1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * mm/mremap.c 4 * 5 * (C) Copyright 1996 Linus Torvalds 6 * 7 * Address space accounting code <alan@lxorguk.ukuu.org.uk> 8 * (C) Copyright 2002 Red Hat Inc, All Rights Reserved 9 */ 10 11 #include <linux/mm.h> 12 #include <linux/mm_inline.h> 13 #include <linux/hugetlb.h> 14 #include <linux/shm.h> 15 #include <linux/ksm.h> 16 #include <linux/mman.h> 17 #include <linux/swap.h> 18 #include <linux/capability.h> 19 #include <linux/fs.h> 20 #include <linux/swapops.h> 21 #include <linux/highmem.h> 22 #include <linux/security.h> 23 #include <linux/syscalls.h> 24 #include <linux/mmu_notifier.h> 25 #include <linux/uaccess.h> 26 #include <linux/userfaultfd_k.h> 27 #include <linux/mempolicy.h> 28 29 #include <asm/cacheflush.h> 30 #include <asm/tlb.h> 31 #include <asm/pgalloc.h> 32 33 #include "internal.h" 34 35 static pud_t *get_old_pud(struct mm_struct *mm, unsigned long addr) 36 { 37 pgd_t *pgd; 38 p4d_t *p4d; 39 pud_t *pud; 40 41 pgd = pgd_offset(mm, addr); 42 if (pgd_none_or_clear_bad(pgd)) 43 return NULL; 44 45 p4d = p4d_offset(pgd, addr); 46 if (p4d_none_or_clear_bad(p4d)) 47 return NULL; 48 49 pud = pud_offset(p4d, addr); 50 if (pud_none_or_clear_bad(pud)) 51 return NULL; 52 53 return pud; 54 } 55 56 static pmd_t *get_old_pmd(struct mm_struct *mm, unsigned long addr) 57 { 58 pud_t *pud; 59 pmd_t *pmd; 60 61 pud = get_old_pud(mm, addr); 62 if (!pud) 63 return NULL; 64 65 pmd = pmd_offset(pud, addr); 66 if (pmd_none(*pmd)) 67 return NULL; 68 69 return pmd; 70 } 71 72 static pud_t *alloc_new_pud(struct mm_struct *mm, struct vm_area_struct *vma, 73 unsigned long addr) 74 { 75 pgd_t *pgd; 76 p4d_t *p4d; 77 78 pgd = pgd_offset(mm, addr); 79 p4d = p4d_alloc(mm, pgd, addr); 80 if (!p4d) 81 return NULL; 82 83 return pud_alloc(mm, p4d, addr); 84 } 85 86 static pmd_t *alloc_new_pmd(struct mm_struct *mm, struct vm_area_struct *vma, 87 unsigned long addr) 88 { 89 pud_t *pud; 90 pmd_t *pmd; 91 92 pud = alloc_new_pud(mm, vma, addr); 93 if (!pud) 94 return NULL; 95 96 pmd = pmd_alloc(mm, pud, addr); 97 if (!pmd) 98 return NULL; 99 100 VM_BUG_ON(pmd_trans_huge(*pmd)); 101 102 return pmd; 103 } 104 105 static void take_rmap_locks(struct vm_area_struct *vma) 106 { 107 if (vma->vm_file) 108 i_mmap_lock_write(vma->vm_file->f_mapping); 109 if (vma->anon_vma) 110 anon_vma_lock_write(vma->anon_vma); 111 } 112 113 static void drop_rmap_locks(struct vm_area_struct *vma) 114 { 115 if (vma->anon_vma) 116 anon_vma_unlock_write(vma->anon_vma); 117 if (vma->vm_file) 118 i_mmap_unlock_write(vma->vm_file->f_mapping); 119 } 120 121 static pte_t move_soft_dirty_pte(pte_t pte) 122 { 123 /* 124 * Set soft dirty bit so we can notice 125 * in userspace the ptes were moved. 126 */ 127 #ifdef CONFIG_MEM_SOFT_DIRTY 128 if (pte_present(pte)) 129 pte = pte_mksoft_dirty(pte); 130 else if (is_swap_pte(pte)) 131 pte = pte_swp_mksoft_dirty(pte); 132 #endif 133 return pte; 134 } 135 136 static int move_ptes(struct vm_area_struct *vma, pmd_t *old_pmd, 137 unsigned long old_addr, unsigned long old_end, 138 struct vm_area_struct *new_vma, pmd_t *new_pmd, 139 unsigned long new_addr, bool need_rmap_locks) 140 { 141 struct mm_struct *mm = vma->vm_mm; 142 pte_t *old_pte, *new_pte, pte; 143 pmd_t dummy_pmdval; 144 spinlock_t *old_ptl, *new_ptl; 145 bool force_flush = false; 146 unsigned long len = old_end - old_addr; 147 int err = 0; 148 149 /* 150 * When need_rmap_locks is true, we take the i_mmap_rwsem and anon_vma 151 * locks to ensure that rmap will always observe either the old or the 152 * new ptes. This is the easiest way to avoid races with 153 * truncate_pagecache(), page migration, etc... 154 * 155 * When need_rmap_locks is false, we use other ways to avoid 156 * such races: 157 * 158 * - During exec() shift_arg_pages(), we use a specially tagged vma 159 * which rmap call sites look for using vma_is_temporary_stack(). 160 * 161 * - During mremap(), new_vma is often known to be placed after vma 162 * in rmap traversal order. This ensures rmap will always observe 163 * either the old pte, or the new pte, or both (the page table locks 164 * serialize access to individual ptes, but only rmap traversal 165 * order guarantees that we won't miss both the old and new ptes). 166 */ 167 if (need_rmap_locks) 168 take_rmap_locks(vma); 169 170 /* 171 * We don't have to worry about the ordering of src and dst 172 * pte locks because exclusive mmap_lock prevents deadlock. 173 */ 174 old_pte = pte_offset_map_lock(mm, old_pmd, old_addr, &old_ptl); 175 if (!old_pte) { 176 err = -EAGAIN; 177 goto out; 178 } 179 /* 180 * Now new_pte is none, so hpage_collapse_scan_file() path can not find 181 * this by traversing file->f_mapping, so there is no concurrency with 182 * retract_page_tables(). In addition, we already hold the exclusive 183 * mmap_lock, so this new_pte page is stable, so there is no need to get 184 * pmdval and do pmd_same() check. 185 */ 186 new_pte = pte_offset_map_rw_nolock(mm, new_pmd, new_addr, &dummy_pmdval, 187 &new_ptl); 188 if (!new_pte) { 189 pte_unmap_unlock(old_pte, old_ptl); 190 err = -EAGAIN; 191 goto out; 192 } 193 if (new_ptl != old_ptl) 194 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); 195 flush_tlb_batched_pending(vma->vm_mm); 196 arch_enter_lazy_mmu_mode(); 197 198 for (; old_addr < old_end; old_pte++, old_addr += PAGE_SIZE, 199 new_pte++, new_addr += PAGE_SIZE) { 200 if (pte_none(ptep_get(old_pte))) 201 continue; 202 203 pte = ptep_get_and_clear(mm, old_addr, old_pte); 204 /* 205 * If we are remapping a valid PTE, make sure 206 * to flush TLB before we drop the PTL for the 207 * PTE. 208 * 209 * NOTE! Both old and new PTL matter: the old one 210 * for racing with folio_mkclean(), the new one to 211 * make sure the physical page stays valid until 212 * the TLB entry for the old mapping has been 213 * flushed. 214 */ 215 if (pte_present(pte)) 216 force_flush = true; 217 pte = move_pte(pte, old_addr, new_addr); 218 pte = move_soft_dirty_pte(pte); 219 set_pte_at(mm, new_addr, new_pte, pte); 220 } 221 222 arch_leave_lazy_mmu_mode(); 223 if (force_flush) 224 flush_tlb_range(vma, old_end - len, old_end); 225 if (new_ptl != old_ptl) 226 spin_unlock(new_ptl); 227 pte_unmap(new_pte - 1); 228 pte_unmap_unlock(old_pte - 1, old_ptl); 229 out: 230 if (need_rmap_locks) 231 drop_rmap_locks(vma); 232 return err; 233 } 234 235 #ifndef arch_supports_page_table_move 236 #define arch_supports_page_table_move arch_supports_page_table_move 237 static inline bool arch_supports_page_table_move(void) 238 { 239 return IS_ENABLED(CONFIG_HAVE_MOVE_PMD) || 240 IS_ENABLED(CONFIG_HAVE_MOVE_PUD); 241 } 242 #endif 243 244 #ifdef CONFIG_HAVE_MOVE_PMD 245 static bool move_normal_pmd(struct vm_area_struct *vma, unsigned long old_addr, 246 unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd) 247 { 248 spinlock_t *old_ptl, *new_ptl; 249 struct mm_struct *mm = vma->vm_mm; 250 bool res = false; 251 pmd_t pmd; 252 253 if (!arch_supports_page_table_move()) 254 return false; 255 /* 256 * The destination pmd shouldn't be established, free_pgtables() 257 * should have released it. 258 * 259 * However, there's a case during execve() where we use mremap 260 * to move the initial stack, and in that case the target area 261 * may overlap the source area (always moving down). 262 * 263 * If everything is PMD-aligned, that works fine, as moving 264 * each pmd down will clear the source pmd. But if we first 265 * have a few 4kB-only pages that get moved down, and then 266 * hit the "now the rest is PMD-aligned, let's do everything 267 * one pmd at a time", we will still have the old (now empty 268 * of any 4kB pages, but still there) PMD in the page table 269 * tree. 270 * 271 * Warn on it once - because we really should try to figure 272 * out how to do this better - but then say "I won't move 273 * this pmd". 274 * 275 * One alternative might be to just unmap the target pmd at 276 * this point, and verify that it really is empty. We'll see. 277 */ 278 if (WARN_ON_ONCE(!pmd_none(*new_pmd))) 279 return false; 280 281 /* 282 * We don't have to worry about the ordering of src and dst 283 * ptlocks because exclusive mmap_lock prevents deadlock. 284 */ 285 old_ptl = pmd_lock(vma->vm_mm, old_pmd); 286 new_ptl = pmd_lockptr(mm, new_pmd); 287 if (new_ptl != old_ptl) 288 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); 289 290 pmd = *old_pmd; 291 292 /* Racing with collapse? */ 293 if (unlikely(!pmd_present(pmd) || pmd_leaf(pmd))) 294 goto out_unlock; 295 /* Clear the pmd */ 296 pmd_clear(old_pmd); 297 res = true; 298 299 VM_BUG_ON(!pmd_none(*new_pmd)); 300 301 pmd_populate(mm, new_pmd, pmd_pgtable(pmd)); 302 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE); 303 out_unlock: 304 if (new_ptl != old_ptl) 305 spin_unlock(new_ptl); 306 spin_unlock(old_ptl); 307 308 return res; 309 } 310 #else 311 static inline bool move_normal_pmd(struct vm_area_struct *vma, 312 unsigned long old_addr, unsigned long new_addr, pmd_t *old_pmd, 313 pmd_t *new_pmd) 314 { 315 return false; 316 } 317 #endif 318 319 #if CONFIG_PGTABLE_LEVELS > 2 && defined(CONFIG_HAVE_MOVE_PUD) 320 static bool move_normal_pud(struct vm_area_struct *vma, unsigned long old_addr, 321 unsigned long new_addr, pud_t *old_pud, pud_t *new_pud) 322 { 323 spinlock_t *old_ptl, *new_ptl; 324 struct mm_struct *mm = vma->vm_mm; 325 pud_t pud; 326 327 if (!arch_supports_page_table_move()) 328 return false; 329 /* 330 * The destination pud shouldn't be established, free_pgtables() 331 * should have released it. 332 */ 333 if (WARN_ON_ONCE(!pud_none(*new_pud))) 334 return false; 335 336 /* 337 * We don't have to worry about the ordering of src and dst 338 * ptlocks because exclusive mmap_lock prevents deadlock. 339 */ 340 old_ptl = pud_lock(vma->vm_mm, old_pud); 341 new_ptl = pud_lockptr(mm, new_pud); 342 if (new_ptl != old_ptl) 343 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); 344 345 /* Clear the pud */ 346 pud = *old_pud; 347 pud_clear(old_pud); 348 349 VM_BUG_ON(!pud_none(*new_pud)); 350 351 pud_populate(mm, new_pud, pud_pgtable(pud)); 352 flush_tlb_range(vma, old_addr, old_addr + PUD_SIZE); 353 if (new_ptl != old_ptl) 354 spin_unlock(new_ptl); 355 spin_unlock(old_ptl); 356 357 return true; 358 } 359 #else 360 static inline bool move_normal_pud(struct vm_area_struct *vma, 361 unsigned long old_addr, unsigned long new_addr, pud_t *old_pud, 362 pud_t *new_pud) 363 { 364 return false; 365 } 366 #endif 367 368 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 369 static bool move_huge_pud(struct vm_area_struct *vma, unsigned long old_addr, 370 unsigned long new_addr, pud_t *old_pud, pud_t *new_pud) 371 { 372 spinlock_t *old_ptl, *new_ptl; 373 struct mm_struct *mm = vma->vm_mm; 374 pud_t pud; 375 376 /* 377 * The destination pud shouldn't be established, free_pgtables() 378 * should have released it. 379 */ 380 if (WARN_ON_ONCE(!pud_none(*new_pud))) 381 return false; 382 383 /* 384 * We don't have to worry about the ordering of src and dst 385 * ptlocks because exclusive mmap_lock prevents deadlock. 386 */ 387 old_ptl = pud_lock(vma->vm_mm, old_pud); 388 new_ptl = pud_lockptr(mm, new_pud); 389 if (new_ptl != old_ptl) 390 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); 391 392 /* Clear the pud */ 393 pud = *old_pud; 394 pud_clear(old_pud); 395 396 VM_BUG_ON(!pud_none(*new_pud)); 397 398 /* Set the new pud */ 399 /* mark soft_ditry when we add pud level soft dirty support */ 400 set_pud_at(mm, new_addr, new_pud, pud); 401 flush_pud_tlb_range(vma, old_addr, old_addr + HPAGE_PUD_SIZE); 402 if (new_ptl != old_ptl) 403 spin_unlock(new_ptl); 404 spin_unlock(old_ptl); 405 406 return true; 407 } 408 #else 409 static bool move_huge_pud(struct vm_area_struct *vma, unsigned long old_addr, 410 unsigned long new_addr, pud_t *old_pud, pud_t *new_pud) 411 { 412 WARN_ON_ONCE(1); 413 return false; 414 415 } 416 #endif 417 418 enum pgt_entry { 419 NORMAL_PMD, 420 HPAGE_PMD, 421 NORMAL_PUD, 422 HPAGE_PUD, 423 }; 424 425 /* 426 * Returns an extent of the corresponding size for the pgt_entry specified if 427 * valid. Else returns a smaller extent bounded by the end of the source and 428 * destination pgt_entry. 429 */ 430 static __always_inline unsigned long get_extent(enum pgt_entry entry, 431 unsigned long old_addr, unsigned long old_end, 432 unsigned long new_addr) 433 { 434 unsigned long next, extent, mask, size; 435 436 switch (entry) { 437 case HPAGE_PMD: 438 case NORMAL_PMD: 439 mask = PMD_MASK; 440 size = PMD_SIZE; 441 break; 442 case HPAGE_PUD: 443 case NORMAL_PUD: 444 mask = PUD_MASK; 445 size = PUD_SIZE; 446 break; 447 default: 448 BUILD_BUG(); 449 break; 450 } 451 452 next = (old_addr + size) & mask; 453 /* even if next overflowed, extent below will be ok */ 454 extent = next - old_addr; 455 if (extent > old_end - old_addr) 456 extent = old_end - old_addr; 457 next = (new_addr + size) & mask; 458 if (extent > next - new_addr) 459 extent = next - new_addr; 460 return extent; 461 } 462 463 /* 464 * Attempts to speedup the move by moving entry at the level corresponding to 465 * pgt_entry. Returns true if the move was successful, else false. 466 */ 467 static bool move_pgt_entry(enum pgt_entry entry, struct vm_area_struct *vma, 468 unsigned long old_addr, unsigned long new_addr, 469 void *old_entry, void *new_entry, bool need_rmap_locks) 470 { 471 bool moved = false; 472 473 /* See comment in move_ptes() */ 474 if (need_rmap_locks) 475 take_rmap_locks(vma); 476 477 switch (entry) { 478 case NORMAL_PMD: 479 moved = move_normal_pmd(vma, old_addr, new_addr, old_entry, 480 new_entry); 481 break; 482 case NORMAL_PUD: 483 moved = move_normal_pud(vma, old_addr, new_addr, old_entry, 484 new_entry); 485 break; 486 case HPAGE_PMD: 487 moved = IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 488 move_huge_pmd(vma, old_addr, new_addr, old_entry, 489 new_entry); 490 break; 491 case HPAGE_PUD: 492 moved = IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 493 move_huge_pud(vma, old_addr, new_addr, old_entry, 494 new_entry); 495 break; 496 497 default: 498 WARN_ON_ONCE(1); 499 break; 500 } 501 502 if (need_rmap_locks) 503 drop_rmap_locks(vma); 504 505 return moved; 506 } 507 508 /* 509 * A helper to check if aligning down is OK. The aligned address should fall 510 * on *no mapping*. For the stack moving down, that's a special move within 511 * the VMA that is created to span the source and destination of the move, 512 * so we make an exception for it. 513 */ 514 static bool can_align_down(struct vm_area_struct *vma, unsigned long addr_to_align, 515 unsigned long mask, bool for_stack) 516 { 517 unsigned long addr_masked = addr_to_align & mask; 518 519 /* 520 * If @addr_to_align of either source or destination is not the beginning 521 * of the corresponding VMA, we can't align down or we will destroy part 522 * of the current mapping. 523 */ 524 if (!for_stack && vma->vm_start != addr_to_align) 525 return false; 526 527 /* In the stack case we explicitly permit in-VMA alignment. */ 528 if (for_stack && addr_masked >= vma->vm_start) 529 return true; 530 531 /* 532 * Make sure the realignment doesn't cause the address to fall on an 533 * existing mapping. 534 */ 535 return find_vma_intersection(vma->vm_mm, addr_masked, vma->vm_start) == NULL; 536 } 537 538 /* Opportunistically realign to specified boundary for faster copy. */ 539 static void try_realign_addr(unsigned long *old_addr, struct vm_area_struct *old_vma, 540 unsigned long *new_addr, struct vm_area_struct *new_vma, 541 unsigned long mask, bool for_stack) 542 { 543 /* Skip if the addresses are already aligned. */ 544 if ((*old_addr & ~mask) == 0) 545 return; 546 547 /* Only realign if the new and old addresses are mutually aligned. */ 548 if ((*old_addr & ~mask) != (*new_addr & ~mask)) 549 return; 550 551 /* Ensure realignment doesn't cause overlap with existing mappings. */ 552 if (!can_align_down(old_vma, *old_addr, mask, for_stack) || 553 !can_align_down(new_vma, *new_addr, mask, for_stack)) 554 return; 555 556 *old_addr = *old_addr & mask; 557 *new_addr = *new_addr & mask; 558 } 559 560 unsigned long move_page_tables(struct vm_area_struct *vma, 561 unsigned long old_addr, struct vm_area_struct *new_vma, 562 unsigned long new_addr, unsigned long len, 563 bool need_rmap_locks, bool for_stack) 564 { 565 unsigned long extent, old_end; 566 struct mmu_notifier_range range; 567 pmd_t *old_pmd, *new_pmd; 568 pud_t *old_pud, *new_pud; 569 570 if (!len) 571 return 0; 572 573 old_end = old_addr + len; 574 575 if (is_vm_hugetlb_page(vma)) 576 return move_hugetlb_page_tables(vma, new_vma, old_addr, 577 new_addr, len); 578 579 /* 580 * If possible, realign addresses to PMD boundary for faster copy. 581 * Only realign if the mremap copying hits a PMD boundary. 582 */ 583 if (len >= PMD_SIZE - (old_addr & ~PMD_MASK)) 584 try_realign_addr(&old_addr, vma, &new_addr, new_vma, PMD_MASK, 585 for_stack); 586 587 flush_cache_range(vma, old_addr, old_end); 588 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm, 589 old_addr, old_end); 590 mmu_notifier_invalidate_range_start(&range); 591 592 for (; old_addr < old_end; old_addr += extent, new_addr += extent) { 593 cond_resched(); 594 /* 595 * If extent is PUD-sized try to speed up the move by moving at the 596 * PUD level if possible. 597 */ 598 extent = get_extent(NORMAL_PUD, old_addr, old_end, new_addr); 599 600 old_pud = get_old_pud(vma->vm_mm, old_addr); 601 if (!old_pud) 602 continue; 603 new_pud = alloc_new_pud(vma->vm_mm, vma, new_addr); 604 if (!new_pud) 605 break; 606 if (pud_trans_huge(*old_pud) || pud_devmap(*old_pud)) { 607 if (extent == HPAGE_PUD_SIZE) { 608 move_pgt_entry(HPAGE_PUD, vma, old_addr, new_addr, 609 old_pud, new_pud, need_rmap_locks); 610 /* We ignore and continue on error? */ 611 continue; 612 } 613 } else if (IS_ENABLED(CONFIG_HAVE_MOVE_PUD) && extent == PUD_SIZE) { 614 615 if (move_pgt_entry(NORMAL_PUD, vma, old_addr, new_addr, 616 old_pud, new_pud, true)) 617 continue; 618 } 619 620 extent = get_extent(NORMAL_PMD, old_addr, old_end, new_addr); 621 old_pmd = get_old_pmd(vma->vm_mm, old_addr); 622 if (!old_pmd) 623 continue; 624 new_pmd = alloc_new_pmd(vma->vm_mm, vma, new_addr); 625 if (!new_pmd) 626 break; 627 again: 628 if (is_swap_pmd(*old_pmd) || pmd_trans_huge(*old_pmd) || 629 pmd_devmap(*old_pmd)) { 630 if (extent == HPAGE_PMD_SIZE && 631 move_pgt_entry(HPAGE_PMD, vma, old_addr, new_addr, 632 old_pmd, new_pmd, need_rmap_locks)) 633 continue; 634 split_huge_pmd(vma, old_pmd, old_addr); 635 } else if (IS_ENABLED(CONFIG_HAVE_MOVE_PMD) && 636 extent == PMD_SIZE) { 637 /* 638 * If the extent is PMD-sized, try to speed the move by 639 * moving at the PMD level if possible. 640 */ 641 if (move_pgt_entry(NORMAL_PMD, vma, old_addr, new_addr, 642 old_pmd, new_pmd, true)) 643 continue; 644 } 645 if (pmd_none(*old_pmd)) 646 continue; 647 if (pte_alloc(new_vma->vm_mm, new_pmd)) 648 break; 649 if (move_ptes(vma, old_pmd, old_addr, old_addr + extent, 650 new_vma, new_pmd, new_addr, need_rmap_locks) < 0) 651 goto again; 652 } 653 654 mmu_notifier_invalidate_range_end(&range); 655 656 /* 657 * Prevent negative return values when {old,new}_addr was realigned 658 * but we broke out of the above loop for the first PMD itself. 659 */ 660 if (old_addr < old_end - len) 661 return 0; 662 663 return len + old_addr - old_end; /* how much done */ 664 } 665 666 static unsigned long move_vma(struct vm_area_struct *vma, 667 unsigned long old_addr, unsigned long old_len, 668 unsigned long new_len, unsigned long new_addr, 669 bool *locked, unsigned long flags, 670 struct vm_userfaultfd_ctx *uf, struct list_head *uf_unmap) 671 { 672 long to_account = new_len - old_len; 673 struct mm_struct *mm = vma->vm_mm; 674 struct vm_area_struct *new_vma; 675 unsigned long vm_flags = vma->vm_flags; 676 unsigned long new_pgoff; 677 unsigned long moved_len; 678 unsigned long account_start = 0; 679 unsigned long account_end = 0; 680 unsigned long hiwater_vm; 681 int err = 0; 682 bool need_rmap_locks; 683 struct vma_iterator vmi; 684 685 /* 686 * We'd prefer to avoid failure later on in do_munmap: 687 * which may split one vma into three before unmapping. 688 */ 689 if (mm->map_count >= sysctl_max_map_count - 3) 690 return -ENOMEM; 691 692 if (unlikely(flags & MREMAP_DONTUNMAP)) 693 to_account = new_len; 694 695 if (vma->vm_ops && vma->vm_ops->may_split) { 696 if (vma->vm_start != old_addr) 697 err = vma->vm_ops->may_split(vma, old_addr); 698 if (!err && vma->vm_end != old_addr + old_len) 699 err = vma->vm_ops->may_split(vma, old_addr + old_len); 700 if (err) 701 return err; 702 } 703 704 /* 705 * Advise KSM to break any KSM pages in the area to be moved: 706 * it would be confusing if they were to turn up at the new 707 * location, where they happen to coincide with different KSM 708 * pages recently unmapped. But leave vma->vm_flags as it was, 709 * so KSM can come around to merge on vma and new_vma afterwards. 710 */ 711 err = ksm_madvise(vma, old_addr, old_addr + old_len, 712 MADV_UNMERGEABLE, &vm_flags); 713 if (err) 714 return err; 715 716 if (vm_flags & VM_ACCOUNT) { 717 if (security_vm_enough_memory_mm(mm, to_account >> PAGE_SHIFT)) 718 return -ENOMEM; 719 } 720 721 vma_start_write(vma); 722 new_pgoff = vma->vm_pgoff + ((old_addr - vma->vm_start) >> PAGE_SHIFT); 723 new_vma = copy_vma(&vma, new_addr, new_len, new_pgoff, 724 &need_rmap_locks); 725 if (!new_vma) { 726 if (vm_flags & VM_ACCOUNT) 727 vm_unacct_memory(to_account >> PAGE_SHIFT); 728 return -ENOMEM; 729 } 730 731 moved_len = move_page_tables(vma, old_addr, new_vma, new_addr, old_len, 732 need_rmap_locks, false); 733 if (moved_len < old_len) { 734 err = -ENOMEM; 735 } else if (vma->vm_ops && vma->vm_ops->mremap) { 736 err = vma->vm_ops->mremap(new_vma); 737 } 738 739 if (unlikely(err)) { 740 /* 741 * On error, move entries back from new area to old, 742 * which will succeed since page tables still there, 743 * and then proceed to unmap new area instead of old. 744 */ 745 move_page_tables(new_vma, new_addr, vma, old_addr, moved_len, 746 true, false); 747 vma = new_vma; 748 old_len = new_len; 749 old_addr = new_addr; 750 new_addr = err; 751 } else { 752 mremap_userfaultfd_prep(new_vma, uf); 753 } 754 755 if (is_vm_hugetlb_page(vma)) { 756 clear_vma_resv_huge_pages(vma); 757 } 758 759 /* Conceal VM_ACCOUNT so old reservation is not undone */ 760 if (vm_flags & VM_ACCOUNT && !(flags & MREMAP_DONTUNMAP)) { 761 vm_flags_clear(vma, VM_ACCOUNT); 762 if (vma->vm_start < old_addr) 763 account_start = vma->vm_start; 764 if (vma->vm_end > old_addr + old_len) 765 account_end = vma->vm_end; 766 } 767 768 /* 769 * If we failed to move page tables we still do total_vm increment 770 * since do_munmap() will decrement it by old_len == new_len. 771 * 772 * Since total_vm is about to be raised artificially high for a 773 * moment, we need to restore high watermark afterwards: if stats 774 * are taken meanwhile, total_vm and hiwater_vm appear too high. 775 * If this were a serious issue, we'd add a flag to do_munmap(). 776 */ 777 hiwater_vm = mm->hiwater_vm; 778 vm_stat_account(mm, vma->vm_flags, new_len >> PAGE_SHIFT); 779 780 /* Tell pfnmap has moved from this vma */ 781 if (unlikely(vma->vm_flags & VM_PFNMAP)) 782 untrack_pfn_clear(vma); 783 784 if (unlikely(!err && (flags & MREMAP_DONTUNMAP))) { 785 /* We always clear VM_LOCKED[ONFAULT] on the old vma */ 786 vm_flags_clear(vma, VM_LOCKED_MASK); 787 788 /* 789 * anon_vma links of the old vma is no longer needed after its page 790 * table has been moved. 791 */ 792 if (new_vma != vma && vma->vm_start == old_addr && 793 vma->vm_end == (old_addr + old_len)) 794 unlink_anon_vmas(vma); 795 796 /* Because we won't unmap we don't need to touch locked_vm */ 797 return new_addr; 798 } 799 800 vma_iter_init(&vmi, mm, old_addr); 801 if (do_vmi_munmap(&vmi, mm, old_addr, old_len, uf_unmap, false) < 0) { 802 /* OOM: unable to split vma, just get accounts right */ 803 if (vm_flags & VM_ACCOUNT && !(flags & MREMAP_DONTUNMAP)) 804 vm_acct_memory(old_len >> PAGE_SHIFT); 805 account_start = account_end = 0; 806 } 807 808 if (vm_flags & VM_LOCKED) { 809 mm->locked_vm += new_len >> PAGE_SHIFT; 810 *locked = true; 811 } 812 813 mm->hiwater_vm = hiwater_vm; 814 815 /* Restore VM_ACCOUNT if one or two pieces of vma left */ 816 if (account_start) { 817 vma = vma_prev(&vmi); 818 vm_flags_set(vma, VM_ACCOUNT); 819 } 820 821 if (account_end) { 822 vma = vma_next(&vmi); 823 vm_flags_set(vma, VM_ACCOUNT); 824 } 825 826 return new_addr; 827 } 828 829 /* 830 * resize_is_valid() - Ensure the vma can be resized to the new length at the give 831 * address. 832 * 833 * @vma: The vma to resize 834 * @addr: The old address 835 * @old_len: The current size 836 * @new_len: The desired size 837 * @flags: The vma flags 838 * 839 * Return 0 on success, error otherwise. 840 */ 841 static int resize_is_valid(struct vm_area_struct *vma, unsigned long addr, 842 unsigned long old_len, unsigned long new_len, unsigned long flags) 843 { 844 struct mm_struct *mm = current->mm; 845 unsigned long pgoff; 846 847 /* 848 * !old_len is a special case where an attempt is made to 'duplicate' 849 * a mapping. This makes no sense for private mappings as it will 850 * instead create a fresh/new mapping unrelated to the original. This 851 * is contrary to the basic idea of mremap which creates new mappings 852 * based on the original. There are no known use cases for this 853 * behavior. As a result, fail such attempts. 854 */ 855 if (!old_len && !(vma->vm_flags & (VM_SHARED | VM_MAYSHARE))) { 856 pr_warn_once("%s (%d): attempted to duplicate a private mapping with mremap. This is not supported.\n", current->comm, current->pid); 857 return -EINVAL; 858 } 859 860 if ((flags & MREMAP_DONTUNMAP) && 861 (vma->vm_flags & (VM_DONTEXPAND | VM_PFNMAP))) 862 return -EINVAL; 863 864 /* We can't remap across vm area boundaries */ 865 if (old_len > vma->vm_end - addr) 866 return -EFAULT; 867 868 if (new_len == old_len) 869 return 0; 870 871 /* Need to be careful about a growing mapping */ 872 pgoff = (addr - vma->vm_start) >> PAGE_SHIFT; 873 pgoff += vma->vm_pgoff; 874 if (pgoff + (new_len >> PAGE_SHIFT) < pgoff) 875 return -EINVAL; 876 877 if (vma->vm_flags & (VM_DONTEXPAND | VM_PFNMAP)) 878 return -EFAULT; 879 880 if (!mlock_future_ok(mm, vma->vm_flags, new_len - old_len)) 881 return -EAGAIN; 882 883 if (!may_expand_vm(mm, vma->vm_flags, 884 (new_len - old_len) >> PAGE_SHIFT)) 885 return -ENOMEM; 886 887 return 0; 888 } 889 890 /* 891 * mremap_to() - remap a vma to a new location 892 * @addr: The old address 893 * @old_len: The old size 894 * @new_addr: The target address 895 * @new_len: The new size 896 * @locked: If the returned vma is locked (VM_LOCKED) 897 * @flags: the mremap flags 898 * @uf: The mremap userfaultfd context 899 * @uf_unmap_early: The userfaultfd unmap early context 900 * @uf_unmap: The userfaultfd unmap context 901 * 902 * Returns: The new address of the vma or an error. 903 */ 904 static unsigned long mremap_to(unsigned long addr, unsigned long old_len, 905 unsigned long new_addr, unsigned long new_len, bool *locked, 906 unsigned long flags, struct vm_userfaultfd_ctx *uf, 907 struct list_head *uf_unmap_early, 908 struct list_head *uf_unmap) 909 { 910 struct mm_struct *mm = current->mm; 911 struct vm_area_struct *vma; 912 unsigned long ret; 913 unsigned long map_flags = 0; 914 915 if (offset_in_page(new_addr)) 916 return -EINVAL; 917 918 if (new_len > TASK_SIZE || new_addr > TASK_SIZE - new_len) 919 return -EINVAL; 920 921 /* Ensure the old/new locations do not overlap */ 922 if (addr + old_len > new_addr && new_addr + new_len > addr) 923 return -EINVAL; 924 925 /* 926 * move_vma() need us to stay 4 maps below the threshold, otherwise 927 * it will bail out at the very beginning. 928 * That is a problem if we have already unmaped the regions here 929 * (new_addr, and old_addr), because userspace will not know the 930 * state of the vma's after it gets -ENOMEM. 931 * So, to avoid such scenario we can pre-compute if the whole 932 * operation has high chances to success map-wise. 933 * Worst-scenario case is when both vma's (new_addr and old_addr) get 934 * split in 3 before unmapping it. 935 * That means 2 more maps (1 for each) to the ones we already hold. 936 * Check whether current map count plus 2 still leads us to 4 maps below 937 * the threshold, otherwise return -ENOMEM here to be more safe. 938 */ 939 if ((mm->map_count + 2) >= sysctl_max_map_count - 3) 940 return -ENOMEM; 941 942 if (flags & MREMAP_FIXED) { 943 /* 944 * In mremap_to(). 945 * VMA is moved to dst address, and munmap dst first. 946 * do_munmap will check if dst is sealed. 947 */ 948 ret = do_munmap(mm, new_addr, new_len, uf_unmap_early); 949 if (ret) 950 return ret; 951 } 952 953 if (old_len > new_len) { 954 ret = do_munmap(mm, addr+new_len, old_len - new_len, uf_unmap); 955 if (ret) 956 return ret; 957 old_len = new_len; 958 } 959 960 vma = vma_lookup(mm, addr); 961 if (!vma) 962 return -EFAULT; 963 964 ret = resize_is_valid(vma, addr, old_len, new_len, flags); 965 if (ret) 966 return ret; 967 968 /* MREMAP_DONTUNMAP expands by old_len since old_len == new_len */ 969 if (flags & MREMAP_DONTUNMAP && 970 !may_expand_vm(mm, vma->vm_flags, old_len >> PAGE_SHIFT)) { 971 return -ENOMEM; 972 } 973 974 if (flags & MREMAP_FIXED) 975 map_flags |= MAP_FIXED; 976 977 if (vma->vm_flags & VM_MAYSHARE) 978 map_flags |= MAP_SHARED; 979 980 ret = get_unmapped_area(vma->vm_file, new_addr, new_len, vma->vm_pgoff + 981 ((addr - vma->vm_start) >> PAGE_SHIFT), 982 map_flags); 983 if (IS_ERR_VALUE(ret)) 984 return ret; 985 986 /* We got a new mapping */ 987 if (!(flags & MREMAP_FIXED)) 988 new_addr = ret; 989 990 return move_vma(vma, addr, old_len, new_len, new_addr, locked, flags, 991 uf, uf_unmap); 992 } 993 994 static int vma_expandable(struct vm_area_struct *vma, unsigned long delta) 995 { 996 unsigned long end = vma->vm_end + delta; 997 998 if (end < vma->vm_end) /* overflow */ 999 return 0; 1000 if (find_vma_intersection(vma->vm_mm, vma->vm_end, end)) 1001 return 0; 1002 if (get_unmapped_area(NULL, vma->vm_start, end - vma->vm_start, 1003 0, MAP_FIXED) & ~PAGE_MASK) 1004 return 0; 1005 return 1; 1006 } 1007 1008 /* 1009 * Expand (or shrink) an existing mapping, potentially moving it at the 1010 * same time (controlled by the MREMAP_MAYMOVE flag and available VM space) 1011 * 1012 * MREMAP_FIXED option added 5-Dec-1999 by Benjamin LaHaise 1013 * This option implies MREMAP_MAYMOVE. 1014 */ 1015 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len, 1016 unsigned long, new_len, unsigned long, flags, 1017 unsigned long, new_addr) 1018 { 1019 struct mm_struct *mm = current->mm; 1020 struct vm_area_struct *vma; 1021 unsigned long ret = -EINVAL; 1022 bool locked = false; 1023 struct vm_userfaultfd_ctx uf = NULL_VM_UFFD_CTX; 1024 LIST_HEAD(uf_unmap_early); 1025 LIST_HEAD(uf_unmap); 1026 1027 /* 1028 * There is a deliberate asymmetry here: we strip the pointer tag 1029 * from the old address but leave the new address alone. This is 1030 * for consistency with mmap(), where we prevent the creation of 1031 * aliasing mappings in userspace by leaving the tag bits of the 1032 * mapping address intact. A non-zero tag will cause the subsequent 1033 * range checks to reject the address as invalid. 1034 * 1035 * See Documentation/arch/arm64/tagged-address-abi.rst for more 1036 * information. 1037 */ 1038 addr = untagged_addr(addr); 1039 1040 if (flags & ~(MREMAP_FIXED | MREMAP_MAYMOVE | MREMAP_DONTUNMAP)) 1041 return ret; 1042 1043 if (flags & MREMAP_FIXED && !(flags & MREMAP_MAYMOVE)) 1044 return ret; 1045 1046 /* 1047 * MREMAP_DONTUNMAP is always a move and it does not allow resizing 1048 * in the process. 1049 */ 1050 if (flags & MREMAP_DONTUNMAP && 1051 (!(flags & MREMAP_MAYMOVE) || old_len != new_len)) 1052 return ret; 1053 1054 1055 if (offset_in_page(addr)) 1056 return ret; 1057 1058 old_len = PAGE_ALIGN(old_len); 1059 new_len = PAGE_ALIGN(new_len); 1060 1061 /* 1062 * We allow a zero old-len as a special case 1063 * for DOS-emu "duplicate shm area" thing. But 1064 * a zero new-len is nonsensical. 1065 */ 1066 if (!new_len) 1067 return ret; 1068 1069 if (mmap_write_lock_killable(current->mm)) 1070 return -EINTR; 1071 vma = vma_lookup(mm, addr); 1072 if (!vma) { 1073 ret = -EFAULT; 1074 goto out; 1075 } 1076 1077 /* Don't allow remapping vmas when they have already been sealed */ 1078 if (!can_modify_vma(vma)) { 1079 ret = -EPERM; 1080 goto out; 1081 } 1082 1083 if (is_vm_hugetlb_page(vma)) { 1084 struct hstate *h __maybe_unused = hstate_vma(vma); 1085 1086 old_len = ALIGN(old_len, huge_page_size(h)); 1087 new_len = ALIGN(new_len, huge_page_size(h)); 1088 1089 /* addrs must be huge page aligned */ 1090 if (addr & ~huge_page_mask(h)) 1091 goto out; 1092 if (new_addr & ~huge_page_mask(h)) 1093 goto out; 1094 1095 /* 1096 * Don't allow remap expansion, because the underlying hugetlb 1097 * reservation is not yet capable to handle split reservation. 1098 */ 1099 if (new_len > old_len) 1100 goto out; 1101 } 1102 1103 if (flags & (MREMAP_FIXED | MREMAP_DONTUNMAP)) { 1104 ret = mremap_to(addr, old_len, new_addr, new_len, 1105 &locked, flags, &uf, &uf_unmap_early, 1106 &uf_unmap); 1107 goto out; 1108 } 1109 1110 /* 1111 * Always allow a shrinking remap: that just unmaps 1112 * the unnecessary pages.. 1113 * do_vmi_munmap does all the needed commit accounting, and 1114 * unlocks the mmap_lock if so directed. 1115 */ 1116 if (old_len >= new_len) { 1117 VMA_ITERATOR(vmi, mm, addr + new_len); 1118 1119 if (old_len == new_len) { 1120 ret = addr; 1121 goto out; 1122 } 1123 1124 ret = do_vmi_munmap(&vmi, mm, addr + new_len, old_len - new_len, 1125 &uf_unmap, true); 1126 if (ret) 1127 goto out; 1128 1129 ret = addr; 1130 goto out_unlocked; 1131 } 1132 1133 /* 1134 * Ok, we need to grow.. 1135 */ 1136 ret = resize_is_valid(vma, addr, old_len, new_len, flags); 1137 if (ret) 1138 goto out; 1139 1140 /* old_len exactly to the end of the area.. 1141 */ 1142 if (old_len == vma->vm_end - addr) { 1143 unsigned long delta = new_len - old_len; 1144 1145 /* can we just expand the current mapping? */ 1146 if (vma_expandable(vma, delta)) { 1147 long pages = delta >> PAGE_SHIFT; 1148 VMA_ITERATOR(vmi, mm, vma->vm_end); 1149 long charged = 0; 1150 1151 if (vma->vm_flags & VM_ACCOUNT) { 1152 if (security_vm_enough_memory_mm(mm, pages)) { 1153 ret = -ENOMEM; 1154 goto out; 1155 } 1156 charged = pages; 1157 } 1158 1159 /* 1160 * Function vma_merge_extend() is called on the 1161 * extension we are adding to the already existing vma, 1162 * vma_merge_extend() will merge this extension with the 1163 * already existing vma (expand operation itself) and 1164 * possibly also with the next vma if it becomes 1165 * adjacent to the expanded vma and otherwise 1166 * compatible. 1167 */ 1168 vma = vma_merge_extend(&vmi, vma, delta); 1169 if (!vma) { 1170 vm_unacct_memory(charged); 1171 ret = -ENOMEM; 1172 goto out; 1173 } 1174 1175 vm_stat_account(mm, vma->vm_flags, pages); 1176 if (vma->vm_flags & VM_LOCKED) { 1177 mm->locked_vm += pages; 1178 locked = true; 1179 new_addr = addr; 1180 } 1181 ret = addr; 1182 goto out; 1183 } 1184 } 1185 1186 /* 1187 * We weren't able to just expand or shrink the area, 1188 * we need to create a new one and move it.. 1189 */ 1190 ret = -ENOMEM; 1191 if (flags & MREMAP_MAYMOVE) { 1192 unsigned long map_flags = 0; 1193 if (vma->vm_flags & VM_MAYSHARE) 1194 map_flags |= MAP_SHARED; 1195 1196 new_addr = get_unmapped_area(vma->vm_file, 0, new_len, 1197 vma->vm_pgoff + 1198 ((addr - vma->vm_start) >> PAGE_SHIFT), 1199 map_flags); 1200 if (IS_ERR_VALUE(new_addr)) { 1201 ret = new_addr; 1202 goto out; 1203 } 1204 1205 ret = move_vma(vma, addr, old_len, new_len, new_addr, 1206 &locked, flags, &uf, &uf_unmap); 1207 } 1208 out: 1209 if (offset_in_page(ret)) 1210 locked = false; 1211 mmap_write_unlock(current->mm); 1212 if (locked && new_len > old_len) 1213 mm_populate(new_addr + old_len, new_len - old_len); 1214 out_unlocked: 1215 userfaultfd_unmap_complete(mm, &uf_unmap_early); 1216 mremap_userfaultfd_complete(&uf, addr, ret, old_len); 1217 userfaultfd_unmap_complete(mm, &uf_unmap); 1218 return ret; 1219 } 1220