xref: /linux/mm/nommu.c (revision 110e6f26af80dfd90b6e5c645b1aed7228aa580d)
1 /*
2  *  linux/mm/nommu.c
3  *
4  *  Replacement code for mm functions to support CPU's that don't
5  *  have any form of memory management unit (thus no virtual memory).
6  *
7  *  See Documentation/nommu-mmap.txt
8  *
9  *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10  *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11  *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12  *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
13  *  Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
14  */
15 
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17 
18 #define __DISABLE_GUP_DEPRECATED
19 
20 #include <linux/export.h>
21 #include <linux/mm.h>
22 #include <linux/vmacache.h>
23 #include <linux/mman.h>
24 #include <linux/swap.h>
25 #include <linux/file.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h>
28 #include <linux/slab.h>
29 #include <linux/vmalloc.h>
30 #include <linux/blkdev.h>
31 #include <linux/backing-dev.h>
32 #include <linux/compiler.h>
33 #include <linux/mount.h>
34 #include <linux/personality.h>
35 #include <linux/security.h>
36 #include <linux/syscalls.h>
37 #include <linux/audit.h>
38 #include <linux/printk.h>
39 
40 #include <asm/uaccess.h>
41 #include <asm/tlb.h>
42 #include <asm/tlbflush.h>
43 #include <asm/mmu_context.h>
44 #include "internal.h"
45 
46 void *high_memory;
47 EXPORT_SYMBOL(high_memory);
48 struct page *mem_map;
49 unsigned long max_mapnr;
50 EXPORT_SYMBOL(max_mapnr);
51 unsigned long highest_memmap_pfn;
52 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
53 int heap_stack_gap = 0;
54 
55 atomic_long_t mmap_pages_allocated;
56 
57 EXPORT_SYMBOL(mem_map);
58 
59 /* list of mapped, potentially shareable regions */
60 static struct kmem_cache *vm_region_jar;
61 struct rb_root nommu_region_tree = RB_ROOT;
62 DECLARE_RWSEM(nommu_region_sem);
63 
64 const struct vm_operations_struct generic_file_vm_ops = {
65 };
66 
67 /*
68  * Return the total memory allocated for this pointer, not
69  * just what the caller asked for.
70  *
71  * Doesn't have to be accurate, i.e. may have races.
72  */
73 unsigned int kobjsize(const void *objp)
74 {
75 	struct page *page;
76 
77 	/*
78 	 * If the object we have should not have ksize performed on it,
79 	 * return size of 0
80 	 */
81 	if (!objp || !virt_addr_valid(objp))
82 		return 0;
83 
84 	page = virt_to_head_page(objp);
85 
86 	/*
87 	 * If the allocator sets PageSlab, we know the pointer came from
88 	 * kmalloc().
89 	 */
90 	if (PageSlab(page))
91 		return ksize(objp);
92 
93 	/*
94 	 * If it's not a compound page, see if we have a matching VMA
95 	 * region. This test is intentionally done in reverse order,
96 	 * so if there's no VMA, we still fall through and hand back
97 	 * PAGE_SIZE for 0-order pages.
98 	 */
99 	if (!PageCompound(page)) {
100 		struct vm_area_struct *vma;
101 
102 		vma = find_vma(current->mm, (unsigned long)objp);
103 		if (vma)
104 			return vma->vm_end - vma->vm_start;
105 	}
106 
107 	/*
108 	 * The ksize() function is only guaranteed to work for pointers
109 	 * returned by kmalloc(). So handle arbitrary pointers here.
110 	 */
111 	return PAGE_SIZE << compound_order(page);
112 }
113 
114 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
115 		      unsigned long start, unsigned long nr_pages,
116 		      unsigned int foll_flags, struct page **pages,
117 		      struct vm_area_struct **vmas, int *nonblocking)
118 {
119 	struct vm_area_struct *vma;
120 	unsigned long vm_flags;
121 	int i;
122 
123 	/* calculate required read or write permissions.
124 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
125 	 */
126 	vm_flags  = (foll_flags & FOLL_WRITE) ?
127 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
128 	vm_flags &= (foll_flags & FOLL_FORCE) ?
129 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
130 
131 	for (i = 0; i < nr_pages; i++) {
132 		vma = find_vma(mm, start);
133 		if (!vma)
134 			goto finish_or_fault;
135 
136 		/* protect what we can, including chardevs */
137 		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
138 		    !(vm_flags & vma->vm_flags))
139 			goto finish_or_fault;
140 
141 		if (pages) {
142 			pages[i] = virt_to_page(start);
143 			if (pages[i])
144 				get_page(pages[i]);
145 		}
146 		if (vmas)
147 			vmas[i] = vma;
148 		start = (start + PAGE_SIZE) & PAGE_MASK;
149 	}
150 
151 	return i;
152 
153 finish_or_fault:
154 	return i ? : -EFAULT;
155 }
156 
157 /*
158  * get a list of pages in an address range belonging to the specified process
159  * and indicate the VMA that covers each page
160  * - this is potentially dodgy as we may end incrementing the page count of a
161  *   slab page or a secondary page from a compound page
162  * - don't permit access to VMAs that don't support it, such as I/O mappings
163  */
164 long get_user_pages6(unsigned long start, unsigned long nr_pages,
165 		    int write, int force, struct page **pages,
166 		    struct vm_area_struct **vmas)
167 {
168 	int flags = 0;
169 
170 	if (write)
171 		flags |= FOLL_WRITE;
172 	if (force)
173 		flags |= FOLL_FORCE;
174 
175 	return __get_user_pages(current, current->mm, start, nr_pages, flags,
176 				pages, vmas, NULL);
177 }
178 EXPORT_SYMBOL(get_user_pages6);
179 
180 long get_user_pages_locked6(unsigned long start, unsigned long nr_pages,
181 			    int write, int force, struct page **pages,
182 			    int *locked)
183 {
184 	return get_user_pages6(start, nr_pages, write, force, pages, NULL);
185 }
186 EXPORT_SYMBOL(get_user_pages_locked6);
187 
188 long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
189 			       unsigned long start, unsigned long nr_pages,
190 			       int write, int force, struct page **pages,
191 			       unsigned int gup_flags)
192 {
193 	long ret;
194 	down_read(&mm->mmap_sem);
195 	ret = __get_user_pages(tsk, mm, start, nr_pages, gup_flags, pages,
196 				NULL, NULL);
197 	up_read(&mm->mmap_sem);
198 	return ret;
199 }
200 EXPORT_SYMBOL(__get_user_pages_unlocked);
201 
202 long get_user_pages_unlocked5(unsigned long start, unsigned long nr_pages,
203 			     int write, int force, struct page **pages)
204 {
205 	return __get_user_pages_unlocked(current, current->mm, start, nr_pages,
206 					 write, force, pages, 0);
207 }
208 EXPORT_SYMBOL(get_user_pages_unlocked5);
209 
210 /**
211  * follow_pfn - look up PFN at a user virtual address
212  * @vma: memory mapping
213  * @address: user virtual address
214  * @pfn: location to store found PFN
215  *
216  * Only IO mappings and raw PFN mappings are allowed.
217  *
218  * Returns zero and the pfn at @pfn on success, -ve otherwise.
219  */
220 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
221 	unsigned long *pfn)
222 {
223 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
224 		return -EINVAL;
225 
226 	*pfn = address >> PAGE_SHIFT;
227 	return 0;
228 }
229 EXPORT_SYMBOL(follow_pfn);
230 
231 LIST_HEAD(vmap_area_list);
232 
233 void vfree(const void *addr)
234 {
235 	kfree(addr);
236 }
237 EXPORT_SYMBOL(vfree);
238 
239 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
240 {
241 	/*
242 	 *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
243 	 * returns only a logical address.
244 	 */
245 	return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
246 }
247 EXPORT_SYMBOL(__vmalloc);
248 
249 void *vmalloc_user(unsigned long size)
250 {
251 	void *ret;
252 
253 	ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
254 			PAGE_KERNEL);
255 	if (ret) {
256 		struct vm_area_struct *vma;
257 
258 		down_write(&current->mm->mmap_sem);
259 		vma = find_vma(current->mm, (unsigned long)ret);
260 		if (vma)
261 			vma->vm_flags |= VM_USERMAP;
262 		up_write(&current->mm->mmap_sem);
263 	}
264 
265 	return ret;
266 }
267 EXPORT_SYMBOL(vmalloc_user);
268 
269 struct page *vmalloc_to_page(const void *addr)
270 {
271 	return virt_to_page(addr);
272 }
273 EXPORT_SYMBOL(vmalloc_to_page);
274 
275 unsigned long vmalloc_to_pfn(const void *addr)
276 {
277 	return page_to_pfn(virt_to_page(addr));
278 }
279 EXPORT_SYMBOL(vmalloc_to_pfn);
280 
281 long vread(char *buf, char *addr, unsigned long count)
282 {
283 	/* Don't allow overflow */
284 	if ((unsigned long) buf + count < count)
285 		count = -(unsigned long) buf;
286 
287 	memcpy(buf, addr, count);
288 	return count;
289 }
290 
291 long vwrite(char *buf, char *addr, unsigned long count)
292 {
293 	/* Don't allow overflow */
294 	if ((unsigned long) addr + count < count)
295 		count = -(unsigned long) addr;
296 
297 	memcpy(addr, buf, count);
298 	return count;
299 }
300 
301 /*
302  *	vmalloc  -  allocate virtually contiguous memory
303  *
304  *	@size:		allocation size
305  *
306  *	Allocate enough pages to cover @size from the page level
307  *	allocator and map them into contiguous kernel virtual space.
308  *
309  *	For tight control over page level allocator and protection flags
310  *	use __vmalloc() instead.
311  */
312 void *vmalloc(unsigned long size)
313 {
314        return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
315 }
316 EXPORT_SYMBOL(vmalloc);
317 
318 /*
319  *	vzalloc - allocate virtually contiguous memory with zero fill
320  *
321  *	@size:		allocation size
322  *
323  *	Allocate enough pages to cover @size from the page level
324  *	allocator and map them into contiguous kernel virtual space.
325  *	The memory allocated is set to zero.
326  *
327  *	For tight control over page level allocator and protection flags
328  *	use __vmalloc() instead.
329  */
330 void *vzalloc(unsigned long size)
331 {
332 	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
333 			PAGE_KERNEL);
334 }
335 EXPORT_SYMBOL(vzalloc);
336 
337 /**
338  * vmalloc_node - allocate memory on a specific node
339  * @size:	allocation size
340  * @node:	numa node
341  *
342  * Allocate enough pages to cover @size from the page level
343  * allocator and map them into contiguous kernel virtual space.
344  *
345  * For tight control over page level allocator and protection flags
346  * use __vmalloc() instead.
347  */
348 void *vmalloc_node(unsigned long size, int node)
349 {
350 	return vmalloc(size);
351 }
352 EXPORT_SYMBOL(vmalloc_node);
353 
354 /**
355  * vzalloc_node - allocate memory on a specific node with zero fill
356  * @size:	allocation size
357  * @node:	numa node
358  *
359  * Allocate enough pages to cover @size from the page level
360  * allocator and map them into contiguous kernel virtual space.
361  * The memory allocated is set to zero.
362  *
363  * For tight control over page level allocator and protection flags
364  * use __vmalloc() instead.
365  */
366 void *vzalloc_node(unsigned long size, int node)
367 {
368 	return vzalloc(size);
369 }
370 EXPORT_SYMBOL(vzalloc_node);
371 
372 #ifndef PAGE_KERNEL_EXEC
373 # define PAGE_KERNEL_EXEC PAGE_KERNEL
374 #endif
375 
376 /**
377  *	vmalloc_exec  -  allocate virtually contiguous, executable memory
378  *	@size:		allocation size
379  *
380  *	Kernel-internal function to allocate enough pages to cover @size
381  *	the page level allocator and map them into contiguous and
382  *	executable kernel virtual space.
383  *
384  *	For tight control over page level allocator and protection flags
385  *	use __vmalloc() instead.
386  */
387 
388 void *vmalloc_exec(unsigned long size)
389 {
390 	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
391 }
392 
393 /**
394  * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
395  *	@size:		allocation size
396  *
397  *	Allocate enough 32bit PA addressable pages to cover @size from the
398  *	page level allocator and map them into contiguous kernel virtual space.
399  */
400 void *vmalloc_32(unsigned long size)
401 {
402 	return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
403 }
404 EXPORT_SYMBOL(vmalloc_32);
405 
406 /**
407  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
408  *	@size:		allocation size
409  *
410  * The resulting memory area is 32bit addressable and zeroed so it can be
411  * mapped to userspace without leaking data.
412  *
413  * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
414  * remap_vmalloc_range() are permissible.
415  */
416 void *vmalloc_32_user(unsigned long size)
417 {
418 	/*
419 	 * We'll have to sort out the ZONE_DMA bits for 64-bit,
420 	 * but for now this can simply use vmalloc_user() directly.
421 	 */
422 	return vmalloc_user(size);
423 }
424 EXPORT_SYMBOL(vmalloc_32_user);
425 
426 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
427 {
428 	BUG();
429 	return NULL;
430 }
431 EXPORT_SYMBOL(vmap);
432 
433 void vunmap(const void *addr)
434 {
435 	BUG();
436 }
437 EXPORT_SYMBOL(vunmap);
438 
439 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
440 {
441 	BUG();
442 	return NULL;
443 }
444 EXPORT_SYMBOL(vm_map_ram);
445 
446 void vm_unmap_ram(const void *mem, unsigned int count)
447 {
448 	BUG();
449 }
450 EXPORT_SYMBOL(vm_unmap_ram);
451 
452 void vm_unmap_aliases(void)
453 {
454 }
455 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
456 
457 /*
458  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
459  * have one.
460  */
461 void __weak vmalloc_sync_all(void)
462 {
463 }
464 
465 /**
466  *	alloc_vm_area - allocate a range of kernel address space
467  *	@size:		size of the area
468  *
469  *	Returns:	NULL on failure, vm_struct on success
470  *
471  *	This function reserves a range of kernel address space, and
472  *	allocates pagetables to map that range.  No actual mappings
473  *	are created.  If the kernel address space is not shared
474  *	between processes, it syncs the pagetable across all
475  *	processes.
476  */
477 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
478 {
479 	BUG();
480 	return NULL;
481 }
482 EXPORT_SYMBOL_GPL(alloc_vm_area);
483 
484 void free_vm_area(struct vm_struct *area)
485 {
486 	BUG();
487 }
488 EXPORT_SYMBOL_GPL(free_vm_area);
489 
490 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
491 		   struct page *page)
492 {
493 	return -EINVAL;
494 }
495 EXPORT_SYMBOL(vm_insert_page);
496 
497 /*
498  *  sys_brk() for the most part doesn't need the global kernel
499  *  lock, except when an application is doing something nasty
500  *  like trying to un-brk an area that has already been mapped
501  *  to a regular file.  in this case, the unmapping will need
502  *  to invoke file system routines that need the global lock.
503  */
504 SYSCALL_DEFINE1(brk, unsigned long, brk)
505 {
506 	struct mm_struct *mm = current->mm;
507 
508 	if (brk < mm->start_brk || brk > mm->context.end_brk)
509 		return mm->brk;
510 
511 	if (mm->brk == brk)
512 		return mm->brk;
513 
514 	/*
515 	 * Always allow shrinking brk
516 	 */
517 	if (brk <= mm->brk) {
518 		mm->brk = brk;
519 		return brk;
520 	}
521 
522 	/*
523 	 * Ok, looks good - let it rip.
524 	 */
525 	flush_icache_range(mm->brk, brk);
526 	return mm->brk = brk;
527 }
528 
529 /*
530  * initialise the VMA and region record slabs
531  */
532 void __init mmap_init(void)
533 {
534 	int ret;
535 
536 	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
537 	VM_BUG_ON(ret);
538 	vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT);
539 }
540 
541 /*
542  * validate the region tree
543  * - the caller must hold the region lock
544  */
545 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
546 static noinline void validate_nommu_regions(void)
547 {
548 	struct vm_region *region, *last;
549 	struct rb_node *p, *lastp;
550 
551 	lastp = rb_first(&nommu_region_tree);
552 	if (!lastp)
553 		return;
554 
555 	last = rb_entry(lastp, struct vm_region, vm_rb);
556 	BUG_ON(last->vm_end <= last->vm_start);
557 	BUG_ON(last->vm_top < last->vm_end);
558 
559 	while ((p = rb_next(lastp))) {
560 		region = rb_entry(p, struct vm_region, vm_rb);
561 		last = rb_entry(lastp, struct vm_region, vm_rb);
562 
563 		BUG_ON(region->vm_end <= region->vm_start);
564 		BUG_ON(region->vm_top < region->vm_end);
565 		BUG_ON(region->vm_start < last->vm_top);
566 
567 		lastp = p;
568 	}
569 }
570 #else
571 static void validate_nommu_regions(void)
572 {
573 }
574 #endif
575 
576 /*
577  * add a region into the global tree
578  */
579 static void add_nommu_region(struct vm_region *region)
580 {
581 	struct vm_region *pregion;
582 	struct rb_node **p, *parent;
583 
584 	validate_nommu_regions();
585 
586 	parent = NULL;
587 	p = &nommu_region_tree.rb_node;
588 	while (*p) {
589 		parent = *p;
590 		pregion = rb_entry(parent, struct vm_region, vm_rb);
591 		if (region->vm_start < pregion->vm_start)
592 			p = &(*p)->rb_left;
593 		else if (region->vm_start > pregion->vm_start)
594 			p = &(*p)->rb_right;
595 		else if (pregion == region)
596 			return;
597 		else
598 			BUG();
599 	}
600 
601 	rb_link_node(&region->vm_rb, parent, p);
602 	rb_insert_color(&region->vm_rb, &nommu_region_tree);
603 
604 	validate_nommu_regions();
605 }
606 
607 /*
608  * delete a region from the global tree
609  */
610 static void delete_nommu_region(struct vm_region *region)
611 {
612 	BUG_ON(!nommu_region_tree.rb_node);
613 
614 	validate_nommu_regions();
615 	rb_erase(&region->vm_rb, &nommu_region_tree);
616 	validate_nommu_regions();
617 }
618 
619 /*
620  * free a contiguous series of pages
621  */
622 static void free_page_series(unsigned long from, unsigned long to)
623 {
624 	for (; from < to; from += PAGE_SIZE) {
625 		struct page *page = virt_to_page(from);
626 
627 		atomic_long_dec(&mmap_pages_allocated);
628 		put_page(page);
629 	}
630 }
631 
632 /*
633  * release a reference to a region
634  * - the caller must hold the region semaphore for writing, which this releases
635  * - the region may not have been added to the tree yet, in which case vm_top
636  *   will equal vm_start
637  */
638 static void __put_nommu_region(struct vm_region *region)
639 	__releases(nommu_region_sem)
640 {
641 	BUG_ON(!nommu_region_tree.rb_node);
642 
643 	if (--region->vm_usage == 0) {
644 		if (region->vm_top > region->vm_start)
645 			delete_nommu_region(region);
646 		up_write(&nommu_region_sem);
647 
648 		if (region->vm_file)
649 			fput(region->vm_file);
650 
651 		/* IO memory and memory shared directly out of the pagecache
652 		 * from ramfs/tmpfs mustn't be released here */
653 		if (region->vm_flags & VM_MAPPED_COPY)
654 			free_page_series(region->vm_start, region->vm_top);
655 		kmem_cache_free(vm_region_jar, region);
656 	} else {
657 		up_write(&nommu_region_sem);
658 	}
659 }
660 
661 /*
662  * release a reference to a region
663  */
664 static void put_nommu_region(struct vm_region *region)
665 {
666 	down_write(&nommu_region_sem);
667 	__put_nommu_region(region);
668 }
669 
670 /*
671  * update protection on a vma
672  */
673 static void protect_vma(struct vm_area_struct *vma, unsigned long flags)
674 {
675 #ifdef CONFIG_MPU
676 	struct mm_struct *mm = vma->vm_mm;
677 	long start = vma->vm_start & PAGE_MASK;
678 	while (start < vma->vm_end) {
679 		protect_page(mm, start, flags);
680 		start += PAGE_SIZE;
681 	}
682 	update_protections(mm);
683 #endif
684 }
685 
686 /*
687  * add a VMA into a process's mm_struct in the appropriate place in the list
688  * and tree and add to the address space's page tree also if not an anonymous
689  * page
690  * - should be called with mm->mmap_sem held writelocked
691  */
692 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
693 {
694 	struct vm_area_struct *pvma, *prev;
695 	struct address_space *mapping;
696 	struct rb_node **p, *parent, *rb_prev;
697 
698 	BUG_ON(!vma->vm_region);
699 
700 	mm->map_count++;
701 	vma->vm_mm = mm;
702 
703 	protect_vma(vma, vma->vm_flags);
704 
705 	/* add the VMA to the mapping */
706 	if (vma->vm_file) {
707 		mapping = vma->vm_file->f_mapping;
708 
709 		i_mmap_lock_write(mapping);
710 		flush_dcache_mmap_lock(mapping);
711 		vma_interval_tree_insert(vma, &mapping->i_mmap);
712 		flush_dcache_mmap_unlock(mapping);
713 		i_mmap_unlock_write(mapping);
714 	}
715 
716 	/* add the VMA to the tree */
717 	parent = rb_prev = NULL;
718 	p = &mm->mm_rb.rb_node;
719 	while (*p) {
720 		parent = *p;
721 		pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
722 
723 		/* sort by: start addr, end addr, VMA struct addr in that order
724 		 * (the latter is necessary as we may get identical VMAs) */
725 		if (vma->vm_start < pvma->vm_start)
726 			p = &(*p)->rb_left;
727 		else if (vma->vm_start > pvma->vm_start) {
728 			rb_prev = parent;
729 			p = &(*p)->rb_right;
730 		} else if (vma->vm_end < pvma->vm_end)
731 			p = &(*p)->rb_left;
732 		else if (vma->vm_end > pvma->vm_end) {
733 			rb_prev = parent;
734 			p = &(*p)->rb_right;
735 		} else if (vma < pvma)
736 			p = &(*p)->rb_left;
737 		else if (vma > pvma) {
738 			rb_prev = parent;
739 			p = &(*p)->rb_right;
740 		} else
741 			BUG();
742 	}
743 
744 	rb_link_node(&vma->vm_rb, parent, p);
745 	rb_insert_color(&vma->vm_rb, &mm->mm_rb);
746 
747 	/* add VMA to the VMA list also */
748 	prev = NULL;
749 	if (rb_prev)
750 		prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
751 
752 	__vma_link_list(mm, vma, prev, parent);
753 }
754 
755 /*
756  * delete a VMA from its owning mm_struct and address space
757  */
758 static void delete_vma_from_mm(struct vm_area_struct *vma)
759 {
760 	int i;
761 	struct address_space *mapping;
762 	struct mm_struct *mm = vma->vm_mm;
763 	struct task_struct *curr = current;
764 
765 	protect_vma(vma, 0);
766 
767 	mm->map_count--;
768 	for (i = 0; i < VMACACHE_SIZE; i++) {
769 		/* if the vma is cached, invalidate the entire cache */
770 		if (curr->vmacache[i] == vma) {
771 			vmacache_invalidate(mm);
772 			break;
773 		}
774 	}
775 
776 	/* remove the VMA from the mapping */
777 	if (vma->vm_file) {
778 		mapping = vma->vm_file->f_mapping;
779 
780 		i_mmap_lock_write(mapping);
781 		flush_dcache_mmap_lock(mapping);
782 		vma_interval_tree_remove(vma, &mapping->i_mmap);
783 		flush_dcache_mmap_unlock(mapping);
784 		i_mmap_unlock_write(mapping);
785 	}
786 
787 	/* remove from the MM's tree and list */
788 	rb_erase(&vma->vm_rb, &mm->mm_rb);
789 
790 	if (vma->vm_prev)
791 		vma->vm_prev->vm_next = vma->vm_next;
792 	else
793 		mm->mmap = vma->vm_next;
794 
795 	if (vma->vm_next)
796 		vma->vm_next->vm_prev = vma->vm_prev;
797 }
798 
799 /*
800  * destroy a VMA record
801  */
802 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
803 {
804 	if (vma->vm_ops && vma->vm_ops->close)
805 		vma->vm_ops->close(vma);
806 	if (vma->vm_file)
807 		fput(vma->vm_file);
808 	put_nommu_region(vma->vm_region);
809 	kmem_cache_free(vm_area_cachep, vma);
810 }
811 
812 /*
813  * look up the first VMA in which addr resides, NULL if none
814  * - should be called with mm->mmap_sem at least held readlocked
815  */
816 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
817 {
818 	struct vm_area_struct *vma;
819 
820 	/* check the cache first */
821 	vma = vmacache_find(mm, addr);
822 	if (likely(vma))
823 		return vma;
824 
825 	/* trawl the list (there may be multiple mappings in which addr
826 	 * resides) */
827 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
828 		if (vma->vm_start > addr)
829 			return NULL;
830 		if (vma->vm_end > addr) {
831 			vmacache_update(addr, vma);
832 			return vma;
833 		}
834 	}
835 
836 	return NULL;
837 }
838 EXPORT_SYMBOL(find_vma);
839 
840 /*
841  * find a VMA
842  * - we don't extend stack VMAs under NOMMU conditions
843  */
844 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
845 {
846 	return find_vma(mm, addr);
847 }
848 
849 /*
850  * expand a stack to a given address
851  * - not supported under NOMMU conditions
852  */
853 int expand_stack(struct vm_area_struct *vma, unsigned long address)
854 {
855 	return -ENOMEM;
856 }
857 
858 /*
859  * look up the first VMA exactly that exactly matches addr
860  * - should be called with mm->mmap_sem at least held readlocked
861  */
862 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
863 					     unsigned long addr,
864 					     unsigned long len)
865 {
866 	struct vm_area_struct *vma;
867 	unsigned long end = addr + len;
868 
869 	/* check the cache first */
870 	vma = vmacache_find_exact(mm, addr, end);
871 	if (vma)
872 		return vma;
873 
874 	/* trawl the list (there may be multiple mappings in which addr
875 	 * resides) */
876 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
877 		if (vma->vm_start < addr)
878 			continue;
879 		if (vma->vm_start > addr)
880 			return NULL;
881 		if (vma->vm_end == end) {
882 			vmacache_update(addr, vma);
883 			return vma;
884 		}
885 	}
886 
887 	return NULL;
888 }
889 
890 /*
891  * determine whether a mapping should be permitted and, if so, what sort of
892  * mapping we're capable of supporting
893  */
894 static int validate_mmap_request(struct file *file,
895 				 unsigned long addr,
896 				 unsigned long len,
897 				 unsigned long prot,
898 				 unsigned long flags,
899 				 unsigned long pgoff,
900 				 unsigned long *_capabilities)
901 {
902 	unsigned long capabilities, rlen;
903 	int ret;
904 
905 	/* do the simple checks first */
906 	if (flags & MAP_FIXED)
907 		return -EINVAL;
908 
909 	if ((flags & MAP_TYPE) != MAP_PRIVATE &&
910 	    (flags & MAP_TYPE) != MAP_SHARED)
911 		return -EINVAL;
912 
913 	if (!len)
914 		return -EINVAL;
915 
916 	/* Careful about overflows.. */
917 	rlen = PAGE_ALIGN(len);
918 	if (!rlen || rlen > TASK_SIZE)
919 		return -ENOMEM;
920 
921 	/* offset overflow? */
922 	if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
923 		return -EOVERFLOW;
924 
925 	if (file) {
926 		/* files must support mmap */
927 		if (!file->f_op->mmap)
928 			return -ENODEV;
929 
930 		/* work out if what we've got could possibly be shared
931 		 * - we support chardevs that provide their own "memory"
932 		 * - we support files/blockdevs that are memory backed
933 		 */
934 		if (file->f_op->mmap_capabilities) {
935 			capabilities = file->f_op->mmap_capabilities(file);
936 		} else {
937 			/* no explicit capabilities set, so assume some
938 			 * defaults */
939 			switch (file_inode(file)->i_mode & S_IFMT) {
940 			case S_IFREG:
941 			case S_IFBLK:
942 				capabilities = NOMMU_MAP_COPY;
943 				break;
944 
945 			case S_IFCHR:
946 				capabilities =
947 					NOMMU_MAP_DIRECT |
948 					NOMMU_MAP_READ |
949 					NOMMU_MAP_WRITE;
950 				break;
951 
952 			default:
953 				return -EINVAL;
954 			}
955 		}
956 
957 		/* eliminate any capabilities that we can't support on this
958 		 * device */
959 		if (!file->f_op->get_unmapped_area)
960 			capabilities &= ~NOMMU_MAP_DIRECT;
961 		if (!(file->f_mode & FMODE_CAN_READ))
962 			capabilities &= ~NOMMU_MAP_COPY;
963 
964 		/* The file shall have been opened with read permission. */
965 		if (!(file->f_mode & FMODE_READ))
966 			return -EACCES;
967 
968 		if (flags & MAP_SHARED) {
969 			/* do checks for writing, appending and locking */
970 			if ((prot & PROT_WRITE) &&
971 			    !(file->f_mode & FMODE_WRITE))
972 				return -EACCES;
973 
974 			if (IS_APPEND(file_inode(file)) &&
975 			    (file->f_mode & FMODE_WRITE))
976 				return -EACCES;
977 
978 			if (locks_verify_locked(file))
979 				return -EAGAIN;
980 
981 			if (!(capabilities & NOMMU_MAP_DIRECT))
982 				return -ENODEV;
983 
984 			/* we mustn't privatise shared mappings */
985 			capabilities &= ~NOMMU_MAP_COPY;
986 		} else {
987 			/* we're going to read the file into private memory we
988 			 * allocate */
989 			if (!(capabilities & NOMMU_MAP_COPY))
990 				return -ENODEV;
991 
992 			/* we don't permit a private writable mapping to be
993 			 * shared with the backing device */
994 			if (prot & PROT_WRITE)
995 				capabilities &= ~NOMMU_MAP_DIRECT;
996 		}
997 
998 		if (capabilities & NOMMU_MAP_DIRECT) {
999 			if (((prot & PROT_READ)  && !(capabilities & NOMMU_MAP_READ))  ||
1000 			    ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
1001 			    ((prot & PROT_EXEC)  && !(capabilities & NOMMU_MAP_EXEC))
1002 			    ) {
1003 				capabilities &= ~NOMMU_MAP_DIRECT;
1004 				if (flags & MAP_SHARED) {
1005 					pr_warn("MAP_SHARED not completely supported on !MMU\n");
1006 					return -EINVAL;
1007 				}
1008 			}
1009 		}
1010 
1011 		/* handle executable mappings and implied executable
1012 		 * mappings */
1013 		if (path_noexec(&file->f_path)) {
1014 			if (prot & PROT_EXEC)
1015 				return -EPERM;
1016 		} else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
1017 			/* handle implication of PROT_EXEC by PROT_READ */
1018 			if (current->personality & READ_IMPLIES_EXEC) {
1019 				if (capabilities & NOMMU_MAP_EXEC)
1020 					prot |= PROT_EXEC;
1021 			}
1022 		} else if ((prot & PROT_READ) &&
1023 			 (prot & PROT_EXEC) &&
1024 			 !(capabilities & NOMMU_MAP_EXEC)
1025 			 ) {
1026 			/* backing file is not executable, try to copy */
1027 			capabilities &= ~NOMMU_MAP_DIRECT;
1028 		}
1029 	} else {
1030 		/* anonymous mappings are always memory backed and can be
1031 		 * privately mapped
1032 		 */
1033 		capabilities = NOMMU_MAP_COPY;
1034 
1035 		/* handle PROT_EXEC implication by PROT_READ */
1036 		if ((prot & PROT_READ) &&
1037 		    (current->personality & READ_IMPLIES_EXEC))
1038 			prot |= PROT_EXEC;
1039 	}
1040 
1041 	/* allow the security API to have its say */
1042 	ret = security_mmap_addr(addr);
1043 	if (ret < 0)
1044 		return ret;
1045 
1046 	/* looks okay */
1047 	*_capabilities = capabilities;
1048 	return 0;
1049 }
1050 
1051 /*
1052  * we've determined that we can make the mapping, now translate what we
1053  * now know into VMA flags
1054  */
1055 static unsigned long determine_vm_flags(struct file *file,
1056 					unsigned long prot,
1057 					unsigned long flags,
1058 					unsigned long capabilities)
1059 {
1060 	unsigned long vm_flags;
1061 
1062 	vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags);
1063 	/* vm_flags |= mm->def_flags; */
1064 
1065 	if (!(capabilities & NOMMU_MAP_DIRECT)) {
1066 		/* attempt to share read-only copies of mapped file chunks */
1067 		vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1068 		if (file && !(prot & PROT_WRITE))
1069 			vm_flags |= VM_MAYSHARE;
1070 	} else {
1071 		/* overlay a shareable mapping on the backing device or inode
1072 		 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1073 		 * romfs/cramfs */
1074 		vm_flags |= VM_MAYSHARE | (capabilities & NOMMU_VMFLAGS);
1075 		if (flags & MAP_SHARED)
1076 			vm_flags |= VM_SHARED;
1077 	}
1078 
1079 	/* refuse to let anyone share private mappings with this process if
1080 	 * it's being traced - otherwise breakpoints set in it may interfere
1081 	 * with another untraced process
1082 	 */
1083 	if ((flags & MAP_PRIVATE) && current->ptrace)
1084 		vm_flags &= ~VM_MAYSHARE;
1085 
1086 	return vm_flags;
1087 }
1088 
1089 /*
1090  * set up a shared mapping on a file (the driver or filesystem provides and
1091  * pins the storage)
1092  */
1093 static int do_mmap_shared_file(struct vm_area_struct *vma)
1094 {
1095 	int ret;
1096 
1097 	ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1098 	if (ret == 0) {
1099 		vma->vm_region->vm_top = vma->vm_region->vm_end;
1100 		return 0;
1101 	}
1102 	if (ret != -ENOSYS)
1103 		return ret;
1104 
1105 	/* getting -ENOSYS indicates that direct mmap isn't possible (as
1106 	 * opposed to tried but failed) so we can only give a suitable error as
1107 	 * it's not possible to make a private copy if MAP_SHARED was given */
1108 	return -ENODEV;
1109 }
1110 
1111 /*
1112  * set up a private mapping or an anonymous shared mapping
1113  */
1114 static int do_mmap_private(struct vm_area_struct *vma,
1115 			   struct vm_region *region,
1116 			   unsigned long len,
1117 			   unsigned long capabilities)
1118 {
1119 	unsigned long total, point;
1120 	void *base;
1121 	int ret, order;
1122 
1123 	/* invoke the file's mapping function so that it can keep track of
1124 	 * shared mappings on devices or memory
1125 	 * - VM_MAYSHARE will be set if it may attempt to share
1126 	 */
1127 	if (capabilities & NOMMU_MAP_DIRECT) {
1128 		ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1129 		if (ret == 0) {
1130 			/* shouldn't return success if we're not sharing */
1131 			BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1132 			vma->vm_region->vm_top = vma->vm_region->vm_end;
1133 			return 0;
1134 		}
1135 		if (ret != -ENOSYS)
1136 			return ret;
1137 
1138 		/* getting an ENOSYS error indicates that direct mmap isn't
1139 		 * possible (as opposed to tried but failed) so we'll try to
1140 		 * make a private copy of the data and map that instead */
1141 	}
1142 
1143 
1144 	/* allocate some memory to hold the mapping
1145 	 * - note that this may not return a page-aligned address if the object
1146 	 *   we're allocating is smaller than a page
1147 	 */
1148 	order = get_order(len);
1149 	total = 1 << order;
1150 	point = len >> PAGE_SHIFT;
1151 
1152 	/* we don't want to allocate a power-of-2 sized page set */
1153 	if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages)
1154 		total = point;
1155 
1156 	base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL);
1157 	if (!base)
1158 		goto enomem;
1159 
1160 	atomic_long_add(total, &mmap_pages_allocated);
1161 
1162 	region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1163 	region->vm_start = (unsigned long) base;
1164 	region->vm_end   = region->vm_start + len;
1165 	region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
1166 
1167 	vma->vm_start = region->vm_start;
1168 	vma->vm_end   = region->vm_start + len;
1169 
1170 	if (vma->vm_file) {
1171 		/* read the contents of a file into the copy */
1172 		mm_segment_t old_fs;
1173 		loff_t fpos;
1174 
1175 		fpos = vma->vm_pgoff;
1176 		fpos <<= PAGE_SHIFT;
1177 
1178 		old_fs = get_fs();
1179 		set_fs(KERNEL_DS);
1180 		ret = __vfs_read(vma->vm_file, base, len, &fpos);
1181 		set_fs(old_fs);
1182 
1183 		if (ret < 0)
1184 			goto error_free;
1185 
1186 		/* clear the last little bit */
1187 		if (ret < len)
1188 			memset(base + ret, 0, len - ret);
1189 
1190 	}
1191 
1192 	return 0;
1193 
1194 error_free:
1195 	free_page_series(region->vm_start, region->vm_top);
1196 	region->vm_start = vma->vm_start = 0;
1197 	region->vm_end   = vma->vm_end = 0;
1198 	region->vm_top   = 0;
1199 	return ret;
1200 
1201 enomem:
1202 	pr_err("Allocation of length %lu from process %d (%s) failed\n",
1203 	       len, current->pid, current->comm);
1204 	show_free_areas(0);
1205 	return -ENOMEM;
1206 }
1207 
1208 /*
1209  * handle mapping creation for uClinux
1210  */
1211 unsigned long do_mmap(struct file *file,
1212 			unsigned long addr,
1213 			unsigned long len,
1214 			unsigned long prot,
1215 			unsigned long flags,
1216 			vm_flags_t vm_flags,
1217 			unsigned long pgoff,
1218 			unsigned long *populate)
1219 {
1220 	struct vm_area_struct *vma;
1221 	struct vm_region *region;
1222 	struct rb_node *rb;
1223 	unsigned long capabilities, result;
1224 	int ret;
1225 
1226 	*populate = 0;
1227 
1228 	/* decide whether we should attempt the mapping, and if so what sort of
1229 	 * mapping */
1230 	ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1231 				    &capabilities);
1232 	if (ret < 0)
1233 		return ret;
1234 
1235 	/* we ignore the address hint */
1236 	addr = 0;
1237 	len = PAGE_ALIGN(len);
1238 
1239 	/* we've determined that we can make the mapping, now translate what we
1240 	 * now know into VMA flags */
1241 	vm_flags |= determine_vm_flags(file, prot, flags, capabilities);
1242 
1243 	/* we're going to need to record the mapping */
1244 	region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1245 	if (!region)
1246 		goto error_getting_region;
1247 
1248 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1249 	if (!vma)
1250 		goto error_getting_vma;
1251 
1252 	region->vm_usage = 1;
1253 	region->vm_flags = vm_flags;
1254 	region->vm_pgoff = pgoff;
1255 
1256 	INIT_LIST_HEAD(&vma->anon_vma_chain);
1257 	vma->vm_flags = vm_flags;
1258 	vma->vm_pgoff = pgoff;
1259 
1260 	if (file) {
1261 		region->vm_file = get_file(file);
1262 		vma->vm_file = get_file(file);
1263 	}
1264 
1265 	down_write(&nommu_region_sem);
1266 
1267 	/* if we want to share, we need to check for regions created by other
1268 	 * mmap() calls that overlap with our proposed mapping
1269 	 * - we can only share with a superset match on most regular files
1270 	 * - shared mappings on character devices and memory backed files are
1271 	 *   permitted to overlap inexactly as far as we are concerned for in
1272 	 *   these cases, sharing is handled in the driver or filesystem rather
1273 	 *   than here
1274 	 */
1275 	if (vm_flags & VM_MAYSHARE) {
1276 		struct vm_region *pregion;
1277 		unsigned long pglen, rpglen, pgend, rpgend, start;
1278 
1279 		pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1280 		pgend = pgoff + pglen;
1281 
1282 		for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1283 			pregion = rb_entry(rb, struct vm_region, vm_rb);
1284 
1285 			if (!(pregion->vm_flags & VM_MAYSHARE))
1286 				continue;
1287 
1288 			/* search for overlapping mappings on the same file */
1289 			if (file_inode(pregion->vm_file) !=
1290 			    file_inode(file))
1291 				continue;
1292 
1293 			if (pregion->vm_pgoff >= pgend)
1294 				continue;
1295 
1296 			rpglen = pregion->vm_end - pregion->vm_start;
1297 			rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1298 			rpgend = pregion->vm_pgoff + rpglen;
1299 			if (pgoff >= rpgend)
1300 				continue;
1301 
1302 			/* handle inexactly overlapping matches between
1303 			 * mappings */
1304 			if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1305 			    !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1306 				/* new mapping is not a subset of the region */
1307 				if (!(capabilities & NOMMU_MAP_DIRECT))
1308 					goto sharing_violation;
1309 				continue;
1310 			}
1311 
1312 			/* we've found a region we can share */
1313 			pregion->vm_usage++;
1314 			vma->vm_region = pregion;
1315 			start = pregion->vm_start;
1316 			start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1317 			vma->vm_start = start;
1318 			vma->vm_end = start + len;
1319 
1320 			if (pregion->vm_flags & VM_MAPPED_COPY)
1321 				vma->vm_flags |= VM_MAPPED_COPY;
1322 			else {
1323 				ret = do_mmap_shared_file(vma);
1324 				if (ret < 0) {
1325 					vma->vm_region = NULL;
1326 					vma->vm_start = 0;
1327 					vma->vm_end = 0;
1328 					pregion->vm_usage--;
1329 					pregion = NULL;
1330 					goto error_just_free;
1331 				}
1332 			}
1333 			fput(region->vm_file);
1334 			kmem_cache_free(vm_region_jar, region);
1335 			region = pregion;
1336 			result = start;
1337 			goto share;
1338 		}
1339 
1340 		/* obtain the address at which to make a shared mapping
1341 		 * - this is the hook for quasi-memory character devices to
1342 		 *   tell us the location of a shared mapping
1343 		 */
1344 		if (capabilities & NOMMU_MAP_DIRECT) {
1345 			addr = file->f_op->get_unmapped_area(file, addr, len,
1346 							     pgoff, flags);
1347 			if (IS_ERR_VALUE(addr)) {
1348 				ret = addr;
1349 				if (ret != -ENOSYS)
1350 					goto error_just_free;
1351 
1352 				/* the driver refused to tell us where to site
1353 				 * the mapping so we'll have to attempt to copy
1354 				 * it */
1355 				ret = -ENODEV;
1356 				if (!(capabilities & NOMMU_MAP_COPY))
1357 					goto error_just_free;
1358 
1359 				capabilities &= ~NOMMU_MAP_DIRECT;
1360 			} else {
1361 				vma->vm_start = region->vm_start = addr;
1362 				vma->vm_end = region->vm_end = addr + len;
1363 			}
1364 		}
1365 	}
1366 
1367 	vma->vm_region = region;
1368 
1369 	/* set up the mapping
1370 	 * - the region is filled in if NOMMU_MAP_DIRECT is still set
1371 	 */
1372 	if (file && vma->vm_flags & VM_SHARED)
1373 		ret = do_mmap_shared_file(vma);
1374 	else
1375 		ret = do_mmap_private(vma, region, len, capabilities);
1376 	if (ret < 0)
1377 		goto error_just_free;
1378 	add_nommu_region(region);
1379 
1380 	/* clear anonymous mappings that don't ask for uninitialized data */
1381 	if (!vma->vm_file && !(flags & MAP_UNINITIALIZED))
1382 		memset((void *)region->vm_start, 0,
1383 		       region->vm_end - region->vm_start);
1384 
1385 	/* okay... we have a mapping; now we have to register it */
1386 	result = vma->vm_start;
1387 
1388 	current->mm->total_vm += len >> PAGE_SHIFT;
1389 
1390 share:
1391 	add_vma_to_mm(current->mm, vma);
1392 
1393 	/* we flush the region from the icache only when the first executable
1394 	 * mapping of it is made  */
1395 	if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1396 		flush_icache_range(region->vm_start, region->vm_end);
1397 		region->vm_icache_flushed = true;
1398 	}
1399 
1400 	up_write(&nommu_region_sem);
1401 
1402 	return result;
1403 
1404 error_just_free:
1405 	up_write(&nommu_region_sem);
1406 error:
1407 	if (region->vm_file)
1408 		fput(region->vm_file);
1409 	kmem_cache_free(vm_region_jar, region);
1410 	if (vma->vm_file)
1411 		fput(vma->vm_file);
1412 	kmem_cache_free(vm_area_cachep, vma);
1413 	return ret;
1414 
1415 sharing_violation:
1416 	up_write(&nommu_region_sem);
1417 	pr_warn("Attempt to share mismatched mappings\n");
1418 	ret = -EINVAL;
1419 	goto error;
1420 
1421 error_getting_vma:
1422 	kmem_cache_free(vm_region_jar, region);
1423 	pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n",
1424 			len, current->pid);
1425 	show_free_areas(0);
1426 	return -ENOMEM;
1427 
1428 error_getting_region:
1429 	pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n",
1430 			len, current->pid);
1431 	show_free_areas(0);
1432 	return -ENOMEM;
1433 }
1434 
1435 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1436 		unsigned long, prot, unsigned long, flags,
1437 		unsigned long, fd, unsigned long, pgoff)
1438 {
1439 	struct file *file = NULL;
1440 	unsigned long retval = -EBADF;
1441 
1442 	audit_mmap_fd(fd, flags);
1443 	if (!(flags & MAP_ANONYMOUS)) {
1444 		file = fget(fd);
1445 		if (!file)
1446 			goto out;
1447 	}
1448 
1449 	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1450 
1451 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1452 
1453 	if (file)
1454 		fput(file);
1455 out:
1456 	return retval;
1457 }
1458 
1459 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1460 struct mmap_arg_struct {
1461 	unsigned long addr;
1462 	unsigned long len;
1463 	unsigned long prot;
1464 	unsigned long flags;
1465 	unsigned long fd;
1466 	unsigned long offset;
1467 };
1468 
1469 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1470 {
1471 	struct mmap_arg_struct a;
1472 
1473 	if (copy_from_user(&a, arg, sizeof(a)))
1474 		return -EFAULT;
1475 	if (offset_in_page(a.offset))
1476 		return -EINVAL;
1477 
1478 	return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1479 			      a.offset >> PAGE_SHIFT);
1480 }
1481 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1482 
1483 /*
1484  * split a vma into two pieces at address 'addr', a new vma is allocated either
1485  * for the first part or the tail.
1486  */
1487 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1488 	      unsigned long addr, int new_below)
1489 {
1490 	struct vm_area_struct *new;
1491 	struct vm_region *region;
1492 	unsigned long npages;
1493 
1494 	/* we're only permitted to split anonymous regions (these should have
1495 	 * only a single usage on the region) */
1496 	if (vma->vm_file)
1497 		return -ENOMEM;
1498 
1499 	if (mm->map_count >= sysctl_max_map_count)
1500 		return -ENOMEM;
1501 
1502 	region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1503 	if (!region)
1504 		return -ENOMEM;
1505 
1506 	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1507 	if (!new) {
1508 		kmem_cache_free(vm_region_jar, region);
1509 		return -ENOMEM;
1510 	}
1511 
1512 	/* most fields are the same, copy all, and then fixup */
1513 	*new = *vma;
1514 	*region = *vma->vm_region;
1515 	new->vm_region = region;
1516 
1517 	npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1518 
1519 	if (new_below) {
1520 		region->vm_top = region->vm_end = new->vm_end = addr;
1521 	} else {
1522 		region->vm_start = new->vm_start = addr;
1523 		region->vm_pgoff = new->vm_pgoff += npages;
1524 	}
1525 
1526 	if (new->vm_ops && new->vm_ops->open)
1527 		new->vm_ops->open(new);
1528 
1529 	delete_vma_from_mm(vma);
1530 	down_write(&nommu_region_sem);
1531 	delete_nommu_region(vma->vm_region);
1532 	if (new_below) {
1533 		vma->vm_region->vm_start = vma->vm_start = addr;
1534 		vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1535 	} else {
1536 		vma->vm_region->vm_end = vma->vm_end = addr;
1537 		vma->vm_region->vm_top = addr;
1538 	}
1539 	add_nommu_region(vma->vm_region);
1540 	add_nommu_region(new->vm_region);
1541 	up_write(&nommu_region_sem);
1542 	add_vma_to_mm(mm, vma);
1543 	add_vma_to_mm(mm, new);
1544 	return 0;
1545 }
1546 
1547 /*
1548  * shrink a VMA by removing the specified chunk from either the beginning or
1549  * the end
1550  */
1551 static int shrink_vma(struct mm_struct *mm,
1552 		      struct vm_area_struct *vma,
1553 		      unsigned long from, unsigned long to)
1554 {
1555 	struct vm_region *region;
1556 
1557 	/* adjust the VMA's pointers, which may reposition it in the MM's tree
1558 	 * and list */
1559 	delete_vma_from_mm(vma);
1560 	if (from > vma->vm_start)
1561 		vma->vm_end = from;
1562 	else
1563 		vma->vm_start = to;
1564 	add_vma_to_mm(mm, vma);
1565 
1566 	/* cut the backing region down to size */
1567 	region = vma->vm_region;
1568 	BUG_ON(region->vm_usage != 1);
1569 
1570 	down_write(&nommu_region_sem);
1571 	delete_nommu_region(region);
1572 	if (from > region->vm_start) {
1573 		to = region->vm_top;
1574 		region->vm_top = region->vm_end = from;
1575 	} else {
1576 		region->vm_start = to;
1577 	}
1578 	add_nommu_region(region);
1579 	up_write(&nommu_region_sem);
1580 
1581 	free_page_series(from, to);
1582 	return 0;
1583 }
1584 
1585 /*
1586  * release a mapping
1587  * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1588  *   VMA, though it need not cover the whole VMA
1589  */
1590 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1591 {
1592 	struct vm_area_struct *vma;
1593 	unsigned long end;
1594 	int ret;
1595 
1596 	len = PAGE_ALIGN(len);
1597 	if (len == 0)
1598 		return -EINVAL;
1599 
1600 	end = start + len;
1601 
1602 	/* find the first potentially overlapping VMA */
1603 	vma = find_vma(mm, start);
1604 	if (!vma) {
1605 		static int limit;
1606 		if (limit < 5) {
1607 			pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n",
1608 					current->pid, current->comm,
1609 					start, start + len - 1);
1610 			limit++;
1611 		}
1612 		return -EINVAL;
1613 	}
1614 
1615 	/* we're allowed to split an anonymous VMA but not a file-backed one */
1616 	if (vma->vm_file) {
1617 		do {
1618 			if (start > vma->vm_start)
1619 				return -EINVAL;
1620 			if (end == vma->vm_end)
1621 				goto erase_whole_vma;
1622 			vma = vma->vm_next;
1623 		} while (vma);
1624 		return -EINVAL;
1625 	} else {
1626 		/* the chunk must be a subset of the VMA found */
1627 		if (start == vma->vm_start && end == vma->vm_end)
1628 			goto erase_whole_vma;
1629 		if (start < vma->vm_start || end > vma->vm_end)
1630 			return -EINVAL;
1631 		if (offset_in_page(start))
1632 			return -EINVAL;
1633 		if (end != vma->vm_end && offset_in_page(end))
1634 			return -EINVAL;
1635 		if (start != vma->vm_start && end != vma->vm_end) {
1636 			ret = split_vma(mm, vma, start, 1);
1637 			if (ret < 0)
1638 				return ret;
1639 		}
1640 		return shrink_vma(mm, vma, start, end);
1641 	}
1642 
1643 erase_whole_vma:
1644 	delete_vma_from_mm(vma);
1645 	delete_vma(mm, vma);
1646 	return 0;
1647 }
1648 EXPORT_SYMBOL(do_munmap);
1649 
1650 int vm_munmap(unsigned long addr, size_t len)
1651 {
1652 	struct mm_struct *mm = current->mm;
1653 	int ret;
1654 
1655 	down_write(&mm->mmap_sem);
1656 	ret = do_munmap(mm, addr, len);
1657 	up_write(&mm->mmap_sem);
1658 	return ret;
1659 }
1660 EXPORT_SYMBOL(vm_munmap);
1661 
1662 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1663 {
1664 	return vm_munmap(addr, len);
1665 }
1666 
1667 /*
1668  * release all the mappings made in a process's VM space
1669  */
1670 void exit_mmap(struct mm_struct *mm)
1671 {
1672 	struct vm_area_struct *vma;
1673 
1674 	if (!mm)
1675 		return;
1676 
1677 	mm->total_vm = 0;
1678 
1679 	while ((vma = mm->mmap)) {
1680 		mm->mmap = vma->vm_next;
1681 		delete_vma_from_mm(vma);
1682 		delete_vma(mm, vma);
1683 		cond_resched();
1684 	}
1685 }
1686 
1687 unsigned long vm_brk(unsigned long addr, unsigned long len)
1688 {
1689 	return -ENOMEM;
1690 }
1691 
1692 /*
1693  * expand (or shrink) an existing mapping, potentially moving it at the same
1694  * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1695  *
1696  * under NOMMU conditions, we only permit changing a mapping's size, and only
1697  * as long as it stays within the region allocated by do_mmap_private() and the
1698  * block is not shareable
1699  *
1700  * MREMAP_FIXED is not supported under NOMMU conditions
1701  */
1702 static unsigned long do_mremap(unsigned long addr,
1703 			unsigned long old_len, unsigned long new_len,
1704 			unsigned long flags, unsigned long new_addr)
1705 {
1706 	struct vm_area_struct *vma;
1707 
1708 	/* insanity checks first */
1709 	old_len = PAGE_ALIGN(old_len);
1710 	new_len = PAGE_ALIGN(new_len);
1711 	if (old_len == 0 || new_len == 0)
1712 		return (unsigned long) -EINVAL;
1713 
1714 	if (offset_in_page(addr))
1715 		return -EINVAL;
1716 
1717 	if (flags & MREMAP_FIXED && new_addr != addr)
1718 		return (unsigned long) -EINVAL;
1719 
1720 	vma = find_vma_exact(current->mm, addr, old_len);
1721 	if (!vma)
1722 		return (unsigned long) -EINVAL;
1723 
1724 	if (vma->vm_end != vma->vm_start + old_len)
1725 		return (unsigned long) -EFAULT;
1726 
1727 	if (vma->vm_flags & VM_MAYSHARE)
1728 		return (unsigned long) -EPERM;
1729 
1730 	if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1731 		return (unsigned long) -ENOMEM;
1732 
1733 	/* all checks complete - do it */
1734 	vma->vm_end = vma->vm_start + new_len;
1735 	return vma->vm_start;
1736 }
1737 
1738 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1739 		unsigned long, new_len, unsigned long, flags,
1740 		unsigned long, new_addr)
1741 {
1742 	unsigned long ret;
1743 
1744 	down_write(&current->mm->mmap_sem);
1745 	ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1746 	up_write(&current->mm->mmap_sem);
1747 	return ret;
1748 }
1749 
1750 struct page *follow_page_mask(struct vm_area_struct *vma,
1751 			      unsigned long address, unsigned int flags,
1752 			      unsigned int *page_mask)
1753 {
1754 	*page_mask = 0;
1755 	return NULL;
1756 }
1757 
1758 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1759 		unsigned long pfn, unsigned long size, pgprot_t prot)
1760 {
1761 	if (addr != (pfn << PAGE_SHIFT))
1762 		return -EINVAL;
1763 
1764 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1765 	return 0;
1766 }
1767 EXPORT_SYMBOL(remap_pfn_range);
1768 
1769 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1770 {
1771 	unsigned long pfn = start >> PAGE_SHIFT;
1772 	unsigned long vm_len = vma->vm_end - vma->vm_start;
1773 
1774 	pfn += vma->vm_pgoff;
1775 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1776 }
1777 EXPORT_SYMBOL(vm_iomap_memory);
1778 
1779 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1780 			unsigned long pgoff)
1781 {
1782 	unsigned int size = vma->vm_end - vma->vm_start;
1783 
1784 	if (!(vma->vm_flags & VM_USERMAP))
1785 		return -EINVAL;
1786 
1787 	vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1788 	vma->vm_end = vma->vm_start + size;
1789 
1790 	return 0;
1791 }
1792 EXPORT_SYMBOL(remap_vmalloc_range);
1793 
1794 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1795 	unsigned long len, unsigned long pgoff, unsigned long flags)
1796 {
1797 	return -ENOMEM;
1798 }
1799 
1800 void unmap_mapping_range(struct address_space *mapping,
1801 			 loff_t const holebegin, loff_t const holelen,
1802 			 int even_cows)
1803 {
1804 }
1805 EXPORT_SYMBOL(unmap_mapping_range);
1806 
1807 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1808 {
1809 	BUG();
1810 	return 0;
1811 }
1812 EXPORT_SYMBOL(filemap_fault);
1813 
1814 void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
1815 {
1816 	BUG();
1817 }
1818 EXPORT_SYMBOL(filemap_map_pages);
1819 
1820 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1821 		unsigned long addr, void *buf, int len, int write)
1822 {
1823 	struct vm_area_struct *vma;
1824 
1825 	down_read(&mm->mmap_sem);
1826 
1827 	/* the access must start within one of the target process's mappings */
1828 	vma = find_vma(mm, addr);
1829 	if (vma) {
1830 		/* don't overrun this mapping */
1831 		if (addr + len >= vma->vm_end)
1832 			len = vma->vm_end - addr;
1833 
1834 		/* only read or write mappings where it is permitted */
1835 		if (write && vma->vm_flags & VM_MAYWRITE)
1836 			copy_to_user_page(vma, NULL, addr,
1837 					 (void *) addr, buf, len);
1838 		else if (!write && vma->vm_flags & VM_MAYREAD)
1839 			copy_from_user_page(vma, NULL, addr,
1840 					    buf, (void *) addr, len);
1841 		else
1842 			len = 0;
1843 	} else {
1844 		len = 0;
1845 	}
1846 
1847 	up_read(&mm->mmap_sem);
1848 
1849 	return len;
1850 }
1851 
1852 /**
1853  * @access_remote_vm - access another process' address space
1854  * @mm:		the mm_struct of the target address space
1855  * @addr:	start address to access
1856  * @buf:	source or destination buffer
1857  * @len:	number of bytes to transfer
1858  * @write:	whether the access is a write
1859  *
1860  * The caller must hold a reference on @mm.
1861  */
1862 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1863 		void *buf, int len, int write)
1864 {
1865 	return __access_remote_vm(NULL, mm, addr, buf, len, write);
1866 }
1867 
1868 /*
1869  * Access another process' address space.
1870  * - source/target buffer must be kernel space
1871  */
1872 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
1873 {
1874 	struct mm_struct *mm;
1875 
1876 	if (addr + len < addr)
1877 		return 0;
1878 
1879 	mm = get_task_mm(tsk);
1880 	if (!mm)
1881 		return 0;
1882 
1883 	len = __access_remote_vm(tsk, mm, addr, buf, len, write);
1884 
1885 	mmput(mm);
1886 	return len;
1887 }
1888 
1889 /**
1890  * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
1891  * @inode: The inode to check
1892  * @size: The current filesize of the inode
1893  * @newsize: The proposed filesize of the inode
1894  *
1895  * Check the shared mappings on an inode on behalf of a shrinking truncate to
1896  * make sure that that any outstanding VMAs aren't broken and then shrink the
1897  * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
1898  * automatically grant mappings that are too large.
1899  */
1900 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
1901 				size_t newsize)
1902 {
1903 	struct vm_area_struct *vma;
1904 	struct vm_region *region;
1905 	pgoff_t low, high;
1906 	size_t r_size, r_top;
1907 
1908 	low = newsize >> PAGE_SHIFT;
1909 	high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1910 
1911 	down_write(&nommu_region_sem);
1912 	i_mmap_lock_read(inode->i_mapping);
1913 
1914 	/* search for VMAs that fall within the dead zone */
1915 	vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
1916 		/* found one - only interested if it's shared out of the page
1917 		 * cache */
1918 		if (vma->vm_flags & VM_SHARED) {
1919 			i_mmap_unlock_read(inode->i_mapping);
1920 			up_write(&nommu_region_sem);
1921 			return -ETXTBSY; /* not quite true, but near enough */
1922 		}
1923 	}
1924 
1925 	/* reduce any regions that overlap the dead zone - if in existence,
1926 	 * these will be pointed to by VMAs that don't overlap the dead zone
1927 	 *
1928 	 * we don't check for any regions that start beyond the EOF as there
1929 	 * shouldn't be any
1930 	 */
1931 	vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
1932 		if (!(vma->vm_flags & VM_SHARED))
1933 			continue;
1934 
1935 		region = vma->vm_region;
1936 		r_size = region->vm_top - region->vm_start;
1937 		r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
1938 
1939 		if (r_top > newsize) {
1940 			region->vm_top -= r_top - newsize;
1941 			if (region->vm_end > region->vm_top)
1942 				region->vm_end = region->vm_top;
1943 		}
1944 	}
1945 
1946 	i_mmap_unlock_read(inode->i_mapping);
1947 	up_write(&nommu_region_sem);
1948 	return 0;
1949 }
1950 
1951 /*
1952  * Initialise sysctl_user_reserve_kbytes.
1953  *
1954  * This is intended to prevent a user from starting a single memory hogging
1955  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
1956  * mode.
1957  *
1958  * The default value is min(3% of free memory, 128MB)
1959  * 128MB is enough to recover with sshd/login, bash, and top/kill.
1960  */
1961 static int __meminit init_user_reserve(void)
1962 {
1963 	unsigned long free_kbytes;
1964 
1965 	free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1966 
1967 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
1968 	return 0;
1969 }
1970 subsys_initcall(init_user_reserve);
1971 
1972 /*
1973  * Initialise sysctl_admin_reserve_kbytes.
1974  *
1975  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
1976  * to log in and kill a memory hogging process.
1977  *
1978  * Systems with more than 256MB will reserve 8MB, enough to recover
1979  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
1980  * only reserve 3% of free pages by default.
1981  */
1982 static int __meminit init_admin_reserve(void)
1983 {
1984 	unsigned long free_kbytes;
1985 
1986 	free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1987 
1988 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
1989 	return 0;
1990 }
1991 subsys_initcall(init_admin_reserve);
1992 
1993 long get_user_pages8(struct task_struct *tsk, struct mm_struct *mm,
1994 		     unsigned long start, unsigned long nr_pages,
1995 		     int write, int force, struct page **pages,
1996 		     struct vm_area_struct **vmas)
1997 {
1998 	return get_user_pages6(start, nr_pages, write, force, pages, vmas);
1999 }
2000 EXPORT_SYMBOL(get_user_pages8);
2001 
2002 long get_user_pages_locked8(struct task_struct *tsk, struct mm_struct *mm,
2003 			    unsigned long start, unsigned long nr_pages,
2004 			    int write, int force, struct page **pages,
2005 			    int *locked)
2006 {
2007 	return get_user_pages_locked6(start, nr_pages, write,
2008 				      force, pages, locked);
2009 }
2010 EXPORT_SYMBOL(get_user_pages_locked8);
2011 
2012 long get_user_pages_unlocked7(struct task_struct *tsk, struct mm_struct *mm,
2013 			      unsigned long start, unsigned long nr_pages,
2014 			      int write, int force, struct page **pages)
2015 {
2016 	return get_user_pages_unlocked5(start, nr_pages, write, force, pages);
2017 }
2018 EXPORT_SYMBOL(get_user_pages_unlocked7);
2019 
2020