xref: /linux/mm/mremap.c (revision c45323b7560ec87c37c729b703c86ee65f136d75)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *	mm/mremap.c
4  *
5  *	(C) Copyright 1996 Linus Torvalds
6  *
7  *	Address space accounting code	<alan@lxorguk.ukuu.org.uk>
8  *	(C) Copyright 2002 Red Hat Inc, All Rights Reserved
9  */
10 
11 #include <linux/mm.h>
12 #include <linux/mm_inline.h>
13 #include <linux/hugetlb.h>
14 #include <linux/shm.h>
15 #include <linux/ksm.h>
16 #include <linux/mman.h>
17 #include <linux/swap.h>
18 #include <linux/capability.h>
19 #include <linux/fs.h>
20 #include <linux/swapops.h>
21 #include <linux/highmem.h>
22 #include <linux/security.h>
23 #include <linux/syscalls.h>
24 #include <linux/mmu_notifier.h>
25 #include <linux/uaccess.h>
26 #include <linux/userfaultfd_k.h>
27 #include <linux/mempolicy.h>
28 
29 #include <asm/cacheflush.h>
30 #include <asm/tlb.h>
31 #include <asm/pgalloc.h>
32 
33 #include "internal.h"
34 
get_old_pud(struct mm_struct * mm,unsigned long addr)35 static pud_t *get_old_pud(struct mm_struct *mm, unsigned long addr)
36 {
37 	pgd_t *pgd;
38 	p4d_t *p4d;
39 	pud_t *pud;
40 
41 	pgd = pgd_offset(mm, addr);
42 	if (pgd_none_or_clear_bad(pgd))
43 		return NULL;
44 
45 	p4d = p4d_offset(pgd, addr);
46 	if (p4d_none_or_clear_bad(p4d))
47 		return NULL;
48 
49 	pud = pud_offset(p4d, addr);
50 	if (pud_none_or_clear_bad(pud))
51 		return NULL;
52 
53 	return pud;
54 }
55 
get_old_pmd(struct mm_struct * mm,unsigned long addr)56 static pmd_t *get_old_pmd(struct mm_struct *mm, unsigned long addr)
57 {
58 	pud_t *pud;
59 	pmd_t *pmd;
60 
61 	pud = get_old_pud(mm, addr);
62 	if (!pud)
63 		return NULL;
64 
65 	pmd = pmd_offset(pud, addr);
66 	if (pmd_none(*pmd))
67 		return NULL;
68 
69 	return pmd;
70 }
71 
alloc_new_pud(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr)72 static pud_t *alloc_new_pud(struct mm_struct *mm, struct vm_area_struct *vma,
73 			    unsigned long addr)
74 {
75 	pgd_t *pgd;
76 	p4d_t *p4d;
77 
78 	pgd = pgd_offset(mm, addr);
79 	p4d = p4d_alloc(mm, pgd, addr);
80 	if (!p4d)
81 		return NULL;
82 
83 	return pud_alloc(mm, p4d, addr);
84 }
85 
alloc_new_pmd(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr)86 static pmd_t *alloc_new_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
87 			    unsigned long addr)
88 {
89 	pud_t *pud;
90 	pmd_t *pmd;
91 
92 	pud = alloc_new_pud(mm, vma, addr);
93 	if (!pud)
94 		return NULL;
95 
96 	pmd = pmd_alloc(mm, pud, addr);
97 	if (!pmd)
98 		return NULL;
99 
100 	VM_BUG_ON(pmd_trans_huge(*pmd));
101 
102 	return pmd;
103 }
104 
take_rmap_locks(struct vm_area_struct * vma)105 static void take_rmap_locks(struct vm_area_struct *vma)
106 {
107 	if (vma->vm_file)
108 		i_mmap_lock_write(vma->vm_file->f_mapping);
109 	if (vma->anon_vma)
110 		anon_vma_lock_write(vma->anon_vma);
111 }
112 
drop_rmap_locks(struct vm_area_struct * vma)113 static void drop_rmap_locks(struct vm_area_struct *vma)
114 {
115 	if (vma->anon_vma)
116 		anon_vma_unlock_write(vma->anon_vma);
117 	if (vma->vm_file)
118 		i_mmap_unlock_write(vma->vm_file->f_mapping);
119 }
120 
move_soft_dirty_pte(pte_t pte)121 static pte_t move_soft_dirty_pte(pte_t pte)
122 {
123 	/*
124 	 * Set soft dirty bit so we can notice
125 	 * in userspace the ptes were moved.
126 	 */
127 #ifdef CONFIG_MEM_SOFT_DIRTY
128 	if (pte_present(pte))
129 		pte = pte_mksoft_dirty(pte);
130 	else if (is_swap_pte(pte))
131 		pte = pte_swp_mksoft_dirty(pte);
132 #endif
133 	return pte;
134 }
135 
move_ptes(struct vm_area_struct * vma,pmd_t * old_pmd,unsigned long old_addr,unsigned long old_end,struct vm_area_struct * new_vma,pmd_t * new_pmd,unsigned long new_addr,bool need_rmap_locks)136 static int move_ptes(struct vm_area_struct *vma, pmd_t *old_pmd,
137 		unsigned long old_addr, unsigned long old_end,
138 		struct vm_area_struct *new_vma, pmd_t *new_pmd,
139 		unsigned long new_addr, bool need_rmap_locks)
140 {
141 	bool need_clear_uffd_wp = vma_has_uffd_without_event_remap(vma);
142 	struct mm_struct *mm = vma->vm_mm;
143 	pte_t *old_pte, *new_pte, pte;
144 	pmd_t dummy_pmdval;
145 	spinlock_t *old_ptl, *new_ptl;
146 	bool force_flush = false;
147 	unsigned long len = old_end - old_addr;
148 	int err = 0;
149 
150 	/*
151 	 * When need_rmap_locks is true, we take the i_mmap_rwsem and anon_vma
152 	 * locks to ensure that rmap will always observe either the old or the
153 	 * new ptes. This is the easiest way to avoid races with
154 	 * truncate_pagecache(), page migration, etc...
155 	 *
156 	 * When need_rmap_locks is false, we use other ways to avoid
157 	 * such races:
158 	 *
159 	 * - During exec() shift_arg_pages(), we use a specially tagged vma
160 	 *   which rmap call sites look for using vma_is_temporary_stack().
161 	 *
162 	 * - During mremap(), new_vma is often known to be placed after vma
163 	 *   in rmap traversal order. This ensures rmap will always observe
164 	 *   either the old pte, or the new pte, or both (the page table locks
165 	 *   serialize access to individual ptes, but only rmap traversal
166 	 *   order guarantees that we won't miss both the old and new ptes).
167 	 */
168 	if (need_rmap_locks)
169 		take_rmap_locks(vma);
170 
171 	/*
172 	 * We don't have to worry about the ordering of src and dst
173 	 * pte locks because exclusive mmap_lock prevents deadlock.
174 	 */
175 	old_pte = pte_offset_map_lock(mm, old_pmd, old_addr, &old_ptl);
176 	if (!old_pte) {
177 		err = -EAGAIN;
178 		goto out;
179 	}
180 	/*
181 	 * Now new_pte is none, so hpage_collapse_scan_file() path can not find
182 	 * this by traversing file->f_mapping, so there is no concurrency with
183 	 * retract_page_tables(). In addition, we already hold the exclusive
184 	 * mmap_lock, so this new_pte page is stable, so there is no need to get
185 	 * pmdval and do pmd_same() check.
186 	 */
187 	new_pte = pte_offset_map_rw_nolock(mm, new_pmd, new_addr, &dummy_pmdval,
188 					   &new_ptl);
189 	if (!new_pte) {
190 		pte_unmap_unlock(old_pte, old_ptl);
191 		err = -EAGAIN;
192 		goto out;
193 	}
194 	if (new_ptl != old_ptl)
195 		spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
196 	flush_tlb_batched_pending(vma->vm_mm);
197 	arch_enter_lazy_mmu_mode();
198 
199 	for (; old_addr < old_end; old_pte++, old_addr += PAGE_SIZE,
200 				   new_pte++, new_addr += PAGE_SIZE) {
201 		if (pte_none(ptep_get(old_pte)))
202 			continue;
203 
204 		pte = ptep_get_and_clear(mm, old_addr, old_pte);
205 		/*
206 		 * If we are remapping a valid PTE, make sure
207 		 * to flush TLB before we drop the PTL for the
208 		 * PTE.
209 		 *
210 		 * NOTE! Both old and new PTL matter: the old one
211 		 * for racing with folio_mkclean(), the new one to
212 		 * make sure the physical page stays valid until
213 		 * the TLB entry for the old mapping has been
214 		 * flushed.
215 		 */
216 		if (pte_present(pte))
217 			force_flush = true;
218 		pte = move_pte(pte, old_addr, new_addr);
219 		pte = move_soft_dirty_pte(pte);
220 
221 		if (need_clear_uffd_wp && pte_marker_uffd_wp(pte))
222 			pte_clear(mm, new_addr, new_pte);
223 		else {
224 			if (need_clear_uffd_wp) {
225 				if (pte_present(pte))
226 					pte = pte_clear_uffd_wp(pte);
227 				else if (is_swap_pte(pte))
228 					pte = pte_swp_clear_uffd_wp(pte);
229 			}
230 			set_pte_at(mm, new_addr, new_pte, pte);
231 		}
232 	}
233 
234 	arch_leave_lazy_mmu_mode();
235 	if (force_flush)
236 		flush_tlb_range(vma, old_end - len, old_end);
237 	if (new_ptl != old_ptl)
238 		spin_unlock(new_ptl);
239 	pte_unmap(new_pte - 1);
240 	pte_unmap_unlock(old_pte - 1, old_ptl);
241 out:
242 	if (need_rmap_locks)
243 		drop_rmap_locks(vma);
244 	return err;
245 }
246 
247 #ifndef arch_supports_page_table_move
248 #define arch_supports_page_table_move arch_supports_page_table_move
arch_supports_page_table_move(void)249 static inline bool arch_supports_page_table_move(void)
250 {
251 	return IS_ENABLED(CONFIG_HAVE_MOVE_PMD) ||
252 		IS_ENABLED(CONFIG_HAVE_MOVE_PUD);
253 }
254 #endif
255 
256 #ifdef CONFIG_HAVE_MOVE_PMD
move_normal_pmd(struct vm_area_struct * vma,unsigned long old_addr,unsigned long new_addr,pmd_t * old_pmd,pmd_t * new_pmd)257 static bool move_normal_pmd(struct vm_area_struct *vma, unsigned long old_addr,
258 		  unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
259 {
260 	spinlock_t *old_ptl, *new_ptl;
261 	struct mm_struct *mm = vma->vm_mm;
262 	bool res = false;
263 	pmd_t pmd;
264 
265 	if (!arch_supports_page_table_move())
266 		return false;
267 	/*
268 	 * The destination pmd shouldn't be established, free_pgtables()
269 	 * should have released it.
270 	 *
271 	 * However, there's a case during execve() where we use mremap
272 	 * to move the initial stack, and in that case the target area
273 	 * may overlap the source area (always moving down).
274 	 *
275 	 * If everything is PMD-aligned, that works fine, as moving
276 	 * each pmd down will clear the source pmd. But if we first
277 	 * have a few 4kB-only pages that get moved down, and then
278 	 * hit the "now the rest is PMD-aligned, let's do everything
279 	 * one pmd at a time", we will still have the old (now empty
280 	 * of any 4kB pages, but still there) PMD in the page table
281 	 * tree.
282 	 *
283 	 * Warn on it once - because we really should try to figure
284 	 * out how to do this better - but then say "I won't move
285 	 * this pmd".
286 	 *
287 	 * One alternative might be to just unmap the target pmd at
288 	 * this point, and verify that it really is empty. We'll see.
289 	 */
290 	if (WARN_ON_ONCE(!pmd_none(*new_pmd)))
291 		return false;
292 
293 	/* If this pmd belongs to a uffd vma with remap events disabled, we need
294 	 * to ensure that the uffd-wp state is cleared from all pgtables. This
295 	 * means recursing into lower page tables in move_page_tables(), and we
296 	 * can reuse the existing code if we simply treat the entry as "not
297 	 * moved".
298 	 */
299 	if (vma_has_uffd_without_event_remap(vma))
300 		return false;
301 
302 	/*
303 	 * We don't have to worry about the ordering of src and dst
304 	 * ptlocks because exclusive mmap_lock prevents deadlock.
305 	 */
306 	old_ptl = pmd_lock(vma->vm_mm, old_pmd);
307 	new_ptl = pmd_lockptr(mm, new_pmd);
308 	if (new_ptl != old_ptl)
309 		spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
310 
311 	pmd = *old_pmd;
312 
313 	/* Racing with collapse? */
314 	if (unlikely(!pmd_present(pmd) || pmd_leaf(pmd)))
315 		goto out_unlock;
316 	/* Clear the pmd */
317 	pmd_clear(old_pmd);
318 	res = true;
319 
320 	VM_BUG_ON(!pmd_none(*new_pmd));
321 
322 	pmd_populate(mm, new_pmd, pmd_pgtable(pmd));
323 	flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
324 out_unlock:
325 	if (new_ptl != old_ptl)
326 		spin_unlock(new_ptl);
327 	spin_unlock(old_ptl);
328 
329 	return res;
330 }
331 #else
move_normal_pmd(struct vm_area_struct * vma,unsigned long old_addr,unsigned long new_addr,pmd_t * old_pmd,pmd_t * new_pmd)332 static inline bool move_normal_pmd(struct vm_area_struct *vma,
333 		unsigned long old_addr, unsigned long new_addr, pmd_t *old_pmd,
334 		pmd_t *new_pmd)
335 {
336 	return false;
337 }
338 #endif
339 
340 #if CONFIG_PGTABLE_LEVELS > 2 && defined(CONFIG_HAVE_MOVE_PUD)
move_normal_pud(struct vm_area_struct * vma,unsigned long old_addr,unsigned long new_addr,pud_t * old_pud,pud_t * new_pud)341 static bool move_normal_pud(struct vm_area_struct *vma, unsigned long old_addr,
342 		  unsigned long new_addr, pud_t *old_pud, pud_t *new_pud)
343 {
344 	spinlock_t *old_ptl, *new_ptl;
345 	struct mm_struct *mm = vma->vm_mm;
346 	pud_t pud;
347 
348 	if (!arch_supports_page_table_move())
349 		return false;
350 	/*
351 	 * The destination pud shouldn't be established, free_pgtables()
352 	 * should have released it.
353 	 */
354 	if (WARN_ON_ONCE(!pud_none(*new_pud)))
355 		return false;
356 
357 	/* If this pud belongs to a uffd vma with remap events disabled, we need
358 	 * to ensure that the uffd-wp state is cleared from all pgtables. This
359 	 * means recursing into lower page tables in move_page_tables(), and we
360 	 * can reuse the existing code if we simply treat the entry as "not
361 	 * moved".
362 	 */
363 	if (vma_has_uffd_without_event_remap(vma))
364 		return false;
365 
366 	/*
367 	 * We don't have to worry about the ordering of src and dst
368 	 * ptlocks because exclusive mmap_lock prevents deadlock.
369 	 */
370 	old_ptl = pud_lock(vma->vm_mm, old_pud);
371 	new_ptl = pud_lockptr(mm, new_pud);
372 	if (new_ptl != old_ptl)
373 		spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
374 
375 	/* Clear the pud */
376 	pud = *old_pud;
377 	pud_clear(old_pud);
378 
379 	VM_BUG_ON(!pud_none(*new_pud));
380 
381 	pud_populate(mm, new_pud, pud_pgtable(pud));
382 	flush_tlb_range(vma, old_addr, old_addr + PUD_SIZE);
383 	if (new_ptl != old_ptl)
384 		spin_unlock(new_ptl);
385 	spin_unlock(old_ptl);
386 
387 	return true;
388 }
389 #else
move_normal_pud(struct vm_area_struct * vma,unsigned long old_addr,unsigned long new_addr,pud_t * old_pud,pud_t * new_pud)390 static inline bool move_normal_pud(struct vm_area_struct *vma,
391 		unsigned long old_addr, unsigned long new_addr, pud_t *old_pud,
392 		pud_t *new_pud)
393 {
394 	return false;
395 }
396 #endif
397 
398 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
move_huge_pud(struct vm_area_struct * vma,unsigned long old_addr,unsigned long new_addr,pud_t * old_pud,pud_t * new_pud)399 static bool move_huge_pud(struct vm_area_struct *vma, unsigned long old_addr,
400 			  unsigned long new_addr, pud_t *old_pud, pud_t *new_pud)
401 {
402 	spinlock_t *old_ptl, *new_ptl;
403 	struct mm_struct *mm = vma->vm_mm;
404 	pud_t pud;
405 
406 	/*
407 	 * The destination pud shouldn't be established, free_pgtables()
408 	 * should have released it.
409 	 */
410 	if (WARN_ON_ONCE(!pud_none(*new_pud)))
411 		return false;
412 
413 	/*
414 	 * We don't have to worry about the ordering of src and dst
415 	 * ptlocks because exclusive mmap_lock prevents deadlock.
416 	 */
417 	old_ptl = pud_lock(vma->vm_mm, old_pud);
418 	new_ptl = pud_lockptr(mm, new_pud);
419 	if (new_ptl != old_ptl)
420 		spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
421 
422 	/* Clear the pud */
423 	pud = *old_pud;
424 	pud_clear(old_pud);
425 
426 	VM_BUG_ON(!pud_none(*new_pud));
427 
428 	/* Set the new pud */
429 	/* mark soft_ditry when we add pud level soft dirty support */
430 	set_pud_at(mm, new_addr, new_pud, pud);
431 	flush_pud_tlb_range(vma, old_addr, old_addr + HPAGE_PUD_SIZE);
432 	if (new_ptl != old_ptl)
433 		spin_unlock(new_ptl);
434 	spin_unlock(old_ptl);
435 
436 	return true;
437 }
438 #else
move_huge_pud(struct vm_area_struct * vma,unsigned long old_addr,unsigned long new_addr,pud_t * old_pud,pud_t * new_pud)439 static bool move_huge_pud(struct vm_area_struct *vma, unsigned long old_addr,
440 			  unsigned long new_addr, pud_t *old_pud, pud_t *new_pud)
441 {
442 	WARN_ON_ONCE(1);
443 	return false;
444 
445 }
446 #endif
447 
448 enum pgt_entry {
449 	NORMAL_PMD,
450 	HPAGE_PMD,
451 	NORMAL_PUD,
452 	HPAGE_PUD,
453 };
454 
455 /*
456  * Returns an extent of the corresponding size for the pgt_entry specified if
457  * valid. Else returns a smaller extent bounded by the end of the source and
458  * destination pgt_entry.
459  */
get_extent(enum pgt_entry entry,unsigned long old_addr,unsigned long old_end,unsigned long new_addr)460 static __always_inline unsigned long get_extent(enum pgt_entry entry,
461 			unsigned long old_addr, unsigned long old_end,
462 			unsigned long new_addr)
463 {
464 	unsigned long next, extent, mask, size;
465 
466 	switch (entry) {
467 	case HPAGE_PMD:
468 	case NORMAL_PMD:
469 		mask = PMD_MASK;
470 		size = PMD_SIZE;
471 		break;
472 	case HPAGE_PUD:
473 	case NORMAL_PUD:
474 		mask = PUD_MASK;
475 		size = PUD_SIZE;
476 		break;
477 	default:
478 		BUILD_BUG();
479 		break;
480 	}
481 
482 	next = (old_addr + size) & mask;
483 	/* even if next overflowed, extent below will be ok */
484 	extent = next - old_addr;
485 	if (extent > old_end - old_addr)
486 		extent = old_end - old_addr;
487 	next = (new_addr + size) & mask;
488 	if (extent > next - new_addr)
489 		extent = next - new_addr;
490 	return extent;
491 }
492 
493 /*
494  * Attempts to speedup the move by moving entry at the level corresponding to
495  * pgt_entry. Returns true if the move was successful, else false.
496  */
move_pgt_entry(enum pgt_entry entry,struct vm_area_struct * vma,unsigned long old_addr,unsigned long new_addr,void * old_entry,void * new_entry,bool need_rmap_locks)497 static bool move_pgt_entry(enum pgt_entry entry, struct vm_area_struct *vma,
498 			unsigned long old_addr, unsigned long new_addr,
499 			void *old_entry, void *new_entry, bool need_rmap_locks)
500 {
501 	bool moved = false;
502 
503 	/* See comment in move_ptes() */
504 	if (need_rmap_locks)
505 		take_rmap_locks(vma);
506 
507 	switch (entry) {
508 	case NORMAL_PMD:
509 		moved = move_normal_pmd(vma, old_addr, new_addr, old_entry,
510 					new_entry);
511 		break;
512 	case NORMAL_PUD:
513 		moved = move_normal_pud(vma, old_addr, new_addr, old_entry,
514 					new_entry);
515 		break;
516 	case HPAGE_PMD:
517 		moved = IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
518 			move_huge_pmd(vma, old_addr, new_addr, old_entry,
519 				      new_entry);
520 		break;
521 	case HPAGE_PUD:
522 		moved = IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
523 			move_huge_pud(vma, old_addr, new_addr, old_entry,
524 				      new_entry);
525 		break;
526 
527 	default:
528 		WARN_ON_ONCE(1);
529 		break;
530 	}
531 
532 	if (need_rmap_locks)
533 		drop_rmap_locks(vma);
534 
535 	return moved;
536 }
537 
538 /*
539  * A helper to check if aligning down is OK. The aligned address should fall
540  * on *no mapping*. For the stack moving down, that's a special move within
541  * the VMA that is created to span the source and destination of the move,
542  * so we make an exception for it.
543  */
can_align_down(struct vm_area_struct * vma,unsigned long addr_to_align,unsigned long mask,bool for_stack)544 static bool can_align_down(struct vm_area_struct *vma, unsigned long addr_to_align,
545 			    unsigned long mask, bool for_stack)
546 {
547 	unsigned long addr_masked = addr_to_align & mask;
548 
549 	/*
550 	 * If @addr_to_align of either source or destination is not the beginning
551 	 * of the corresponding VMA, we can't align down or we will destroy part
552 	 * of the current mapping.
553 	 */
554 	if (!for_stack && vma->vm_start != addr_to_align)
555 		return false;
556 
557 	/* In the stack case we explicitly permit in-VMA alignment. */
558 	if (for_stack && addr_masked >= vma->vm_start)
559 		return true;
560 
561 	/*
562 	 * Make sure the realignment doesn't cause the address to fall on an
563 	 * existing mapping.
564 	 */
565 	return find_vma_intersection(vma->vm_mm, addr_masked, vma->vm_start) == NULL;
566 }
567 
568 /* Opportunistically realign to specified boundary for faster copy. */
try_realign_addr(unsigned long * old_addr,struct vm_area_struct * old_vma,unsigned long * new_addr,struct vm_area_struct * new_vma,unsigned long mask,bool for_stack)569 static void try_realign_addr(unsigned long *old_addr, struct vm_area_struct *old_vma,
570 			     unsigned long *new_addr, struct vm_area_struct *new_vma,
571 			     unsigned long mask, bool for_stack)
572 {
573 	/* Skip if the addresses are already aligned. */
574 	if ((*old_addr & ~mask) == 0)
575 		return;
576 
577 	/* Only realign if the new and old addresses are mutually aligned. */
578 	if ((*old_addr & ~mask) != (*new_addr & ~mask))
579 		return;
580 
581 	/* Ensure realignment doesn't cause overlap with existing mappings. */
582 	if (!can_align_down(old_vma, *old_addr, mask, for_stack) ||
583 	    !can_align_down(new_vma, *new_addr, mask, for_stack))
584 		return;
585 
586 	*old_addr = *old_addr & mask;
587 	*new_addr = *new_addr & mask;
588 }
589 
move_page_tables(struct vm_area_struct * vma,unsigned long old_addr,struct vm_area_struct * new_vma,unsigned long new_addr,unsigned long len,bool need_rmap_locks,bool for_stack)590 unsigned long move_page_tables(struct vm_area_struct *vma,
591 		unsigned long old_addr, struct vm_area_struct *new_vma,
592 		unsigned long new_addr, unsigned long len,
593 		bool need_rmap_locks, bool for_stack)
594 {
595 	unsigned long extent, old_end;
596 	struct mmu_notifier_range range;
597 	pmd_t *old_pmd, *new_pmd;
598 	pud_t *old_pud, *new_pud;
599 
600 	if (!len)
601 		return 0;
602 
603 	old_end = old_addr + len;
604 
605 	if (is_vm_hugetlb_page(vma))
606 		return move_hugetlb_page_tables(vma, new_vma, old_addr,
607 						new_addr, len);
608 
609 	/*
610 	 * If possible, realign addresses to PMD boundary for faster copy.
611 	 * Only realign if the mremap copying hits a PMD boundary.
612 	 */
613 	if (len >= PMD_SIZE - (old_addr & ~PMD_MASK))
614 		try_realign_addr(&old_addr, vma, &new_addr, new_vma, PMD_MASK,
615 				 for_stack);
616 
617 	flush_cache_range(vma, old_addr, old_end);
618 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm,
619 				old_addr, old_end);
620 	mmu_notifier_invalidate_range_start(&range);
621 
622 	for (; old_addr < old_end; old_addr += extent, new_addr += extent) {
623 		cond_resched();
624 		/*
625 		 * If extent is PUD-sized try to speed up the move by moving at the
626 		 * PUD level if possible.
627 		 */
628 		extent = get_extent(NORMAL_PUD, old_addr, old_end, new_addr);
629 
630 		old_pud = get_old_pud(vma->vm_mm, old_addr);
631 		if (!old_pud)
632 			continue;
633 		new_pud = alloc_new_pud(vma->vm_mm, vma, new_addr);
634 		if (!new_pud)
635 			break;
636 		if (pud_trans_huge(*old_pud) || pud_devmap(*old_pud)) {
637 			if (extent == HPAGE_PUD_SIZE) {
638 				move_pgt_entry(HPAGE_PUD, vma, old_addr, new_addr,
639 					       old_pud, new_pud, need_rmap_locks);
640 				/* We ignore and continue on error? */
641 				continue;
642 			}
643 		} else if (IS_ENABLED(CONFIG_HAVE_MOVE_PUD) && extent == PUD_SIZE) {
644 
645 			if (move_pgt_entry(NORMAL_PUD, vma, old_addr, new_addr,
646 					   old_pud, new_pud, true))
647 				continue;
648 		}
649 
650 		extent = get_extent(NORMAL_PMD, old_addr, old_end, new_addr);
651 		old_pmd = get_old_pmd(vma->vm_mm, old_addr);
652 		if (!old_pmd)
653 			continue;
654 		new_pmd = alloc_new_pmd(vma->vm_mm, vma, new_addr);
655 		if (!new_pmd)
656 			break;
657 again:
658 		if (is_swap_pmd(*old_pmd) || pmd_trans_huge(*old_pmd) ||
659 		    pmd_devmap(*old_pmd)) {
660 			if (extent == HPAGE_PMD_SIZE &&
661 			    move_pgt_entry(HPAGE_PMD, vma, old_addr, new_addr,
662 					   old_pmd, new_pmd, need_rmap_locks))
663 				continue;
664 			split_huge_pmd(vma, old_pmd, old_addr);
665 		} else if (IS_ENABLED(CONFIG_HAVE_MOVE_PMD) &&
666 			   extent == PMD_SIZE) {
667 			/*
668 			 * If the extent is PMD-sized, try to speed the move by
669 			 * moving at the PMD level if possible.
670 			 */
671 			if (move_pgt_entry(NORMAL_PMD, vma, old_addr, new_addr,
672 					   old_pmd, new_pmd, true))
673 				continue;
674 		}
675 		if (pmd_none(*old_pmd))
676 			continue;
677 		if (pte_alloc(new_vma->vm_mm, new_pmd))
678 			break;
679 		if (move_ptes(vma, old_pmd, old_addr, old_addr + extent,
680 			      new_vma, new_pmd, new_addr, need_rmap_locks) < 0)
681 			goto again;
682 	}
683 
684 	mmu_notifier_invalidate_range_end(&range);
685 
686 	/*
687 	 * Prevent negative return values when {old,new}_addr was realigned
688 	 * but we broke out of the above loop for the first PMD itself.
689 	 */
690 	if (old_addr < old_end - len)
691 		return 0;
692 
693 	return len + old_addr - old_end;	/* how much done */
694 }
695 
move_vma(struct vm_area_struct * vma,unsigned long old_addr,unsigned long old_len,unsigned long new_len,unsigned long new_addr,bool * locked,unsigned long flags,struct vm_userfaultfd_ctx * uf,struct list_head * uf_unmap)696 static unsigned long move_vma(struct vm_area_struct *vma,
697 		unsigned long old_addr, unsigned long old_len,
698 		unsigned long new_len, unsigned long new_addr,
699 		bool *locked, unsigned long flags,
700 		struct vm_userfaultfd_ctx *uf, struct list_head *uf_unmap)
701 {
702 	long to_account = new_len - old_len;
703 	struct mm_struct *mm = vma->vm_mm;
704 	struct vm_area_struct *new_vma;
705 	unsigned long vm_flags = vma->vm_flags;
706 	unsigned long new_pgoff;
707 	unsigned long moved_len;
708 	unsigned long account_start = 0;
709 	unsigned long account_end = 0;
710 	unsigned long hiwater_vm;
711 	int err = 0;
712 	bool need_rmap_locks;
713 	struct vma_iterator vmi;
714 
715 	/*
716 	 * We'd prefer to avoid failure later on in do_munmap:
717 	 * which may split one vma into three before unmapping.
718 	 */
719 	if (mm->map_count >= sysctl_max_map_count - 3)
720 		return -ENOMEM;
721 
722 	if (unlikely(flags & MREMAP_DONTUNMAP))
723 		to_account = new_len;
724 
725 	if (vma->vm_ops && vma->vm_ops->may_split) {
726 		if (vma->vm_start != old_addr)
727 			err = vma->vm_ops->may_split(vma, old_addr);
728 		if (!err && vma->vm_end != old_addr + old_len)
729 			err = vma->vm_ops->may_split(vma, old_addr + old_len);
730 		if (err)
731 			return err;
732 	}
733 
734 	/*
735 	 * Advise KSM to break any KSM pages in the area to be moved:
736 	 * it would be confusing if they were to turn up at the new
737 	 * location, where they happen to coincide with different KSM
738 	 * pages recently unmapped.  But leave vma->vm_flags as it was,
739 	 * so KSM can come around to merge on vma and new_vma afterwards.
740 	 */
741 	err = ksm_madvise(vma, old_addr, old_addr + old_len,
742 						MADV_UNMERGEABLE, &vm_flags);
743 	if (err)
744 		return err;
745 
746 	if (vm_flags & VM_ACCOUNT) {
747 		if (security_vm_enough_memory_mm(mm, to_account >> PAGE_SHIFT))
748 			return -ENOMEM;
749 	}
750 
751 	vma_start_write(vma);
752 	new_pgoff = vma->vm_pgoff + ((old_addr - vma->vm_start) >> PAGE_SHIFT);
753 	new_vma = copy_vma(&vma, new_addr, new_len, new_pgoff,
754 			   &need_rmap_locks);
755 	if (!new_vma) {
756 		if (vm_flags & VM_ACCOUNT)
757 			vm_unacct_memory(to_account >> PAGE_SHIFT);
758 		return -ENOMEM;
759 	}
760 
761 	moved_len = move_page_tables(vma, old_addr, new_vma, new_addr, old_len,
762 				     need_rmap_locks, false);
763 	if (moved_len < old_len) {
764 		err = -ENOMEM;
765 	} else if (vma->vm_ops && vma->vm_ops->mremap) {
766 		err = vma->vm_ops->mremap(new_vma);
767 	}
768 
769 	if (unlikely(err)) {
770 		/*
771 		 * On error, move entries back from new area to old,
772 		 * which will succeed since page tables still there,
773 		 * and then proceed to unmap new area instead of old.
774 		 */
775 		move_page_tables(new_vma, new_addr, vma, old_addr, moved_len,
776 				 true, false);
777 		vma = new_vma;
778 		old_len = new_len;
779 		old_addr = new_addr;
780 		new_addr = err;
781 	} else {
782 		mremap_userfaultfd_prep(new_vma, uf);
783 	}
784 
785 	if (is_vm_hugetlb_page(vma)) {
786 		clear_vma_resv_huge_pages(vma);
787 	}
788 
789 	/* Conceal VM_ACCOUNT so old reservation is not undone */
790 	if (vm_flags & VM_ACCOUNT && !(flags & MREMAP_DONTUNMAP)) {
791 		vm_flags_clear(vma, VM_ACCOUNT);
792 		if (vma->vm_start < old_addr)
793 			account_start = vma->vm_start;
794 		if (vma->vm_end > old_addr + old_len)
795 			account_end = vma->vm_end;
796 	}
797 
798 	/*
799 	 * If we failed to move page tables we still do total_vm increment
800 	 * since do_munmap() will decrement it by old_len == new_len.
801 	 *
802 	 * Since total_vm is about to be raised artificially high for a
803 	 * moment, we need to restore high watermark afterwards: if stats
804 	 * are taken meanwhile, total_vm and hiwater_vm appear too high.
805 	 * If this were a serious issue, we'd add a flag to do_munmap().
806 	 */
807 	hiwater_vm = mm->hiwater_vm;
808 	vm_stat_account(mm, vma->vm_flags, new_len >> PAGE_SHIFT);
809 
810 	/* Tell pfnmap has moved from this vma */
811 	if (unlikely(vma->vm_flags & VM_PFNMAP))
812 		untrack_pfn_clear(vma);
813 
814 	if (unlikely(!err && (flags & MREMAP_DONTUNMAP))) {
815 		/* We always clear VM_LOCKED[ONFAULT] on the old vma */
816 		vm_flags_clear(vma, VM_LOCKED_MASK);
817 
818 		/*
819 		 * anon_vma links of the old vma is no longer needed after its page
820 		 * table has been moved.
821 		 */
822 		if (new_vma != vma && vma->vm_start == old_addr &&
823 			vma->vm_end == (old_addr + old_len))
824 			unlink_anon_vmas(vma);
825 
826 		/* Because we won't unmap we don't need to touch locked_vm */
827 		return new_addr;
828 	}
829 
830 	vma_iter_init(&vmi, mm, old_addr);
831 	if (do_vmi_munmap(&vmi, mm, old_addr, old_len, uf_unmap, false) < 0) {
832 		/* OOM: unable to split vma, just get accounts right */
833 		if (vm_flags & VM_ACCOUNT && !(flags & MREMAP_DONTUNMAP))
834 			vm_acct_memory(old_len >> PAGE_SHIFT);
835 		account_start = account_end = 0;
836 	}
837 
838 	if (vm_flags & VM_LOCKED) {
839 		mm->locked_vm += new_len >> PAGE_SHIFT;
840 		*locked = true;
841 	}
842 
843 	mm->hiwater_vm = hiwater_vm;
844 
845 	/* Restore VM_ACCOUNT if one or two pieces of vma left */
846 	if (account_start) {
847 		vma = vma_prev(&vmi);
848 		vm_flags_set(vma, VM_ACCOUNT);
849 	}
850 
851 	if (account_end) {
852 		vma = vma_next(&vmi);
853 		vm_flags_set(vma, VM_ACCOUNT);
854 	}
855 
856 	return new_addr;
857 }
858 
859 /*
860  * resize_is_valid() - Ensure the vma can be resized to the new length at the give
861  * address.
862  *
863  * @vma: The vma to resize
864  * @addr: The old address
865  * @old_len: The current size
866  * @new_len: The desired size
867  * @flags: The vma flags
868  *
869  * Return 0 on success, error otherwise.
870  */
resize_is_valid(struct vm_area_struct * vma,unsigned long addr,unsigned long old_len,unsigned long new_len,unsigned long flags)871 static int resize_is_valid(struct vm_area_struct *vma, unsigned long addr,
872 	unsigned long old_len, unsigned long new_len, unsigned long flags)
873 {
874 	struct mm_struct *mm = current->mm;
875 	unsigned long pgoff;
876 
877 	/*
878 	 * !old_len is a special case where an attempt is made to 'duplicate'
879 	 * a mapping.  This makes no sense for private mappings as it will
880 	 * instead create a fresh/new mapping unrelated to the original.  This
881 	 * is contrary to the basic idea of mremap which creates new mappings
882 	 * based on the original.  There are no known use cases for this
883 	 * behavior.  As a result, fail such attempts.
884 	 */
885 	if (!old_len && !(vma->vm_flags & (VM_SHARED | VM_MAYSHARE))) {
886 		pr_warn_once("%s (%d): attempted to duplicate a private mapping with mremap.  This is not supported.\n", current->comm, current->pid);
887 		return -EINVAL;
888 	}
889 
890 	if ((flags & MREMAP_DONTUNMAP) &&
891 			(vma->vm_flags & (VM_DONTEXPAND | VM_PFNMAP)))
892 		return -EINVAL;
893 
894 	/* We can't remap across vm area boundaries */
895 	if (old_len > vma->vm_end - addr)
896 		return -EFAULT;
897 
898 	if (new_len == old_len)
899 		return 0;
900 
901 	/* Need to be careful about a growing mapping */
902 	pgoff = (addr - vma->vm_start) >> PAGE_SHIFT;
903 	pgoff += vma->vm_pgoff;
904 	if (pgoff + (new_len >> PAGE_SHIFT) < pgoff)
905 		return -EINVAL;
906 
907 	if (vma->vm_flags & (VM_DONTEXPAND | VM_PFNMAP))
908 		return -EFAULT;
909 
910 	if (!mlock_future_ok(mm, vma->vm_flags, new_len - old_len))
911 		return -EAGAIN;
912 
913 	if (!may_expand_vm(mm, vma->vm_flags,
914 				(new_len - old_len) >> PAGE_SHIFT))
915 		return -ENOMEM;
916 
917 	return 0;
918 }
919 
920 /*
921  * mremap_to() - remap a vma to a new location
922  * @addr: The old address
923  * @old_len: The old size
924  * @new_addr: The target address
925  * @new_len: The new size
926  * @locked: If the returned vma is locked (VM_LOCKED)
927  * @flags: the mremap flags
928  * @uf: The mremap userfaultfd context
929  * @uf_unmap_early: The userfaultfd unmap early context
930  * @uf_unmap: The userfaultfd unmap context
931  *
932  * Returns: The new address of the vma or an error.
933  */
mremap_to(unsigned long addr,unsigned long old_len,unsigned long new_addr,unsigned long new_len,bool * locked,unsigned long flags,struct vm_userfaultfd_ctx * uf,struct list_head * uf_unmap_early,struct list_head * uf_unmap)934 static unsigned long mremap_to(unsigned long addr, unsigned long old_len,
935 		unsigned long new_addr, unsigned long new_len, bool *locked,
936 		unsigned long flags, struct vm_userfaultfd_ctx *uf,
937 		struct list_head *uf_unmap_early,
938 		struct list_head *uf_unmap)
939 {
940 	struct mm_struct *mm = current->mm;
941 	struct vm_area_struct *vma;
942 	unsigned long ret;
943 	unsigned long map_flags = 0;
944 
945 	if (offset_in_page(new_addr))
946 		return -EINVAL;
947 
948 	if (new_len > TASK_SIZE || new_addr > TASK_SIZE - new_len)
949 		return -EINVAL;
950 
951 	/* Ensure the old/new locations do not overlap */
952 	if (addr + old_len > new_addr && new_addr + new_len > addr)
953 		return -EINVAL;
954 
955 	/*
956 	 * move_vma() need us to stay 4 maps below the threshold, otherwise
957 	 * it will bail out at the very beginning.
958 	 * That is a problem if we have already unmaped the regions here
959 	 * (new_addr, and old_addr), because userspace will not know the
960 	 * state of the vma's after it gets -ENOMEM.
961 	 * So, to avoid such scenario we can pre-compute if the whole
962 	 * operation has high chances to success map-wise.
963 	 * Worst-scenario case is when both vma's (new_addr and old_addr) get
964 	 * split in 3 before unmapping it.
965 	 * That means 2 more maps (1 for each) to the ones we already hold.
966 	 * Check whether current map count plus 2 still leads us to 4 maps below
967 	 * the threshold, otherwise return -ENOMEM here to be more safe.
968 	 */
969 	if ((mm->map_count + 2) >= sysctl_max_map_count - 3)
970 		return -ENOMEM;
971 
972 	if (flags & MREMAP_FIXED) {
973 		/*
974 		 * In mremap_to().
975 		 * VMA is moved to dst address, and munmap dst first.
976 		 * do_munmap will check if dst is sealed.
977 		 */
978 		ret = do_munmap(mm, new_addr, new_len, uf_unmap_early);
979 		if (ret)
980 			return ret;
981 	}
982 
983 	if (old_len > new_len) {
984 		ret = do_munmap(mm, addr+new_len, old_len - new_len, uf_unmap);
985 		if (ret)
986 			return ret;
987 		old_len = new_len;
988 	}
989 
990 	vma = vma_lookup(mm, addr);
991 	if (!vma)
992 		return -EFAULT;
993 
994 	ret = resize_is_valid(vma, addr, old_len, new_len, flags);
995 	if (ret)
996 		return ret;
997 
998 	/* MREMAP_DONTUNMAP expands by old_len since old_len == new_len */
999 	if (flags & MREMAP_DONTUNMAP &&
1000 		!may_expand_vm(mm, vma->vm_flags, old_len >> PAGE_SHIFT)) {
1001 		return -ENOMEM;
1002 	}
1003 
1004 	if (flags & MREMAP_FIXED)
1005 		map_flags |= MAP_FIXED;
1006 
1007 	if (vma->vm_flags & VM_MAYSHARE)
1008 		map_flags |= MAP_SHARED;
1009 
1010 	ret = get_unmapped_area(vma->vm_file, new_addr, new_len, vma->vm_pgoff +
1011 				((addr - vma->vm_start) >> PAGE_SHIFT),
1012 				map_flags);
1013 	if (IS_ERR_VALUE(ret))
1014 		return ret;
1015 
1016 	/* We got a new mapping */
1017 	if (!(flags & MREMAP_FIXED))
1018 		new_addr = ret;
1019 
1020 	return move_vma(vma, addr, old_len, new_len, new_addr, locked, flags,
1021 			uf, uf_unmap);
1022 }
1023 
vma_expandable(struct vm_area_struct * vma,unsigned long delta)1024 static int vma_expandable(struct vm_area_struct *vma, unsigned long delta)
1025 {
1026 	unsigned long end = vma->vm_end + delta;
1027 
1028 	if (end < vma->vm_end) /* overflow */
1029 		return 0;
1030 	if (find_vma_intersection(vma->vm_mm, vma->vm_end, end))
1031 		return 0;
1032 	if (get_unmapped_area(NULL, vma->vm_start, end - vma->vm_start,
1033 			      0, MAP_FIXED) & ~PAGE_MASK)
1034 		return 0;
1035 	return 1;
1036 }
1037 
1038 /*
1039  * Expand (or shrink) an existing mapping, potentially moving it at the
1040  * same time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1041  *
1042  * MREMAP_FIXED option added 5-Dec-1999 by Benjamin LaHaise
1043  * This option implies MREMAP_MAYMOVE.
1044  */
SYSCALL_DEFINE5(mremap,unsigned long,addr,unsigned long,old_len,unsigned long,new_len,unsigned long,flags,unsigned long,new_addr)1045 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1046 		unsigned long, new_len, unsigned long, flags,
1047 		unsigned long, new_addr)
1048 {
1049 	struct mm_struct *mm = current->mm;
1050 	struct vm_area_struct *vma;
1051 	unsigned long ret = -EINVAL;
1052 	bool locked = false;
1053 	struct vm_userfaultfd_ctx uf = NULL_VM_UFFD_CTX;
1054 	LIST_HEAD(uf_unmap_early);
1055 	LIST_HEAD(uf_unmap);
1056 
1057 	/*
1058 	 * There is a deliberate asymmetry here: we strip the pointer tag
1059 	 * from the old address but leave the new address alone. This is
1060 	 * for consistency with mmap(), where we prevent the creation of
1061 	 * aliasing mappings in userspace by leaving the tag bits of the
1062 	 * mapping address intact. A non-zero tag will cause the subsequent
1063 	 * range checks to reject the address as invalid.
1064 	 *
1065 	 * See Documentation/arch/arm64/tagged-address-abi.rst for more
1066 	 * information.
1067 	 */
1068 	addr = untagged_addr(addr);
1069 
1070 	if (flags & ~(MREMAP_FIXED | MREMAP_MAYMOVE | MREMAP_DONTUNMAP))
1071 		return ret;
1072 
1073 	if (flags & MREMAP_FIXED && !(flags & MREMAP_MAYMOVE))
1074 		return ret;
1075 
1076 	/*
1077 	 * MREMAP_DONTUNMAP is always a move and it does not allow resizing
1078 	 * in the process.
1079 	 */
1080 	if (flags & MREMAP_DONTUNMAP &&
1081 			(!(flags & MREMAP_MAYMOVE) || old_len != new_len))
1082 		return ret;
1083 
1084 
1085 	if (offset_in_page(addr))
1086 		return ret;
1087 
1088 	old_len = PAGE_ALIGN(old_len);
1089 	new_len = PAGE_ALIGN(new_len);
1090 
1091 	/*
1092 	 * We allow a zero old-len as a special case
1093 	 * for DOS-emu "duplicate shm area" thing. But
1094 	 * a zero new-len is nonsensical.
1095 	 */
1096 	if (!new_len)
1097 		return ret;
1098 
1099 	if (mmap_write_lock_killable(current->mm))
1100 		return -EINTR;
1101 	vma = vma_lookup(mm, addr);
1102 	if (!vma) {
1103 		ret = -EFAULT;
1104 		goto out;
1105 	}
1106 
1107 	/* Don't allow remapping vmas when they have already been sealed */
1108 	if (!can_modify_vma(vma)) {
1109 		ret = -EPERM;
1110 		goto out;
1111 	}
1112 
1113 	if (is_vm_hugetlb_page(vma)) {
1114 		struct hstate *h __maybe_unused = hstate_vma(vma);
1115 
1116 		old_len = ALIGN(old_len, huge_page_size(h));
1117 		new_len = ALIGN(new_len, huge_page_size(h));
1118 
1119 		/* addrs must be huge page aligned */
1120 		if (addr & ~huge_page_mask(h))
1121 			goto out;
1122 		if (new_addr & ~huge_page_mask(h))
1123 			goto out;
1124 
1125 		/*
1126 		 * Don't allow remap expansion, because the underlying hugetlb
1127 		 * reservation is not yet capable to handle split reservation.
1128 		 */
1129 		if (new_len > old_len)
1130 			goto out;
1131 	}
1132 
1133 	if (flags & (MREMAP_FIXED | MREMAP_DONTUNMAP)) {
1134 		ret = mremap_to(addr, old_len, new_addr, new_len,
1135 				&locked, flags, &uf, &uf_unmap_early,
1136 				&uf_unmap);
1137 		goto out;
1138 	}
1139 
1140 	/*
1141 	 * Always allow a shrinking remap: that just unmaps
1142 	 * the unnecessary pages..
1143 	 * do_vmi_munmap does all the needed commit accounting, and
1144 	 * unlocks the mmap_lock if so directed.
1145 	 */
1146 	if (old_len >= new_len) {
1147 		VMA_ITERATOR(vmi, mm, addr + new_len);
1148 
1149 		if (old_len == new_len) {
1150 			ret = addr;
1151 			goto out;
1152 		}
1153 
1154 		ret = do_vmi_munmap(&vmi, mm, addr + new_len, old_len - new_len,
1155 				    &uf_unmap, true);
1156 		if (ret)
1157 			goto out;
1158 
1159 		ret = addr;
1160 		goto out_unlocked;
1161 	}
1162 
1163 	/*
1164 	 * Ok, we need to grow..
1165 	 */
1166 	ret = resize_is_valid(vma, addr, old_len, new_len, flags);
1167 	if (ret)
1168 		goto out;
1169 
1170 	/* old_len exactly to the end of the area..
1171 	 */
1172 	if (old_len == vma->vm_end - addr) {
1173 		unsigned long delta = new_len - old_len;
1174 
1175 		/* can we just expand the current mapping? */
1176 		if (vma_expandable(vma, delta)) {
1177 			long pages = delta >> PAGE_SHIFT;
1178 			VMA_ITERATOR(vmi, mm, vma->vm_end);
1179 			long charged = 0;
1180 
1181 			if (vma->vm_flags & VM_ACCOUNT) {
1182 				if (security_vm_enough_memory_mm(mm, pages)) {
1183 					ret = -ENOMEM;
1184 					goto out;
1185 				}
1186 				charged = pages;
1187 			}
1188 
1189 			/*
1190 			 * Function vma_merge_extend() is called on the
1191 			 * extension we are adding to the already existing vma,
1192 			 * vma_merge_extend() will merge this extension with the
1193 			 * already existing vma (expand operation itself) and
1194 			 * possibly also with the next vma if it becomes
1195 			 * adjacent to the expanded vma and otherwise
1196 			 * compatible.
1197 			 */
1198 			vma = vma_merge_extend(&vmi, vma, delta);
1199 			if (!vma) {
1200 				vm_unacct_memory(charged);
1201 				ret = -ENOMEM;
1202 				goto out;
1203 			}
1204 
1205 			vm_stat_account(mm, vma->vm_flags, pages);
1206 			if (vma->vm_flags & VM_LOCKED) {
1207 				mm->locked_vm += pages;
1208 				locked = true;
1209 				new_addr = addr;
1210 			}
1211 			ret = addr;
1212 			goto out;
1213 		}
1214 	}
1215 
1216 	/*
1217 	 * We weren't able to just expand or shrink the area,
1218 	 * we need to create a new one and move it..
1219 	 */
1220 	ret = -ENOMEM;
1221 	if (flags & MREMAP_MAYMOVE) {
1222 		unsigned long map_flags = 0;
1223 		if (vma->vm_flags & VM_MAYSHARE)
1224 			map_flags |= MAP_SHARED;
1225 
1226 		new_addr = get_unmapped_area(vma->vm_file, 0, new_len,
1227 					vma->vm_pgoff +
1228 					((addr - vma->vm_start) >> PAGE_SHIFT),
1229 					map_flags);
1230 		if (IS_ERR_VALUE(new_addr)) {
1231 			ret = new_addr;
1232 			goto out;
1233 		}
1234 
1235 		ret = move_vma(vma, addr, old_len, new_len, new_addr,
1236 			       &locked, flags, &uf, &uf_unmap);
1237 	}
1238 out:
1239 	if (offset_in_page(ret))
1240 		locked = false;
1241 	mmap_write_unlock(current->mm);
1242 	if (locked && new_len > old_len)
1243 		mm_populate(new_addr + old_len, new_len - old_len);
1244 out_unlocked:
1245 	userfaultfd_unmap_complete(mm, &uf_unmap_early);
1246 	mremap_userfaultfd_complete(&uf, addr, ret, old_len);
1247 	userfaultfd_unmap_complete(mm, &uf_unmap);
1248 	return ret;
1249 }
1250