xref: /linux/mm/nommu.c (revision 12871a0bd67dd4db4418e1daafcd46e9d329ef10)
1 /*
2  *  linux/mm/nommu.c
3  *
4  *  Replacement code for mm functions to support CPU's that don't
5  *  have any form of memory management unit (thus no virtual memory).
6  *
7  *  See Documentation/nommu-mmap.txt
8  *
9  *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10  *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11  *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12  *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
13  *  Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
14  */
15 
16 #include <linux/module.h>
17 #include <linux/mm.h>
18 #include <linux/mman.h>
19 #include <linux/swap.h>
20 #include <linux/file.h>
21 #include <linux/highmem.h>
22 #include <linux/pagemap.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/tracehook.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mount.h>
29 #include <linux/personality.h>
30 #include <linux/security.h>
31 #include <linux/syscalls.h>
32 #include <linux/audit.h>
33 
34 #include <asm/uaccess.h>
35 #include <asm/tlb.h>
36 #include <asm/tlbflush.h>
37 #include <asm/mmu_context.h>
38 #include "internal.h"
39 
40 #if 0
41 #define kenter(FMT, ...) \
42 	printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
43 #define kleave(FMT, ...) \
44 	printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
45 #define kdebug(FMT, ...) \
46 	printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__)
47 #else
48 #define kenter(FMT, ...) \
49 	no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
50 #define kleave(FMT, ...) \
51 	no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
52 #define kdebug(FMT, ...) \
53 	no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__)
54 #endif
55 
56 void *high_memory;
57 struct page *mem_map;
58 unsigned long max_mapnr;
59 unsigned long num_physpages;
60 unsigned long highest_memmap_pfn;
61 struct percpu_counter vm_committed_as;
62 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
63 int sysctl_overcommit_ratio = 50; /* default is 50% */
64 int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT;
65 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
66 int heap_stack_gap = 0;
67 
68 atomic_long_t mmap_pages_allocated;
69 
70 EXPORT_SYMBOL(mem_map);
71 EXPORT_SYMBOL(num_physpages);
72 
73 /* list of mapped, potentially shareable regions */
74 static struct kmem_cache *vm_region_jar;
75 struct rb_root nommu_region_tree = RB_ROOT;
76 DECLARE_RWSEM(nommu_region_sem);
77 
78 const struct vm_operations_struct generic_file_vm_ops = {
79 };
80 
81 /*
82  * Return the total memory allocated for this pointer, not
83  * just what the caller asked for.
84  *
85  * Doesn't have to be accurate, i.e. may have races.
86  */
87 unsigned int kobjsize(const void *objp)
88 {
89 	struct page *page;
90 
91 	/*
92 	 * If the object we have should not have ksize performed on it,
93 	 * return size of 0
94 	 */
95 	if (!objp || !virt_addr_valid(objp))
96 		return 0;
97 
98 	page = virt_to_head_page(objp);
99 
100 	/*
101 	 * If the allocator sets PageSlab, we know the pointer came from
102 	 * kmalloc().
103 	 */
104 	if (PageSlab(page))
105 		return ksize(objp);
106 
107 	/*
108 	 * If it's not a compound page, see if we have a matching VMA
109 	 * region. This test is intentionally done in reverse order,
110 	 * so if there's no VMA, we still fall through and hand back
111 	 * PAGE_SIZE for 0-order pages.
112 	 */
113 	if (!PageCompound(page)) {
114 		struct vm_area_struct *vma;
115 
116 		vma = find_vma(current->mm, (unsigned long)objp);
117 		if (vma)
118 			return vma->vm_end - vma->vm_start;
119 	}
120 
121 	/*
122 	 * The ksize() function is only guaranteed to work for pointers
123 	 * returned by kmalloc(). So handle arbitrary pointers here.
124 	 */
125 	return PAGE_SIZE << compound_order(page);
126 }
127 
128 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
129 		     unsigned long start, int nr_pages, unsigned int foll_flags,
130 		     struct page **pages, struct vm_area_struct **vmas,
131 		     int *retry)
132 {
133 	struct vm_area_struct *vma;
134 	unsigned long vm_flags;
135 	int i;
136 
137 	/* calculate required read or write permissions.
138 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
139 	 */
140 	vm_flags  = (foll_flags & FOLL_WRITE) ?
141 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
142 	vm_flags &= (foll_flags & FOLL_FORCE) ?
143 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
144 
145 	for (i = 0; i < nr_pages; i++) {
146 		vma = find_vma(mm, start);
147 		if (!vma)
148 			goto finish_or_fault;
149 
150 		/* protect what we can, including chardevs */
151 		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
152 		    !(vm_flags & vma->vm_flags))
153 			goto finish_or_fault;
154 
155 		if (pages) {
156 			pages[i] = virt_to_page(start);
157 			if (pages[i])
158 				page_cache_get(pages[i]);
159 		}
160 		if (vmas)
161 			vmas[i] = vma;
162 		start = (start + PAGE_SIZE) & PAGE_MASK;
163 	}
164 
165 	return i;
166 
167 finish_or_fault:
168 	return i ? : -EFAULT;
169 }
170 
171 /*
172  * get a list of pages in an address range belonging to the specified process
173  * and indicate the VMA that covers each page
174  * - this is potentially dodgy as we may end incrementing the page count of a
175  *   slab page or a secondary page from a compound page
176  * - don't permit access to VMAs that don't support it, such as I/O mappings
177  */
178 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
179 	unsigned long start, int nr_pages, int write, int force,
180 	struct page **pages, struct vm_area_struct **vmas)
181 {
182 	int flags = 0;
183 
184 	if (write)
185 		flags |= FOLL_WRITE;
186 	if (force)
187 		flags |= FOLL_FORCE;
188 
189 	return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
190 				NULL);
191 }
192 EXPORT_SYMBOL(get_user_pages);
193 
194 /**
195  * follow_pfn - look up PFN at a user virtual address
196  * @vma: memory mapping
197  * @address: user virtual address
198  * @pfn: location to store found PFN
199  *
200  * Only IO mappings and raw PFN mappings are allowed.
201  *
202  * Returns zero and the pfn at @pfn on success, -ve otherwise.
203  */
204 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
205 	unsigned long *pfn)
206 {
207 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
208 		return -EINVAL;
209 
210 	*pfn = address >> PAGE_SHIFT;
211 	return 0;
212 }
213 EXPORT_SYMBOL(follow_pfn);
214 
215 DEFINE_RWLOCK(vmlist_lock);
216 struct vm_struct *vmlist;
217 
218 void vfree(const void *addr)
219 {
220 	kfree(addr);
221 }
222 EXPORT_SYMBOL(vfree);
223 
224 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
225 {
226 	/*
227 	 *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
228 	 * returns only a logical address.
229 	 */
230 	return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
231 }
232 EXPORT_SYMBOL(__vmalloc);
233 
234 void *vmalloc_user(unsigned long size)
235 {
236 	void *ret;
237 
238 	ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
239 			PAGE_KERNEL);
240 	if (ret) {
241 		struct vm_area_struct *vma;
242 
243 		down_write(&current->mm->mmap_sem);
244 		vma = find_vma(current->mm, (unsigned long)ret);
245 		if (vma)
246 			vma->vm_flags |= VM_USERMAP;
247 		up_write(&current->mm->mmap_sem);
248 	}
249 
250 	return ret;
251 }
252 EXPORT_SYMBOL(vmalloc_user);
253 
254 struct page *vmalloc_to_page(const void *addr)
255 {
256 	return virt_to_page(addr);
257 }
258 EXPORT_SYMBOL(vmalloc_to_page);
259 
260 unsigned long vmalloc_to_pfn(const void *addr)
261 {
262 	return page_to_pfn(virt_to_page(addr));
263 }
264 EXPORT_SYMBOL(vmalloc_to_pfn);
265 
266 long vread(char *buf, char *addr, unsigned long count)
267 {
268 	memcpy(buf, addr, count);
269 	return count;
270 }
271 
272 long vwrite(char *buf, char *addr, unsigned long count)
273 {
274 	/* Don't allow overflow */
275 	if ((unsigned long) addr + count < count)
276 		count = -(unsigned long) addr;
277 
278 	memcpy(addr, buf, count);
279 	return(count);
280 }
281 
282 /*
283  *	vmalloc  -  allocate virtually continguos memory
284  *
285  *	@size:		allocation size
286  *
287  *	Allocate enough pages to cover @size from the page level
288  *	allocator and map them into continguos kernel virtual space.
289  *
290  *	For tight control over page level allocator and protection flags
291  *	use __vmalloc() instead.
292  */
293 void *vmalloc(unsigned long size)
294 {
295        return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
296 }
297 EXPORT_SYMBOL(vmalloc);
298 
299 /*
300  *	vzalloc - allocate virtually continguos memory with zero fill
301  *
302  *	@size:		allocation size
303  *
304  *	Allocate enough pages to cover @size from the page level
305  *	allocator and map them into continguos kernel virtual space.
306  *	The memory allocated is set to zero.
307  *
308  *	For tight control over page level allocator and protection flags
309  *	use __vmalloc() instead.
310  */
311 void *vzalloc(unsigned long size)
312 {
313 	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
314 			PAGE_KERNEL);
315 }
316 EXPORT_SYMBOL(vzalloc);
317 
318 /**
319  * vmalloc_node - allocate memory on a specific node
320  * @size:	allocation size
321  * @node:	numa node
322  *
323  * Allocate enough pages to cover @size from the page level
324  * allocator and map them into contiguous kernel virtual space.
325  *
326  * For tight control over page level allocator and protection flags
327  * use __vmalloc() instead.
328  */
329 void *vmalloc_node(unsigned long size, int node)
330 {
331 	return vmalloc(size);
332 }
333 EXPORT_SYMBOL(vmalloc_node);
334 
335 /**
336  * vzalloc_node - allocate memory on a specific node with zero fill
337  * @size:	allocation size
338  * @node:	numa node
339  *
340  * Allocate enough pages to cover @size from the page level
341  * allocator and map them into contiguous kernel virtual space.
342  * The memory allocated is set to zero.
343  *
344  * For tight control over page level allocator and protection flags
345  * use __vmalloc() instead.
346  */
347 void *vzalloc_node(unsigned long size, int node)
348 {
349 	return vzalloc(size);
350 }
351 EXPORT_SYMBOL(vzalloc_node);
352 
353 #ifndef PAGE_KERNEL_EXEC
354 # define PAGE_KERNEL_EXEC PAGE_KERNEL
355 #endif
356 
357 /**
358  *	vmalloc_exec  -  allocate virtually contiguous, executable memory
359  *	@size:		allocation size
360  *
361  *	Kernel-internal function to allocate enough pages to cover @size
362  *	the page level allocator and map them into contiguous and
363  *	executable kernel virtual space.
364  *
365  *	For tight control over page level allocator and protection flags
366  *	use __vmalloc() instead.
367  */
368 
369 void *vmalloc_exec(unsigned long size)
370 {
371 	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
372 }
373 
374 /**
375  * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
376  *	@size:		allocation size
377  *
378  *	Allocate enough 32bit PA addressable pages to cover @size from the
379  *	page level allocator and map them into continguos kernel virtual space.
380  */
381 void *vmalloc_32(unsigned long size)
382 {
383 	return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
384 }
385 EXPORT_SYMBOL(vmalloc_32);
386 
387 /**
388  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
389  *	@size:		allocation size
390  *
391  * The resulting memory area is 32bit addressable and zeroed so it can be
392  * mapped to userspace without leaking data.
393  *
394  * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
395  * remap_vmalloc_range() are permissible.
396  */
397 void *vmalloc_32_user(unsigned long size)
398 {
399 	/*
400 	 * We'll have to sort out the ZONE_DMA bits for 64-bit,
401 	 * but for now this can simply use vmalloc_user() directly.
402 	 */
403 	return vmalloc_user(size);
404 }
405 EXPORT_SYMBOL(vmalloc_32_user);
406 
407 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
408 {
409 	BUG();
410 	return NULL;
411 }
412 EXPORT_SYMBOL(vmap);
413 
414 void vunmap(const void *addr)
415 {
416 	BUG();
417 }
418 EXPORT_SYMBOL(vunmap);
419 
420 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
421 {
422 	BUG();
423 	return NULL;
424 }
425 EXPORT_SYMBOL(vm_map_ram);
426 
427 void vm_unmap_ram(const void *mem, unsigned int count)
428 {
429 	BUG();
430 }
431 EXPORT_SYMBOL(vm_unmap_ram);
432 
433 void vm_unmap_aliases(void)
434 {
435 }
436 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
437 
438 /*
439  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
440  * have one.
441  */
442 void  __attribute__((weak)) vmalloc_sync_all(void)
443 {
444 }
445 
446 /**
447  *	alloc_vm_area - allocate a range of kernel address space
448  *	@size:		size of the area
449  *
450  *	Returns:	NULL on failure, vm_struct on success
451  *
452  *	This function reserves a range of kernel address space, and
453  *	allocates pagetables to map that range.  No actual mappings
454  *	are created.  If the kernel address space is not shared
455  *	between processes, it syncs the pagetable across all
456  *	processes.
457  */
458 struct vm_struct *alloc_vm_area(size_t size)
459 {
460 	BUG();
461 	return NULL;
462 }
463 EXPORT_SYMBOL_GPL(alloc_vm_area);
464 
465 void free_vm_area(struct vm_struct *area)
466 {
467 	BUG();
468 }
469 EXPORT_SYMBOL_GPL(free_vm_area);
470 
471 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
472 		   struct page *page)
473 {
474 	return -EINVAL;
475 }
476 EXPORT_SYMBOL(vm_insert_page);
477 
478 /*
479  *  sys_brk() for the most part doesn't need the global kernel
480  *  lock, except when an application is doing something nasty
481  *  like trying to un-brk an area that has already been mapped
482  *  to a regular file.  in this case, the unmapping will need
483  *  to invoke file system routines that need the global lock.
484  */
485 SYSCALL_DEFINE1(brk, unsigned long, brk)
486 {
487 	struct mm_struct *mm = current->mm;
488 
489 	if (brk < mm->start_brk || brk > mm->context.end_brk)
490 		return mm->brk;
491 
492 	if (mm->brk == brk)
493 		return mm->brk;
494 
495 	/*
496 	 * Always allow shrinking brk
497 	 */
498 	if (brk <= mm->brk) {
499 		mm->brk = brk;
500 		return brk;
501 	}
502 
503 	/*
504 	 * Ok, looks good - let it rip.
505 	 */
506 	flush_icache_range(mm->brk, brk);
507 	return mm->brk = brk;
508 }
509 
510 /*
511  * initialise the VMA and region record slabs
512  */
513 void __init mmap_init(void)
514 {
515 	int ret;
516 
517 	ret = percpu_counter_init(&vm_committed_as, 0);
518 	VM_BUG_ON(ret);
519 	vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC);
520 }
521 
522 /*
523  * validate the region tree
524  * - the caller must hold the region lock
525  */
526 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
527 static noinline void validate_nommu_regions(void)
528 {
529 	struct vm_region *region, *last;
530 	struct rb_node *p, *lastp;
531 
532 	lastp = rb_first(&nommu_region_tree);
533 	if (!lastp)
534 		return;
535 
536 	last = rb_entry(lastp, struct vm_region, vm_rb);
537 	BUG_ON(unlikely(last->vm_end <= last->vm_start));
538 	BUG_ON(unlikely(last->vm_top < last->vm_end));
539 
540 	while ((p = rb_next(lastp))) {
541 		region = rb_entry(p, struct vm_region, vm_rb);
542 		last = rb_entry(lastp, struct vm_region, vm_rb);
543 
544 		BUG_ON(unlikely(region->vm_end <= region->vm_start));
545 		BUG_ON(unlikely(region->vm_top < region->vm_end));
546 		BUG_ON(unlikely(region->vm_start < last->vm_top));
547 
548 		lastp = p;
549 	}
550 }
551 #else
552 static void validate_nommu_regions(void)
553 {
554 }
555 #endif
556 
557 /*
558  * add a region into the global tree
559  */
560 static void add_nommu_region(struct vm_region *region)
561 {
562 	struct vm_region *pregion;
563 	struct rb_node **p, *parent;
564 
565 	validate_nommu_regions();
566 
567 	parent = NULL;
568 	p = &nommu_region_tree.rb_node;
569 	while (*p) {
570 		parent = *p;
571 		pregion = rb_entry(parent, struct vm_region, vm_rb);
572 		if (region->vm_start < pregion->vm_start)
573 			p = &(*p)->rb_left;
574 		else if (region->vm_start > pregion->vm_start)
575 			p = &(*p)->rb_right;
576 		else if (pregion == region)
577 			return;
578 		else
579 			BUG();
580 	}
581 
582 	rb_link_node(&region->vm_rb, parent, p);
583 	rb_insert_color(&region->vm_rb, &nommu_region_tree);
584 
585 	validate_nommu_regions();
586 }
587 
588 /*
589  * delete a region from the global tree
590  */
591 static void delete_nommu_region(struct vm_region *region)
592 {
593 	BUG_ON(!nommu_region_tree.rb_node);
594 
595 	validate_nommu_regions();
596 	rb_erase(&region->vm_rb, &nommu_region_tree);
597 	validate_nommu_regions();
598 }
599 
600 /*
601  * free a contiguous series of pages
602  */
603 static void free_page_series(unsigned long from, unsigned long to)
604 {
605 	for (; from < to; from += PAGE_SIZE) {
606 		struct page *page = virt_to_page(from);
607 
608 		kdebug("- free %lx", from);
609 		atomic_long_dec(&mmap_pages_allocated);
610 		if (page_count(page) != 1)
611 			kdebug("free page %p: refcount not one: %d",
612 			       page, page_count(page));
613 		put_page(page);
614 	}
615 }
616 
617 /*
618  * release a reference to a region
619  * - the caller must hold the region semaphore for writing, which this releases
620  * - the region may not have been added to the tree yet, in which case vm_top
621  *   will equal vm_start
622  */
623 static void __put_nommu_region(struct vm_region *region)
624 	__releases(nommu_region_sem)
625 {
626 	kenter("%p{%d}", region, region->vm_usage);
627 
628 	BUG_ON(!nommu_region_tree.rb_node);
629 
630 	if (--region->vm_usage == 0) {
631 		if (region->vm_top > region->vm_start)
632 			delete_nommu_region(region);
633 		up_write(&nommu_region_sem);
634 
635 		if (region->vm_file)
636 			fput(region->vm_file);
637 
638 		/* IO memory and memory shared directly out of the pagecache
639 		 * from ramfs/tmpfs mustn't be released here */
640 		if (region->vm_flags & VM_MAPPED_COPY) {
641 			kdebug("free series");
642 			free_page_series(region->vm_start, region->vm_top);
643 		}
644 		kmem_cache_free(vm_region_jar, region);
645 	} else {
646 		up_write(&nommu_region_sem);
647 	}
648 }
649 
650 /*
651  * release a reference to a region
652  */
653 static void put_nommu_region(struct vm_region *region)
654 {
655 	down_write(&nommu_region_sem);
656 	__put_nommu_region(region);
657 }
658 
659 /*
660  * update protection on a vma
661  */
662 static void protect_vma(struct vm_area_struct *vma, unsigned long flags)
663 {
664 #ifdef CONFIG_MPU
665 	struct mm_struct *mm = vma->vm_mm;
666 	long start = vma->vm_start & PAGE_MASK;
667 	while (start < vma->vm_end) {
668 		protect_page(mm, start, flags);
669 		start += PAGE_SIZE;
670 	}
671 	update_protections(mm);
672 #endif
673 }
674 
675 /*
676  * add a VMA into a process's mm_struct in the appropriate place in the list
677  * and tree and add to the address space's page tree also if not an anonymous
678  * page
679  * - should be called with mm->mmap_sem held writelocked
680  */
681 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
682 {
683 	struct vm_area_struct *pvma, *prev;
684 	struct address_space *mapping;
685 	struct rb_node **p, *parent, *rb_prev;
686 
687 	kenter(",%p", vma);
688 
689 	BUG_ON(!vma->vm_region);
690 
691 	mm->map_count++;
692 	vma->vm_mm = mm;
693 
694 	protect_vma(vma, vma->vm_flags);
695 
696 	/* add the VMA to the mapping */
697 	if (vma->vm_file) {
698 		mapping = vma->vm_file->f_mapping;
699 
700 		flush_dcache_mmap_lock(mapping);
701 		vma_prio_tree_insert(vma, &mapping->i_mmap);
702 		flush_dcache_mmap_unlock(mapping);
703 	}
704 
705 	/* add the VMA to the tree */
706 	parent = rb_prev = NULL;
707 	p = &mm->mm_rb.rb_node;
708 	while (*p) {
709 		parent = *p;
710 		pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
711 
712 		/* sort by: start addr, end addr, VMA struct addr in that order
713 		 * (the latter is necessary as we may get identical VMAs) */
714 		if (vma->vm_start < pvma->vm_start)
715 			p = &(*p)->rb_left;
716 		else if (vma->vm_start > pvma->vm_start) {
717 			rb_prev = parent;
718 			p = &(*p)->rb_right;
719 		} else if (vma->vm_end < pvma->vm_end)
720 			p = &(*p)->rb_left;
721 		else if (vma->vm_end > pvma->vm_end) {
722 			rb_prev = parent;
723 			p = &(*p)->rb_right;
724 		} else if (vma < pvma)
725 			p = &(*p)->rb_left;
726 		else if (vma > pvma) {
727 			rb_prev = parent;
728 			p = &(*p)->rb_right;
729 		} else
730 			BUG();
731 	}
732 
733 	rb_link_node(&vma->vm_rb, parent, p);
734 	rb_insert_color(&vma->vm_rb, &mm->mm_rb);
735 
736 	/* add VMA to the VMA list also */
737 	prev = NULL;
738 	if (rb_prev)
739 		prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
740 
741 	__vma_link_list(mm, vma, prev, parent);
742 }
743 
744 /*
745  * delete a VMA from its owning mm_struct and address space
746  */
747 static void delete_vma_from_mm(struct vm_area_struct *vma)
748 {
749 	struct address_space *mapping;
750 	struct mm_struct *mm = vma->vm_mm;
751 
752 	kenter("%p", vma);
753 
754 	protect_vma(vma, 0);
755 
756 	mm->map_count--;
757 	if (mm->mmap_cache == vma)
758 		mm->mmap_cache = NULL;
759 
760 	/* remove the VMA from the mapping */
761 	if (vma->vm_file) {
762 		mapping = vma->vm_file->f_mapping;
763 
764 		flush_dcache_mmap_lock(mapping);
765 		vma_prio_tree_remove(vma, &mapping->i_mmap);
766 		flush_dcache_mmap_unlock(mapping);
767 	}
768 
769 	/* remove from the MM's tree and list */
770 	rb_erase(&vma->vm_rb, &mm->mm_rb);
771 
772 	if (vma->vm_prev)
773 		vma->vm_prev->vm_next = vma->vm_next;
774 	else
775 		mm->mmap = vma->vm_next;
776 
777 	if (vma->vm_next)
778 		vma->vm_next->vm_prev = vma->vm_prev;
779 
780 	vma->vm_mm = NULL;
781 }
782 
783 /*
784  * destroy a VMA record
785  */
786 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
787 {
788 	kenter("%p", vma);
789 	if (vma->vm_ops && vma->vm_ops->close)
790 		vma->vm_ops->close(vma);
791 	if (vma->vm_file) {
792 		fput(vma->vm_file);
793 		if (vma->vm_flags & VM_EXECUTABLE)
794 			removed_exe_file_vma(mm);
795 	}
796 	put_nommu_region(vma->vm_region);
797 	kmem_cache_free(vm_area_cachep, vma);
798 }
799 
800 /*
801  * look up the first VMA in which addr resides, NULL if none
802  * - should be called with mm->mmap_sem at least held readlocked
803  */
804 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
805 {
806 	struct vm_area_struct *vma;
807 
808 	/* check the cache first */
809 	vma = mm->mmap_cache;
810 	if (vma && vma->vm_start <= addr && vma->vm_end > addr)
811 		return vma;
812 
813 	/* trawl the list (there may be multiple mappings in which addr
814 	 * resides) */
815 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
816 		if (vma->vm_start > addr)
817 			return NULL;
818 		if (vma->vm_end > addr) {
819 			mm->mmap_cache = vma;
820 			return vma;
821 		}
822 	}
823 
824 	return NULL;
825 }
826 EXPORT_SYMBOL(find_vma);
827 
828 /*
829  * find a VMA
830  * - we don't extend stack VMAs under NOMMU conditions
831  */
832 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
833 {
834 	return find_vma(mm, addr);
835 }
836 
837 /*
838  * expand a stack to a given address
839  * - not supported under NOMMU conditions
840  */
841 int expand_stack(struct vm_area_struct *vma, unsigned long address)
842 {
843 	return -ENOMEM;
844 }
845 
846 /*
847  * look up the first VMA exactly that exactly matches addr
848  * - should be called with mm->mmap_sem at least held readlocked
849  */
850 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
851 					     unsigned long addr,
852 					     unsigned long len)
853 {
854 	struct vm_area_struct *vma;
855 	unsigned long end = addr + len;
856 
857 	/* check the cache first */
858 	vma = mm->mmap_cache;
859 	if (vma && vma->vm_start == addr && vma->vm_end == end)
860 		return vma;
861 
862 	/* trawl the list (there may be multiple mappings in which addr
863 	 * resides) */
864 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
865 		if (vma->vm_start < addr)
866 			continue;
867 		if (vma->vm_start > addr)
868 			return NULL;
869 		if (vma->vm_end == end) {
870 			mm->mmap_cache = vma;
871 			return vma;
872 		}
873 	}
874 
875 	return NULL;
876 }
877 
878 /*
879  * determine whether a mapping should be permitted and, if so, what sort of
880  * mapping we're capable of supporting
881  */
882 static int validate_mmap_request(struct file *file,
883 				 unsigned long addr,
884 				 unsigned long len,
885 				 unsigned long prot,
886 				 unsigned long flags,
887 				 unsigned long pgoff,
888 				 unsigned long *_capabilities)
889 {
890 	unsigned long capabilities, rlen;
891 	unsigned long reqprot = prot;
892 	int ret;
893 
894 	/* do the simple checks first */
895 	if (flags & MAP_FIXED) {
896 		printk(KERN_DEBUG
897 		       "%d: Can't do fixed-address/overlay mmap of RAM\n",
898 		       current->pid);
899 		return -EINVAL;
900 	}
901 
902 	if ((flags & MAP_TYPE) != MAP_PRIVATE &&
903 	    (flags & MAP_TYPE) != MAP_SHARED)
904 		return -EINVAL;
905 
906 	if (!len)
907 		return -EINVAL;
908 
909 	/* Careful about overflows.. */
910 	rlen = PAGE_ALIGN(len);
911 	if (!rlen || rlen > TASK_SIZE)
912 		return -ENOMEM;
913 
914 	/* offset overflow? */
915 	if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
916 		return -EOVERFLOW;
917 
918 	if (file) {
919 		/* validate file mapping requests */
920 		struct address_space *mapping;
921 
922 		/* files must support mmap */
923 		if (!file->f_op || !file->f_op->mmap)
924 			return -ENODEV;
925 
926 		/* work out if what we've got could possibly be shared
927 		 * - we support chardevs that provide their own "memory"
928 		 * - we support files/blockdevs that are memory backed
929 		 */
930 		mapping = file->f_mapping;
931 		if (!mapping)
932 			mapping = file->f_path.dentry->d_inode->i_mapping;
933 
934 		capabilities = 0;
935 		if (mapping && mapping->backing_dev_info)
936 			capabilities = mapping->backing_dev_info->capabilities;
937 
938 		if (!capabilities) {
939 			/* no explicit capabilities set, so assume some
940 			 * defaults */
941 			switch (file->f_path.dentry->d_inode->i_mode & S_IFMT) {
942 			case S_IFREG:
943 			case S_IFBLK:
944 				capabilities = BDI_CAP_MAP_COPY;
945 				break;
946 
947 			case S_IFCHR:
948 				capabilities =
949 					BDI_CAP_MAP_DIRECT |
950 					BDI_CAP_READ_MAP |
951 					BDI_CAP_WRITE_MAP;
952 				break;
953 
954 			default:
955 				return -EINVAL;
956 			}
957 		}
958 
959 		/* eliminate any capabilities that we can't support on this
960 		 * device */
961 		if (!file->f_op->get_unmapped_area)
962 			capabilities &= ~BDI_CAP_MAP_DIRECT;
963 		if (!file->f_op->read)
964 			capabilities &= ~BDI_CAP_MAP_COPY;
965 
966 		/* The file shall have been opened with read permission. */
967 		if (!(file->f_mode & FMODE_READ))
968 			return -EACCES;
969 
970 		if (flags & MAP_SHARED) {
971 			/* do checks for writing, appending and locking */
972 			if ((prot & PROT_WRITE) &&
973 			    !(file->f_mode & FMODE_WRITE))
974 				return -EACCES;
975 
976 			if (IS_APPEND(file->f_path.dentry->d_inode) &&
977 			    (file->f_mode & FMODE_WRITE))
978 				return -EACCES;
979 
980 			if (locks_verify_locked(file->f_path.dentry->d_inode))
981 				return -EAGAIN;
982 
983 			if (!(capabilities & BDI_CAP_MAP_DIRECT))
984 				return -ENODEV;
985 
986 			/* we mustn't privatise shared mappings */
987 			capabilities &= ~BDI_CAP_MAP_COPY;
988 		}
989 		else {
990 			/* we're going to read the file into private memory we
991 			 * allocate */
992 			if (!(capabilities & BDI_CAP_MAP_COPY))
993 				return -ENODEV;
994 
995 			/* we don't permit a private writable mapping to be
996 			 * shared with the backing device */
997 			if (prot & PROT_WRITE)
998 				capabilities &= ~BDI_CAP_MAP_DIRECT;
999 		}
1000 
1001 		if (capabilities & BDI_CAP_MAP_DIRECT) {
1002 			if (((prot & PROT_READ)  && !(capabilities & BDI_CAP_READ_MAP))  ||
1003 			    ((prot & PROT_WRITE) && !(capabilities & BDI_CAP_WRITE_MAP)) ||
1004 			    ((prot & PROT_EXEC)  && !(capabilities & BDI_CAP_EXEC_MAP))
1005 			    ) {
1006 				capabilities &= ~BDI_CAP_MAP_DIRECT;
1007 				if (flags & MAP_SHARED) {
1008 					printk(KERN_WARNING
1009 					       "MAP_SHARED not completely supported on !MMU\n");
1010 					return -EINVAL;
1011 				}
1012 			}
1013 		}
1014 
1015 		/* handle executable mappings and implied executable
1016 		 * mappings */
1017 		if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1018 			if (prot & PROT_EXEC)
1019 				return -EPERM;
1020 		}
1021 		else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
1022 			/* handle implication of PROT_EXEC by PROT_READ */
1023 			if (current->personality & READ_IMPLIES_EXEC) {
1024 				if (capabilities & BDI_CAP_EXEC_MAP)
1025 					prot |= PROT_EXEC;
1026 			}
1027 		}
1028 		else if ((prot & PROT_READ) &&
1029 			 (prot & PROT_EXEC) &&
1030 			 !(capabilities & BDI_CAP_EXEC_MAP)
1031 			 ) {
1032 			/* backing file is not executable, try to copy */
1033 			capabilities &= ~BDI_CAP_MAP_DIRECT;
1034 		}
1035 	}
1036 	else {
1037 		/* anonymous mappings are always memory backed and can be
1038 		 * privately mapped
1039 		 */
1040 		capabilities = BDI_CAP_MAP_COPY;
1041 
1042 		/* handle PROT_EXEC implication by PROT_READ */
1043 		if ((prot & PROT_READ) &&
1044 		    (current->personality & READ_IMPLIES_EXEC))
1045 			prot |= PROT_EXEC;
1046 	}
1047 
1048 	/* allow the security API to have its say */
1049 	ret = security_file_mmap(file, reqprot, prot, flags, addr, 0);
1050 	if (ret < 0)
1051 		return ret;
1052 
1053 	/* looks okay */
1054 	*_capabilities = capabilities;
1055 	return 0;
1056 }
1057 
1058 /*
1059  * we've determined that we can make the mapping, now translate what we
1060  * now know into VMA flags
1061  */
1062 static unsigned long determine_vm_flags(struct file *file,
1063 					unsigned long prot,
1064 					unsigned long flags,
1065 					unsigned long capabilities)
1066 {
1067 	unsigned long vm_flags;
1068 
1069 	vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags);
1070 	/* vm_flags |= mm->def_flags; */
1071 
1072 	if (!(capabilities & BDI_CAP_MAP_DIRECT)) {
1073 		/* attempt to share read-only copies of mapped file chunks */
1074 		vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1075 		if (file && !(prot & PROT_WRITE))
1076 			vm_flags |= VM_MAYSHARE;
1077 	} else {
1078 		/* overlay a shareable mapping on the backing device or inode
1079 		 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1080 		 * romfs/cramfs */
1081 		vm_flags |= VM_MAYSHARE | (capabilities & BDI_CAP_VMFLAGS);
1082 		if (flags & MAP_SHARED)
1083 			vm_flags |= VM_SHARED;
1084 	}
1085 
1086 	/* refuse to let anyone share private mappings with this process if
1087 	 * it's being traced - otherwise breakpoints set in it may interfere
1088 	 * with another untraced process
1089 	 */
1090 	if ((flags & MAP_PRIVATE) && tracehook_expect_breakpoints(current))
1091 		vm_flags &= ~VM_MAYSHARE;
1092 
1093 	return vm_flags;
1094 }
1095 
1096 /*
1097  * set up a shared mapping on a file (the driver or filesystem provides and
1098  * pins the storage)
1099  */
1100 static int do_mmap_shared_file(struct vm_area_struct *vma)
1101 {
1102 	int ret;
1103 
1104 	ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1105 	if (ret == 0) {
1106 		vma->vm_region->vm_top = vma->vm_region->vm_end;
1107 		return 0;
1108 	}
1109 	if (ret != -ENOSYS)
1110 		return ret;
1111 
1112 	/* getting -ENOSYS indicates that direct mmap isn't possible (as
1113 	 * opposed to tried but failed) so we can only give a suitable error as
1114 	 * it's not possible to make a private copy if MAP_SHARED was given */
1115 	return -ENODEV;
1116 }
1117 
1118 /*
1119  * set up a private mapping or an anonymous shared mapping
1120  */
1121 static int do_mmap_private(struct vm_area_struct *vma,
1122 			   struct vm_region *region,
1123 			   unsigned long len,
1124 			   unsigned long capabilities)
1125 {
1126 	struct page *pages;
1127 	unsigned long total, point, n;
1128 	void *base;
1129 	int ret, order;
1130 
1131 	/* invoke the file's mapping function so that it can keep track of
1132 	 * shared mappings on devices or memory
1133 	 * - VM_MAYSHARE will be set if it may attempt to share
1134 	 */
1135 	if (capabilities & BDI_CAP_MAP_DIRECT) {
1136 		ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1137 		if (ret == 0) {
1138 			/* shouldn't return success if we're not sharing */
1139 			BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1140 			vma->vm_region->vm_top = vma->vm_region->vm_end;
1141 			return 0;
1142 		}
1143 		if (ret != -ENOSYS)
1144 			return ret;
1145 
1146 		/* getting an ENOSYS error indicates that direct mmap isn't
1147 		 * possible (as opposed to tried but failed) so we'll try to
1148 		 * make a private copy of the data and map that instead */
1149 	}
1150 
1151 
1152 	/* allocate some memory to hold the mapping
1153 	 * - note that this may not return a page-aligned address if the object
1154 	 *   we're allocating is smaller than a page
1155 	 */
1156 	order = get_order(len);
1157 	kdebug("alloc order %d for %lx", order, len);
1158 
1159 	pages = alloc_pages(GFP_KERNEL, order);
1160 	if (!pages)
1161 		goto enomem;
1162 
1163 	total = 1 << order;
1164 	atomic_long_add(total, &mmap_pages_allocated);
1165 
1166 	point = len >> PAGE_SHIFT;
1167 
1168 	/* we allocated a power-of-2 sized page set, so we may want to trim off
1169 	 * the excess */
1170 	if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) {
1171 		while (total > point) {
1172 			order = ilog2(total - point);
1173 			n = 1 << order;
1174 			kdebug("shave %lu/%lu @%lu", n, total - point, total);
1175 			atomic_long_sub(n, &mmap_pages_allocated);
1176 			total -= n;
1177 			set_page_refcounted(pages + total);
1178 			__free_pages(pages + total, order);
1179 		}
1180 	}
1181 
1182 	for (point = 1; point < total; point++)
1183 		set_page_refcounted(&pages[point]);
1184 
1185 	base = page_address(pages);
1186 	region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1187 	region->vm_start = (unsigned long) base;
1188 	region->vm_end   = region->vm_start + len;
1189 	region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
1190 
1191 	vma->vm_start = region->vm_start;
1192 	vma->vm_end   = region->vm_start + len;
1193 
1194 	if (vma->vm_file) {
1195 		/* read the contents of a file into the copy */
1196 		mm_segment_t old_fs;
1197 		loff_t fpos;
1198 
1199 		fpos = vma->vm_pgoff;
1200 		fpos <<= PAGE_SHIFT;
1201 
1202 		old_fs = get_fs();
1203 		set_fs(KERNEL_DS);
1204 		ret = vma->vm_file->f_op->read(vma->vm_file, base, len, &fpos);
1205 		set_fs(old_fs);
1206 
1207 		if (ret < 0)
1208 			goto error_free;
1209 
1210 		/* clear the last little bit */
1211 		if (ret < len)
1212 			memset(base + ret, 0, len - ret);
1213 
1214 	}
1215 
1216 	return 0;
1217 
1218 error_free:
1219 	free_page_series(region->vm_start, region->vm_top);
1220 	region->vm_start = vma->vm_start = 0;
1221 	region->vm_end   = vma->vm_end = 0;
1222 	region->vm_top   = 0;
1223 	return ret;
1224 
1225 enomem:
1226 	printk("Allocation of length %lu from process %d (%s) failed\n",
1227 	       len, current->pid, current->comm);
1228 	show_free_areas(0);
1229 	return -ENOMEM;
1230 }
1231 
1232 /*
1233  * handle mapping creation for uClinux
1234  */
1235 unsigned long do_mmap_pgoff(struct file *file,
1236 			    unsigned long addr,
1237 			    unsigned long len,
1238 			    unsigned long prot,
1239 			    unsigned long flags,
1240 			    unsigned long pgoff)
1241 {
1242 	struct vm_area_struct *vma;
1243 	struct vm_region *region;
1244 	struct rb_node *rb;
1245 	unsigned long capabilities, vm_flags, result;
1246 	int ret;
1247 
1248 	kenter(",%lx,%lx,%lx,%lx,%lx", addr, len, prot, flags, pgoff);
1249 
1250 	/* decide whether we should attempt the mapping, and if so what sort of
1251 	 * mapping */
1252 	ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1253 				    &capabilities);
1254 	if (ret < 0) {
1255 		kleave(" = %d [val]", ret);
1256 		return ret;
1257 	}
1258 
1259 	/* we ignore the address hint */
1260 	addr = 0;
1261 	len = PAGE_ALIGN(len);
1262 
1263 	/* we've determined that we can make the mapping, now translate what we
1264 	 * now know into VMA flags */
1265 	vm_flags = determine_vm_flags(file, prot, flags, capabilities);
1266 
1267 	/* we're going to need to record the mapping */
1268 	region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1269 	if (!region)
1270 		goto error_getting_region;
1271 
1272 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1273 	if (!vma)
1274 		goto error_getting_vma;
1275 
1276 	region->vm_usage = 1;
1277 	region->vm_flags = vm_flags;
1278 	region->vm_pgoff = pgoff;
1279 
1280 	INIT_LIST_HEAD(&vma->anon_vma_chain);
1281 	vma->vm_flags = vm_flags;
1282 	vma->vm_pgoff = pgoff;
1283 
1284 	if (file) {
1285 		region->vm_file = file;
1286 		get_file(file);
1287 		vma->vm_file = file;
1288 		get_file(file);
1289 		if (vm_flags & VM_EXECUTABLE) {
1290 			added_exe_file_vma(current->mm);
1291 			vma->vm_mm = current->mm;
1292 		}
1293 	}
1294 
1295 	down_write(&nommu_region_sem);
1296 
1297 	/* if we want to share, we need to check for regions created by other
1298 	 * mmap() calls that overlap with our proposed mapping
1299 	 * - we can only share with a superset match on most regular files
1300 	 * - shared mappings on character devices and memory backed files are
1301 	 *   permitted to overlap inexactly as far as we are concerned for in
1302 	 *   these cases, sharing is handled in the driver or filesystem rather
1303 	 *   than here
1304 	 */
1305 	if (vm_flags & VM_MAYSHARE) {
1306 		struct vm_region *pregion;
1307 		unsigned long pglen, rpglen, pgend, rpgend, start;
1308 
1309 		pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1310 		pgend = pgoff + pglen;
1311 
1312 		for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1313 			pregion = rb_entry(rb, struct vm_region, vm_rb);
1314 
1315 			if (!(pregion->vm_flags & VM_MAYSHARE))
1316 				continue;
1317 
1318 			/* search for overlapping mappings on the same file */
1319 			if (pregion->vm_file->f_path.dentry->d_inode !=
1320 			    file->f_path.dentry->d_inode)
1321 				continue;
1322 
1323 			if (pregion->vm_pgoff >= pgend)
1324 				continue;
1325 
1326 			rpglen = pregion->vm_end - pregion->vm_start;
1327 			rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1328 			rpgend = pregion->vm_pgoff + rpglen;
1329 			if (pgoff >= rpgend)
1330 				continue;
1331 
1332 			/* handle inexactly overlapping matches between
1333 			 * mappings */
1334 			if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1335 			    !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1336 				/* new mapping is not a subset of the region */
1337 				if (!(capabilities & BDI_CAP_MAP_DIRECT))
1338 					goto sharing_violation;
1339 				continue;
1340 			}
1341 
1342 			/* we've found a region we can share */
1343 			pregion->vm_usage++;
1344 			vma->vm_region = pregion;
1345 			start = pregion->vm_start;
1346 			start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1347 			vma->vm_start = start;
1348 			vma->vm_end = start + len;
1349 
1350 			if (pregion->vm_flags & VM_MAPPED_COPY) {
1351 				kdebug("share copy");
1352 				vma->vm_flags |= VM_MAPPED_COPY;
1353 			} else {
1354 				kdebug("share mmap");
1355 				ret = do_mmap_shared_file(vma);
1356 				if (ret < 0) {
1357 					vma->vm_region = NULL;
1358 					vma->vm_start = 0;
1359 					vma->vm_end = 0;
1360 					pregion->vm_usage--;
1361 					pregion = NULL;
1362 					goto error_just_free;
1363 				}
1364 			}
1365 			fput(region->vm_file);
1366 			kmem_cache_free(vm_region_jar, region);
1367 			region = pregion;
1368 			result = start;
1369 			goto share;
1370 		}
1371 
1372 		/* obtain the address at which to make a shared mapping
1373 		 * - this is the hook for quasi-memory character devices to
1374 		 *   tell us the location of a shared mapping
1375 		 */
1376 		if (capabilities & BDI_CAP_MAP_DIRECT) {
1377 			addr = file->f_op->get_unmapped_area(file, addr, len,
1378 							     pgoff, flags);
1379 			if (IS_ERR_VALUE(addr)) {
1380 				ret = addr;
1381 				if (ret != -ENOSYS)
1382 					goto error_just_free;
1383 
1384 				/* the driver refused to tell us where to site
1385 				 * the mapping so we'll have to attempt to copy
1386 				 * it */
1387 				ret = -ENODEV;
1388 				if (!(capabilities & BDI_CAP_MAP_COPY))
1389 					goto error_just_free;
1390 
1391 				capabilities &= ~BDI_CAP_MAP_DIRECT;
1392 			} else {
1393 				vma->vm_start = region->vm_start = addr;
1394 				vma->vm_end = region->vm_end = addr + len;
1395 			}
1396 		}
1397 	}
1398 
1399 	vma->vm_region = region;
1400 
1401 	/* set up the mapping
1402 	 * - the region is filled in if BDI_CAP_MAP_DIRECT is still set
1403 	 */
1404 	if (file && vma->vm_flags & VM_SHARED)
1405 		ret = do_mmap_shared_file(vma);
1406 	else
1407 		ret = do_mmap_private(vma, region, len, capabilities);
1408 	if (ret < 0)
1409 		goto error_just_free;
1410 	add_nommu_region(region);
1411 
1412 	/* clear anonymous mappings that don't ask for uninitialized data */
1413 	if (!vma->vm_file && !(flags & MAP_UNINITIALIZED))
1414 		memset((void *)region->vm_start, 0,
1415 		       region->vm_end - region->vm_start);
1416 
1417 	/* okay... we have a mapping; now we have to register it */
1418 	result = vma->vm_start;
1419 
1420 	current->mm->total_vm += len >> PAGE_SHIFT;
1421 
1422 share:
1423 	add_vma_to_mm(current->mm, vma);
1424 
1425 	/* we flush the region from the icache only when the first executable
1426 	 * mapping of it is made  */
1427 	if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1428 		flush_icache_range(region->vm_start, region->vm_end);
1429 		region->vm_icache_flushed = true;
1430 	}
1431 
1432 	up_write(&nommu_region_sem);
1433 
1434 	kleave(" = %lx", result);
1435 	return result;
1436 
1437 error_just_free:
1438 	up_write(&nommu_region_sem);
1439 error:
1440 	if (region->vm_file)
1441 		fput(region->vm_file);
1442 	kmem_cache_free(vm_region_jar, region);
1443 	if (vma->vm_file)
1444 		fput(vma->vm_file);
1445 	if (vma->vm_flags & VM_EXECUTABLE)
1446 		removed_exe_file_vma(vma->vm_mm);
1447 	kmem_cache_free(vm_area_cachep, vma);
1448 	kleave(" = %d", ret);
1449 	return ret;
1450 
1451 sharing_violation:
1452 	up_write(&nommu_region_sem);
1453 	printk(KERN_WARNING "Attempt to share mismatched mappings\n");
1454 	ret = -EINVAL;
1455 	goto error;
1456 
1457 error_getting_vma:
1458 	kmem_cache_free(vm_region_jar, region);
1459 	printk(KERN_WARNING "Allocation of vma for %lu byte allocation"
1460 	       " from process %d failed\n",
1461 	       len, current->pid);
1462 	show_free_areas(0);
1463 	return -ENOMEM;
1464 
1465 error_getting_region:
1466 	printk(KERN_WARNING "Allocation of vm region for %lu byte allocation"
1467 	       " from process %d failed\n",
1468 	       len, current->pid);
1469 	show_free_areas(0);
1470 	return -ENOMEM;
1471 }
1472 EXPORT_SYMBOL(do_mmap_pgoff);
1473 
1474 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1475 		unsigned long, prot, unsigned long, flags,
1476 		unsigned long, fd, unsigned long, pgoff)
1477 {
1478 	struct file *file = NULL;
1479 	unsigned long retval = -EBADF;
1480 
1481 	audit_mmap_fd(fd, flags);
1482 	if (!(flags & MAP_ANONYMOUS)) {
1483 		file = fget(fd);
1484 		if (!file)
1485 			goto out;
1486 	}
1487 
1488 	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1489 
1490 	down_write(&current->mm->mmap_sem);
1491 	retval = do_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1492 	up_write(&current->mm->mmap_sem);
1493 
1494 	if (file)
1495 		fput(file);
1496 out:
1497 	return retval;
1498 }
1499 
1500 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1501 struct mmap_arg_struct {
1502 	unsigned long addr;
1503 	unsigned long len;
1504 	unsigned long prot;
1505 	unsigned long flags;
1506 	unsigned long fd;
1507 	unsigned long offset;
1508 };
1509 
1510 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1511 {
1512 	struct mmap_arg_struct a;
1513 
1514 	if (copy_from_user(&a, arg, sizeof(a)))
1515 		return -EFAULT;
1516 	if (a.offset & ~PAGE_MASK)
1517 		return -EINVAL;
1518 
1519 	return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1520 			      a.offset >> PAGE_SHIFT);
1521 }
1522 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1523 
1524 /*
1525  * split a vma into two pieces at address 'addr', a new vma is allocated either
1526  * for the first part or the tail.
1527  */
1528 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1529 	      unsigned long addr, int new_below)
1530 {
1531 	struct vm_area_struct *new;
1532 	struct vm_region *region;
1533 	unsigned long npages;
1534 
1535 	kenter("");
1536 
1537 	/* we're only permitted to split anonymous regions (these should have
1538 	 * only a single usage on the region) */
1539 	if (vma->vm_file)
1540 		return -ENOMEM;
1541 
1542 	if (mm->map_count >= sysctl_max_map_count)
1543 		return -ENOMEM;
1544 
1545 	region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1546 	if (!region)
1547 		return -ENOMEM;
1548 
1549 	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1550 	if (!new) {
1551 		kmem_cache_free(vm_region_jar, region);
1552 		return -ENOMEM;
1553 	}
1554 
1555 	/* most fields are the same, copy all, and then fixup */
1556 	*new = *vma;
1557 	*region = *vma->vm_region;
1558 	new->vm_region = region;
1559 
1560 	npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1561 
1562 	if (new_below) {
1563 		region->vm_top = region->vm_end = new->vm_end = addr;
1564 	} else {
1565 		region->vm_start = new->vm_start = addr;
1566 		region->vm_pgoff = new->vm_pgoff += npages;
1567 	}
1568 
1569 	if (new->vm_ops && new->vm_ops->open)
1570 		new->vm_ops->open(new);
1571 
1572 	delete_vma_from_mm(vma);
1573 	down_write(&nommu_region_sem);
1574 	delete_nommu_region(vma->vm_region);
1575 	if (new_below) {
1576 		vma->vm_region->vm_start = vma->vm_start = addr;
1577 		vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1578 	} else {
1579 		vma->vm_region->vm_end = vma->vm_end = addr;
1580 		vma->vm_region->vm_top = addr;
1581 	}
1582 	add_nommu_region(vma->vm_region);
1583 	add_nommu_region(new->vm_region);
1584 	up_write(&nommu_region_sem);
1585 	add_vma_to_mm(mm, vma);
1586 	add_vma_to_mm(mm, new);
1587 	return 0;
1588 }
1589 
1590 /*
1591  * shrink a VMA by removing the specified chunk from either the beginning or
1592  * the end
1593  */
1594 static int shrink_vma(struct mm_struct *mm,
1595 		      struct vm_area_struct *vma,
1596 		      unsigned long from, unsigned long to)
1597 {
1598 	struct vm_region *region;
1599 
1600 	kenter("");
1601 
1602 	/* adjust the VMA's pointers, which may reposition it in the MM's tree
1603 	 * and list */
1604 	delete_vma_from_mm(vma);
1605 	if (from > vma->vm_start)
1606 		vma->vm_end = from;
1607 	else
1608 		vma->vm_start = to;
1609 	add_vma_to_mm(mm, vma);
1610 
1611 	/* cut the backing region down to size */
1612 	region = vma->vm_region;
1613 	BUG_ON(region->vm_usage != 1);
1614 
1615 	down_write(&nommu_region_sem);
1616 	delete_nommu_region(region);
1617 	if (from > region->vm_start) {
1618 		to = region->vm_top;
1619 		region->vm_top = region->vm_end = from;
1620 	} else {
1621 		region->vm_start = to;
1622 	}
1623 	add_nommu_region(region);
1624 	up_write(&nommu_region_sem);
1625 
1626 	free_page_series(from, to);
1627 	return 0;
1628 }
1629 
1630 /*
1631  * release a mapping
1632  * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1633  *   VMA, though it need not cover the whole VMA
1634  */
1635 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1636 {
1637 	struct vm_area_struct *vma;
1638 	unsigned long end;
1639 	int ret;
1640 
1641 	kenter(",%lx,%zx", start, len);
1642 
1643 	len = PAGE_ALIGN(len);
1644 	if (len == 0)
1645 		return -EINVAL;
1646 
1647 	end = start + len;
1648 
1649 	/* find the first potentially overlapping VMA */
1650 	vma = find_vma(mm, start);
1651 	if (!vma) {
1652 		static int limit = 0;
1653 		if (limit < 5) {
1654 			printk(KERN_WARNING
1655 			       "munmap of memory not mmapped by process %d"
1656 			       " (%s): 0x%lx-0x%lx\n",
1657 			       current->pid, current->comm,
1658 			       start, start + len - 1);
1659 			limit++;
1660 		}
1661 		return -EINVAL;
1662 	}
1663 
1664 	/* we're allowed to split an anonymous VMA but not a file-backed one */
1665 	if (vma->vm_file) {
1666 		do {
1667 			if (start > vma->vm_start) {
1668 				kleave(" = -EINVAL [miss]");
1669 				return -EINVAL;
1670 			}
1671 			if (end == vma->vm_end)
1672 				goto erase_whole_vma;
1673 			vma = vma->vm_next;
1674 		} while (vma);
1675 		kleave(" = -EINVAL [split file]");
1676 		return -EINVAL;
1677 	} else {
1678 		/* the chunk must be a subset of the VMA found */
1679 		if (start == vma->vm_start && end == vma->vm_end)
1680 			goto erase_whole_vma;
1681 		if (start < vma->vm_start || end > vma->vm_end) {
1682 			kleave(" = -EINVAL [superset]");
1683 			return -EINVAL;
1684 		}
1685 		if (start & ~PAGE_MASK) {
1686 			kleave(" = -EINVAL [unaligned start]");
1687 			return -EINVAL;
1688 		}
1689 		if (end != vma->vm_end && end & ~PAGE_MASK) {
1690 			kleave(" = -EINVAL [unaligned split]");
1691 			return -EINVAL;
1692 		}
1693 		if (start != vma->vm_start && end != vma->vm_end) {
1694 			ret = split_vma(mm, vma, start, 1);
1695 			if (ret < 0) {
1696 				kleave(" = %d [split]", ret);
1697 				return ret;
1698 			}
1699 		}
1700 		return shrink_vma(mm, vma, start, end);
1701 	}
1702 
1703 erase_whole_vma:
1704 	delete_vma_from_mm(vma);
1705 	delete_vma(mm, vma);
1706 	kleave(" = 0");
1707 	return 0;
1708 }
1709 EXPORT_SYMBOL(do_munmap);
1710 
1711 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1712 {
1713 	int ret;
1714 	struct mm_struct *mm = current->mm;
1715 
1716 	down_write(&mm->mmap_sem);
1717 	ret = do_munmap(mm, addr, len);
1718 	up_write(&mm->mmap_sem);
1719 	return ret;
1720 }
1721 
1722 /*
1723  * release all the mappings made in a process's VM space
1724  */
1725 void exit_mmap(struct mm_struct *mm)
1726 {
1727 	struct vm_area_struct *vma;
1728 
1729 	if (!mm)
1730 		return;
1731 
1732 	kenter("");
1733 
1734 	mm->total_vm = 0;
1735 
1736 	while ((vma = mm->mmap)) {
1737 		mm->mmap = vma->vm_next;
1738 		delete_vma_from_mm(vma);
1739 		delete_vma(mm, vma);
1740 		cond_resched();
1741 	}
1742 
1743 	kleave("");
1744 }
1745 
1746 unsigned long do_brk(unsigned long addr, unsigned long len)
1747 {
1748 	return -ENOMEM;
1749 }
1750 
1751 /*
1752  * expand (or shrink) an existing mapping, potentially moving it at the same
1753  * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1754  *
1755  * under NOMMU conditions, we only permit changing a mapping's size, and only
1756  * as long as it stays within the region allocated by do_mmap_private() and the
1757  * block is not shareable
1758  *
1759  * MREMAP_FIXED is not supported under NOMMU conditions
1760  */
1761 unsigned long do_mremap(unsigned long addr,
1762 			unsigned long old_len, unsigned long new_len,
1763 			unsigned long flags, unsigned long new_addr)
1764 {
1765 	struct vm_area_struct *vma;
1766 
1767 	/* insanity checks first */
1768 	old_len = PAGE_ALIGN(old_len);
1769 	new_len = PAGE_ALIGN(new_len);
1770 	if (old_len == 0 || new_len == 0)
1771 		return (unsigned long) -EINVAL;
1772 
1773 	if (addr & ~PAGE_MASK)
1774 		return -EINVAL;
1775 
1776 	if (flags & MREMAP_FIXED && new_addr != addr)
1777 		return (unsigned long) -EINVAL;
1778 
1779 	vma = find_vma_exact(current->mm, addr, old_len);
1780 	if (!vma)
1781 		return (unsigned long) -EINVAL;
1782 
1783 	if (vma->vm_end != vma->vm_start + old_len)
1784 		return (unsigned long) -EFAULT;
1785 
1786 	if (vma->vm_flags & VM_MAYSHARE)
1787 		return (unsigned long) -EPERM;
1788 
1789 	if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1790 		return (unsigned long) -ENOMEM;
1791 
1792 	/* all checks complete - do it */
1793 	vma->vm_end = vma->vm_start + new_len;
1794 	return vma->vm_start;
1795 }
1796 EXPORT_SYMBOL(do_mremap);
1797 
1798 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1799 		unsigned long, new_len, unsigned long, flags,
1800 		unsigned long, new_addr)
1801 {
1802 	unsigned long ret;
1803 
1804 	down_write(&current->mm->mmap_sem);
1805 	ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1806 	up_write(&current->mm->mmap_sem);
1807 	return ret;
1808 }
1809 
1810 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1811 			unsigned int foll_flags)
1812 {
1813 	return NULL;
1814 }
1815 
1816 int remap_pfn_range(struct vm_area_struct *vma, unsigned long from,
1817 		unsigned long to, unsigned long size, pgprot_t prot)
1818 {
1819 	vma->vm_start = vma->vm_pgoff << PAGE_SHIFT;
1820 	return 0;
1821 }
1822 EXPORT_SYMBOL(remap_pfn_range);
1823 
1824 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1825 			unsigned long pgoff)
1826 {
1827 	unsigned int size = vma->vm_end - vma->vm_start;
1828 
1829 	if (!(vma->vm_flags & VM_USERMAP))
1830 		return -EINVAL;
1831 
1832 	vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1833 	vma->vm_end = vma->vm_start + size;
1834 
1835 	return 0;
1836 }
1837 EXPORT_SYMBOL(remap_vmalloc_range);
1838 
1839 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1840 	unsigned long len, unsigned long pgoff, unsigned long flags)
1841 {
1842 	return -ENOMEM;
1843 }
1844 
1845 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1846 {
1847 }
1848 
1849 void unmap_mapping_range(struct address_space *mapping,
1850 			 loff_t const holebegin, loff_t const holelen,
1851 			 int even_cows)
1852 {
1853 }
1854 EXPORT_SYMBOL(unmap_mapping_range);
1855 
1856 /*
1857  * Check that a process has enough memory to allocate a new virtual
1858  * mapping. 0 means there is enough memory for the allocation to
1859  * succeed and -ENOMEM implies there is not.
1860  *
1861  * We currently support three overcommit policies, which are set via the
1862  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
1863  *
1864  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1865  * Additional code 2002 Jul 20 by Robert Love.
1866  *
1867  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1868  *
1869  * Note this is a helper function intended to be used by LSMs which
1870  * wish to use this logic.
1871  */
1872 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
1873 {
1874 	unsigned long free, allowed;
1875 
1876 	vm_acct_memory(pages);
1877 
1878 	/*
1879 	 * Sometimes we want to use more memory than we have
1880 	 */
1881 	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
1882 		return 0;
1883 
1884 	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
1885 		unsigned long n;
1886 
1887 		free = global_page_state(NR_FILE_PAGES);
1888 		free += nr_swap_pages;
1889 
1890 		/*
1891 		 * Any slabs which are created with the
1892 		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
1893 		 * which are reclaimable, under pressure.  The dentry
1894 		 * cache and most inode caches should fall into this
1895 		 */
1896 		free += global_page_state(NR_SLAB_RECLAIMABLE);
1897 
1898 		/*
1899 		 * Leave the last 3% for root
1900 		 */
1901 		if (!cap_sys_admin)
1902 			free -= free / 32;
1903 
1904 		if (free > pages)
1905 			return 0;
1906 
1907 		/*
1908 		 * nr_free_pages() is very expensive on large systems,
1909 		 * only call if we're about to fail.
1910 		 */
1911 		n = nr_free_pages();
1912 
1913 		/*
1914 		 * Leave reserved pages. The pages are not for anonymous pages.
1915 		 */
1916 		if (n <= totalreserve_pages)
1917 			goto error;
1918 		else
1919 			n -= totalreserve_pages;
1920 
1921 		/*
1922 		 * Leave the last 3% for root
1923 		 */
1924 		if (!cap_sys_admin)
1925 			n -= n / 32;
1926 		free += n;
1927 
1928 		if (free > pages)
1929 			return 0;
1930 
1931 		goto error;
1932 	}
1933 
1934 	allowed = totalram_pages * sysctl_overcommit_ratio / 100;
1935 	/*
1936 	 * Leave the last 3% for root
1937 	 */
1938 	if (!cap_sys_admin)
1939 		allowed -= allowed / 32;
1940 	allowed += total_swap_pages;
1941 
1942 	/* Don't let a single process grow too big:
1943 	   leave 3% of the size of this process for other processes */
1944 	if (mm)
1945 		allowed -= mm->total_vm / 32;
1946 
1947 	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
1948 		return 0;
1949 
1950 error:
1951 	vm_unacct_memory(pages);
1952 
1953 	return -ENOMEM;
1954 }
1955 
1956 int in_gate_area_no_mm(unsigned long addr)
1957 {
1958 	return 0;
1959 }
1960 
1961 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1962 {
1963 	BUG();
1964 	return 0;
1965 }
1966 EXPORT_SYMBOL(filemap_fault);
1967 
1968 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1969 		unsigned long addr, void *buf, int len, int write)
1970 {
1971 	struct vm_area_struct *vma;
1972 
1973 	down_read(&mm->mmap_sem);
1974 
1975 	/* the access must start within one of the target process's mappings */
1976 	vma = find_vma(mm, addr);
1977 	if (vma) {
1978 		/* don't overrun this mapping */
1979 		if (addr + len >= vma->vm_end)
1980 			len = vma->vm_end - addr;
1981 
1982 		/* only read or write mappings where it is permitted */
1983 		if (write && vma->vm_flags & VM_MAYWRITE)
1984 			copy_to_user_page(vma, NULL, addr,
1985 					 (void *) addr, buf, len);
1986 		else if (!write && vma->vm_flags & VM_MAYREAD)
1987 			copy_from_user_page(vma, NULL, addr,
1988 					    buf, (void *) addr, len);
1989 		else
1990 			len = 0;
1991 	} else {
1992 		len = 0;
1993 	}
1994 
1995 	up_read(&mm->mmap_sem);
1996 
1997 	return len;
1998 }
1999 
2000 /**
2001  * @access_remote_vm - access another process' address space
2002  * @mm:		the mm_struct of the target address space
2003  * @addr:	start address to access
2004  * @buf:	source or destination buffer
2005  * @len:	number of bytes to transfer
2006  * @write:	whether the access is a write
2007  *
2008  * The caller must hold a reference on @mm.
2009  */
2010 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2011 		void *buf, int len, int write)
2012 {
2013 	return __access_remote_vm(NULL, mm, addr, buf, len, write);
2014 }
2015 
2016 /*
2017  * Access another process' address space.
2018  * - source/target buffer must be kernel space
2019  */
2020 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2021 {
2022 	struct mm_struct *mm;
2023 
2024 	if (addr + len < addr)
2025 		return 0;
2026 
2027 	mm = get_task_mm(tsk);
2028 	if (!mm)
2029 		return 0;
2030 
2031 	len = __access_remote_vm(tsk, mm, addr, buf, len, write);
2032 
2033 	mmput(mm);
2034 	return len;
2035 }
2036 
2037 /**
2038  * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
2039  * @inode: The inode to check
2040  * @size: The current filesize of the inode
2041  * @newsize: The proposed filesize of the inode
2042  *
2043  * Check the shared mappings on an inode on behalf of a shrinking truncate to
2044  * make sure that that any outstanding VMAs aren't broken and then shrink the
2045  * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
2046  * automatically grant mappings that are too large.
2047  */
2048 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
2049 				size_t newsize)
2050 {
2051 	struct vm_area_struct *vma;
2052 	struct prio_tree_iter iter;
2053 	struct vm_region *region;
2054 	pgoff_t low, high;
2055 	size_t r_size, r_top;
2056 
2057 	low = newsize >> PAGE_SHIFT;
2058 	high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2059 
2060 	down_write(&nommu_region_sem);
2061 
2062 	/* search for VMAs that fall within the dead zone */
2063 	vma_prio_tree_foreach(vma, &iter, &inode->i_mapping->i_mmap,
2064 			      low, high) {
2065 		/* found one - only interested if it's shared out of the page
2066 		 * cache */
2067 		if (vma->vm_flags & VM_SHARED) {
2068 			up_write(&nommu_region_sem);
2069 			return -ETXTBSY; /* not quite true, but near enough */
2070 		}
2071 	}
2072 
2073 	/* reduce any regions that overlap the dead zone - if in existence,
2074 	 * these will be pointed to by VMAs that don't overlap the dead zone
2075 	 *
2076 	 * we don't check for any regions that start beyond the EOF as there
2077 	 * shouldn't be any
2078 	 */
2079 	vma_prio_tree_foreach(vma, &iter, &inode->i_mapping->i_mmap,
2080 			      0, ULONG_MAX) {
2081 		if (!(vma->vm_flags & VM_SHARED))
2082 			continue;
2083 
2084 		region = vma->vm_region;
2085 		r_size = region->vm_top - region->vm_start;
2086 		r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
2087 
2088 		if (r_top > newsize) {
2089 			region->vm_top -= r_top - newsize;
2090 			if (region->vm_end > region->vm_top)
2091 				region->vm_end = region->vm_top;
2092 		}
2093 	}
2094 
2095 	up_write(&nommu_region_sem);
2096 	return 0;
2097 }
2098