xref: /linux/mm/mremap.c (revision a9cb09b7be84a7adc9e6f4aaf8d770933d65f953)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *	mm/mremap.c
4  *
5  *	(C) Copyright 1996 Linus Torvalds
6  *
7  *	Address space accounting code	<alan@lxorguk.ukuu.org.uk>
8  *	(C) Copyright 2002 Red Hat Inc, All Rights Reserved
9  */
10 
11 #include <linux/mm.h>
12 #include <linux/hugetlb.h>
13 #include <linux/shm.h>
14 #include <linux/ksm.h>
15 #include <linux/mman.h>
16 #include <linux/swap.h>
17 #include <linux/capability.h>
18 #include <linux/fs.h>
19 #include <linux/swapops.h>
20 #include <linux/highmem.h>
21 #include <linux/security.h>
22 #include <linux/syscalls.h>
23 #include <linux/mmu_notifier.h>
24 #include <linux/uaccess.h>
25 #include <linux/userfaultfd_k.h>
26 
27 #include <asm/cacheflush.h>
28 #include <asm/tlb.h>
29 #include <asm/pgalloc.h>
30 
31 #include "internal.h"
32 
33 static pud_t *get_old_pud(struct mm_struct *mm, unsigned long addr)
34 {
35 	pgd_t *pgd;
36 	p4d_t *p4d;
37 	pud_t *pud;
38 
39 	pgd = pgd_offset(mm, addr);
40 	if (pgd_none_or_clear_bad(pgd))
41 		return NULL;
42 
43 	p4d = p4d_offset(pgd, addr);
44 	if (p4d_none_or_clear_bad(p4d))
45 		return NULL;
46 
47 	pud = pud_offset(p4d, addr);
48 	if (pud_none_or_clear_bad(pud))
49 		return NULL;
50 
51 	return pud;
52 }
53 
54 static pmd_t *get_old_pmd(struct mm_struct *mm, unsigned long addr)
55 {
56 	pud_t *pud;
57 	pmd_t *pmd;
58 
59 	pud = get_old_pud(mm, addr);
60 	if (!pud)
61 		return NULL;
62 
63 	pmd = pmd_offset(pud, addr);
64 	if (pmd_none(*pmd))
65 		return NULL;
66 
67 	return pmd;
68 }
69 
70 static pud_t *alloc_new_pud(struct mm_struct *mm, struct vm_area_struct *vma,
71 			    unsigned long addr)
72 {
73 	pgd_t *pgd;
74 	p4d_t *p4d;
75 
76 	pgd = pgd_offset(mm, addr);
77 	p4d = p4d_alloc(mm, pgd, addr);
78 	if (!p4d)
79 		return NULL;
80 
81 	return pud_alloc(mm, p4d, addr);
82 }
83 
84 static pmd_t *alloc_new_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
85 			    unsigned long addr)
86 {
87 	pud_t *pud;
88 	pmd_t *pmd;
89 
90 	pud = alloc_new_pud(mm, vma, addr);
91 	if (!pud)
92 		return NULL;
93 
94 	pmd = pmd_alloc(mm, pud, addr);
95 	if (!pmd)
96 		return NULL;
97 
98 	VM_BUG_ON(pmd_trans_huge(*pmd));
99 
100 	return pmd;
101 }
102 
103 static void take_rmap_locks(struct vm_area_struct *vma)
104 {
105 	if (vma->vm_file)
106 		i_mmap_lock_write(vma->vm_file->f_mapping);
107 	if (vma->anon_vma)
108 		anon_vma_lock_write(vma->anon_vma);
109 }
110 
111 static void drop_rmap_locks(struct vm_area_struct *vma)
112 {
113 	if (vma->anon_vma)
114 		anon_vma_unlock_write(vma->anon_vma);
115 	if (vma->vm_file)
116 		i_mmap_unlock_write(vma->vm_file->f_mapping);
117 }
118 
119 static pte_t move_soft_dirty_pte(pte_t pte)
120 {
121 	/*
122 	 * Set soft dirty bit so we can notice
123 	 * in userspace the ptes were moved.
124 	 */
125 #ifdef CONFIG_MEM_SOFT_DIRTY
126 	if (pte_present(pte))
127 		pte = pte_mksoft_dirty(pte);
128 	else if (is_swap_pte(pte))
129 		pte = pte_swp_mksoft_dirty(pte);
130 #endif
131 	return pte;
132 }
133 
134 static void move_ptes(struct vm_area_struct *vma, pmd_t *old_pmd,
135 		unsigned long old_addr, unsigned long old_end,
136 		struct vm_area_struct *new_vma, pmd_t *new_pmd,
137 		unsigned long new_addr, bool need_rmap_locks)
138 {
139 	struct mm_struct *mm = vma->vm_mm;
140 	pte_t *old_pte, *new_pte, pte;
141 	spinlock_t *old_ptl, *new_ptl;
142 	bool force_flush = false;
143 	unsigned long len = old_end - old_addr;
144 
145 	/*
146 	 * When need_rmap_locks is true, we take the i_mmap_rwsem and anon_vma
147 	 * locks to ensure that rmap will always observe either the old or the
148 	 * new ptes. This is the easiest way to avoid races with
149 	 * truncate_pagecache(), page migration, etc...
150 	 *
151 	 * When need_rmap_locks is false, we use other ways to avoid
152 	 * such races:
153 	 *
154 	 * - During exec() shift_arg_pages(), we use a specially tagged vma
155 	 *   which rmap call sites look for using vma_is_temporary_stack().
156 	 *
157 	 * - During mremap(), new_vma is often known to be placed after vma
158 	 *   in rmap traversal order. This ensures rmap will always observe
159 	 *   either the old pte, or the new pte, or both (the page table locks
160 	 *   serialize access to individual ptes, but only rmap traversal
161 	 *   order guarantees that we won't miss both the old and new ptes).
162 	 */
163 	if (need_rmap_locks)
164 		take_rmap_locks(vma);
165 
166 	/*
167 	 * We don't have to worry about the ordering of src and dst
168 	 * pte locks because exclusive mmap_lock prevents deadlock.
169 	 */
170 	old_pte = pte_offset_map_lock(mm, old_pmd, old_addr, &old_ptl);
171 	new_pte = pte_offset_map(new_pmd, new_addr);
172 	new_ptl = pte_lockptr(mm, new_pmd);
173 	if (new_ptl != old_ptl)
174 		spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
175 	flush_tlb_batched_pending(vma->vm_mm);
176 	arch_enter_lazy_mmu_mode();
177 
178 	for (; old_addr < old_end; old_pte++, old_addr += PAGE_SIZE,
179 				   new_pte++, new_addr += PAGE_SIZE) {
180 		if (pte_none(*old_pte))
181 			continue;
182 
183 		pte = ptep_get_and_clear(mm, old_addr, old_pte);
184 		/*
185 		 * If we are remapping a valid PTE, make sure
186 		 * to flush TLB before we drop the PTL for the
187 		 * PTE.
188 		 *
189 		 * NOTE! Both old and new PTL matter: the old one
190 		 * for racing with page_mkclean(), the new one to
191 		 * make sure the physical page stays valid until
192 		 * the TLB entry for the old mapping has been
193 		 * flushed.
194 		 */
195 		if (pte_present(pte))
196 			force_flush = true;
197 		pte = move_pte(pte, new_vma->vm_page_prot, old_addr, new_addr);
198 		pte = move_soft_dirty_pte(pte);
199 		set_pte_at(mm, new_addr, new_pte, pte);
200 	}
201 
202 	arch_leave_lazy_mmu_mode();
203 	if (force_flush)
204 		flush_tlb_range(vma, old_end - len, old_end);
205 	if (new_ptl != old_ptl)
206 		spin_unlock(new_ptl);
207 	pte_unmap(new_pte - 1);
208 	pte_unmap_unlock(old_pte - 1, old_ptl);
209 	if (need_rmap_locks)
210 		drop_rmap_locks(vma);
211 }
212 
213 #ifndef arch_supports_page_table_move
214 #define arch_supports_page_table_move arch_supports_page_table_move
215 static inline bool arch_supports_page_table_move(void)
216 {
217 	return IS_ENABLED(CONFIG_HAVE_MOVE_PMD) ||
218 		IS_ENABLED(CONFIG_HAVE_MOVE_PUD);
219 }
220 #endif
221 
222 #ifdef CONFIG_HAVE_MOVE_PMD
223 static bool move_normal_pmd(struct vm_area_struct *vma, unsigned long old_addr,
224 		  unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
225 {
226 	spinlock_t *old_ptl, *new_ptl;
227 	struct mm_struct *mm = vma->vm_mm;
228 	pmd_t pmd;
229 
230 	if (!arch_supports_page_table_move())
231 		return false;
232 	/*
233 	 * The destination pmd shouldn't be established, free_pgtables()
234 	 * should have released it.
235 	 *
236 	 * However, there's a case during execve() where we use mremap
237 	 * to move the initial stack, and in that case the target area
238 	 * may overlap the source area (always moving down).
239 	 *
240 	 * If everything is PMD-aligned, that works fine, as moving
241 	 * each pmd down will clear the source pmd. But if we first
242 	 * have a few 4kB-only pages that get moved down, and then
243 	 * hit the "now the rest is PMD-aligned, let's do everything
244 	 * one pmd at a time", we will still have the old (now empty
245 	 * of any 4kB pages, but still there) PMD in the page table
246 	 * tree.
247 	 *
248 	 * Warn on it once - because we really should try to figure
249 	 * out how to do this better - but then say "I won't move
250 	 * this pmd".
251 	 *
252 	 * One alternative might be to just unmap the target pmd at
253 	 * this point, and verify that it really is empty. We'll see.
254 	 */
255 	if (WARN_ON_ONCE(!pmd_none(*new_pmd)))
256 		return false;
257 
258 	/*
259 	 * We don't have to worry about the ordering of src and dst
260 	 * ptlocks because exclusive mmap_lock prevents deadlock.
261 	 */
262 	old_ptl = pmd_lock(vma->vm_mm, old_pmd);
263 	new_ptl = pmd_lockptr(mm, new_pmd);
264 	if (new_ptl != old_ptl)
265 		spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
266 
267 	/* Clear the pmd */
268 	pmd = *old_pmd;
269 	pmd_clear(old_pmd);
270 
271 	VM_BUG_ON(!pmd_none(*new_pmd));
272 
273 	pmd_populate(mm, new_pmd, pmd_pgtable(pmd));
274 	flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
275 	if (new_ptl != old_ptl)
276 		spin_unlock(new_ptl);
277 	spin_unlock(old_ptl);
278 
279 	return true;
280 }
281 #else
282 static inline bool move_normal_pmd(struct vm_area_struct *vma,
283 		unsigned long old_addr, unsigned long new_addr, pmd_t *old_pmd,
284 		pmd_t *new_pmd)
285 {
286 	return false;
287 }
288 #endif
289 
290 #if CONFIG_PGTABLE_LEVELS > 2 && defined(CONFIG_HAVE_MOVE_PUD)
291 static bool move_normal_pud(struct vm_area_struct *vma, unsigned long old_addr,
292 		  unsigned long new_addr, pud_t *old_pud, pud_t *new_pud)
293 {
294 	spinlock_t *old_ptl, *new_ptl;
295 	struct mm_struct *mm = vma->vm_mm;
296 	pud_t pud;
297 
298 	if (!arch_supports_page_table_move())
299 		return false;
300 	/*
301 	 * The destination pud shouldn't be established, free_pgtables()
302 	 * should have released it.
303 	 */
304 	if (WARN_ON_ONCE(!pud_none(*new_pud)))
305 		return false;
306 
307 	/*
308 	 * We don't have to worry about the ordering of src and dst
309 	 * ptlocks because exclusive mmap_lock prevents deadlock.
310 	 */
311 	old_ptl = pud_lock(vma->vm_mm, old_pud);
312 	new_ptl = pud_lockptr(mm, new_pud);
313 	if (new_ptl != old_ptl)
314 		spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
315 
316 	/* Clear the pud */
317 	pud = *old_pud;
318 	pud_clear(old_pud);
319 
320 	VM_BUG_ON(!pud_none(*new_pud));
321 
322 	pud_populate(mm, new_pud, pud_pgtable(pud));
323 	flush_tlb_range(vma, old_addr, old_addr + PUD_SIZE);
324 	if (new_ptl != old_ptl)
325 		spin_unlock(new_ptl);
326 	spin_unlock(old_ptl);
327 
328 	return true;
329 }
330 #else
331 static inline bool move_normal_pud(struct vm_area_struct *vma,
332 		unsigned long old_addr, unsigned long new_addr, pud_t *old_pud,
333 		pud_t *new_pud)
334 {
335 	return false;
336 }
337 #endif
338 
339 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
340 static bool move_huge_pud(struct vm_area_struct *vma, unsigned long old_addr,
341 			  unsigned long new_addr, pud_t *old_pud, pud_t *new_pud)
342 {
343 	spinlock_t *old_ptl, *new_ptl;
344 	struct mm_struct *mm = vma->vm_mm;
345 	pud_t pud;
346 
347 	/*
348 	 * The destination pud shouldn't be established, free_pgtables()
349 	 * should have released it.
350 	 */
351 	if (WARN_ON_ONCE(!pud_none(*new_pud)))
352 		return false;
353 
354 	/*
355 	 * We don't have to worry about the ordering of src and dst
356 	 * ptlocks because exclusive mmap_lock prevents deadlock.
357 	 */
358 	old_ptl = pud_lock(vma->vm_mm, old_pud);
359 	new_ptl = pud_lockptr(mm, new_pud);
360 	if (new_ptl != old_ptl)
361 		spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
362 
363 	/* Clear the pud */
364 	pud = *old_pud;
365 	pud_clear(old_pud);
366 
367 	VM_BUG_ON(!pud_none(*new_pud));
368 
369 	/* Set the new pud */
370 	/* mark soft_ditry when we add pud level soft dirty support */
371 	set_pud_at(mm, new_addr, new_pud, pud);
372 	flush_pud_tlb_range(vma, old_addr, old_addr + HPAGE_PUD_SIZE);
373 	if (new_ptl != old_ptl)
374 		spin_unlock(new_ptl);
375 	spin_unlock(old_ptl);
376 
377 	return true;
378 }
379 #else
380 static bool move_huge_pud(struct vm_area_struct *vma, unsigned long old_addr,
381 			  unsigned long new_addr, pud_t *old_pud, pud_t *new_pud)
382 {
383 	WARN_ON_ONCE(1);
384 	return false;
385 
386 }
387 #endif
388 
389 enum pgt_entry {
390 	NORMAL_PMD,
391 	HPAGE_PMD,
392 	NORMAL_PUD,
393 	HPAGE_PUD,
394 };
395 
396 /*
397  * Returns an extent of the corresponding size for the pgt_entry specified if
398  * valid. Else returns a smaller extent bounded by the end of the source and
399  * destination pgt_entry.
400  */
401 static __always_inline unsigned long get_extent(enum pgt_entry entry,
402 			unsigned long old_addr, unsigned long old_end,
403 			unsigned long new_addr)
404 {
405 	unsigned long next, extent, mask, size;
406 
407 	switch (entry) {
408 	case HPAGE_PMD:
409 	case NORMAL_PMD:
410 		mask = PMD_MASK;
411 		size = PMD_SIZE;
412 		break;
413 	case HPAGE_PUD:
414 	case NORMAL_PUD:
415 		mask = PUD_MASK;
416 		size = PUD_SIZE;
417 		break;
418 	default:
419 		BUILD_BUG();
420 		break;
421 	}
422 
423 	next = (old_addr + size) & mask;
424 	/* even if next overflowed, extent below will be ok */
425 	extent = next - old_addr;
426 	if (extent > old_end - old_addr)
427 		extent = old_end - old_addr;
428 	next = (new_addr + size) & mask;
429 	if (extent > next - new_addr)
430 		extent = next - new_addr;
431 	return extent;
432 }
433 
434 /*
435  * Attempts to speedup the move by moving entry at the level corresponding to
436  * pgt_entry. Returns true if the move was successful, else false.
437  */
438 static bool move_pgt_entry(enum pgt_entry entry, struct vm_area_struct *vma,
439 			unsigned long old_addr, unsigned long new_addr,
440 			void *old_entry, void *new_entry, bool need_rmap_locks)
441 {
442 	bool moved = false;
443 
444 	/* See comment in move_ptes() */
445 	if (need_rmap_locks)
446 		take_rmap_locks(vma);
447 
448 	switch (entry) {
449 	case NORMAL_PMD:
450 		moved = move_normal_pmd(vma, old_addr, new_addr, old_entry,
451 					new_entry);
452 		break;
453 	case NORMAL_PUD:
454 		moved = move_normal_pud(vma, old_addr, new_addr, old_entry,
455 					new_entry);
456 		break;
457 	case HPAGE_PMD:
458 		moved = IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
459 			move_huge_pmd(vma, old_addr, new_addr, old_entry,
460 				      new_entry);
461 		break;
462 	case HPAGE_PUD:
463 		moved = IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
464 			move_huge_pud(vma, old_addr, new_addr, old_entry,
465 				      new_entry);
466 		break;
467 
468 	default:
469 		WARN_ON_ONCE(1);
470 		break;
471 	}
472 
473 	if (need_rmap_locks)
474 		drop_rmap_locks(vma);
475 
476 	return moved;
477 }
478 
479 unsigned long move_page_tables(struct vm_area_struct *vma,
480 		unsigned long old_addr, struct vm_area_struct *new_vma,
481 		unsigned long new_addr, unsigned long len,
482 		bool need_rmap_locks)
483 {
484 	unsigned long extent, old_end;
485 	struct mmu_notifier_range range;
486 	pmd_t *old_pmd, *new_pmd;
487 	pud_t *old_pud, *new_pud;
488 
489 	old_end = old_addr + len;
490 	flush_cache_range(vma, old_addr, old_end);
491 
492 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
493 				old_addr, old_end);
494 	mmu_notifier_invalidate_range_start(&range);
495 
496 	for (; old_addr < old_end; old_addr += extent, new_addr += extent) {
497 		cond_resched();
498 		/*
499 		 * If extent is PUD-sized try to speed up the move by moving at the
500 		 * PUD level if possible.
501 		 */
502 		extent = get_extent(NORMAL_PUD, old_addr, old_end, new_addr);
503 
504 		old_pud = get_old_pud(vma->vm_mm, old_addr);
505 		if (!old_pud)
506 			continue;
507 		new_pud = alloc_new_pud(vma->vm_mm, vma, new_addr);
508 		if (!new_pud)
509 			break;
510 		if (pud_trans_huge(*old_pud) || pud_devmap(*old_pud)) {
511 			if (extent == HPAGE_PUD_SIZE) {
512 				move_pgt_entry(HPAGE_PUD, vma, old_addr, new_addr,
513 					       old_pud, new_pud, need_rmap_locks);
514 				/* We ignore and continue on error? */
515 				continue;
516 			}
517 		} else if (IS_ENABLED(CONFIG_HAVE_MOVE_PUD) && extent == PUD_SIZE) {
518 
519 			if (move_pgt_entry(NORMAL_PUD, vma, old_addr, new_addr,
520 					   old_pud, new_pud, true))
521 				continue;
522 		}
523 
524 		extent = get_extent(NORMAL_PMD, old_addr, old_end, new_addr);
525 		old_pmd = get_old_pmd(vma->vm_mm, old_addr);
526 		if (!old_pmd)
527 			continue;
528 		new_pmd = alloc_new_pmd(vma->vm_mm, vma, new_addr);
529 		if (!new_pmd)
530 			break;
531 		if (is_swap_pmd(*old_pmd) || pmd_trans_huge(*old_pmd) ||
532 		    pmd_devmap(*old_pmd)) {
533 			if (extent == HPAGE_PMD_SIZE &&
534 			    move_pgt_entry(HPAGE_PMD, vma, old_addr, new_addr,
535 					   old_pmd, new_pmd, need_rmap_locks))
536 				continue;
537 			split_huge_pmd(vma, old_pmd, old_addr);
538 			if (pmd_trans_unstable(old_pmd))
539 				continue;
540 		} else if (IS_ENABLED(CONFIG_HAVE_MOVE_PMD) &&
541 			   extent == PMD_SIZE) {
542 			/*
543 			 * If the extent is PMD-sized, try to speed the move by
544 			 * moving at the PMD level if possible.
545 			 */
546 			if (move_pgt_entry(NORMAL_PMD, vma, old_addr, new_addr,
547 					   old_pmd, new_pmd, true))
548 				continue;
549 		}
550 
551 		if (pte_alloc(new_vma->vm_mm, new_pmd))
552 			break;
553 		move_ptes(vma, old_pmd, old_addr, old_addr + extent, new_vma,
554 			  new_pmd, new_addr, need_rmap_locks);
555 	}
556 
557 	mmu_notifier_invalidate_range_end(&range);
558 
559 	return len + old_addr - old_end;	/* how much done */
560 }
561 
562 static unsigned long move_vma(struct vm_area_struct *vma,
563 		unsigned long old_addr, unsigned long old_len,
564 		unsigned long new_len, unsigned long new_addr,
565 		bool *locked, unsigned long flags,
566 		struct vm_userfaultfd_ctx *uf, struct list_head *uf_unmap)
567 {
568 	struct mm_struct *mm = vma->vm_mm;
569 	struct vm_area_struct *new_vma;
570 	unsigned long vm_flags = vma->vm_flags;
571 	unsigned long new_pgoff;
572 	unsigned long moved_len;
573 	unsigned long excess = 0;
574 	unsigned long hiwater_vm;
575 	int split = 0;
576 	int err = 0;
577 	bool need_rmap_locks;
578 
579 	/*
580 	 * We'd prefer to avoid failure later on in do_munmap:
581 	 * which may split one vma into three before unmapping.
582 	 */
583 	if (mm->map_count >= sysctl_max_map_count - 3)
584 		return -ENOMEM;
585 
586 	if (vma->vm_ops && vma->vm_ops->may_split) {
587 		if (vma->vm_start != old_addr)
588 			err = vma->vm_ops->may_split(vma, old_addr);
589 		if (!err && vma->vm_end != old_addr + old_len)
590 			err = vma->vm_ops->may_split(vma, old_addr + old_len);
591 		if (err)
592 			return err;
593 	}
594 
595 	/*
596 	 * Advise KSM to break any KSM pages in the area to be moved:
597 	 * it would be confusing if they were to turn up at the new
598 	 * location, where they happen to coincide with different KSM
599 	 * pages recently unmapped.  But leave vma->vm_flags as it was,
600 	 * so KSM can come around to merge on vma and new_vma afterwards.
601 	 */
602 	err = ksm_madvise(vma, old_addr, old_addr + old_len,
603 						MADV_UNMERGEABLE, &vm_flags);
604 	if (err)
605 		return err;
606 
607 	if (unlikely(flags & MREMAP_DONTUNMAP && vm_flags & VM_ACCOUNT)) {
608 		if (security_vm_enough_memory_mm(mm, new_len >> PAGE_SHIFT))
609 			return -ENOMEM;
610 	}
611 
612 	new_pgoff = vma->vm_pgoff + ((old_addr - vma->vm_start) >> PAGE_SHIFT);
613 	new_vma = copy_vma(&vma, new_addr, new_len, new_pgoff,
614 			   &need_rmap_locks);
615 	if (!new_vma) {
616 		if (unlikely(flags & MREMAP_DONTUNMAP && vm_flags & VM_ACCOUNT))
617 			vm_unacct_memory(new_len >> PAGE_SHIFT);
618 		return -ENOMEM;
619 	}
620 
621 	moved_len = move_page_tables(vma, old_addr, new_vma, new_addr, old_len,
622 				     need_rmap_locks);
623 	if (moved_len < old_len) {
624 		err = -ENOMEM;
625 	} else if (vma->vm_ops && vma->vm_ops->mremap) {
626 		err = vma->vm_ops->mremap(new_vma);
627 	}
628 
629 	if (unlikely(err)) {
630 		/*
631 		 * On error, move entries back from new area to old,
632 		 * which will succeed since page tables still there,
633 		 * and then proceed to unmap new area instead of old.
634 		 */
635 		move_page_tables(new_vma, new_addr, vma, old_addr, moved_len,
636 				 true);
637 		vma = new_vma;
638 		old_len = new_len;
639 		old_addr = new_addr;
640 		new_addr = err;
641 	} else {
642 		mremap_userfaultfd_prep(new_vma, uf);
643 	}
644 
645 	/* Conceal VM_ACCOUNT so old reservation is not undone */
646 	if (vm_flags & VM_ACCOUNT && !(flags & MREMAP_DONTUNMAP)) {
647 		vma->vm_flags &= ~VM_ACCOUNT;
648 		excess = vma->vm_end - vma->vm_start - old_len;
649 		if (old_addr > vma->vm_start &&
650 		    old_addr + old_len < vma->vm_end)
651 			split = 1;
652 	}
653 
654 	/*
655 	 * If we failed to move page tables we still do total_vm increment
656 	 * since do_munmap() will decrement it by old_len == new_len.
657 	 *
658 	 * Since total_vm is about to be raised artificially high for a
659 	 * moment, we need to restore high watermark afterwards: if stats
660 	 * are taken meanwhile, total_vm and hiwater_vm appear too high.
661 	 * If this were a serious issue, we'd add a flag to do_munmap().
662 	 */
663 	hiwater_vm = mm->hiwater_vm;
664 	vm_stat_account(mm, vma->vm_flags, new_len >> PAGE_SHIFT);
665 
666 	/* Tell pfnmap has moved from this vma */
667 	if (unlikely(vma->vm_flags & VM_PFNMAP))
668 		untrack_pfn_moved(vma);
669 
670 	if (unlikely(!err && (flags & MREMAP_DONTUNMAP))) {
671 		/* We always clear VM_LOCKED[ONFAULT] on the old vma */
672 		vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
673 
674 		/*
675 		 * anon_vma links of the old vma is no longer needed after its page
676 		 * table has been moved.
677 		 */
678 		if (new_vma != vma && vma->vm_start == old_addr &&
679 			vma->vm_end == (old_addr + old_len))
680 			unlink_anon_vmas(vma);
681 
682 		/* Because we won't unmap we don't need to touch locked_vm */
683 		return new_addr;
684 	}
685 
686 	if (do_munmap(mm, old_addr, old_len, uf_unmap) < 0) {
687 		/* OOM: unable to split vma, just get accounts right */
688 		if (vm_flags & VM_ACCOUNT && !(flags & MREMAP_DONTUNMAP))
689 			vm_acct_memory(new_len >> PAGE_SHIFT);
690 		excess = 0;
691 	}
692 
693 	if (vm_flags & VM_LOCKED) {
694 		mm->locked_vm += new_len >> PAGE_SHIFT;
695 		*locked = true;
696 	}
697 
698 	mm->hiwater_vm = hiwater_vm;
699 
700 	/* Restore VM_ACCOUNT if one or two pieces of vma left */
701 	if (excess) {
702 		vma->vm_flags |= VM_ACCOUNT;
703 		if (split)
704 			vma->vm_next->vm_flags |= VM_ACCOUNT;
705 	}
706 
707 	return new_addr;
708 }
709 
710 static struct vm_area_struct *vma_to_resize(unsigned long addr,
711 	unsigned long old_len, unsigned long new_len, unsigned long flags,
712 	unsigned long *p)
713 {
714 	struct mm_struct *mm = current->mm;
715 	struct vm_area_struct *vma;
716 	unsigned long pgoff;
717 
718 	vma = vma_lookup(mm, addr);
719 	if (!vma)
720 		return ERR_PTR(-EFAULT);
721 
722 	/*
723 	 * !old_len is a special case where an attempt is made to 'duplicate'
724 	 * a mapping.  This makes no sense for private mappings as it will
725 	 * instead create a fresh/new mapping unrelated to the original.  This
726 	 * is contrary to the basic idea of mremap which creates new mappings
727 	 * based on the original.  There are no known use cases for this
728 	 * behavior.  As a result, fail such attempts.
729 	 */
730 	if (!old_len && !(vma->vm_flags & (VM_SHARED | VM_MAYSHARE))) {
731 		pr_warn_once("%s (%d): attempted to duplicate a private mapping with mremap.  This is not supported.\n", current->comm, current->pid);
732 		return ERR_PTR(-EINVAL);
733 	}
734 
735 	if ((flags & MREMAP_DONTUNMAP) &&
736 			(vma->vm_flags & (VM_DONTEXPAND | VM_PFNMAP)))
737 		return ERR_PTR(-EINVAL);
738 
739 	if (is_vm_hugetlb_page(vma))
740 		return ERR_PTR(-EINVAL);
741 
742 	/* We can't remap across vm area boundaries */
743 	if (old_len > vma->vm_end - addr)
744 		return ERR_PTR(-EFAULT);
745 
746 	if (new_len == old_len)
747 		return vma;
748 
749 	/* Need to be careful about a growing mapping */
750 	pgoff = (addr - vma->vm_start) >> PAGE_SHIFT;
751 	pgoff += vma->vm_pgoff;
752 	if (pgoff + (new_len >> PAGE_SHIFT) < pgoff)
753 		return ERR_PTR(-EINVAL);
754 
755 	if (vma->vm_flags & (VM_DONTEXPAND | VM_PFNMAP))
756 		return ERR_PTR(-EFAULT);
757 
758 	if (vma->vm_flags & VM_LOCKED) {
759 		unsigned long locked, lock_limit;
760 		locked = mm->locked_vm << PAGE_SHIFT;
761 		lock_limit = rlimit(RLIMIT_MEMLOCK);
762 		locked += new_len - old_len;
763 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
764 			return ERR_PTR(-EAGAIN);
765 	}
766 
767 	if (!may_expand_vm(mm, vma->vm_flags,
768 				(new_len - old_len) >> PAGE_SHIFT))
769 		return ERR_PTR(-ENOMEM);
770 
771 	if (vma->vm_flags & VM_ACCOUNT) {
772 		unsigned long charged = (new_len - old_len) >> PAGE_SHIFT;
773 		if (security_vm_enough_memory_mm(mm, charged))
774 			return ERR_PTR(-ENOMEM);
775 		*p = charged;
776 	}
777 
778 	return vma;
779 }
780 
781 static unsigned long mremap_to(unsigned long addr, unsigned long old_len,
782 		unsigned long new_addr, unsigned long new_len, bool *locked,
783 		unsigned long flags, struct vm_userfaultfd_ctx *uf,
784 		struct list_head *uf_unmap_early,
785 		struct list_head *uf_unmap)
786 {
787 	struct mm_struct *mm = current->mm;
788 	struct vm_area_struct *vma;
789 	unsigned long ret = -EINVAL;
790 	unsigned long charged = 0;
791 	unsigned long map_flags = 0;
792 
793 	if (offset_in_page(new_addr))
794 		goto out;
795 
796 	if (new_len > TASK_SIZE || new_addr > TASK_SIZE - new_len)
797 		goto out;
798 
799 	/* Ensure the old/new locations do not overlap */
800 	if (addr + old_len > new_addr && new_addr + new_len > addr)
801 		goto out;
802 
803 	/*
804 	 * move_vma() need us to stay 4 maps below the threshold, otherwise
805 	 * it will bail out at the very beginning.
806 	 * That is a problem if we have already unmaped the regions here
807 	 * (new_addr, and old_addr), because userspace will not know the
808 	 * state of the vma's after it gets -ENOMEM.
809 	 * So, to avoid such scenario we can pre-compute if the whole
810 	 * operation has high chances to success map-wise.
811 	 * Worst-scenario case is when both vma's (new_addr and old_addr) get
812 	 * split in 3 before unmapping it.
813 	 * That means 2 more maps (1 for each) to the ones we already hold.
814 	 * Check whether current map count plus 2 still leads us to 4 maps below
815 	 * the threshold, otherwise return -ENOMEM here to be more safe.
816 	 */
817 	if ((mm->map_count + 2) >= sysctl_max_map_count - 3)
818 		return -ENOMEM;
819 
820 	if (flags & MREMAP_FIXED) {
821 		ret = do_munmap(mm, new_addr, new_len, uf_unmap_early);
822 		if (ret)
823 			goto out;
824 	}
825 
826 	if (old_len >= new_len) {
827 		ret = do_munmap(mm, addr+new_len, old_len - new_len, uf_unmap);
828 		if (ret && old_len != new_len)
829 			goto out;
830 		old_len = new_len;
831 	}
832 
833 	vma = vma_to_resize(addr, old_len, new_len, flags, &charged);
834 	if (IS_ERR(vma)) {
835 		ret = PTR_ERR(vma);
836 		goto out;
837 	}
838 
839 	/* MREMAP_DONTUNMAP expands by old_len since old_len == new_len */
840 	if (flags & MREMAP_DONTUNMAP &&
841 		!may_expand_vm(mm, vma->vm_flags, old_len >> PAGE_SHIFT)) {
842 		ret = -ENOMEM;
843 		goto out;
844 	}
845 
846 	if (flags & MREMAP_FIXED)
847 		map_flags |= MAP_FIXED;
848 
849 	if (vma->vm_flags & VM_MAYSHARE)
850 		map_flags |= MAP_SHARED;
851 
852 	ret = get_unmapped_area(vma->vm_file, new_addr, new_len, vma->vm_pgoff +
853 				((addr - vma->vm_start) >> PAGE_SHIFT),
854 				map_flags);
855 	if (IS_ERR_VALUE(ret))
856 		goto out1;
857 
858 	/* We got a new mapping */
859 	if (!(flags & MREMAP_FIXED))
860 		new_addr = ret;
861 
862 	ret = move_vma(vma, addr, old_len, new_len, new_addr, locked, flags, uf,
863 		       uf_unmap);
864 
865 	if (!(offset_in_page(ret)))
866 		goto out;
867 
868 out1:
869 	vm_unacct_memory(charged);
870 
871 out:
872 	return ret;
873 }
874 
875 static int vma_expandable(struct vm_area_struct *vma, unsigned long delta)
876 {
877 	unsigned long end = vma->vm_end + delta;
878 	if (end < vma->vm_end) /* overflow */
879 		return 0;
880 	if (vma->vm_next && vma->vm_next->vm_start < end) /* intersection */
881 		return 0;
882 	if (get_unmapped_area(NULL, vma->vm_start, end - vma->vm_start,
883 			      0, MAP_FIXED) & ~PAGE_MASK)
884 		return 0;
885 	return 1;
886 }
887 
888 /*
889  * Expand (or shrink) an existing mapping, potentially moving it at the
890  * same time (controlled by the MREMAP_MAYMOVE flag and available VM space)
891  *
892  * MREMAP_FIXED option added 5-Dec-1999 by Benjamin LaHaise
893  * This option implies MREMAP_MAYMOVE.
894  */
895 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
896 		unsigned long, new_len, unsigned long, flags,
897 		unsigned long, new_addr)
898 {
899 	struct mm_struct *mm = current->mm;
900 	struct vm_area_struct *vma;
901 	unsigned long ret = -EINVAL;
902 	unsigned long charged = 0;
903 	bool locked = false;
904 	bool downgraded = false;
905 	struct vm_userfaultfd_ctx uf = NULL_VM_UFFD_CTX;
906 	LIST_HEAD(uf_unmap_early);
907 	LIST_HEAD(uf_unmap);
908 
909 	/*
910 	 * There is a deliberate asymmetry here: we strip the pointer tag
911 	 * from the old address but leave the new address alone. This is
912 	 * for consistency with mmap(), where we prevent the creation of
913 	 * aliasing mappings in userspace by leaving the tag bits of the
914 	 * mapping address intact. A non-zero tag will cause the subsequent
915 	 * range checks to reject the address as invalid.
916 	 *
917 	 * See Documentation/arm64/tagged-address-abi.rst for more information.
918 	 */
919 	addr = untagged_addr(addr);
920 
921 	if (flags & ~(MREMAP_FIXED | MREMAP_MAYMOVE | MREMAP_DONTUNMAP))
922 		return ret;
923 
924 	if (flags & MREMAP_FIXED && !(flags & MREMAP_MAYMOVE))
925 		return ret;
926 
927 	/*
928 	 * MREMAP_DONTUNMAP is always a move and it does not allow resizing
929 	 * in the process.
930 	 */
931 	if (flags & MREMAP_DONTUNMAP &&
932 			(!(flags & MREMAP_MAYMOVE) || old_len != new_len))
933 		return ret;
934 
935 
936 	if (offset_in_page(addr))
937 		return ret;
938 
939 	old_len = PAGE_ALIGN(old_len);
940 	new_len = PAGE_ALIGN(new_len);
941 
942 	/*
943 	 * We allow a zero old-len as a special case
944 	 * for DOS-emu "duplicate shm area" thing. But
945 	 * a zero new-len is nonsensical.
946 	 */
947 	if (!new_len)
948 		return ret;
949 
950 	if (mmap_write_lock_killable(current->mm))
951 		return -EINTR;
952 
953 	if (flags & (MREMAP_FIXED | MREMAP_DONTUNMAP)) {
954 		ret = mremap_to(addr, old_len, new_addr, new_len,
955 				&locked, flags, &uf, &uf_unmap_early,
956 				&uf_unmap);
957 		goto out;
958 	}
959 
960 	/*
961 	 * Always allow a shrinking remap: that just unmaps
962 	 * the unnecessary pages..
963 	 * __do_munmap does all the needed commit accounting, and
964 	 * downgrades mmap_lock to read if so directed.
965 	 */
966 	if (old_len >= new_len) {
967 		int retval;
968 
969 		retval = __do_munmap(mm, addr+new_len, old_len - new_len,
970 				  &uf_unmap, true);
971 		if (retval < 0 && old_len != new_len) {
972 			ret = retval;
973 			goto out;
974 		/* Returning 1 indicates mmap_lock is downgraded to read. */
975 		} else if (retval == 1)
976 			downgraded = true;
977 		ret = addr;
978 		goto out;
979 	}
980 
981 	/*
982 	 * Ok, we need to grow..
983 	 */
984 	vma = vma_to_resize(addr, old_len, new_len, flags, &charged);
985 	if (IS_ERR(vma)) {
986 		ret = PTR_ERR(vma);
987 		goto out;
988 	}
989 
990 	/* old_len exactly to the end of the area..
991 	 */
992 	if (old_len == vma->vm_end - addr) {
993 		/* can we just expand the current mapping? */
994 		if (vma_expandable(vma, new_len - old_len)) {
995 			int pages = (new_len - old_len) >> PAGE_SHIFT;
996 
997 			if (vma_adjust(vma, vma->vm_start, addr + new_len,
998 				       vma->vm_pgoff, NULL)) {
999 				ret = -ENOMEM;
1000 				goto out;
1001 			}
1002 
1003 			vm_stat_account(mm, vma->vm_flags, pages);
1004 			if (vma->vm_flags & VM_LOCKED) {
1005 				mm->locked_vm += pages;
1006 				locked = true;
1007 				new_addr = addr;
1008 			}
1009 			ret = addr;
1010 			goto out;
1011 		}
1012 	}
1013 
1014 	/*
1015 	 * We weren't able to just expand or shrink the area,
1016 	 * we need to create a new one and move it..
1017 	 */
1018 	ret = -ENOMEM;
1019 	if (flags & MREMAP_MAYMOVE) {
1020 		unsigned long map_flags = 0;
1021 		if (vma->vm_flags & VM_MAYSHARE)
1022 			map_flags |= MAP_SHARED;
1023 
1024 		new_addr = get_unmapped_area(vma->vm_file, 0, new_len,
1025 					vma->vm_pgoff +
1026 					((addr - vma->vm_start) >> PAGE_SHIFT),
1027 					map_flags);
1028 		if (IS_ERR_VALUE(new_addr)) {
1029 			ret = new_addr;
1030 			goto out;
1031 		}
1032 
1033 		ret = move_vma(vma, addr, old_len, new_len, new_addr,
1034 			       &locked, flags, &uf, &uf_unmap);
1035 	}
1036 out:
1037 	if (offset_in_page(ret)) {
1038 		vm_unacct_memory(charged);
1039 		locked = false;
1040 	}
1041 	if (downgraded)
1042 		mmap_read_unlock(current->mm);
1043 	else
1044 		mmap_write_unlock(current->mm);
1045 	if (locked && new_len > old_len)
1046 		mm_populate(new_addr + old_len, new_len - old_len);
1047 	userfaultfd_unmap_complete(mm, &uf_unmap_early);
1048 	mremap_userfaultfd_complete(&uf, addr, ret, old_len);
1049 	userfaultfd_unmap_complete(mm, &uf_unmap);
1050 	return ret;
1051 }
1052