1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/mmu_notifier.c 4 * 5 * Copyright (C) 2008 Qumranet, Inc. 6 * Copyright (C) 2008 SGI 7 * Christoph Lameter <cl@linux.com> 8 */ 9 10 #include <linux/rculist.h> 11 #include <linux/mmu_notifier.h> 12 #include <linux/export.h> 13 #include <linux/mm.h> 14 #include <linux/err.h> 15 #include <linux/interval_tree.h> 16 #include <linux/srcu.h> 17 #include <linux/rcupdate.h> 18 #include <linux/sched.h> 19 #include <linux/sched/mm.h> 20 #include <linux/slab.h> 21 22 /* global SRCU for all MMs */ 23 DEFINE_STATIC_SRCU(srcu); 24 25 #ifdef CONFIG_LOCKDEP 26 struct lockdep_map __mmu_notifier_invalidate_range_start_map = { 27 .name = "mmu_notifier_invalidate_range_start" 28 }; 29 #endif 30 31 /* 32 * The mmu_notifier_subscriptions structure is allocated and installed in 33 * mm->notifier_subscriptions inside the mm_take_all_locks() protected 34 * critical section and it's released only when mm_count reaches zero 35 * in mmdrop(). 36 */ 37 struct mmu_notifier_subscriptions { 38 /* all mmu notifiers registered in this mm are queued in this list */ 39 struct hlist_head list; 40 bool has_itree; 41 /* to serialize the list modifications and hlist_unhashed */ 42 spinlock_t lock; 43 unsigned long invalidate_seq; 44 unsigned long active_invalidate_ranges; 45 struct rb_root_cached itree; 46 wait_queue_head_t wq; 47 struct hlist_head deferred_list; 48 }; 49 50 /* 51 * This is a collision-retry read-side/write-side 'lock', a lot like a 52 * seqcount, however this allows multiple write-sides to hold it at 53 * once. Conceptually the write side is protecting the values of the PTEs in 54 * this mm, such that PTES cannot be read into SPTEs (shadow PTEs) while any 55 * writer exists. 56 * 57 * Note that the core mm creates nested invalidate_range_start()/end() regions 58 * within the same thread, and runs invalidate_range_start()/end() in parallel 59 * on multiple CPUs. This is designed to not reduce concurrency or block 60 * progress on the mm side. 61 * 62 * As a secondary function, holding the full write side also serves to prevent 63 * writers for the itree, this is an optimization to avoid extra locking 64 * during invalidate_range_start/end notifiers. 65 * 66 * The write side has two states, fully excluded: 67 * - mm->active_invalidate_ranges != 0 68 * - subscriptions->invalidate_seq & 1 == True (odd) 69 * - some range on the mm_struct is being invalidated 70 * - the itree is not allowed to change 71 * 72 * And partially excluded: 73 * - mm->active_invalidate_ranges != 0 74 * - subscriptions->invalidate_seq & 1 == False (even) 75 * - some range on the mm_struct is being invalidated 76 * - the itree is allowed to change 77 * 78 * Operations on notifier_subscriptions->invalidate_seq (under spinlock): 79 * seq |= 1 # Begin writing 80 * seq++ # Release the writing state 81 * seq & 1 # True if a writer exists 82 * 83 * The later state avoids some expensive work on inv_end in the common case of 84 * no mmu_interval_notifier monitoring the VA. 85 */ 86 static bool 87 mn_itree_is_invalidating(struct mmu_notifier_subscriptions *subscriptions) 88 { 89 lockdep_assert_held(&subscriptions->lock); 90 return subscriptions->invalidate_seq & 1; 91 } 92 93 static struct mmu_interval_notifier * 94 mn_itree_inv_start_range(struct mmu_notifier_subscriptions *subscriptions, 95 const struct mmu_notifier_range *range, 96 unsigned long *seq) 97 { 98 struct interval_tree_node *node; 99 struct mmu_interval_notifier *res = NULL; 100 101 spin_lock(&subscriptions->lock); 102 subscriptions->active_invalidate_ranges++; 103 node = interval_tree_iter_first(&subscriptions->itree, range->start, 104 range->end - 1); 105 if (node) { 106 subscriptions->invalidate_seq |= 1; 107 res = container_of(node, struct mmu_interval_notifier, 108 interval_tree); 109 } 110 111 *seq = subscriptions->invalidate_seq; 112 spin_unlock(&subscriptions->lock); 113 return res; 114 } 115 116 static struct mmu_interval_notifier * 117 mn_itree_inv_next(struct mmu_interval_notifier *interval_sub, 118 const struct mmu_notifier_range *range) 119 { 120 struct interval_tree_node *node; 121 122 node = interval_tree_iter_next(&interval_sub->interval_tree, 123 range->start, range->end - 1); 124 if (!node) 125 return NULL; 126 return container_of(node, struct mmu_interval_notifier, interval_tree); 127 } 128 129 static void mn_itree_inv_end(struct mmu_notifier_subscriptions *subscriptions) 130 { 131 struct mmu_interval_notifier *interval_sub; 132 struct hlist_node *next; 133 134 spin_lock(&subscriptions->lock); 135 if (--subscriptions->active_invalidate_ranges || 136 !mn_itree_is_invalidating(subscriptions)) { 137 spin_unlock(&subscriptions->lock); 138 return; 139 } 140 141 /* Make invalidate_seq even */ 142 subscriptions->invalidate_seq++; 143 144 /* 145 * The inv_end incorporates a deferred mechanism like rtnl_unlock(). 146 * Adds and removes are queued until the final inv_end happens then 147 * they are progressed. This arrangement for tree updates is used to 148 * avoid using a blocking lock during invalidate_range_start. 149 */ 150 hlist_for_each_entry_safe(interval_sub, next, 151 &subscriptions->deferred_list, 152 deferred_item) { 153 if (RB_EMPTY_NODE(&interval_sub->interval_tree.rb)) 154 interval_tree_insert(&interval_sub->interval_tree, 155 &subscriptions->itree); 156 else 157 interval_tree_remove(&interval_sub->interval_tree, 158 &subscriptions->itree); 159 hlist_del(&interval_sub->deferred_item); 160 } 161 spin_unlock(&subscriptions->lock); 162 163 wake_up_all(&subscriptions->wq); 164 } 165 166 /** 167 * mmu_interval_read_begin - Begin a read side critical section against a VA 168 * range 169 * @interval_sub: The interval subscription 170 * 171 * mmu_iterval_read_begin()/mmu_iterval_read_retry() implement a 172 * collision-retry scheme similar to seqcount for the VA range under 173 * subscription. If the mm invokes invalidation during the critical section 174 * then mmu_interval_read_retry() will return true. 175 * 176 * This is useful to obtain shadow PTEs where teardown or setup of the SPTEs 177 * require a blocking context. The critical region formed by this can sleep, 178 * and the required 'user_lock' can also be a sleeping lock. 179 * 180 * The caller is required to provide a 'user_lock' to serialize both teardown 181 * and setup. 182 * 183 * The return value should be passed to mmu_interval_read_retry(). 184 */ 185 unsigned long 186 mmu_interval_read_begin(struct mmu_interval_notifier *interval_sub) 187 { 188 struct mmu_notifier_subscriptions *subscriptions = 189 interval_sub->mm->notifier_subscriptions; 190 unsigned long seq; 191 bool is_invalidating; 192 193 /* 194 * If the subscription has a different seq value under the user_lock 195 * than we started with then it has collided. 196 * 197 * If the subscription currently has the same seq value as the 198 * subscriptions seq, then it is currently between 199 * invalidate_start/end and is colliding. 200 * 201 * The locking looks broadly like this: 202 * mn_itree_inv_start(): mmu_interval_read_begin(): 203 * spin_lock 204 * seq = READ_ONCE(interval_sub->invalidate_seq); 205 * seq == subs->invalidate_seq 206 * spin_unlock 207 * spin_lock 208 * seq = ++subscriptions->invalidate_seq 209 * spin_unlock 210 * op->invalidate(): 211 * user_lock 212 * mmu_interval_set_seq() 213 * interval_sub->invalidate_seq = seq 214 * user_unlock 215 * 216 * [Required: mmu_interval_read_retry() == true] 217 * 218 * mn_itree_inv_end(): 219 * spin_lock 220 * seq = ++subscriptions->invalidate_seq 221 * spin_unlock 222 * 223 * user_lock 224 * mmu_interval_read_retry(): 225 * interval_sub->invalidate_seq != seq 226 * user_unlock 227 * 228 * Barriers are not needed here as any races here are closed by an 229 * eventual mmu_interval_read_retry(), which provides a barrier via the 230 * user_lock. 231 */ 232 spin_lock(&subscriptions->lock); 233 /* Pairs with the WRITE_ONCE in mmu_interval_set_seq() */ 234 seq = READ_ONCE(interval_sub->invalidate_seq); 235 is_invalidating = seq == subscriptions->invalidate_seq; 236 spin_unlock(&subscriptions->lock); 237 238 /* 239 * interval_sub->invalidate_seq must always be set to an odd value via 240 * mmu_interval_set_seq() using the provided cur_seq from 241 * mn_itree_inv_start_range(). This ensures that if seq does wrap we 242 * will always clear the below sleep in some reasonable time as 243 * subscriptions->invalidate_seq is even in the idle state. 244 */ 245 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); 246 lock_map_release(&__mmu_notifier_invalidate_range_start_map); 247 if (is_invalidating) 248 wait_event(subscriptions->wq, 249 READ_ONCE(subscriptions->invalidate_seq) != seq); 250 251 /* 252 * Notice that mmu_interval_read_retry() can already be true at this 253 * point, avoiding loops here allows the caller to provide a global 254 * time bound. 255 */ 256 257 return seq; 258 } 259 EXPORT_SYMBOL_GPL(mmu_interval_read_begin); 260 261 static void mn_itree_release(struct mmu_notifier_subscriptions *subscriptions, 262 struct mm_struct *mm) 263 { 264 struct mmu_notifier_range range = { 265 .flags = MMU_NOTIFIER_RANGE_BLOCKABLE, 266 .event = MMU_NOTIFY_RELEASE, 267 .mm = mm, 268 .start = 0, 269 .end = ULONG_MAX, 270 }; 271 struct mmu_interval_notifier *interval_sub; 272 unsigned long cur_seq; 273 bool ret; 274 275 for (interval_sub = 276 mn_itree_inv_start_range(subscriptions, &range, &cur_seq); 277 interval_sub; 278 interval_sub = mn_itree_inv_next(interval_sub, &range)) { 279 ret = interval_sub->ops->invalidate(interval_sub, &range, 280 cur_seq); 281 WARN_ON(!ret); 282 } 283 284 mn_itree_inv_end(subscriptions); 285 } 286 287 /* 288 * This function can't run concurrently against mmu_notifier_register 289 * because mm->mm_users > 0 during mmu_notifier_register and exit_mmap 290 * runs with mm_users == 0. Other tasks may still invoke mmu notifiers 291 * in parallel despite there being no task using this mm any more, 292 * through the vmas outside of the exit_mmap context, such as with 293 * vmtruncate. This serializes against mmu_notifier_unregister with 294 * the notifier_subscriptions->lock in addition to SRCU and it serializes 295 * against the other mmu notifiers with SRCU. struct mmu_notifier_subscriptions 296 * can't go away from under us as exit_mmap holds an mm_count pin 297 * itself. 298 */ 299 static void mn_hlist_release(struct mmu_notifier_subscriptions *subscriptions, 300 struct mm_struct *mm) 301 { 302 struct mmu_notifier *subscription; 303 int id; 304 305 /* 306 * SRCU here will block mmu_notifier_unregister until 307 * ->release returns. 308 */ 309 id = srcu_read_lock(&srcu); 310 hlist_for_each_entry_rcu(subscription, &subscriptions->list, hlist, 311 srcu_read_lock_held(&srcu)) 312 /* 313 * If ->release runs before mmu_notifier_unregister it must be 314 * handled, as it's the only way for the driver to flush all 315 * existing sptes and stop the driver from establishing any more 316 * sptes before all the pages in the mm are freed. 317 */ 318 if (subscription->ops->release) 319 subscription->ops->release(subscription, mm); 320 321 spin_lock(&subscriptions->lock); 322 while (unlikely(!hlist_empty(&subscriptions->list))) { 323 subscription = hlist_entry(subscriptions->list.first, 324 struct mmu_notifier, hlist); 325 /* 326 * We arrived before mmu_notifier_unregister so 327 * mmu_notifier_unregister will do nothing other than to wait 328 * for ->release to finish and for mmu_notifier_unregister to 329 * return. 330 */ 331 hlist_del_init_rcu(&subscription->hlist); 332 } 333 spin_unlock(&subscriptions->lock); 334 srcu_read_unlock(&srcu, id); 335 336 /* 337 * synchronize_srcu here prevents mmu_notifier_release from returning to 338 * exit_mmap (which would proceed with freeing all pages in the mm) 339 * until the ->release method returns, if it was invoked by 340 * mmu_notifier_unregister. 341 * 342 * The notifier_subscriptions can't go away from under us because 343 * one mm_count is held by exit_mmap. 344 */ 345 synchronize_srcu(&srcu); 346 } 347 348 void __mmu_notifier_release(struct mm_struct *mm) 349 { 350 struct mmu_notifier_subscriptions *subscriptions = 351 mm->notifier_subscriptions; 352 353 if (subscriptions->has_itree) 354 mn_itree_release(subscriptions, mm); 355 356 if (!hlist_empty(&subscriptions->list)) 357 mn_hlist_release(subscriptions, mm); 358 } 359 360 /* 361 * If no young bitflag is supported by the hardware, ->clear_flush_young can 362 * unmap the address and return 1 or 0 depending if the mapping previously 363 * existed or not. 364 */ 365 int __mmu_notifier_clear_flush_young(struct mm_struct *mm, 366 unsigned long start, 367 unsigned long end) 368 { 369 struct mmu_notifier *subscription; 370 int young = 0, id; 371 372 id = srcu_read_lock(&srcu); 373 hlist_for_each_entry_rcu(subscription, 374 &mm->notifier_subscriptions->list, hlist, 375 srcu_read_lock_held(&srcu)) { 376 if (subscription->ops->clear_flush_young) 377 young |= subscription->ops->clear_flush_young( 378 subscription, mm, start, end); 379 } 380 srcu_read_unlock(&srcu, id); 381 382 return young; 383 } 384 385 int __mmu_notifier_clear_young(struct mm_struct *mm, 386 unsigned long start, 387 unsigned long end) 388 { 389 struct mmu_notifier *subscription; 390 int young = 0, id; 391 392 id = srcu_read_lock(&srcu); 393 hlist_for_each_entry_rcu(subscription, 394 &mm->notifier_subscriptions->list, hlist, 395 srcu_read_lock_held(&srcu)) { 396 if (subscription->ops->clear_young) 397 young |= subscription->ops->clear_young(subscription, 398 mm, start, end); 399 } 400 srcu_read_unlock(&srcu, id); 401 402 return young; 403 } 404 405 int __mmu_notifier_test_young(struct mm_struct *mm, 406 unsigned long address) 407 { 408 struct mmu_notifier *subscription; 409 int young = 0, id; 410 411 id = srcu_read_lock(&srcu); 412 hlist_for_each_entry_rcu(subscription, 413 &mm->notifier_subscriptions->list, hlist, 414 srcu_read_lock_held(&srcu)) { 415 if (subscription->ops->test_young) { 416 young = subscription->ops->test_young(subscription, mm, 417 address); 418 if (young) 419 break; 420 } 421 } 422 srcu_read_unlock(&srcu, id); 423 424 return young; 425 } 426 427 static int mn_itree_invalidate(struct mmu_notifier_subscriptions *subscriptions, 428 const struct mmu_notifier_range *range) 429 { 430 struct mmu_interval_notifier *interval_sub; 431 unsigned long cur_seq; 432 433 for (interval_sub = 434 mn_itree_inv_start_range(subscriptions, range, &cur_seq); 435 interval_sub; 436 interval_sub = mn_itree_inv_next(interval_sub, range)) { 437 bool ret; 438 439 ret = interval_sub->ops->invalidate(interval_sub, range, 440 cur_seq); 441 if (!ret) { 442 if (WARN_ON(mmu_notifier_range_blockable(range))) 443 continue; 444 goto out_would_block; 445 } 446 } 447 return 0; 448 449 out_would_block: 450 /* 451 * On -EAGAIN the non-blocking caller is not allowed to call 452 * invalidate_range_end() 453 */ 454 mn_itree_inv_end(subscriptions); 455 return -EAGAIN; 456 } 457 458 static int mn_hlist_invalidate_range_start( 459 struct mmu_notifier_subscriptions *subscriptions, 460 struct mmu_notifier_range *range) 461 { 462 struct mmu_notifier *subscription; 463 int ret = 0; 464 int id; 465 466 id = srcu_read_lock(&srcu); 467 hlist_for_each_entry_rcu(subscription, &subscriptions->list, hlist, 468 srcu_read_lock_held(&srcu)) { 469 const struct mmu_notifier_ops *ops = subscription->ops; 470 471 if (ops->invalidate_range_start) { 472 int _ret; 473 474 if (!mmu_notifier_range_blockable(range)) 475 non_block_start(); 476 _ret = ops->invalidate_range_start(subscription, range); 477 if (!mmu_notifier_range_blockable(range)) 478 non_block_end(); 479 if (_ret) { 480 pr_info("%pS callback failed with %d in %sblockable context.\n", 481 ops->invalidate_range_start, _ret, 482 !mmu_notifier_range_blockable(range) ? 483 "non-" : 484 ""); 485 WARN_ON(mmu_notifier_range_blockable(range) || 486 _ret != -EAGAIN); 487 /* 488 * We call all the notifiers on any EAGAIN, 489 * there is no way for a notifier to know if 490 * its start method failed, thus a start that 491 * does EAGAIN can't also do end. 492 */ 493 WARN_ON(ops->invalidate_range_end); 494 ret = _ret; 495 } 496 } 497 } 498 499 if (ret) { 500 /* 501 * Must be non-blocking to get here. If there are multiple 502 * notifiers and one or more failed start, any that succeeded 503 * start are expecting their end to be called. Do so now. 504 */ 505 hlist_for_each_entry_rcu(subscription, &subscriptions->list, 506 hlist, srcu_read_lock_held(&srcu)) { 507 if (!subscription->ops->invalidate_range_end) 508 continue; 509 510 subscription->ops->invalidate_range_end(subscription, 511 range); 512 } 513 } 514 srcu_read_unlock(&srcu, id); 515 516 return ret; 517 } 518 519 int __mmu_notifier_invalidate_range_start(struct mmu_notifier_range *range) 520 { 521 struct mmu_notifier_subscriptions *subscriptions = 522 range->mm->notifier_subscriptions; 523 int ret; 524 525 if (subscriptions->has_itree) { 526 ret = mn_itree_invalidate(subscriptions, range); 527 if (ret) 528 return ret; 529 } 530 if (!hlist_empty(&subscriptions->list)) 531 return mn_hlist_invalidate_range_start(subscriptions, range); 532 return 0; 533 } 534 535 static void 536 mn_hlist_invalidate_end(struct mmu_notifier_subscriptions *subscriptions, 537 struct mmu_notifier_range *range) 538 { 539 struct mmu_notifier *subscription; 540 int id; 541 542 id = srcu_read_lock(&srcu); 543 hlist_for_each_entry_rcu(subscription, &subscriptions->list, hlist, 544 srcu_read_lock_held(&srcu)) { 545 if (subscription->ops->invalidate_range_end) { 546 if (!mmu_notifier_range_blockable(range)) 547 non_block_start(); 548 subscription->ops->invalidate_range_end(subscription, 549 range); 550 if (!mmu_notifier_range_blockable(range)) 551 non_block_end(); 552 } 553 } 554 srcu_read_unlock(&srcu, id); 555 } 556 557 void __mmu_notifier_invalidate_range_end(struct mmu_notifier_range *range) 558 { 559 struct mmu_notifier_subscriptions *subscriptions = 560 range->mm->notifier_subscriptions; 561 562 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); 563 if (subscriptions->has_itree) 564 mn_itree_inv_end(subscriptions); 565 566 if (!hlist_empty(&subscriptions->list)) 567 mn_hlist_invalidate_end(subscriptions, range); 568 lock_map_release(&__mmu_notifier_invalidate_range_start_map); 569 } 570 571 void __mmu_notifier_arch_invalidate_secondary_tlbs(struct mm_struct *mm, 572 unsigned long start, unsigned long end) 573 { 574 struct mmu_notifier *subscription; 575 int id; 576 577 id = srcu_read_lock(&srcu); 578 hlist_for_each_entry_rcu(subscription, 579 &mm->notifier_subscriptions->list, hlist, 580 srcu_read_lock_held(&srcu)) { 581 if (subscription->ops->arch_invalidate_secondary_tlbs) 582 subscription->ops->arch_invalidate_secondary_tlbs( 583 subscription, mm, 584 start, end); 585 } 586 srcu_read_unlock(&srcu, id); 587 } 588 589 /* 590 * Same as mmu_notifier_register but here the caller must hold the mmap_lock in 591 * write mode. A NULL mn signals the notifier is being registered for itree 592 * mode. 593 */ 594 int __mmu_notifier_register(struct mmu_notifier *subscription, 595 struct mm_struct *mm) 596 { 597 struct mmu_notifier_subscriptions *subscriptions = NULL; 598 int ret; 599 600 mmap_assert_write_locked(mm); 601 BUG_ON(atomic_read(&mm->mm_users) <= 0); 602 603 /* 604 * Subsystems should only register for invalidate_secondary_tlbs() or 605 * invalidate_range_start()/end() callbacks, not both. 606 */ 607 if (WARN_ON_ONCE(subscription && 608 (subscription->ops->arch_invalidate_secondary_tlbs && 609 (subscription->ops->invalidate_range_start || 610 subscription->ops->invalidate_range_end)))) 611 return -EINVAL; 612 613 if (!mm->notifier_subscriptions) { 614 /* 615 * kmalloc cannot be called under mm_take_all_locks(), but we 616 * know that mm->notifier_subscriptions can't change while we 617 * hold the write side of the mmap_lock. 618 */ 619 subscriptions = kzalloc( 620 sizeof(struct mmu_notifier_subscriptions), GFP_KERNEL); 621 if (!subscriptions) 622 return -ENOMEM; 623 624 INIT_HLIST_HEAD(&subscriptions->list); 625 spin_lock_init(&subscriptions->lock); 626 subscriptions->invalidate_seq = 2; 627 subscriptions->itree = RB_ROOT_CACHED; 628 init_waitqueue_head(&subscriptions->wq); 629 INIT_HLIST_HEAD(&subscriptions->deferred_list); 630 } 631 632 ret = mm_take_all_locks(mm); 633 if (unlikely(ret)) 634 goto out_clean; 635 636 /* 637 * Serialize the update against mmu_notifier_unregister. A 638 * side note: mmu_notifier_release can't run concurrently with 639 * us because we hold the mm_users pin (either implicitly as 640 * current->mm or explicitly with get_task_mm() or similar). 641 * We can't race against any other mmu notifier method either 642 * thanks to mm_take_all_locks(). 643 * 644 * release semantics on the initialization of the 645 * mmu_notifier_subscriptions's contents are provided for unlocked 646 * readers. acquire can only be used while holding the mmgrab or 647 * mmget, and is safe because once created the 648 * mmu_notifier_subscriptions is not freed until the mm is destroyed. 649 * As above, users holding the mmap_lock or one of the 650 * mm_take_all_locks() do not need to use acquire semantics. 651 */ 652 if (subscriptions) 653 smp_store_release(&mm->notifier_subscriptions, subscriptions); 654 655 if (subscription) { 656 /* Pairs with the mmdrop in mmu_notifier_unregister_* */ 657 mmgrab(mm); 658 subscription->mm = mm; 659 subscription->users = 1; 660 661 spin_lock(&mm->notifier_subscriptions->lock); 662 hlist_add_head_rcu(&subscription->hlist, 663 &mm->notifier_subscriptions->list); 664 spin_unlock(&mm->notifier_subscriptions->lock); 665 } else 666 mm->notifier_subscriptions->has_itree = true; 667 668 mm_drop_all_locks(mm); 669 BUG_ON(atomic_read(&mm->mm_users) <= 0); 670 return 0; 671 672 out_clean: 673 kfree(subscriptions); 674 return ret; 675 } 676 EXPORT_SYMBOL_GPL(__mmu_notifier_register); 677 678 /** 679 * mmu_notifier_register - Register a notifier on a mm 680 * @subscription: The notifier to attach 681 * @mm: The mm to attach the notifier to 682 * 683 * Must not hold mmap_lock nor any other VM related lock when calling 684 * this registration function. Must also ensure mm_users can't go down 685 * to zero while this runs to avoid races with mmu_notifier_release, 686 * so mm has to be current->mm or the mm should be pinned safely such 687 * as with get_task_mm(). If the mm is not current->mm, the mm_users 688 * pin should be released by calling mmput after mmu_notifier_register 689 * returns. 690 * 691 * mmu_notifier_unregister() or mmu_notifier_put() must be always called to 692 * unregister the notifier. 693 * 694 * While the caller has a mmu_notifier get the subscription->mm pointer will remain 695 * valid, and can be converted to an active mm pointer via mmget_not_zero(). 696 */ 697 int mmu_notifier_register(struct mmu_notifier *subscription, 698 struct mm_struct *mm) 699 { 700 int ret; 701 702 mmap_write_lock(mm); 703 ret = __mmu_notifier_register(subscription, mm); 704 mmap_write_unlock(mm); 705 return ret; 706 } 707 EXPORT_SYMBOL_GPL(mmu_notifier_register); 708 709 static struct mmu_notifier * 710 find_get_mmu_notifier(struct mm_struct *mm, const struct mmu_notifier_ops *ops) 711 { 712 struct mmu_notifier *subscription; 713 714 spin_lock(&mm->notifier_subscriptions->lock); 715 hlist_for_each_entry_rcu(subscription, 716 &mm->notifier_subscriptions->list, hlist, 717 lockdep_is_held(&mm->notifier_subscriptions->lock)) { 718 if (subscription->ops != ops) 719 continue; 720 721 if (likely(subscription->users != UINT_MAX)) 722 subscription->users++; 723 else 724 subscription = ERR_PTR(-EOVERFLOW); 725 spin_unlock(&mm->notifier_subscriptions->lock); 726 return subscription; 727 } 728 spin_unlock(&mm->notifier_subscriptions->lock); 729 return NULL; 730 } 731 732 /** 733 * mmu_notifier_get_locked - Return the single struct mmu_notifier for 734 * the mm & ops 735 * @ops: The operations struct being subscribe with 736 * @mm : The mm to attach notifiers too 737 * 738 * This function either allocates a new mmu_notifier via 739 * ops->alloc_notifier(), or returns an already existing notifier on the 740 * list. The value of the ops pointer is used to determine when two notifiers 741 * are the same. 742 * 743 * Each call to mmu_notifier_get() must be paired with a call to 744 * mmu_notifier_put(). The caller must hold the write side of mm->mmap_lock. 745 * 746 * While the caller has a mmu_notifier get the mm pointer will remain valid, 747 * and can be converted to an active mm pointer via mmget_not_zero(). 748 */ 749 struct mmu_notifier *mmu_notifier_get_locked(const struct mmu_notifier_ops *ops, 750 struct mm_struct *mm) 751 { 752 struct mmu_notifier *subscription; 753 int ret; 754 755 mmap_assert_write_locked(mm); 756 757 if (mm->notifier_subscriptions) { 758 subscription = find_get_mmu_notifier(mm, ops); 759 if (subscription) 760 return subscription; 761 } 762 763 subscription = ops->alloc_notifier(mm); 764 if (IS_ERR(subscription)) 765 return subscription; 766 subscription->ops = ops; 767 ret = __mmu_notifier_register(subscription, mm); 768 if (ret) 769 goto out_free; 770 return subscription; 771 out_free: 772 subscription->ops->free_notifier(subscription); 773 return ERR_PTR(ret); 774 } 775 EXPORT_SYMBOL_GPL(mmu_notifier_get_locked); 776 777 /* this is called after the last mmu_notifier_unregister() returned */ 778 void __mmu_notifier_subscriptions_destroy(struct mm_struct *mm) 779 { 780 BUG_ON(!hlist_empty(&mm->notifier_subscriptions->list)); 781 kfree(mm->notifier_subscriptions); 782 mm->notifier_subscriptions = LIST_POISON1; /* debug */ 783 } 784 785 /* 786 * This releases the mm_count pin automatically and frees the mm 787 * structure if it was the last user of it. It serializes against 788 * running mmu notifiers with SRCU and against mmu_notifier_unregister 789 * with the unregister lock + SRCU. All sptes must be dropped before 790 * calling mmu_notifier_unregister. ->release or any other notifier 791 * method may be invoked concurrently with mmu_notifier_unregister, 792 * and only after mmu_notifier_unregister returned we're guaranteed 793 * that ->release or any other method can't run anymore. 794 */ 795 void mmu_notifier_unregister(struct mmu_notifier *subscription, 796 struct mm_struct *mm) 797 { 798 BUG_ON(atomic_read(&mm->mm_count) <= 0); 799 800 if (!hlist_unhashed(&subscription->hlist)) { 801 /* 802 * SRCU here will force exit_mmap to wait for ->release to 803 * finish before freeing the pages. 804 */ 805 int id; 806 807 id = srcu_read_lock(&srcu); 808 /* 809 * exit_mmap will block in mmu_notifier_release to guarantee 810 * that ->release is called before freeing the pages. 811 */ 812 if (subscription->ops->release) 813 subscription->ops->release(subscription, mm); 814 srcu_read_unlock(&srcu, id); 815 816 spin_lock(&mm->notifier_subscriptions->lock); 817 /* 818 * Can not use list_del_rcu() since __mmu_notifier_release 819 * can delete it before we hold the lock. 820 */ 821 hlist_del_init_rcu(&subscription->hlist); 822 spin_unlock(&mm->notifier_subscriptions->lock); 823 } 824 825 /* 826 * Wait for any running method to finish, of course including 827 * ->release if it was run by mmu_notifier_release instead of us. 828 */ 829 synchronize_srcu(&srcu); 830 831 BUG_ON(atomic_read(&mm->mm_count) <= 0); 832 833 mmdrop(mm); 834 } 835 EXPORT_SYMBOL_GPL(mmu_notifier_unregister); 836 837 static void mmu_notifier_free_rcu(struct rcu_head *rcu) 838 { 839 struct mmu_notifier *subscription = 840 container_of(rcu, struct mmu_notifier, rcu); 841 struct mm_struct *mm = subscription->mm; 842 843 subscription->ops->free_notifier(subscription); 844 /* Pairs with the get in __mmu_notifier_register() */ 845 mmdrop(mm); 846 } 847 848 /** 849 * mmu_notifier_put - Release the reference on the notifier 850 * @subscription: The notifier to act on 851 * 852 * This function must be paired with each mmu_notifier_get(), it releases the 853 * reference obtained by the get. If this is the last reference then process 854 * to free the notifier will be run asynchronously. 855 * 856 * Unlike mmu_notifier_unregister() the get/put flow only calls ops->release 857 * when the mm_struct is destroyed. Instead free_notifier is always called to 858 * release any resources held by the user. 859 * 860 * As ops->release is not guaranteed to be called, the user must ensure that 861 * all sptes are dropped, and no new sptes can be established before 862 * mmu_notifier_put() is called. 863 * 864 * This function can be called from the ops->release callback, however the 865 * caller must still ensure it is called pairwise with mmu_notifier_get(). 866 * 867 * Modules calling this function must call mmu_notifier_synchronize() in 868 * their __exit functions to ensure the async work is completed. 869 */ 870 void mmu_notifier_put(struct mmu_notifier *subscription) 871 { 872 struct mm_struct *mm = subscription->mm; 873 874 spin_lock(&mm->notifier_subscriptions->lock); 875 if (WARN_ON(!subscription->users) || --subscription->users) 876 goto out_unlock; 877 hlist_del_init_rcu(&subscription->hlist); 878 spin_unlock(&mm->notifier_subscriptions->lock); 879 880 call_srcu(&srcu, &subscription->rcu, mmu_notifier_free_rcu); 881 return; 882 883 out_unlock: 884 spin_unlock(&mm->notifier_subscriptions->lock); 885 } 886 EXPORT_SYMBOL_GPL(mmu_notifier_put); 887 888 static int __mmu_interval_notifier_insert( 889 struct mmu_interval_notifier *interval_sub, struct mm_struct *mm, 890 struct mmu_notifier_subscriptions *subscriptions, unsigned long start, 891 unsigned long length, const struct mmu_interval_notifier_ops *ops) 892 { 893 interval_sub->mm = mm; 894 interval_sub->ops = ops; 895 RB_CLEAR_NODE(&interval_sub->interval_tree.rb); 896 interval_sub->interval_tree.start = start; 897 /* 898 * Note that the representation of the intervals in the interval tree 899 * considers the ending point as contained in the interval. 900 */ 901 if (length == 0 || 902 check_add_overflow(start, length - 1, 903 &interval_sub->interval_tree.last)) 904 return -EOVERFLOW; 905 906 /* Must call with a mmget() held */ 907 if (WARN_ON(atomic_read(&mm->mm_users) <= 0)) 908 return -EINVAL; 909 910 /* pairs with mmdrop in mmu_interval_notifier_remove() */ 911 mmgrab(mm); 912 913 /* 914 * If some invalidate_range_start/end region is going on in parallel 915 * we don't know what VA ranges are affected, so we must assume this 916 * new range is included. 917 * 918 * If the itree is invalidating then we are not allowed to change 919 * it. Retrying until invalidation is done is tricky due to the 920 * possibility for live lock, instead defer the add to 921 * mn_itree_inv_end() so this algorithm is deterministic. 922 * 923 * In all cases the value for the interval_sub->invalidate_seq should be 924 * odd, see mmu_interval_read_begin() 925 */ 926 spin_lock(&subscriptions->lock); 927 if (subscriptions->active_invalidate_ranges) { 928 if (mn_itree_is_invalidating(subscriptions)) 929 hlist_add_head(&interval_sub->deferred_item, 930 &subscriptions->deferred_list); 931 else { 932 subscriptions->invalidate_seq |= 1; 933 interval_tree_insert(&interval_sub->interval_tree, 934 &subscriptions->itree); 935 } 936 interval_sub->invalidate_seq = subscriptions->invalidate_seq; 937 } else { 938 WARN_ON(mn_itree_is_invalidating(subscriptions)); 939 /* 940 * The starting seq for a subscription not under invalidation 941 * should be odd, not equal to the current invalidate_seq and 942 * invalidate_seq should not 'wrap' to the new seq any time 943 * soon. 944 */ 945 interval_sub->invalidate_seq = 946 subscriptions->invalidate_seq - 1; 947 interval_tree_insert(&interval_sub->interval_tree, 948 &subscriptions->itree); 949 } 950 spin_unlock(&subscriptions->lock); 951 return 0; 952 } 953 954 /** 955 * mmu_interval_notifier_insert - Insert an interval notifier 956 * @interval_sub: Interval subscription to register 957 * @start: Starting virtual address to monitor 958 * @length: Length of the range to monitor 959 * @mm: mm_struct to attach to 960 * @ops: Interval notifier operations to be called on matching events 961 * 962 * This function subscribes the interval notifier for notifications from the 963 * mm. Upon return the ops related to mmu_interval_notifier will be called 964 * whenever an event that intersects with the given range occurs. 965 * 966 * Upon return the range_notifier may not be present in the interval tree yet. 967 * The caller must use the normal interval notifier read flow via 968 * mmu_interval_read_begin() to establish SPTEs for this range. 969 */ 970 int mmu_interval_notifier_insert(struct mmu_interval_notifier *interval_sub, 971 struct mm_struct *mm, unsigned long start, 972 unsigned long length, 973 const struct mmu_interval_notifier_ops *ops) 974 { 975 struct mmu_notifier_subscriptions *subscriptions; 976 int ret; 977 978 might_lock(&mm->mmap_lock); 979 980 subscriptions = smp_load_acquire(&mm->notifier_subscriptions); 981 if (!subscriptions || !subscriptions->has_itree) { 982 ret = mmu_notifier_register(NULL, mm); 983 if (ret) 984 return ret; 985 subscriptions = mm->notifier_subscriptions; 986 } 987 return __mmu_interval_notifier_insert(interval_sub, mm, subscriptions, 988 start, length, ops); 989 } 990 EXPORT_SYMBOL_GPL(mmu_interval_notifier_insert); 991 992 int mmu_interval_notifier_insert_locked( 993 struct mmu_interval_notifier *interval_sub, struct mm_struct *mm, 994 unsigned long start, unsigned long length, 995 const struct mmu_interval_notifier_ops *ops) 996 { 997 struct mmu_notifier_subscriptions *subscriptions = 998 mm->notifier_subscriptions; 999 int ret; 1000 1001 mmap_assert_write_locked(mm); 1002 1003 if (!subscriptions || !subscriptions->has_itree) { 1004 ret = __mmu_notifier_register(NULL, mm); 1005 if (ret) 1006 return ret; 1007 subscriptions = mm->notifier_subscriptions; 1008 } 1009 return __mmu_interval_notifier_insert(interval_sub, mm, subscriptions, 1010 start, length, ops); 1011 } 1012 EXPORT_SYMBOL_GPL(mmu_interval_notifier_insert_locked); 1013 1014 static bool 1015 mmu_interval_seq_released(struct mmu_notifier_subscriptions *subscriptions, 1016 unsigned long seq) 1017 { 1018 bool ret; 1019 1020 spin_lock(&subscriptions->lock); 1021 ret = subscriptions->invalidate_seq != seq; 1022 spin_unlock(&subscriptions->lock); 1023 return ret; 1024 } 1025 1026 /** 1027 * mmu_interval_notifier_remove - Remove a interval notifier 1028 * @interval_sub: Interval subscription to unregister 1029 * 1030 * This function must be paired with mmu_interval_notifier_insert(). It cannot 1031 * be called from any ops callback. 1032 * 1033 * Once this returns ops callbacks are no longer running on other CPUs and 1034 * will not be called in future. 1035 */ 1036 void mmu_interval_notifier_remove(struct mmu_interval_notifier *interval_sub) 1037 { 1038 struct mm_struct *mm = interval_sub->mm; 1039 struct mmu_notifier_subscriptions *subscriptions = 1040 mm->notifier_subscriptions; 1041 unsigned long seq = 0; 1042 1043 might_sleep(); 1044 1045 spin_lock(&subscriptions->lock); 1046 if (mn_itree_is_invalidating(subscriptions)) { 1047 /* 1048 * remove is being called after insert put this on the 1049 * deferred list, but before the deferred list was processed. 1050 */ 1051 if (RB_EMPTY_NODE(&interval_sub->interval_tree.rb)) { 1052 hlist_del(&interval_sub->deferred_item); 1053 } else { 1054 hlist_add_head(&interval_sub->deferred_item, 1055 &subscriptions->deferred_list); 1056 seq = subscriptions->invalidate_seq; 1057 } 1058 } else { 1059 WARN_ON(RB_EMPTY_NODE(&interval_sub->interval_tree.rb)); 1060 interval_tree_remove(&interval_sub->interval_tree, 1061 &subscriptions->itree); 1062 } 1063 spin_unlock(&subscriptions->lock); 1064 1065 /* 1066 * The possible sleep on progress in the invalidation requires the 1067 * caller not hold any locks held by invalidation callbacks. 1068 */ 1069 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); 1070 lock_map_release(&__mmu_notifier_invalidate_range_start_map); 1071 if (seq) 1072 wait_event(subscriptions->wq, 1073 mmu_interval_seq_released(subscriptions, seq)); 1074 1075 /* pairs with mmgrab in mmu_interval_notifier_insert() */ 1076 mmdrop(mm); 1077 } 1078 EXPORT_SYMBOL_GPL(mmu_interval_notifier_remove); 1079 1080 /** 1081 * mmu_notifier_synchronize - Ensure all mmu_notifiers are freed 1082 * 1083 * This function ensures that all outstanding async SRU work from 1084 * mmu_notifier_put() is completed. After it returns any mmu_notifier_ops 1085 * associated with an unused mmu_notifier will no longer be called. 1086 * 1087 * Before using the caller must ensure that all of its mmu_notifiers have been 1088 * fully released via mmu_notifier_put(). 1089 * 1090 * Modules using the mmu_notifier_put() API should call this in their __exit 1091 * function to avoid module unloading races. 1092 */ 1093 void mmu_notifier_synchronize(void) 1094 { 1095 synchronize_srcu(&srcu); 1096 } 1097 EXPORT_SYMBOL_GPL(mmu_notifier_synchronize); 1098