1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * mm/mprotect.c 4 * 5 * (C) Copyright 1994 Linus Torvalds 6 * (C) Copyright 2002 Christoph Hellwig 7 * 8 * Address space accounting code <alan@lxorguk.ukuu.org.uk> 9 * (C) Copyright 2002 Red Hat Inc, All Rights Reserved 10 */ 11 12 #include <linux/pagewalk.h> 13 #include <linux/hugetlb.h> 14 #include <linux/shm.h> 15 #include <linux/mman.h> 16 #include <linux/fs.h> 17 #include <linux/highmem.h> 18 #include <linux/security.h> 19 #include <linux/mempolicy.h> 20 #include <linux/personality.h> 21 #include <linux/syscalls.h> 22 #include <linux/swap.h> 23 #include <linux/swapops.h> 24 #include <linux/mmu_notifier.h> 25 #include <linux/migrate.h> 26 #include <linux/perf_event.h> 27 #include <linux/pkeys.h> 28 #include <linux/ksm.h> 29 #include <linux/uaccess.h> 30 #include <linux/mm_inline.h> 31 #include <linux/pgtable.h> 32 #include <linux/sched/sysctl.h> 33 #include <linux/userfaultfd_k.h> 34 #include <asm/cacheflush.h> 35 #include <asm/mmu_context.h> 36 #include <asm/tlbflush.h> 37 #include <asm/tlb.h> 38 39 #include "internal.h" 40 41 static inline bool can_change_pte_writable(struct vm_area_struct *vma, 42 unsigned long addr, pte_t pte) 43 { 44 struct page *page; 45 46 VM_BUG_ON(!(vma->vm_flags & VM_WRITE) || pte_write(pte)); 47 48 if (pte_protnone(pte) || !pte_dirty(pte)) 49 return false; 50 51 /* Do we need write faults for softdirty tracking? */ 52 if (vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte)) 53 return false; 54 55 /* Do we need write faults for uffd-wp tracking? */ 56 if (userfaultfd_pte_wp(vma, pte)) 57 return false; 58 59 if (!(vma->vm_flags & VM_SHARED)) { 60 /* 61 * We can only special-case on exclusive anonymous pages, 62 * because we know that our write-fault handler similarly would 63 * map them writable without any additional checks while holding 64 * the PT lock. 65 */ 66 page = vm_normal_page(vma, addr, pte); 67 if (!page || !PageAnon(page) || !PageAnonExclusive(page)) 68 return false; 69 } 70 71 return true; 72 } 73 74 static unsigned long change_pte_range(struct mmu_gather *tlb, 75 struct vm_area_struct *vma, pmd_t *pmd, unsigned long addr, 76 unsigned long end, pgprot_t newprot, unsigned long cp_flags) 77 { 78 pte_t *pte, oldpte; 79 spinlock_t *ptl; 80 unsigned long pages = 0; 81 int target_node = NUMA_NO_NODE; 82 bool prot_numa = cp_flags & MM_CP_PROT_NUMA; 83 bool uffd_wp = cp_flags & MM_CP_UFFD_WP; 84 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE; 85 86 tlb_change_page_size(tlb, PAGE_SIZE); 87 88 /* 89 * Can be called with only the mmap_lock for reading by 90 * prot_numa so we must check the pmd isn't constantly 91 * changing from under us from pmd_none to pmd_trans_huge 92 * and/or the other way around. 93 */ 94 if (pmd_trans_unstable(pmd)) 95 return 0; 96 97 /* 98 * The pmd points to a regular pte so the pmd can't change 99 * from under us even if the mmap_lock is only hold for 100 * reading. 101 */ 102 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 103 104 /* Get target node for single threaded private VMAs */ 105 if (prot_numa && !(vma->vm_flags & VM_SHARED) && 106 atomic_read(&vma->vm_mm->mm_users) == 1) 107 target_node = numa_node_id(); 108 109 flush_tlb_batched_pending(vma->vm_mm); 110 arch_enter_lazy_mmu_mode(); 111 do { 112 oldpte = *pte; 113 if (pte_present(oldpte)) { 114 pte_t ptent; 115 bool preserve_write = prot_numa && pte_write(oldpte); 116 117 /* 118 * Avoid trapping faults against the zero or KSM 119 * pages. See similar comment in change_huge_pmd. 120 */ 121 if (prot_numa) { 122 struct page *page; 123 int nid; 124 125 /* Avoid TLB flush if possible */ 126 if (pte_protnone(oldpte)) 127 continue; 128 129 page = vm_normal_page(vma, addr, oldpte); 130 if (!page || is_zone_device_page(page) || PageKsm(page)) 131 continue; 132 133 /* Also skip shared copy-on-write pages */ 134 if (is_cow_mapping(vma->vm_flags) && 135 page_count(page) != 1) 136 continue; 137 138 /* 139 * While migration can move some dirty pages, 140 * it cannot move them all from MIGRATE_ASYNC 141 * context. 142 */ 143 if (page_is_file_lru(page) && PageDirty(page)) 144 continue; 145 146 /* 147 * Don't mess with PTEs if page is already on the node 148 * a single-threaded process is running on. 149 */ 150 nid = page_to_nid(page); 151 if (target_node == nid) 152 continue; 153 154 /* 155 * Skip scanning top tier node if normal numa 156 * balancing is disabled 157 */ 158 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) && 159 node_is_toptier(nid)) 160 continue; 161 } 162 163 oldpte = ptep_modify_prot_start(vma, addr, pte); 164 ptent = pte_modify(oldpte, newprot); 165 if (preserve_write) 166 ptent = pte_mk_savedwrite(ptent); 167 168 if (uffd_wp) { 169 ptent = pte_wrprotect(ptent); 170 ptent = pte_mkuffd_wp(ptent); 171 } else if (uffd_wp_resolve) { 172 ptent = pte_clear_uffd_wp(ptent); 173 } 174 175 /* 176 * In some writable, shared mappings, we might want 177 * to catch actual write access -- see 178 * vma_wants_writenotify(). 179 * 180 * In all writable, private mappings, we have to 181 * properly handle COW. 182 * 183 * In both cases, we can sometimes still change PTEs 184 * writable and avoid the write-fault handler, for 185 * example, if a PTE is already dirty and no other 186 * COW or special handling is required. 187 */ 188 if ((cp_flags & MM_CP_TRY_CHANGE_WRITABLE) && 189 !pte_write(ptent) && 190 can_change_pte_writable(vma, addr, ptent)) 191 ptent = pte_mkwrite(ptent); 192 193 ptep_modify_prot_commit(vma, addr, pte, oldpte, ptent); 194 if (pte_needs_flush(oldpte, ptent)) 195 tlb_flush_pte_range(tlb, addr, PAGE_SIZE); 196 pages++; 197 } else if (is_swap_pte(oldpte)) { 198 swp_entry_t entry = pte_to_swp_entry(oldpte); 199 pte_t newpte; 200 201 if (is_writable_migration_entry(entry)) { 202 struct page *page = pfn_swap_entry_to_page(entry); 203 204 /* 205 * A protection check is difficult so 206 * just be safe and disable write 207 */ 208 if (PageAnon(page)) 209 entry = make_readable_exclusive_migration_entry( 210 swp_offset(entry)); 211 else 212 entry = make_readable_migration_entry(swp_offset(entry)); 213 newpte = swp_entry_to_pte(entry); 214 if (pte_swp_soft_dirty(oldpte)) 215 newpte = pte_swp_mksoft_dirty(newpte); 216 if (pte_swp_uffd_wp(oldpte)) 217 newpte = pte_swp_mkuffd_wp(newpte); 218 } else if (is_writable_device_private_entry(entry)) { 219 /* 220 * We do not preserve soft-dirtiness. See 221 * copy_one_pte() for explanation. 222 */ 223 entry = make_readable_device_private_entry( 224 swp_offset(entry)); 225 newpte = swp_entry_to_pte(entry); 226 if (pte_swp_uffd_wp(oldpte)) 227 newpte = pte_swp_mkuffd_wp(newpte); 228 } else if (is_writable_device_exclusive_entry(entry)) { 229 entry = make_readable_device_exclusive_entry( 230 swp_offset(entry)); 231 newpte = swp_entry_to_pte(entry); 232 if (pte_swp_soft_dirty(oldpte)) 233 newpte = pte_swp_mksoft_dirty(newpte); 234 if (pte_swp_uffd_wp(oldpte)) 235 newpte = pte_swp_mkuffd_wp(newpte); 236 } else if (pte_marker_entry_uffd_wp(entry)) { 237 /* 238 * If this is uffd-wp pte marker and we'd like 239 * to unprotect it, drop it; the next page 240 * fault will trigger without uffd trapping. 241 */ 242 if (uffd_wp_resolve) { 243 pte_clear(vma->vm_mm, addr, pte); 244 pages++; 245 } 246 continue; 247 } else { 248 newpte = oldpte; 249 } 250 251 if (uffd_wp) 252 newpte = pte_swp_mkuffd_wp(newpte); 253 else if (uffd_wp_resolve) 254 newpte = pte_swp_clear_uffd_wp(newpte); 255 256 if (!pte_same(oldpte, newpte)) { 257 set_pte_at(vma->vm_mm, addr, pte, newpte); 258 pages++; 259 } 260 } else { 261 /* It must be an none page, or what else?.. */ 262 WARN_ON_ONCE(!pte_none(oldpte)); 263 if (unlikely(uffd_wp && !vma_is_anonymous(vma))) { 264 /* 265 * For file-backed mem, we need to be able to 266 * wr-protect a none pte, because even if the 267 * pte is none, the page/swap cache could 268 * exist. Doing that by install a marker. 269 */ 270 set_pte_at(vma->vm_mm, addr, pte, 271 make_pte_marker(PTE_MARKER_UFFD_WP)); 272 pages++; 273 } 274 } 275 } while (pte++, addr += PAGE_SIZE, addr != end); 276 arch_leave_lazy_mmu_mode(); 277 pte_unmap_unlock(pte - 1, ptl); 278 279 return pages; 280 } 281 282 /* 283 * Used when setting automatic NUMA hinting protection where it is 284 * critical that a numa hinting PMD is not confused with a bad PMD. 285 */ 286 static inline int pmd_none_or_clear_bad_unless_trans_huge(pmd_t *pmd) 287 { 288 pmd_t pmdval = pmd_read_atomic(pmd); 289 290 /* See pmd_none_or_trans_huge_or_clear_bad for info on barrier */ 291 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 292 barrier(); 293 #endif 294 295 if (pmd_none(pmdval)) 296 return 1; 297 if (pmd_trans_huge(pmdval)) 298 return 0; 299 if (unlikely(pmd_bad(pmdval))) { 300 pmd_clear_bad(pmd); 301 return 1; 302 } 303 304 return 0; 305 } 306 307 /* Return true if we're uffd wr-protecting file-backed memory, or false */ 308 static inline bool 309 uffd_wp_protect_file(struct vm_area_struct *vma, unsigned long cp_flags) 310 { 311 return (cp_flags & MM_CP_UFFD_WP) && !vma_is_anonymous(vma); 312 } 313 314 /* 315 * If wr-protecting the range for file-backed, populate pgtable for the case 316 * when pgtable is empty but page cache exists. When {pte|pmd|...}_alloc() 317 * failed it means no memory, we don't have a better option but stop. 318 */ 319 #define change_pmd_prepare(vma, pmd, cp_flags) \ 320 do { \ 321 if (unlikely(uffd_wp_protect_file(vma, cp_flags))) { \ 322 if (WARN_ON_ONCE(pte_alloc(vma->vm_mm, pmd))) \ 323 break; \ 324 } \ 325 } while (0) 326 /* 327 * This is the general pud/p4d/pgd version of change_pmd_prepare(). We need to 328 * have separate change_pmd_prepare() because pte_alloc() returns 0 on success, 329 * while {pmd|pud|p4d}_alloc() returns the valid pointer on success. 330 */ 331 #define change_prepare(vma, high, low, addr, cp_flags) \ 332 do { \ 333 if (unlikely(uffd_wp_protect_file(vma, cp_flags))) { \ 334 low##_t *p = low##_alloc(vma->vm_mm, high, addr); \ 335 if (WARN_ON_ONCE(p == NULL)) \ 336 break; \ 337 } \ 338 } while (0) 339 340 static inline unsigned long change_pmd_range(struct mmu_gather *tlb, 341 struct vm_area_struct *vma, pud_t *pud, unsigned long addr, 342 unsigned long end, pgprot_t newprot, unsigned long cp_flags) 343 { 344 pmd_t *pmd; 345 unsigned long next; 346 unsigned long pages = 0; 347 unsigned long nr_huge_updates = 0; 348 struct mmu_notifier_range range; 349 350 range.start = 0; 351 352 pmd = pmd_offset(pud, addr); 353 do { 354 unsigned long this_pages; 355 356 next = pmd_addr_end(addr, end); 357 358 change_pmd_prepare(vma, pmd, cp_flags); 359 /* 360 * Automatic NUMA balancing walks the tables with mmap_lock 361 * held for read. It's possible a parallel update to occur 362 * between pmd_trans_huge() and a pmd_none_or_clear_bad() 363 * check leading to a false positive and clearing. 364 * Hence, it's necessary to atomically read the PMD value 365 * for all the checks. 366 */ 367 if (!is_swap_pmd(*pmd) && !pmd_devmap(*pmd) && 368 pmd_none_or_clear_bad_unless_trans_huge(pmd)) 369 goto next; 370 371 /* invoke the mmu notifier if the pmd is populated */ 372 if (!range.start) { 373 mmu_notifier_range_init(&range, 374 MMU_NOTIFY_PROTECTION_VMA, 0, 375 vma, vma->vm_mm, addr, end); 376 mmu_notifier_invalidate_range_start(&range); 377 } 378 379 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { 380 if ((next - addr != HPAGE_PMD_SIZE) || 381 uffd_wp_protect_file(vma, cp_flags)) { 382 __split_huge_pmd(vma, pmd, addr, false, NULL); 383 /* 384 * For file-backed, the pmd could have been 385 * cleared; make sure pmd populated if 386 * necessary, then fall-through to pte level. 387 */ 388 change_pmd_prepare(vma, pmd, cp_flags); 389 } else { 390 /* 391 * change_huge_pmd() does not defer TLB flushes, 392 * so no need to propagate the tlb argument. 393 */ 394 int nr_ptes = change_huge_pmd(tlb, vma, pmd, 395 addr, newprot, cp_flags); 396 397 if (nr_ptes) { 398 if (nr_ptes == HPAGE_PMD_NR) { 399 pages += HPAGE_PMD_NR; 400 nr_huge_updates++; 401 } 402 403 /* huge pmd was handled */ 404 goto next; 405 } 406 } 407 /* fall through, the trans huge pmd just split */ 408 } 409 this_pages = change_pte_range(tlb, vma, pmd, addr, next, 410 newprot, cp_flags); 411 pages += this_pages; 412 next: 413 cond_resched(); 414 } while (pmd++, addr = next, addr != end); 415 416 if (range.start) 417 mmu_notifier_invalidate_range_end(&range); 418 419 if (nr_huge_updates) 420 count_vm_numa_events(NUMA_HUGE_PTE_UPDATES, nr_huge_updates); 421 return pages; 422 } 423 424 static inline unsigned long change_pud_range(struct mmu_gather *tlb, 425 struct vm_area_struct *vma, p4d_t *p4d, unsigned long addr, 426 unsigned long end, pgprot_t newprot, unsigned long cp_flags) 427 { 428 pud_t *pud; 429 unsigned long next; 430 unsigned long pages = 0; 431 432 pud = pud_offset(p4d, addr); 433 do { 434 next = pud_addr_end(addr, end); 435 change_prepare(vma, pud, pmd, addr, cp_flags); 436 if (pud_none_or_clear_bad(pud)) 437 continue; 438 pages += change_pmd_range(tlb, vma, pud, addr, next, newprot, 439 cp_flags); 440 } while (pud++, addr = next, addr != end); 441 442 return pages; 443 } 444 445 static inline unsigned long change_p4d_range(struct mmu_gather *tlb, 446 struct vm_area_struct *vma, pgd_t *pgd, unsigned long addr, 447 unsigned long end, pgprot_t newprot, unsigned long cp_flags) 448 { 449 p4d_t *p4d; 450 unsigned long next; 451 unsigned long pages = 0; 452 453 p4d = p4d_offset(pgd, addr); 454 do { 455 next = p4d_addr_end(addr, end); 456 change_prepare(vma, p4d, pud, addr, cp_flags); 457 if (p4d_none_or_clear_bad(p4d)) 458 continue; 459 pages += change_pud_range(tlb, vma, p4d, addr, next, newprot, 460 cp_flags); 461 } while (p4d++, addr = next, addr != end); 462 463 return pages; 464 } 465 466 static unsigned long change_protection_range(struct mmu_gather *tlb, 467 struct vm_area_struct *vma, unsigned long addr, 468 unsigned long end, pgprot_t newprot, unsigned long cp_flags) 469 { 470 struct mm_struct *mm = vma->vm_mm; 471 pgd_t *pgd; 472 unsigned long next; 473 unsigned long pages = 0; 474 475 BUG_ON(addr >= end); 476 pgd = pgd_offset(mm, addr); 477 tlb_start_vma(tlb, vma); 478 do { 479 next = pgd_addr_end(addr, end); 480 change_prepare(vma, pgd, p4d, addr, cp_flags); 481 if (pgd_none_or_clear_bad(pgd)) 482 continue; 483 pages += change_p4d_range(tlb, vma, pgd, addr, next, newprot, 484 cp_flags); 485 } while (pgd++, addr = next, addr != end); 486 487 tlb_end_vma(tlb, vma); 488 489 return pages; 490 } 491 492 unsigned long change_protection(struct mmu_gather *tlb, 493 struct vm_area_struct *vma, unsigned long start, 494 unsigned long end, pgprot_t newprot, 495 unsigned long cp_flags) 496 { 497 unsigned long pages; 498 499 BUG_ON((cp_flags & MM_CP_UFFD_WP_ALL) == MM_CP_UFFD_WP_ALL); 500 501 if (is_vm_hugetlb_page(vma)) 502 pages = hugetlb_change_protection(vma, start, end, newprot, 503 cp_flags); 504 else 505 pages = change_protection_range(tlb, vma, start, end, newprot, 506 cp_flags); 507 508 return pages; 509 } 510 511 static int prot_none_pte_entry(pte_t *pte, unsigned long addr, 512 unsigned long next, struct mm_walk *walk) 513 { 514 return pfn_modify_allowed(pte_pfn(*pte), *(pgprot_t *)(walk->private)) ? 515 0 : -EACCES; 516 } 517 518 static int prot_none_hugetlb_entry(pte_t *pte, unsigned long hmask, 519 unsigned long addr, unsigned long next, 520 struct mm_walk *walk) 521 { 522 return pfn_modify_allowed(pte_pfn(*pte), *(pgprot_t *)(walk->private)) ? 523 0 : -EACCES; 524 } 525 526 static int prot_none_test(unsigned long addr, unsigned long next, 527 struct mm_walk *walk) 528 { 529 return 0; 530 } 531 532 static const struct mm_walk_ops prot_none_walk_ops = { 533 .pte_entry = prot_none_pte_entry, 534 .hugetlb_entry = prot_none_hugetlb_entry, 535 .test_walk = prot_none_test, 536 }; 537 538 int 539 mprotect_fixup(struct mmu_gather *tlb, struct vm_area_struct *vma, 540 struct vm_area_struct **pprev, unsigned long start, 541 unsigned long end, unsigned long newflags) 542 { 543 struct mm_struct *mm = vma->vm_mm; 544 unsigned long oldflags = vma->vm_flags; 545 long nrpages = (end - start) >> PAGE_SHIFT; 546 unsigned long charged = 0; 547 bool try_change_writable; 548 pgoff_t pgoff; 549 int error; 550 551 if (newflags == oldflags) { 552 *pprev = vma; 553 return 0; 554 } 555 556 /* 557 * Do PROT_NONE PFN permission checks here when we can still 558 * bail out without undoing a lot of state. This is a rather 559 * uncommon case, so doesn't need to be very optimized. 560 */ 561 if (arch_has_pfn_modify_check() && 562 (vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) && 563 (newflags & VM_ACCESS_FLAGS) == 0) { 564 pgprot_t new_pgprot = vm_get_page_prot(newflags); 565 566 error = walk_page_range(current->mm, start, end, 567 &prot_none_walk_ops, &new_pgprot); 568 if (error) 569 return error; 570 } 571 572 /* 573 * If we make a private mapping writable we increase our commit; 574 * but (without finer accounting) cannot reduce our commit if we 575 * make it unwritable again. hugetlb mapping were accounted for 576 * even if read-only so there is no need to account for them here 577 */ 578 if (newflags & VM_WRITE) { 579 /* Check space limits when area turns into data. */ 580 if (!may_expand_vm(mm, newflags, nrpages) && 581 may_expand_vm(mm, oldflags, nrpages)) 582 return -ENOMEM; 583 if (!(oldflags & (VM_ACCOUNT|VM_WRITE|VM_HUGETLB| 584 VM_SHARED|VM_NORESERVE))) { 585 charged = nrpages; 586 if (security_vm_enough_memory_mm(mm, charged)) 587 return -ENOMEM; 588 newflags |= VM_ACCOUNT; 589 } 590 } 591 592 /* 593 * First try to merge with previous and/or next vma. 594 */ 595 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT); 596 *pprev = vma_merge(mm, *pprev, start, end, newflags, 597 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma), 598 vma->vm_userfaultfd_ctx, anon_vma_name(vma)); 599 if (*pprev) { 600 vma = *pprev; 601 VM_WARN_ON((vma->vm_flags ^ newflags) & ~VM_SOFTDIRTY); 602 goto success; 603 } 604 605 *pprev = vma; 606 607 if (start != vma->vm_start) { 608 error = split_vma(mm, vma, start, 1); 609 if (error) 610 goto fail; 611 } 612 613 if (end != vma->vm_end) { 614 error = split_vma(mm, vma, end, 0); 615 if (error) 616 goto fail; 617 } 618 619 success: 620 /* 621 * vm_flags and vm_page_prot are protected by the mmap_lock 622 * held in write mode. 623 */ 624 vma->vm_flags = newflags; 625 /* 626 * We want to check manually if we can change individual PTEs writable 627 * if we can't do that automatically for all PTEs in a mapping. For 628 * private mappings, that's always the case when we have write 629 * permissions as we properly have to handle COW. 630 */ 631 if (vma->vm_flags & VM_SHARED) 632 try_change_writable = vma_wants_writenotify(vma, vma->vm_page_prot); 633 else 634 try_change_writable = !!(vma->vm_flags & VM_WRITE); 635 vma_set_page_prot(vma); 636 637 change_protection(tlb, vma, start, end, vma->vm_page_prot, 638 try_change_writable ? MM_CP_TRY_CHANGE_WRITABLE : 0); 639 640 /* 641 * Private VM_LOCKED VMA becoming writable: trigger COW to avoid major 642 * fault on access. 643 */ 644 if ((oldflags & (VM_WRITE | VM_SHARED | VM_LOCKED)) == VM_LOCKED && 645 (newflags & VM_WRITE)) { 646 populate_vma_page_range(vma, start, end, NULL); 647 } 648 649 vm_stat_account(mm, oldflags, -nrpages); 650 vm_stat_account(mm, newflags, nrpages); 651 perf_event_mmap(vma); 652 return 0; 653 654 fail: 655 vm_unacct_memory(charged); 656 return error; 657 } 658 659 /* 660 * pkey==-1 when doing a legacy mprotect() 661 */ 662 static int do_mprotect_pkey(unsigned long start, size_t len, 663 unsigned long prot, int pkey) 664 { 665 unsigned long nstart, end, tmp, reqprot; 666 struct vm_area_struct *vma, *prev; 667 int error; 668 const int grows = prot & (PROT_GROWSDOWN|PROT_GROWSUP); 669 const bool rier = (current->personality & READ_IMPLIES_EXEC) && 670 (prot & PROT_READ); 671 struct mmu_gather tlb; 672 673 start = untagged_addr(start); 674 675 prot &= ~(PROT_GROWSDOWN|PROT_GROWSUP); 676 if (grows == (PROT_GROWSDOWN|PROT_GROWSUP)) /* can't be both */ 677 return -EINVAL; 678 679 if (start & ~PAGE_MASK) 680 return -EINVAL; 681 if (!len) 682 return 0; 683 len = PAGE_ALIGN(len); 684 end = start + len; 685 if (end <= start) 686 return -ENOMEM; 687 if (!arch_validate_prot(prot, start)) 688 return -EINVAL; 689 690 reqprot = prot; 691 692 if (mmap_write_lock_killable(current->mm)) 693 return -EINTR; 694 695 /* 696 * If userspace did not allocate the pkey, do not let 697 * them use it here. 698 */ 699 error = -EINVAL; 700 if ((pkey != -1) && !mm_pkey_is_allocated(current->mm, pkey)) 701 goto out; 702 703 vma = find_vma(current->mm, start); 704 error = -ENOMEM; 705 if (!vma) 706 goto out; 707 708 if (unlikely(grows & PROT_GROWSDOWN)) { 709 if (vma->vm_start >= end) 710 goto out; 711 start = vma->vm_start; 712 error = -EINVAL; 713 if (!(vma->vm_flags & VM_GROWSDOWN)) 714 goto out; 715 } else { 716 if (vma->vm_start > start) 717 goto out; 718 if (unlikely(grows & PROT_GROWSUP)) { 719 end = vma->vm_end; 720 error = -EINVAL; 721 if (!(vma->vm_flags & VM_GROWSUP)) 722 goto out; 723 } 724 } 725 726 if (start > vma->vm_start) 727 prev = vma; 728 else 729 prev = vma->vm_prev; 730 731 tlb_gather_mmu(&tlb, current->mm); 732 for (nstart = start ; ; ) { 733 unsigned long mask_off_old_flags; 734 unsigned long newflags; 735 int new_vma_pkey; 736 737 /* Here we know that vma->vm_start <= nstart < vma->vm_end. */ 738 739 /* Does the application expect PROT_READ to imply PROT_EXEC */ 740 if (rier && (vma->vm_flags & VM_MAYEXEC)) 741 prot |= PROT_EXEC; 742 743 /* 744 * Each mprotect() call explicitly passes r/w/x permissions. 745 * If a permission is not passed to mprotect(), it must be 746 * cleared from the VMA. 747 */ 748 mask_off_old_flags = VM_READ | VM_WRITE | VM_EXEC | 749 VM_FLAGS_CLEAR; 750 751 new_vma_pkey = arch_override_mprotect_pkey(vma, prot, pkey); 752 newflags = calc_vm_prot_bits(prot, new_vma_pkey); 753 newflags |= (vma->vm_flags & ~mask_off_old_flags); 754 755 /* newflags >> 4 shift VM_MAY% in place of VM_% */ 756 if ((newflags & ~(newflags >> 4)) & VM_ACCESS_FLAGS) { 757 error = -EACCES; 758 break; 759 } 760 761 /* Allow architectures to sanity-check the new flags */ 762 if (!arch_validate_flags(newflags)) { 763 error = -EINVAL; 764 break; 765 } 766 767 error = security_file_mprotect(vma, reqprot, prot); 768 if (error) 769 break; 770 771 tmp = vma->vm_end; 772 if (tmp > end) 773 tmp = end; 774 775 if (vma->vm_ops && vma->vm_ops->mprotect) { 776 error = vma->vm_ops->mprotect(vma, nstart, tmp, newflags); 777 if (error) 778 break; 779 } 780 781 error = mprotect_fixup(&tlb, vma, &prev, nstart, tmp, newflags); 782 if (error) 783 break; 784 785 nstart = tmp; 786 787 if (nstart < prev->vm_end) 788 nstart = prev->vm_end; 789 if (nstart >= end) 790 break; 791 792 vma = prev->vm_next; 793 if (!vma || vma->vm_start != nstart) { 794 error = -ENOMEM; 795 break; 796 } 797 prot = reqprot; 798 } 799 tlb_finish_mmu(&tlb); 800 out: 801 mmap_write_unlock(current->mm); 802 return error; 803 } 804 805 SYSCALL_DEFINE3(mprotect, unsigned long, start, size_t, len, 806 unsigned long, prot) 807 { 808 return do_mprotect_pkey(start, len, prot, -1); 809 } 810 811 #ifdef CONFIG_ARCH_HAS_PKEYS 812 813 SYSCALL_DEFINE4(pkey_mprotect, unsigned long, start, size_t, len, 814 unsigned long, prot, int, pkey) 815 { 816 return do_mprotect_pkey(start, len, prot, pkey); 817 } 818 819 SYSCALL_DEFINE2(pkey_alloc, unsigned long, flags, unsigned long, init_val) 820 { 821 int pkey; 822 int ret; 823 824 /* No flags supported yet. */ 825 if (flags) 826 return -EINVAL; 827 /* check for unsupported init values */ 828 if (init_val & ~PKEY_ACCESS_MASK) 829 return -EINVAL; 830 831 mmap_write_lock(current->mm); 832 pkey = mm_pkey_alloc(current->mm); 833 834 ret = -ENOSPC; 835 if (pkey == -1) 836 goto out; 837 838 ret = arch_set_user_pkey_access(current, pkey, init_val); 839 if (ret) { 840 mm_pkey_free(current->mm, pkey); 841 goto out; 842 } 843 ret = pkey; 844 out: 845 mmap_write_unlock(current->mm); 846 return ret; 847 } 848 849 SYSCALL_DEFINE1(pkey_free, int, pkey) 850 { 851 int ret; 852 853 mmap_write_lock(current->mm); 854 ret = mm_pkey_free(current->mm, pkey); 855 mmap_write_unlock(current->mm); 856 857 /* 858 * We could provide warnings or errors if any VMA still 859 * has the pkey set here. 860 */ 861 return ret; 862 } 863 864 #endif /* CONFIG_ARCH_HAS_PKEYS */ 865