1 /* 2 * linux/mm/nommu.c 3 * 4 * Replacement code for mm functions to support CPU's that don't 5 * have any form of memory management unit (thus no virtual memory). 6 * 7 * See Documentation/nommu-mmap.txt 8 * 9 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com> 10 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com> 11 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org> 12 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com> 13 * Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org> 14 */ 15 16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 17 18 #define __DISABLE_GUP_DEPRECATED 19 20 #include <linux/export.h> 21 #include <linux/mm.h> 22 #include <linux/vmacache.h> 23 #include <linux/mman.h> 24 #include <linux/swap.h> 25 #include <linux/file.h> 26 #include <linux/highmem.h> 27 #include <linux/pagemap.h> 28 #include <linux/slab.h> 29 #include <linux/vmalloc.h> 30 #include <linux/blkdev.h> 31 #include <linux/backing-dev.h> 32 #include <linux/compiler.h> 33 #include <linux/mount.h> 34 #include <linux/personality.h> 35 #include <linux/security.h> 36 #include <linux/syscalls.h> 37 #include <linux/audit.h> 38 #include <linux/printk.h> 39 40 #include <asm/uaccess.h> 41 #include <asm/tlb.h> 42 #include <asm/tlbflush.h> 43 #include <asm/mmu_context.h> 44 #include "internal.h" 45 46 void *high_memory; 47 EXPORT_SYMBOL(high_memory); 48 struct page *mem_map; 49 unsigned long max_mapnr; 50 EXPORT_SYMBOL(max_mapnr); 51 unsigned long highest_memmap_pfn; 52 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS; 53 int heap_stack_gap = 0; 54 55 atomic_long_t mmap_pages_allocated; 56 57 EXPORT_SYMBOL(mem_map); 58 59 /* list of mapped, potentially shareable regions */ 60 static struct kmem_cache *vm_region_jar; 61 struct rb_root nommu_region_tree = RB_ROOT; 62 DECLARE_RWSEM(nommu_region_sem); 63 64 const struct vm_operations_struct generic_file_vm_ops = { 65 }; 66 67 /* 68 * Return the total memory allocated for this pointer, not 69 * just what the caller asked for. 70 * 71 * Doesn't have to be accurate, i.e. may have races. 72 */ 73 unsigned int kobjsize(const void *objp) 74 { 75 struct page *page; 76 77 /* 78 * If the object we have should not have ksize performed on it, 79 * return size of 0 80 */ 81 if (!objp || !virt_addr_valid(objp)) 82 return 0; 83 84 page = virt_to_head_page(objp); 85 86 /* 87 * If the allocator sets PageSlab, we know the pointer came from 88 * kmalloc(). 89 */ 90 if (PageSlab(page)) 91 return ksize(objp); 92 93 /* 94 * If it's not a compound page, see if we have a matching VMA 95 * region. This test is intentionally done in reverse order, 96 * so if there's no VMA, we still fall through and hand back 97 * PAGE_SIZE for 0-order pages. 98 */ 99 if (!PageCompound(page)) { 100 struct vm_area_struct *vma; 101 102 vma = find_vma(current->mm, (unsigned long)objp); 103 if (vma) 104 return vma->vm_end - vma->vm_start; 105 } 106 107 /* 108 * The ksize() function is only guaranteed to work for pointers 109 * returned by kmalloc(). So handle arbitrary pointers here. 110 */ 111 return PAGE_SIZE << compound_order(page); 112 } 113 114 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 115 unsigned long start, unsigned long nr_pages, 116 unsigned int foll_flags, struct page **pages, 117 struct vm_area_struct **vmas, int *nonblocking) 118 { 119 struct vm_area_struct *vma; 120 unsigned long vm_flags; 121 int i; 122 123 /* calculate required read or write permissions. 124 * If FOLL_FORCE is set, we only require the "MAY" flags. 125 */ 126 vm_flags = (foll_flags & FOLL_WRITE) ? 127 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 128 vm_flags &= (foll_flags & FOLL_FORCE) ? 129 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 130 131 for (i = 0; i < nr_pages; i++) { 132 vma = find_vma(mm, start); 133 if (!vma) 134 goto finish_or_fault; 135 136 /* protect what we can, including chardevs */ 137 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) || 138 !(vm_flags & vma->vm_flags)) 139 goto finish_or_fault; 140 141 if (pages) { 142 pages[i] = virt_to_page(start); 143 if (pages[i]) 144 get_page(pages[i]); 145 } 146 if (vmas) 147 vmas[i] = vma; 148 start = (start + PAGE_SIZE) & PAGE_MASK; 149 } 150 151 return i; 152 153 finish_or_fault: 154 return i ? : -EFAULT; 155 } 156 157 /* 158 * get a list of pages in an address range belonging to the specified process 159 * and indicate the VMA that covers each page 160 * - this is potentially dodgy as we may end incrementing the page count of a 161 * slab page or a secondary page from a compound page 162 * - don't permit access to VMAs that don't support it, such as I/O mappings 163 */ 164 long get_user_pages6(unsigned long start, unsigned long nr_pages, 165 int write, int force, struct page **pages, 166 struct vm_area_struct **vmas) 167 { 168 int flags = 0; 169 170 if (write) 171 flags |= FOLL_WRITE; 172 if (force) 173 flags |= FOLL_FORCE; 174 175 return __get_user_pages(current, current->mm, start, nr_pages, flags, 176 pages, vmas, NULL); 177 } 178 EXPORT_SYMBOL(get_user_pages6); 179 180 long get_user_pages_locked6(unsigned long start, unsigned long nr_pages, 181 int write, int force, struct page **pages, 182 int *locked) 183 { 184 return get_user_pages6(start, nr_pages, write, force, pages, NULL); 185 } 186 EXPORT_SYMBOL(get_user_pages_locked6); 187 188 long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm, 189 unsigned long start, unsigned long nr_pages, 190 int write, int force, struct page **pages, 191 unsigned int gup_flags) 192 { 193 long ret; 194 down_read(&mm->mmap_sem); 195 ret = __get_user_pages(tsk, mm, start, nr_pages, gup_flags, pages, 196 NULL, NULL); 197 up_read(&mm->mmap_sem); 198 return ret; 199 } 200 EXPORT_SYMBOL(__get_user_pages_unlocked); 201 202 long get_user_pages_unlocked5(unsigned long start, unsigned long nr_pages, 203 int write, int force, struct page **pages) 204 { 205 return __get_user_pages_unlocked(current, current->mm, start, nr_pages, 206 write, force, pages, 0); 207 } 208 EXPORT_SYMBOL(get_user_pages_unlocked5); 209 210 /** 211 * follow_pfn - look up PFN at a user virtual address 212 * @vma: memory mapping 213 * @address: user virtual address 214 * @pfn: location to store found PFN 215 * 216 * Only IO mappings and raw PFN mappings are allowed. 217 * 218 * Returns zero and the pfn at @pfn on success, -ve otherwise. 219 */ 220 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 221 unsigned long *pfn) 222 { 223 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 224 return -EINVAL; 225 226 *pfn = address >> PAGE_SHIFT; 227 return 0; 228 } 229 EXPORT_SYMBOL(follow_pfn); 230 231 LIST_HEAD(vmap_area_list); 232 233 void vfree(const void *addr) 234 { 235 kfree(addr); 236 } 237 EXPORT_SYMBOL(vfree); 238 239 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot) 240 { 241 /* 242 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc() 243 * returns only a logical address. 244 */ 245 return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM); 246 } 247 EXPORT_SYMBOL(__vmalloc); 248 249 void *vmalloc_user(unsigned long size) 250 { 251 void *ret; 252 253 ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, 254 PAGE_KERNEL); 255 if (ret) { 256 struct vm_area_struct *vma; 257 258 down_write(¤t->mm->mmap_sem); 259 vma = find_vma(current->mm, (unsigned long)ret); 260 if (vma) 261 vma->vm_flags |= VM_USERMAP; 262 up_write(¤t->mm->mmap_sem); 263 } 264 265 return ret; 266 } 267 EXPORT_SYMBOL(vmalloc_user); 268 269 struct page *vmalloc_to_page(const void *addr) 270 { 271 return virt_to_page(addr); 272 } 273 EXPORT_SYMBOL(vmalloc_to_page); 274 275 unsigned long vmalloc_to_pfn(const void *addr) 276 { 277 return page_to_pfn(virt_to_page(addr)); 278 } 279 EXPORT_SYMBOL(vmalloc_to_pfn); 280 281 long vread(char *buf, char *addr, unsigned long count) 282 { 283 /* Don't allow overflow */ 284 if ((unsigned long) buf + count < count) 285 count = -(unsigned long) buf; 286 287 memcpy(buf, addr, count); 288 return count; 289 } 290 291 long vwrite(char *buf, char *addr, unsigned long count) 292 { 293 /* Don't allow overflow */ 294 if ((unsigned long) addr + count < count) 295 count = -(unsigned long) addr; 296 297 memcpy(addr, buf, count); 298 return count; 299 } 300 301 /* 302 * vmalloc - allocate virtually contiguous memory 303 * 304 * @size: allocation size 305 * 306 * Allocate enough pages to cover @size from the page level 307 * allocator and map them into contiguous kernel virtual space. 308 * 309 * For tight control over page level allocator and protection flags 310 * use __vmalloc() instead. 311 */ 312 void *vmalloc(unsigned long size) 313 { 314 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL); 315 } 316 EXPORT_SYMBOL(vmalloc); 317 318 /* 319 * vzalloc - allocate virtually contiguous memory with zero fill 320 * 321 * @size: allocation size 322 * 323 * Allocate enough pages to cover @size from the page level 324 * allocator and map them into contiguous kernel virtual space. 325 * The memory allocated is set to zero. 326 * 327 * For tight control over page level allocator and protection flags 328 * use __vmalloc() instead. 329 */ 330 void *vzalloc(unsigned long size) 331 { 332 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, 333 PAGE_KERNEL); 334 } 335 EXPORT_SYMBOL(vzalloc); 336 337 /** 338 * vmalloc_node - allocate memory on a specific node 339 * @size: allocation size 340 * @node: numa node 341 * 342 * Allocate enough pages to cover @size from the page level 343 * allocator and map them into contiguous kernel virtual space. 344 * 345 * For tight control over page level allocator and protection flags 346 * use __vmalloc() instead. 347 */ 348 void *vmalloc_node(unsigned long size, int node) 349 { 350 return vmalloc(size); 351 } 352 EXPORT_SYMBOL(vmalloc_node); 353 354 /** 355 * vzalloc_node - allocate memory on a specific node with zero fill 356 * @size: allocation size 357 * @node: numa node 358 * 359 * Allocate enough pages to cover @size from the page level 360 * allocator and map them into contiguous kernel virtual space. 361 * The memory allocated is set to zero. 362 * 363 * For tight control over page level allocator and protection flags 364 * use __vmalloc() instead. 365 */ 366 void *vzalloc_node(unsigned long size, int node) 367 { 368 return vzalloc(size); 369 } 370 EXPORT_SYMBOL(vzalloc_node); 371 372 #ifndef PAGE_KERNEL_EXEC 373 # define PAGE_KERNEL_EXEC PAGE_KERNEL 374 #endif 375 376 /** 377 * vmalloc_exec - allocate virtually contiguous, executable memory 378 * @size: allocation size 379 * 380 * Kernel-internal function to allocate enough pages to cover @size 381 * the page level allocator and map them into contiguous and 382 * executable kernel virtual space. 383 * 384 * For tight control over page level allocator and protection flags 385 * use __vmalloc() instead. 386 */ 387 388 void *vmalloc_exec(unsigned long size) 389 { 390 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC); 391 } 392 393 /** 394 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 395 * @size: allocation size 396 * 397 * Allocate enough 32bit PA addressable pages to cover @size from the 398 * page level allocator and map them into contiguous kernel virtual space. 399 */ 400 void *vmalloc_32(unsigned long size) 401 { 402 return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL); 403 } 404 EXPORT_SYMBOL(vmalloc_32); 405 406 /** 407 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 408 * @size: allocation size 409 * 410 * The resulting memory area is 32bit addressable and zeroed so it can be 411 * mapped to userspace without leaking data. 412 * 413 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to 414 * remap_vmalloc_range() are permissible. 415 */ 416 void *vmalloc_32_user(unsigned long size) 417 { 418 /* 419 * We'll have to sort out the ZONE_DMA bits for 64-bit, 420 * but for now this can simply use vmalloc_user() directly. 421 */ 422 return vmalloc_user(size); 423 } 424 EXPORT_SYMBOL(vmalloc_32_user); 425 426 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot) 427 { 428 BUG(); 429 return NULL; 430 } 431 EXPORT_SYMBOL(vmap); 432 433 void vunmap(const void *addr) 434 { 435 BUG(); 436 } 437 EXPORT_SYMBOL(vunmap); 438 439 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot) 440 { 441 BUG(); 442 return NULL; 443 } 444 EXPORT_SYMBOL(vm_map_ram); 445 446 void vm_unmap_ram(const void *mem, unsigned int count) 447 { 448 BUG(); 449 } 450 EXPORT_SYMBOL(vm_unmap_ram); 451 452 void vm_unmap_aliases(void) 453 { 454 } 455 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 456 457 /* 458 * Implement a stub for vmalloc_sync_all() if the architecture chose not to 459 * have one. 460 */ 461 void __weak vmalloc_sync_all(void) 462 { 463 } 464 465 /** 466 * alloc_vm_area - allocate a range of kernel address space 467 * @size: size of the area 468 * 469 * Returns: NULL on failure, vm_struct on success 470 * 471 * This function reserves a range of kernel address space, and 472 * allocates pagetables to map that range. No actual mappings 473 * are created. If the kernel address space is not shared 474 * between processes, it syncs the pagetable across all 475 * processes. 476 */ 477 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes) 478 { 479 BUG(); 480 return NULL; 481 } 482 EXPORT_SYMBOL_GPL(alloc_vm_area); 483 484 void free_vm_area(struct vm_struct *area) 485 { 486 BUG(); 487 } 488 EXPORT_SYMBOL_GPL(free_vm_area); 489 490 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 491 struct page *page) 492 { 493 return -EINVAL; 494 } 495 EXPORT_SYMBOL(vm_insert_page); 496 497 /* 498 * sys_brk() for the most part doesn't need the global kernel 499 * lock, except when an application is doing something nasty 500 * like trying to un-brk an area that has already been mapped 501 * to a regular file. in this case, the unmapping will need 502 * to invoke file system routines that need the global lock. 503 */ 504 SYSCALL_DEFINE1(brk, unsigned long, brk) 505 { 506 struct mm_struct *mm = current->mm; 507 508 if (brk < mm->start_brk || brk > mm->context.end_brk) 509 return mm->brk; 510 511 if (mm->brk == brk) 512 return mm->brk; 513 514 /* 515 * Always allow shrinking brk 516 */ 517 if (brk <= mm->brk) { 518 mm->brk = brk; 519 return brk; 520 } 521 522 /* 523 * Ok, looks good - let it rip. 524 */ 525 flush_icache_range(mm->brk, brk); 526 return mm->brk = brk; 527 } 528 529 /* 530 * initialise the VMA and region record slabs 531 */ 532 void __init mmap_init(void) 533 { 534 int ret; 535 536 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL); 537 VM_BUG_ON(ret); 538 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT); 539 } 540 541 /* 542 * validate the region tree 543 * - the caller must hold the region lock 544 */ 545 #ifdef CONFIG_DEBUG_NOMMU_REGIONS 546 static noinline void validate_nommu_regions(void) 547 { 548 struct vm_region *region, *last; 549 struct rb_node *p, *lastp; 550 551 lastp = rb_first(&nommu_region_tree); 552 if (!lastp) 553 return; 554 555 last = rb_entry(lastp, struct vm_region, vm_rb); 556 BUG_ON(last->vm_end <= last->vm_start); 557 BUG_ON(last->vm_top < last->vm_end); 558 559 while ((p = rb_next(lastp))) { 560 region = rb_entry(p, struct vm_region, vm_rb); 561 last = rb_entry(lastp, struct vm_region, vm_rb); 562 563 BUG_ON(region->vm_end <= region->vm_start); 564 BUG_ON(region->vm_top < region->vm_end); 565 BUG_ON(region->vm_start < last->vm_top); 566 567 lastp = p; 568 } 569 } 570 #else 571 static void validate_nommu_regions(void) 572 { 573 } 574 #endif 575 576 /* 577 * add a region into the global tree 578 */ 579 static void add_nommu_region(struct vm_region *region) 580 { 581 struct vm_region *pregion; 582 struct rb_node **p, *parent; 583 584 validate_nommu_regions(); 585 586 parent = NULL; 587 p = &nommu_region_tree.rb_node; 588 while (*p) { 589 parent = *p; 590 pregion = rb_entry(parent, struct vm_region, vm_rb); 591 if (region->vm_start < pregion->vm_start) 592 p = &(*p)->rb_left; 593 else if (region->vm_start > pregion->vm_start) 594 p = &(*p)->rb_right; 595 else if (pregion == region) 596 return; 597 else 598 BUG(); 599 } 600 601 rb_link_node(®ion->vm_rb, parent, p); 602 rb_insert_color(®ion->vm_rb, &nommu_region_tree); 603 604 validate_nommu_regions(); 605 } 606 607 /* 608 * delete a region from the global tree 609 */ 610 static void delete_nommu_region(struct vm_region *region) 611 { 612 BUG_ON(!nommu_region_tree.rb_node); 613 614 validate_nommu_regions(); 615 rb_erase(®ion->vm_rb, &nommu_region_tree); 616 validate_nommu_regions(); 617 } 618 619 /* 620 * free a contiguous series of pages 621 */ 622 static void free_page_series(unsigned long from, unsigned long to) 623 { 624 for (; from < to; from += PAGE_SIZE) { 625 struct page *page = virt_to_page(from); 626 627 atomic_long_dec(&mmap_pages_allocated); 628 put_page(page); 629 } 630 } 631 632 /* 633 * release a reference to a region 634 * - the caller must hold the region semaphore for writing, which this releases 635 * - the region may not have been added to the tree yet, in which case vm_top 636 * will equal vm_start 637 */ 638 static void __put_nommu_region(struct vm_region *region) 639 __releases(nommu_region_sem) 640 { 641 BUG_ON(!nommu_region_tree.rb_node); 642 643 if (--region->vm_usage == 0) { 644 if (region->vm_top > region->vm_start) 645 delete_nommu_region(region); 646 up_write(&nommu_region_sem); 647 648 if (region->vm_file) 649 fput(region->vm_file); 650 651 /* IO memory and memory shared directly out of the pagecache 652 * from ramfs/tmpfs mustn't be released here */ 653 if (region->vm_flags & VM_MAPPED_COPY) 654 free_page_series(region->vm_start, region->vm_top); 655 kmem_cache_free(vm_region_jar, region); 656 } else { 657 up_write(&nommu_region_sem); 658 } 659 } 660 661 /* 662 * release a reference to a region 663 */ 664 static void put_nommu_region(struct vm_region *region) 665 { 666 down_write(&nommu_region_sem); 667 __put_nommu_region(region); 668 } 669 670 /* 671 * update protection on a vma 672 */ 673 static void protect_vma(struct vm_area_struct *vma, unsigned long flags) 674 { 675 #ifdef CONFIG_MPU 676 struct mm_struct *mm = vma->vm_mm; 677 long start = vma->vm_start & PAGE_MASK; 678 while (start < vma->vm_end) { 679 protect_page(mm, start, flags); 680 start += PAGE_SIZE; 681 } 682 update_protections(mm); 683 #endif 684 } 685 686 /* 687 * add a VMA into a process's mm_struct in the appropriate place in the list 688 * and tree and add to the address space's page tree also if not an anonymous 689 * page 690 * - should be called with mm->mmap_sem held writelocked 691 */ 692 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma) 693 { 694 struct vm_area_struct *pvma, *prev; 695 struct address_space *mapping; 696 struct rb_node **p, *parent, *rb_prev; 697 698 BUG_ON(!vma->vm_region); 699 700 mm->map_count++; 701 vma->vm_mm = mm; 702 703 protect_vma(vma, vma->vm_flags); 704 705 /* add the VMA to the mapping */ 706 if (vma->vm_file) { 707 mapping = vma->vm_file->f_mapping; 708 709 i_mmap_lock_write(mapping); 710 flush_dcache_mmap_lock(mapping); 711 vma_interval_tree_insert(vma, &mapping->i_mmap); 712 flush_dcache_mmap_unlock(mapping); 713 i_mmap_unlock_write(mapping); 714 } 715 716 /* add the VMA to the tree */ 717 parent = rb_prev = NULL; 718 p = &mm->mm_rb.rb_node; 719 while (*p) { 720 parent = *p; 721 pvma = rb_entry(parent, struct vm_area_struct, vm_rb); 722 723 /* sort by: start addr, end addr, VMA struct addr in that order 724 * (the latter is necessary as we may get identical VMAs) */ 725 if (vma->vm_start < pvma->vm_start) 726 p = &(*p)->rb_left; 727 else if (vma->vm_start > pvma->vm_start) { 728 rb_prev = parent; 729 p = &(*p)->rb_right; 730 } else if (vma->vm_end < pvma->vm_end) 731 p = &(*p)->rb_left; 732 else if (vma->vm_end > pvma->vm_end) { 733 rb_prev = parent; 734 p = &(*p)->rb_right; 735 } else if (vma < pvma) 736 p = &(*p)->rb_left; 737 else if (vma > pvma) { 738 rb_prev = parent; 739 p = &(*p)->rb_right; 740 } else 741 BUG(); 742 } 743 744 rb_link_node(&vma->vm_rb, parent, p); 745 rb_insert_color(&vma->vm_rb, &mm->mm_rb); 746 747 /* add VMA to the VMA list also */ 748 prev = NULL; 749 if (rb_prev) 750 prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); 751 752 __vma_link_list(mm, vma, prev, parent); 753 } 754 755 /* 756 * delete a VMA from its owning mm_struct and address space 757 */ 758 static void delete_vma_from_mm(struct vm_area_struct *vma) 759 { 760 int i; 761 struct address_space *mapping; 762 struct mm_struct *mm = vma->vm_mm; 763 struct task_struct *curr = current; 764 765 protect_vma(vma, 0); 766 767 mm->map_count--; 768 for (i = 0; i < VMACACHE_SIZE; i++) { 769 /* if the vma is cached, invalidate the entire cache */ 770 if (curr->vmacache[i] == vma) { 771 vmacache_invalidate(mm); 772 break; 773 } 774 } 775 776 /* remove the VMA from the mapping */ 777 if (vma->vm_file) { 778 mapping = vma->vm_file->f_mapping; 779 780 i_mmap_lock_write(mapping); 781 flush_dcache_mmap_lock(mapping); 782 vma_interval_tree_remove(vma, &mapping->i_mmap); 783 flush_dcache_mmap_unlock(mapping); 784 i_mmap_unlock_write(mapping); 785 } 786 787 /* remove from the MM's tree and list */ 788 rb_erase(&vma->vm_rb, &mm->mm_rb); 789 790 if (vma->vm_prev) 791 vma->vm_prev->vm_next = vma->vm_next; 792 else 793 mm->mmap = vma->vm_next; 794 795 if (vma->vm_next) 796 vma->vm_next->vm_prev = vma->vm_prev; 797 } 798 799 /* 800 * destroy a VMA record 801 */ 802 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma) 803 { 804 if (vma->vm_ops && vma->vm_ops->close) 805 vma->vm_ops->close(vma); 806 if (vma->vm_file) 807 fput(vma->vm_file); 808 put_nommu_region(vma->vm_region); 809 kmem_cache_free(vm_area_cachep, vma); 810 } 811 812 /* 813 * look up the first VMA in which addr resides, NULL if none 814 * - should be called with mm->mmap_sem at least held readlocked 815 */ 816 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 817 { 818 struct vm_area_struct *vma; 819 820 /* check the cache first */ 821 vma = vmacache_find(mm, addr); 822 if (likely(vma)) 823 return vma; 824 825 /* trawl the list (there may be multiple mappings in which addr 826 * resides) */ 827 for (vma = mm->mmap; vma; vma = vma->vm_next) { 828 if (vma->vm_start > addr) 829 return NULL; 830 if (vma->vm_end > addr) { 831 vmacache_update(addr, vma); 832 return vma; 833 } 834 } 835 836 return NULL; 837 } 838 EXPORT_SYMBOL(find_vma); 839 840 /* 841 * find a VMA 842 * - we don't extend stack VMAs under NOMMU conditions 843 */ 844 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr) 845 { 846 return find_vma(mm, addr); 847 } 848 849 /* 850 * expand a stack to a given address 851 * - not supported under NOMMU conditions 852 */ 853 int expand_stack(struct vm_area_struct *vma, unsigned long address) 854 { 855 return -ENOMEM; 856 } 857 858 /* 859 * look up the first VMA exactly that exactly matches addr 860 * - should be called with mm->mmap_sem at least held readlocked 861 */ 862 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm, 863 unsigned long addr, 864 unsigned long len) 865 { 866 struct vm_area_struct *vma; 867 unsigned long end = addr + len; 868 869 /* check the cache first */ 870 vma = vmacache_find_exact(mm, addr, end); 871 if (vma) 872 return vma; 873 874 /* trawl the list (there may be multiple mappings in which addr 875 * resides) */ 876 for (vma = mm->mmap; vma; vma = vma->vm_next) { 877 if (vma->vm_start < addr) 878 continue; 879 if (vma->vm_start > addr) 880 return NULL; 881 if (vma->vm_end == end) { 882 vmacache_update(addr, vma); 883 return vma; 884 } 885 } 886 887 return NULL; 888 } 889 890 /* 891 * determine whether a mapping should be permitted and, if so, what sort of 892 * mapping we're capable of supporting 893 */ 894 static int validate_mmap_request(struct file *file, 895 unsigned long addr, 896 unsigned long len, 897 unsigned long prot, 898 unsigned long flags, 899 unsigned long pgoff, 900 unsigned long *_capabilities) 901 { 902 unsigned long capabilities, rlen; 903 int ret; 904 905 /* do the simple checks first */ 906 if (flags & MAP_FIXED) 907 return -EINVAL; 908 909 if ((flags & MAP_TYPE) != MAP_PRIVATE && 910 (flags & MAP_TYPE) != MAP_SHARED) 911 return -EINVAL; 912 913 if (!len) 914 return -EINVAL; 915 916 /* Careful about overflows.. */ 917 rlen = PAGE_ALIGN(len); 918 if (!rlen || rlen > TASK_SIZE) 919 return -ENOMEM; 920 921 /* offset overflow? */ 922 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff) 923 return -EOVERFLOW; 924 925 if (file) { 926 /* files must support mmap */ 927 if (!file->f_op->mmap) 928 return -ENODEV; 929 930 /* work out if what we've got could possibly be shared 931 * - we support chardevs that provide their own "memory" 932 * - we support files/blockdevs that are memory backed 933 */ 934 if (file->f_op->mmap_capabilities) { 935 capabilities = file->f_op->mmap_capabilities(file); 936 } else { 937 /* no explicit capabilities set, so assume some 938 * defaults */ 939 switch (file_inode(file)->i_mode & S_IFMT) { 940 case S_IFREG: 941 case S_IFBLK: 942 capabilities = NOMMU_MAP_COPY; 943 break; 944 945 case S_IFCHR: 946 capabilities = 947 NOMMU_MAP_DIRECT | 948 NOMMU_MAP_READ | 949 NOMMU_MAP_WRITE; 950 break; 951 952 default: 953 return -EINVAL; 954 } 955 } 956 957 /* eliminate any capabilities that we can't support on this 958 * device */ 959 if (!file->f_op->get_unmapped_area) 960 capabilities &= ~NOMMU_MAP_DIRECT; 961 if (!(file->f_mode & FMODE_CAN_READ)) 962 capabilities &= ~NOMMU_MAP_COPY; 963 964 /* The file shall have been opened with read permission. */ 965 if (!(file->f_mode & FMODE_READ)) 966 return -EACCES; 967 968 if (flags & MAP_SHARED) { 969 /* do checks for writing, appending and locking */ 970 if ((prot & PROT_WRITE) && 971 !(file->f_mode & FMODE_WRITE)) 972 return -EACCES; 973 974 if (IS_APPEND(file_inode(file)) && 975 (file->f_mode & FMODE_WRITE)) 976 return -EACCES; 977 978 if (locks_verify_locked(file)) 979 return -EAGAIN; 980 981 if (!(capabilities & NOMMU_MAP_DIRECT)) 982 return -ENODEV; 983 984 /* we mustn't privatise shared mappings */ 985 capabilities &= ~NOMMU_MAP_COPY; 986 } else { 987 /* we're going to read the file into private memory we 988 * allocate */ 989 if (!(capabilities & NOMMU_MAP_COPY)) 990 return -ENODEV; 991 992 /* we don't permit a private writable mapping to be 993 * shared with the backing device */ 994 if (prot & PROT_WRITE) 995 capabilities &= ~NOMMU_MAP_DIRECT; 996 } 997 998 if (capabilities & NOMMU_MAP_DIRECT) { 999 if (((prot & PROT_READ) && !(capabilities & NOMMU_MAP_READ)) || 1000 ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) || 1001 ((prot & PROT_EXEC) && !(capabilities & NOMMU_MAP_EXEC)) 1002 ) { 1003 capabilities &= ~NOMMU_MAP_DIRECT; 1004 if (flags & MAP_SHARED) { 1005 pr_warn("MAP_SHARED not completely supported on !MMU\n"); 1006 return -EINVAL; 1007 } 1008 } 1009 } 1010 1011 /* handle executable mappings and implied executable 1012 * mappings */ 1013 if (path_noexec(&file->f_path)) { 1014 if (prot & PROT_EXEC) 1015 return -EPERM; 1016 } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) { 1017 /* handle implication of PROT_EXEC by PROT_READ */ 1018 if (current->personality & READ_IMPLIES_EXEC) { 1019 if (capabilities & NOMMU_MAP_EXEC) 1020 prot |= PROT_EXEC; 1021 } 1022 } else if ((prot & PROT_READ) && 1023 (prot & PROT_EXEC) && 1024 !(capabilities & NOMMU_MAP_EXEC) 1025 ) { 1026 /* backing file is not executable, try to copy */ 1027 capabilities &= ~NOMMU_MAP_DIRECT; 1028 } 1029 } else { 1030 /* anonymous mappings are always memory backed and can be 1031 * privately mapped 1032 */ 1033 capabilities = NOMMU_MAP_COPY; 1034 1035 /* handle PROT_EXEC implication by PROT_READ */ 1036 if ((prot & PROT_READ) && 1037 (current->personality & READ_IMPLIES_EXEC)) 1038 prot |= PROT_EXEC; 1039 } 1040 1041 /* allow the security API to have its say */ 1042 ret = security_mmap_addr(addr); 1043 if (ret < 0) 1044 return ret; 1045 1046 /* looks okay */ 1047 *_capabilities = capabilities; 1048 return 0; 1049 } 1050 1051 /* 1052 * we've determined that we can make the mapping, now translate what we 1053 * now know into VMA flags 1054 */ 1055 static unsigned long determine_vm_flags(struct file *file, 1056 unsigned long prot, 1057 unsigned long flags, 1058 unsigned long capabilities) 1059 { 1060 unsigned long vm_flags; 1061 1062 vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags); 1063 /* vm_flags |= mm->def_flags; */ 1064 1065 if (!(capabilities & NOMMU_MAP_DIRECT)) { 1066 /* attempt to share read-only copies of mapped file chunks */ 1067 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 1068 if (file && !(prot & PROT_WRITE)) 1069 vm_flags |= VM_MAYSHARE; 1070 } else { 1071 /* overlay a shareable mapping on the backing device or inode 1072 * if possible - used for chardevs, ramfs/tmpfs/shmfs and 1073 * romfs/cramfs */ 1074 vm_flags |= VM_MAYSHARE | (capabilities & NOMMU_VMFLAGS); 1075 if (flags & MAP_SHARED) 1076 vm_flags |= VM_SHARED; 1077 } 1078 1079 /* refuse to let anyone share private mappings with this process if 1080 * it's being traced - otherwise breakpoints set in it may interfere 1081 * with another untraced process 1082 */ 1083 if ((flags & MAP_PRIVATE) && current->ptrace) 1084 vm_flags &= ~VM_MAYSHARE; 1085 1086 return vm_flags; 1087 } 1088 1089 /* 1090 * set up a shared mapping on a file (the driver or filesystem provides and 1091 * pins the storage) 1092 */ 1093 static int do_mmap_shared_file(struct vm_area_struct *vma) 1094 { 1095 int ret; 1096 1097 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma); 1098 if (ret == 0) { 1099 vma->vm_region->vm_top = vma->vm_region->vm_end; 1100 return 0; 1101 } 1102 if (ret != -ENOSYS) 1103 return ret; 1104 1105 /* getting -ENOSYS indicates that direct mmap isn't possible (as 1106 * opposed to tried but failed) so we can only give a suitable error as 1107 * it's not possible to make a private copy if MAP_SHARED was given */ 1108 return -ENODEV; 1109 } 1110 1111 /* 1112 * set up a private mapping or an anonymous shared mapping 1113 */ 1114 static int do_mmap_private(struct vm_area_struct *vma, 1115 struct vm_region *region, 1116 unsigned long len, 1117 unsigned long capabilities) 1118 { 1119 unsigned long total, point; 1120 void *base; 1121 int ret, order; 1122 1123 /* invoke the file's mapping function so that it can keep track of 1124 * shared mappings on devices or memory 1125 * - VM_MAYSHARE will be set if it may attempt to share 1126 */ 1127 if (capabilities & NOMMU_MAP_DIRECT) { 1128 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma); 1129 if (ret == 0) { 1130 /* shouldn't return success if we're not sharing */ 1131 BUG_ON(!(vma->vm_flags & VM_MAYSHARE)); 1132 vma->vm_region->vm_top = vma->vm_region->vm_end; 1133 return 0; 1134 } 1135 if (ret != -ENOSYS) 1136 return ret; 1137 1138 /* getting an ENOSYS error indicates that direct mmap isn't 1139 * possible (as opposed to tried but failed) so we'll try to 1140 * make a private copy of the data and map that instead */ 1141 } 1142 1143 1144 /* allocate some memory to hold the mapping 1145 * - note that this may not return a page-aligned address if the object 1146 * we're allocating is smaller than a page 1147 */ 1148 order = get_order(len); 1149 total = 1 << order; 1150 point = len >> PAGE_SHIFT; 1151 1152 /* we don't want to allocate a power-of-2 sized page set */ 1153 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) 1154 total = point; 1155 1156 base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL); 1157 if (!base) 1158 goto enomem; 1159 1160 atomic_long_add(total, &mmap_pages_allocated); 1161 1162 region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY; 1163 region->vm_start = (unsigned long) base; 1164 region->vm_end = region->vm_start + len; 1165 region->vm_top = region->vm_start + (total << PAGE_SHIFT); 1166 1167 vma->vm_start = region->vm_start; 1168 vma->vm_end = region->vm_start + len; 1169 1170 if (vma->vm_file) { 1171 /* read the contents of a file into the copy */ 1172 mm_segment_t old_fs; 1173 loff_t fpos; 1174 1175 fpos = vma->vm_pgoff; 1176 fpos <<= PAGE_SHIFT; 1177 1178 old_fs = get_fs(); 1179 set_fs(KERNEL_DS); 1180 ret = __vfs_read(vma->vm_file, base, len, &fpos); 1181 set_fs(old_fs); 1182 1183 if (ret < 0) 1184 goto error_free; 1185 1186 /* clear the last little bit */ 1187 if (ret < len) 1188 memset(base + ret, 0, len - ret); 1189 1190 } 1191 1192 return 0; 1193 1194 error_free: 1195 free_page_series(region->vm_start, region->vm_top); 1196 region->vm_start = vma->vm_start = 0; 1197 region->vm_end = vma->vm_end = 0; 1198 region->vm_top = 0; 1199 return ret; 1200 1201 enomem: 1202 pr_err("Allocation of length %lu from process %d (%s) failed\n", 1203 len, current->pid, current->comm); 1204 show_free_areas(0); 1205 return -ENOMEM; 1206 } 1207 1208 /* 1209 * handle mapping creation for uClinux 1210 */ 1211 unsigned long do_mmap(struct file *file, 1212 unsigned long addr, 1213 unsigned long len, 1214 unsigned long prot, 1215 unsigned long flags, 1216 vm_flags_t vm_flags, 1217 unsigned long pgoff, 1218 unsigned long *populate) 1219 { 1220 struct vm_area_struct *vma; 1221 struct vm_region *region; 1222 struct rb_node *rb; 1223 unsigned long capabilities, result; 1224 int ret; 1225 1226 *populate = 0; 1227 1228 /* decide whether we should attempt the mapping, and if so what sort of 1229 * mapping */ 1230 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff, 1231 &capabilities); 1232 if (ret < 0) 1233 return ret; 1234 1235 /* we ignore the address hint */ 1236 addr = 0; 1237 len = PAGE_ALIGN(len); 1238 1239 /* we've determined that we can make the mapping, now translate what we 1240 * now know into VMA flags */ 1241 vm_flags |= determine_vm_flags(file, prot, flags, capabilities); 1242 1243 /* we're going to need to record the mapping */ 1244 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL); 1245 if (!region) 1246 goto error_getting_region; 1247 1248 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 1249 if (!vma) 1250 goto error_getting_vma; 1251 1252 region->vm_usage = 1; 1253 region->vm_flags = vm_flags; 1254 region->vm_pgoff = pgoff; 1255 1256 INIT_LIST_HEAD(&vma->anon_vma_chain); 1257 vma->vm_flags = vm_flags; 1258 vma->vm_pgoff = pgoff; 1259 1260 if (file) { 1261 region->vm_file = get_file(file); 1262 vma->vm_file = get_file(file); 1263 } 1264 1265 down_write(&nommu_region_sem); 1266 1267 /* if we want to share, we need to check for regions created by other 1268 * mmap() calls that overlap with our proposed mapping 1269 * - we can only share with a superset match on most regular files 1270 * - shared mappings on character devices and memory backed files are 1271 * permitted to overlap inexactly as far as we are concerned for in 1272 * these cases, sharing is handled in the driver or filesystem rather 1273 * than here 1274 */ 1275 if (vm_flags & VM_MAYSHARE) { 1276 struct vm_region *pregion; 1277 unsigned long pglen, rpglen, pgend, rpgend, start; 1278 1279 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1280 pgend = pgoff + pglen; 1281 1282 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) { 1283 pregion = rb_entry(rb, struct vm_region, vm_rb); 1284 1285 if (!(pregion->vm_flags & VM_MAYSHARE)) 1286 continue; 1287 1288 /* search for overlapping mappings on the same file */ 1289 if (file_inode(pregion->vm_file) != 1290 file_inode(file)) 1291 continue; 1292 1293 if (pregion->vm_pgoff >= pgend) 1294 continue; 1295 1296 rpglen = pregion->vm_end - pregion->vm_start; 1297 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT; 1298 rpgend = pregion->vm_pgoff + rpglen; 1299 if (pgoff >= rpgend) 1300 continue; 1301 1302 /* handle inexactly overlapping matches between 1303 * mappings */ 1304 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) && 1305 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) { 1306 /* new mapping is not a subset of the region */ 1307 if (!(capabilities & NOMMU_MAP_DIRECT)) 1308 goto sharing_violation; 1309 continue; 1310 } 1311 1312 /* we've found a region we can share */ 1313 pregion->vm_usage++; 1314 vma->vm_region = pregion; 1315 start = pregion->vm_start; 1316 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT; 1317 vma->vm_start = start; 1318 vma->vm_end = start + len; 1319 1320 if (pregion->vm_flags & VM_MAPPED_COPY) 1321 vma->vm_flags |= VM_MAPPED_COPY; 1322 else { 1323 ret = do_mmap_shared_file(vma); 1324 if (ret < 0) { 1325 vma->vm_region = NULL; 1326 vma->vm_start = 0; 1327 vma->vm_end = 0; 1328 pregion->vm_usage--; 1329 pregion = NULL; 1330 goto error_just_free; 1331 } 1332 } 1333 fput(region->vm_file); 1334 kmem_cache_free(vm_region_jar, region); 1335 region = pregion; 1336 result = start; 1337 goto share; 1338 } 1339 1340 /* obtain the address at which to make a shared mapping 1341 * - this is the hook for quasi-memory character devices to 1342 * tell us the location of a shared mapping 1343 */ 1344 if (capabilities & NOMMU_MAP_DIRECT) { 1345 addr = file->f_op->get_unmapped_area(file, addr, len, 1346 pgoff, flags); 1347 if (IS_ERR_VALUE(addr)) { 1348 ret = addr; 1349 if (ret != -ENOSYS) 1350 goto error_just_free; 1351 1352 /* the driver refused to tell us where to site 1353 * the mapping so we'll have to attempt to copy 1354 * it */ 1355 ret = -ENODEV; 1356 if (!(capabilities & NOMMU_MAP_COPY)) 1357 goto error_just_free; 1358 1359 capabilities &= ~NOMMU_MAP_DIRECT; 1360 } else { 1361 vma->vm_start = region->vm_start = addr; 1362 vma->vm_end = region->vm_end = addr + len; 1363 } 1364 } 1365 } 1366 1367 vma->vm_region = region; 1368 1369 /* set up the mapping 1370 * - the region is filled in if NOMMU_MAP_DIRECT is still set 1371 */ 1372 if (file && vma->vm_flags & VM_SHARED) 1373 ret = do_mmap_shared_file(vma); 1374 else 1375 ret = do_mmap_private(vma, region, len, capabilities); 1376 if (ret < 0) 1377 goto error_just_free; 1378 add_nommu_region(region); 1379 1380 /* clear anonymous mappings that don't ask for uninitialized data */ 1381 if (!vma->vm_file && !(flags & MAP_UNINITIALIZED)) 1382 memset((void *)region->vm_start, 0, 1383 region->vm_end - region->vm_start); 1384 1385 /* okay... we have a mapping; now we have to register it */ 1386 result = vma->vm_start; 1387 1388 current->mm->total_vm += len >> PAGE_SHIFT; 1389 1390 share: 1391 add_vma_to_mm(current->mm, vma); 1392 1393 /* we flush the region from the icache only when the first executable 1394 * mapping of it is made */ 1395 if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) { 1396 flush_icache_range(region->vm_start, region->vm_end); 1397 region->vm_icache_flushed = true; 1398 } 1399 1400 up_write(&nommu_region_sem); 1401 1402 return result; 1403 1404 error_just_free: 1405 up_write(&nommu_region_sem); 1406 error: 1407 if (region->vm_file) 1408 fput(region->vm_file); 1409 kmem_cache_free(vm_region_jar, region); 1410 if (vma->vm_file) 1411 fput(vma->vm_file); 1412 kmem_cache_free(vm_area_cachep, vma); 1413 return ret; 1414 1415 sharing_violation: 1416 up_write(&nommu_region_sem); 1417 pr_warn("Attempt to share mismatched mappings\n"); 1418 ret = -EINVAL; 1419 goto error; 1420 1421 error_getting_vma: 1422 kmem_cache_free(vm_region_jar, region); 1423 pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n", 1424 len, current->pid); 1425 show_free_areas(0); 1426 return -ENOMEM; 1427 1428 error_getting_region: 1429 pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n", 1430 len, current->pid); 1431 show_free_areas(0); 1432 return -ENOMEM; 1433 } 1434 1435 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1436 unsigned long, prot, unsigned long, flags, 1437 unsigned long, fd, unsigned long, pgoff) 1438 { 1439 struct file *file = NULL; 1440 unsigned long retval = -EBADF; 1441 1442 audit_mmap_fd(fd, flags); 1443 if (!(flags & MAP_ANONYMOUS)) { 1444 file = fget(fd); 1445 if (!file) 1446 goto out; 1447 } 1448 1449 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE); 1450 1451 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1452 1453 if (file) 1454 fput(file); 1455 out: 1456 return retval; 1457 } 1458 1459 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1460 struct mmap_arg_struct { 1461 unsigned long addr; 1462 unsigned long len; 1463 unsigned long prot; 1464 unsigned long flags; 1465 unsigned long fd; 1466 unsigned long offset; 1467 }; 1468 1469 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1470 { 1471 struct mmap_arg_struct a; 1472 1473 if (copy_from_user(&a, arg, sizeof(a))) 1474 return -EFAULT; 1475 if (offset_in_page(a.offset)) 1476 return -EINVAL; 1477 1478 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1479 a.offset >> PAGE_SHIFT); 1480 } 1481 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1482 1483 /* 1484 * split a vma into two pieces at address 'addr', a new vma is allocated either 1485 * for the first part or the tail. 1486 */ 1487 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 1488 unsigned long addr, int new_below) 1489 { 1490 struct vm_area_struct *new; 1491 struct vm_region *region; 1492 unsigned long npages; 1493 1494 /* we're only permitted to split anonymous regions (these should have 1495 * only a single usage on the region) */ 1496 if (vma->vm_file) 1497 return -ENOMEM; 1498 1499 if (mm->map_count >= sysctl_max_map_count) 1500 return -ENOMEM; 1501 1502 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL); 1503 if (!region) 1504 return -ENOMEM; 1505 1506 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 1507 if (!new) { 1508 kmem_cache_free(vm_region_jar, region); 1509 return -ENOMEM; 1510 } 1511 1512 /* most fields are the same, copy all, and then fixup */ 1513 *new = *vma; 1514 *region = *vma->vm_region; 1515 new->vm_region = region; 1516 1517 npages = (addr - vma->vm_start) >> PAGE_SHIFT; 1518 1519 if (new_below) { 1520 region->vm_top = region->vm_end = new->vm_end = addr; 1521 } else { 1522 region->vm_start = new->vm_start = addr; 1523 region->vm_pgoff = new->vm_pgoff += npages; 1524 } 1525 1526 if (new->vm_ops && new->vm_ops->open) 1527 new->vm_ops->open(new); 1528 1529 delete_vma_from_mm(vma); 1530 down_write(&nommu_region_sem); 1531 delete_nommu_region(vma->vm_region); 1532 if (new_below) { 1533 vma->vm_region->vm_start = vma->vm_start = addr; 1534 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages; 1535 } else { 1536 vma->vm_region->vm_end = vma->vm_end = addr; 1537 vma->vm_region->vm_top = addr; 1538 } 1539 add_nommu_region(vma->vm_region); 1540 add_nommu_region(new->vm_region); 1541 up_write(&nommu_region_sem); 1542 add_vma_to_mm(mm, vma); 1543 add_vma_to_mm(mm, new); 1544 return 0; 1545 } 1546 1547 /* 1548 * shrink a VMA by removing the specified chunk from either the beginning or 1549 * the end 1550 */ 1551 static int shrink_vma(struct mm_struct *mm, 1552 struct vm_area_struct *vma, 1553 unsigned long from, unsigned long to) 1554 { 1555 struct vm_region *region; 1556 1557 /* adjust the VMA's pointers, which may reposition it in the MM's tree 1558 * and list */ 1559 delete_vma_from_mm(vma); 1560 if (from > vma->vm_start) 1561 vma->vm_end = from; 1562 else 1563 vma->vm_start = to; 1564 add_vma_to_mm(mm, vma); 1565 1566 /* cut the backing region down to size */ 1567 region = vma->vm_region; 1568 BUG_ON(region->vm_usage != 1); 1569 1570 down_write(&nommu_region_sem); 1571 delete_nommu_region(region); 1572 if (from > region->vm_start) { 1573 to = region->vm_top; 1574 region->vm_top = region->vm_end = from; 1575 } else { 1576 region->vm_start = to; 1577 } 1578 add_nommu_region(region); 1579 up_write(&nommu_region_sem); 1580 1581 free_page_series(from, to); 1582 return 0; 1583 } 1584 1585 /* 1586 * release a mapping 1587 * - under NOMMU conditions the chunk to be unmapped must be backed by a single 1588 * VMA, though it need not cover the whole VMA 1589 */ 1590 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len) 1591 { 1592 struct vm_area_struct *vma; 1593 unsigned long end; 1594 int ret; 1595 1596 len = PAGE_ALIGN(len); 1597 if (len == 0) 1598 return -EINVAL; 1599 1600 end = start + len; 1601 1602 /* find the first potentially overlapping VMA */ 1603 vma = find_vma(mm, start); 1604 if (!vma) { 1605 static int limit; 1606 if (limit < 5) { 1607 pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n", 1608 current->pid, current->comm, 1609 start, start + len - 1); 1610 limit++; 1611 } 1612 return -EINVAL; 1613 } 1614 1615 /* we're allowed to split an anonymous VMA but not a file-backed one */ 1616 if (vma->vm_file) { 1617 do { 1618 if (start > vma->vm_start) 1619 return -EINVAL; 1620 if (end == vma->vm_end) 1621 goto erase_whole_vma; 1622 vma = vma->vm_next; 1623 } while (vma); 1624 return -EINVAL; 1625 } else { 1626 /* the chunk must be a subset of the VMA found */ 1627 if (start == vma->vm_start && end == vma->vm_end) 1628 goto erase_whole_vma; 1629 if (start < vma->vm_start || end > vma->vm_end) 1630 return -EINVAL; 1631 if (offset_in_page(start)) 1632 return -EINVAL; 1633 if (end != vma->vm_end && offset_in_page(end)) 1634 return -EINVAL; 1635 if (start != vma->vm_start && end != vma->vm_end) { 1636 ret = split_vma(mm, vma, start, 1); 1637 if (ret < 0) 1638 return ret; 1639 } 1640 return shrink_vma(mm, vma, start, end); 1641 } 1642 1643 erase_whole_vma: 1644 delete_vma_from_mm(vma); 1645 delete_vma(mm, vma); 1646 return 0; 1647 } 1648 EXPORT_SYMBOL(do_munmap); 1649 1650 int vm_munmap(unsigned long addr, size_t len) 1651 { 1652 struct mm_struct *mm = current->mm; 1653 int ret; 1654 1655 down_write(&mm->mmap_sem); 1656 ret = do_munmap(mm, addr, len); 1657 up_write(&mm->mmap_sem); 1658 return ret; 1659 } 1660 EXPORT_SYMBOL(vm_munmap); 1661 1662 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 1663 { 1664 return vm_munmap(addr, len); 1665 } 1666 1667 /* 1668 * release all the mappings made in a process's VM space 1669 */ 1670 void exit_mmap(struct mm_struct *mm) 1671 { 1672 struct vm_area_struct *vma; 1673 1674 if (!mm) 1675 return; 1676 1677 mm->total_vm = 0; 1678 1679 while ((vma = mm->mmap)) { 1680 mm->mmap = vma->vm_next; 1681 delete_vma_from_mm(vma); 1682 delete_vma(mm, vma); 1683 cond_resched(); 1684 } 1685 } 1686 1687 unsigned long vm_brk(unsigned long addr, unsigned long len) 1688 { 1689 return -ENOMEM; 1690 } 1691 1692 /* 1693 * expand (or shrink) an existing mapping, potentially moving it at the same 1694 * time (controlled by the MREMAP_MAYMOVE flag and available VM space) 1695 * 1696 * under NOMMU conditions, we only permit changing a mapping's size, and only 1697 * as long as it stays within the region allocated by do_mmap_private() and the 1698 * block is not shareable 1699 * 1700 * MREMAP_FIXED is not supported under NOMMU conditions 1701 */ 1702 static unsigned long do_mremap(unsigned long addr, 1703 unsigned long old_len, unsigned long new_len, 1704 unsigned long flags, unsigned long new_addr) 1705 { 1706 struct vm_area_struct *vma; 1707 1708 /* insanity checks first */ 1709 old_len = PAGE_ALIGN(old_len); 1710 new_len = PAGE_ALIGN(new_len); 1711 if (old_len == 0 || new_len == 0) 1712 return (unsigned long) -EINVAL; 1713 1714 if (offset_in_page(addr)) 1715 return -EINVAL; 1716 1717 if (flags & MREMAP_FIXED && new_addr != addr) 1718 return (unsigned long) -EINVAL; 1719 1720 vma = find_vma_exact(current->mm, addr, old_len); 1721 if (!vma) 1722 return (unsigned long) -EINVAL; 1723 1724 if (vma->vm_end != vma->vm_start + old_len) 1725 return (unsigned long) -EFAULT; 1726 1727 if (vma->vm_flags & VM_MAYSHARE) 1728 return (unsigned long) -EPERM; 1729 1730 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start) 1731 return (unsigned long) -ENOMEM; 1732 1733 /* all checks complete - do it */ 1734 vma->vm_end = vma->vm_start + new_len; 1735 return vma->vm_start; 1736 } 1737 1738 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len, 1739 unsigned long, new_len, unsigned long, flags, 1740 unsigned long, new_addr) 1741 { 1742 unsigned long ret; 1743 1744 down_write(¤t->mm->mmap_sem); 1745 ret = do_mremap(addr, old_len, new_len, flags, new_addr); 1746 up_write(¤t->mm->mmap_sem); 1747 return ret; 1748 } 1749 1750 struct page *follow_page_mask(struct vm_area_struct *vma, 1751 unsigned long address, unsigned int flags, 1752 unsigned int *page_mask) 1753 { 1754 *page_mask = 0; 1755 return NULL; 1756 } 1757 1758 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 1759 unsigned long pfn, unsigned long size, pgprot_t prot) 1760 { 1761 if (addr != (pfn << PAGE_SHIFT)) 1762 return -EINVAL; 1763 1764 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; 1765 return 0; 1766 } 1767 EXPORT_SYMBOL(remap_pfn_range); 1768 1769 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 1770 { 1771 unsigned long pfn = start >> PAGE_SHIFT; 1772 unsigned long vm_len = vma->vm_end - vma->vm_start; 1773 1774 pfn += vma->vm_pgoff; 1775 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 1776 } 1777 EXPORT_SYMBOL(vm_iomap_memory); 1778 1779 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 1780 unsigned long pgoff) 1781 { 1782 unsigned int size = vma->vm_end - vma->vm_start; 1783 1784 if (!(vma->vm_flags & VM_USERMAP)) 1785 return -EINVAL; 1786 1787 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT)); 1788 vma->vm_end = vma->vm_start + size; 1789 1790 return 0; 1791 } 1792 EXPORT_SYMBOL(remap_vmalloc_range); 1793 1794 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr, 1795 unsigned long len, unsigned long pgoff, unsigned long flags) 1796 { 1797 return -ENOMEM; 1798 } 1799 1800 void unmap_mapping_range(struct address_space *mapping, 1801 loff_t const holebegin, loff_t const holelen, 1802 int even_cows) 1803 { 1804 } 1805 EXPORT_SYMBOL(unmap_mapping_range); 1806 1807 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1808 { 1809 BUG(); 1810 return 0; 1811 } 1812 EXPORT_SYMBOL(filemap_fault); 1813 1814 void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf) 1815 { 1816 BUG(); 1817 } 1818 EXPORT_SYMBOL(filemap_map_pages); 1819 1820 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 1821 unsigned long addr, void *buf, int len, int write) 1822 { 1823 struct vm_area_struct *vma; 1824 1825 down_read(&mm->mmap_sem); 1826 1827 /* the access must start within one of the target process's mappings */ 1828 vma = find_vma(mm, addr); 1829 if (vma) { 1830 /* don't overrun this mapping */ 1831 if (addr + len >= vma->vm_end) 1832 len = vma->vm_end - addr; 1833 1834 /* only read or write mappings where it is permitted */ 1835 if (write && vma->vm_flags & VM_MAYWRITE) 1836 copy_to_user_page(vma, NULL, addr, 1837 (void *) addr, buf, len); 1838 else if (!write && vma->vm_flags & VM_MAYREAD) 1839 copy_from_user_page(vma, NULL, addr, 1840 buf, (void *) addr, len); 1841 else 1842 len = 0; 1843 } else { 1844 len = 0; 1845 } 1846 1847 up_read(&mm->mmap_sem); 1848 1849 return len; 1850 } 1851 1852 /** 1853 * @access_remote_vm - access another process' address space 1854 * @mm: the mm_struct of the target address space 1855 * @addr: start address to access 1856 * @buf: source or destination buffer 1857 * @len: number of bytes to transfer 1858 * @write: whether the access is a write 1859 * 1860 * The caller must hold a reference on @mm. 1861 */ 1862 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1863 void *buf, int len, int write) 1864 { 1865 return __access_remote_vm(NULL, mm, addr, buf, len, write); 1866 } 1867 1868 /* 1869 * Access another process' address space. 1870 * - source/target buffer must be kernel space 1871 */ 1872 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write) 1873 { 1874 struct mm_struct *mm; 1875 1876 if (addr + len < addr) 1877 return 0; 1878 1879 mm = get_task_mm(tsk); 1880 if (!mm) 1881 return 0; 1882 1883 len = __access_remote_vm(tsk, mm, addr, buf, len, write); 1884 1885 mmput(mm); 1886 return len; 1887 } 1888 1889 /** 1890 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode 1891 * @inode: The inode to check 1892 * @size: The current filesize of the inode 1893 * @newsize: The proposed filesize of the inode 1894 * 1895 * Check the shared mappings on an inode on behalf of a shrinking truncate to 1896 * make sure that that any outstanding VMAs aren't broken and then shrink the 1897 * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't 1898 * automatically grant mappings that are too large. 1899 */ 1900 int nommu_shrink_inode_mappings(struct inode *inode, size_t size, 1901 size_t newsize) 1902 { 1903 struct vm_area_struct *vma; 1904 struct vm_region *region; 1905 pgoff_t low, high; 1906 size_t r_size, r_top; 1907 1908 low = newsize >> PAGE_SHIFT; 1909 high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 1910 1911 down_write(&nommu_region_sem); 1912 i_mmap_lock_read(inode->i_mapping); 1913 1914 /* search for VMAs that fall within the dead zone */ 1915 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) { 1916 /* found one - only interested if it's shared out of the page 1917 * cache */ 1918 if (vma->vm_flags & VM_SHARED) { 1919 i_mmap_unlock_read(inode->i_mapping); 1920 up_write(&nommu_region_sem); 1921 return -ETXTBSY; /* not quite true, but near enough */ 1922 } 1923 } 1924 1925 /* reduce any regions that overlap the dead zone - if in existence, 1926 * these will be pointed to by VMAs that don't overlap the dead zone 1927 * 1928 * we don't check for any regions that start beyond the EOF as there 1929 * shouldn't be any 1930 */ 1931 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) { 1932 if (!(vma->vm_flags & VM_SHARED)) 1933 continue; 1934 1935 region = vma->vm_region; 1936 r_size = region->vm_top - region->vm_start; 1937 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size; 1938 1939 if (r_top > newsize) { 1940 region->vm_top -= r_top - newsize; 1941 if (region->vm_end > region->vm_top) 1942 region->vm_end = region->vm_top; 1943 } 1944 } 1945 1946 i_mmap_unlock_read(inode->i_mapping); 1947 up_write(&nommu_region_sem); 1948 return 0; 1949 } 1950 1951 /* 1952 * Initialise sysctl_user_reserve_kbytes. 1953 * 1954 * This is intended to prevent a user from starting a single memory hogging 1955 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER 1956 * mode. 1957 * 1958 * The default value is min(3% of free memory, 128MB) 1959 * 128MB is enough to recover with sshd/login, bash, and top/kill. 1960 */ 1961 static int __meminit init_user_reserve(void) 1962 { 1963 unsigned long free_kbytes; 1964 1965 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 1966 1967 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17); 1968 return 0; 1969 } 1970 subsys_initcall(init_user_reserve); 1971 1972 /* 1973 * Initialise sysctl_admin_reserve_kbytes. 1974 * 1975 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin 1976 * to log in and kill a memory hogging process. 1977 * 1978 * Systems with more than 256MB will reserve 8MB, enough to recover 1979 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will 1980 * only reserve 3% of free pages by default. 1981 */ 1982 static int __meminit init_admin_reserve(void) 1983 { 1984 unsigned long free_kbytes; 1985 1986 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 1987 1988 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13); 1989 return 0; 1990 } 1991 subsys_initcall(init_admin_reserve); 1992 1993 long get_user_pages8(struct task_struct *tsk, struct mm_struct *mm, 1994 unsigned long start, unsigned long nr_pages, 1995 int write, int force, struct page **pages, 1996 struct vm_area_struct **vmas) 1997 { 1998 return get_user_pages6(start, nr_pages, write, force, pages, vmas); 1999 } 2000 EXPORT_SYMBOL(get_user_pages8); 2001 2002 long get_user_pages_locked8(struct task_struct *tsk, struct mm_struct *mm, 2003 unsigned long start, unsigned long nr_pages, 2004 int write, int force, struct page **pages, 2005 int *locked) 2006 { 2007 return get_user_pages_locked6(start, nr_pages, write, 2008 force, pages, locked); 2009 } 2010 EXPORT_SYMBOL(get_user_pages_locked8); 2011 2012 long get_user_pages_unlocked7(struct task_struct *tsk, struct mm_struct *mm, 2013 unsigned long start, unsigned long nr_pages, 2014 int write, int force, struct page **pages) 2015 { 2016 return get_user_pages_unlocked5(start, nr_pages, write, force, pages); 2017 } 2018 EXPORT_SYMBOL(get_user_pages_unlocked7); 2019 2020