1 /* 2 * linux/mm/mmu_notifier.c 3 * 4 * Copyright (C) 2008 Qumranet, Inc. 5 * Copyright (C) 2008 SGI 6 * Christoph Lameter <cl@linux.com> 7 * 8 * This work is licensed under the terms of the GNU GPL, version 2. See 9 * the COPYING file in the top-level directory. 10 */ 11 12 #include <linux/rculist.h> 13 #include <linux/mmu_notifier.h> 14 #include <linux/export.h> 15 #include <linux/mm.h> 16 #include <linux/err.h> 17 #include <linux/srcu.h> 18 #include <linux/rcupdate.h> 19 #include <linux/sched.h> 20 #include <linux/sched/mm.h> 21 #include <linux/slab.h> 22 23 /* global SRCU for all MMs */ 24 DEFINE_STATIC_SRCU(srcu); 25 26 /* 27 * This function allows mmu_notifier::release callback to delay a call to 28 * a function that will free appropriate resources. The function must be 29 * quick and must not block. 30 */ 31 void mmu_notifier_call_srcu(struct rcu_head *rcu, 32 void (*func)(struct rcu_head *rcu)) 33 { 34 call_srcu(&srcu, rcu, func); 35 } 36 EXPORT_SYMBOL_GPL(mmu_notifier_call_srcu); 37 38 void mmu_notifier_synchronize(void) 39 { 40 /* Wait for any running method to finish. */ 41 srcu_barrier(&srcu); 42 } 43 EXPORT_SYMBOL_GPL(mmu_notifier_synchronize); 44 45 /* 46 * This function can't run concurrently against mmu_notifier_register 47 * because mm->mm_users > 0 during mmu_notifier_register and exit_mmap 48 * runs with mm_users == 0. Other tasks may still invoke mmu notifiers 49 * in parallel despite there being no task using this mm any more, 50 * through the vmas outside of the exit_mmap context, such as with 51 * vmtruncate. This serializes against mmu_notifier_unregister with 52 * the mmu_notifier_mm->lock in addition to SRCU and it serializes 53 * against the other mmu notifiers with SRCU. struct mmu_notifier_mm 54 * can't go away from under us as exit_mmap holds an mm_count pin 55 * itself. 56 */ 57 void __mmu_notifier_release(struct mm_struct *mm) 58 { 59 struct mmu_notifier *mn; 60 int id; 61 62 /* 63 * SRCU here will block mmu_notifier_unregister until 64 * ->release returns. 65 */ 66 id = srcu_read_lock(&srcu); 67 hlist_for_each_entry_rcu(mn, &mm->mmu_notifier_mm->list, hlist) 68 /* 69 * If ->release runs before mmu_notifier_unregister it must be 70 * handled, as it's the only way for the driver to flush all 71 * existing sptes and stop the driver from establishing any more 72 * sptes before all the pages in the mm are freed. 73 */ 74 if (mn->ops->release) 75 mn->ops->release(mn, mm); 76 77 spin_lock(&mm->mmu_notifier_mm->lock); 78 while (unlikely(!hlist_empty(&mm->mmu_notifier_mm->list))) { 79 mn = hlist_entry(mm->mmu_notifier_mm->list.first, 80 struct mmu_notifier, 81 hlist); 82 /* 83 * We arrived before mmu_notifier_unregister so 84 * mmu_notifier_unregister will do nothing other than to wait 85 * for ->release to finish and for mmu_notifier_unregister to 86 * return. 87 */ 88 hlist_del_init_rcu(&mn->hlist); 89 } 90 spin_unlock(&mm->mmu_notifier_mm->lock); 91 srcu_read_unlock(&srcu, id); 92 93 /* 94 * synchronize_srcu here prevents mmu_notifier_release from returning to 95 * exit_mmap (which would proceed with freeing all pages in the mm) 96 * until the ->release method returns, if it was invoked by 97 * mmu_notifier_unregister. 98 * 99 * The mmu_notifier_mm can't go away from under us because one mm_count 100 * is held by exit_mmap. 101 */ 102 synchronize_srcu(&srcu); 103 } 104 105 /* 106 * If no young bitflag is supported by the hardware, ->clear_flush_young can 107 * unmap the address and return 1 or 0 depending if the mapping previously 108 * existed or not. 109 */ 110 int __mmu_notifier_clear_flush_young(struct mm_struct *mm, 111 unsigned long start, 112 unsigned long end) 113 { 114 struct mmu_notifier *mn; 115 int young = 0, id; 116 117 id = srcu_read_lock(&srcu); 118 hlist_for_each_entry_rcu(mn, &mm->mmu_notifier_mm->list, hlist) { 119 if (mn->ops->clear_flush_young) 120 young |= mn->ops->clear_flush_young(mn, mm, start, end); 121 } 122 srcu_read_unlock(&srcu, id); 123 124 return young; 125 } 126 127 int __mmu_notifier_clear_young(struct mm_struct *mm, 128 unsigned long start, 129 unsigned long end) 130 { 131 struct mmu_notifier *mn; 132 int young = 0, id; 133 134 id = srcu_read_lock(&srcu); 135 hlist_for_each_entry_rcu(mn, &mm->mmu_notifier_mm->list, hlist) { 136 if (mn->ops->clear_young) 137 young |= mn->ops->clear_young(mn, mm, start, end); 138 } 139 srcu_read_unlock(&srcu, id); 140 141 return young; 142 } 143 144 int __mmu_notifier_test_young(struct mm_struct *mm, 145 unsigned long address) 146 { 147 struct mmu_notifier *mn; 148 int young = 0, id; 149 150 id = srcu_read_lock(&srcu); 151 hlist_for_each_entry_rcu(mn, &mm->mmu_notifier_mm->list, hlist) { 152 if (mn->ops->test_young) { 153 young = mn->ops->test_young(mn, mm, address); 154 if (young) 155 break; 156 } 157 } 158 srcu_read_unlock(&srcu, id); 159 160 return young; 161 } 162 163 void __mmu_notifier_change_pte(struct mm_struct *mm, unsigned long address, 164 pte_t pte) 165 { 166 struct mmu_notifier *mn; 167 int id; 168 169 id = srcu_read_lock(&srcu); 170 hlist_for_each_entry_rcu(mn, &mm->mmu_notifier_mm->list, hlist) { 171 if (mn->ops->change_pte) 172 mn->ops->change_pte(mn, mm, address, pte); 173 } 174 srcu_read_unlock(&srcu, id); 175 } 176 177 void __mmu_notifier_invalidate_range_start(struct mm_struct *mm, 178 unsigned long start, unsigned long end) 179 { 180 struct mmu_notifier *mn; 181 int id; 182 183 id = srcu_read_lock(&srcu); 184 hlist_for_each_entry_rcu(mn, &mm->mmu_notifier_mm->list, hlist) { 185 if (mn->ops->invalidate_range_start) 186 mn->ops->invalidate_range_start(mn, mm, start, end); 187 } 188 srcu_read_unlock(&srcu, id); 189 } 190 EXPORT_SYMBOL_GPL(__mmu_notifier_invalidate_range_start); 191 192 void __mmu_notifier_invalidate_range_end(struct mm_struct *mm, 193 unsigned long start, 194 unsigned long end, 195 bool only_end) 196 { 197 struct mmu_notifier *mn; 198 int id; 199 200 id = srcu_read_lock(&srcu); 201 hlist_for_each_entry_rcu(mn, &mm->mmu_notifier_mm->list, hlist) { 202 /* 203 * Call invalidate_range here too to avoid the need for the 204 * subsystem of having to register an invalidate_range_end 205 * call-back when there is invalidate_range already. Usually a 206 * subsystem registers either invalidate_range_start()/end() or 207 * invalidate_range(), so this will be no additional overhead 208 * (besides the pointer check). 209 * 210 * We skip call to invalidate_range() if we know it is safe ie 211 * call site use mmu_notifier_invalidate_range_only_end() which 212 * is safe to do when we know that a call to invalidate_range() 213 * already happen under page table lock. 214 */ 215 if (!only_end && mn->ops->invalidate_range) 216 mn->ops->invalidate_range(mn, mm, start, end); 217 if (mn->ops->invalidate_range_end) 218 mn->ops->invalidate_range_end(mn, mm, start, end); 219 } 220 srcu_read_unlock(&srcu, id); 221 } 222 EXPORT_SYMBOL_GPL(__mmu_notifier_invalidate_range_end); 223 224 void __mmu_notifier_invalidate_range(struct mm_struct *mm, 225 unsigned long start, unsigned long end) 226 { 227 struct mmu_notifier *mn; 228 int id; 229 230 id = srcu_read_lock(&srcu); 231 hlist_for_each_entry_rcu(mn, &mm->mmu_notifier_mm->list, hlist) { 232 if (mn->ops->invalidate_range) 233 mn->ops->invalidate_range(mn, mm, start, end); 234 } 235 srcu_read_unlock(&srcu, id); 236 } 237 EXPORT_SYMBOL_GPL(__mmu_notifier_invalidate_range); 238 239 /* 240 * Must be called while holding mm->mmap_sem for either read or write. 241 * The result is guaranteed to be valid until mm->mmap_sem is dropped. 242 */ 243 bool mm_has_blockable_invalidate_notifiers(struct mm_struct *mm) 244 { 245 struct mmu_notifier *mn; 246 int id; 247 bool ret = false; 248 249 WARN_ON_ONCE(!rwsem_is_locked(&mm->mmap_sem)); 250 251 if (!mm_has_notifiers(mm)) 252 return ret; 253 254 id = srcu_read_lock(&srcu); 255 hlist_for_each_entry_rcu(mn, &mm->mmu_notifier_mm->list, hlist) { 256 if (!mn->ops->invalidate_range && 257 !mn->ops->invalidate_range_start && 258 !mn->ops->invalidate_range_end) 259 continue; 260 261 if (!(mn->ops->flags & MMU_INVALIDATE_DOES_NOT_BLOCK)) { 262 ret = true; 263 break; 264 } 265 } 266 srcu_read_unlock(&srcu, id); 267 return ret; 268 } 269 270 static int do_mmu_notifier_register(struct mmu_notifier *mn, 271 struct mm_struct *mm, 272 int take_mmap_sem) 273 { 274 struct mmu_notifier_mm *mmu_notifier_mm; 275 int ret; 276 277 BUG_ON(atomic_read(&mm->mm_users) <= 0); 278 279 ret = -ENOMEM; 280 mmu_notifier_mm = kmalloc(sizeof(struct mmu_notifier_mm), GFP_KERNEL); 281 if (unlikely(!mmu_notifier_mm)) 282 goto out; 283 284 if (take_mmap_sem) 285 down_write(&mm->mmap_sem); 286 ret = mm_take_all_locks(mm); 287 if (unlikely(ret)) 288 goto out_clean; 289 290 if (!mm_has_notifiers(mm)) { 291 INIT_HLIST_HEAD(&mmu_notifier_mm->list); 292 spin_lock_init(&mmu_notifier_mm->lock); 293 294 mm->mmu_notifier_mm = mmu_notifier_mm; 295 mmu_notifier_mm = NULL; 296 } 297 mmgrab(mm); 298 299 /* 300 * Serialize the update against mmu_notifier_unregister. A 301 * side note: mmu_notifier_release can't run concurrently with 302 * us because we hold the mm_users pin (either implicitly as 303 * current->mm or explicitly with get_task_mm() or similar). 304 * We can't race against any other mmu notifier method either 305 * thanks to mm_take_all_locks(). 306 */ 307 spin_lock(&mm->mmu_notifier_mm->lock); 308 hlist_add_head(&mn->hlist, &mm->mmu_notifier_mm->list); 309 spin_unlock(&mm->mmu_notifier_mm->lock); 310 311 mm_drop_all_locks(mm); 312 out_clean: 313 if (take_mmap_sem) 314 up_write(&mm->mmap_sem); 315 kfree(mmu_notifier_mm); 316 out: 317 BUG_ON(atomic_read(&mm->mm_users) <= 0); 318 return ret; 319 } 320 321 /* 322 * Must not hold mmap_sem nor any other VM related lock when calling 323 * this registration function. Must also ensure mm_users can't go down 324 * to zero while this runs to avoid races with mmu_notifier_release, 325 * so mm has to be current->mm or the mm should be pinned safely such 326 * as with get_task_mm(). If the mm is not current->mm, the mm_users 327 * pin should be released by calling mmput after mmu_notifier_register 328 * returns. mmu_notifier_unregister must be always called to 329 * unregister the notifier. mm_count is automatically pinned to allow 330 * mmu_notifier_unregister to safely run at any time later, before or 331 * after exit_mmap. ->release will always be called before exit_mmap 332 * frees the pages. 333 */ 334 int mmu_notifier_register(struct mmu_notifier *mn, struct mm_struct *mm) 335 { 336 return do_mmu_notifier_register(mn, mm, 1); 337 } 338 EXPORT_SYMBOL_GPL(mmu_notifier_register); 339 340 /* 341 * Same as mmu_notifier_register but here the caller must hold the 342 * mmap_sem in write mode. 343 */ 344 int __mmu_notifier_register(struct mmu_notifier *mn, struct mm_struct *mm) 345 { 346 return do_mmu_notifier_register(mn, mm, 0); 347 } 348 EXPORT_SYMBOL_GPL(__mmu_notifier_register); 349 350 /* this is called after the last mmu_notifier_unregister() returned */ 351 void __mmu_notifier_mm_destroy(struct mm_struct *mm) 352 { 353 BUG_ON(!hlist_empty(&mm->mmu_notifier_mm->list)); 354 kfree(mm->mmu_notifier_mm); 355 mm->mmu_notifier_mm = LIST_POISON1; /* debug */ 356 } 357 358 /* 359 * This releases the mm_count pin automatically and frees the mm 360 * structure if it was the last user of it. It serializes against 361 * running mmu notifiers with SRCU and against mmu_notifier_unregister 362 * with the unregister lock + SRCU. All sptes must be dropped before 363 * calling mmu_notifier_unregister. ->release or any other notifier 364 * method may be invoked concurrently with mmu_notifier_unregister, 365 * and only after mmu_notifier_unregister returned we're guaranteed 366 * that ->release or any other method can't run anymore. 367 */ 368 void mmu_notifier_unregister(struct mmu_notifier *mn, struct mm_struct *mm) 369 { 370 BUG_ON(atomic_read(&mm->mm_count) <= 0); 371 372 if (!hlist_unhashed(&mn->hlist)) { 373 /* 374 * SRCU here will force exit_mmap to wait for ->release to 375 * finish before freeing the pages. 376 */ 377 int id; 378 379 id = srcu_read_lock(&srcu); 380 /* 381 * exit_mmap will block in mmu_notifier_release to guarantee 382 * that ->release is called before freeing the pages. 383 */ 384 if (mn->ops->release) 385 mn->ops->release(mn, mm); 386 srcu_read_unlock(&srcu, id); 387 388 spin_lock(&mm->mmu_notifier_mm->lock); 389 /* 390 * Can not use list_del_rcu() since __mmu_notifier_release 391 * can delete it before we hold the lock. 392 */ 393 hlist_del_init_rcu(&mn->hlist); 394 spin_unlock(&mm->mmu_notifier_mm->lock); 395 } 396 397 /* 398 * Wait for any running method to finish, of course including 399 * ->release if it was run by mmu_notifier_release instead of us. 400 */ 401 synchronize_srcu(&srcu); 402 403 BUG_ON(atomic_read(&mm->mm_count) <= 0); 404 405 mmdrop(mm); 406 } 407 EXPORT_SYMBOL_GPL(mmu_notifier_unregister); 408 409 /* 410 * Same as mmu_notifier_unregister but no callback and no srcu synchronization. 411 */ 412 void mmu_notifier_unregister_no_release(struct mmu_notifier *mn, 413 struct mm_struct *mm) 414 { 415 spin_lock(&mm->mmu_notifier_mm->lock); 416 /* 417 * Can not use list_del_rcu() since __mmu_notifier_release 418 * can delete it before we hold the lock. 419 */ 420 hlist_del_init_rcu(&mn->hlist); 421 spin_unlock(&mm->mmu_notifier_mm->lock); 422 423 BUG_ON(atomic_read(&mm->mm_count) <= 0); 424 mmdrop(mm); 425 } 426 EXPORT_SYMBOL_GPL(mmu_notifier_unregister_no_release); 427