1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * mm/mprotect.c 4 * 5 * (C) Copyright 1994 Linus Torvalds 6 * (C) Copyright 2002 Christoph Hellwig 7 * 8 * Address space accounting code <alan@lxorguk.ukuu.org.uk> 9 * (C) Copyright 2002 Red Hat Inc, All Rights Reserved 10 */ 11 12 #include <linux/pagewalk.h> 13 #include <linux/hugetlb.h> 14 #include <linux/shm.h> 15 #include <linux/mman.h> 16 #include <linux/fs.h> 17 #include <linux/highmem.h> 18 #include <linux/security.h> 19 #include <linux/mempolicy.h> 20 #include <linux/personality.h> 21 #include <linux/syscalls.h> 22 #include <linux/swap.h> 23 #include <linux/swapops.h> 24 #include <linux/mmu_notifier.h> 25 #include <linux/migrate.h> 26 #include <linux/perf_event.h> 27 #include <linux/pkeys.h> 28 #include <linux/ksm.h> 29 #include <linux/uaccess.h> 30 #include <linux/mm_inline.h> 31 #include <linux/pgtable.h> 32 #include <asm/cacheflush.h> 33 #include <asm/mmu_context.h> 34 #include <asm/tlbflush.h> 35 36 #include "internal.h" 37 38 static unsigned long change_pte_range(struct vm_area_struct *vma, pmd_t *pmd, 39 unsigned long addr, unsigned long end, pgprot_t newprot, 40 unsigned long cp_flags) 41 { 42 pte_t *pte, oldpte; 43 spinlock_t *ptl; 44 unsigned long pages = 0; 45 int target_node = NUMA_NO_NODE; 46 bool dirty_accountable = cp_flags & MM_CP_DIRTY_ACCT; 47 bool prot_numa = cp_flags & MM_CP_PROT_NUMA; 48 bool uffd_wp = cp_flags & MM_CP_UFFD_WP; 49 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE; 50 51 /* 52 * Can be called with only the mmap_lock for reading by 53 * prot_numa so we must check the pmd isn't constantly 54 * changing from under us from pmd_none to pmd_trans_huge 55 * and/or the other way around. 56 */ 57 if (pmd_trans_unstable(pmd)) 58 return 0; 59 60 /* 61 * The pmd points to a regular pte so the pmd can't change 62 * from under us even if the mmap_lock is only hold for 63 * reading. 64 */ 65 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 66 67 /* Get target node for single threaded private VMAs */ 68 if (prot_numa && !(vma->vm_flags & VM_SHARED) && 69 atomic_read(&vma->vm_mm->mm_users) == 1) 70 target_node = numa_node_id(); 71 72 flush_tlb_batched_pending(vma->vm_mm); 73 arch_enter_lazy_mmu_mode(); 74 do { 75 oldpte = *pte; 76 if (pte_present(oldpte)) { 77 pte_t ptent; 78 bool preserve_write = prot_numa && pte_write(oldpte); 79 80 /* 81 * Avoid trapping faults against the zero or KSM 82 * pages. See similar comment in change_huge_pmd. 83 */ 84 if (prot_numa) { 85 struct page *page; 86 87 /* Avoid TLB flush if possible */ 88 if (pte_protnone(oldpte)) 89 continue; 90 91 page = vm_normal_page(vma, addr, oldpte); 92 if (!page || PageKsm(page)) 93 continue; 94 95 /* Also skip shared copy-on-write pages */ 96 if (is_cow_mapping(vma->vm_flags) && 97 page_mapcount(page) != 1) 98 continue; 99 100 /* 101 * While migration can move some dirty pages, 102 * it cannot move them all from MIGRATE_ASYNC 103 * context. 104 */ 105 if (page_is_file_lru(page) && PageDirty(page)) 106 continue; 107 108 /* 109 * Don't mess with PTEs if page is already on the node 110 * a single-threaded process is running on. 111 */ 112 if (target_node == page_to_nid(page)) 113 continue; 114 } 115 116 oldpte = ptep_modify_prot_start(vma, addr, pte); 117 ptent = pte_modify(oldpte, newprot); 118 if (preserve_write) 119 ptent = pte_mk_savedwrite(ptent); 120 121 if (uffd_wp) { 122 ptent = pte_wrprotect(ptent); 123 ptent = pte_mkuffd_wp(ptent); 124 } else if (uffd_wp_resolve) { 125 /* 126 * Leave the write bit to be handled 127 * by PF interrupt handler, then 128 * things like COW could be properly 129 * handled. 130 */ 131 ptent = pte_clear_uffd_wp(ptent); 132 } 133 134 /* Avoid taking write faults for known dirty pages */ 135 if (dirty_accountable && pte_dirty(ptent) && 136 (pte_soft_dirty(ptent) || 137 !(vma->vm_flags & VM_SOFTDIRTY))) { 138 ptent = pte_mkwrite(ptent); 139 } 140 ptep_modify_prot_commit(vma, addr, pte, oldpte, ptent); 141 pages++; 142 } else if (is_swap_pte(oldpte)) { 143 swp_entry_t entry = pte_to_swp_entry(oldpte); 144 pte_t newpte; 145 146 if (is_writable_migration_entry(entry)) { 147 /* 148 * A protection check is difficult so 149 * just be safe and disable write 150 */ 151 entry = make_readable_migration_entry( 152 swp_offset(entry)); 153 newpte = swp_entry_to_pte(entry); 154 if (pte_swp_soft_dirty(oldpte)) 155 newpte = pte_swp_mksoft_dirty(newpte); 156 if (pte_swp_uffd_wp(oldpte)) 157 newpte = pte_swp_mkuffd_wp(newpte); 158 } else if (is_writable_device_private_entry(entry)) { 159 /* 160 * We do not preserve soft-dirtiness. See 161 * copy_one_pte() for explanation. 162 */ 163 entry = make_readable_device_private_entry( 164 swp_offset(entry)); 165 newpte = swp_entry_to_pte(entry); 166 if (pte_swp_uffd_wp(oldpte)) 167 newpte = pte_swp_mkuffd_wp(newpte); 168 } else if (is_writable_device_exclusive_entry(entry)) { 169 entry = make_readable_device_exclusive_entry( 170 swp_offset(entry)); 171 newpte = swp_entry_to_pte(entry); 172 if (pte_swp_soft_dirty(oldpte)) 173 newpte = pte_swp_mksoft_dirty(newpte); 174 if (pte_swp_uffd_wp(oldpte)) 175 newpte = pte_swp_mkuffd_wp(newpte); 176 } else { 177 newpte = oldpte; 178 } 179 180 if (uffd_wp) 181 newpte = pte_swp_mkuffd_wp(newpte); 182 else if (uffd_wp_resolve) 183 newpte = pte_swp_clear_uffd_wp(newpte); 184 185 if (!pte_same(oldpte, newpte)) { 186 set_pte_at(vma->vm_mm, addr, pte, newpte); 187 pages++; 188 } 189 } 190 } while (pte++, addr += PAGE_SIZE, addr != end); 191 arch_leave_lazy_mmu_mode(); 192 pte_unmap_unlock(pte - 1, ptl); 193 194 return pages; 195 } 196 197 /* 198 * Used when setting automatic NUMA hinting protection where it is 199 * critical that a numa hinting PMD is not confused with a bad PMD. 200 */ 201 static inline int pmd_none_or_clear_bad_unless_trans_huge(pmd_t *pmd) 202 { 203 pmd_t pmdval = pmd_read_atomic(pmd); 204 205 /* See pmd_none_or_trans_huge_or_clear_bad for info on barrier */ 206 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 207 barrier(); 208 #endif 209 210 if (pmd_none(pmdval)) 211 return 1; 212 if (pmd_trans_huge(pmdval)) 213 return 0; 214 if (unlikely(pmd_bad(pmdval))) { 215 pmd_clear_bad(pmd); 216 return 1; 217 } 218 219 return 0; 220 } 221 222 static inline unsigned long change_pmd_range(struct vm_area_struct *vma, 223 pud_t *pud, unsigned long addr, unsigned long end, 224 pgprot_t newprot, unsigned long cp_flags) 225 { 226 pmd_t *pmd; 227 unsigned long next; 228 unsigned long pages = 0; 229 unsigned long nr_huge_updates = 0; 230 struct mmu_notifier_range range; 231 232 range.start = 0; 233 234 pmd = pmd_offset(pud, addr); 235 do { 236 unsigned long this_pages; 237 238 next = pmd_addr_end(addr, end); 239 240 /* 241 * Automatic NUMA balancing walks the tables with mmap_lock 242 * held for read. It's possible a parallel update to occur 243 * between pmd_trans_huge() and a pmd_none_or_clear_bad() 244 * check leading to a false positive and clearing. 245 * Hence, it's necessary to atomically read the PMD value 246 * for all the checks. 247 */ 248 if (!is_swap_pmd(*pmd) && !pmd_devmap(*pmd) && 249 pmd_none_or_clear_bad_unless_trans_huge(pmd)) 250 goto next; 251 252 /* invoke the mmu notifier if the pmd is populated */ 253 if (!range.start) { 254 mmu_notifier_range_init(&range, 255 MMU_NOTIFY_PROTECTION_VMA, 0, 256 vma, vma->vm_mm, addr, end); 257 mmu_notifier_invalidate_range_start(&range); 258 } 259 260 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { 261 if (next - addr != HPAGE_PMD_SIZE) { 262 __split_huge_pmd(vma, pmd, addr, false, NULL); 263 } else { 264 int nr_ptes = change_huge_pmd(vma, pmd, addr, 265 newprot, cp_flags); 266 267 if (nr_ptes) { 268 if (nr_ptes == HPAGE_PMD_NR) { 269 pages += HPAGE_PMD_NR; 270 nr_huge_updates++; 271 } 272 273 /* huge pmd was handled */ 274 goto next; 275 } 276 } 277 /* fall through, the trans huge pmd just split */ 278 } 279 this_pages = change_pte_range(vma, pmd, addr, next, newprot, 280 cp_flags); 281 pages += this_pages; 282 next: 283 cond_resched(); 284 } while (pmd++, addr = next, addr != end); 285 286 if (range.start) 287 mmu_notifier_invalidate_range_end(&range); 288 289 if (nr_huge_updates) 290 count_vm_numa_events(NUMA_HUGE_PTE_UPDATES, nr_huge_updates); 291 return pages; 292 } 293 294 static inline unsigned long change_pud_range(struct vm_area_struct *vma, 295 p4d_t *p4d, unsigned long addr, unsigned long end, 296 pgprot_t newprot, unsigned long cp_flags) 297 { 298 pud_t *pud; 299 unsigned long next; 300 unsigned long pages = 0; 301 302 pud = pud_offset(p4d, addr); 303 do { 304 next = pud_addr_end(addr, end); 305 if (pud_none_or_clear_bad(pud)) 306 continue; 307 pages += change_pmd_range(vma, pud, addr, next, newprot, 308 cp_flags); 309 } while (pud++, addr = next, addr != end); 310 311 return pages; 312 } 313 314 static inline unsigned long change_p4d_range(struct vm_area_struct *vma, 315 pgd_t *pgd, unsigned long addr, unsigned long end, 316 pgprot_t newprot, unsigned long cp_flags) 317 { 318 p4d_t *p4d; 319 unsigned long next; 320 unsigned long pages = 0; 321 322 p4d = p4d_offset(pgd, addr); 323 do { 324 next = p4d_addr_end(addr, end); 325 if (p4d_none_or_clear_bad(p4d)) 326 continue; 327 pages += change_pud_range(vma, p4d, addr, next, newprot, 328 cp_flags); 329 } while (p4d++, addr = next, addr != end); 330 331 return pages; 332 } 333 334 static unsigned long change_protection_range(struct vm_area_struct *vma, 335 unsigned long addr, unsigned long end, pgprot_t newprot, 336 unsigned long cp_flags) 337 { 338 struct mm_struct *mm = vma->vm_mm; 339 pgd_t *pgd; 340 unsigned long next; 341 unsigned long start = addr; 342 unsigned long pages = 0; 343 344 BUG_ON(addr >= end); 345 pgd = pgd_offset(mm, addr); 346 flush_cache_range(vma, addr, end); 347 inc_tlb_flush_pending(mm); 348 do { 349 next = pgd_addr_end(addr, end); 350 if (pgd_none_or_clear_bad(pgd)) 351 continue; 352 pages += change_p4d_range(vma, pgd, addr, next, newprot, 353 cp_flags); 354 } while (pgd++, addr = next, addr != end); 355 356 /* Only flush the TLB if we actually modified any entries: */ 357 if (pages) 358 flush_tlb_range(vma, start, end); 359 dec_tlb_flush_pending(mm); 360 361 return pages; 362 } 363 364 unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, 365 unsigned long end, pgprot_t newprot, 366 unsigned long cp_flags) 367 { 368 unsigned long pages; 369 370 BUG_ON((cp_flags & MM_CP_UFFD_WP_ALL) == MM_CP_UFFD_WP_ALL); 371 372 if (is_vm_hugetlb_page(vma)) 373 pages = hugetlb_change_protection(vma, start, end, newprot); 374 else 375 pages = change_protection_range(vma, start, end, newprot, 376 cp_flags); 377 378 return pages; 379 } 380 381 static int prot_none_pte_entry(pte_t *pte, unsigned long addr, 382 unsigned long next, struct mm_walk *walk) 383 { 384 return pfn_modify_allowed(pte_pfn(*pte), *(pgprot_t *)(walk->private)) ? 385 0 : -EACCES; 386 } 387 388 static int prot_none_hugetlb_entry(pte_t *pte, unsigned long hmask, 389 unsigned long addr, unsigned long next, 390 struct mm_walk *walk) 391 { 392 return pfn_modify_allowed(pte_pfn(*pte), *(pgprot_t *)(walk->private)) ? 393 0 : -EACCES; 394 } 395 396 static int prot_none_test(unsigned long addr, unsigned long next, 397 struct mm_walk *walk) 398 { 399 return 0; 400 } 401 402 static const struct mm_walk_ops prot_none_walk_ops = { 403 .pte_entry = prot_none_pte_entry, 404 .hugetlb_entry = prot_none_hugetlb_entry, 405 .test_walk = prot_none_test, 406 }; 407 408 int 409 mprotect_fixup(struct vm_area_struct *vma, struct vm_area_struct **pprev, 410 unsigned long start, unsigned long end, unsigned long newflags) 411 { 412 struct mm_struct *mm = vma->vm_mm; 413 unsigned long oldflags = vma->vm_flags; 414 long nrpages = (end - start) >> PAGE_SHIFT; 415 unsigned long charged = 0; 416 pgoff_t pgoff; 417 int error; 418 int dirty_accountable = 0; 419 420 if (newflags == oldflags) { 421 *pprev = vma; 422 return 0; 423 } 424 425 /* 426 * Do PROT_NONE PFN permission checks here when we can still 427 * bail out without undoing a lot of state. This is a rather 428 * uncommon case, so doesn't need to be very optimized. 429 */ 430 if (arch_has_pfn_modify_check() && 431 (vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) && 432 (newflags & VM_ACCESS_FLAGS) == 0) { 433 pgprot_t new_pgprot = vm_get_page_prot(newflags); 434 435 error = walk_page_range(current->mm, start, end, 436 &prot_none_walk_ops, &new_pgprot); 437 if (error) 438 return error; 439 } 440 441 /* 442 * If we make a private mapping writable we increase our commit; 443 * but (without finer accounting) cannot reduce our commit if we 444 * make it unwritable again. hugetlb mapping were accounted for 445 * even if read-only so there is no need to account for them here 446 */ 447 if (newflags & VM_WRITE) { 448 /* Check space limits when area turns into data. */ 449 if (!may_expand_vm(mm, newflags, nrpages) && 450 may_expand_vm(mm, oldflags, nrpages)) 451 return -ENOMEM; 452 if (!(oldflags & (VM_ACCOUNT|VM_WRITE|VM_HUGETLB| 453 VM_SHARED|VM_NORESERVE))) { 454 charged = nrpages; 455 if (security_vm_enough_memory_mm(mm, charged)) 456 return -ENOMEM; 457 newflags |= VM_ACCOUNT; 458 } 459 } 460 461 /* 462 * First try to merge with previous and/or next vma. 463 */ 464 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT); 465 *pprev = vma_merge(mm, *pprev, start, end, newflags, 466 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma), 467 vma->vm_userfaultfd_ctx); 468 if (*pprev) { 469 vma = *pprev; 470 VM_WARN_ON((vma->vm_flags ^ newflags) & ~VM_SOFTDIRTY); 471 goto success; 472 } 473 474 *pprev = vma; 475 476 if (start != vma->vm_start) { 477 error = split_vma(mm, vma, start, 1); 478 if (error) 479 goto fail; 480 } 481 482 if (end != vma->vm_end) { 483 error = split_vma(mm, vma, end, 0); 484 if (error) 485 goto fail; 486 } 487 488 success: 489 /* 490 * vm_flags and vm_page_prot are protected by the mmap_lock 491 * held in write mode. 492 */ 493 vma->vm_flags = newflags; 494 dirty_accountable = vma_wants_writenotify(vma, vma->vm_page_prot); 495 vma_set_page_prot(vma); 496 497 change_protection(vma, start, end, vma->vm_page_prot, 498 dirty_accountable ? MM_CP_DIRTY_ACCT : 0); 499 500 /* 501 * Private VM_LOCKED VMA becoming writable: trigger COW to avoid major 502 * fault on access. 503 */ 504 if ((oldflags & (VM_WRITE | VM_SHARED | VM_LOCKED)) == VM_LOCKED && 505 (newflags & VM_WRITE)) { 506 populate_vma_page_range(vma, start, end, NULL); 507 } 508 509 vm_stat_account(mm, oldflags, -nrpages); 510 vm_stat_account(mm, newflags, nrpages); 511 perf_event_mmap(vma); 512 return 0; 513 514 fail: 515 vm_unacct_memory(charged); 516 return error; 517 } 518 519 /* 520 * pkey==-1 when doing a legacy mprotect() 521 */ 522 static int do_mprotect_pkey(unsigned long start, size_t len, 523 unsigned long prot, int pkey) 524 { 525 unsigned long nstart, end, tmp, reqprot; 526 struct vm_area_struct *vma, *prev; 527 int error = -EINVAL; 528 const int grows = prot & (PROT_GROWSDOWN|PROT_GROWSUP); 529 const bool rier = (current->personality & READ_IMPLIES_EXEC) && 530 (prot & PROT_READ); 531 532 start = untagged_addr(start); 533 534 prot &= ~(PROT_GROWSDOWN|PROT_GROWSUP); 535 if (grows == (PROT_GROWSDOWN|PROT_GROWSUP)) /* can't be both */ 536 return -EINVAL; 537 538 if (start & ~PAGE_MASK) 539 return -EINVAL; 540 if (!len) 541 return 0; 542 len = PAGE_ALIGN(len); 543 end = start + len; 544 if (end <= start) 545 return -ENOMEM; 546 if (!arch_validate_prot(prot, start)) 547 return -EINVAL; 548 549 reqprot = prot; 550 551 if (mmap_write_lock_killable(current->mm)) 552 return -EINTR; 553 554 /* 555 * If userspace did not allocate the pkey, do not let 556 * them use it here. 557 */ 558 error = -EINVAL; 559 if ((pkey != -1) && !mm_pkey_is_allocated(current->mm, pkey)) 560 goto out; 561 562 vma = find_vma(current->mm, start); 563 error = -ENOMEM; 564 if (!vma) 565 goto out; 566 prev = vma->vm_prev; 567 if (unlikely(grows & PROT_GROWSDOWN)) { 568 if (vma->vm_start >= end) 569 goto out; 570 start = vma->vm_start; 571 error = -EINVAL; 572 if (!(vma->vm_flags & VM_GROWSDOWN)) 573 goto out; 574 } else { 575 if (vma->vm_start > start) 576 goto out; 577 if (unlikely(grows & PROT_GROWSUP)) { 578 end = vma->vm_end; 579 error = -EINVAL; 580 if (!(vma->vm_flags & VM_GROWSUP)) 581 goto out; 582 } 583 } 584 if (start > vma->vm_start) 585 prev = vma; 586 587 for (nstart = start ; ; ) { 588 unsigned long mask_off_old_flags; 589 unsigned long newflags; 590 int new_vma_pkey; 591 592 /* Here we know that vma->vm_start <= nstart < vma->vm_end. */ 593 594 /* Does the application expect PROT_READ to imply PROT_EXEC */ 595 if (rier && (vma->vm_flags & VM_MAYEXEC)) 596 prot |= PROT_EXEC; 597 598 /* 599 * Each mprotect() call explicitly passes r/w/x permissions. 600 * If a permission is not passed to mprotect(), it must be 601 * cleared from the VMA. 602 */ 603 mask_off_old_flags = VM_READ | VM_WRITE | VM_EXEC | 604 VM_FLAGS_CLEAR; 605 606 new_vma_pkey = arch_override_mprotect_pkey(vma, prot, pkey); 607 newflags = calc_vm_prot_bits(prot, new_vma_pkey); 608 newflags |= (vma->vm_flags & ~mask_off_old_flags); 609 610 /* newflags >> 4 shift VM_MAY% in place of VM_% */ 611 if ((newflags & ~(newflags >> 4)) & VM_ACCESS_FLAGS) { 612 error = -EACCES; 613 goto out; 614 } 615 616 /* Allow architectures to sanity-check the new flags */ 617 if (!arch_validate_flags(newflags)) { 618 error = -EINVAL; 619 goto out; 620 } 621 622 error = security_file_mprotect(vma, reqprot, prot); 623 if (error) 624 goto out; 625 626 tmp = vma->vm_end; 627 if (tmp > end) 628 tmp = end; 629 630 if (vma->vm_ops && vma->vm_ops->mprotect) { 631 error = vma->vm_ops->mprotect(vma, nstart, tmp, newflags); 632 if (error) 633 goto out; 634 } 635 636 error = mprotect_fixup(vma, &prev, nstart, tmp, newflags); 637 if (error) 638 goto out; 639 640 nstart = tmp; 641 642 if (nstart < prev->vm_end) 643 nstart = prev->vm_end; 644 if (nstart >= end) 645 goto out; 646 647 vma = prev->vm_next; 648 if (!vma || vma->vm_start != nstart) { 649 error = -ENOMEM; 650 goto out; 651 } 652 prot = reqprot; 653 } 654 out: 655 mmap_write_unlock(current->mm); 656 return error; 657 } 658 659 SYSCALL_DEFINE3(mprotect, unsigned long, start, size_t, len, 660 unsigned long, prot) 661 { 662 return do_mprotect_pkey(start, len, prot, -1); 663 } 664 665 #ifdef CONFIG_ARCH_HAS_PKEYS 666 667 SYSCALL_DEFINE4(pkey_mprotect, unsigned long, start, size_t, len, 668 unsigned long, prot, int, pkey) 669 { 670 return do_mprotect_pkey(start, len, prot, pkey); 671 } 672 673 SYSCALL_DEFINE2(pkey_alloc, unsigned long, flags, unsigned long, init_val) 674 { 675 int pkey; 676 int ret; 677 678 /* No flags supported yet. */ 679 if (flags) 680 return -EINVAL; 681 /* check for unsupported init values */ 682 if (init_val & ~PKEY_ACCESS_MASK) 683 return -EINVAL; 684 685 mmap_write_lock(current->mm); 686 pkey = mm_pkey_alloc(current->mm); 687 688 ret = -ENOSPC; 689 if (pkey == -1) 690 goto out; 691 692 ret = arch_set_user_pkey_access(current, pkey, init_val); 693 if (ret) { 694 mm_pkey_free(current->mm, pkey); 695 goto out; 696 } 697 ret = pkey; 698 out: 699 mmap_write_unlock(current->mm); 700 return ret; 701 } 702 703 SYSCALL_DEFINE1(pkey_free, int, pkey) 704 { 705 int ret; 706 707 mmap_write_lock(current->mm); 708 ret = mm_pkey_free(current->mm, pkey); 709 mmap_write_unlock(current->mm); 710 711 /* 712 * We could provide warnings or errors if any VMA still 713 * has the pkey set here. 714 */ 715 return ret; 716 } 717 718 #endif /* CONFIG_ARCH_HAS_PKEYS */ 719