1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * mm/mprotect.c 4 * 5 * (C) Copyright 1994 Linus Torvalds 6 * (C) Copyright 2002 Christoph Hellwig 7 * 8 * Address space accounting code <alan@lxorguk.ukuu.org.uk> 9 * (C) Copyright 2002 Red Hat Inc, All Rights Reserved 10 */ 11 12 #include <linux/mm.h> 13 #include <linux/hugetlb.h> 14 #include <linux/shm.h> 15 #include <linux/mman.h> 16 #include <linux/fs.h> 17 #include <linux/highmem.h> 18 #include <linux/security.h> 19 #include <linux/mempolicy.h> 20 #include <linux/personality.h> 21 #include <linux/syscalls.h> 22 #include <linux/swap.h> 23 #include <linux/swapops.h> 24 #include <linux/mmu_notifier.h> 25 #include <linux/migrate.h> 26 #include <linux/perf_event.h> 27 #include <linux/pkeys.h> 28 #include <linux/ksm.h> 29 #include <linux/uaccess.h> 30 #include <linux/mm_inline.h> 31 #include <asm/pgtable.h> 32 #include <asm/cacheflush.h> 33 #include <asm/mmu_context.h> 34 #include <asm/tlbflush.h> 35 36 #include "internal.h" 37 38 static unsigned long change_pte_range(struct vm_area_struct *vma, pmd_t *pmd, 39 unsigned long addr, unsigned long end, pgprot_t newprot, 40 int dirty_accountable, int prot_numa) 41 { 42 struct mm_struct *mm = vma->vm_mm; 43 pte_t *pte, oldpte; 44 spinlock_t *ptl; 45 unsigned long pages = 0; 46 int target_node = NUMA_NO_NODE; 47 48 /* 49 * Can be called with only the mmap_sem for reading by 50 * prot_numa so we must check the pmd isn't constantly 51 * changing from under us from pmd_none to pmd_trans_huge 52 * and/or the other way around. 53 */ 54 if (pmd_trans_unstable(pmd)) 55 return 0; 56 57 /* 58 * The pmd points to a regular pte so the pmd can't change 59 * from under us even if the mmap_sem is only hold for 60 * reading. 61 */ 62 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 63 64 /* Get target node for single threaded private VMAs */ 65 if (prot_numa && !(vma->vm_flags & VM_SHARED) && 66 atomic_read(&vma->vm_mm->mm_users) == 1) 67 target_node = numa_node_id(); 68 69 flush_tlb_batched_pending(vma->vm_mm); 70 arch_enter_lazy_mmu_mode(); 71 do { 72 oldpte = *pte; 73 if (pte_present(oldpte)) { 74 pte_t ptent; 75 bool preserve_write = prot_numa && pte_write(oldpte); 76 77 /* 78 * Avoid trapping faults against the zero or KSM 79 * pages. See similar comment in change_huge_pmd. 80 */ 81 if (prot_numa) { 82 struct page *page; 83 84 page = vm_normal_page(vma, addr, oldpte); 85 if (!page || PageKsm(page)) 86 continue; 87 88 /* Also skip shared copy-on-write pages */ 89 if (is_cow_mapping(vma->vm_flags) && 90 page_mapcount(page) != 1) 91 continue; 92 93 /* 94 * While migration can move some dirty pages, 95 * it cannot move them all from MIGRATE_ASYNC 96 * context. 97 */ 98 if (page_is_file_cache(page) && PageDirty(page)) 99 continue; 100 101 /* Avoid TLB flush if possible */ 102 if (pte_protnone(oldpte)) 103 continue; 104 105 /* 106 * Don't mess with PTEs if page is already on the node 107 * a single-threaded process is running on. 108 */ 109 if (target_node == page_to_nid(page)) 110 continue; 111 } 112 113 ptent = ptep_modify_prot_start(mm, addr, pte); 114 ptent = pte_modify(ptent, newprot); 115 if (preserve_write) 116 ptent = pte_mk_savedwrite(ptent); 117 118 /* Avoid taking write faults for known dirty pages */ 119 if (dirty_accountable && pte_dirty(ptent) && 120 (pte_soft_dirty(ptent) || 121 !(vma->vm_flags & VM_SOFTDIRTY))) { 122 ptent = pte_mkwrite(ptent); 123 } 124 ptep_modify_prot_commit(mm, addr, pte, ptent); 125 pages++; 126 } else if (IS_ENABLED(CONFIG_MIGRATION)) { 127 swp_entry_t entry = pte_to_swp_entry(oldpte); 128 129 if (is_write_migration_entry(entry)) { 130 pte_t newpte; 131 /* 132 * A protection check is difficult so 133 * just be safe and disable write 134 */ 135 make_migration_entry_read(&entry); 136 newpte = swp_entry_to_pte(entry); 137 if (pte_swp_soft_dirty(oldpte)) 138 newpte = pte_swp_mksoft_dirty(newpte); 139 set_pte_at(mm, addr, pte, newpte); 140 141 pages++; 142 } 143 144 if (is_write_device_private_entry(entry)) { 145 pte_t newpte; 146 147 /* 148 * We do not preserve soft-dirtiness. See 149 * copy_one_pte() for explanation. 150 */ 151 make_device_private_entry_read(&entry); 152 newpte = swp_entry_to_pte(entry); 153 set_pte_at(mm, addr, pte, newpte); 154 155 pages++; 156 } 157 } 158 } while (pte++, addr += PAGE_SIZE, addr != end); 159 arch_leave_lazy_mmu_mode(); 160 pte_unmap_unlock(pte - 1, ptl); 161 162 return pages; 163 } 164 165 static inline unsigned long change_pmd_range(struct vm_area_struct *vma, 166 pud_t *pud, unsigned long addr, unsigned long end, 167 pgprot_t newprot, int dirty_accountable, int prot_numa) 168 { 169 pmd_t *pmd; 170 struct mm_struct *mm = vma->vm_mm; 171 unsigned long next; 172 unsigned long pages = 0; 173 unsigned long nr_huge_updates = 0; 174 unsigned long mni_start = 0; 175 176 pmd = pmd_offset(pud, addr); 177 do { 178 unsigned long this_pages; 179 180 next = pmd_addr_end(addr, end); 181 if (!is_swap_pmd(*pmd) && !pmd_trans_huge(*pmd) && !pmd_devmap(*pmd) 182 && pmd_none_or_clear_bad(pmd)) 183 goto next; 184 185 /* invoke the mmu notifier if the pmd is populated */ 186 if (!mni_start) { 187 mni_start = addr; 188 mmu_notifier_invalidate_range_start(mm, mni_start, end); 189 } 190 191 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { 192 if (next - addr != HPAGE_PMD_SIZE) { 193 __split_huge_pmd(vma, pmd, addr, false, NULL); 194 } else { 195 int nr_ptes = change_huge_pmd(vma, pmd, addr, 196 newprot, prot_numa); 197 198 if (nr_ptes) { 199 if (nr_ptes == HPAGE_PMD_NR) { 200 pages += HPAGE_PMD_NR; 201 nr_huge_updates++; 202 } 203 204 /* huge pmd was handled */ 205 goto next; 206 } 207 } 208 /* fall through, the trans huge pmd just split */ 209 } 210 this_pages = change_pte_range(vma, pmd, addr, next, newprot, 211 dirty_accountable, prot_numa); 212 pages += this_pages; 213 next: 214 cond_resched(); 215 } while (pmd++, addr = next, addr != end); 216 217 if (mni_start) 218 mmu_notifier_invalidate_range_end(mm, mni_start, end); 219 220 if (nr_huge_updates) 221 count_vm_numa_events(NUMA_HUGE_PTE_UPDATES, nr_huge_updates); 222 return pages; 223 } 224 225 static inline unsigned long change_pud_range(struct vm_area_struct *vma, 226 p4d_t *p4d, unsigned long addr, unsigned long end, 227 pgprot_t newprot, int dirty_accountable, int prot_numa) 228 { 229 pud_t *pud; 230 unsigned long next; 231 unsigned long pages = 0; 232 233 pud = pud_offset(p4d, addr); 234 do { 235 next = pud_addr_end(addr, end); 236 if (pud_none_or_clear_bad(pud)) 237 continue; 238 pages += change_pmd_range(vma, pud, addr, next, newprot, 239 dirty_accountable, prot_numa); 240 } while (pud++, addr = next, addr != end); 241 242 return pages; 243 } 244 245 static inline unsigned long change_p4d_range(struct vm_area_struct *vma, 246 pgd_t *pgd, unsigned long addr, unsigned long end, 247 pgprot_t newprot, int dirty_accountable, int prot_numa) 248 { 249 p4d_t *p4d; 250 unsigned long next; 251 unsigned long pages = 0; 252 253 p4d = p4d_offset(pgd, addr); 254 do { 255 next = p4d_addr_end(addr, end); 256 if (p4d_none_or_clear_bad(p4d)) 257 continue; 258 pages += change_pud_range(vma, p4d, addr, next, newprot, 259 dirty_accountable, prot_numa); 260 } while (p4d++, addr = next, addr != end); 261 262 return pages; 263 } 264 265 static unsigned long change_protection_range(struct vm_area_struct *vma, 266 unsigned long addr, unsigned long end, pgprot_t newprot, 267 int dirty_accountable, int prot_numa) 268 { 269 struct mm_struct *mm = vma->vm_mm; 270 pgd_t *pgd; 271 unsigned long next; 272 unsigned long start = addr; 273 unsigned long pages = 0; 274 275 BUG_ON(addr >= end); 276 pgd = pgd_offset(mm, addr); 277 flush_cache_range(vma, addr, end); 278 inc_tlb_flush_pending(mm); 279 do { 280 next = pgd_addr_end(addr, end); 281 if (pgd_none_or_clear_bad(pgd)) 282 continue; 283 pages += change_p4d_range(vma, pgd, addr, next, newprot, 284 dirty_accountable, prot_numa); 285 } while (pgd++, addr = next, addr != end); 286 287 /* Only flush the TLB if we actually modified any entries: */ 288 if (pages) 289 flush_tlb_range(vma, start, end); 290 dec_tlb_flush_pending(mm); 291 292 return pages; 293 } 294 295 unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, 296 unsigned long end, pgprot_t newprot, 297 int dirty_accountable, int prot_numa) 298 { 299 unsigned long pages; 300 301 if (is_vm_hugetlb_page(vma)) 302 pages = hugetlb_change_protection(vma, start, end, newprot); 303 else 304 pages = change_protection_range(vma, start, end, newprot, dirty_accountable, prot_numa); 305 306 return pages; 307 } 308 309 int 310 mprotect_fixup(struct vm_area_struct *vma, struct vm_area_struct **pprev, 311 unsigned long start, unsigned long end, unsigned long newflags) 312 { 313 struct mm_struct *mm = vma->vm_mm; 314 unsigned long oldflags = vma->vm_flags; 315 long nrpages = (end - start) >> PAGE_SHIFT; 316 unsigned long charged = 0; 317 pgoff_t pgoff; 318 int error; 319 int dirty_accountable = 0; 320 321 if (newflags == oldflags) { 322 *pprev = vma; 323 return 0; 324 } 325 326 /* 327 * If we make a private mapping writable we increase our commit; 328 * but (without finer accounting) cannot reduce our commit if we 329 * make it unwritable again. hugetlb mapping were accounted for 330 * even if read-only so there is no need to account for them here 331 */ 332 if (newflags & VM_WRITE) { 333 /* Check space limits when area turns into data. */ 334 if (!may_expand_vm(mm, newflags, nrpages) && 335 may_expand_vm(mm, oldflags, nrpages)) 336 return -ENOMEM; 337 if (!(oldflags & (VM_ACCOUNT|VM_WRITE|VM_HUGETLB| 338 VM_SHARED|VM_NORESERVE))) { 339 charged = nrpages; 340 if (security_vm_enough_memory_mm(mm, charged)) 341 return -ENOMEM; 342 newflags |= VM_ACCOUNT; 343 } 344 } 345 346 /* 347 * First try to merge with previous and/or next vma. 348 */ 349 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT); 350 *pprev = vma_merge(mm, *pprev, start, end, newflags, 351 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma), 352 vma->vm_userfaultfd_ctx); 353 if (*pprev) { 354 vma = *pprev; 355 VM_WARN_ON((vma->vm_flags ^ newflags) & ~VM_SOFTDIRTY); 356 goto success; 357 } 358 359 *pprev = vma; 360 361 if (start != vma->vm_start) { 362 error = split_vma(mm, vma, start, 1); 363 if (error) 364 goto fail; 365 } 366 367 if (end != vma->vm_end) { 368 error = split_vma(mm, vma, end, 0); 369 if (error) 370 goto fail; 371 } 372 373 success: 374 /* 375 * vm_flags and vm_page_prot are protected by the mmap_sem 376 * held in write mode. 377 */ 378 vma->vm_flags = newflags; 379 dirty_accountable = vma_wants_writenotify(vma, vma->vm_page_prot); 380 vma_set_page_prot(vma); 381 382 change_protection(vma, start, end, vma->vm_page_prot, 383 dirty_accountable, 0); 384 385 /* 386 * Private VM_LOCKED VMA becoming writable: trigger COW to avoid major 387 * fault on access. 388 */ 389 if ((oldflags & (VM_WRITE | VM_SHARED | VM_LOCKED)) == VM_LOCKED && 390 (newflags & VM_WRITE)) { 391 populate_vma_page_range(vma, start, end, NULL); 392 } 393 394 vm_stat_account(mm, oldflags, -nrpages); 395 vm_stat_account(mm, newflags, nrpages); 396 perf_event_mmap(vma); 397 return 0; 398 399 fail: 400 vm_unacct_memory(charged); 401 return error; 402 } 403 404 /* 405 * pkey==-1 when doing a legacy mprotect() 406 */ 407 static int do_mprotect_pkey(unsigned long start, size_t len, 408 unsigned long prot, int pkey) 409 { 410 unsigned long nstart, end, tmp, reqprot; 411 struct vm_area_struct *vma, *prev; 412 int error = -EINVAL; 413 const int grows = prot & (PROT_GROWSDOWN|PROT_GROWSUP); 414 const bool rier = (current->personality & READ_IMPLIES_EXEC) && 415 (prot & PROT_READ); 416 417 prot &= ~(PROT_GROWSDOWN|PROT_GROWSUP); 418 if (grows == (PROT_GROWSDOWN|PROT_GROWSUP)) /* can't be both */ 419 return -EINVAL; 420 421 if (start & ~PAGE_MASK) 422 return -EINVAL; 423 if (!len) 424 return 0; 425 len = PAGE_ALIGN(len); 426 end = start + len; 427 if (end <= start) 428 return -ENOMEM; 429 if (!arch_validate_prot(prot, start)) 430 return -EINVAL; 431 432 reqprot = prot; 433 434 if (down_write_killable(¤t->mm->mmap_sem)) 435 return -EINTR; 436 437 /* 438 * If userspace did not allocate the pkey, do not let 439 * them use it here. 440 */ 441 error = -EINVAL; 442 if ((pkey != -1) && !mm_pkey_is_allocated(current->mm, pkey)) 443 goto out; 444 445 vma = find_vma(current->mm, start); 446 error = -ENOMEM; 447 if (!vma) 448 goto out; 449 prev = vma->vm_prev; 450 if (unlikely(grows & PROT_GROWSDOWN)) { 451 if (vma->vm_start >= end) 452 goto out; 453 start = vma->vm_start; 454 error = -EINVAL; 455 if (!(vma->vm_flags & VM_GROWSDOWN)) 456 goto out; 457 } else { 458 if (vma->vm_start > start) 459 goto out; 460 if (unlikely(grows & PROT_GROWSUP)) { 461 end = vma->vm_end; 462 error = -EINVAL; 463 if (!(vma->vm_flags & VM_GROWSUP)) 464 goto out; 465 } 466 } 467 if (start > vma->vm_start) 468 prev = vma; 469 470 for (nstart = start ; ; ) { 471 unsigned long mask_off_old_flags; 472 unsigned long newflags; 473 int new_vma_pkey; 474 475 /* Here we know that vma->vm_start <= nstart < vma->vm_end. */ 476 477 /* Does the application expect PROT_READ to imply PROT_EXEC */ 478 if (rier && (vma->vm_flags & VM_MAYEXEC)) 479 prot |= PROT_EXEC; 480 481 /* 482 * Each mprotect() call explicitly passes r/w/x permissions. 483 * If a permission is not passed to mprotect(), it must be 484 * cleared from the VMA. 485 */ 486 mask_off_old_flags = VM_READ | VM_WRITE | VM_EXEC | 487 VM_FLAGS_CLEAR; 488 489 new_vma_pkey = arch_override_mprotect_pkey(vma, prot, pkey); 490 newflags = calc_vm_prot_bits(prot, new_vma_pkey); 491 newflags |= (vma->vm_flags & ~mask_off_old_flags); 492 493 /* newflags >> 4 shift VM_MAY% in place of VM_% */ 494 if ((newflags & ~(newflags >> 4)) & (VM_READ | VM_WRITE | VM_EXEC)) { 495 error = -EACCES; 496 goto out; 497 } 498 499 error = security_file_mprotect(vma, reqprot, prot); 500 if (error) 501 goto out; 502 503 tmp = vma->vm_end; 504 if (tmp > end) 505 tmp = end; 506 error = mprotect_fixup(vma, &prev, nstart, tmp, newflags); 507 if (error) 508 goto out; 509 nstart = tmp; 510 511 if (nstart < prev->vm_end) 512 nstart = prev->vm_end; 513 if (nstart >= end) 514 goto out; 515 516 vma = prev->vm_next; 517 if (!vma || vma->vm_start != nstart) { 518 error = -ENOMEM; 519 goto out; 520 } 521 prot = reqprot; 522 } 523 out: 524 up_write(¤t->mm->mmap_sem); 525 return error; 526 } 527 528 SYSCALL_DEFINE3(mprotect, unsigned long, start, size_t, len, 529 unsigned long, prot) 530 { 531 return do_mprotect_pkey(start, len, prot, -1); 532 } 533 534 #ifdef CONFIG_ARCH_HAS_PKEYS 535 536 SYSCALL_DEFINE4(pkey_mprotect, unsigned long, start, size_t, len, 537 unsigned long, prot, int, pkey) 538 { 539 return do_mprotect_pkey(start, len, prot, pkey); 540 } 541 542 SYSCALL_DEFINE2(pkey_alloc, unsigned long, flags, unsigned long, init_val) 543 { 544 int pkey; 545 int ret; 546 547 /* No flags supported yet. */ 548 if (flags) 549 return -EINVAL; 550 /* check for unsupported init values */ 551 if (init_val & ~PKEY_ACCESS_MASK) 552 return -EINVAL; 553 554 down_write(¤t->mm->mmap_sem); 555 pkey = mm_pkey_alloc(current->mm); 556 557 ret = -ENOSPC; 558 if (pkey == -1) 559 goto out; 560 561 ret = arch_set_user_pkey_access(current, pkey, init_val); 562 if (ret) { 563 mm_pkey_free(current->mm, pkey); 564 goto out; 565 } 566 ret = pkey; 567 out: 568 up_write(¤t->mm->mmap_sem); 569 return ret; 570 } 571 572 SYSCALL_DEFINE1(pkey_free, int, pkey) 573 { 574 int ret; 575 576 down_write(¤t->mm->mmap_sem); 577 ret = mm_pkey_free(current->mm, pkey); 578 up_write(¤t->mm->mmap_sem); 579 580 /* 581 * We could provie warnings or errors if any VMA still 582 * has the pkey set here. 583 */ 584 return ret; 585 } 586 587 #endif /* CONFIG_ARCH_HAS_PKEYS */ 588