xref: /linux/mm/mremap.c (revision 7f4f3b14e8079ecde096bd734af10e30d40c27b7)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *	mm/mremap.c
4  *
5  *	(C) Copyright 1996 Linus Torvalds
6  *
7  *	Address space accounting code	<alan@lxorguk.ukuu.org.uk>
8  *	(C) Copyright 2002 Red Hat Inc, All Rights Reserved
9  */
10 
11 #include <linux/mm.h>
12 #include <linux/mm_inline.h>
13 #include <linux/hugetlb.h>
14 #include <linux/shm.h>
15 #include <linux/ksm.h>
16 #include <linux/mman.h>
17 #include <linux/swap.h>
18 #include <linux/capability.h>
19 #include <linux/fs.h>
20 #include <linux/swapops.h>
21 #include <linux/highmem.h>
22 #include <linux/security.h>
23 #include <linux/syscalls.h>
24 #include <linux/mmu_notifier.h>
25 #include <linux/uaccess.h>
26 #include <linux/userfaultfd_k.h>
27 #include <linux/mempolicy.h>
28 
29 #include <asm/cacheflush.h>
30 #include <asm/tlb.h>
31 #include <asm/pgalloc.h>
32 
33 #include "internal.h"
34 
35 static pud_t *get_old_pud(struct mm_struct *mm, unsigned long addr)
36 {
37 	pgd_t *pgd;
38 	p4d_t *p4d;
39 	pud_t *pud;
40 
41 	pgd = pgd_offset(mm, addr);
42 	if (pgd_none_or_clear_bad(pgd))
43 		return NULL;
44 
45 	p4d = p4d_offset(pgd, addr);
46 	if (p4d_none_or_clear_bad(p4d))
47 		return NULL;
48 
49 	pud = pud_offset(p4d, addr);
50 	if (pud_none_or_clear_bad(pud))
51 		return NULL;
52 
53 	return pud;
54 }
55 
56 static pmd_t *get_old_pmd(struct mm_struct *mm, unsigned long addr)
57 {
58 	pud_t *pud;
59 	pmd_t *pmd;
60 
61 	pud = get_old_pud(mm, addr);
62 	if (!pud)
63 		return NULL;
64 
65 	pmd = pmd_offset(pud, addr);
66 	if (pmd_none(*pmd))
67 		return NULL;
68 
69 	return pmd;
70 }
71 
72 static pud_t *alloc_new_pud(struct mm_struct *mm, struct vm_area_struct *vma,
73 			    unsigned long addr)
74 {
75 	pgd_t *pgd;
76 	p4d_t *p4d;
77 
78 	pgd = pgd_offset(mm, addr);
79 	p4d = p4d_alloc(mm, pgd, addr);
80 	if (!p4d)
81 		return NULL;
82 
83 	return pud_alloc(mm, p4d, addr);
84 }
85 
86 static pmd_t *alloc_new_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
87 			    unsigned long addr)
88 {
89 	pud_t *pud;
90 	pmd_t *pmd;
91 
92 	pud = alloc_new_pud(mm, vma, addr);
93 	if (!pud)
94 		return NULL;
95 
96 	pmd = pmd_alloc(mm, pud, addr);
97 	if (!pmd)
98 		return NULL;
99 
100 	VM_BUG_ON(pmd_trans_huge(*pmd));
101 
102 	return pmd;
103 }
104 
105 static void take_rmap_locks(struct vm_area_struct *vma)
106 {
107 	if (vma->vm_file)
108 		i_mmap_lock_write(vma->vm_file->f_mapping);
109 	if (vma->anon_vma)
110 		anon_vma_lock_write(vma->anon_vma);
111 }
112 
113 static void drop_rmap_locks(struct vm_area_struct *vma)
114 {
115 	if (vma->anon_vma)
116 		anon_vma_unlock_write(vma->anon_vma);
117 	if (vma->vm_file)
118 		i_mmap_unlock_write(vma->vm_file->f_mapping);
119 }
120 
121 static pte_t move_soft_dirty_pte(pte_t pte)
122 {
123 	/*
124 	 * Set soft dirty bit so we can notice
125 	 * in userspace the ptes were moved.
126 	 */
127 #ifdef CONFIG_MEM_SOFT_DIRTY
128 	if (pte_present(pte))
129 		pte = pte_mksoft_dirty(pte);
130 	else if (is_swap_pte(pte))
131 		pte = pte_swp_mksoft_dirty(pte);
132 #endif
133 	return pte;
134 }
135 
136 static int move_ptes(struct vm_area_struct *vma, pmd_t *old_pmd,
137 		unsigned long old_addr, unsigned long old_end,
138 		struct vm_area_struct *new_vma, pmd_t *new_pmd,
139 		unsigned long new_addr, bool need_rmap_locks)
140 {
141 	struct mm_struct *mm = vma->vm_mm;
142 	pte_t *old_pte, *new_pte, pte;
143 	pmd_t dummy_pmdval;
144 	spinlock_t *old_ptl, *new_ptl;
145 	bool force_flush = false;
146 	unsigned long len = old_end - old_addr;
147 	int err = 0;
148 
149 	/*
150 	 * When need_rmap_locks is true, we take the i_mmap_rwsem and anon_vma
151 	 * locks to ensure that rmap will always observe either the old or the
152 	 * new ptes. This is the easiest way to avoid races with
153 	 * truncate_pagecache(), page migration, etc...
154 	 *
155 	 * When need_rmap_locks is false, we use other ways to avoid
156 	 * such races:
157 	 *
158 	 * - During exec() shift_arg_pages(), we use a specially tagged vma
159 	 *   which rmap call sites look for using vma_is_temporary_stack().
160 	 *
161 	 * - During mremap(), new_vma is often known to be placed after vma
162 	 *   in rmap traversal order. This ensures rmap will always observe
163 	 *   either the old pte, or the new pte, or both (the page table locks
164 	 *   serialize access to individual ptes, but only rmap traversal
165 	 *   order guarantees that we won't miss both the old and new ptes).
166 	 */
167 	if (need_rmap_locks)
168 		take_rmap_locks(vma);
169 
170 	/*
171 	 * We don't have to worry about the ordering of src and dst
172 	 * pte locks because exclusive mmap_lock prevents deadlock.
173 	 */
174 	old_pte = pte_offset_map_lock(mm, old_pmd, old_addr, &old_ptl);
175 	if (!old_pte) {
176 		err = -EAGAIN;
177 		goto out;
178 	}
179 	/*
180 	 * Now new_pte is none, so hpage_collapse_scan_file() path can not find
181 	 * this by traversing file->f_mapping, so there is no concurrency with
182 	 * retract_page_tables(). In addition, we already hold the exclusive
183 	 * mmap_lock, so this new_pte page is stable, so there is no need to get
184 	 * pmdval and do pmd_same() check.
185 	 */
186 	new_pte = pte_offset_map_rw_nolock(mm, new_pmd, new_addr, &dummy_pmdval,
187 					   &new_ptl);
188 	if (!new_pte) {
189 		pte_unmap_unlock(old_pte, old_ptl);
190 		err = -EAGAIN;
191 		goto out;
192 	}
193 	if (new_ptl != old_ptl)
194 		spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
195 	flush_tlb_batched_pending(vma->vm_mm);
196 	arch_enter_lazy_mmu_mode();
197 
198 	for (; old_addr < old_end; old_pte++, old_addr += PAGE_SIZE,
199 				   new_pte++, new_addr += PAGE_SIZE) {
200 		if (pte_none(ptep_get(old_pte)))
201 			continue;
202 
203 		pte = ptep_get_and_clear(mm, old_addr, old_pte);
204 		/*
205 		 * If we are remapping a valid PTE, make sure
206 		 * to flush TLB before we drop the PTL for the
207 		 * PTE.
208 		 *
209 		 * NOTE! Both old and new PTL matter: the old one
210 		 * for racing with folio_mkclean(), the new one to
211 		 * make sure the physical page stays valid until
212 		 * the TLB entry for the old mapping has been
213 		 * flushed.
214 		 */
215 		if (pte_present(pte))
216 			force_flush = true;
217 		pte = move_pte(pte, old_addr, new_addr);
218 		pte = move_soft_dirty_pte(pte);
219 		set_pte_at(mm, new_addr, new_pte, pte);
220 	}
221 
222 	arch_leave_lazy_mmu_mode();
223 	if (force_flush)
224 		flush_tlb_range(vma, old_end - len, old_end);
225 	if (new_ptl != old_ptl)
226 		spin_unlock(new_ptl);
227 	pte_unmap(new_pte - 1);
228 	pte_unmap_unlock(old_pte - 1, old_ptl);
229 out:
230 	if (need_rmap_locks)
231 		drop_rmap_locks(vma);
232 	return err;
233 }
234 
235 #ifndef arch_supports_page_table_move
236 #define arch_supports_page_table_move arch_supports_page_table_move
237 static inline bool arch_supports_page_table_move(void)
238 {
239 	return IS_ENABLED(CONFIG_HAVE_MOVE_PMD) ||
240 		IS_ENABLED(CONFIG_HAVE_MOVE_PUD);
241 }
242 #endif
243 
244 #ifdef CONFIG_HAVE_MOVE_PMD
245 static bool move_normal_pmd(struct vm_area_struct *vma, unsigned long old_addr,
246 		  unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
247 {
248 	spinlock_t *old_ptl, *new_ptl;
249 	struct mm_struct *mm = vma->vm_mm;
250 	bool res = false;
251 	pmd_t pmd;
252 
253 	if (!arch_supports_page_table_move())
254 		return false;
255 	/*
256 	 * The destination pmd shouldn't be established, free_pgtables()
257 	 * should have released it.
258 	 *
259 	 * However, there's a case during execve() where we use mremap
260 	 * to move the initial stack, and in that case the target area
261 	 * may overlap the source area (always moving down).
262 	 *
263 	 * If everything is PMD-aligned, that works fine, as moving
264 	 * each pmd down will clear the source pmd. But if we first
265 	 * have a few 4kB-only pages that get moved down, and then
266 	 * hit the "now the rest is PMD-aligned, let's do everything
267 	 * one pmd at a time", we will still have the old (now empty
268 	 * of any 4kB pages, but still there) PMD in the page table
269 	 * tree.
270 	 *
271 	 * Warn on it once - because we really should try to figure
272 	 * out how to do this better - but then say "I won't move
273 	 * this pmd".
274 	 *
275 	 * One alternative might be to just unmap the target pmd at
276 	 * this point, and verify that it really is empty. We'll see.
277 	 */
278 	if (WARN_ON_ONCE(!pmd_none(*new_pmd)))
279 		return false;
280 
281 	/*
282 	 * We don't have to worry about the ordering of src and dst
283 	 * ptlocks because exclusive mmap_lock prevents deadlock.
284 	 */
285 	old_ptl = pmd_lock(vma->vm_mm, old_pmd);
286 	new_ptl = pmd_lockptr(mm, new_pmd);
287 	if (new_ptl != old_ptl)
288 		spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
289 
290 	pmd = *old_pmd;
291 
292 	/* Racing with collapse? */
293 	if (unlikely(!pmd_present(pmd) || pmd_leaf(pmd)))
294 		goto out_unlock;
295 	/* Clear the pmd */
296 	pmd_clear(old_pmd);
297 	res = true;
298 
299 	VM_BUG_ON(!pmd_none(*new_pmd));
300 
301 	pmd_populate(mm, new_pmd, pmd_pgtable(pmd));
302 	flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
303 out_unlock:
304 	if (new_ptl != old_ptl)
305 		spin_unlock(new_ptl);
306 	spin_unlock(old_ptl);
307 
308 	return res;
309 }
310 #else
311 static inline bool move_normal_pmd(struct vm_area_struct *vma,
312 		unsigned long old_addr, unsigned long new_addr, pmd_t *old_pmd,
313 		pmd_t *new_pmd)
314 {
315 	return false;
316 }
317 #endif
318 
319 #if CONFIG_PGTABLE_LEVELS > 2 && defined(CONFIG_HAVE_MOVE_PUD)
320 static bool move_normal_pud(struct vm_area_struct *vma, unsigned long old_addr,
321 		  unsigned long new_addr, pud_t *old_pud, pud_t *new_pud)
322 {
323 	spinlock_t *old_ptl, *new_ptl;
324 	struct mm_struct *mm = vma->vm_mm;
325 	pud_t pud;
326 
327 	if (!arch_supports_page_table_move())
328 		return false;
329 	/*
330 	 * The destination pud shouldn't be established, free_pgtables()
331 	 * should have released it.
332 	 */
333 	if (WARN_ON_ONCE(!pud_none(*new_pud)))
334 		return false;
335 
336 	/*
337 	 * We don't have to worry about the ordering of src and dst
338 	 * ptlocks because exclusive mmap_lock prevents deadlock.
339 	 */
340 	old_ptl = pud_lock(vma->vm_mm, old_pud);
341 	new_ptl = pud_lockptr(mm, new_pud);
342 	if (new_ptl != old_ptl)
343 		spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
344 
345 	/* Clear the pud */
346 	pud = *old_pud;
347 	pud_clear(old_pud);
348 
349 	VM_BUG_ON(!pud_none(*new_pud));
350 
351 	pud_populate(mm, new_pud, pud_pgtable(pud));
352 	flush_tlb_range(vma, old_addr, old_addr + PUD_SIZE);
353 	if (new_ptl != old_ptl)
354 		spin_unlock(new_ptl);
355 	spin_unlock(old_ptl);
356 
357 	return true;
358 }
359 #else
360 static inline bool move_normal_pud(struct vm_area_struct *vma,
361 		unsigned long old_addr, unsigned long new_addr, pud_t *old_pud,
362 		pud_t *new_pud)
363 {
364 	return false;
365 }
366 #endif
367 
368 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
369 static bool move_huge_pud(struct vm_area_struct *vma, unsigned long old_addr,
370 			  unsigned long new_addr, pud_t *old_pud, pud_t *new_pud)
371 {
372 	spinlock_t *old_ptl, *new_ptl;
373 	struct mm_struct *mm = vma->vm_mm;
374 	pud_t pud;
375 
376 	/*
377 	 * The destination pud shouldn't be established, free_pgtables()
378 	 * should have released it.
379 	 */
380 	if (WARN_ON_ONCE(!pud_none(*new_pud)))
381 		return false;
382 
383 	/*
384 	 * We don't have to worry about the ordering of src and dst
385 	 * ptlocks because exclusive mmap_lock prevents deadlock.
386 	 */
387 	old_ptl = pud_lock(vma->vm_mm, old_pud);
388 	new_ptl = pud_lockptr(mm, new_pud);
389 	if (new_ptl != old_ptl)
390 		spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
391 
392 	/* Clear the pud */
393 	pud = *old_pud;
394 	pud_clear(old_pud);
395 
396 	VM_BUG_ON(!pud_none(*new_pud));
397 
398 	/* Set the new pud */
399 	/* mark soft_ditry when we add pud level soft dirty support */
400 	set_pud_at(mm, new_addr, new_pud, pud);
401 	flush_pud_tlb_range(vma, old_addr, old_addr + HPAGE_PUD_SIZE);
402 	if (new_ptl != old_ptl)
403 		spin_unlock(new_ptl);
404 	spin_unlock(old_ptl);
405 
406 	return true;
407 }
408 #else
409 static bool move_huge_pud(struct vm_area_struct *vma, unsigned long old_addr,
410 			  unsigned long new_addr, pud_t *old_pud, pud_t *new_pud)
411 {
412 	WARN_ON_ONCE(1);
413 	return false;
414 
415 }
416 #endif
417 
418 enum pgt_entry {
419 	NORMAL_PMD,
420 	HPAGE_PMD,
421 	NORMAL_PUD,
422 	HPAGE_PUD,
423 };
424 
425 /*
426  * Returns an extent of the corresponding size for the pgt_entry specified if
427  * valid. Else returns a smaller extent bounded by the end of the source and
428  * destination pgt_entry.
429  */
430 static __always_inline unsigned long get_extent(enum pgt_entry entry,
431 			unsigned long old_addr, unsigned long old_end,
432 			unsigned long new_addr)
433 {
434 	unsigned long next, extent, mask, size;
435 
436 	switch (entry) {
437 	case HPAGE_PMD:
438 	case NORMAL_PMD:
439 		mask = PMD_MASK;
440 		size = PMD_SIZE;
441 		break;
442 	case HPAGE_PUD:
443 	case NORMAL_PUD:
444 		mask = PUD_MASK;
445 		size = PUD_SIZE;
446 		break;
447 	default:
448 		BUILD_BUG();
449 		break;
450 	}
451 
452 	next = (old_addr + size) & mask;
453 	/* even if next overflowed, extent below will be ok */
454 	extent = next - old_addr;
455 	if (extent > old_end - old_addr)
456 		extent = old_end - old_addr;
457 	next = (new_addr + size) & mask;
458 	if (extent > next - new_addr)
459 		extent = next - new_addr;
460 	return extent;
461 }
462 
463 /*
464  * Attempts to speedup the move by moving entry at the level corresponding to
465  * pgt_entry. Returns true if the move was successful, else false.
466  */
467 static bool move_pgt_entry(enum pgt_entry entry, struct vm_area_struct *vma,
468 			unsigned long old_addr, unsigned long new_addr,
469 			void *old_entry, void *new_entry, bool need_rmap_locks)
470 {
471 	bool moved = false;
472 
473 	/* See comment in move_ptes() */
474 	if (need_rmap_locks)
475 		take_rmap_locks(vma);
476 
477 	switch (entry) {
478 	case NORMAL_PMD:
479 		moved = move_normal_pmd(vma, old_addr, new_addr, old_entry,
480 					new_entry);
481 		break;
482 	case NORMAL_PUD:
483 		moved = move_normal_pud(vma, old_addr, new_addr, old_entry,
484 					new_entry);
485 		break;
486 	case HPAGE_PMD:
487 		moved = IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
488 			move_huge_pmd(vma, old_addr, new_addr, old_entry,
489 				      new_entry);
490 		break;
491 	case HPAGE_PUD:
492 		moved = IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
493 			move_huge_pud(vma, old_addr, new_addr, old_entry,
494 				      new_entry);
495 		break;
496 
497 	default:
498 		WARN_ON_ONCE(1);
499 		break;
500 	}
501 
502 	if (need_rmap_locks)
503 		drop_rmap_locks(vma);
504 
505 	return moved;
506 }
507 
508 /*
509  * A helper to check if aligning down is OK. The aligned address should fall
510  * on *no mapping*. For the stack moving down, that's a special move within
511  * the VMA that is created to span the source and destination of the move,
512  * so we make an exception for it.
513  */
514 static bool can_align_down(struct vm_area_struct *vma, unsigned long addr_to_align,
515 			    unsigned long mask, bool for_stack)
516 {
517 	unsigned long addr_masked = addr_to_align & mask;
518 
519 	/*
520 	 * If @addr_to_align of either source or destination is not the beginning
521 	 * of the corresponding VMA, we can't align down or we will destroy part
522 	 * of the current mapping.
523 	 */
524 	if (!for_stack && vma->vm_start != addr_to_align)
525 		return false;
526 
527 	/* In the stack case we explicitly permit in-VMA alignment. */
528 	if (for_stack && addr_masked >= vma->vm_start)
529 		return true;
530 
531 	/*
532 	 * Make sure the realignment doesn't cause the address to fall on an
533 	 * existing mapping.
534 	 */
535 	return find_vma_intersection(vma->vm_mm, addr_masked, vma->vm_start) == NULL;
536 }
537 
538 /* Opportunistically realign to specified boundary for faster copy. */
539 static void try_realign_addr(unsigned long *old_addr, struct vm_area_struct *old_vma,
540 			     unsigned long *new_addr, struct vm_area_struct *new_vma,
541 			     unsigned long mask, bool for_stack)
542 {
543 	/* Skip if the addresses are already aligned. */
544 	if ((*old_addr & ~mask) == 0)
545 		return;
546 
547 	/* Only realign if the new and old addresses are mutually aligned. */
548 	if ((*old_addr & ~mask) != (*new_addr & ~mask))
549 		return;
550 
551 	/* Ensure realignment doesn't cause overlap with existing mappings. */
552 	if (!can_align_down(old_vma, *old_addr, mask, for_stack) ||
553 	    !can_align_down(new_vma, *new_addr, mask, for_stack))
554 		return;
555 
556 	*old_addr = *old_addr & mask;
557 	*new_addr = *new_addr & mask;
558 }
559 
560 unsigned long move_page_tables(struct vm_area_struct *vma,
561 		unsigned long old_addr, struct vm_area_struct *new_vma,
562 		unsigned long new_addr, unsigned long len,
563 		bool need_rmap_locks, bool for_stack)
564 {
565 	unsigned long extent, old_end;
566 	struct mmu_notifier_range range;
567 	pmd_t *old_pmd, *new_pmd;
568 	pud_t *old_pud, *new_pud;
569 
570 	if (!len)
571 		return 0;
572 
573 	old_end = old_addr + len;
574 
575 	if (is_vm_hugetlb_page(vma))
576 		return move_hugetlb_page_tables(vma, new_vma, old_addr,
577 						new_addr, len);
578 
579 	/*
580 	 * If possible, realign addresses to PMD boundary for faster copy.
581 	 * Only realign if the mremap copying hits a PMD boundary.
582 	 */
583 	if (len >= PMD_SIZE - (old_addr & ~PMD_MASK))
584 		try_realign_addr(&old_addr, vma, &new_addr, new_vma, PMD_MASK,
585 				 for_stack);
586 
587 	flush_cache_range(vma, old_addr, old_end);
588 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm,
589 				old_addr, old_end);
590 	mmu_notifier_invalidate_range_start(&range);
591 
592 	for (; old_addr < old_end; old_addr += extent, new_addr += extent) {
593 		cond_resched();
594 		/*
595 		 * If extent is PUD-sized try to speed up the move by moving at the
596 		 * PUD level if possible.
597 		 */
598 		extent = get_extent(NORMAL_PUD, old_addr, old_end, new_addr);
599 
600 		old_pud = get_old_pud(vma->vm_mm, old_addr);
601 		if (!old_pud)
602 			continue;
603 		new_pud = alloc_new_pud(vma->vm_mm, vma, new_addr);
604 		if (!new_pud)
605 			break;
606 		if (pud_trans_huge(*old_pud) || pud_devmap(*old_pud)) {
607 			if (extent == HPAGE_PUD_SIZE) {
608 				move_pgt_entry(HPAGE_PUD, vma, old_addr, new_addr,
609 					       old_pud, new_pud, need_rmap_locks);
610 				/* We ignore and continue on error? */
611 				continue;
612 			}
613 		} else if (IS_ENABLED(CONFIG_HAVE_MOVE_PUD) && extent == PUD_SIZE) {
614 
615 			if (move_pgt_entry(NORMAL_PUD, vma, old_addr, new_addr,
616 					   old_pud, new_pud, true))
617 				continue;
618 		}
619 
620 		extent = get_extent(NORMAL_PMD, old_addr, old_end, new_addr);
621 		old_pmd = get_old_pmd(vma->vm_mm, old_addr);
622 		if (!old_pmd)
623 			continue;
624 		new_pmd = alloc_new_pmd(vma->vm_mm, vma, new_addr);
625 		if (!new_pmd)
626 			break;
627 again:
628 		if (is_swap_pmd(*old_pmd) || pmd_trans_huge(*old_pmd) ||
629 		    pmd_devmap(*old_pmd)) {
630 			if (extent == HPAGE_PMD_SIZE &&
631 			    move_pgt_entry(HPAGE_PMD, vma, old_addr, new_addr,
632 					   old_pmd, new_pmd, need_rmap_locks))
633 				continue;
634 			split_huge_pmd(vma, old_pmd, old_addr);
635 		} else if (IS_ENABLED(CONFIG_HAVE_MOVE_PMD) &&
636 			   extent == PMD_SIZE) {
637 			/*
638 			 * If the extent is PMD-sized, try to speed the move by
639 			 * moving at the PMD level if possible.
640 			 */
641 			if (move_pgt_entry(NORMAL_PMD, vma, old_addr, new_addr,
642 					   old_pmd, new_pmd, true))
643 				continue;
644 		}
645 		if (pmd_none(*old_pmd))
646 			continue;
647 		if (pte_alloc(new_vma->vm_mm, new_pmd))
648 			break;
649 		if (move_ptes(vma, old_pmd, old_addr, old_addr + extent,
650 			      new_vma, new_pmd, new_addr, need_rmap_locks) < 0)
651 			goto again;
652 	}
653 
654 	mmu_notifier_invalidate_range_end(&range);
655 
656 	/*
657 	 * Prevent negative return values when {old,new}_addr was realigned
658 	 * but we broke out of the above loop for the first PMD itself.
659 	 */
660 	if (old_addr < old_end - len)
661 		return 0;
662 
663 	return len + old_addr - old_end;	/* how much done */
664 }
665 
666 static unsigned long move_vma(struct vm_area_struct *vma,
667 		unsigned long old_addr, unsigned long old_len,
668 		unsigned long new_len, unsigned long new_addr,
669 		bool *locked, unsigned long flags,
670 		struct vm_userfaultfd_ctx *uf, struct list_head *uf_unmap)
671 {
672 	long to_account = new_len - old_len;
673 	struct mm_struct *mm = vma->vm_mm;
674 	struct vm_area_struct *new_vma;
675 	unsigned long vm_flags = vma->vm_flags;
676 	unsigned long new_pgoff;
677 	unsigned long moved_len;
678 	unsigned long account_start = 0;
679 	unsigned long account_end = 0;
680 	unsigned long hiwater_vm;
681 	int err = 0;
682 	bool need_rmap_locks;
683 	struct vma_iterator vmi;
684 
685 	/*
686 	 * We'd prefer to avoid failure later on in do_munmap:
687 	 * which may split one vma into three before unmapping.
688 	 */
689 	if (mm->map_count >= sysctl_max_map_count - 3)
690 		return -ENOMEM;
691 
692 	if (unlikely(flags & MREMAP_DONTUNMAP))
693 		to_account = new_len;
694 
695 	if (vma->vm_ops && vma->vm_ops->may_split) {
696 		if (vma->vm_start != old_addr)
697 			err = vma->vm_ops->may_split(vma, old_addr);
698 		if (!err && vma->vm_end != old_addr + old_len)
699 			err = vma->vm_ops->may_split(vma, old_addr + old_len);
700 		if (err)
701 			return err;
702 	}
703 
704 	/*
705 	 * Advise KSM to break any KSM pages in the area to be moved:
706 	 * it would be confusing if they were to turn up at the new
707 	 * location, where they happen to coincide with different KSM
708 	 * pages recently unmapped.  But leave vma->vm_flags as it was,
709 	 * so KSM can come around to merge on vma and new_vma afterwards.
710 	 */
711 	err = ksm_madvise(vma, old_addr, old_addr + old_len,
712 						MADV_UNMERGEABLE, &vm_flags);
713 	if (err)
714 		return err;
715 
716 	if (vm_flags & VM_ACCOUNT) {
717 		if (security_vm_enough_memory_mm(mm, to_account >> PAGE_SHIFT))
718 			return -ENOMEM;
719 	}
720 
721 	vma_start_write(vma);
722 	new_pgoff = vma->vm_pgoff + ((old_addr - vma->vm_start) >> PAGE_SHIFT);
723 	new_vma = copy_vma(&vma, new_addr, new_len, new_pgoff,
724 			   &need_rmap_locks);
725 	if (!new_vma) {
726 		if (vm_flags & VM_ACCOUNT)
727 			vm_unacct_memory(to_account >> PAGE_SHIFT);
728 		return -ENOMEM;
729 	}
730 
731 	moved_len = move_page_tables(vma, old_addr, new_vma, new_addr, old_len,
732 				     need_rmap_locks, false);
733 	if (moved_len < old_len) {
734 		err = -ENOMEM;
735 	} else if (vma->vm_ops && vma->vm_ops->mremap) {
736 		err = vma->vm_ops->mremap(new_vma);
737 	}
738 
739 	if (unlikely(err)) {
740 		/*
741 		 * On error, move entries back from new area to old,
742 		 * which will succeed since page tables still there,
743 		 * and then proceed to unmap new area instead of old.
744 		 */
745 		move_page_tables(new_vma, new_addr, vma, old_addr, moved_len,
746 				 true, false);
747 		vma = new_vma;
748 		old_len = new_len;
749 		old_addr = new_addr;
750 		new_addr = err;
751 	} else {
752 		mremap_userfaultfd_prep(new_vma, uf);
753 	}
754 
755 	if (is_vm_hugetlb_page(vma)) {
756 		clear_vma_resv_huge_pages(vma);
757 	}
758 
759 	/* Conceal VM_ACCOUNT so old reservation is not undone */
760 	if (vm_flags & VM_ACCOUNT && !(flags & MREMAP_DONTUNMAP)) {
761 		vm_flags_clear(vma, VM_ACCOUNT);
762 		if (vma->vm_start < old_addr)
763 			account_start = vma->vm_start;
764 		if (vma->vm_end > old_addr + old_len)
765 			account_end = vma->vm_end;
766 	}
767 
768 	/*
769 	 * If we failed to move page tables we still do total_vm increment
770 	 * since do_munmap() will decrement it by old_len == new_len.
771 	 *
772 	 * Since total_vm is about to be raised artificially high for a
773 	 * moment, we need to restore high watermark afterwards: if stats
774 	 * are taken meanwhile, total_vm and hiwater_vm appear too high.
775 	 * If this were a serious issue, we'd add a flag to do_munmap().
776 	 */
777 	hiwater_vm = mm->hiwater_vm;
778 	vm_stat_account(mm, vma->vm_flags, new_len >> PAGE_SHIFT);
779 
780 	/* Tell pfnmap has moved from this vma */
781 	if (unlikely(vma->vm_flags & VM_PFNMAP))
782 		untrack_pfn_clear(vma);
783 
784 	if (unlikely(!err && (flags & MREMAP_DONTUNMAP))) {
785 		/* We always clear VM_LOCKED[ONFAULT] on the old vma */
786 		vm_flags_clear(vma, VM_LOCKED_MASK);
787 
788 		/*
789 		 * anon_vma links of the old vma is no longer needed after its page
790 		 * table has been moved.
791 		 */
792 		if (new_vma != vma && vma->vm_start == old_addr &&
793 			vma->vm_end == (old_addr + old_len))
794 			unlink_anon_vmas(vma);
795 
796 		/* Because we won't unmap we don't need to touch locked_vm */
797 		return new_addr;
798 	}
799 
800 	vma_iter_init(&vmi, mm, old_addr);
801 	if (do_vmi_munmap(&vmi, mm, old_addr, old_len, uf_unmap, false) < 0) {
802 		/* OOM: unable to split vma, just get accounts right */
803 		if (vm_flags & VM_ACCOUNT && !(flags & MREMAP_DONTUNMAP))
804 			vm_acct_memory(old_len >> PAGE_SHIFT);
805 		account_start = account_end = 0;
806 	}
807 
808 	if (vm_flags & VM_LOCKED) {
809 		mm->locked_vm += new_len >> PAGE_SHIFT;
810 		*locked = true;
811 	}
812 
813 	mm->hiwater_vm = hiwater_vm;
814 
815 	/* Restore VM_ACCOUNT if one or two pieces of vma left */
816 	if (account_start) {
817 		vma = vma_prev(&vmi);
818 		vm_flags_set(vma, VM_ACCOUNT);
819 	}
820 
821 	if (account_end) {
822 		vma = vma_next(&vmi);
823 		vm_flags_set(vma, VM_ACCOUNT);
824 	}
825 
826 	return new_addr;
827 }
828 
829 /*
830  * resize_is_valid() - Ensure the vma can be resized to the new length at the give
831  * address.
832  *
833  * @vma: The vma to resize
834  * @addr: The old address
835  * @old_len: The current size
836  * @new_len: The desired size
837  * @flags: The vma flags
838  *
839  * Return 0 on success, error otherwise.
840  */
841 static int resize_is_valid(struct vm_area_struct *vma, unsigned long addr,
842 	unsigned long old_len, unsigned long new_len, unsigned long flags)
843 {
844 	struct mm_struct *mm = current->mm;
845 	unsigned long pgoff;
846 
847 	/*
848 	 * !old_len is a special case where an attempt is made to 'duplicate'
849 	 * a mapping.  This makes no sense for private mappings as it will
850 	 * instead create a fresh/new mapping unrelated to the original.  This
851 	 * is contrary to the basic idea of mremap which creates new mappings
852 	 * based on the original.  There are no known use cases for this
853 	 * behavior.  As a result, fail such attempts.
854 	 */
855 	if (!old_len && !(vma->vm_flags & (VM_SHARED | VM_MAYSHARE))) {
856 		pr_warn_once("%s (%d): attempted to duplicate a private mapping with mremap.  This is not supported.\n", current->comm, current->pid);
857 		return -EINVAL;
858 	}
859 
860 	if ((flags & MREMAP_DONTUNMAP) &&
861 			(vma->vm_flags & (VM_DONTEXPAND | VM_PFNMAP)))
862 		return -EINVAL;
863 
864 	/* We can't remap across vm area boundaries */
865 	if (old_len > vma->vm_end - addr)
866 		return -EFAULT;
867 
868 	if (new_len == old_len)
869 		return 0;
870 
871 	/* Need to be careful about a growing mapping */
872 	pgoff = (addr - vma->vm_start) >> PAGE_SHIFT;
873 	pgoff += vma->vm_pgoff;
874 	if (pgoff + (new_len >> PAGE_SHIFT) < pgoff)
875 		return -EINVAL;
876 
877 	if (vma->vm_flags & (VM_DONTEXPAND | VM_PFNMAP))
878 		return -EFAULT;
879 
880 	if (!mlock_future_ok(mm, vma->vm_flags, new_len - old_len))
881 		return -EAGAIN;
882 
883 	if (!may_expand_vm(mm, vma->vm_flags,
884 				(new_len - old_len) >> PAGE_SHIFT))
885 		return -ENOMEM;
886 
887 	return 0;
888 }
889 
890 /*
891  * mremap_to() - remap a vma to a new location
892  * @addr: The old address
893  * @old_len: The old size
894  * @new_addr: The target address
895  * @new_len: The new size
896  * @locked: If the returned vma is locked (VM_LOCKED)
897  * @flags: the mremap flags
898  * @uf: The mremap userfaultfd context
899  * @uf_unmap_early: The userfaultfd unmap early context
900  * @uf_unmap: The userfaultfd unmap context
901  *
902  * Returns: The new address of the vma or an error.
903  */
904 static unsigned long mremap_to(unsigned long addr, unsigned long old_len,
905 		unsigned long new_addr, unsigned long new_len, bool *locked,
906 		unsigned long flags, struct vm_userfaultfd_ctx *uf,
907 		struct list_head *uf_unmap_early,
908 		struct list_head *uf_unmap)
909 {
910 	struct mm_struct *mm = current->mm;
911 	struct vm_area_struct *vma;
912 	unsigned long ret;
913 	unsigned long map_flags = 0;
914 
915 	if (offset_in_page(new_addr))
916 		return -EINVAL;
917 
918 	if (new_len > TASK_SIZE || new_addr > TASK_SIZE - new_len)
919 		return -EINVAL;
920 
921 	/* Ensure the old/new locations do not overlap */
922 	if (addr + old_len > new_addr && new_addr + new_len > addr)
923 		return -EINVAL;
924 
925 	/*
926 	 * move_vma() need us to stay 4 maps below the threshold, otherwise
927 	 * it will bail out at the very beginning.
928 	 * That is a problem if we have already unmaped the regions here
929 	 * (new_addr, and old_addr), because userspace will not know the
930 	 * state of the vma's after it gets -ENOMEM.
931 	 * So, to avoid such scenario we can pre-compute if the whole
932 	 * operation has high chances to success map-wise.
933 	 * Worst-scenario case is when both vma's (new_addr and old_addr) get
934 	 * split in 3 before unmapping it.
935 	 * That means 2 more maps (1 for each) to the ones we already hold.
936 	 * Check whether current map count plus 2 still leads us to 4 maps below
937 	 * the threshold, otherwise return -ENOMEM here to be more safe.
938 	 */
939 	if ((mm->map_count + 2) >= sysctl_max_map_count - 3)
940 		return -ENOMEM;
941 
942 	if (flags & MREMAP_FIXED) {
943 		/*
944 		 * In mremap_to().
945 		 * VMA is moved to dst address, and munmap dst first.
946 		 * do_munmap will check if dst is sealed.
947 		 */
948 		ret = do_munmap(mm, new_addr, new_len, uf_unmap_early);
949 		if (ret)
950 			return ret;
951 	}
952 
953 	if (old_len > new_len) {
954 		ret = do_munmap(mm, addr+new_len, old_len - new_len, uf_unmap);
955 		if (ret)
956 			return ret;
957 		old_len = new_len;
958 	}
959 
960 	vma = vma_lookup(mm, addr);
961 	if (!vma)
962 		return -EFAULT;
963 
964 	ret = resize_is_valid(vma, addr, old_len, new_len, flags);
965 	if (ret)
966 		return ret;
967 
968 	/* MREMAP_DONTUNMAP expands by old_len since old_len == new_len */
969 	if (flags & MREMAP_DONTUNMAP &&
970 		!may_expand_vm(mm, vma->vm_flags, old_len >> PAGE_SHIFT)) {
971 		return -ENOMEM;
972 	}
973 
974 	if (flags & MREMAP_FIXED)
975 		map_flags |= MAP_FIXED;
976 
977 	if (vma->vm_flags & VM_MAYSHARE)
978 		map_flags |= MAP_SHARED;
979 
980 	ret = get_unmapped_area(vma->vm_file, new_addr, new_len, vma->vm_pgoff +
981 				((addr - vma->vm_start) >> PAGE_SHIFT),
982 				map_flags);
983 	if (IS_ERR_VALUE(ret))
984 		return ret;
985 
986 	/* We got a new mapping */
987 	if (!(flags & MREMAP_FIXED))
988 		new_addr = ret;
989 
990 	return move_vma(vma, addr, old_len, new_len, new_addr, locked, flags,
991 			uf, uf_unmap);
992 }
993 
994 static int vma_expandable(struct vm_area_struct *vma, unsigned long delta)
995 {
996 	unsigned long end = vma->vm_end + delta;
997 
998 	if (end < vma->vm_end) /* overflow */
999 		return 0;
1000 	if (find_vma_intersection(vma->vm_mm, vma->vm_end, end))
1001 		return 0;
1002 	if (get_unmapped_area(NULL, vma->vm_start, end - vma->vm_start,
1003 			      0, MAP_FIXED) & ~PAGE_MASK)
1004 		return 0;
1005 	return 1;
1006 }
1007 
1008 /*
1009  * Expand (or shrink) an existing mapping, potentially moving it at the
1010  * same time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1011  *
1012  * MREMAP_FIXED option added 5-Dec-1999 by Benjamin LaHaise
1013  * This option implies MREMAP_MAYMOVE.
1014  */
1015 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1016 		unsigned long, new_len, unsigned long, flags,
1017 		unsigned long, new_addr)
1018 {
1019 	struct mm_struct *mm = current->mm;
1020 	struct vm_area_struct *vma;
1021 	unsigned long ret = -EINVAL;
1022 	bool locked = false;
1023 	struct vm_userfaultfd_ctx uf = NULL_VM_UFFD_CTX;
1024 	LIST_HEAD(uf_unmap_early);
1025 	LIST_HEAD(uf_unmap);
1026 
1027 	/*
1028 	 * There is a deliberate asymmetry here: we strip the pointer tag
1029 	 * from the old address but leave the new address alone. This is
1030 	 * for consistency with mmap(), where we prevent the creation of
1031 	 * aliasing mappings in userspace by leaving the tag bits of the
1032 	 * mapping address intact. A non-zero tag will cause the subsequent
1033 	 * range checks to reject the address as invalid.
1034 	 *
1035 	 * See Documentation/arch/arm64/tagged-address-abi.rst for more
1036 	 * information.
1037 	 */
1038 	addr = untagged_addr(addr);
1039 
1040 	if (flags & ~(MREMAP_FIXED | MREMAP_MAYMOVE | MREMAP_DONTUNMAP))
1041 		return ret;
1042 
1043 	if (flags & MREMAP_FIXED && !(flags & MREMAP_MAYMOVE))
1044 		return ret;
1045 
1046 	/*
1047 	 * MREMAP_DONTUNMAP is always a move and it does not allow resizing
1048 	 * in the process.
1049 	 */
1050 	if (flags & MREMAP_DONTUNMAP &&
1051 			(!(flags & MREMAP_MAYMOVE) || old_len != new_len))
1052 		return ret;
1053 
1054 
1055 	if (offset_in_page(addr))
1056 		return ret;
1057 
1058 	old_len = PAGE_ALIGN(old_len);
1059 	new_len = PAGE_ALIGN(new_len);
1060 
1061 	/*
1062 	 * We allow a zero old-len as a special case
1063 	 * for DOS-emu "duplicate shm area" thing. But
1064 	 * a zero new-len is nonsensical.
1065 	 */
1066 	if (!new_len)
1067 		return ret;
1068 
1069 	if (mmap_write_lock_killable(current->mm))
1070 		return -EINTR;
1071 	vma = vma_lookup(mm, addr);
1072 	if (!vma) {
1073 		ret = -EFAULT;
1074 		goto out;
1075 	}
1076 
1077 	/* Don't allow remapping vmas when they have already been sealed */
1078 	if (!can_modify_vma(vma)) {
1079 		ret = -EPERM;
1080 		goto out;
1081 	}
1082 
1083 	if (is_vm_hugetlb_page(vma)) {
1084 		struct hstate *h __maybe_unused = hstate_vma(vma);
1085 
1086 		old_len = ALIGN(old_len, huge_page_size(h));
1087 		new_len = ALIGN(new_len, huge_page_size(h));
1088 
1089 		/* addrs must be huge page aligned */
1090 		if (addr & ~huge_page_mask(h))
1091 			goto out;
1092 		if (new_addr & ~huge_page_mask(h))
1093 			goto out;
1094 
1095 		/*
1096 		 * Don't allow remap expansion, because the underlying hugetlb
1097 		 * reservation is not yet capable to handle split reservation.
1098 		 */
1099 		if (new_len > old_len)
1100 			goto out;
1101 	}
1102 
1103 	if (flags & (MREMAP_FIXED | MREMAP_DONTUNMAP)) {
1104 		ret = mremap_to(addr, old_len, new_addr, new_len,
1105 				&locked, flags, &uf, &uf_unmap_early,
1106 				&uf_unmap);
1107 		goto out;
1108 	}
1109 
1110 	/*
1111 	 * Always allow a shrinking remap: that just unmaps
1112 	 * the unnecessary pages..
1113 	 * do_vmi_munmap does all the needed commit accounting, and
1114 	 * unlocks the mmap_lock if so directed.
1115 	 */
1116 	if (old_len >= new_len) {
1117 		VMA_ITERATOR(vmi, mm, addr + new_len);
1118 
1119 		if (old_len == new_len) {
1120 			ret = addr;
1121 			goto out;
1122 		}
1123 
1124 		ret = do_vmi_munmap(&vmi, mm, addr + new_len, old_len - new_len,
1125 				    &uf_unmap, true);
1126 		if (ret)
1127 			goto out;
1128 
1129 		ret = addr;
1130 		goto out_unlocked;
1131 	}
1132 
1133 	/*
1134 	 * Ok, we need to grow..
1135 	 */
1136 	ret = resize_is_valid(vma, addr, old_len, new_len, flags);
1137 	if (ret)
1138 		goto out;
1139 
1140 	/* old_len exactly to the end of the area..
1141 	 */
1142 	if (old_len == vma->vm_end - addr) {
1143 		unsigned long delta = new_len - old_len;
1144 
1145 		/* can we just expand the current mapping? */
1146 		if (vma_expandable(vma, delta)) {
1147 			long pages = delta >> PAGE_SHIFT;
1148 			VMA_ITERATOR(vmi, mm, vma->vm_end);
1149 			long charged = 0;
1150 
1151 			if (vma->vm_flags & VM_ACCOUNT) {
1152 				if (security_vm_enough_memory_mm(mm, pages)) {
1153 					ret = -ENOMEM;
1154 					goto out;
1155 				}
1156 				charged = pages;
1157 			}
1158 
1159 			/*
1160 			 * Function vma_merge_extend() is called on the
1161 			 * extension we are adding to the already existing vma,
1162 			 * vma_merge_extend() will merge this extension with the
1163 			 * already existing vma (expand operation itself) and
1164 			 * possibly also with the next vma if it becomes
1165 			 * adjacent to the expanded vma and otherwise
1166 			 * compatible.
1167 			 */
1168 			vma = vma_merge_extend(&vmi, vma, delta);
1169 			if (!vma) {
1170 				vm_unacct_memory(charged);
1171 				ret = -ENOMEM;
1172 				goto out;
1173 			}
1174 
1175 			vm_stat_account(mm, vma->vm_flags, pages);
1176 			if (vma->vm_flags & VM_LOCKED) {
1177 				mm->locked_vm += pages;
1178 				locked = true;
1179 				new_addr = addr;
1180 			}
1181 			ret = addr;
1182 			goto out;
1183 		}
1184 	}
1185 
1186 	/*
1187 	 * We weren't able to just expand or shrink the area,
1188 	 * we need to create a new one and move it..
1189 	 */
1190 	ret = -ENOMEM;
1191 	if (flags & MREMAP_MAYMOVE) {
1192 		unsigned long map_flags = 0;
1193 		if (vma->vm_flags & VM_MAYSHARE)
1194 			map_flags |= MAP_SHARED;
1195 
1196 		new_addr = get_unmapped_area(vma->vm_file, 0, new_len,
1197 					vma->vm_pgoff +
1198 					((addr - vma->vm_start) >> PAGE_SHIFT),
1199 					map_flags);
1200 		if (IS_ERR_VALUE(new_addr)) {
1201 			ret = new_addr;
1202 			goto out;
1203 		}
1204 
1205 		ret = move_vma(vma, addr, old_len, new_len, new_addr,
1206 			       &locked, flags, &uf, &uf_unmap);
1207 	}
1208 out:
1209 	if (offset_in_page(ret))
1210 		locked = false;
1211 	mmap_write_unlock(current->mm);
1212 	if (locked && new_len > old_len)
1213 		mm_populate(new_addr + old_len, new_len - old_len);
1214 out_unlocked:
1215 	userfaultfd_unmap_complete(mm, &uf_unmap_early);
1216 	mremap_userfaultfd_complete(&uf, addr, ret, old_len);
1217 	userfaultfd_unmap_complete(mm, &uf_unmap);
1218 	return ret;
1219 }
1220