xref: /linux/mm/nommu.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  *  linux/mm/nommu.c
3  *
4  *  Replacement code for mm functions to support CPU's that don't
5  *  have any form of memory management unit (thus no virtual memory).
6  *
7  *  See Documentation/nommu-mmap.txt
8  *
9  *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10  *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11  *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12  *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
13  *  Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
14  */
15 
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17 
18 #include <linux/export.h>
19 #include <linux/mm.h>
20 #include <linux/vmacache.h>
21 #include <linux/mman.h>
22 #include <linux/swap.h>
23 #include <linux/file.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <linux/slab.h>
27 #include <linux/vmalloc.h>
28 #include <linux/blkdev.h>
29 #include <linux/backing-dev.h>
30 #include <linux/compiler.h>
31 #include <linux/mount.h>
32 #include <linux/personality.h>
33 #include <linux/security.h>
34 #include <linux/syscalls.h>
35 #include <linux/audit.h>
36 #include <linux/printk.h>
37 
38 #include <asm/uaccess.h>
39 #include <asm/tlb.h>
40 #include <asm/tlbflush.h>
41 #include <asm/mmu_context.h>
42 #include "internal.h"
43 
44 void *high_memory;
45 EXPORT_SYMBOL(high_memory);
46 struct page *mem_map;
47 unsigned long max_mapnr;
48 EXPORT_SYMBOL(max_mapnr);
49 unsigned long highest_memmap_pfn;
50 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
51 int heap_stack_gap = 0;
52 
53 atomic_long_t mmap_pages_allocated;
54 
55 EXPORT_SYMBOL(mem_map);
56 
57 /* list of mapped, potentially shareable regions */
58 static struct kmem_cache *vm_region_jar;
59 struct rb_root nommu_region_tree = RB_ROOT;
60 DECLARE_RWSEM(nommu_region_sem);
61 
62 const struct vm_operations_struct generic_file_vm_ops = {
63 };
64 
65 /*
66  * Return the total memory allocated for this pointer, not
67  * just what the caller asked for.
68  *
69  * Doesn't have to be accurate, i.e. may have races.
70  */
71 unsigned int kobjsize(const void *objp)
72 {
73 	struct page *page;
74 
75 	/*
76 	 * If the object we have should not have ksize performed on it,
77 	 * return size of 0
78 	 */
79 	if (!objp || !virt_addr_valid(objp))
80 		return 0;
81 
82 	page = virt_to_head_page(objp);
83 
84 	/*
85 	 * If the allocator sets PageSlab, we know the pointer came from
86 	 * kmalloc().
87 	 */
88 	if (PageSlab(page))
89 		return ksize(objp);
90 
91 	/*
92 	 * If it's not a compound page, see if we have a matching VMA
93 	 * region. This test is intentionally done in reverse order,
94 	 * so if there's no VMA, we still fall through and hand back
95 	 * PAGE_SIZE for 0-order pages.
96 	 */
97 	if (!PageCompound(page)) {
98 		struct vm_area_struct *vma;
99 
100 		vma = find_vma(current->mm, (unsigned long)objp);
101 		if (vma)
102 			return vma->vm_end - vma->vm_start;
103 	}
104 
105 	/*
106 	 * The ksize() function is only guaranteed to work for pointers
107 	 * returned by kmalloc(). So handle arbitrary pointers here.
108 	 */
109 	return PAGE_SIZE << compound_order(page);
110 }
111 
112 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
113 		      unsigned long start, unsigned long nr_pages,
114 		      unsigned int foll_flags, struct page **pages,
115 		      struct vm_area_struct **vmas, int *nonblocking)
116 {
117 	struct vm_area_struct *vma;
118 	unsigned long vm_flags;
119 	int i;
120 
121 	/* calculate required read or write permissions.
122 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
123 	 */
124 	vm_flags  = (foll_flags & FOLL_WRITE) ?
125 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
126 	vm_flags &= (foll_flags & FOLL_FORCE) ?
127 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
128 
129 	for (i = 0; i < nr_pages; i++) {
130 		vma = find_vma(mm, start);
131 		if (!vma)
132 			goto finish_or_fault;
133 
134 		/* protect what we can, including chardevs */
135 		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
136 		    !(vm_flags & vma->vm_flags))
137 			goto finish_or_fault;
138 
139 		if (pages) {
140 			pages[i] = virt_to_page(start);
141 			if (pages[i])
142 				get_page(pages[i]);
143 		}
144 		if (vmas)
145 			vmas[i] = vma;
146 		start = (start + PAGE_SIZE) & PAGE_MASK;
147 	}
148 
149 	return i;
150 
151 finish_or_fault:
152 	return i ? : -EFAULT;
153 }
154 
155 /*
156  * get a list of pages in an address range belonging to the specified process
157  * and indicate the VMA that covers each page
158  * - this is potentially dodgy as we may end incrementing the page count of a
159  *   slab page or a secondary page from a compound page
160  * - don't permit access to VMAs that don't support it, such as I/O mappings
161  */
162 long get_user_pages(unsigned long start, unsigned long nr_pages,
163 		    int write, int force, struct page **pages,
164 		    struct vm_area_struct **vmas)
165 {
166 	int flags = 0;
167 
168 	if (write)
169 		flags |= FOLL_WRITE;
170 	if (force)
171 		flags |= FOLL_FORCE;
172 
173 	return __get_user_pages(current, current->mm, start, nr_pages, flags,
174 				pages, vmas, NULL);
175 }
176 EXPORT_SYMBOL(get_user_pages);
177 
178 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
179 			    int write, int force, struct page **pages,
180 			    int *locked)
181 {
182 	return get_user_pages(start, nr_pages, write, force, pages, NULL);
183 }
184 EXPORT_SYMBOL(get_user_pages_locked);
185 
186 long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
187 			       unsigned long start, unsigned long nr_pages,
188 			       int write, int force, struct page **pages,
189 			       unsigned int gup_flags)
190 {
191 	long ret;
192 	down_read(&mm->mmap_sem);
193 	ret = __get_user_pages(tsk, mm, start, nr_pages, gup_flags, pages,
194 				NULL, NULL);
195 	up_read(&mm->mmap_sem);
196 	return ret;
197 }
198 EXPORT_SYMBOL(__get_user_pages_unlocked);
199 
200 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
201 			     int write, int force, struct page **pages)
202 {
203 	return __get_user_pages_unlocked(current, current->mm, start, nr_pages,
204 					 write, force, pages, 0);
205 }
206 EXPORT_SYMBOL(get_user_pages_unlocked);
207 
208 /**
209  * follow_pfn - look up PFN at a user virtual address
210  * @vma: memory mapping
211  * @address: user virtual address
212  * @pfn: location to store found PFN
213  *
214  * Only IO mappings and raw PFN mappings are allowed.
215  *
216  * Returns zero and the pfn at @pfn on success, -ve otherwise.
217  */
218 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
219 	unsigned long *pfn)
220 {
221 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
222 		return -EINVAL;
223 
224 	*pfn = address >> PAGE_SHIFT;
225 	return 0;
226 }
227 EXPORT_SYMBOL(follow_pfn);
228 
229 LIST_HEAD(vmap_area_list);
230 
231 void vfree(const void *addr)
232 {
233 	kfree(addr);
234 }
235 EXPORT_SYMBOL(vfree);
236 
237 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
238 {
239 	/*
240 	 *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
241 	 * returns only a logical address.
242 	 */
243 	return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
244 }
245 EXPORT_SYMBOL(__vmalloc);
246 
247 void *vmalloc_user(unsigned long size)
248 {
249 	void *ret;
250 
251 	ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
252 			PAGE_KERNEL);
253 	if (ret) {
254 		struct vm_area_struct *vma;
255 
256 		down_write(&current->mm->mmap_sem);
257 		vma = find_vma(current->mm, (unsigned long)ret);
258 		if (vma)
259 			vma->vm_flags |= VM_USERMAP;
260 		up_write(&current->mm->mmap_sem);
261 	}
262 
263 	return ret;
264 }
265 EXPORT_SYMBOL(vmalloc_user);
266 
267 struct page *vmalloc_to_page(const void *addr)
268 {
269 	return virt_to_page(addr);
270 }
271 EXPORT_SYMBOL(vmalloc_to_page);
272 
273 unsigned long vmalloc_to_pfn(const void *addr)
274 {
275 	return page_to_pfn(virt_to_page(addr));
276 }
277 EXPORT_SYMBOL(vmalloc_to_pfn);
278 
279 long vread(char *buf, char *addr, unsigned long count)
280 {
281 	/* Don't allow overflow */
282 	if ((unsigned long) buf + count < count)
283 		count = -(unsigned long) buf;
284 
285 	memcpy(buf, addr, count);
286 	return count;
287 }
288 
289 long vwrite(char *buf, char *addr, unsigned long count)
290 {
291 	/* Don't allow overflow */
292 	if ((unsigned long) addr + count < count)
293 		count = -(unsigned long) addr;
294 
295 	memcpy(addr, buf, count);
296 	return count;
297 }
298 
299 /*
300  *	vmalloc  -  allocate virtually contiguous memory
301  *
302  *	@size:		allocation size
303  *
304  *	Allocate enough pages to cover @size from the page level
305  *	allocator and map them into contiguous kernel virtual space.
306  *
307  *	For tight control over page level allocator and protection flags
308  *	use __vmalloc() instead.
309  */
310 void *vmalloc(unsigned long size)
311 {
312        return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
313 }
314 EXPORT_SYMBOL(vmalloc);
315 
316 /*
317  *	vzalloc - allocate virtually contiguous memory with zero fill
318  *
319  *	@size:		allocation size
320  *
321  *	Allocate enough pages to cover @size from the page level
322  *	allocator and map them into contiguous kernel virtual space.
323  *	The memory allocated is set to zero.
324  *
325  *	For tight control over page level allocator and protection flags
326  *	use __vmalloc() instead.
327  */
328 void *vzalloc(unsigned long size)
329 {
330 	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
331 			PAGE_KERNEL);
332 }
333 EXPORT_SYMBOL(vzalloc);
334 
335 /**
336  * vmalloc_node - allocate memory on a specific node
337  * @size:	allocation size
338  * @node:	numa node
339  *
340  * Allocate enough pages to cover @size from the page level
341  * allocator and map them into contiguous kernel virtual space.
342  *
343  * For tight control over page level allocator and protection flags
344  * use __vmalloc() instead.
345  */
346 void *vmalloc_node(unsigned long size, int node)
347 {
348 	return vmalloc(size);
349 }
350 EXPORT_SYMBOL(vmalloc_node);
351 
352 /**
353  * vzalloc_node - allocate memory on a specific node with zero fill
354  * @size:	allocation size
355  * @node:	numa node
356  *
357  * Allocate enough pages to cover @size from the page level
358  * allocator and map them into contiguous kernel virtual space.
359  * The memory allocated is set to zero.
360  *
361  * For tight control over page level allocator and protection flags
362  * use __vmalloc() instead.
363  */
364 void *vzalloc_node(unsigned long size, int node)
365 {
366 	return vzalloc(size);
367 }
368 EXPORT_SYMBOL(vzalloc_node);
369 
370 #ifndef PAGE_KERNEL_EXEC
371 # define PAGE_KERNEL_EXEC PAGE_KERNEL
372 #endif
373 
374 /**
375  *	vmalloc_exec  -  allocate virtually contiguous, executable memory
376  *	@size:		allocation size
377  *
378  *	Kernel-internal function to allocate enough pages to cover @size
379  *	the page level allocator and map them into contiguous and
380  *	executable kernel virtual space.
381  *
382  *	For tight control over page level allocator and protection flags
383  *	use __vmalloc() instead.
384  */
385 
386 void *vmalloc_exec(unsigned long size)
387 {
388 	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
389 }
390 
391 /**
392  * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
393  *	@size:		allocation size
394  *
395  *	Allocate enough 32bit PA addressable pages to cover @size from the
396  *	page level allocator and map them into contiguous kernel virtual space.
397  */
398 void *vmalloc_32(unsigned long size)
399 {
400 	return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
401 }
402 EXPORT_SYMBOL(vmalloc_32);
403 
404 /**
405  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
406  *	@size:		allocation size
407  *
408  * The resulting memory area is 32bit addressable and zeroed so it can be
409  * mapped to userspace without leaking data.
410  *
411  * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
412  * remap_vmalloc_range() are permissible.
413  */
414 void *vmalloc_32_user(unsigned long size)
415 {
416 	/*
417 	 * We'll have to sort out the ZONE_DMA bits for 64-bit,
418 	 * but for now this can simply use vmalloc_user() directly.
419 	 */
420 	return vmalloc_user(size);
421 }
422 EXPORT_SYMBOL(vmalloc_32_user);
423 
424 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
425 {
426 	BUG();
427 	return NULL;
428 }
429 EXPORT_SYMBOL(vmap);
430 
431 void vunmap(const void *addr)
432 {
433 	BUG();
434 }
435 EXPORT_SYMBOL(vunmap);
436 
437 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
438 {
439 	BUG();
440 	return NULL;
441 }
442 EXPORT_SYMBOL(vm_map_ram);
443 
444 void vm_unmap_ram(const void *mem, unsigned int count)
445 {
446 	BUG();
447 }
448 EXPORT_SYMBOL(vm_unmap_ram);
449 
450 void vm_unmap_aliases(void)
451 {
452 }
453 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
454 
455 /*
456  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
457  * have one.
458  */
459 void __weak vmalloc_sync_all(void)
460 {
461 }
462 
463 /**
464  *	alloc_vm_area - allocate a range of kernel address space
465  *	@size:		size of the area
466  *
467  *	Returns:	NULL on failure, vm_struct on success
468  *
469  *	This function reserves a range of kernel address space, and
470  *	allocates pagetables to map that range.  No actual mappings
471  *	are created.  If the kernel address space is not shared
472  *	between processes, it syncs the pagetable across all
473  *	processes.
474  */
475 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
476 {
477 	BUG();
478 	return NULL;
479 }
480 EXPORT_SYMBOL_GPL(alloc_vm_area);
481 
482 void free_vm_area(struct vm_struct *area)
483 {
484 	BUG();
485 }
486 EXPORT_SYMBOL_GPL(free_vm_area);
487 
488 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
489 		   struct page *page)
490 {
491 	return -EINVAL;
492 }
493 EXPORT_SYMBOL(vm_insert_page);
494 
495 /*
496  *  sys_brk() for the most part doesn't need the global kernel
497  *  lock, except when an application is doing something nasty
498  *  like trying to un-brk an area that has already been mapped
499  *  to a regular file.  in this case, the unmapping will need
500  *  to invoke file system routines that need the global lock.
501  */
502 SYSCALL_DEFINE1(brk, unsigned long, brk)
503 {
504 	struct mm_struct *mm = current->mm;
505 
506 	if (brk < mm->start_brk || brk > mm->context.end_brk)
507 		return mm->brk;
508 
509 	if (mm->brk == brk)
510 		return mm->brk;
511 
512 	/*
513 	 * Always allow shrinking brk
514 	 */
515 	if (brk <= mm->brk) {
516 		mm->brk = brk;
517 		return brk;
518 	}
519 
520 	/*
521 	 * Ok, looks good - let it rip.
522 	 */
523 	flush_icache_range(mm->brk, brk);
524 	return mm->brk = brk;
525 }
526 
527 /*
528  * initialise the VMA and region record slabs
529  */
530 void __init mmap_init(void)
531 {
532 	int ret;
533 
534 	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
535 	VM_BUG_ON(ret);
536 	vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT);
537 }
538 
539 /*
540  * validate the region tree
541  * - the caller must hold the region lock
542  */
543 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
544 static noinline void validate_nommu_regions(void)
545 {
546 	struct vm_region *region, *last;
547 	struct rb_node *p, *lastp;
548 
549 	lastp = rb_first(&nommu_region_tree);
550 	if (!lastp)
551 		return;
552 
553 	last = rb_entry(lastp, struct vm_region, vm_rb);
554 	BUG_ON(last->vm_end <= last->vm_start);
555 	BUG_ON(last->vm_top < last->vm_end);
556 
557 	while ((p = rb_next(lastp))) {
558 		region = rb_entry(p, struct vm_region, vm_rb);
559 		last = rb_entry(lastp, struct vm_region, vm_rb);
560 
561 		BUG_ON(region->vm_end <= region->vm_start);
562 		BUG_ON(region->vm_top < region->vm_end);
563 		BUG_ON(region->vm_start < last->vm_top);
564 
565 		lastp = p;
566 	}
567 }
568 #else
569 static void validate_nommu_regions(void)
570 {
571 }
572 #endif
573 
574 /*
575  * add a region into the global tree
576  */
577 static void add_nommu_region(struct vm_region *region)
578 {
579 	struct vm_region *pregion;
580 	struct rb_node **p, *parent;
581 
582 	validate_nommu_regions();
583 
584 	parent = NULL;
585 	p = &nommu_region_tree.rb_node;
586 	while (*p) {
587 		parent = *p;
588 		pregion = rb_entry(parent, struct vm_region, vm_rb);
589 		if (region->vm_start < pregion->vm_start)
590 			p = &(*p)->rb_left;
591 		else if (region->vm_start > pregion->vm_start)
592 			p = &(*p)->rb_right;
593 		else if (pregion == region)
594 			return;
595 		else
596 			BUG();
597 	}
598 
599 	rb_link_node(&region->vm_rb, parent, p);
600 	rb_insert_color(&region->vm_rb, &nommu_region_tree);
601 
602 	validate_nommu_regions();
603 }
604 
605 /*
606  * delete a region from the global tree
607  */
608 static void delete_nommu_region(struct vm_region *region)
609 {
610 	BUG_ON(!nommu_region_tree.rb_node);
611 
612 	validate_nommu_regions();
613 	rb_erase(&region->vm_rb, &nommu_region_tree);
614 	validate_nommu_regions();
615 }
616 
617 /*
618  * free a contiguous series of pages
619  */
620 static void free_page_series(unsigned long from, unsigned long to)
621 {
622 	for (; from < to; from += PAGE_SIZE) {
623 		struct page *page = virt_to_page(from);
624 
625 		atomic_long_dec(&mmap_pages_allocated);
626 		put_page(page);
627 	}
628 }
629 
630 /*
631  * release a reference to a region
632  * - the caller must hold the region semaphore for writing, which this releases
633  * - the region may not have been added to the tree yet, in which case vm_top
634  *   will equal vm_start
635  */
636 static void __put_nommu_region(struct vm_region *region)
637 	__releases(nommu_region_sem)
638 {
639 	BUG_ON(!nommu_region_tree.rb_node);
640 
641 	if (--region->vm_usage == 0) {
642 		if (region->vm_top > region->vm_start)
643 			delete_nommu_region(region);
644 		up_write(&nommu_region_sem);
645 
646 		if (region->vm_file)
647 			fput(region->vm_file);
648 
649 		/* IO memory and memory shared directly out of the pagecache
650 		 * from ramfs/tmpfs mustn't be released here */
651 		if (region->vm_flags & VM_MAPPED_COPY)
652 			free_page_series(region->vm_start, region->vm_top);
653 		kmem_cache_free(vm_region_jar, region);
654 	} else {
655 		up_write(&nommu_region_sem);
656 	}
657 }
658 
659 /*
660  * release a reference to a region
661  */
662 static void put_nommu_region(struct vm_region *region)
663 {
664 	down_write(&nommu_region_sem);
665 	__put_nommu_region(region);
666 }
667 
668 /*
669  * update protection on a vma
670  */
671 static void protect_vma(struct vm_area_struct *vma, unsigned long flags)
672 {
673 #ifdef CONFIG_MPU
674 	struct mm_struct *mm = vma->vm_mm;
675 	long start = vma->vm_start & PAGE_MASK;
676 	while (start < vma->vm_end) {
677 		protect_page(mm, start, flags);
678 		start += PAGE_SIZE;
679 	}
680 	update_protections(mm);
681 #endif
682 }
683 
684 /*
685  * add a VMA into a process's mm_struct in the appropriate place in the list
686  * and tree and add to the address space's page tree also if not an anonymous
687  * page
688  * - should be called with mm->mmap_sem held writelocked
689  */
690 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
691 {
692 	struct vm_area_struct *pvma, *prev;
693 	struct address_space *mapping;
694 	struct rb_node **p, *parent, *rb_prev;
695 
696 	BUG_ON(!vma->vm_region);
697 
698 	mm->map_count++;
699 	vma->vm_mm = mm;
700 
701 	protect_vma(vma, vma->vm_flags);
702 
703 	/* add the VMA to the mapping */
704 	if (vma->vm_file) {
705 		mapping = vma->vm_file->f_mapping;
706 
707 		i_mmap_lock_write(mapping);
708 		flush_dcache_mmap_lock(mapping);
709 		vma_interval_tree_insert(vma, &mapping->i_mmap);
710 		flush_dcache_mmap_unlock(mapping);
711 		i_mmap_unlock_write(mapping);
712 	}
713 
714 	/* add the VMA to the tree */
715 	parent = rb_prev = NULL;
716 	p = &mm->mm_rb.rb_node;
717 	while (*p) {
718 		parent = *p;
719 		pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
720 
721 		/* sort by: start addr, end addr, VMA struct addr in that order
722 		 * (the latter is necessary as we may get identical VMAs) */
723 		if (vma->vm_start < pvma->vm_start)
724 			p = &(*p)->rb_left;
725 		else if (vma->vm_start > pvma->vm_start) {
726 			rb_prev = parent;
727 			p = &(*p)->rb_right;
728 		} else if (vma->vm_end < pvma->vm_end)
729 			p = &(*p)->rb_left;
730 		else if (vma->vm_end > pvma->vm_end) {
731 			rb_prev = parent;
732 			p = &(*p)->rb_right;
733 		} else if (vma < pvma)
734 			p = &(*p)->rb_left;
735 		else if (vma > pvma) {
736 			rb_prev = parent;
737 			p = &(*p)->rb_right;
738 		} else
739 			BUG();
740 	}
741 
742 	rb_link_node(&vma->vm_rb, parent, p);
743 	rb_insert_color(&vma->vm_rb, &mm->mm_rb);
744 
745 	/* add VMA to the VMA list also */
746 	prev = NULL;
747 	if (rb_prev)
748 		prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
749 
750 	__vma_link_list(mm, vma, prev, parent);
751 }
752 
753 /*
754  * delete a VMA from its owning mm_struct and address space
755  */
756 static void delete_vma_from_mm(struct vm_area_struct *vma)
757 {
758 	int i;
759 	struct address_space *mapping;
760 	struct mm_struct *mm = vma->vm_mm;
761 	struct task_struct *curr = current;
762 
763 	protect_vma(vma, 0);
764 
765 	mm->map_count--;
766 	for (i = 0; i < VMACACHE_SIZE; i++) {
767 		/* if the vma is cached, invalidate the entire cache */
768 		if (curr->vmacache[i] == vma) {
769 			vmacache_invalidate(mm);
770 			break;
771 		}
772 	}
773 
774 	/* remove the VMA from the mapping */
775 	if (vma->vm_file) {
776 		mapping = vma->vm_file->f_mapping;
777 
778 		i_mmap_lock_write(mapping);
779 		flush_dcache_mmap_lock(mapping);
780 		vma_interval_tree_remove(vma, &mapping->i_mmap);
781 		flush_dcache_mmap_unlock(mapping);
782 		i_mmap_unlock_write(mapping);
783 	}
784 
785 	/* remove from the MM's tree and list */
786 	rb_erase(&vma->vm_rb, &mm->mm_rb);
787 
788 	if (vma->vm_prev)
789 		vma->vm_prev->vm_next = vma->vm_next;
790 	else
791 		mm->mmap = vma->vm_next;
792 
793 	if (vma->vm_next)
794 		vma->vm_next->vm_prev = vma->vm_prev;
795 }
796 
797 /*
798  * destroy a VMA record
799  */
800 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
801 {
802 	if (vma->vm_ops && vma->vm_ops->close)
803 		vma->vm_ops->close(vma);
804 	if (vma->vm_file)
805 		fput(vma->vm_file);
806 	put_nommu_region(vma->vm_region);
807 	kmem_cache_free(vm_area_cachep, vma);
808 }
809 
810 /*
811  * look up the first VMA in which addr resides, NULL if none
812  * - should be called with mm->mmap_sem at least held readlocked
813  */
814 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
815 {
816 	struct vm_area_struct *vma;
817 
818 	/* check the cache first */
819 	vma = vmacache_find(mm, addr);
820 	if (likely(vma))
821 		return vma;
822 
823 	/* trawl the list (there may be multiple mappings in which addr
824 	 * resides) */
825 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
826 		if (vma->vm_start > addr)
827 			return NULL;
828 		if (vma->vm_end > addr) {
829 			vmacache_update(addr, vma);
830 			return vma;
831 		}
832 	}
833 
834 	return NULL;
835 }
836 EXPORT_SYMBOL(find_vma);
837 
838 /*
839  * find a VMA
840  * - we don't extend stack VMAs under NOMMU conditions
841  */
842 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
843 {
844 	return find_vma(mm, addr);
845 }
846 
847 /*
848  * expand a stack to a given address
849  * - not supported under NOMMU conditions
850  */
851 int expand_stack(struct vm_area_struct *vma, unsigned long address)
852 {
853 	return -ENOMEM;
854 }
855 
856 /*
857  * look up the first VMA exactly that exactly matches addr
858  * - should be called with mm->mmap_sem at least held readlocked
859  */
860 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
861 					     unsigned long addr,
862 					     unsigned long len)
863 {
864 	struct vm_area_struct *vma;
865 	unsigned long end = addr + len;
866 
867 	/* check the cache first */
868 	vma = vmacache_find_exact(mm, addr, end);
869 	if (vma)
870 		return vma;
871 
872 	/* trawl the list (there may be multiple mappings in which addr
873 	 * resides) */
874 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
875 		if (vma->vm_start < addr)
876 			continue;
877 		if (vma->vm_start > addr)
878 			return NULL;
879 		if (vma->vm_end == end) {
880 			vmacache_update(addr, vma);
881 			return vma;
882 		}
883 	}
884 
885 	return NULL;
886 }
887 
888 /*
889  * determine whether a mapping should be permitted and, if so, what sort of
890  * mapping we're capable of supporting
891  */
892 static int validate_mmap_request(struct file *file,
893 				 unsigned long addr,
894 				 unsigned long len,
895 				 unsigned long prot,
896 				 unsigned long flags,
897 				 unsigned long pgoff,
898 				 unsigned long *_capabilities)
899 {
900 	unsigned long capabilities, rlen;
901 	int ret;
902 
903 	/* do the simple checks first */
904 	if (flags & MAP_FIXED)
905 		return -EINVAL;
906 
907 	if ((flags & MAP_TYPE) != MAP_PRIVATE &&
908 	    (flags & MAP_TYPE) != MAP_SHARED)
909 		return -EINVAL;
910 
911 	if (!len)
912 		return -EINVAL;
913 
914 	/* Careful about overflows.. */
915 	rlen = PAGE_ALIGN(len);
916 	if (!rlen || rlen > TASK_SIZE)
917 		return -ENOMEM;
918 
919 	/* offset overflow? */
920 	if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
921 		return -EOVERFLOW;
922 
923 	if (file) {
924 		/* files must support mmap */
925 		if (!file->f_op->mmap)
926 			return -ENODEV;
927 
928 		/* work out if what we've got could possibly be shared
929 		 * - we support chardevs that provide their own "memory"
930 		 * - we support files/blockdevs that are memory backed
931 		 */
932 		if (file->f_op->mmap_capabilities) {
933 			capabilities = file->f_op->mmap_capabilities(file);
934 		} else {
935 			/* no explicit capabilities set, so assume some
936 			 * defaults */
937 			switch (file_inode(file)->i_mode & S_IFMT) {
938 			case S_IFREG:
939 			case S_IFBLK:
940 				capabilities = NOMMU_MAP_COPY;
941 				break;
942 
943 			case S_IFCHR:
944 				capabilities =
945 					NOMMU_MAP_DIRECT |
946 					NOMMU_MAP_READ |
947 					NOMMU_MAP_WRITE;
948 				break;
949 
950 			default:
951 				return -EINVAL;
952 			}
953 		}
954 
955 		/* eliminate any capabilities that we can't support on this
956 		 * device */
957 		if (!file->f_op->get_unmapped_area)
958 			capabilities &= ~NOMMU_MAP_DIRECT;
959 		if (!(file->f_mode & FMODE_CAN_READ))
960 			capabilities &= ~NOMMU_MAP_COPY;
961 
962 		/* The file shall have been opened with read permission. */
963 		if (!(file->f_mode & FMODE_READ))
964 			return -EACCES;
965 
966 		if (flags & MAP_SHARED) {
967 			/* do checks for writing, appending and locking */
968 			if ((prot & PROT_WRITE) &&
969 			    !(file->f_mode & FMODE_WRITE))
970 				return -EACCES;
971 
972 			if (IS_APPEND(file_inode(file)) &&
973 			    (file->f_mode & FMODE_WRITE))
974 				return -EACCES;
975 
976 			if (locks_verify_locked(file))
977 				return -EAGAIN;
978 
979 			if (!(capabilities & NOMMU_MAP_DIRECT))
980 				return -ENODEV;
981 
982 			/* we mustn't privatise shared mappings */
983 			capabilities &= ~NOMMU_MAP_COPY;
984 		} else {
985 			/* we're going to read the file into private memory we
986 			 * allocate */
987 			if (!(capabilities & NOMMU_MAP_COPY))
988 				return -ENODEV;
989 
990 			/* we don't permit a private writable mapping to be
991 			 * shared with the backing device */
992 			if (prot & PROT_WRITE)
993 				capabilities &= ~NOMMU_MAP_DIRECT;
994 		}
995 
996 		if (capabilities & NOMMU_MAP_DIRECT) {
997 			if (((prot & PROT_READ)  && !(capabilities & NOMMU_MAP_READ))  ||
998 			    ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
999 			    ((prot & PROT_EXEC)  && !(capabilities & NOMMU_MAP_EXEC))
1000 			    ) {
1001 				capabilities &= ~NOMMU_MAP_DIRECT;
1002 				if (flags & MAP_SHARED) {
1003 					pr_warn("MAP_SHARED not completely supported on !MMU\n");
1004 					return -EINVAL;
1005 				}
1006 			}
1007 		}
1008 
1009 		/* handle executable mappings and implied executable
1010 		 * mappings */
1011 		if (path_noexec(&file->f_path)) {
1012 			if (prot & PROT_EXEC)
1013 				return -EPERM;
1014 		} else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
1015 			/* handle implication of PROT_EXEC by PROT_READ */
1016 			if (current->personality & READ_IMPLIES_EXEC) {
1017 				if (capabilities & NOMMU_MAP_EXEC)
1018 					prot |= PROT_EXEC;
1019 			}
1020 		} else if ((prot & PROT_READ) &&
1021 			 (prot & PROT_EXEC) &&
1022 			 !(capabilities & NOMMU_MAP_EXEC)
1023 			 ) {
1024 			/* backing file is not executable, try to copy */
1025 			capabilities &= ~NOMMU_MAP_DIRECT;
1026 		}
1027 	} else {
1028 		/* anonymous mappings are always memory backed and can be
1029 		 * privately mapped
1030 		 */
1031 		capabilities = NOMMU_MAP_COPY;
1032 
1033 		/* handle PROT_EXEC implication by PROT_READ */
1034 		if ((prot & PROT_READ) &&
1035 		    (current->personality & READ_IMPLIES_EXEC))
1036 			prot |= PROT_EXEC;
1037 	}
1038 
1039 	/* allow the security API to have its say */
1040 	ret = security_mmap_addr(addr);
1041 	if (ret < 0)
1042 		return ret;
1043 
1044 	/* looks okay */
1045 	*_capabilities = capabilities;
1046 	return 0;
1047 }
1048 
1049 /*
1050  * we've determined that we can make the mapping, now translate what we
1051  * now know into VMA flags
1052  */
1053 static unsigned long determine_vm_flags(struct file *file,
1054 					unsigned long prot,
1055 					unsigned long flags,
1056 					unsigned long capabilities)
1057 {
1058 	unsigned long vm_flags;
1059 
1060 	vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags);
1061 	/* vm_flags |= mm->def_flags; */
1062 
1063 	if (!(capabilities & NOMMU_MAP_DIRECT)) {
1064 		/* attempt to share read-only copies of mapped file chunks */
1065 		vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1066 		if (file && !(prot & PROT_WRITE))
1067 			vm_flags |= VM_MAYSHARE;
1068 	} else {
1069 		/* overlay a shareable mapping on the backing device or inode
1070 		 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1071 		 * romfs/cramfs */
1072 		vm_flags |= VM_MAYSHARE | (capabilities & NOMMU_VMFLAGS);
1073 		if (flags & MAP_SHARED)
1074 			vm_flags |= VM_SHARED;
1075 	}
1076 
1077 	/* refuse to let anyone share private mappings with this process if
1078 	 * it's being traced - otherwise breakpoints set in it may interfere
1079 	 * with another untraced process
1080 	 */
1081 	if ((flags & MAP_PRIVATE) && current->ptrace)
1082 		vm_flags &= ~VM_MAYSHARE;
1083 
1084 	return vm_flags;
1085 }
1086 
1087 /*
1088  * set up a shared mapping on a file (the driver or filesystem provides and
1089  * pins the storage)
1090  */
1091 static int do_mmap_shared_file(struct vm_area_struct *vma)
1092 {
1093 	int ret;
1094 
1095 	ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1096 	if (ret == 0) {
1097 		vma->vm_region->vm_top = vma->vm_region->vm_end;
1098 		return 0;
1099 	}
1100 	if (ret != -ENOSYS)
1101 		return ret;
1102 
1103 	/* getting -ENOSYS indicates that direct mmap isn't possible (as
1104 	 * opposed to tried but failed) so we can only give a suitable error as
1105 	 * it's not possible to make a private copy if MAP_SHARED was given */
1106 	return -ENODEV;
1107 }
1108 
1109 /*
1110  * set up a private mapping or an anonymous shared mapping
1111  */
1112 static int do_mmap_private(struct vm_area_struct *vma,
1113 			   struct vm_region *region,
1114 			   unsigned long len,
1115 			   unsigned long capabilities)
1116 {
1117 	unsigned long total, point;
1118 	void *base;
1119 	int ret, order;
1120 
1121 	/* invoke the file's mapping function so that it can keep track of
1122 	 * shared mappings on devices or memory
1123 	 * - VM_MAYSHARE will be set if it may attempt to share
1124 	 */
1125 	if (capabilities & NOMMU_MAP_DIRECT) {
1126 		ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1127 		if (ret == 0) {
1128 			/* shouldn't return success if we're not sharing */
1129 			BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1130 			vma->vm_region->vm_top = vma->vm_region->vm_end;
1131 			return 0;
1132 		}
1133 		if (ret != -ENOSYS)
1134 			return ret;
1135 
1136 		/* getting an ENOSYS error indicates that direct mmap isn't
1137 		 * possible (as opposed to tried but failed) so we'll try to
1138 		 * make a private copy of the data and map that instead */
1139 	}
1140 
1141 
1142 	/* allocate some memory to hold the mapping
1143 	 * - note that this may not return a page-aligned address if the object
1144 	 *   we're allocating is smaller than a page
1145 	 */
1146 	order = get_order(len);
1147 	total = 1 << order;
1148 	point = len >> PAGE_SHIFT;
1149 
1150 	/* we don't want to allocate a power-of-2 sized page set */
1151 	if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages)
1152 		total = point;
1153 
1154 	base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL);
1155 	if (!base)
1156 		goto enomem;
1157 
1158 	atomic_long_add(total, &mmap_pages_allocated);
1159 
1160 	region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1161 	region->vm_start = (unsigned long) base;
1162 	region->vm_end   = region->vm_start + len;
1163 	region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
1164 
1165 	vma->vm_start = region->vm_start;
1166 	vma->vm_end   = region->vm_start + len;
1167 
1168 	if (vma->vm_file) {
1169 		/* read the contents of a file into the copy */
1170 		mm_segment_t old_fs;
1171 		loff_t fpos;
1172 
1173 		fpos = vma->vm_pgoff;
1174 		fpos <<= PAGE_SHIFT;
1175 
1176 		old_fs = get_fs();
1177 		set_fs(KERNEL_DS);
1178 		ret = __vfs_read(vma->vm_file, base, len, &fpos);
1179 		set_fs(old_fs);
1180 
1181 		if (ret < 0)
1182 			goto error_free;
1183 
1184 		/* clear the last little bit */
1185 		if (ret < len)
1186 			memset(base + ret, 0, len - ret);
1187 
1188 	}
1189 
1190 	return 0;
1191 
1192 error_free:
1193 	free_page_series(region->vm_start, region->vm_top);
1194 	region->vm_start = vma->vm_start = 0;
1195 	region->vm_end   = vma->vm_end = 0;
1196 	region->vm_top   = 0;
1197 	return ret;
1198 
1199 enomem:
1200 	pr_err("Allocation of length %lu from process %d (%s) failed\n",
1201 	       len, current->pid, current->comm);
1202 	show_free_areas(0);
1203 	return -ENOMEM;
1204 }
1205 
1206 /*
1207  * handle mapping creation for uClinux
1208  */
1209 unsigned long do_mmap(struct file *file,
1210 			unsigned long addr,
1211 			unsigned long len,
1212 			unsigned long prot,
1213 			unsigned long flags,
1214 			vm_flags_t vm_flags,
1215 			unsigned long pgoff,
1216 			unsigned long *populate)
1217 {
1218 	struct vm_area_struct *vma;
1219 	struct vm_region *region;
1220 	struct rb_node *rb;
1221 	unsigned long capabilities, result;
1222 	int ret;
1223 
1224 	*populate = 0;
1225 
1226 	/* decide whether we should attempt the mapping, and if so what sort of
1227 	 * mapping */
1228 	ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1229 				    &capabilities);
1230 	if (ret < 0)
1231 		return ret;
1232 
1233 	/* we ignore the address hint */
1234 	addr = 0;
1235 	len = PAGE_ALIGN(len);
1236 
1237 	/* we've determined that we can make the mapping, now translate what we
1238 	 * now know into VMA flags */
1239 	vm_flags |= determine_vm_flags(file, prot, flags, capabilities);
1240 
1241 	/* we're going to need to record the mapping */
1242 	region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1243 	if (!region)
1244 		goto error_getting_region;
1245 
1246 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1247 	if (!vma)
1248 		goto error_getting_vma;
1249 
1250 	region->vm_usage = 1;
1251 	region->vm_flags = vm_flags;
1252 	region->vm_pgoff = pgoff;
1253 
1254 	INIT_LIST_HEAD(&vma->anon_vma_chain);
1255 	vma->vm_flags = vm_flags;
1256 	vma->vm_pgoff = pgoff;
1257 
1258 	if (file) {
1259 		region->vm_file = get_file(file);
1260 		vma->vm_file = get_file(file);
1261 	}
1262 
1263 	down_write(&nommu_region_sem);
1264 
1265 	/* if we want to share, we need to check for regions created by other
1266 	 * mmap() calls that overlap with our proposed mapping
1267 	 * - we can only share with a superset match on most regular files
1268 	 * - shared mappings on character devices and memory backed files are
1269 	 *   permitted to overlap inexactly as far as we are concerned for in
1270 	 *   these cases, sharing is handled in the driver or filesystem rather
1271 	 *   than here
1272 	 */
1273 	if (vm_flags & VM_MAYSHARE) {
1274 		struct vm_region *pregion;
1275 		unsigned long pglen, rpglen, pgend, rpgend, start;
1276 
1277 		pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1278 		pgend = pgoff + pglen;
1279 
1280 		for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1281 			pregion = rb_entry(rb, struct vm_region, vm_rb);
1282 
1283 			if (!(pregion->vm_flags & VM_MAYSHARE))
1284 				continue;
1285 
1286 			/* search for overlapping mappings on the same file */
1287 			if (file_inode(pregion->vm_file) !=
1288 			    file_inode(file))
1289 				continue;
1290 
1291 			if (pregion->vm_pgoff >= pgend)
1292 				continue;
1293 
1294 			rpglen = pregion->vm_end - pregion->vm_start;
1295 			rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1296 			rpgend = pregion->vm_pgoff + rpglen;
1297 			if (pgoff >= rpgend)
1298 				continue;
1299 
1300 			/* handle inexactly overlapping matches between
1301 			 * mappings */
1302 			if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1303 			    !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1304 				/* new mapping is not a subset of the region */
1305 				if (!(capabilities & NOMMU_MAP_DIRECT))
1306 					goto sharing_violation;
1307 				continue;
1308 			}
1309 
1310 			/* we've found a region we can share */
1311 			pregion->vm_usage++;
1312 			vma->vm_region = pregion;
1313 			start = pregion->vm_start;
1314 			start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1315 			vma->vm_start = start;
1316 			vma->vm_end = start + len;
1317 
1318 			if (pregion->vm_flags & VM_MAPPED_COPY)
1319 				vma->vm_flags |= VM_MAPPED_COPY;
1320 			else {
1321 				ret = do_mmap_shared_file(vma);
1322 				if (ret < 0) {
1323 					vma->vm_region = NULL;
1324 					vma->vm_start = 0;
1325 					vma->vm_end = 0;
1326 					pregion->vm_usage--;
1327 					pregion = NULL;
1328 					goto error_just_free;
1329 				}
1330 			}
1331 			fput(region->vm_file);
1332 			kmem_cache_free(vm_region_jar, region);
1333 			region = pregion;
1334 			result = start;
1335 			goto share;
1336 		}
1337 
1338 		/* obtain the address at which to make a shared mapping
1339 		 * - this is the hook for quasi-memory character devices to
1340 		 *   tell us the location of a shared mapping
1341 		 */
1342 		if (capabilities & NOMMU_MAP_DIRECT) {
1343 			addr = file->f_op->get_unmapped_area(file, addr, len,
1344 							     pgoff, flags);
1345 			if (IS_ERR_VALUE(addr)) {
1346 				ret = addr;
1347 				if (ret != -ENOSYS)
1348 					goto error_just_free;
1349 
1350 				/* the driver refused to tell us where to site
1351 				 * the mapping so we'll have to attempt to copy
1352 				 * it */
1353 				ret = -ENODEV;
1354 				if (!(capabilities & NOMMU_MAP_COPY))
1355 					goto error_just_free;
1356 
1357 				capabilities &= ~NOMMU_MAP_DIRECT;
1358 			} else {
1359 				vma->vm_start = region->vm_start = addr;
1360 				vma->vm_end = region->vm_end = addr + len;
1361 			}
1362 		}
1363 	}
1364 
1365 	vma->vm_region = region;
1366 
1367 	/* set up the mapping
1368 	 * - the region is filled in if NOMMU_MAP_DIRECT is still set
1369 	 */
1370 	if (file && vma->vm_flags & VM_SHARED)
1371 		ret = do_mmap_shared_file(vma);
1372 	else
1373 		ret = do_mmap_private(vma, region, len, capabilities);
1374 	if (ret < 0)
1375 		goto error_just_free;
1376 	add_nommu_region(region);
1377 
1378 	/* clear anonymous mappings that don't ask for uninitialized data */
1379 	if (!vma->vm_file && !(flags & MAP_UNINITIALIZED))
1380 		memset((void *)region->vm_start, 0,
1381 		       region->vm_end - region->vm_start);
1382 
1383 	/* okay... we have a mapping; now we have to register it */
1384 	result = vma->vm_start;
1385 
1386 	current->mm->total_vm += len >> PAGE_SHIFT;
1387 
1388 share:
1389 	add_vma_to_mm(current->mm, vma);
1390 
1391 	/* we flush the region from the icache only when the first executable
1392 	 * mapping of it is made  */
1393 	if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1394 		flush_icache_range(region->vm_start, region->vm_end);
1395 		region->vm_icache_flushed = true;
1396 	}
1397 
1398 	up_write(&nommu_region_sem);
1399 
1400 	return result;
1401 
1402 error_just_free:
1403 	up_write(&nommu_region_sem);
1404 error:
1405 	if (region->vm_file)
1406 		fput(region->vm_file);
1407 	kmem_cache_free(vm_region_jar, region);
1408 	if (vma->vm_file)
1409 		fput(vma->vm_file);
1410 	kmem_cache_free(vm_area_cachep, vma);
1411 	return ret;
1412 
1413 sharing_violation:
1414 	up_write(&nommu_region_sem);
1415 	pr_warn("Attempt to share mismatched mappings\n");
1416 	ret = -EINVAL;
1417 	goto error;
1418 
1419 error_getting_vma:
1420 	kmem_cache_free(vm_region_jar, region);
1421 	pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n",
1422 			len, current->pid);
1423 	show_free_areas(0);
1424 	return -ENOMEM;
1425 
1426 error_getting_region:
1427 	pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n",
1428 			len, current->pid);
1429 	show_free_areas(0);
1430 	return -ENOMEM;
1431 }
1432 
1433 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1434 		unsigned long, prot, unsigned long, flags,
1435 		unsigned long, fd, unsigned long, pgoff)
1436 {
1437 	struct file *file = NULL;
1438 	unsigned long retval = -EBADF;
1439 
1440 	audit_mmap_fd(fd, flags);
1441 	if (!(flags & MAP_ANONYMOUS)) {
1442 		file = fget(fd);
1443 		if (!file)
1444 			goto out;
1445 	}
1446 
1447 	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1448 
1449 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1450 
1451 	if (file)
1452 		fput(file);
1453 out:
1454 	return retval;
1455 }
1456 
1457 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1458 struct mmap_arg_struct {
1459 	unsigned long addr;
1460 	unsigned long len;
1461 	unsigned long prot;
1462 	unsigned long flags;
1463 	unsigned long fd;
1464 	unsigned long offset;
1465 };
1466 
1467 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1468 {
1469 	struct mmap_arg_struct a;
1470 
1471 	if (copy_from_user(&a, arg, sizeof(a)))
1472 		return -EFAULT;
1473 	if (offset_in_page(a.offset))
1474 		return -EINVAL;
1475 
1476 	return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1477 			      a.offset >> PAGE_SHIFT);
1478 }
1479 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1480 
1481 /*
1482  * split a vma into two pieces at address 'addr', a new vma is allocated either
1483  * for the first part or the tail.
1484  */
1485 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1486 	      unsigned long addr, int new_below)
1487 {
1488 	struct vm_area_struct *new;
1489 	struct vm_region *region;
1490 	unsigned long npages;
1491 
1492 	/* we're only permitted to split anonymous regions (these should have
1493 	 * only a single usage on the region) */
1494 	if (vma->vm_file)
1495 		return -ENOMEM;
1496 
1497 	if (mm->map_count >= sysctl_max_map_count)
1498 		return -ENOMEM;
1499 
1500 	region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1501 	if (!region)
1502 		return -ENOMEM;
1503 
1504 	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1505 	if (!new) {
1506 		kmem_cache_free(vm_region_jar, region);
1507 		return -ENOMEM;
1508 	}
1509 
1510 	/* most fields are the same, copy all, and then fixup */
1511 	*new = *vma;
1512 	*region = *vma->vm_region;
1513 	new->vm_region = region;
1514 
1515 	npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1516 
1517 	if (new_below) {
1518 		region->vm_top = region->vm_end = new->vm_end = addr;
1519 	} else {
1520 		region->vm_start = new->vm_start = addr;
1521 		region->vm_pgoff = new->vm_pgoff += npages;
1522 	}
1523 
1524 	if (new->vm_ops && new->vm_ops->open)
1525 		new->vm_ops->open(new);
1526 
1527 	delete_vma_from_mm(vma);
1528 	down_write(&nommu_region_sem);
1529 	delete_nommu_region(vma->vm_region);
1530 	if (new_below) {
1531 		vma->vm_region->vm_start = vma->vm_start = addr;
1532 		vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1533 	} else {
1534 		vma->vm_region->vm_end = vma->vm_end = addr;
1535 		vma->vm_region->vm_top = addr;
1536 	}
1537 	add_nommu_region(vma->vm_region);
1538 	add_nommu_region(new->vm_region);
1539 	up_write(&nommu_region_sem);
1540 	add_vma_to_mm(mm, vma);
1541 	add_vma_to_mm(mm, new);
1542 	return 0;
1543 }
1544 
1545 /*
1546  * shrink a VMA by removing the specified chunk from either the beginning or
1547  * the end
1548  */
1549 static int shrink_vma(struct mm_struct *mm,
1550 		      struct vm_area_struct *vma,
1551 		      unsigned long from, unsigned long to)
1552 {
1553 	struct vm_region *region;
1554 
1555 	/* adjust the VMA's pointers, which may reposition it in the MM's tree
1556 	 * and list */
1557 	delete_vma_from_mm(vma);
1558 	if (from > vma->vm_start)
1559 		vma->vm_end = from;
1560 	else
1561 		vma->vm_start = to;
1562 	add_vma_to_mm(mm, vma);
1563 
1564 	/* cut the backing region down to size */
1565 	region = vma->vm_region;
1566 	BUG_ON(region->vm_usage != 1);
1567 
1568 	down_write(&nommu_region_sem);
1569 	delete_nommu_region(region);
1570 	if (from > region->vm_start) {
1571 		to = region->vm_top;
1572 		region->vm_top = region->vm_end = from;
1573 	} else {
1574 		region->vm_start = to;
1575 	}
1576 	add_nommu_region(region);
1577 	up_write(&nommu_region_sem);
1578 
1579 	free_page_series(from, to);
1580 	return 0;
1581 }
1582 
1583 /*
1584  * release a mapping
1585  * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1586  *   VMA, though it need not cover the whole VMA
1587  */
1588 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1589 {
1590 	struct vm_area_struct *vma;
1591 	unsigned long end;
1592 	int ret;
1593 
1594 	len = PAGE_ALIGN(len);
1595 	if (len == 0)
1596 		return -EINVAL;
1597 
1598 	end = start + len;
1599 
1600 	/* find the first potentially overlapping VMA */
1601 	vma = find_vma(mm, start);
1602 	if (!vma) {
1603 		static int limit;
1604 		if (limit < 5) {
1605 			pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n",
1606 					current->pid, current->comm,
1607 					start, start + len - 1);
1608 			limit++;
1609 		}
1610 		return -EINVAL;
1611 	}
1612 
1613 	/* we're allowed to split an anonymous VMA but not a file-backed one */
1614 	if (vma->vm_file) {
1615 		do {
1616 			if (start > vma->vm_start)
1617 				return -EINVAL;
1618 			if (end == vma->vm_end)
1619 				goto erase_whole_vma;
1620 			vma = vma->vm_next;
1621 		} while (vma);
1622 		return -EINVAL;
1623 	} else {
1624 		/* the chunk must be a subset of the VMA found */
1625 		if (start == vma->vm_start && end == vma->vm_end)
1626 			goto erase_whole_vma;
1627 		if (start < vma->vm_start || end > vma->vm_end)
1628 			return -EINVAL;
1629 		if (offset_in_page(start))
1630 			return -EINVAL;
1631 		if (end != vma->vm_end && offset_in_page(end))
1632 			return -EINVAL;
1633 		if (start != vma->vm_start && end != vma->vm_end) {
1634 			ret = split_vma(mm, vma, start, 1);
1635 			if (ret < 0)
1636 				return ret;
1637 		}
1638 		return shrink_vma(mm, vma, start, end);
1639 	}
1640 
1641 erase_whole_vma:
1642 	delete_vma_from_mm(vma);
1643 	delete_vma(mm, vma);
1644 	return 0;
1645 }
1646 EXPORT_SYMBOL(do_munmap);
1647 
1648 int vm_munmap(unsigned long addr, size_t len)
1649 {
1650 	struct mm_struct *mm = current->mm;
1651 	int ret;
1652 
1653 	down_write(&mm->mmap_sem);
1654 	ret = do_munmap(mm, addr, len);
1655 	up_write(&mm->mmap_sem);
1656 	return ret;
1657 }
1658 EXPORT_SYMBOL(vm_munmap);
1659 
1660 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1661 {
1662 	return vm_munmap(addr, len);
1663 }
1664 
1665 /*
1666  * release all the mappings made in a process's VM space
1667  */
1668 void exit_mmap(struct mm_struct *mm)
1669 {
1670 	struct vm_area_struct *vma;
1671 
1672 	if (!mm)
1673 		return;
1674 
1675 	mm->total_vm = 0;
1676 
1677 	while ((vma = mm->mmap)) {
1678 		mm->mmap = vma->vm_next;
1679 		delete_vma_from_mm(vma);
1680 		delete_vma(mm, vma);
1681 		cond_resched();
1682 	}
1683 }
1684 
1685 int vm_brk(unsigned long addr, unsigned long len)
1686 {
1687 	return -ENOMEM;
1688 }
1689 
1690 /*
1691  * expand (or shrink) an existing mapping, potentially moving it at the same
1692  * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1693  *
1694  * under NOMMU conditions, we only permit changing a mapping's size, and only
1695  * as long as it stays within the region allocated by do_mmap_private() and the
1696  * block is not shareable
1697  *
1698  * MREMAP_FIXED is not supported under NOMMU conditions
1699  */
1700 static unsigned long do_mremap(unsigned long addr,
1701 			unsigned long old_len, unsigned long new_len,
1702 			unsigned long flags, unsigned long new_addr)
1703 {
1704 	struct vm_area_struct *vma;
1705 
1706 	/* insanity checks first */
1707 	old_len = PAGE_ALIGN(old_len);
1708 	new_len = PAGE_ALIGN(new_len);
1709 	if (old_len == 0 || new_len == 0)
1710 		return (unsigned long) -EINVAL;
1711 
1712 	if (offset_in_page(addr))
1713 		return -EINVAL;
1714 
1715 	if (flags & MREMAP_FIXED && new_addr != addr)
1716 		return (unsigned long) -EINVAL;
1717 
1718 	vma = find_vma_exact(current->mm, addr, old_len);
1719 	if (!vma)
1720 		return (unsigned long) -EINVAL;
1721 
1722 	if (vma->vm_end != vma->vm_start + old_len)
1723 		return (unsigned long) -EFAULT;
1724 
1725 	if (vma->vm_flags & VM_MAYSHARE)
1726 		return (unsigned long) -EPERM;
1727 
1728 	if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1729 		return (unsigned long) -ENOMEM;
1730 
1731 	/* all checks complete - do it */
1732 	vma->vm_end = vma->vm_start + new_len;
1733 	return vma->vm_start;
1734 }
1735 
1736 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1737 		unsigned long, new_len, unsigned long, flags,
1738 		unsigned long, new_addr)
1739 {
1740 	unsigned long ret;
1741 
1742 	down_write(&current->mm->mmap_sem);
1743 	ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1744 	up_write(&current->mm->mmap_sem);
1745 	return ret;
1746 }
1747 
1748 struct page *follow_page_mask(struct vm_area_struct *vma,
1749 			      unsigned long address, unsigned int flags,
1750 			      unsigned int *page_mask)
1751 {
1752 	*page_mask = 0;
1753 	return NULL;
1754 }
1755 
1756 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1757 		unsigned long pfn, unsigned long size, pgprot_t prot)
1758 {
1759 	if (addr != (pfn << PAGE_SHIFT))
1760 		return -EINVAL;
1761 
1762 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1763 	return 0;
1764 }
1765 EXPORT_SYMBOL(remap_pfn_range);
1766 
1767 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1768 {
1769 	unsigned long pfn = start >> PAGE_SHIFT;
1770 	unsigned long vm_len = vma->vm_end - vma->vm_start;
1771 
1772 	pfn += vma->vm_pgoff;
1773 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1774 }
1775 EXPORT_SYMBOL(vm_iomap_memory);
1776 
1777 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1778 			unsigned long pgoff)
1779 {
1780 	unsigned int size = vma->vm_end - vma->vm_start;
1781 
1782 	if (!(vma->vm_flags & VM_USERMAP))
1783 		return -EINVAL;
1784 
1785 	vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1786 	vma->vm_end = vma->vm_start + size;
1787 
1788 	return 0;
1789 }
1790 EXPORT_SYMBOL(remap_vmalloc_range);
1791 
1792 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1793 	unsigned long len, unsigned long pgoff, unsigned long flags)
1794 {
1795 	return -ENOMEM;
1796 }
1797 
1798 void unmap_mapping_range(struct address_space *mapping,
1799 			 loff_t const holebegin, loff_t const holelen,
1800 			 int even_cows)
1801 {
1802 }
1803 EXPORT_SYMBOL(unmap_mapping_range);
1804 
1805 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1806 {
1807 	BUG();
1808 	return 0;
1809 }
1810 EXPORT_SYMBOL(filemap_fault);
1811 
1812 void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
1813 {
1814 	BUG();
1815 }
1816 EXPORT_SYMBOL(filemap_map_pages);
1817 
1818 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1819 		unsigned long addr, void *buf, int len, int write)
1820 {
1821 	struct vm_area_struct *vma;
1822 
1823 	down_read(&mm->mmap_sem);
1824 
1825 	/* the access must start within one of the target process's mappings */
1826 	vma = find_vma(mm, addr);
1827 	if (vma) {
1828 		/* don't overrun this mapping */
1829 		if (addr + len >= vma->vm_end)
1830 			len = vma->vm_end - addr;
1831 
1832 		/* only read or write mappings where it is permitted */
1833 		if (write && vma->vm_flags & VM_MAYWRITE)
1834 			copy_to_user_page(vma, NULL, addr,
1835 					 (void *) addr, buf, len);
1836 		else if (!write && vma->vm_flags & VM_MAYREAD)
1837 			copy_from_user_page(vma, NULL, addr,
1838 					    buf, (void *) addr, len);
1839 		else
1840 			len = 0;
1841 	} else {
1842 		len = 0;
1843 	}
1844 
1845 	up_read(&mm->mmap_sem);
1846 
1847 	return len;
1848 }
1849 
1850 /**
1851  * @access_remote_vm - access another process' address space
1852  * @mm:		the mm_struct of the target address space
1853  * @addr:	start address to access
1854  * @buf:	source or destination buffer
1855  * @len:	number of bytes to transfer
1856  * @write:	whether the access is a write
1857  *
1858  * The caller must hold a reference on @mm.
1859  */
1860 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1861 		void *buf, int len, int write)
1862 {
1863 	return __access_remote_vm(NULL, mm, addr, buf, len, write);
1864 }
1865 
1866 /*
1867  * Access another process' address space.
1868  * - source/target buffer must be kernel space
1869  */
1870 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
1871 {
1872 	struct mm_struct *mm;
1873 
1874 	if (addr + len < addr)
1875 		return 0;
1876 
1877 	mm = get_task_mm(tsk);
1878 	if (!mm)
1879 		return 0;
1880 
1881 	len = __access_remote_vm(tsk, mm, addr, buf, len, write);
1882 
1883 	mmput(mm);
1884 	return len;
1885 }
1886 
1887 /**
1888  * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
1889  * @inode: The inode to check
1890  * @size: The current filesize of the inode
1891  * @newsize: The proposed filesize of the inode
1892  *
1893  * Check the shared mappings on an inode on behalf of a shrinking truncate to
1894  * make sure that that any outstanding VMAs aren't broken and then shrink the
1895  * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
1896  * automatically grant mappings that are too large.
1897  */
1898 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
1899 				size_t newsize)
1900 {
1901 	struct vm_area_struct *vma;
1902 	struct vm_region *region;
1903 	pgoff_t low, high;
1904 	size_t r_size, r_top;
1905 
1906 	low = newsize >> PAGE_SHIFT;
1907 	high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1908 
1909 	down_write(&nommu_region_sem);
1910 	i_mmap_lock_read(inode->i_mapping);
1911 
1912 	/* search for VMAs that fall within the dead zone */
1913 	vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
1914 		/* found one - only interested if it's shared out of the page
1915 		 * cache */
1916 		if (vma->vm_flags & VM_SHARED) {
1917 			i_mmap_unlock_read(inode->i_mapping);
1918 			up_write(&nommu_region_sem);
1919 			return -ETXTBSY; /* not quite true, but near enough */
1920 		}
1921 	}
1922 
1923 	/* reduce any regions that overlap the dead zone - if in existence,
1924 	 * these will be pointed to by VMAs that don't overlap the dead zone
1925 	 *
1926 	 * we don't check for any regions that start beyond the EOF as there
1927 	 * shouldn't be any
1928 	 */
1929 	vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
1930 		if (!(vma->vm_flags & VM_SHARED))
1931 			continue;
1932 
1933 		region = vma->vm_region;
1934 		r_size = region->vm_top - region->vm_start;
1935 		r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
1936 
1937 		if (r_top > newsize) {
1938 			region->vm_top -= r_top - newsize;
1939 			if (region->vm_end > region->vm_top)
1940 				region->vm_end = region->vm_top;
1941 		}
1942 	}
1943 
1944 	i_mmap_unlock_read(inode->i_mapping);
1945 	up_write(&nommu_region_sem);
1946 	return 0;
1947 }
1948 
1949 /*
1950  * Initialise sysctl_user_reserve_kbytes.
1951  *
1952  * This is intended to prevent a user from starting a single memory hogging
1953  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
1954  * mode.
1955  *
1956  * The default value is min(3% of free memory, 128MB)
1957  * 128MB is enough to recover with sshd/login, bash, and top/kill.
1958  */
1959 static int __meminit init_user_reserve(void)
1960 {
1961 	unsigned long free_kbytes;
1962 
1963 	free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1964 
1965 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
1966 	return 0;
1967 }
1968 subsys_initcall(init_user_reserve);
1969 
1970 /*
1971  * Initialise sysctl_admin_reserve_kbytes.
1972  *
1973  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
1974  * to log in and kill a memory hogging process.
1975  *
1976  * Systems with more than 256MB will reserve 8MB, enough to recover
1977  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
1978  * only reserve 3% of free pages by default.
1979  */
1980 static int __meminit init_admin_reserve(void)
1981 {
1982 	unsigned long free_kbytes;
1983 
1984 	free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1985 
1986 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
1987 	return 0;
1988 }
1989 subsys_initcall(init_admin_reserve);
1990