn't be released here */ 613 if (region->vm_flags & VM_MAPPED_COPY) { 614 kdebug("free series"); 615 free_page_series(region->vm_start, region->vm_top); 616 } 617 kmem_cache_free(vm_region_jar, region); 618 } else { 619 up_write(&nommu_region_sem); 620 } 621 } 622 623 /* 624 * release a reference to a region 625 */ 626 static void put_nommu_region(struct vm_region *region) 627 { 628 down_write(&nommu_region_sem); 629 __put_nommu_region(region); 630 } 631 632 /* 633 * add a VMA into a process's mm_struct in the appropriate place in the list 634 * and tree and add to the address space's page tree also if not an anonymous 635 * page 636 * - should be called with mm->mmap_sem held writelocked 637 */ 638 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma) 639 { 640 struct vm_area_struct *pvma, **pp; 641 struct address_space *mapping; 642 struct rb_node **p, *parent; 643 644 kenter(",%p", vma); 645 646 BUG_ON(!vma->vm_region); 647 648 mm->map_count++; 649 vma->vm_mm = mm; 650 651 /* add the VMA to the mapping */ 652 if (vma->vm_file) { 653 mapping = vma->vm_file->f_mapping; 654 655 flush_dcache_mmap_lock(mapping); 656 vma_prio_tree_insert(vma, &mapping->i_mmap); 657 flush_dcache_mmap_unlock(mapping); 658 } 659 660 /* add the VMA to the tree */ 661 parent = NULL; 662 p = &mm->mm_rb.rb_node; 663 while (*p) { 664 parent = *p; 665 pvma = rb_entry(parent, struct vm_area_struct, vm_rb); 666 667 /* sort by: start addr, end addr, VMA struct addr in that order 668 * (the latter is necessary as we may get identical VMAs) */ 669 if (vma->vm_start < pvma->vm_start) 670 p = &(*p)->rb_left; 671 else if (vma->vm_start > pvma->vm_start) 672 p = &(*p)->rb_right; 673 else if (vma->vm_end < pvma->vm_end) 674 p = &(*p)->rb_left; 675 else if (vma->vm_end > pvma->vm_end) 676 p = &(*p)->rb_right; 677 else if (vma < pvma) 678 p = &(*p)->rb_left; 679 else if (vma > pvma) 680 p = &(*p)->rb_right; 681 else 682 BUG(); 683 } 684 685 rb_link_node(&vma->vm_rb, parent, p); 686 rb_insert_color(&vma->vm_rb, &mm->mm_rb); 687 688 /* add VMA to the VMA list also */ 689 for (pp = &mm->mmap; (pvma = *pp); pp = &(*pp)->vm_next) { 690 if (pvma->vm_start > vma->vm_start) 691 break; 692 if (pvma->vm_start < vma->vm_start) 693 continue; 694 if (pvma->vm_end < vma->vm_end) 695 break; 696 } 697 698 vma->vm_next = *pp; 699 *pp = vma; 700 } 701 702 /* 703 * delete a VMA from its owning mm_struct and address space 704 */ 705 static void delete_vma_from_mm(struct vm_area_struct *vma) 706 { 707 struct vm_area_struct **pp; 708 struct address_space *mapping; 709 struct mm_struct *mm = vma->vm_mm; 710 711 kenter("%p", vma); 712 713 mm->map_count--; 714 if (mm->mmap_cache == vma) 715 mm->mmap_cache = NULL; 716 717 /* remove the VMA from the mapping */ 718 if (vma->vm_file) { 719 mapping = vma->vm_file->f_mapping; 720 721 flush_dcache_mmap_lock(mapping); 722 vma_prio_tree_remove(vma, &mapping->i_mmap); 723 flush_dcache_mmap_unlock(mapping); 724 } 725 726 /* remove from the MM's tree and list */ 727 rb_erase(&vma->vm_rb, &mm->mm_rb); 728 for (pp = &mm->mmap; *pp; pp = &(*pp)->vm_next) { 729 if (*pp == vma) { 730 *pp = vma->vm_next; 731 break; 732 } 733 } 734 735 vma->vm_mm = NULL; 736 } 737 738 /* 739 * destroy a VMA record 740 */ 741 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma) 742 { 743 kenter("%p", vma); 744 if (vma->vm_ops && vma->vm_ops->close) 745 vma->vm_ops->close(vma); 746 if (vma->vm_file) { 747 fput(vma->vm_file); 748 if (vma->vm_flags & VM_EXECUTABLE) 749 removed_exe_file_vma(mm); 750 } 751 put_nommu_region(vma->vm_region); 752 kmem_cache_free(vm_area_cachep, vma); 753 } 754 755 /* 756 * look up the first VMA in which addr resides, NULL if none 757 * - should be called with mm->mmap_sem at least held readlocked 758 */ 759 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 760 { 761 struct vm_area_struct *vma; 762 struct rb_node *n = mm->mm_rb.rb_node; 763 764 /* check the cache first */ 765 vma = mm->mmap_cache; 766 if (vma && vma->vm_start <= addr && vma->vm_end > addr) 767 return vma; 768 769 /* trawl the tree (there may be multiple mappings in which addr 770 * resides) */ 771 for (n = rb_first(&mm->mm_rb); n; n = rb_next(n)) { 772 vma = rb_entry(n, struct vm_area_struct, vm_rb); 773 if (vma->vm_start > addr) 774 return NULL; 775 if (vma->vm_end > addr) { 776 mm->mmap_cache = vma; 777 return vma; 778 } 779 } 780 781 return NULL; 782 } 783 EXPORT_SYMBOL(find_vma); 784 785 /* 786 * find a VMA 787 * - we don't extend stack VMAs under NOMMU conditions 788 */ 789 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr) 790 { 791 return find_vma(mm, addr); 792 } 793 794 /* 795 * expand a stack to a given address 796 * - not supported under NOMMU conditions 797 */ 798 int expand_stack(struct vm_area_struct *vma, unsigned long address) 799 { 800 return -ENOMEM; 801 } 802 803 /* 804 * look up the first VMA exactly that exactly matches addr 805 * - should be called with mm->mmap_sem at least held readlocked 806 */ 807 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm, 808 unsigned long addr, 809 unsigned long len) 810 { 811 struct vm_area_struct *vma; 812 struct rb_node *n = mm->mm_rb.rb_node; 813 unsigned long end = addr + len; 814 815 /* check the cache first */ 816 vma = mm->mmap_cache; 817 if (vma && vma->vm_start == addr && vma->vm_end == end) 818 return vma; 819 820 /* trawl the tree (there may be multiple mappings in which addr 821 * resides) */ 822 for (n = rb_first(&mm->mm_rb); n; n = rb_next(n)) { 823 vma = rb_entry(n, struct vm_area_struct, vm_rb); 824 if (vma->vm_start < addr) 825 continue; 826 if (vma->vm_start > addr) 827 return NULL; 828 if (vma->vm_end == end) { 829 mm->mmap_cache = vma; 830 return vma; 831 } 832 } 833 834 return NULL; 835 } 836 837 /* 838 * determine whether a mapping should be permitted and, if so, what sort of 839 * mapping we're capable of supporting 840 */ 841 static int validate_mmap_request(struct file *file, 842 unsigned long addr, 843 unsigned long len, 844 unsigned long prot, 845 unsigned long flags, 846 unsigned long pgoff, 847 unsigned long *_capabilities) 848 { 849 unsigned long capabilities, rlen; 850 unsigned long reqprot = prot; 851 int ret; 852 853 /* do the simple checks first */ 854 if (flags & MAP_FIXED || addr) { 855 printk(KERN_DEBUG 856 "%d: Can't do fixed-address/overlay mmap of RAM\n", 857 current->pid); 858 return -EINVAL; 859 } 860 861 if ((flags & MAP_TYPE) != MAP_PRIVATE && 862 (flags & MAP_TYPE) != MAP_SHARED) 863 return -EINVAL; 864 865 if (!len) 866 return -EINVAL; 867 868 /* Careful about overflows.. */ 869 rlen = PAGE_ALIGN(len); 870 if (!rlen || rlen > TASK_SIZE) 871 return -ENOMEM; 872 873 /* offset overflow? */ 874 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff) 875 return -EOVERFLOW; 876 877 if (file) { 878 /* validate file mapping requests */ 879 struct address_space *mapping; 880 881 /* files must support mmap */ 882 if (!file->f_op || !file->f_op->mmap) 883 return -ENODEV; 884 885 /* work out if what we've got could possibly be shared 886 * - we support chardevs that provide their own "memory" 887 * - we support files/blockdevs that are memory backed 888 */ 889 mapping = file->f_mapping; 890 if (!mapping) 891 mapping = file->f_path.dentry->d_inode->i_mapping; 892 893 capabilities = 0; 894 if (mapping && mapping->backing_dev_info) 895 capabilities = mapping->backing_dev_info->capabilities; 896 897 if (!capabilities) { 898 /* no explicit capabilities set, so assume some 899 * defaults */ 900 switch (file->f_path.dentry->d_inode->i_mode & S_IFMT) { 901 case S_IFREG: 902 case S_IFBLK: 903 capabilities = BDI_CAP_MAP_COPY; 904 break; 905 906 case S_IFCHR: 907 capabilities = 908 BDI_CAP_MAP_DIRECT | 909 BDI_CAP_READ_MAP | 910 BDI_CAP_WRITE_MAP; 911 break; 912 913 default: 914 return -EINVAL; 915 } 916 } 917 918 /* eliminate any capabilities that we can't support on this 919 * device */ 920 if (!file->f_op->get_unmapped_area) 921 capabilities &= ~BDI_CAP_MAP_DIRECT; 922 if (!file->f_op->read) 923 capabilities &= ~BDI_CAP_MAP_COPY; 924 925 if (flags & MAP_SHARED) { 926 /* do checks for writing, appending and locking */ 927 if ((prot & PROT_WRITE) && 928 !(file->f_mode & FMODE_WRITE)) 929 return -EACCES; 930 931 if (IS_APPEND(file->f_path.dentry->d_inode) && 932 (file->f_mode & FMODE_WRITE)) 933 return -EACCES; 934 935 if (locks_verify_locked(file->f_path.dentry->d_inode)) 936 return -EAGAIN; 937 938 if (!(capabilities & BDI_CAP_MAP_DIRECT)) 939 return -ENODEV; 940 941 if (((prot & PROT_READ) && !(capabilities & BDI_CAP_READ_MAP)) || 942 ((prot & PROT_WRITE) && !(capabilities & BDI_CAP_WRITE_MAP)) || 943 ((prot & PROT_EXEC) && !(capabilities & BDI_CAP_EXEC_MAP)) 944 ) { 945 printk("MAP_SHARED not completely supported on !MMU\n"); 946 return -EINVAL; 947 } 948 949 /* we mustn't privatise shared mappings */ 950 capabilities &= ~BDI_CAP_MAP_COPY; 951 } 952 else { 953 /* we're going to read the file into private memory we 954 * allocate */ 955 if (!(capabilities & BDI_CAP_MAP_COPY)) 956 return -ENODEV; 957 958 /* we don't permit a private writable mapping to be 959 * shared with the backing device */ 960 if (prot & PROT_WRITE) 961 capabilities &= ~BDI_CAP_MAP_DIRECT; 962 } 963 964 /* handle executable mappings and implied executable 965 * mappings */ 966 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) { 967 if (prot & PROT_EXEC) 968 return -EPERM; 969 } 970 else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) { 971 /* handle implication of PROT_EXEC by PROT_READ */ 972 if (current->personality & READ_IMPLIES_EXEC) { 973 if (capabilities & BDI_CAP_EXEC_MAP) 974 prot |= PROT_EXEC; 975 } 976 } 977 else if ((prot & PROT_READ) && 978 (prot & PROT_EXEC) && 979 !(capabilities & BDI_CAP_EXEC_MAP) 980 ) { 981 /* backing file is not executable, try to copy */ 982 capabilities &= ~BDI_CAP_MAP_DIRECT; 983 } 984 } 985 else { 986 /* anonymous mappings are always memory backed and can be 987 * privately mapped 988 */ 989 capabilities = BDI_CAP_MAP_COPY; 990 991 /* handle PROT_EXEC implication by PROT_READ */ 992 if ((prot & PROT_READ) && 993 (current->personality & READ_IMPLIES_EXEC)) 994 prot |= PROT_EXEC; 995 } 996 997 /* allow the security API to have its say */ 998 ret = security_file_mmap(file, reqprot, prot, flags, addr, 0); 999 if (ret < 0) 1000 return ret; 1001 1002 /* looks okay */ 1003 *_capabilities = capabilities; 1004 return 0; 1005 } 1006 1007 /* 1008 * we've determined that we can make the mapping, now translate what we 1009 * now know into VMA flags 1010 */ 1011 static unsigned long determine_vm_flags(struct file *file, 1012 unsigned long prot, 1013 unsigned long flags, 1014 unsigned long capabilities) 1015 { 1016 unsigned long vm_flags; 1017 1018 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags); 1019 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 1020 /* vm_flags |= mm->def_flags; */ 1021 1022 if (!(capabilities & BDI_CAP_MAP_DIRECT)) { 1023 /* attempt to share read-only copies of mapped file chunks */ 1024 if (file && !(prot & PROT_WRITE)) 1025 vm_flags |= VM_MAYSHARE; 1026 } 1027 else { 1028 /* overlay a shareable mapping on the backing device or inode 1029 * if possible - used for chardevs, ramfs/tmpfs/shmfs and 1030 * romfs/cramfs */ 1031 if (flags & MAP_SHARED) 1032 vm_flags |= VM_MAYSHARE | VM_SHARED; 1033 else if ((((vm_flags & capabilities) ^ vm_flags) & BDI_CAP_VMFLAGS) == 0) 1034 vm_flags |= VM_MAYSHARE; 1035 } 1036 1037 /* refuse to let anyone share private mappings with this process if 1038 * it's being traced - otherwise breakpoints set in it may interfere 1039 * with another untraced process 1040 */ 1041 if ((flags & MAP_PRIVATE) && tracehook_expect_breakpoints(current)) 1042 vm_flags &= ~VM_MAYSHARE; 1043 1044 return vm_flags; 1045 } 1046 1047 /* 1048 * set up a shared mapping on a file (the driver or filesystem provides and 1049 * pins the storage) 1050 */ 1051 static int do_mmap_shared_file(struct vm_area_struct *vma) 1052 { 1053 int ret; 1054 1055 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma); 1056 if (ret == 0) { 1057 vma->vm_region->vm_top = vma->vm_region->vm_end; 1058 return ret; 1059 } 1060 if (ret != -ENOSYS) 1061 return ret; 1062 1063 /* getting an ENOSYS error indicates that direct mmap isn't 1064 * possible (as opposed to tried but failed) so we'll fall 1065 * through to making a private copy of the data and mapping 1066 * that if we can */ 1067 return -ENODEV; 1068 } 1069 1070 /* 1071 * set up a private mapping or an anonymous shared mapping 1072 */ 1073 static int do_mmap_private(struct vm_area_struct *vma, 1074 struct vm_region *region, 1075 unsigned long len) 1076 { 1077 struct page *pages; 1078 unsigned long total, point, n, rlen; 1079 void *base; 1080 int ret, order; 1081 1082 /* invoke the file's mapping function so that it can keep track of 1083 * shared mappings on devices or memory 1084 * - VM_MAYSHARE will be set if it may attempt to share 1085 */ 1086 if (vma->vm_file) { 1087 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma); 1088 if (ret == 0) { 1089 /* shouldn't return success if we're not sharing */ 1090 BUG_ON(!(vma->vm_flags & VM_MAYSHARE)); 1091 vma->vm_region->vm_top = vma->vm_region->vm_end; 1092 return ret; 1093 } 1094 if (ret != -ENOSYS) 1095 return ret; 1096 1097 /* getting an ENOSYS error indicates that direct mmap isn't 1098 * possible (as opposed to tried but failed) so we'll try to 1099 * make a private copy of the data and map that instead */ 1100 } 1101 1102 rlen = PAGE_ALIGN(len); 1103 1104 /* allocate some memory to hold the mapping 1105 * - note that this may not return a page-aligned address if the object 1106 * we're allocating is smaller than a page 1107 */ 1108 order = get_order(rlen); 1109 kdebug("alloc order %d for %lx", order, len); 1110 1111 pages = alloc_pages(GFP_KERNEL, order); 1112 if (!pages) 1113 goto enomem; 1114 1115 total = 1 << order; 1116 atomic_long_add(total, &mmap_pages_allocated); 1117 1118 point = rlen >> PAGE_SHIFT; 1119 1120 /* we allocated a power-of-2 sized page set, so we may want to trim off 1121 * the excess */ 1122 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) { 1123 while (total > point) { 1124 order = ilog2(total - point); 1125 n = 1 << order; 1126 kdebug("shave %lu/%lu @%lu", n, total - point, total); 1127 atomic_long_sub(n, &mmap_pages_allocated); 1128 total -= n; 1129 set_page_refcounted(pages + total); 1130 __free_pages(pages + total, order); 1131 } 1132 } 1133 1134 for (point = 1; point < total; point++) 1135 set_page_refcounted(&pages[point]); 1136 1137 base = page_address(pages); 1138 region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY; 1139 region->vm_start = (unsigned long) base; 1140 region->vm_end = region->vm_start + rlen; 1141 region->vm_top = region->vm_start + (total << PAGE_SHIFT); 1142 1143 vma->vm_start = region->vm_start; 1144 vma->vm_end = region->vm_start + len; 1145 1146 if (vma->vm_file) { 1147 /* read the contents of a file into the copy */ 1148 mm_segment_t old_fs; 1149 loff_t fpos; 1150 1151 fpos = vma->vm_pgoff; 1152 fpos <<= PAGE_SHIFT; 1153 1154 old_fs = get_fs(); 1155 set_fs(KERNEL_DS); 1156 ret = vma->vm_file->f_op->read(vma->vm_file, base, rlen, &fpos); 1157 set_fs(old_fs); 1158 1159 if (ret < 0) 1160 goto error_free; 1161 1162 /* clear the last little bit */ 1163 if (ret < rlen) 1164 memset(base + ret, 0, rlen - ret); 1165 1166 } else { 1167 /* if it's an anonymous mapping, then just clear it */ 1168 memset(base, 0, rlen); 1169 } 1170 1171 return 0; 1172 1173 error_free: 1174 free_page_series(region->vm_start, region->vm_end); 1175 region->vm_start = vma->vm_start = 0; 1176 region->vm_end = vma->vm_end = 0; 1177 region->vm_top = 0; 1178 return ret; 1179 1180 enomem: 1181 printk("Allocation of length %lu from process %d (%s) failed\n", 1182 len, current->pid, current->comm); 1183 show_free_areas(); 1184 return -ENOMEM; 1185 } 1186 1187 /* 1188 * handle mapping creation for uClinux 1189 */ 1190 unsigned long do_mmap_pgoff(struct file *file, 1191 unsigned long addr, 1192 unsigned long len, 1193 unsigned long prot, 1194 unsigned long flags, 1195 unsigned long pgoff) 1196 { 1197 struct vm_area_struct *vma; 1198 struct vm_region *region; 1199 struct rb_node *rb; 1200 unsigned long capabilities, vm_flags, result; 1201 int ret; 1202 1203 kenter(",%lx,%lx,%lx,%lx,%lx", addr, len, prot, flags, pgoff); 1204 1205 if (!(flags & MAP_FIXED)) 1206 addr = round_hint_to_min(addr); 1207 1208 /* decide whether we should attempt the mapping, and if so what sort of 1209 * mapping */ 1210 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff, 1211 &capabilities); 1212 if (ret < 0) { 1213 kleave(" = %d [val]", ret); 1214 return ret; 1215 } 1216 1217 /* we've determined that we can make the mapping, now translate what we 1218 * now know into VMA flags */ 1219 vm_flags = determine_vm_flags(file, prot, flags, capabilities); 1220 1221 /* we're going to need to record the mapping */ 1222 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL); 1223 if (!region) 1224 goto error_getting_region; 1225 1226 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 1227 if (!vma) 1228 goto error_getting_vma; 1229 1230 atomic_set(®ion->vm_usage, 1); 1231 region->vm_flags = vm_flags; 1232 region->vm_pgoff = pgoff; 1233 1234 INIT_LIST_HEAD(&vma->anon_vma_node); 1235 vma->vm_flags = vm_flags; 1236 vma->vm_pgoff = pgoff; 1237 1238 if (file) { 1239 region->vm_file = file; 1240 get_file(file); 1241 vma->vm_file = file; 1242 get_file(file); 1243 if (vm_flags & VM_EXECUTABLE) { 1244 added_exe_file_vma(current->mm); 1245 vma->vm_mm = current->mm; 1246 } 1247 } 1248 1249 down_write(&nommu_region_sem); 1250 1251 /* if we want to share, we need to check for regions created by other 1252 * mmap() calls that overlap with our proposed mapping 1253 * - we can only share with a superset match on most regular files 1254 * - shared mappings on character devices and memory backed files are 1255 * permitted to overlap inexactly as far as we are concerned for in 1256 * these cases, sharing is handled in the driver or filesystem rather 1257 * than here 1258 */ 1259 if (vm_flags & VM_MAYSHARE) { 1260 struct vm_region *pregion; 1261 unsigned long pglen, rpglen, pgend, rpgend, start; 1262 1263 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1264 pgend = pgoff + pglen; 1265 1266 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) { 1267 pregion = rb_entry(rb, struct vm_region, vm_rb); 1268 1269 if (!(pregion->vm_flags & VM_MAYSHARE)) 1270 continue; 1271 1272 /* search for overlapping mappings on the same file */ 1273 if (pregion->vm_file->f_path.dentry->d_inode != 1274 file->f_path.dentry->d_inode) 1275 continue; 1276 1277 if (pregion->vm_pgoff >= pgend) 1278 continue; 1279 1280 rpglen = pregion->vm_end - pregion->vm_start; 1281 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT; 1282 rpgend = pregion->vm_pgoff + rpglen; 1283 if (pgoff >= rpgend) 1284 continue; 1285 1286 /* handle inexactly overlapping matches between 1287 * mappings */ 1288 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) && 1289 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) { 1290 /* new mapping is not a subset of the region */ 1291 if (!(capabilities & BDI_CAP_MAP_DIRECT)) 1292 goto sharing_violation; 1293 continue; 1294 } 1295 1296 /* we've found a region we can share */ 1297 atomic_inc(&pregion->vm_usage); 1298 vma->vm_region = pregion; 1299 start = pregion->vm_start; 1300 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT; 1301 vma->vm_start = start; 1302 vma->vm_end = start + len; 1303 1304 if (pregion->vm_flags & VM_MAPPED_COPY) { 1305 kdebug("share copy"); 1306 vma->vm_flags |= VM_MAPPED_COPY; 1307 } else { 1308 kdebug("share mmap"); 1309 ret = do_mmap_shared_file(vma); 1310 if (ret < 0) { 1311 vma->vm_region = NULL; 1312 vma->vm_start = 0; 1313 vma->vm_end = 0; 1314 atomic_dec(&pregion->vm_usage); 1315 pregion = NULL; 1316 goto error_just_free; 1317 } 1318 } 1319 fput(region->vm_file); 1320 kmem_cache_free(vm_region_jar, region); 1321 region = pregion; 1322 result = start; 1323 goto share; 1324 } 1325 1326 /* obtain the address at which to make a shared mapping 1327 * - this is the hook for quasi-memory character devices to 1328 * tell us the location of a shared mapping 1329 */ 1330 if (file && file->f_op->get_unmapped_area) { 1331 addr = file->f_op->get_unmapped_area(file, addr, len, 1332 pgoff, flags); 1333 if (IS_ERR((void *) addr)) { 1334 ret = addr; 1335 if (ret != (unsigned long) -ENOSYS) 1336 goto error_just_free; 1337 1338 /* the driver refused to tell us where to site 1339 * the mapping so we'll have to attempt to copy 1340 * it */ 1341 ret = (unsigned long) -ENODEV; 1342 if (!(capabilities & BDI_CAP_MAP_COPY)) 1343 goto error_just_free; 1344 1345 capabilities &= ~BDI_CAP_MAP_DIRECT; 1346 } else { 1347 vma->vm_start = region->vm_start = addr; 1348 vma->vm_end = region->vm_end = addr + len; 1349 } 1350 } 1351 } 1352 1353 vma->vm_region = region; 1354 1355 /* set up the mapping */ 1356 if (file && vma->vm_flags & VM_SHARED) 1357 ret = do_mmap_shared_file(vma); 1358 else 1359 ret = do_mmap_private(vma, region, len); 1360 if (ret < 0) 1361 goto error_put_region; 1362 1363 add_nommu_region(region); 1364 1365 /* okay... we have a mapping; now we have to register it */ 1366 result = vma->vm_start; 1367 1368 current->mm->total_vm += len >> PAGE_SHIFT; 1369 1370 share: 1371 add_vma_to_mm(current->mm, vma); 1372 1373 up_write(&nommu_region_sem); 1374 1375 if (prot & PROT_EXEC) 1376 flush_icache_range(result, result + len); 1377 1378 kleave(" = %lx", result); 1379 return result; 1380 1381 error_put_region: 1382 __put_nommu_region(region); 1383 if (vma) { 1384 if (vma->vm_file) { 1385 fput(vma->vm_file); 1386 if (vma->vm_flags & VM_EXECUTABLE) 1387 removed_exe_file_vma(vma->vm_mm); 1388 } 1389 kmem_cache_free(vm_area_cachep, vma); 1390 } 1391 kleave(" = %d [pr]", ret); 1392 return ret; 1393 1394 error_just_free: 1395 up_write(&nommu_region_sem); 1396 error: 1397 fput(region->vm_file); 1398 kmem_cache_free(vm_region_jar, region); 1399 fput(vma->vm_file); 1400 if (vma->vm_flags & VM_EXECUTABLE) 1401 removed_exe_file_vma(vma->vm_mm); 1402 kmem_cache_free(vm_area_cachep, vma); 1403 kleave(" = %d", ret); 1404 return ret; 1405 1406 sharing_violation: 1407 up_write(&nommu_region_sem); 1408 printk(KERN_WARNING "Attempt to share mismatched mappings\n"); 1409 ret = -EINVAL; 1410 goto error; 1411 1412 error_getting_vma: 1413 kmem_cache_free(vm_region_jar, region); 1414 printk(KERN_WARNING "Allocation of vma for %lu byte allocation" 1415 " from process %d failed\n", 1416 len, current->pid); 1417 show_free_areas(); 1418 return -ENOMEM; 1419 1420 error_getting_region: 1421 printk(KERN_WARNING "Allocation of vm region for %lu byte allocation" 1422 " from process %d failed\n", 1423 len, current->pid); 1424 show_free_areas(); 1425 return -ENOMEM; 1426 } 1427 EXPORT_SYMBOL(do_mmap_pgoff); 1428 1429 /* 1430 * split a vma into two pieces at address 'addr', a new vma is allocated either 1431 * for the first part or the tail. 1432 */ 1433 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 1434 unsigned long addr, int new_below) 1435 { 1436 struct vm_area_struct *new; 1437 struct vm_region *region; 1438 unsigned long npages; 1439 1440 kenter(""); 1441 1442 /* we're only permitted to split anonymous regions that have a single 1443 * owner */ 1444 if (vma->vm_file || 1445 atomic_read(&vma->vm_region->vm_usage) != 1) 1446 return -ENOMEM; 1447 1448 if (mm->map_count >= sysctl_max_map_count) 1449 return -ENOMEM; 1450 1451 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL); 1452 if (!region) 1453 return -ENOMEM; 1454 1455 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 1456 if (!new) { 1457 kmem_cache_free(vm_region_jar, region); 1458 return -ENOMEM; 1459 } 1460 1461 /* most fields are the same, copy all, and then fixup */ 1462 *new = *vma; 1463 *region = *vma->vm_region; 1464 new->vm_region = region; 1465 1466 npages = (addr - vma->vm_start) >> PAGE_SHIFT; 1467 1468 if (new_below) { 1469 region->vm_top = region->vm_end = new->vm_end = addr; 1470 } else { 1471 region->vm_start = new->vm_start = addr; 1472 region->vm_pgoff = new->vm_pgoff += npages; 1473 } 1474 1475 if (new->vm_ops && new->vm_ops->open) 1476 new->vm_ops->open(new); 1477 1478 delete_vma_from_mm(vma); 1479 down_write(&nommu_region_sem); 1480 delete_nommu_region(vma->vm_region); 1481 if (new_below) { 1482 vma->vm_region->vm_start = vma->vm_start = addr; 1483 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages; 1484 } else { 1485 vma->vm_region->vm_end = vma->vm_end = addr; 1486 vma->vm_region->vm_top = addr; 1487 } 1488 add_nommu_region(vma->vm_region); 1489 add_nommu_region(new->vm_region); 1490 up_write(&nommu_region_sem); 1491 add_vma_to_mm(mm, vma); 1492 add_vma_to_mm(mm, new); 1493 return 0; 1494 } 1495 1496 /* 1497 * shrink a VMA by removing the specified chunk from either the beginning or 1498 * the end 1499 */ 1500 static int shrink_vma(struct mm_struct *mm, 1501 struct vm_area_struct *vma, 1502 unsigned long from, unsigned long to) 1503 { 1504 struct vm_region *region; 1505 1506 kenter(""); 1507 1508 /* adjust the VMA's pointers, which may reposition it in the MM's tree 1509 * and list */ 1510 delete_vma_from_mm(vma); 1511 if (from > vma->vm_start) 1512 vma->vm_end = from; 1513 else 1514 vma->vm_start = to; 1515 add_vma_to_mm(mm, vma); 1516 1517 /* cut the backing region down to size */ 1518 region = vma->vm_region; 1519 BUG_ON(atomic_read(®ion->vm_usage) != 1); 1520 1521 down_write(&nommu_region_sem); 1522 delete_nommu_region(region); 1523 if (from > region->vm_start) { 1524 to = region->vm_top; 1525 region->vm_top = region->vm_end = from; 1526 } else { 1527 region->vm_start = to; 1528 } 1529 add_nommu_region(region); 1530 up_write(&nommu_region_sem); 1531 1532 free_page_series(from, to); 1533 return 0; 1534 } 1535 1536 /* 1537 * release a mapping 1538 * - under NOMMU conditions the chunk to be unmapped must be backed by a single 1539 * VMA, though it need not cover the whole VMA 1540 */ 1541 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len) 1542 { 1543 struct vm_area_struct *vma; 1544 struct rb_node *rb; 1545 unsigned long end = start + len; 1546 int ret; 1547 1548 kenter(",%lx,%zx", start, len); 1549 1550 if (len == 0) 1551 return -EINVAL; 1552 1553 /* find the first potentially overlapping VMA */ 1554 vma = find_vma(mm, start); 1555 if (!vma) { 1556 static int limit = 0; 1557 if (limit < 5) { 1558 printk(KERN_WARNING 1559 "munmap of memory not mmapped by process %d" 1560 " (%s): 0x%lx-0x%lx\n", 1561 current->pid, current->comm, 1562 start, start + len - 1); 1563 limit++; 1564 } 1565 return -EINVAL; 1566 } 1567 1568 /* we're allowed to split an anonymous VMA but not a file-backed one */ 1569 if (vma->vm_file) { 1570 do { 1571 if (start > vma->vm_start) { 1572 kleave(" = -EINVAL [miss]"); 1573 return -EINVAL; 1574 } 1575 if (end == vma->vm_end) 1576 goto erase_whole_vma; 1577 rb = rb_next(&vma->vm_rb); 1578 vma = rb_entry(rb, struct vm_area_struct, vm_rb); 1579 } while (rb); 1580 kleave(" = -EINVAL [split file]"); 1581 return -EINVAL; 1582 } else { 1583 /* the chunk must be a subset of the VMA found */ 1584 if (start == vma->vm_start && end == vma->vm_end) 1585 goto erase_whole_vma; 1586 if (start < vma->vm_start || end > vma->vm_end) { 1587 kleave(" = -EINVAL [superset]"); 1588 return -EINVAL; 1589 } 1590 if (start & ~PAGE_MASK) { 1591 kleave(" = -EINVAL [unaligned start]"); 1592 return -EINVAL; 1593 } 1594 if (end != vma->vm_end && end & ~PAGE_MASK) { 1595 kleave(" = -EINVAL [unaligned split]"); 1596 return -EINVAL; 1597 } 1598 if (start != vma->vm_start && end != vma->vm_end) { 1599 ret = split_vma(mm, vma, start, 1); 1600 if (ret < 0) { 1601 kleave(" = %d [split]", ret); 1602 return ret; 1603 } 1604 } 1605 return shrink_vma(mm, vma, start, end); 1606 } 1607 1608 erase_whole_vma: 1609 delete_vma_from_mm(vma); 1610 delete_vma(mm, vma); 1611 kleave(" = 0"); 1612 return 0; 1613 } 1614 EXPORT_SYMBOL(do_munmap); 1615 1616 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 1617 { 1618 int ret; 1619 struct mm_struct *mm = current->mm; 1620 1621 down_write(&mm->mmap_sem); 1622 ret = do_munmap(mm, addr, len); 1623 up_write(&mm->mmap_sem); 1624 return ret; 1625 } 1626 1627 /* 1628 * release all the mappings made in a process's VM space 1629 */ 1630 void exit_mmap(struct mm_struct *mm) 1631 { 1632 struct vm_area_struct *vma; 1633 1634 if (!mm) 1635 return; 1636 1637 kenter(""); 1638 1639 mm->total_vm = 0; 1640 1641 while ((vma = mm->mmap)) { 1642 mm->mmap = vma->vm_next; 1643 delete_vma_from_mm(vma); 1644 delete_vma(mm, vma); 1645 } 1646 1647 kleave(""); 1648 } 1649 1650 unsigned long do_brk(unsigned long addr, unsigned long len) 1651 { 1652 return -ENOMEM; 1653 } 1654 1655 /* 1656 * expand (or shrink) an existing mapping, potentially moving it at the same 1657 * time (controlled by the MREMAP_MAYMOVE flag and available VM space) 1658 * 1659 * under NOMMU conditions, we only permit changing a mapping's size, and only 1660 * as long as it stays within the region allocated by do_mmap_private() and the 1661 * block is not shareable 1662 * 1663 * MREMAP_FIXED is not supported under NOMMU conditions 1664 */ 1665 unsigned long do_mremap(unsigned long addr, 1666 unsigned long old_len, unsigned long new_len, 1667 unsigned long flags, unsigned long new_addr) 1668 { 1669 struct vm_area_struct *vma; 1670 1671 /* insanity checks first */ 1672 if (old_len == 0 || new_len == 0) 1673 return (unsigned long) -EINVAL; 1674 1675 if (addr & ~PAGE_MASK) 1676 return -EINVAL; 1677 1678 if (flags & MREMAP_FIXED && new_addr != addr) 1679 return (unsigned long) -EINVAL; 1680 1681 vma = find_vma_exact(current->mm, addr, old_len); 1682 if (!vma) 1683 return (unsigned long) -EINVAL; 1684 1685 if (vma->vm_end != vma->vm_start + old_len) 1686 return (unsigned long) -EFAULT; 1687 1688 if (vma->vm_flags & VM_MAYSHARE) 1689 return (unsigned long) -EPERM; 1690 1691 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start) 1692 return (unsigned long) -ENOMEM; 1693 1694 /* all checks complete - do it */ 1695 vma->vm_end = vma->vm_start + new_len; 1696 return vma->vm_start; 1697 } 1698 EXPORT_SYMBOL(do_mremap); 1699 1700 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len, 1701 unsigned long, new_len, unsigned long, flags, 1702 unsigned long, new_addr) 1703 { 1704 unsigned long ret; 1705 1706 down_write(¤t->mm->mmap_sem); 1707 ret = do_mremap(addr, old_len, new_len, flags, new_addr); 1708 up_write(¤t->mm->mmap_sem); 1709 return ret; 1710 } 1711 1712 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 1713 unsigned int foll_flags) 1714 { 1715 return NULL; 1716 } 1717 1718 int remap_pfn_range(struct vm_area_struct *vma, unsigned long from, 1719 unsigned long to, unsigned long size, pgprot_t prot) 1720 { 1721 vma->vm_start = vma->vm_pgoff << PAGE_SHIFT; 1722 return 0; 1723 } 1724 EXPORT_SYMBOL(remap_pfn_range); 1725 1726 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 1727 unsigned long pgoff) 1728 { 1729 unsigned int size = vma->vm_end - vma->vm_start; 1730 1731 if (!(vma->vm_flags & VM_USERMAP)) 1732 return -EINVAL; 1733 1734 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT)); 1735 vma->vm_end = vma->vm_start + size; 1736 1737 return 0; 1738 } 1739 EXPORT_SYMBOL(remap_vmalloc_range); 1740 1741 void swap_unplug_io_fn(struct backing_dev_info *bdi, struct page *page) 1742 { 1743 } 1744 1745 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr, 1746 unsigned long len, unsigned long pgoff, unsigned long flags) 1747 { 1748 return -ENOMEM; 1749 } 1750 1751 void arch_unmap_area(struct mm_struct *mm, unsigned long addr) 1752 { 1753 } 1754 1755 void unmap_mapping_range(struct address_space *mapping, 1756 loff_t const holebegin, loff_t const holelen, 1757 int even_cows) 1758 { 1759 } 1760 EXPORT_SYMBOL(unmap_mapping_range); 1761 1762 /* 1763 * ask for an unmapped area at which to create a mapping on a file 1764 */ 1765 unsigned long get_unmapped_area(struct file *file, unsigned long addr, 1766 unsigned long len, unsigned long pgoff, 1767 unsigned long flags) 1768 { 1769 unsigned long (*get_area)(struct file *, unsigned long, unsigned long, 1770 unsigned long, unsigned long); 1771 1772 get_area = current->mm->get_unmapped_area; 1773 if (file && file->f_op && file->f_op->get_unmapped_area) 1774 get_area = file->f_op->get_unmapped_area; 1775 1776 if (!get_area) 1777 return -ENOSYS; 1778 1779 return get_area(file, addr, len, pgoff, flags); 1780 } 1781 EXPORT_SYMBOL(get_unmapped_area); 1782 1783 /* 1784 * Check that a process has enough memory to allocate a new virtual 1785 * mapping. 0 means there is enough memory for the allocation to 1786 * succeed and -ENOMEM implies there is not. 1787 * 1788 * We currently support three overcommit policies, which are set via the 1789 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting 1790 * 1791 * Strict overcommit modes added 2002 Feb 26 by Alan Cox. 1792 * Additional code 2002 Jul 20 by Robert Love. 1793 * 1794 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise. 1795 * 1796 * Note this is a helper function intended to be used by LSMs which 1797 * wish to use this logic. 1798 */ 1799 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin) 1800 { 1801 unsigned long free, allowed; 1802 1803 vm_acct_memory(pages); 1804 1805 /* 1806 * Sometimes we want to use more memory than we have 1807 */ 1808 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS) 1809 return 0; 1810 1811 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) { 1812 unsigned long n; 1813 1814 free = global_page_state(NR_FILE_PAGES); 1815 free += nr_swap_pages; 1816 1817 /* 1818 * Any slabs which are created with the 1819 * SLAB_RECLAIM_ACCOUNT flag claim to have contents 1820 * which are reclaimable, under pressure. The dentry 1821 * cache and most inode caches should fall into this 1822 */ 1823 free += global_page_state(NR_SLAB_RECLAIMABLE); 1824 1825 /* 1826 * Leave the last 3% for root 1827 */ 1828 if (!cap_sys_admin) 1829 free -= free / 32; 1830 1831 if (free > pages) 1832 return 0; 1833 1834 /* 1835 * nr_free_pages() is very expensive on large systems, 1836 * only call if we're about to fail. 1837 */ 1838 n = nr_free_pages(); 1839 1840 /* 1841 * Leave reserved pages. The pages are not for anonymous pages. 1842 */ 1843 if (n <= totalreserve_pages) 1844 goto error; 1845 else 1846 n -= totalreserve_pages; 1847 1848 /* 1849 * Leave the last 3% for root 1850 */ 1851 if (!cap_sys_admin) 1852 n -= n / 32; 1853 free += n; 1854 1855 if (free > pages) 1856 return 0; 1857 1858 goto error; 1859 } 1860 1861 allowed = totalram_pages * sysctl_overcommit_ratio / 100; 1862 /* 1863 * Leave the last 3% for root 1864 */ 1865 if (!cap_sys_admin) 1866 allowed -= allowed / 32; 1867 allowed += total_swap_pages; 1868 1869 /* Don't let a single process grow too big: 1870 leave 3% of the size of this process for other processes */ 1871 if (mm) 1872 allowed -= mm->total_vm / 32; 1873 1874 if (percpu_counter_read_positive(&vm_committed_as) < allowed) 1875 return 0; 1876 1877 error: 1878 vm_unacct_memory(pages); 1879 1880 return -ENOMEM; 1881 } 1882 1883 int in_gate_area_no_task(unsigned long addr) 1884 { 1885 return 0; 1886 } 1887 1888 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1889 { 1890 BUG(); 1891 return 0; 1892 } 1893 EXPORT_SYMBOL(filemap_fault); 1894 1895 /* 1896 * Access another process' address space. 1897 * - source/target buffer must be kernel space 1898 */ 1899 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write) 1900 { 1901 struct vm_area_struct *vma; 1902 struct mm_struct *mm; 1903 1904 if (addr + len < addr) 1905 return 0; 1906 1907 mm = get_task_mm(tsk); 1908 if (!mm) 1909 return 0; 1910 1911 down_read(&mm->mmap_sem); 1912 1913 /* the access must start within one of the target process's mappings */ 1914 vma = find_vma(mm, addr); 1915 if (vma) { 1916 /* don't overrun this mapping */ 1917 if (addr + len >= vma->vm_end) 1918 len = vma->vm_end - addr; 1919 1920 /* only read or write mappings where it is permitted */ 1921 if (write && vma->vm_flags & VM_MAYWRITE) 1922 len -= copy_to_user((void *) addr, buf, len); 1923 else if (!write && vma->vm_flags & VM_MAYREAD) 1924 len -= copy_from_user(buf, (void *) addr, len); 1925 else 1926 len = 0; 1927 } else { 1928 len = 0; 1929 } 1930 1931 up_read(&mm->mmap_sem); 1932 mmput(mm); 1933 return len; 1934 } 1935