xref: /linux/mm/mprotect.c (revision 8f7e001e0325de63a42f23342ac3b8139150c5cf)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  mm/mprotect.c
4  *
5  *  (C) Copyright 1994 Linus Torvalds
6  *  (C) Copyright 2002 Christoph Hellwig
7  *
8  *  Address space accounting code	<alan@lxorguk.ukuu.org.uk>
9  *  (C) Copyright 2002 Red Hat Inc, All Rights Reserved
10  */
11 
12 #include <linux/pagewalk.h>
13 #include <linux/hugetlb.h>
14 #include <linux/shm.h>
15 #include <linux/mman.h>
16 #include <linux/fs.h>
17 #include <linux/highmem.h>
18 #include <linux/security.h>
19 #include <linux/mempolicy.h>
20 #include <linux/personality.h>
21 #include <linux/syscalls.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24 #include <linux/mmu_notifier.h>
25 #include <linux/migrate.h>
26 #include <linux/perf_event.h>
27 #include <linux/pkeys.h>
28 #include <linux/ksm.h>
29 #include <linux/uaccess.h>
30 #include <linux/mm_inline.h>
31 #include <linux/pgtable.h>
32 #include <linux/sched/sysctl.h>
33 #include <linux/userfaultfd_k.h>
34 #include <asm/cacheflush.h>
35 #include <asm/mmu_context.h>
36 #include <asm/tlbflush.h>
37 #include <asm/tlb.h>
38 
39 #include "internal.h"
40 
41 static inline bool can_change_pte_writable(struct vm_area_struct *vma,
42 					   unsigned long addr, pte_t pte)
43 {
44 	struct page *page;
45 
46 	VM_BUG_ON(!(vma->vm_flags & VM_WRITE) || pte_write(pte));
47 
48 	if (pte_protnone(pte) || !pte_dirty(pte))
49 		return false;
50 
51 	/* Do we need write faults for softdirty tracking? */
52 	if (vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte))
53 		return false;
54 
55 	/* Do we need write faults for uffd-wp tracking? */
56 	if (userfaultfd_pte_wp(vma, pte))
57 		return false;
58 
59 	if (!(vma->vm_flags & VM_SHARED)) {
60 		/*
61 		 * We can only special-case on exclusive anonymous pages,
62 		 * because we know that our write-fault handler similarly would
63 		 * map them writable without any additional checks while holding
64 		 * the PT lock.
65 		 */
66 		page = vm_normal_page(vma, addr, pte);
67 		if (!page || !PageAnon(page) || !PageAnonExclusive(page))
68 			return false;
69 	}
70 
71 	return true;
72 }
73 
74 static unsigned long change_pte_range(struct mmu_gather *tlb,
75 		struct vm_area_struct *vma, pmd_t *pmd, unsigned long addr,
76 		unsigned long end, pgprot_t newprot, unsigned long cp_flags)
77 {
78 	pte_t *pte, oldpte;
79 	spinlock_t *ptl;
80 	unsigned long pages = 0;
81 	int target_node = NUMA_NO_NODE;
82 	bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
83 	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
84 	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
85 
86 	tlb_change_page_size(tlb, PAGE_SIZE);
87 
88 	/*
89 	 * Can be called with only the mmap_lock for reading by
90 	 * prot_numa so we must check the pmd isn't constantly
91 	 * changing from under us from pmd_none to pmd_trans_huge
92 	 * and/or the other way around.
93 	 */
94 	if (pmd_trans_unstable(pmd))
95 		return 0;
96 
97 	/*
98 	 * The pmd points to a regular pte so the pmd can't change
99 	 * from under us even if the mmap_lock is only hold for
100 	 * reading.
101 	 */
102 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
103 
104 	/* Get target node for single threaded private VMAs */
105 	if (prot_numa && !(vma->vm_flags & VM_SHARED) &&
106 	    atomic_read(&vma->vm_mm->mm_users) == 1)
107 		target_node = numa_node_id();
108 
109 	flush_tlb_batched_pending(vma->vm_mm);
110 	arch_enter_lazy_mmu_mode();
111 	do {
112 		oldpte = *pte;
113 		if (pte_present(oldpte)) {
114 			pte_t ptent;
115 			bool preserve_write = prot_numa && pte_write(oldpte);
116 
117 			/*
118 			 * Avoid trapping faults against the zero or KSM
119 			 * pages. See similar comment in change_huge_pmd.
120 			 */
121 			if (prot_numa) {
122 				struct page *page;
123 				int nid;
124 
125 				/* Avoid TLB flush if possible */
126 				if (pte_protnone(oldpte))
127 					continue;
128 
129 				page = vm_normal_page(vma, addr, oldpte);
130 				if (!page || is_zone_device_page(page) || PageKsm(page))
131 					continue;
132 
133 				/* Also skip shared copy-on-write pages */
134 				if (is_cow_mapping(vma->vm_flags) &&
135 				    page_count(page) != 1)
136 					continue;
137 
138 				/*
139 				 * While migration can move some dirty pages,
140 				 * it cannot move them all from MIGRATE_ASYNC
141 				 * context.
142 				 */
143 				if (page_is_file_lru(page) && PageDirty(page))
144 					continue;
145 
146 				/*
147 				 * Don't mess with PTEs if page is already on the node
148 				 * a single-threaded process is running on.
149 				 */
150 				nid = page_to_nid(page);
151 				if (target_node == nid)
152 					continue;
153 
154 				/*
155 				 * Skip scanning top tier node if normal numa
156 				 * balancing is disabled
157 				 */
158 				if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) &&
159 				    node_is_toptier(nid))
160 					continue;
161 			}
162 
163 			oldpte = ptep_modify_prot_start(vma, addr, pte);
164 			ptent = pte_modify(oldpte, newprot);
165 			if (preserve_write)
166 				ptent = pte_mk_savedwrite(ptent);
167 
168 			if (uffd_wp) {
169 				ptent = pte_wrprotect(ptent);
170 				ptent = pte_mkuffd_wp(ptent);
171 			} else if (uffd_wp_resolve) {
172 				ptent = pte_clear_uffd_wp(ptent);
173 			}
174 
175 			/*
176 			 * In some writable, shared mappings, we might want
177 			 * to catch actual write access -- see
178 			 * vma_wants_writenotify().
179 			 *
180 			 * In all writable, private mappings, we have to
181 			 * properly handle COW.
182 			 *
183 			 * In both cases, we can sometimes still change PTEs
184 			 * writable and avoid the write-fault handler, for
185 			 * example, if a PTE is already dirty and no other
186 			 * COW or special handling is required.
187 			 */
188 			if ((cp_flags & MM_CP_TRY_CHANGE_WRITABLE) &&
189 			    !pte_write(ptent) &&
190 			    can_change_pte_writable(vma, addr, ptent))
191 				ptent = pte_mkwrite(ptent);
192 
193 			ptep_modify_prot_commit(vma, addr, pte, oldpte, ptent);
194 			if (pte_needs_flush(oldpte, ptent))
195 				tlb_flush_pte_range(tlb, addr, PAGE_SIZE);
196 			pages++;
197 		} else if (is_swap_pte(oldpte)) {
198 			swp_entry_t entry = pte_to_swp_entry(oldpte);
199 			struct page *page = pfn_swap_entry_to_page(entry);
200 			pte_t newpte;
201 
202 			if (is_writable_migration_entry(entry)) {
203 				/*
204 				 * A protection check is difficult so
205 				 * just be safe and disable write
206 				 */
207 				if (PageAnon(page))
208 					entry = make_readable_exclusive_migration_entry(
209 							     swp_offset(entry));
210 				else
211 					entry = make_readable_migration_entry(swp_offset(entry));
212 				newpte = swp_entry_to_pte(entry);
213 				if (pte_swp_soft_dirty(oldpte))
214 					newpte = pte_swp_mksoft_dirty(newpte);
215 				if (pte_swp_uffd_wp(oldpte))
216 					newpte = pte_swp_mkuffd_wp(newpte);
217 			} else if (is_writable_device_private_entry(entry)) {
218 				/*
219 				 * We do not preserve soft-dirtiness. See
220 				 * copy_one_pte() for explanation.
221 				 */
222 				entry = make_readable_device_private_entry(
223 							swp_offset(entry));
224 				newpte = swp_entry_to_pte(entry);
225 				if (pte_swp_uffd_wp(oldpte))
226 					newpte = pte_swp_mkuffd_wp(newpte);
227 			} else if (is_writable_device_exclusive_entry(entry)) {
228 				entry = make_readable_device_exclusive_entry(
229 							swp_offset(entry));
230 				newpte = swp_entry_to_pte(entry);
231 				if (pte_swp_soft_dirty(oldpte))
232 					newpte = pte_swp_mksoft_dirty(newpte);
233 				if (pte_swp_uffd_wp(oldpte))
234 					newpte = pte_swp_mkuffd_wp(newpte);
235 			} else if (pte_marker_entry_uffd_wp(entry)) {
236 				/*
237 				 * If this is uffd-wp pte marker and we'd like
238 				 * to unprotect it, drop it; the next page
239 				 * fault will trigger without uffd trapping.
240 				 */
241 				if (uffd_wp_resolve) {
242 					pte_clear(vma->vm_mm, addr, pte);
243 					pages++;
244 				}
245 				continue;
246 			} else {
247 				newpte = oldpte;
248 			}
249 
250 			if (uffd_wp)
251 				newpte = pte_swp_mkuffd_wp(newpte);
252 			else if (uffd_wp_resolve)
253 				newpte = pte_swp_clear_uffd_wp(newpte);
254 
255 			if (!pte_same(oldpte, newpte)) {
256 				set_pte_at(vma->vm_mm, addr, pte, newpte);
257 				pages++;
258 			}
259 		} else {
260 			/* It must be an none page, or what else?.. */
261 			WARN_ON_ONCE(!pte_none(oldpte));
262 			if (unlikely(uffd_wp && !vma_is_anonymous(vma))) {
263 				/*
264 				 * For file-backed mem, we need to be able to
265 				 * wr-protect a none pte, because even if the
266 				 * pte is none, the page/swap cache could
267 				 * exist.  Doing that by install a marker.
268 				 */
269 				set_pte_at(vma->vm_mm, addr, pte,
270 					   make_pte_marker(PTE_MARKER_UFFD_WP));
271 				pages++;
272 			}
273 		}
274 	} while (pte++, addr += PAGE_SIZE, addr != end);
275 	arch_leave_lazy_mmu_mode();
276 	pte_unmap_unlock(pte - 1, ptl);
277 
278 	return pages;
279 }
280 
281 /*
282  * Used when setting automatic NUMA hinting protection where it is
283  * critical that a numa hinting PMD is not confused with a bad PMD.
284  */
285 static inline int pmd_none_or_clear_bad_unless_trans_huge(pmd_t *pmd)
286 {
287 	pmd_t pmdval = pmd_read_atomic(pmd);
288 
289 	/* See pmd_none_or_trans_huge_or_clear_bad for info on barrier */
290 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
291 	barrier();
292 #endif
293 
294 	if (pmd_none(pmdval))
295 		return 1;
296 	if (pmd_trans_huge(pmdval))
297 		return 0;
298 	if (unlikely(pmd_bad(pmdval))) {
299 		pmd_clear_bad(pmd);
300 		return 1;
301 	}
302 
303 	return 0;
304 }
305 
306 /* Return true if we're uffd wr-protecting file-backed memory, or false */
307 static inline bool
308 uffd_wp_protect_file(struct vm_area_struct *vma, unsigned long cp_flags)
309 {
310 	return (cp_flags & MM_CP_UFFD_WP) && !vma_is_anonymous(vma);
311 }
312 
313 /*
314  * If wr-protecting the range for file-backed, populate pgtable for the case
315  * when pgtable is empty but page cache exists.  When {pte|pmd|...}_alloc()
316  * failed it means no memory, we don't have a better option but stop.
317  */
318 #define  change_pmd_prepare(vma, pmd, cp_flags)				\
319 	do {								\
320 		if (unlikely(uffd_wp_protect_file(vma, cp_flags))) {	\
321 			if (WARN_ON_ONCE(pte_alloc(vma->vm_mm, pmd)))	\
322 				break;					\
323 		}							\
324 	} while (0)
325 /*
326  * This is the general pud/p4d/pgd version of change_pmd_prepare(). We need to
327  * have separate change_pmd_prepare() because pte_alloc() returns 0 on success,
328  * while {pmd|pud|p4d}_alloc() returns the valid pointer on success.
329  */
330 #define  change_prepare(vma, high, low, addr, cp_flags)			\
331 	do {								\
332 		if (unlikely(uffd_wp_protect_file(vma, cp_flags))) {	\
333 			low##_t *p = low##_alloc(vma->vm_mm, high, addr); \
334 			if (WARN_ON_ONCE(p == NULL))			\
335 				break;					\
336 		}							\
337 	} while (0)
338 
339 static inline unsigned long change_pmd_range(struct mmu_gather *tlb,
340 		struct vm_area_struct *vma, pud_t *pud, unsigned long addr,
341 		unsigned long end, pgprot_t newprot, unsigned long cp_flags)
342 {
343 	pmd_t *pmd;
344 	unsigned long next;
345 	unsigned long pages = 0;
346 	unsigned long nr_huge_updates = 0;
347 	struct mmu_notifier_range range;
348 
349 	range.start = 0;
350 
351 	pmd = pmd_offset(pud, addr);
352 	do {
353 		unsigned long this_pages;
354 
355 		next = pmd_addr_end(addr, end);
356 
357 		change_pmd_prepare(vma, pmd, cp_flags);
358 		/*
359 		 * Automatic NUMA balancing walks the tables with mmap_lock
360 		 * held for read. It's possible a parallel update to occur
361 		 * between pmd_trans_huge() and a pmd_none_or_clear_bad()
362 		 * check leading to a false positive and clearing.
363 		 * Hence, it's necessary to atomically read the PMD value
364 		 * for all the checks.
365 		 */
366 		if (!is_swap_pmd(*pmd) && !pmd_devmap(*pmd) &&
367 		     pmd_none_or_clear_bad_unless_trans_huge(pmd))
368 			goto next;
369 
370 		/* invoke the mmu notifier if the pmd is populated */
371 		if (!range.start) {
372 			mmu_notifier_range_init(&range,
373 				MMU_NOTIFY_PROTECTION_VMA, 0,
374 				vma, vma->vm_mm, addr, end);
375 			mmu_notifier_invalidate_range_start(&range);
376 		}
377 
378 		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
379 			if ((next - addr != HPAGE_PMD_SIZE) ||
380 			    uffd_wp_protect_file(vma, cp_flags)) {
381 				__split_huge_pmd(vma, pmd, addr, false, NULL);
382 				/*
383 				 * For file-backed, the pmd could have been
384 				 * cleared; make sure pmd populated if
385 				 * necessary, then fall-through to pte level.
386 				 */
387 				change_pmd_prepare(vma, pmd, cp_flags);
388 			} else {
389 				/*
390 				 * change_huge_pmd() does not defer TLB flushes,
391 				 * so no need to propagate the tlb argument.
392 				 */
393 				int nr_ptes = change_huge_pmd(tlb, vma, pmd,
394 						addr, newprot, cp_flags);
395 
396 				if (nr_ptes) {
397 					if (nr_ptes == HPAGE_PMD_NR) {
398 						pages += HPAGE_PMD_NR;
399 						nr_huge_updates++;
400 					}
401 
402 					/* huge pmd was handled */
403 					goto next;
404 				}
405 			}
406 			/* fall through, the trans huge pmd just split */
407 		}
408 		this_pages = change_pte_range(tlb, vma, pmd, addr, next,
409 					      newprot, cp_flags);
410 		pages += this_pages;
411 next:
412 		cond_resched();
413 	} while (pmd++, addr = next, addr != end);
414 
415 	if (range.start)
416 		mmu_notifier_invalidate_range_end(&range);
417 
418 	if (nr_huge_updates)
419 		count_vm_numa_events(NUMA_HUGE_PTE_UPDATES, nr_huge_updates);
420 	return pages;
421 }
422 
423 static inline unsigned long change_pud_range(struct mmu_gather *tlb,
424 		struct vm_area_struct *vma, p4d_t *p4d, unsigned long addr,
425 		unsigned long end, pgprot_t newprot, unsigned long cp_flags)
426 {
427 	pud_t *pud;
428 	unsigned long next;
429 	unsigned long pages = 0;
430 
431 	pud = pud_offset(p4d, addr);
432 	do {
433 		next = pud_addr_end(addr, end);
434 		change_prepare(vma, pud, pmd, addr, cp_flags);
435 		if (pud_none_or_clear_bad(pud))
436 			continue;
437 		pages += change_pmd_range(tlb, vma, pud, addr, next, newprot,
438 					  cp_flags);
439 	} while (pud++, addr = next, addr != end);
440 
441 	return pages;
442 }
443 
444 static inline unsigned long change_p4d_range(struct mmu_gather *tlb,
445 		struct vm_area_struct *vma, pgd_t *pgd, unsigned long addr,
446 		unsigned long end, pgprot_t newprot, unsigned long cp_flags)
447 {
448 	p4d_t *p4d;
449 	unsigned long next;
450 	unsigned long pages = 0;
451 
452 	p4d = p4d_offset(pgd, addr);
453 	do {
454 		next = p4d_addr_end(addr, end);
455 		change_prepare(vma, p4d, pud, addr, cp_flags);
456 		if (p4d_none_or_clear_bad(p4d))
457 			continue;
458 		pages += change_pud_range(tlb, vma, p4d, addr, next, newprot,
459 					  cp_flags);
460 	} while (p4d++, addr = next, addr != end);
461 
462 	return pages;
463 }
464 
465 static unsigned long change_protection_range(struct mmu_gather *tlb,
466 		struct vm_area_struct *vma, unsigned long addr,
467 		unsigned long end, pgprot_t newprot, unsigned long cp_flags)
468 {
469 	struct mm_struct *mm = vma->vm_mm;
470 	pgd_t *pgd;
471 	unsigned long next;
472 	unsigned long pages = 0;
473 
474 	BUG_ON(addr >= end);
475 	pgd = pgd_offset(mm, addr);
476 	tlb_start_vma(tlb, vma);
477 	do {
478 		next = pgd_addr_end(addr, end);
479 		change_prepare(vma, pgd, p4d, addr, cp_flags);
480 		if (pgd_none_or_clear_bad(pgd))
481 			continue;
482 		pages += change_p4d_range(tlb, vma, pgd, addr, next, newprot,
483 					  cp_flags);
484 	} while (pgd++, addr = next, addr != end);
485 
486 	tlb_end_vma(tlb, vma);
487 
488 	return pages;
489 }
490 
491 unsigned long change_protection(struct mmu_gather *tlb,
492 		       struct vm_area_struct *vma, unsigned long start,
493 		       unsigned long end, pgprot_t newprot,
494 		       unsigned long cp_flags)
495 {
496 	unsigned long pages;
497 
498 	BUG_ON((cp_flags & MM_CP_UFFD_WP_ALL) == MM_CP_UFFD_WP_ALL);
499 
500 	if (is_vm_hugetlb_page(vma))
501 		pages = hugetlb_change_protection(vma, start, end, newprot,
502 						  cp_flags);
503 	else
504 		pages = change_protection_range(tlb, vma, start, end, newprot,
505 						cp_flags);
506 
507 	return pages;
508 }
509 
510 static int prot_none_pte_entry(pte_t *pte, unsigned long addr,
511 			       unsigned long next, struct mm_walk *walk)
512 {
513 	return pfn_modify_allowed(pte_pfn(*pte), *(pgprot_t *)(walk->private)) ?
514 		0 : -EACCES;
515 }
516 
517 static int prot_none_hugetlb_entry(pte_t *pte, unsigned long hmask,
518 				   unsigned long addr, unsigned long next,
519 				   struct mm_walk *walk)
520 {
521 	return pfn_modify_allowed(pte_pfn(*pte), *(pgprot_t *)(walk->private)) ?
522 		0 : -EACCES;
523 }
524 
525 static int prot_none_test(unsigned long addr, unsigned long next,
526 			  struct mm_walk *walk)
527 {
528 	return 0;
529 }
530 
531 static const struct mm_walk_ops prot_none_walk_ops = {
532 	.pte_entry		= prot_none_pte_entry,
533 	.hugetlb_entry		= prot_none_hugetlb_entry,
534 	.test_walk		= prot_none_test,
535 };
536 
537 int
538 mprotect_fixup(struct mmu_gather *tlb, struct vm_area_struct *vma,
539 	       struct vm_area_struct **pprev, unsigned long start,
540 	       unsigned long end, unsigned long newflags)
541 {
542 	struct mm_struct *mm = vma->vm_mm;
543 	unsigned long oldflags = vma->vm_flags;
544 	long nrpages = (end - start) >> PAGE_SHIFT;
545 	unsigned long charged = 0;
546 	bool try_change_writable;
547 	pgoff_t pgoff;
548 	int error;
549 
550 	if (newflags == oldflags) {
551 		*pprev = vma;
552 		return 0;
553 	}
554 
555 	/*
556 	 * Do PROT_NONE PFN permission checks here when we can still
557 	 * bail out without undoing a lot of state. This is a rather
558 	 * uncommon case, so doesn't need to be very optimized.
559 	 */
560 	if (arch_has_pfn_modify_check() &&
561 	    (vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
562 	    (newflags & VM_ACCESS_FLAGS) == 0) {
563 		pgprot_t new_pgprot = vm_get_page_prot(newflags);
564 
565 		error = walk_page_range(current->mm, start, end,
566 				&prot_none_walk_ops, &new_pgprot);
567 		if (error)
568 			return error;
569 	}
570 
571 	/*
572 	 * If we make a private mapping writable we increase our commit;
573 	 * but (without finer accounting) cannot reduce our commit if we
574 	 * make it unwritable again. hugetlb mapping were accounted for
575 	 * even if read-only so there is no need to account for them here
576 	 */
577 	if (newflags & VM_WRITE) {
578 		/* Check space limits when area turns into data. */
579 		if (!may_expand_vm(mm, newflags, nrpages) &&
580 				may_expand_vm(mm, oldflags, nrpages))
581 			return -ENOMEM;
582 		if (!(oldflags & (VM_ACCOUNT|VM_WRITE|VM_HUGETLB|
583 						VM_SHARED|VM_NORESERVE))) {
584 			charged = nrpages;
585 			if (security_vm_enough_memory_mm(mm, charged))
586 				return -ENOMEM;
587 			newflags |= VM_ACCOUNT;
588 		}
589 	}
590 
591 	/*
592 	 * First try to merge with previous and/or next vma.
593 	 */
594 	pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
595 	*pprev = vma_merge(mm, *pprev, start, end, newflags,
596 			   vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
597 			   vma->vm_userfaultfd_ctx, anon_vma_name(vma));
598 	if (*pprev) {
599 		vma = *pprev;
600 		VM_WARN_ON((vma->vm_flags ^ newflags) & ~VM_SOFTDIRTY);
601 		goto success;
602 	}
603 
604 	*pprev = vma;
605 
606 	if (start != vma->vm_start) {
607 		error = split_vma(mm, vma, start, 1);
608 		if (error)
609 			goto fail;
610 	}
611 
612 	if (end != vma->vm_end) {
613 		error = split_vma(mm, vma, end, 0);
614 		if (error)
615 			goto fail;
616 	}
617 
618 success:
619 	/*
620 	 * vm_flags and vm_page_prot are protected by the mmap_lock
621 	 * held in write mode.
622 	 */
623 	vma->vm_flags = newflags;
624 	/*
625 	 * We want to check manually if we can change individual PTEs writable
626 	 * if we can't do that automatically for all PTEs in a mapping. For
627 	 * private mappings, that's always the case when we have write
628 	 * permissions as we properly have to handle COW.
629 	 */
630 	if (vma->vm_flags & VM_SHARED)
631 		try_change_writable = vma_wants_writenotify(vma, vma->vm_page_prot);
632 	else
633 		try_change_writable = !!(vma->vm_flags & VM_WRITE);
634 	vma_set_page_prot(vma);
635 
636 	change_protection(tlb, vma, start, end, vma->vm_page_prot,
637 			  try_change_writable ? MM_CP_TRY_CHANGE_WRITABLE : 0);
638 
639 	/*
640 	 * Private VM_LOCKED VMA becoming writable: trigger COW to avoid major
641 	 * fault on access.
642 	 */
643 	if ((oldflags & (VM_WRITE | VM_SHARED | VM_LOCKED)) == VM_LOCKED &&
644 			(newflags & VM_WRITE)) {
645 		populate_vma_page_range(vma, start, end, NULL);
646 	}
647 
648 	vm_stat_account(mm, oldflags, -nrpages);
649 	vm_stat_account(mm, newflags, nrpages);
650 	perf_event_mmap(vma);
651 	return 0;
652 
653 fail:
654 	vm_unacct_memory(charged);
655 	return error;
656 }
657 
658 /*
659  * pkey==-1 when doing a legacy mprotect()
660  */
661 static int do_mprotect_pkey(unsigned long start, size_t len,
662 		unsigned long prot, int pkey)
663 {
664 	unsigned long nstart, end, tmp, reqprot;
665 	struct vm_area_struct *vma, *prev;
666 	int error;
667 	const int grows = prot & (PROT_GROWSDOWN|PROT_GROWSUP);
668 	const bool rier = (current->personality & READ_IMPLIES_EXEC) &&
669 				(prot & PROT_READ);
670 	struct mmu_gather tlb;
671 
672 	start = untagged_addr(start);
673 
674 	prot &= ~(PROT_GROWSDOWN|PROT_GROWSUP);
675 	if (grows == (PROT_GROWSDOWN|PROT_GROWSUP)) /* can't be both */
676 		return -EINVAL;
677 
678 	if (start & ~PAGE_MASK)
679 		return -EINVAL;
680 	if (!len)
681 		return 0;
682 	len = PAGE_ALIGN(len);
683 	end = start + len;
684 	if (end <= start)
685 		return -ENOMEM;
686 	if (!arch_validate_prot(prot, start))
687 		return -EINVAL;
688 
689 	reqprot = prot;
690 
691 	if (mmap_write_lock_killable(current->mm))
692 		return -EINTR;
693 
694 	/*
695 	 * If userspace did not allocate the pkey, do not let
696 	 * them use it here.
697 	 */
698 	error = -EINVAL;
699 	if ((pkey != -1) && !mm_pkey_is_allocated(current->mm, pkey))
700 		goto out;
701 
702 	vma = find_vma(current->mm, start);
703 	error = -ENOMEM;
704 	if (!vma)
705 		goto out;
706 
707 	if (unlikely(grows & PROT_GROWSDOWN)) {
708 		if (vma->vm_start >= end)
709 			goto out;
710 		start = vma->vm_start;
711 		error = -EINVAL;
712 		if (!(vma->vm_flags & VM_GROWSDOWN))
713 			goto out;
714 	} else {
715 		if (vma->vm_start > start)
716 			goto out;
717 		if (unlikely(grows & PROT_GROWSUP)) {
718 			end = vma->vm_end;
719 			error = -EINVAL;
720 			if (!(vma->vm_flags & VM_GROWSUP))
721 				goto out;
722 		}
723 	}
724 
725 	if (start > vma->vm_start)
726 		prev = vma;
727 	else
728 		prev = vma->vm_prev;
729 
730 	tlb_gather_mmu(&tlb, current->mm);
731 	for (nstart = start ; ; ) {
732 		unsigned long mask_off_old_flags;
733 		unsigned long newflags;
734 		int new_vma_pkey;
735 
736 		/* Here we know that vma->vm_start <= nstart < vma->vm_end. */
737 
738 		/* Does the application expect PROT_READ to imply PROT_EXEC */
739 		if (rier && (vma->vm_flags & VM_MAYEXEC))
740 			prot |= PROT_EXEC;
741 
742 		/*
743 		 * Each mprotect() call explicitly passes r/w/x permissions.
744 		 * If a permission is not passed to mprotect(), it must be
745 		 * cleared from the VMA.
746 		 */
747 		mask_off_old_flags = VM_READ | VM_WRITE | VM_EXEC |
748 					VM_FLAGS_CLEAR;
749 
750 		new_vma_pkey = arch_override_mprotect_pkey(vma, prot, pkey);
751 		newflags = calc_vm_prot_bits(prot, new_vma_pkey);
752 		newflags |= (vma->vm_flags & ~mask_off_old_flags);
753 
754 		/* newflags >> 4 shift VM_MAY% in place of VM_% */
755 		if ((newflags & ~(newflags >> 4)) & VM_ACCESS_FLAGS) {
756 			error = -EACCES;
757 			break;
758 		}
759 
760 		/* Allow architectures to sanity-check the new flags */
761 		if (!arch_validate_flags(newflags)) {
762 			error = -EINVAL;
763 			break;
764 		}
765 
766 		error = security_file_mprotect(vma, reqprot, prot);
767 		if (error)
768 			break;
769 
770 		tmp = vma->vm_end;
771 		if (tmp > end)
772 			tmp = end;
773 
774 		if (vma->vm_ops && vma->vm_ops->mprotect) {
775 			error = vma->vm_ops->mprotect(vma, nstart, tmp, newflags);
776 			if (error)
777 				break;
778 		}
779 
780 		error = mprotect_fixup(&tlb, vma, &prev, nstart, tmp, newflags);
781 		if (error)
782 			break;
783 
784 		nstart = tmp;
785 
786 		if (nstart < prev->vm_end)
787 			nstart = prev->vm_end;
788 		if (nstart >= end)
789 			break;
790 
791 		vma = prev->vm_next;
792 		if (!vma || vma->vm_start != nstart) {
793 			error = -ENOMEM;
794 			break;
795 		}
796 		prot = reqprot;
797 	}
798 	tlb_finish_mmu(&tlb);
799 out:
800 	mmap_write_unlock(current->mm);
801 	return error;
802 }
803 
804 SYSCALL_DEFINE3(mprotect, unsigned long, start, size_t, len,
805 		unsigned long, prot)
806 {
807 	return do_mprotect_pkey(start, len, prot, -1);
808 }
809 
810 #ifdef CONFIG_ARCH_HAS_PKEYS
811 
812 SYSCALL_DEFINE4(pkey_mprotect, unsigned long, start, size_t, len,
813 		unsigned long, prot, int, pkey)
814 {
815 	return do_mprotect_pkey(start, len, prot, pkey);
816 }
817 
818 SYSCALL_DEFINE2(pkey_alloc, unsigned long, flags, unsigned long, init_val)
819 {
820 	int pkey;
821 	int ret;
822 
823 	/* No flags supported yet. */
824 	if (flags)
825 		return -EINVAL;
826 	/* check for unsupported init values */
827 	if (init_val & ~PKEY_ACCESS_MASK)
828 		return -EINVAL;
829 
830 	mmap_write_lock(current->mm);
831 	pkey = mm_pkey_alloc(current->mm);
832 
833 	ret = -ENOSPC;
834 	if (pkey == -1)
835 		goto out;
836 
837 	ret = arch_set_user_pkey_access(current, pkey, init_val);
838 	if (ret) {
839 		mm_pkey_free(current->mm, pkey);
840 		goto out;
841 	}
842 	ret = pkey;
843 out:
844 	mmap_write_unlock(current->mm);
845 	return ret;
846 }
847 
848 SYSCALL_DEFINE1(pkey_free, int, pkey)
849 {
850 	int ret;
851 
852 	mmap_write_lock(current->mm);
853 	ret = mm_pkey_free(current->mm, pkey);
854 	mmap_write_unlock(current->mm);
855 
856 	/*
857 	 * We could provide warnings or errors if any VMA still
858 	 * has the pkey set here.
859 	 */
860 	return ret;
861 }
862 
863 #endif /* CONFIG_ARCH_HAS_PKEYS */
864