1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * mm/mremap.c 4 * 5 * (C) Copyright 1996 Linus Torvalds 6 * 7 * Address space accounting code <alan@lxorguk.ukuu.org.uk> 8 * (C) Copyright 2002 Red Hat Inc, All Rights Reserved 9 */ 10 11 #include <linux/mm.h> 12 #include <linux/mm_inline.h> 13 #include <linux/hugetlb.h> 14 #include <linux/shm.h> 15 #include <linux/ksm.h> 16 #include <linux/mman.h> 17 #include <linux/swap.h> 18 #include <linux/capability.h> 19 #include <linux/fs.h> 20 #include <linux/swapops.h> 21 #include <linux/highmem.h> 22 #include <linux/security.h> 23 #include <linux/syscalls.h> 24 #include <linux/mmu_notifier.h> 25 #include <linux/uaccess.h> 26 #include <linux/userfaultfd_k.h> 27 #include <linux/mempolicy.h> 28 29 #include <asm/cacheflush.h> 30 #include <asm/tlb.h> 31 #include <asm/pgalloc.h> 32 33 #include "internal.h" 34 35 static pud_t *get_old_pud(struct mm_struct *mm, unsigned long addr) 36 { 37 pgd_t *pgd; 38 p4d_t *p4d; 39 pud_t *pud; 40 41 pgd = pgd_offset(mm, addr); 42 if (pgd_none_or_clear_bad(pgd)) 43 return NULL; 44 45 p4d = p4d_offset(pgd, addr); 46 if (p4d_none_or_clear_bad(p4d)) 47 return NULL; 48 49 pud = pud_offset(p4d, addr); 50 if (pud_none_or_clear_bad(pud)) 51 return NULL; 52 53 return pud; 54 } 55 56 static pmd_t *get_old_pmd(struct mm_struct *mm, unsigned long addr) 57 { 58 pud_t *pud; 59 pmd_t *pmd; 60 61 pud = get_old_pud(mm, addr); 62 if (!pud) 63 return NULL; 64 65 pmd = pmd_offset(pud, addr); 66 if (pmd_none(*pmd)) 67 return NULL; 68 69 return pmd; 70 } 71 72 static pud_t *alloc_new_pud(struct mm_struct *mm, struct vm_area_struct *vma, 73 unsigned long addr) 74 { 75 pgd_t *pgd; 76 p4d_t *p4d; 77 78 pgd = pgd_offset(mm, addr); 79 p4d = p4d_alloc(mm, pgd, addr); 80 if (!p4d) 81 return NULL; 82 83 return pud_alloc(mm, p4d, addr); 84 } 85 86 static pmd_t *alloc_new_pmd(struct mm_struct *mm, struct vm_area_struct *vma, 87 unsigned long addr) 88 { 89 pud_t *pud; 90 pmd_t *pmd; 91 92 pud = alloc_new_pud(mm, vma, addr); 93 if (!pud) 94 return NULL; 95 96 pmd = pmd_alloc(mm, pud, addr); 97 if (!pmd) 98 return NULL; 99 100 VM_BUG_ON(pmd_trans_huge(*pmd)); 101 102 return pmd; 103 } 104 105 static void take_rmap_locks(struct vm_area_struct *vma) 106 { 107 if (vma->vm_file) 108 i_mmap_lock_write(vma->vm_file->f_mapping); 109 if (vma->anon_vma) 110 anon_vma_lock_write(vma->anon_vma); 111 } 112 113 static void drop_rmap_locks(struct vm_area_struct *vma) 114 { 115 if (vma->anon_vma) 116 anon_vma_unlock_write(vma->anon_vma); 117 if (vma->vm_file) 118 i_mmap_unlock_write(vma->vm_file->f_mapping); 119 } 120 121 static pte_t move_soft_dirty_pte(pte_t pte) 122 { 123 /* 124 * Set soft dirty bit so we can notice 125 * in userspace the ptes were moved. 126 */ 127 #ifdef CONFIG_MEM_SOFT_DIRTY 128 if (pte_present(pte)) 129 pte = pte_mksoft_dirty(pte); 130 else if (is_swap_pte(pte)) 131 pte = pte_swp_mksoft_dirty(pte); 132 #endif 133 return pte; 134 } 135 136 static int move_ptes(struct vm_area_struct *vma, pmd_t *old_pmd, 137 unsigned long old_addr, unsigned long old_end, 138 struct vm_area_struct *new_vma, pmd_t *new_pmd, 139 unsigned long new_addr, bool need_rmap_locks) 140 { 141 bool need_clear_uffd_wp = vma_has_uffd_without_event_remap(vma); 142 struct mm_struct *mm = vma->vm_mm; 143 pte_t *old_pte, *new_pte, pte; 144 pmd_t dummy_pmdval; 145 spinlock_t *old_ptl, *new_ptl; 146 bool force_flush = false; 147 unsigned long len = old_end - old_addr; 148 int err = 0; 149 150 /* 151 * When need_rmap_locks is true, we take the i_mmap_rwsem and anon_vma 152 * locks to ensure that rmap will always observe either the old or the 153 * new ptes. This is the easiest way to avoid races with 154 * truncate_pagecache(), page migration, etc... 155 * 156 * When need_rmap_locks is false, we use other ways to avoid 157 * such races: 158 * 159 * - During exec() shift_arg_pages(), we use a specially tagged vma 160 * which rmap call sites look for using vma_is_temporary_stack(). 161 * 162 * - During mremap(), new_vma is often known to be placed after vma 163 * in rmap traversal order. This ensures rmap will always observe 164 * either the old pte, or the new pte, or both (the page table locks 165 * serialize access to individual ptes, but only rmap traversal 166 * order guarantees that we won't miss both the old and new ptes). 167 */ 168 if (need_rmap_locks) 169 take_rmap_locks(vma); 170 171 /* 172 * We don't have to worry about the ordering of src and dst 173 * pte locks because exclusive mmap_lock prevents deadlock. 174 */ 175 old_pte = pte_offset_map_lock(mm, old_pmd, old_addr, &old_ptl); 176 if (!old_pte) { 177 err = -EAGAIN; 178 goto out; 179 } 180 /* 181 * Now new_pte is none, so hpage_collapse_scan_file() path can not find 182 * this by traversing file->f_mapping, so there is no concurrency with 183 * retract_page_tables(). In addition, we already hold the exclusive 184 * mmap_lock, so this new_pte page is stable, so there is no need to get 185 * pmdval and do pmd_same() check. 186 */ 187 new_pte = pte_offset_map_rw_nolock(mm, new_pmd, new_addr, &dummy_pmdval, 188 &new_ptl); 189 if (!new_pte) { 190 pte_unmap_unlock(old_pte, old_ptl); 191 err = -EAGAIN; 192 goto out; 193 } 194 if (new_ptl != old_ptl) 195 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); 196 flush_tlb_batched_pending(vma->vm_mm); 197 arch_enter_lazy_mmu_mode(); 198 199 for (; old_addr < old_end; old_pte++, old_addr += PAGE_SIZE, 200 new_pte++, new_addr += PAGE_SIZE) { 201 if (pte_none(ptep_get(old_pte))) 202 continue; 203 204 pte = ptep_get_and_clear(mm, old_addr, old_pte); 205 /* 206 * If we are remapping a valid PTE, make sure 207 * to flush TLB before we drop the PTL for the 208 * PTE. 209 * 210 * NOTE! Both old and new PTL matter: the old one 211 * for racing with folio_mkclean(), the new one to 212 * make sure the physical page stays valid until 213 * the TLB entry for the old mapping has been 214 * flushed. 215 */ 216 if (pte_present(pte)) 217 force_flush = true; 218 pte = move_pte(pte, old_addr, new_addr); 219 pte = move_soft_dirty_pte(pte); 220 221 if (need_clear_uffd_wp && pte_marker_uffd_wp(pte)) 222 pte_clear(mm, new_addr, new_pte); 223 else { 224 if (need_clear_uffd_wp) { 225 if (pte_present(pte)) 226 pte = pte_clear_uffd_wp(pte); 227 else if (is_swap_pte(pte)) 228 pte = pte_swp_clear_uffd_wp(pte); 229 } 230 set_pte_at(mm, new_addr, new_pte, pte); 231 } 232 } 233 234 arch_leave_lazy_mmu_mode(); 235 if (force_flush) 236 flush_tlb_range(vma, old_end - len, old_end); 237 if (new_ptl != old_ptl) 238 spin_unlock(new_ptl); 239 pte_unmap(new_pte - 1); 240 pte_unmap_unlock(old_pte - 1, old_ptl); 241 out: 242 if (need_rmap_locks) 243 drop_rmap_locks(vma); 244 return err; 245 } 246 247 #ifndef arch_supports_page_table_move 248 #define arch_supports_page_table_move arch_supports_page_table_move 249 static inline bool arch_supports_page_table_move(void) 250 { 251 return IS_ENABLED(CONFIG_HAVE_MOVE_PMD) || 252 IS_ENABLED(CONFIG_HAVE_MOVE_PUD); 253 } 254 #endif 255 256 #ifdef CONFIG_HAVE_MOVE_PMD 257 static bool move_normal_pmd(struct vm_area_struct *vma, unsigned long old_addr, 258 unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd) 259 { 260 spinlock_t *old_ptl, *new_ptl; 261 struct mm_struct *mm = vma->vm_mm; 262 bool res = false; 263 pmd_t pmd; 264 265 if (!arch_supports_page_table_move()) 266 return false; 267 /* 268 * The destination pmd shouldn't be established, free_pgtables() 269 * should have released it. 270 * 271 * However, there's a case during execve() where we use mremap 272 * to move the initial stack, and in that case the target area 273 * may overlap the source area (always moving down). 274 * 275 * If everything is PMD-aligned, that works fine, as moving 276 * each pmd down will clear the source pmd. But if we first 277 * have a few 4kB-only pages that get moved down, and then 278 * hit the "now the rest is PMD-aligned, let's do everything 279 * one pmd at a time", we will still have the old (now empty 280 * of any 4kB pages, but still there) PMD in the page table 281 * tree. 282 * 283 * Warn on it once - because we really should try to figure 284 * out how to do this better - but then say "I won't move 285 * this pmd". 286 * 287 * One alternative might be to just unmap the target pmd at 288 * this point, and verify that it really is empty. We'll see. 289 */ 290 if (WARN_ON_ONCE(!pmd_none(*new_pmd))) 291 return false; 292 293 /* If this pmd belongs to a uffd vma with remap events disabled, we need 294 * to ensure that the uffd-wp state is cleared from all pgtables. This 295 * means recursing into lower page tables in move_page_tables(), and we 296 * can reuse the existing code if we simply treat the entry as "not 297 * moved". 298 */ 299 if (vma_has_uffd_without_event_remap(vma)) 300 return false; 301 302 /* 303 * We don't have to worry about the ordering of src and dst 304 * ptlocks because exclusive mmap_lock prevents deadlock. 305 */ 306 old_ptl = pmd_lock(vma->vm_mm, old_pmd); 307 new_ptl = pmd_lockptr(mm, new_pmd); 308 if (new_ptl != old_ptl) 309 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); 310 311 pmd = *old_pmd; 312 313 /* Racing with collapse? */ 314 if (unlikely(!pmd_present(pmd) || pmd_leaf(pmd))) 315 goto out_unlock; 316 /* Clear the pmd */ 317 pmd_clear(old_pmd); 318 res = true; 319 320 VM_BUG_ON(!pmd_none(*new_pmd)); 321 322 pmd_populate(mm, new_pmd, pmd_pgtable(pmd)); 323 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE); 324 out_unlock: 325 if (new_ptl != old_ptl) 326 spin_unlock(new_ptl); 327 spin_unlock(old_ptl); 328 329 return res; 330 } 331 #else 332 static inline bool move_normal_pmd(struct vm_area_struct *vma, 333 unsigned long old_addr, unsigned long new_addr, pmd_t *old_pmd, 334 pmd_t *new_pmd) 335 { 336 return false; 337 } 338 #endif 339 340 #if CONFIG_PGTABLE_LEVELS > 2 && defined(CONFIG_HAVE_MOVE_PUD) 341 static bool move_normal_pud(struct vm_area_struct *vma, unsigned long old_addr, 342 unsigned long new_addr, pud_t *old_pud, pud_t *new_pud) 343 { 344 spinlock_t *old_ptl, *new_ptl; 345 struct mm_struct *mm = vma->vm_mm; 346 pud_t pud; 347 348 if (!arch_supports_page_table_move()) 349 return false; 350 /* 351 * The destination pud shouldn't be established, free_pgtables() 352 * should have released it. 353 */ 354 if (WARN_ON_ONCE(!pud_none(*new_pud))) 355 return false; 356 357 /* If this pud belongs to a uffd vma with remap events disabled, we need 358 * to ensure that the uffd-wp state is cleared from all pgtables. This 359 * means recursing into lower page tables in move_page_tables(), and we 360 * can reuse the existing code if we simply treat the entry as "not 361 * moved". 362 */ 363 if (vma_has_uffd_without_event_remap(vma)) 364 return false; 365 366 /* 367 * We don't have to worry about the ordering of src and dst 368 * ptlocks because exclusive mmap_lock prevents deadlock. 369 */ 370 old_ptl = pud_lock(vma->vm_mm, old_pud); 371 new_ptl = pud_lockptr(mm, new_pud); 372 if (new_ptl != old_ptl) 373 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); 374 375 /* Clear the pud */ 376 pud = *old_pud; 377 pud_clear(old_pud); 378 379 VM_BUG_ON(!pud_none(*new_pud)); 380 381 pud_populate(mm, new_pud, pud_pgtable(pud)); 382 flush_tlb_range(vma, old_addr, old_addr + PUD_SIZE); 383 if (new_ptl != old_ptl) 384 spin_unlock(new_ptl); 385 spin_unlock(old_ptl); 386 387 return true; 388 } 389 #else 390 static inline bool move_normal_pud(struct vm_area_struct *vma, 391 unsigned long old_addr, unsigned long new_addr, pud_t *old_pud, 392 pud_t *new_pud) 393 { 394 return false; 395 } 396 #endif 397 398 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 399 static bool move_huge_pud(struct vm_area_struct *vma, unsigned long old_addr, 400 unsigned long new_addr, pud_t *old_pud, pud_t *new_pud) 401 { 402 spinlock_t *old_ptl, *new_ptl; 403 struct mm_struct *mm = vma->vm_mm; 404 pud_t pud; 405 406 /* 407 * The destination pud shouldn't be established, free_pgtables() 408 * should have released it. 409 */ 410 if (WARN_ON_ONCE(!pud_none(*new_pud))) 411 return false; 412 413 /* 414 * We don't have to worry about the ordering of src and dst 415 * ptlocks because exclusive mmap_lock prevents deadlock. 416 */ 417 old_ptl = pud_lock(vma->vm_mm, old_pud); 418 new_ptl = pud_lockptr(mm, new_pud); 419 if (new_ptl != old_ptl) 420 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); 421 422 /* Clear the pud */ 423 pud = *old_pud; 424 pud_clear(old_pud); 425 426 VM_BUG_ON(!pud_none(*new_pud)); 427 428 /* Set the new pud */ 429 /* mark soft_ditry when we add pud level soft dirty support */ 430 set_pud_at(mm, new_addr, new_pud, pud); 431 flush_pud_tlb_range(vma, old_addr, old_addr + HPAGE_PUD_SIZE); 432 if (new_ptl != old_ptl) 433 spin_unlock(new_ptl); 434 spin_unlock(old_ptl); 435 436 return true; 437 } 438 #else 439 static bool move_huge_pud(struct vm_area_struct *vma, unsigned long old_addr, 440 unsigned long new_addr, pud_t *old_pud, pud_t *new_pud) 441 { 442 WARN_ON_ONCE(1); 443 return false; 444 445 } 446 #endif 447 448 enum pgt_entry { 449 NORMAL_PMD, 450 HPAGE_PMD, 451 NORMAL_PUD, 452 HPAGE_PUD, 453 }; 454 455 /* 456 * Returns an extent of the corresponding size for the pgt_entry specified if 457 * valid. Else returns a smaller extent bounded by the end of the source and 458 * destination pgt_entry. 459 */ 460 static __always_inline unsigned long get_extent(enum pgt_entry entry, 461 unsigned long old_addr, unsigned long old_end, 462 unsigned long new_addr) 463 { 464 unsigned long next, extent, mask, size; 465 466 switch (entry) { 467 case HPAGE_PMD: 468 case NORMAL_PMD: 469 mask = PMD_MASK; 470 size = PMD_SIZE; 471 break; 472 case HPAGE_PUD: 473 case NORMAL_PUD: 474 mask = PUD_MASK; 475 size = PUD_SIZE; 476 break; 477 default: 478 BUILD_BUG(); 479 break; 480 } 481 482 next = (old_addr + size) & mask; 483 /* even if next overflowed, extent below will be ok */ 484 extent = next - old_addr; 485 if (extent > old_end - old_addr) 486 extent = old_end - old_addr; 487 next = (new_addr + size) & mask; 488 if (extent > next - new_addr) 489 extent = next - new_addr; 490 return extent; 491 } 492 493 /* 494 * Attempts to speedup the move by moving entry at the level corresponding to 495 * pgt_entry. Returns true if the move was successful, else false. 496 */ 497 static bool move_pgt_entry(enum pgt_entry entry, struct vm_area_struct *vma, 498 unsigned long old_addr, unsigned long new_addr, 499 void *old_entry, void *new_entry, bool need_rmap_locks) 500 { 501 bool moved = false; 502 503 /* See comment in move_ptes() */ 504 if (need_rmap_locks) 505 take_rmap_locks(vma); 506 507 switch (entry) { 508 case NORMAL_PMD: 509 moved = move_normal_pmd(vma, old_addr, new_addr, old_entry, 510 new_entry); 511 break; 512 case NORMAL_PUD: 513 moved = move_normal_pud(vma, old_addr, new_addr, old_entry, 514 new_entry); 515 break; 516 case HPAGE_PMD: 517 moved = IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 518 move_huge_pmd(vma, old_addr, new_addr, old_entry, 519 new_entry); 520 break; 521 case HPAGE_PUD: 522 moved = IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 523 move_huge_pud(vma, old_addr, new_addr, old_entry, 524 new_entry); 525 break; 526 527 default: 528 WARN_ON_ONCE(1); 529 break; 530 } 531 532 if (need_rmap_locks) 533 drop_rmap_locks(vma); 534 535 return moved; 536 } 537 538 /* 539 * A helper to check if aligning down is OK. The aligned address should fall 540 * on *no mapping*. For the stack moving down, that's a special move within 541 * the VMA that is created to span the source and destination of the move, 542 * so we make an exception for it. 543 */ 544 static bool can_align_down(struct vm_area_struct *vma, unsigned long addr_to_align, 545 unsigned long mask, bool for_stack) 546 { 547 unsigned long addr_masked = addr_to_align & mask; 548 549 /* 550 * If @addr_to_align of either source or destination is not the beginning 551 * of the corresponding VMA, we can't align down or we will destroy part 552 * of the current mapping. 553 */ 554 if (!for_stack && vma->vm_start != addr_to_align) 555 return false; 556 557 /* In the stack case we explicitly permit in-VMA alignment. */ 558 if (for_stack && addr_masked >= vma->vm_start) 559 return true; 560 561 /* 562 * Make sure the realignment doesn't cause the address to fall on an 563 * existing mapping. 564 */ 565 return find_vma_intersection(vma->vm_mm, addr_masked, vma->vm_start) == NULL; 566 } 567 568 /* Opportunistically realign to specified boundary for faster copy. */ 569 static void try_realign_addr(unsigned long *old_addr, struct vm_area_struct *old_vma, 570 unsigned long *new_addr, struct vm_area_struct *new_vma, 571 unsigned long mask, bool for_stack) 572 { 573 /* Skip if the addresses are already aligned. */ 574 if ((*old_addr & ~mask) == 0) 575 return; 576 577 /* Only realign if the new and old addresses are mutually aligned. */ 578 if ((*old_addr & ~mask) != (*new_addr & ~mask)) 579 return; 580 581 /* Ensure realignment doesn't cause overlap with existing mappings. */ 582 if (!can_align_down(old_vma, *old_addr, mask, for_stack) || 583 !can_align_down(new_vma, *new_addr, mask, for_stack)) 584 return; 585 586 *old_addr = *old_addr & mask; 587 *new_addr = *new_addr & mask; 588 } 589 590 unsigned long move_page_tables(struct vm_area_struct *vma, 591 unsigned long old_addr, struct vm_area_struct *new_vma, 592 unsigned long new_addr, unsigned long len, 593 bool need_rmap_locks, bool for_stack) 594 { 595 unsigned long extent, old_end; 596 struct mmu_notifier_range range; 597 pmd_t *old_pmd, *new_pmd; 598 pud_t *old_pud, *new_pud; 599 600 if (!len) 601 return 0; 602 603 old_end = old_addr + len; 604 605 if (is_vm_hugetlb_page(vma)) 606 return move_hugetlb_page_tables(vma, new_vma, old_addr, 607 new_addr, len); 608 609 /* 610 * If possible, realign addresses to PMD boundary for faster copy. 611 * Only realign if the mremap copying hits a PMD boundary. 612 */ 613 if (len >= PMD_SIZE - (old_addr & ~PMD_MASK)) 614 try_realign_addr(&old_addr, vma, &new_addr, new_vma, PMD_MASK, 615 for_stack); 616 617 flush_cache_range(vma, old_addr, old_end); 618 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm, 619 old_addr, old_end); 620 mmu_notifier_invalidate_range_start(&range); 621 622 for (; old_addr < old_end; old_addr += extent, new_addr += extent) { 623 cond_resched(); 624 /* 625 * If extent is PUD-sized try to speed up the move by moving at the 626 * PUD level if possible. 627 */ 628 extent = get_extent(NORMAL_PUD, old_addr, old_end, new_addr); 629 630 old_pud = get_old_pud(vma->vm_mm, old_addr); 631 if (!old_pud) 632 continue; 633 new_pud = alloc_new_pud(vma->vm_mm, vma, new_addr); 634 if (!new_pud) 635 break; 636 if (pud_trans_huge(*old_pud) || pud_devmap(*old_pud)) { 637 if (extent == HPAGE_PUD_SIZE) { 638 move_pgt_entry(HPAGE_PUD, vma, old_addr, new_addr, 639 old_pud, new_pud, need_rmap_locks); 640 /* We ignore and continue on error? */ 641 continue; 642 } 643 } else if (IS_ENABLED(CONFIG_HAVE_MOVE_PUD) && extent == PUD_SIZE) { 644 645 if (move_pgt_entry(NORMAL_PUD, vma, old_addr, new_addr, 646 old_pud, new_pud, true)) 647 continue; 648 } 649 650 extent = get_extent(NORMAL_PMD, old_addr, old_end, new_addr); 651 old_pmd = get_old_pmd(vma->vm_mm, old_addr); 652 if (!old_pmd) 653 continue; 654 new_pmd = alloc_new_pmd(vma->vm_mm, vma, new_addr); 655 if (!new_pmd) 656 break; 657 again: 658 if (is_swap_pmd(*old_pmd) || pmd_trans_huge(*old_pmd) || 659 pmd_devmap(*old_pmd)) { 660 if (extent == HPAGE_PMD_SIZE && 661 move_pgt_entry(HPAGE_PMD, vma, old_addr, new_addr, 662 old_pmd, new_pmd, need_rmap_locks)) 663 continue; 664 split_huge_pmd(vma, old_pmd, old_addr); 665 } else if (IS_ENABLED(CONFIG_HAVE_MOVE_PMD) && 666 extent == PMD_SIZE) { 667 /* 668 * If the extent is PMD-sized, try to speed the move by 669 * moving at the PMD level if possible. 670 */ 671 if (move_pgt_entry(NORMAL_PMD, vma, old_addr, new_addr, 672 old_pmd, new_pmd, true)) 673 continue; 674 } 675 if (pmd_none(*old_pmd)) 676 continue; 677 if (pte_alloc(new_vma->vm_mm, new_pmd)) 678 break; 679 if (move_ptes(vma, old_pmd, old_addr, old_addr + extent, 680 new_vma, new_pmd, new_addr, need_rmap_locks) < 0) 681 goto again; 682 } 683 684 mmu_notifier_invalidate_range_end(&range); 685 686 /* 687 * Prevent negative return values when {old,new}_addr was realigned 688 * but we broke out of the above loop for the first PMD itself. 689 */ 690 if (old_addr < old_end - len) 691 return 0; 692 693 return len + old_addr - old_end; /* how much done */ 694 } 695 696 static unsigned long move_vma(struct vm_area_struct *vma, 697 unsigned long old_addr, unsigned long old_len, 698 unsigned long new_len, unsigned long new_addr, 699 bool *locked, unsigned long flags, 700 struct vm_userfaultfd_ctx *uf, struct list_head *uf_unmap) 701 { 702 long to_account = new_len - old_len; 703 struct mm_struct *mm = vma->vm_mm; 704 struct vm_area_struct *new_vma; 705 unsigned long vm_flags = vma->vm_flags; 706 unsigned long new_pgoff; 707 unsigned long moved_len; 708 unsigned long account_start = 0; 709 unsigned long account_end = 0; 710 unsigned long hiwater_vm; 711 int err = 0; 712 bool need_rmap_locks; 713 struct vma_iterator vmi; 714 715 /* 716 * We'd prefer to avoid failure later on in do_munmap: 717 * which may split one vma into three before unmapping. 718 */ 719 if (mm->map_count >= sysctl_max_map_count - 3) 720 return -ENOMEM; 721 722 if (unlikely(flags & MREMAP_DONTUNMAP)) 723 to_account = new_len; 724 725 if (vma->vm_ops && vma->vm_ops->may_split) { 726 if (vma->vm_start != old_addr) 727 err = vma->vm_ops->may_split(vma, old_addr); 728 if (!err && vma->vm_end != old_addr + old_len) 729 err = vma->vm_ops->may_split(vma, old_addr + old_len); 730 if (err) 731 return err; 732 } 733 734 /* 735 * Advise KSM to break any KSM pages in the area to be moved: 736 * it would be confusing if they were to turn up at the new 737 * location, where they happen to coincide with different KSM 738 * pages recently unmapped. But leave vma->vm_flags as it was, 739 * so KSM can come around to merge on vma and new_vma afterwards. 740 */ 741 err = ksm_madvise(vma, old_addr, old_addr + old_len, 742 MADV_UNMERGEABLE, &vm_flags); 743 if (err) 744 return err; 745 746 if (vm_flags & VM_ACCOUNT) { 747 if (security_vm_enough_memory_mm(mm, to_account >> PAGE_SHIFT)) 748 return -ENOMEM; 749 } 750 751 vma_start_write(vma); 752 new_pgoff = vma->vm_pgoff + ((old_addr - vma->vm_start) >> PAGE_SHIFT); 753 new_vma = copy_vma(&vma, new_addr, new_len, new_pgoff, 754 &need_rmap_locks); 755 if (!new_vma) { 756 if (vm_flags & VM_ACCOUNT) 757 vm_unacct_memory(to_account >> PAGE_SHIFT); 758 return -ENOMEM; 759 } 760 761 moved_len = move_page_tables(vma, old_addr, new_vma, new_addr, old_len, 762 need_rmap_locks, false); 763 if (moved_len < old_len) { 764 err = -ENOMEM; 765 } else if (vma->vm_ops && vma->vm_ops->mremap) { 766 err = vma->vm_ops->mremap(new_vma); 767 } 768 769 if (unlikely(err)) { 770 /* 771 * On error, move entries back from new area to old, 772 * which will succeed since page tables still there, 773 * and then proceed to unmap new area instead of old. 774 */ 775 move_page_tables(new_vma, new_addr, vma, old_addr, moved_len, 776 true, false); 777 vma = new_vma; 778 old_len = new_len; 779 old_addr = new_addr; 780 new_addr = err; 781 } else { 782 mremap_userfaultfd_prep(new_vma, uf); 783 } 784 785 if (is_vm_hugetlb_page(vma)) { 786 clear_vma_resv_huge_pages(vma); 787 } 788 789 /* Conceal VM_ACCOUNT so old reservation is not undone */ 790 if (vm_flags & VM_ACCOUNT && !(flags & MREMAP_DONTUNMAP)) { 791 vm_flags_clear(vma, VM_ACCOUNT); 792 if (vma->vm_start < old_addr) 793 account_start = vma->vm_start; 794 if (vma->vm_end > old_addr + old_len) 795 account_end = vma->vm_end; 796 } 797 798 /* 799 * If we failed to move page tables we still do total_vm increment 800 * since do_munmap() will decrement it by old_len == new_len. 801 * 802 * Since total_vm is about to be raised artificially high for a 803 * moment, we need to restore high watermark afterwards: if stats 804 * are taken meanwhile, total_vm and hiwater_vm appear too high. 805 * If this were a serious issue, we'd add a flag to do_munmap(). 806 */ 807 hiwater_vm = mm->hiwater_vm; 808 vm_stat_account(mm, vma->vm_flags, new_len >> PAGE_SHIFT); 809 810 /* Tell pfnmap has moved from this vma */ 811 if (unlikely(vma->vm_flags & VM_PFNMAP)) 812 untrack_pfn_clear(vma); 813 814 if (unlikely(!err && (flags & MREMAP_DONTUNMAP))) { 815 /* We always clear VM_LOCKED[ONFAULT] on the old vma */ 816 vm_flags_clear(vma, VM_LOCKED_MASK); 817 818 /* 819 * anon_vma links of the old vma is no longer needed after its page 820 * table has been moved. 821 */ 822 if (new_vma != vma && vma->vm_start == old_addr && 823 vma->vm_end == (old_addr + old_len)) 824 unlink_anon_vmas(vma); 825 826 /* Because we won't unmap we don't need to touch locked_vm */ 827 return new_addr; 828 } 829 830 vma_iter_init(&vmi, mm, old_addr); 831 if (do_vmi_munmap(&vmi, mm, old_addr, old_len, uf_unmap, false) < 0) { 832 /* OOM: unable to split vma, just get accounts right */ 833 if (vm_flags & VM_ACCOUNT && !(flags & MREMAP_DONTUNMAP)) 834 vm_acct_memory(old_len >> PAGE_SHIFT); 835 account_start = account_end = 0; 836 } 837 838 if (vm_flags & VM_LOCKED) { 839 mm->locked_vm += new_len >> PAGE_SHIFT; 840 *locked = true; 841 } 842 843 mm->hiwater_vm = hiwater_vm; 844 845 /* Restore VM_ACCOUNT if one or two pieces of vma left */ 846 if (account_start) { 847 vma = vma_prev(&vmi); 848 vm_flags_set(vma, VM_ACCOUNT); 849 } 850 851 if (account_end) { 852 vma = vma_next(&vmi); 853 vm_flags_set(vma, VM_ACCOUNT); 854 } 855 856 return new_addr; 857 } 858 859 /* 860 * resize_is_valid() - Ensure the vma can be resized to the new length at the give 861 * address. 862 * 863 * @vma: The vma to resize 864 * @addr: The old address 865 * @old_len: The current size 866 * @new_len: The desired size 867 * @flags: The vma flags 868 * 869 * Return 0 on success, error otherwise. 870 */ 871 static int resize_is_valid(struct vm_area_struct *vma, unsigned long addr, 872 unsigned long old_len, unsigned long new_len, unsigned long flags) 873 { 874 struct mm_struct *mm = current->mm; 875 unsigned long pgoff; 876 877 /* 878 * !old_len is a special case where an attempt is made to 'duplicate' 879 * a mapping. This makes no sense for private mappings as it will 880 * instead create a fresh/new mapping unrelated to the original. This 881 * is contrary to the basic idea of mremap which creates new mappings 882 * based on the original. There are no known use cases for this 883 * behavior. As a result, fail such attempts. 884 */ 885 if (!old_len && !(vma->vm_flags & (VM_SHARED | VM_MAYSHARE))) { 886 pr_warn_once("%s (%d): attempted to duplicate a private mapping with mremap. This is not supported.\n", current->comm, current->pid); 887 return -EINVAL; 888 } 889 890 if ((flags & MREMAP_DONTUNMAP) && 891 (vma->vm_flags & (VM_DONTEXPAND | VM_PFNMAP))) 892 return -EINVAL; 893 894 /* We can't remap across vm area boundaries */ 895 if (old_len > vma->vm_end - addr) 896 return -EFAULT; 897 898 if (new_len == old_len) 899 return 0; 900 901 /* Need to be careful about a growing mapping */ 902 pgoff = (addr - vma->vm_start) >> PAGE_SHIFT; 903 pgoff += vma->vm_pgoff; 904 if (pgoff + (new_len >> PAGE_SHIFT) < pgoff) 905 return -EINVAL; 906 907 if (vma->vm_flags & (VM_DONTEXPAND | VM_PFNMAP)) 908 return -EFAULT; 909 910 if (!mlock_future_ok(mm, vma->vm_flags, new_len - old_len)) 911 return -EAGAIN; 912 913 if (!may_expand_vm(mm, vma->vm_flags, 914 (new_len - old_len) >> PAGE_SHIFT)) 915 return -ENOMEM; 916 917 return 0; 918 } 919 920 /* 921 * mremap_to() - remap a vma to a new location 922 * @addr: The old address 923 * @old_len: The old size 924 * @new_addr: The target address 925 * @new_len: The new size 926 * @locked: If the returned vma is locked (VM_LOCKED) 927 * @flags: the mremap flags 928 * @uf: The mremap userfaultfd context 929 * @uf_unmap_early: The userfaultfd unmap early context 930 * @uf_unmap: The userfaultfd unmap context 931 * 932 * Returns: The new address of the vma or an error. 933 */ 934 static unsigned long mremap_to(unsigned long addr, unsigned long old_len, 935 unsigned long new_addr, unsigned long new_len, bool *locked, 936 unsigned long flags, struct vm_userfaultfd_ctx *uf, 937 struct list_head *uf_unmap_early, 938 struct list_head *uf_unmap) 939 { 940 struct mm_struct *mm = current->mm; 941 struct vm_area_struct *vma; 942 unsigned long ret; 943 unsigned long map_flags = 0; 944 945 if (offset_in_page(new_addr)) 946 return -EINVAL; 947 948 if (new_len > TASK_SIZE || new_addr > TASK_SIZE - new_len) 949 return -EINVAL; 950 951 /* Ensure the old/new locations do not overlap */ 952 if (addr + old_len > new_addr && new_addr + new_len > addr) 953 return -EINVAL; 954 955 /* 956 * move_vma() need us to stay 4 maps below the threshold, otherwise 957 * it will bail out at the very beginning. 958 * That is a problem if we have already unmaped the regions here 959 * (new_addr, and old_addr), because userspace will not know the 960 * state of the vma's after it gets -ENOMEM. 961 * So, to avoid such scenario we can pre-compute if the whole 962 * operation has high chances to success map-wise. 963 * Worst-scenario case is when both vma's (new_addr and old_addr) get 964 * split in 3 before unmapping it. 965 * That means 2 more maps (1 for each) to the ones we already hold. 966 * Check whether current map count plus 2 still leads us to 4 maps below 967 * the threshold, otherwise return -ENOMEM here to be more safe. 968 */ 969 if ((mm->map_count + 2) >= sysctl_max_map_count - 3) 970 return -ENOMEM; 971 972 if (flags & MREMAP_FIXED) { 973 /* 974 * In mremap_to(). 975 * VMA is moved to dst address, and munmap dst first. 976 * do_munmap will check if dst is sealed. 977 */ 978 ret = do_munmap(mm, new_addr, new_len, uf_unmap_early); 979 if (ret) 980 return ret; 981 } 982 983 if (old_len > new_len) { 984 ret = do_munmap(mm, addr+new_len, old_len - new_len, uf_unmap); 985 if (ret) 986 return ret; 987 old_len = new_len; 988 } 989 990 vma = vma_lookup(mm, addr); 991 if (!vma) 992 return -EFAULT; 993 994 ret = resize_is_valid(vma, addr, old_len, new_len, flags); 995 if (ret) 996 return ret; 997 998 /* MREMAP_DONTUNMAP expands by old_len since old_len == new_len */ 999 if (flags & MREMAP_DONTUNMAP && 1000 !may_expand_vm(mm, vma->vm_flags, old_len >> PAGE_SHIFT)) { 1001 return -ENOMEM; 1002 } 1003 1004 if (flags & MREMAP_FIXED) 1005 map_flags |= MAP_FIXED; 1006 1007 if (vma->vm_flags & VM_MAYSHARE) 1008 map_flags |= MAP_SHARED; 1009 1010 ret = get_unmapped_area(vma->vm_file, new_addr, new_len, vma->vm_pgoff + 1011 ((addr - vma->vm_start) >> PAGE_SHIFT), 1012 map_flags); 1013 if (IS_ERR_VALUE(ret)) 1014 return ret; 1015 1016 /* We got a new mapping */ 1017 if (!(flags & MREMAP_FIXED)) 1018 new_addr = ret; 1019 1020 return move_vma(vma, addr, old_len, new_len, new_addr, locked, flags, 1021 uf, uf_unmap); 1022 } 1023 1024 static int vma_expandable(struct vm_area_struct *vma, unsigned long delta) 1025 { 1026 unsigned long end = vma->vm_end + delta; 1027 1028 if (end < vma->vm_end) /* overflow */ 1029 return 0; 1030 if (find_vma_intersection(vma->vm_mm, vma->vm_end, end)) 1031 return 0; 1032 if (get_unmapped_area(NULL, vma->vm_start, end - vma->vm_start, 1033 0, MAP_FIXED) & ~PAGE_MASK) 1034 return 0; 1035 return 1; 1036 } 1037 1038 /* 1039 * Expand (or shrink) an existing mapping, potentially moving it at the 1040 * same time (controlled by the MREMAP_MAYMOVE flag and available VM space) 1041 * 1042 * MREMAP_FIXED option added 5-Dec-1999 by Benjamin LaHaise 1043 * This option implies MREMAP_MAYMOVE. 1044 */ 1045 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len, 1046 unsigned long, new_len, unsigned long, flags, 1047 unsigned long, new_addr) 1048 { 1049 struct mm_struct *mm = current->mm; 1050 struct vm_area_struct *vma; 1051 unsigned long ret = -EINVAL; 1052 bool locked = false; 1053 struct vm_userfaultfd_ctx uf = NULL_VM_UFFD_CTX; 1054 LIST_HEAD(uf_unmap_early); 1055 LIST_HEAD(uf_unmap); 1056 1057 /* 1058 * There is a deliberate asymmetry here: we strip the pointer tag 1059 * from the old address but leave the new address alone. This is 1060 * for consistency with mmap(), where we prevent the creation of 1061 * aliasing mappings in userspace by leaving the tag bits of the 1062 * mapping address intact. A non-zero tag will cause the subsequent 1063 * range checks to reject the address as invalid. 1064 * 1065 * See Documentation/arch/arm64/tagged-address-abi.rst for more 1066 * information. 1067 */ 1068 addr = untagged_addr(addr); 1069 1070 if (flags & ~(MREMAP_FIXED | MREMAP_MAYMOVE | MREMAP_DONTUNMAP)) 1071 return ret; 1072 1073 if (flags & MREMAP_FIXED && !(flags & MREMAP_MAYMOVE)) 1074 return ret; 1075 1076 /* 1077 * MREMAP_DONTUNMAP is always a move and it does not allow resizing 1078 * in the process. 1079 */ 1080 if (flags & MREMAP_DONTUNMAP && 1081 (!(flags & MREMAP_MAYMOVE) || old_len != new_len)) 1082 return ret; 1083 1084 1085 if (offset_in_page(addr)) 1086 return ret; 1087 1088 old_len = PAGE_ALIGN(old_len); 1089 new_len = PAGE_ALIGN(new_len); 1090 1091 /* 1092 * We allow a zero old-len as a special case 1093 * for DOS-emu "duplicate shm area" thing. But 1094 * a zero new-len is nonsensical. 1095 */ 1096 if (!new_len) 1097 return ret; 1098 1099 if (mmap_write_lock_killable(current->mm)) 1100 return -EINTR; 1101 vma = vma_lookup(mm, addr); 1102 if (!vma) { 1103 ret = -EFAULT; 1104 goto out; 1105 } 1106 1107 /* Don't allow remapping vmas when they have already been sealed */ 1108 if (!can_modify_vma(vma)) { 1109 ret = -EPERM; 1110 goto out; 1111 } 1112 1113 if (is_vm_hugetlb_page(vma)) { 1114 struct hstate *h __maybe_unused = hstate_vma(vma); 1115 1116 old_len = ALIGN(old_len, huge_page_size(h)); 1117 new_len = ALIGN(new_len, huge_page_size(h)); 1118 1119 /* addrs must be huge page aligned */ 1120 if (addr & ~huge_page_mask(h)) 1121 goto out; 1122 if (new_addr & ~huge_page_mask(h)) 1123 goto out; 1124 1125 /* 1126 * Don't allow remap expansion, because the underlying hugetlb 1127 * reservation is not yet capable to handle split reservation. 1128 */ 1129 if (new_len > old_len) 1130 goto out; 1131 } 1132 1133 if (flags & (MREMAP_FIXED | MREMAP_DONTUNMAP)) { 1134 ret = mremap_to(addr, old_len, new_addr, new_len, 1135 &locked, flags, &uf, &uf_unmap_early, 1136 &uf_unmap); 1137 goto out; 1138 } 1139 1140 /* 1141 * Always allow a shrinking remap: that just unmaps 1142 * the unnecessary pages.. 1143 * do_vmi_munmap does all the needed commit accounting, and 1144 * unlocks the mmap_lock if so directed. 1145 */ 1146 if (old_len >= new_len) { 1147 VMA_ITERATOR(vmi, mm, addr + new_len); 1148 1149 if (old_len == new_len) { 1150 ret = addr; 1151 goto out; 1152 } 1153 1154 ret = do_vmi_munmap(&vmi, mm, addr + new_len, old_len - new_len, 1155 &uf_unmap, true); 1156 if (ret) 1157 goto out; 1158 1159 ret = addr; 1160 goto out_unlocked; 1161 } 1162 1163 /* 1164 * Ok, we need to grow.. 1165 */ 1166 ret = resize_is_valid(vma, addr, old_len, new_len, flags); 1167 if (ret) 1168 goto out; 1169 1170 /* old_len exactly to the end of the area.. 1171 */ 1172 if (old_len == vma->vm_end - addr) { 1173 unsigned long delta = new_len - old_len; 1174 1175 /* can we just expand the current mapping? */ 1176 if (vma_expandable(vma, delta)) { 1177 long pages = delta >> PAGE_SHIFT; 1178 VMA_ITERATOR(vmi, mm, vma->vm_end); 1179 long charged = 0; 1180 1181 if (vma->vm_flags & VM_ACCOUNT) { 1182 if (security_vm_enough_memory_mm(mm, pages)) { 1183 ret = -ENOMEM; 1184 goto out; 1185 } 1186 charged = pages; 1187 } 1188 1189 /* 1190 * Function vma_merge_extend() is called on the 1191 * extension we are adding to the already existing vma, 1192 * vma_merge_extend() will merge this extension with the 1193 * already existing vma (expand operation itself) and 1194 * possibly also with the next vma if it becomes 1195 * adjacent to the expanded vma and otherwise 1196 * compatible. 1197 */ 1198 vma = vma_merge_extend(&vmi, vma, delta); 1199 if (!vma) { 1200 vm_unacct_memory(charged); 1201 ret = -ENOMEM; 1202 goto out; 1203 } 1204 1205 vm_stat_account(mm, vma->vm_flags, pages); 1206 if (vma->vm_flags & VM_LOCKED) { 1207 mm->locked_vm += pages; 1208 locked = true; 1209 new_addr = addr; 1210 } 1211 ret = addr; 1212 goto out; 1213 } 1214 } 1215 1216 /* 1217 * We weren't able to just expand or shrink the area, 1218 * we need to create a new one and move it.. 1219 */ 1220 ret = -ENOMEM; 1221 if (flags & MREMAP_MAYMOVE) { 1222 unsigned long map_flags = 0; 1223 if (vma->vm_flags & VM_MAYSHARE) 1224 map_flags |= MAP_SHARED; 1225 1226 new_addr = get_unmapped_area(vma->vm_file, 0, new_len, 1227 vma->vm_pgoff + 1228 ((addr - vma->vm_start) >> PAGE_SHIFT), 1229 map_flags); 1230 if (IS_ERR_VALUE(new_addr)) { 1231 ret = new_addr; 1232 goto out; 1233 } 1234 1235 ret = move_vma(vma, addr, old_len, new_len, new_addr, 1236 &locked, flags, &uf, &uf_unmap); 1237 } 1238 out: 1239 if (offset_in_page(ret)) 1240 locked = false; 1241 mmap_write_unlock(current->mm); 1242 if (locked && new_len > old_len) 1243 mm_populate(new_addr + old_len, new_len - old_len); 1244 out_unlocked: 1245 userfaultfd_unmap_complete(mm, &uf_unmap_early); 1246 mremap_userfaultfd_complete(&uf, addr, ret, old_len); 1247 userfaultfd_unmap_complete(mm, &uf_unmap); 1248 return ret; 1249 } 1250