xref: /linux/mm/mmu_notifier.c (revision 06a130e42a5bfc84795464bff023bff4c16f58c5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/mmu_notifier.c
4  *
5  *  Copyright (C) 2008  Qumranet, Inc.
6  *  Copyright (C) 2008  SGI
7  *             Christoph Lameter <cl@linux.com>
8  */
9 
10 #include <linux/rculist.h>
11 #include <linux/mmu_notifier.h>
12 #include <linux/export.h>
13 #include <linux/mm.h>
14 #include <linux/err.h>
15 #include <linux/interval_tree.h>
16 #include <linux/srcu.h>
17 #include <linux/rcupdate.h>
18 #include <linux/sched.h>
19 #include <linux/sched/mm.h>
20 #include <linux/slab.h>
21 
22 #include "vma.h"
23 
24 /* global SRCU for all MMs */
25 DEFINE_STATIC_SRCU(srcu);
26 
27 #ifdef CONFIG_LOCKDEP
28 struct lockdep_map __mmu_notifier_invalidate_range_start_map = {
29 	.name = "mmu_notifier_invalidate_range_start"
30 };
31 #endif
32 
33 /*
34  * The mmu_notifier_subscriptions structure is allocated and installed in
35  * mm->notifier_subscriptions inside the mm_take_all_locks() protected
36  * critical section and it's released only when mm_count reaches zero
37  * in mmdrop().
38  */
39 struct mmu_notifier_subscriptions {
40 	/* all mmu notifiers registered in this mm are queued in this list */
41 	struct hlist_head list;
42 	bool has_itree;
43 	/* to serialize the list modifications and hlist_unhashed */
44 	spinlock_t lock;
45 	unsigned long invalidate_seq;
46 	unsigned long active_invalidate_ranges;
47 	struct rb_root_cached itree;
48 	wait_queue_head_t wq;
49 	struct hlist_head deferred_list;
50 };
51 
52 /*
53  * This is a collision-retry read-side/write-side 'lock', a lot like a
54  * seqcount, however this allows multiple write-sides to hold it at
55  * once. Conceptually the write side is protecting the values of the PTEs in
56  * this mm, such that PTES cannot be read into SPTEs (shadow PTEs) while any
57  * writer exists.
58  *
59  * Note that the core mm creates nested invalidate_range_start()/end() regions
60  * within the same thread, and runs invalidate_range_start()/end() in parallel
61  * on multiple CPUs. This is designed to not reduce concurrency or block
62  * progress on the mm side.
63  *
64  * As a secondary function, holding the full write side also serves to prevent
65  * writers for the itree, this is an optimization to avoid extra locking
66  * during invalidate_range_start/end notifiers.
67  *
68  * The write side has two states, fully excluded:
69  *  - mm->active_invalidate_ranges != 0
70  *  - subscriptions->invalidate_seq & 1 == True (odd)
71  *  - some range on the mm_struct is being invalidated
72  *  - the itree is not allowed to change
73  *
74  * And partially excluded:
75  *  - mm->active_invalidate_ranges != 0
76  *  - subscriptions->invalidate_seq & 1 == False (even)
77  *  - some range on the mm_struct is being invalidated
78  *  - the itree is allowed to change
79  *
80  * Operations on notifier_subscriptions->invalidate_seq (under spinlock):
81  *    seq |= 1  # Begin writing
82  *    seq++     # Release the writing state
83  *    seq & 1   # True if a writer exists
84  *
85  * The later state avoids some expensive work on inv_end in the common case of
86  * no mmu_interval_notifier monitoring the VA.
87  */
88 static bool
89 mn_itree_is_invalidating(struct mmu_notifier_subscriptions *subscriptions)
90 {
91 	lockdep_assert_held(&subscriptions->lock);
92 	return subscriptions->invalidate_seq & 1;
93 }
94 
95 static struct mmu_interval_notifier *
96 mn_itree_inv_start_range(struct mmu_notifier_subscriptions *subscriptions,
97 			 const struct mmu_notifier_range *range,
98 			 unsigned long *seq)
99 {
100 	struct interval_tree_node *node;
101 	struct mmu_interval_notifier *res = NULL;
102 
103 	spin_lock(&subscriptions->lock);
104 	subscriptions->active_invalidate_ranges++;
105 	node = interval_tree_iter_first(&subscriptions->itree, range->start,
106 					range->end - 1);
107 	if (node) {
108 		subscriptions->invalidate_seq |= 1;
109 		res = container_of(node, struct mmu_interval_notifier,
110 				   interval_tree);
111 	}
112 
113 	*seq = subscriptions->invalidate_seq;
114 	spin_unlock(&subscriptions->lock);
115 	return res;
116 }
117 
118 static struct mmu_interval_notifier *
119 mn_itree_inv_next(struct mmu_interval_notifier *interval_sub,
120 		  const struct mmu_notifier_range *range)
121 {
122 	struct interval_tree_node *node;
123 
124 	node = interval_tree_iter_next(&interval_sub->interval_tree,
125 				       range->start, range->end - 1);
126 	if (!node)
127 		return NULL;
128 	return container_of(node, struct mmu_interval_notifier, interval_tree);
129 }
130 
131 static void mn_itree_inv_end(struct mmu_notifier_subscriptions *subscriptions)
132 {
133 	struct mmu_interval_notifier *interval_sub;
134 	struct hlist_node *next;
135 
136 	spin_lock(&subscriptions->lock);
137 	if (--subscriptions->active_invalidate_ranges ||
138 	    !mn_itree_is_invalidating(subscriptions)) {
139 		spin_unlock(&subscriptions->lock);
140 		return;
141 	}
142 
143 	/* Make invalidate_seq even */
144 	subscriptions->invalidate_seq++;
145 
146 	/*
147 	 * The inv_end incorporates a deferred mechanism like rtnl_unlock().
148 	 * Adds and removes are queued until the final inv_end happens then
149 	 * they are progressed. This arrangement for tree updates is used to
150 	 * avoid using a blocking lock during invalidate_range_start.
151 	 */
152 	hlist_for_each_entry_safe(interval_sub, next,
153 				  &subscriptions->deferred_list,
154 				  deferred_item) {
155 		if (RB_EMPTY_NODE(&interval_sub->interval_tree.rb))
156 			interval_tree_insert(&interval_sub->interval_tree,
157 					     &subscriptions->itree);
158 		else
159 			interval_tree_remove(&interval_sub->interval_tree,
160 					     &subscriptions->itree);
161 		hlist_del(&interval_sub->deferred_item);
162 	}
163 	spin_unlock(&subscriptions->lock);
164 
165 	wake_up_all(&subscriptions->wq);
166 }
167 
168 /**
169  * mmu_interval_read_begin - Begin a read side critical section against a VA
170  *                           range
171  * @interval_sub: The interval subscription
172  *
173  * mmu_iterval_read_begin()/mmu_iterval_read_retry() implement a
174  * collision-retry scheme similar to seqcount for the VA range under
175  * subscription. If the mm invokes invalidation during the critical section
176  * then mmu_interval_read_retry() will return true.
177  *
178  * This is useful to obtain shadow PTEs where teardown or setup of the SPTEs
179  * require a blocking context.  The critical region formed by this can sleep,
180  * and the required 'user_lock' can also be a sleeping lock.
181  *
182  * The caller is required to provide a 'user_lock' to serialize both teardown
183  * and setup.
184  *
185  * The return value should be passed to mmu_interval_read_retry().
186  */
187 unsigned long
188 mmu_interval_read_begin(struct mmu_interval_notifier *interval_sub)
189 {
190 	struct mmu_notifier_subscriptions *subscriptions =
191 		interval_sub->mm->notifier_subscriptions;
192 	unsigned long seq;
193 	bool is_invalidating;
194 
195 	/*
196 	 * If the subscription has a different seq value under the user_lock
197 	 * than we started with then it has collided.
198 	 *
199 	 * If the subscription currently has the same seq value as the
200 	 * subscriptions seq, then it is currently between
201 	 * invalidate_start/end and is colliding.
202 	 *
203 	 * The locking looks broadly like this:
204 	 *   mn_itree_inv_start():                 mmu_interval_read_begin():
205 	 *                                         spin_lock
206 	 *                                          seq = READ_ONCE(interval_sub->invalidate_seq);
207 	 *                                          seq == subs->invalidate_seq
208 	 *                                         spin_unlock
209 	 *    spin_lock
210 	 *     seq = ++subscriptions->invalidate_seq
211 	 *    spin_unlock
212 	 *     op->invalidate():
213 	 *       user_lock
214 	 *        mmu_interval_set_seq()
215 	 *         interval_sub->invalidate_seq = seq
216 	 *       user_unlock
217 	 *
218 	 *                          [Required: mmu_interval_read_retry() == true]
219 	 *
220 	 *   mn_itree_inv_end():
221 	 *    spin_lock
222 	 *     seq = ++subscriptions->invalidate_seq
223 	 *    spin_unlock
224 	 *
225 	 *                                        user_lock
226 	 *                                         mmu_interval_read_retry():
227 	 *                                          interval_sub->invalidate_seq != seq
228 	 *                                        user_unlock
229 	 *
230 	 * Barriers are not needed here as any races here are closed by an
231 	 * eventual mmu_interval_read_retry(), which provides a barrier via the
232 	 * user_lock.
233 	 */
234 	spin_lock(&subscriptions->lock);
235 	/* Pairs with the WRITE_ONCE in mmu_interval_set_seq() */
236 	seq = READ_ONCE(interval_sub->invalidate_seq);
237 	is_invalidating = seq == subscriptions->invalidate_seq;
238 	spin_unlock(&subscriptions->lock);
239 
240 	/*
241 	 * interval_sub->invalidate_seq must always be set to an odd value via
242 	 * mmu_interval_set_seq() using the provided cur_seq from
243 	 * mn_itree_inv_start_range(). This ensures that if seq does wrap we
244 	 * will always clear the below sleep in some reasonable time as
245 	 * subscriptions->invalidate_seq is even in the idle state.
246 	 */
247 	lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
248 	lock_map_release(&__mmu_notifier_invalidate_range_start_map);
249 	if (is_invalidating)
250 		wait_event(subscriptions->wq,
251 			   READ_ONCE(subscriptions->invalidate_seq) != seq);
252 
253 	/*
254 	 * Notice that mmu_interval_read_retry() can already be true at this
255 	 * point, avoiding loops here allows the caller to provide a global
256 	 * time bound.
257 	 */
258 
259 	return seq;
260 }
261 EXPORT_SYMBOL_GPL(mmu_interval_read_begin);
262 
263 static void mn_itree_release(struct mmu_notifier_subscriptions *subscriptions,
264 			     struct mm_struct *mm)
265 {
266 	struct mmu_notifier_range range = {
267 		.flags = MMU_NOTIFIER_RANGE_BLOCKABLE,
268 		.event = MMU_NOTIFY_RELEASE,
269 		.mm = mm,
270 		.start = 0,
271 		.end = ULONG_MAX,
272 	};
273 	struct mmu_interval_notifier *interval_sub;
274 	unsigned long cur_seq;
275 	bool ret;
276 
277 	for (interval_sub =
278 		     mn_itree_inv_start_range(subscriptions, &range, &cur_seq);
279 	     interval_sub;
280 	     interval_sub = mn_itree_inv_next(interval_sub, &range)) {
281 		ret = interval_sub->ops->invalidate(interval_sub, &range,
282 						    cur_seq);
283 		WARN_ON(!ret);
284 	}
285 
286 	mn_itree_inv_end(subscriptions);
287 }
288 
289 /*
290  * This function can't run concurrently against mmu_notifier_register
291  * because mm->mm_users > 0 during mmu_notifier_register and exit_mmap
292  * runs with mm_users == 0. Other tasks may still invoke mmu notifiers
293  * in parallel despite there being no task using this mm any more,
294  * through the vmas outside of the exit_mmap context, such as with
295  * vmtruncate. This serializes against mmu_notifier_unregister with
296  * the notifier_subscriptions->lock in addition to SRCU and it serializes
297  * against the other mmu notifiers with SRCU. struct mmu_notifier_subscriptions
298  * can't go away from under us as exit_mmap holds an mm_count pin
299  * itself.
300  */
301 static void mn_hlist_release(struct mmu_notifier_subscriptions *subscriptions,
302 			     struct mm_struct *mm)
303 {
304 	struct mmu_notifier *subscription;
305 	int id;
306 
307 	/*
308 	 * SRCU here will block mmu_notifier_unregister until
309 	 * ->release returns.
310 	 */
311 	id = srcu_read_lock(&srcu);
312 	hlist_for_each_entry_rcu(subscription, &subscriptions->list, hlist,
313 				 srcu_read_lock_held(&srcu))
314 		/*
315 		 * If ->release runs before mmu_notifier_unregister it must be
316 		 * handled, as it's the only way for the driver to flush all
317 		 * existing sptes and stop the driver from establishing any more
318 		 * sptes before all the pages in the mm are freed.
319 		 */
320 		if (subscription->ops->release)
321 			subscription->ops->release(subscription, mm);
322 
323 	spin_lock(&subscriptions->lock);
324 	while (unlikely(!hlist_empty(&subscriptions->list))) {
325 		subscription = hlist_entry(subscriptions->list.first,
326 					   struct mmu_notifier, hlist);
327 		/*
328 		 * We arrived before mmu_notifier_unregister so
329 		 * mmu_notifier_unregister will do nothing other than to wait
330 		 * for ->release to finish and for mmu_notifier_unregister to
331 		 * return.
332 		 */
333 		hlist_del_init_rcu(&subscription->hlist);
334 	}
335 	spin_unlock(&subscriptions->lock);
336 	srcu_read_unlock(&srcu, id);
337 
338 	/*
339 	 * synchronize_srcu here prevents mmu_notifier_release from returning to
340 	 * exit_mmap (which would proceed with freeing all pages in the mm)
341 	 * until the ->release method returns, if it was invoked by
342 	 * mmu_notifier_unregister.
343 	 *
344 	 * The notifier_subscriptions can't go away from under us because
345 	 * one mm_count is held by exit_mmap.
346 	 */
347 	synchronize_srcu(&srcu);
348 }
349 
350 void __mmu_notifier_release(struct mm_struct *mm)
351 {
352 	struct mmu_notifier_subscriptions *subscriptions =
353 		mm->notifier_subscriptions;
354 
355 	if (subscriptions->has_itree)
356 		mn_itree_release(subscriptions, mm);
357 
358 	if (!hlist_empty(&subscriptions->list))
359 		mn_hlist_release(subscriptions, mm);
360 }
361 
362 /*
363  * If no young bitflag is supported by the hardware, ->clear_flush_young can
364  * unmap the address and return 1 or 0 depending if the mapping previously
365  * existed or not.
366  */
367 int __mmu_notifier_clear_flush_young(struct mm_struct *mm,
368 					unsigned long start,
369 					unsigned long end)
370 {
371 	struct mmu_notifier *subscription;
372 	int young = 0, id;
373 
374 	id = srcu_read_lock(&srcu);
375 	hlist_for_each_entry_rcu(subscription,
376 				 &mm->notifier_subscriptions->list, hlist,
377 				 srcu_read_lock_held(&srcu)) {
378 		if (subscription->ops->clear_flush_young)
379 			young |= subscription->ops->clear_flush_young(
380 				subscription, mm, start, end);
381 	}
382 	srcu_read_unlock(&srcu, id);
383 
384 	return young;
385 }
386 
387 int __mmu_notifier_clear_young(struct mm_struct *mm,
388 			       unsigned long start,
389 			       unsigned long end)
390 {
391 	struct mmu_notifier *subscription;
392 	int young = 0, id;
393 
394 	id = srcu_read_lock(&srcu);
395 	hlist_for_each_entry_rcu(subscription,
396 				 &mm->notifier_subscriptions->list, hlist,
397 				 srcu_read_lock_held(&srcu)) {
398 		if (subscription->ops->clear_young)
399 			young |= subscription->ops->clear_young(subscription,
400 								mm, start, end);
401 	}
402 	srcu_read_unlock(&srcu, id);
403 
404 	return young;
405 }
406 
407 int __mmu_notifier_test_young(struct mm_struct *mm,
408 			      unsigned long address)
409 {
410 	struct mmu_notifier *subscription;
411 	int young = 0, id;
412 
413 	id = srcu_read_lock(&srcu);
414 	hlist_for_each_entry_rcu(subscription,
415 				 &mm->notifier_subscriptions->list, hlist,
416 				 srcu_read_lock_held(&srcu)) {
417 		if (subscription->ops->test_young) {
418 			young = subscription->ops->test_young(subscription, mm,
419 							      address);
420 			if (young)
421 				break;
422 		}
423 	}
424 	srcu_read_unlock(&srcu, id);
425 
426 	return young;
427 }
428 
429 static int mn_itree_invalidate(struct mmu_notifier_subscriptions *subscriptions,
430 			       const struct mmu_notifier_range *range)
431 {
432 	struct mmu_interval_notifier *interval_sub;
433 	unsigned long cur_seq;
434 
435 	for (interval_sub =
436 		     mn_itree_inv_start_range(subscriptions, range, &cur_seq);
437 	     interval_sub;
438 	     interval_sub = mn_itree_inv_next(interval_sub, range)) {
439 		bool ret;
440 
441 		ret = interval_sub->ops->invalidate(interval_sub, range,
442 						    cur_seq);
443 		if (!ret) {
444 			if (WARN_ON(mmu_notifier_range_blockable(range)))
445 				continue;
446 			goto out_would_block;
447 		}
448 	}
449 	return 0;
450 
451 out_would_block:
452 	/*
453 	 * On -EAGAIN the non-blocking caller is not allowed to call
454 	 * invalidate_range_end()
455 	 */
456 	mn_itree_inv_end(subscriptions);
457 	return -EAGAIN;
458 }
459 
460 static int mn_hlist_invalidate_range_start(
461 	struct mmu_notifier_subscriptions *subscriptions,
462 	struct mmu_notifier_range *range)
463 {
464 	struct mmu_notifier *subscription;
465 	int ret = 0;
466 	int id;
467 
468 	id = srcu_read_lock(&srcu);
469 	hlist_for_each_entry_rcu(subscription, &subscriptions->list, hlist,
470 				 srcu_read_lock_held(&srcu)) {
471 		const struct mmu_notifier_ops *ops = subscription->ops;
472 
473 		if (ops->invalidate_range_start) {
474 			int _ret;
475 
476 			if (!mmu_notifier_range_blockable(range))
477 				non_block_start();
478 			_ret = ops->invalidate_range_start(subscription, range);
479 			if (!mmu_notifier_range_blockable(range))
480 				non_block_end();
481 			if (_ret) {
482 				pr_info("%pS callback failed with %d in %sblockable context.\n",
483 					ops->invalidate_range_start, _ret,
484 					!mmu_notifier_range_blockable(range) ?
485 						"non-" :
486 						"");
487 				WARN_ON(mmu_notifier_range_blockable(range) ||
488 					_ret != -EAGAIN);
489 				/*
490 				 * We call all the notifiers on any EAGAIN,
491 				 * there is no way for a notifier to know if
492 				 * its start method failed, thus a start that
493 				 * does EAGAIN can't also do end.
494 				 */
495 				WARN_ON(ops->invalidate_range_end);
496 				ret = _ret;
497 			}
498 		}
499 	}
500 
501 	if (ret) {
502 		/*
503 		 * Must be non-blocking to get here.  If there are multiple
504 		 * notifiers and one or more failed start, any that succeeded
505 		 * start are expecting their end to be called.  Do so now.
506 		 */
507 		hlist_for_each_entry_rcu(subscription, &subscriptions->list,
508 					 hlist, srcu_read_lock_held(&srcu)) {
509 			if (!subscription->ops->invalidate_range_end)
510 				continue;
511 
512 			subscription->ops->invalidate_range_end(subscription,
513 								range);
514 		}
515 	}
516 	srcu_read_unlock(&srcu, id);
517 
518 	return ret;
519 }
520 
521 int __mmu_notifier_invalidate_range_start(struct mmu_notifier_range *range)
522 {
523 	struct mmu_notifier_subscriptions *subscriptions =
524 		range->mm->notifier_subscriptions;
525 	int ret;
526 
527 	if (subscriptions->has_itree) {
528 		ret = mn_itree_invalidate(subscriptions, range);
529 		if (ret)
530 			return ret;
531 	}
532 	if (!hlist_empty(&subscriptions->list))
533 		return mn_hlist_invalidate_range_start(subscriptions, range);
534 	return 0;
535 }
536 
537 static void
538 mn_hlist_invalidate_end(struct mmu_notifier_subscriptions *subscriptions,
539 			struct mmu_notifier_range *range)
540 {
541 	struct mmu_notifier *subscription;
542 	int id;
543 
544 	id = srcu_read_lock(&srcu);
545 	hlist_for_each_entry_rcu(subscription, &subscriptions->list, hlist,
546 				 srcu_read_lock_held(&srcu)) {
547 		if (subscription->ops->invalidate_range_end) {
548 			if (!mmu_notifier_range_blockable(range))
549 				non_block_start();
550 			subscription->ops->invalidate_range_end(subscription,
551 								range);
552 			if (!mmu_notifier_range_blockable(range))
553 				non_block_end();
554 		}
555 	}
556 	srcu_read_unlock(&srcu, id);
557 }
558 
559 void __mmu_notifier_invalidate_range_end(struct mmu_notifier_range *range)
560 {
561 	struct mmu_notifier_subscriptions *subscriptions =
562 		range->mm->notifier_subscriptions;
563 
564 	lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
565 	if (subscriptions->has_itree)
566 		mn_itree_inv_end(subscriptions);
567 
568 	if (!hlist_empty(&subscriptions->list))
569 		mn_hlist_invalidate_end(subscriptions, range);
570 	lock_map_release(&__mmu_notifier_invalidate_range_start_map);
571 }
572 
573 void __mmu_notifier_arch_invalidate_secondary_tlbs(struct mm_struct *mm,
574 					unsigned long start, unsigned long end)
575 {
576 	struct mmu_notifier *subscription;
577 	int id;
578 
579 	id = srcu_read_lock(&srcu);
580 	hlist_for_each_entry_rcu(subscription,
581 				 &mm->notifier_subscriptions->list, hlist,
582 				 srcu_read_lock_held(&srcu)) {
583 		if (subscription->ops->arch_invalidate_secondary_tlbs)
584 			subscription->ops->arch_invalidate_secondary_tlbs(
585 				subscription, mm,
586 				start, end);
587 	}
588 	srcu_read_unlock(&srcu, id);
589 }
590 
591 /*
592  * Same as mmu_notifier_register but here the caller must hold the mmap_lock in
593  * write mode. A NULL mn signals the notifier is being registered for itree
594  * mode.
595  */
596 int __mmu_notifier_register(struct mmu_notifier *subscription,
597 			    struct mm_struct *mm)
598 {
599 	struct mmu_notifier_subscriptions *subscriptions = NULL;
600 	int ret;
601 
602 	mmap_assert_write_locked(mm);
603 	BUG_ON(atomic_read(&mm->mm_users) <= 0);
604 
605 	/*
606 	 * Subsystems should only register for invalidate_secondary_tlbs() or
607 	 * invalidate_range_start()/end() callbacks, not both.
608 	 */
609 	if (WARN_ON_ONCE(subscription &&
610 			 (subscription->ops->arch_invalidate_secondary_tlbs &&
611 			 (subscription->ops->invalidate_range_start ||
612 			  subscription->ops->invalidate_range_end))))
613 		return -EINVAL;
614 
615 	if (!mm->notifier_subscriptions) {
616 		/*
617 		 * kmalloc cannot be called under mm_take_all_locks(), but we
618 		 * know that mm->notifier_subscriptions can't change while we
619 		 * hold the write side of the mmap_lock.
620 		 */
621 		subscriptions = kzalloc(
622 			sizeof(struct mmu_notifier_subscriptions), GFP_KERNEL);
623 		if (!subscriptions)
624 			return -ENOMEM;
625 
626 		INIT_HLIST_HEAD(&subscriptions->list);
627 		spin_lock_init(&subscriptions->lock);
628 		subscriptions->invalidate_seq = 2;
629 		subscriptions->itree = RB_ROOT_CACHED;
630 		init_waitqueue_head(&subscriptions->wq);
631 		INIT_HLIST_HEAD(&subscriptions->deferred_list);
632 	}
633 
634 	ret = mm_take_all_locks(mm);
635 	if (unlikely(ret))
636 		goto out_clean;
637 
638 	/*
639 	 * Serialize the update against mmu_notifier_unregister. A
640 	 * side note: mmu_notifier_release can't run concurrently with
641 	 * us because we hold the mm_users pin (either implicitly as
642 	 * current->mm or explicitly with get_task_mm() or similar).
643 	 * We can't race against any other mmu notifier method either
644 	 * thanks to mm_take_all_locks().
645 	 *
646 	 * release semantics on the initialization of the
647 	 * mmu_notifier_subscriptions's contents are provided for unlocked
648 	 * readers.  acquire can only be used while holding the mmgrab or
649 	 * mmget, and is safe because once created the
650 	 * mmu_notifier_subscriptions is not freed until the mm is destroyed.
651 	 * As above, users holding the mmap_lock or one of the
652 	 * mm_take_all_locks() do not need to use acquire semantics.
653 	 */
654 	if (subscriptions)
655 		smp_store_release(&mm->notifier_subscriptions, subscriptions);
656 
657 	if (subscription) {
658 		/* Pairs with the mmdrop in mmu_notifier_unregister_* */
659 		mmgrab(mm);
660 		subscription->mm = mm;
661 		subscription->users = 1;
662 
663 		spin_lock(&mm->notifier_subscriptions->lock);
664 		hlist_add_head_rcu(&subscription->hlist,
665 				   &mm->notifier_subscriptions->list);
666 		spin_unlock(&mm->notifier_subscriptions->lock);
667 	} else
668 		mm->notifier_subscriptions->has_itree = true;
669 
670 	mm_drop_all_locks(mm);
671 	BUG_ON(atomic_read(&mm->mm_users) <= 0);
672 	return 0;
673 
674 out_clean:
675 	kfree(subscriptions);
676 	return ret;
677 }
678 EXPORT_SYMBOL_GPL(__mmu_notifier_register);
679 
680 /**
681  * mmu_notifier_register - Register a notifier on a mm
682  * @subscription: The notifier to attach
683  * @mm: The mm to attach the notifier to
684  *
685  * Must not hold mmap_lock nor any other VM related lock when calling
686  * this registration function. Must also ensure mm_users can't go down
687  * to zero while this runs to avoid races with mmu_notifier_release,
688  * so mm has to be current->mm or the mm should be pinned safely such
689  * as with get_task_mm(). If the mm is not current->mm, the mm_users
690  * pin should be released by calling mmput after mmu_notifier_register
691  * returns.
692  *
693  * mmu_notifier_unregister() or mmu_notifier_put() must be always called to
694  * unregister the notifier.
695  *
696  * While the caller has a mmu_notifier get the subscription->mm pointer will remain
697  * valid, and can be converted to an active mm pointer via mmget_not_zero().
698  */
699 int mmu_notifier_register(struct mmu_notifier *subscription,
700 			  struct mm_struct *mm)
701 {
702 	int ret;
703 
704 	mmap_write_lock(mm);
705 	ret = __mmu_notifier_register(subscription, mm);
706 	mmap_write_unlock(mm);
707 	return ret;
708 }
709 EXPORT_SYMBOL_GPL(mmu_notifier_register);
710 
711 static struct mmu_notifier *
712 find_get_mmu_notifier(struct mm_struct *mm, const struct mmu_notifier_ops *ops)
713 {
714 	struct mmu_notifier *subscription;
715 
716 	spin_lock(&mm->notifier_subscriptions->lock);
717 	hlist_for_each_entry_rcu(subscription,
718 				 &mm->notifier_subscriptions->list, hlist,
719 				 lockdep_is_held(&mm->notifier_subscriptions->lock)) {
720 		if (subscription->ops != ops)
721 			continue;
722 
723 		if (likely(subscription->users != UINT_MAX))
724 			subscription->users++;
725 		else
726 			subscription = ERR_PTR(-EOVERFLOW);
727 		spin_unlock(&mm->notifier_subscriptions->lock);
728 		return subscription;
729 	}
730 	spin_unlock(&mm->notifier_subscriptions->lock);
731 	return NULL;
732 }
733 
734 /**
735  * mmu_notifier_get_locked - Return the single struct mmu_notifier for
736  *                           the mm & ops
737  * @ops: The operations struct being subscribe with
738  * @mm : The mm to attach notifiers too
739  *
740  * This function either allocates a new mmu_notifier via
741  * ops->alloc_notifier(), or returns an already existing notifier on the
742  * list. The value of the ops pointer is used to determine when two notifiers
743  * are the same.
744  *
745  * Each call to mmu_notifier_get() must be paired with a call to
746  * mmu_notifier_put(). The caller must hold the write side of mm->mmap_lock.
747  *
748  * While the caller has a mmu_notifier get the mm pointer will remain valid,
749  * and can be converted to an active mm pointer via mmget_not_zero().
750  */
751 struct mmu_notifier *mmu_notifier_get_locked(const struct mmu_notifier_ops *ops,
752 					     struct mm_struct *mm)
753 {
754 	struct mmu_notifier *subscription;
755 	int ret;
756 
757 	mmap_assert_write_locked(mm);
758 
759 	if (mm->notifier_subscriptions) {
760 		subscription = find_get_mmu_notifier(mm, ops);
761 		if (subscription)
762 			return subscription;
763 	}
764 
765 	subscription = ops->alloc_notifier(mm);
766 	if (IS_ERR(subscription))
767 		return subscription;
768 	subscription->ops = ops;
769 	ret = __mmu_notifier_register(subscription, mm);
770 	if (ret)
771 		goto out_free;
772 	return subscription;
773 out_free:
774 	subscription->ops->free_notifier(subscription);
775 	return ERR_PTR(ret);
776 }
777 EXPORT_SYMBOL_GPL(mmu_notifier_get_locked);
778 
779 /* this is called after the last mmu_notifier_unregister() returned */
780 void __mmu_notifier_subscriptions_destroy(struct mm_struct *mm)
781 {
782 	BUG_ON(!hlist_empty(&mm->notifier_subscriptions->list));
783 	kfree(mm->notifier_subscriptions);
784 	mm->notifier_subscriptions = LIST_POISON1; /* debug */
785 }
786 
787 /*
788  * This releases the mm_count pin automatically and frees the mm
789  * structure if it was the last user of it. It serializes against
790  * running mmu notifiers with SRCU and against mmu_notifier_unregister
791  * with the unregister lock + SRCU. All sptes must be dropped before
792  * calling mmu_notifier_unregister. ->release or any other notifier
793  * method may be invoked concurrently with mmu_notifier_unregister,
794  * and only after mmu_notifier_unregister returned we're guaranteed
795  * that ->release or any other method can't run anymore.
796  */
797 void mmu_notifier_unregister(struct mmu_notifier *subscription,
798 			     struct mm_struct *mm)
799 {
800 	BUG_ON(atomic_read(&mm->mm_count) <= 0);
801 
802 	if (!hlist_unhashed(&subscription->hlist)) {
803 		/*
804 		 * SRCU here will force exit_mmap to wait for ->release to
805 		 * finish before freeing the pages.
806 		 */
807 		int id;
808 
809 		id = srcu_read_lock(&srcu);
810 		/*
811 		 * exit_mmap will block in mmu_notifier_release to guarantee
812 		 * that ->release is called before freeing the pages.
813 		 */
814 		if (subscription->ops->release)
815 			subscription->ops->release(subscription, mm);
816 		srcu_read_unlock(&srcu, id);
817 
818 		spin_lock(&mm->notifier_subscriptions->lock);
819 		/*
820 		 * Can not use list_del_rcu() since __mmu_notifier_release
821 		 * can delete it before we hold the lock.
822 		 */
823 		hlist_del_init_rcu(&subscription->hlist);
824 		spin_unlock(&mm->notifier_subscriptions->lock);
825 	}
826 
827 	/*
828 	 * Wait for any running method to finish, of course including
829 	 * ->release if it was run by mmu_notifier_release instead of us.
830 	 */
831 	synchronize_srcu(&srcu);
832 
833 	BUG_ON(atomic_read(&mm->mm_count) <= 0);
834 
835 	mmdrop(mm);
836 }
837 EXPORT_SYMBOL_GPL(mmu_notifier_unregister);
838 
839 static void mmu_notifier_free_rcu(struct rcu_head *rcu)
840 {
841 	struct mmu_notifier *subscription =
842 		container_of(rcu, struct mmu_notifier, rcu);
843 	struct mm_struct *mm = subscription->mm;
844 
845 	subscription->ops->free_notifier(subscription);
846 	/* Pairs with the get in __mmu_notifier_register() */
847 	mmdrop(mm);
848 }
849 
850 /**
851  * mmu_notifier_put - Release the reference on the notifier
852  * @subscription: The notifier to act on
853  *
854  * This function must be paired with each mmu_notifier_get(), it releases the
855  * reference obtained by the get. If this is the last reference then process
856  * to free the notifier will be run asynchronously.
857  *
858  * Unlike mmu_notifier_unregister() the get/put flow only calls ops->release
859  * when the mm_struct is destroyed. Instead free_notifier is always called to
860  * release any resources held by the user.
861  *
862  * As ops->release is not guaranteed to be called, the user must ensure that
863  * all sptes are dropped, and no new sptes can be established before
864  * mmu_notifier_put() is called.
865  *
866  * This function can be called from the ops->release callback, however the
867  * caller must still ensure it is called pairwise with mmu_notifier_get().
868  *
869  * Modules calling this function must call mmu_notifier_synchronize() in
870  * their __exit functions to ensure the async work is completed.
871  */
872 void mmu_notifier_put(struct mmu_notifier *subscription)
873 {
874 	struct mm_struct *mm = subscription->mm;
875 
876 	spin_lock(&mm->notifier_subscriptions->lock);
877 	if (WARN_ON(!subscription->users) || --subscription->users)
878 		goto out_unlock;
879 	hlist_del_init_rcu(&subscription->hlist);
880 	spin_unlock(&mm->notifier_subscriptions->lock);
881 
882 	call_srcu(&srcu, &subscription->rcu, mmu_notifier_free_rcu);
883 	return;
884 
885 out_unlock:
886 	spin_unlock(&mm->notifier_subscriptions->lock);
887 }
888 EXPORT_SYMBOL_GPL(mmu_notifier_put);
889 
890 static int __mmu_interval_notifier_insert(
891 	struct mmu_interval_notifier *interval_sub, struct mm_struct *mm,
892 	struct mmu_notifier_subscriptions *subscriptions, unsigned long start,
893 	unsigned long length, const struct mmu_interval_notifier_ops *ops)
894 {
895 	interval_sub->mm = mm;
896 	interval_sub->ops = ops;
897 	RB_CLEAR_NODE(&interval_sub->interval_tree.rb);
898 	interval_sub->interval_tree.start = start;
899 	/*
900 	 * Note that the representation of the intervals in the interval tree
901 	 * considers the ending point as contained in the interval.
902 	 */
903 	if (length == 0 ||
904 	    check_add_overflow(start, length - 1,
905 			       &interval_sub->interval_tree.last))
906 		return -EOVERFLOW;
907 
908 	/* Must call with a mmget() held */
909 	if (WARN_ON(atomic_read(&mm->mm_users) <= 0))
910 		return -EINVAL;
911 
912 	/* pairs with mmdrop in mmu_interval_notifier_remove() */
913 	mmgrab(mm);
914 
915 	/*
916 	 * If some invalidate_range_start/end region is going on in parallel
917 	 * we don't know what VA ranges are affected, so we must assume this
918 	 * new range is included.
919 	 *
920 	 * If the itree is invalidating then we are not allowed to change
921 	 * it. Retrying until invalidation is done is tricky due to the
922 	 * possibility for live lock, instead defer the add to
923 	 * mn_itree_inv_end() so this algorithm is deterministic.
924 	 *
925 	 * In all cases the value for the interval_sub->invalidate_seq should be
926 	 * odd, see mmu_interval_read_begin()
927 	 */
928 	spin_lock(&subscriptions->lock);
929 	if (subscriptions->active_invalidate_ranges) {
930 		if (mn_itree_is_invalidating(subscriptions))
931 			hlist_add_head(&interval_sub->deferred_item,
932 				       &subscriptions->deferred_list);
933 		else {
934 			subscriptions->invalidate_seq |= 1;
935 			interval_tree_insert(&interval_sub->interval_tree,
936 					     &subscriptions->itree);
937 		}
938 		interval_sub->invalidate_seq = subscriptions->invalidate_seq;
939 	} else {
940 		WARN_ON(mn_itree_is_invalidating(subscriptions));
941 		/*
942 		 * The starting seq for a subscription not under invalidation
943 		 * should be odd, not equal to the current invalidate_seq and
944 		 * invalidate_seq should not 'wrap' to the new seq any time
945 		 * soon.
946 		 */
947 		interval_sub->invalidate_seq =
948 			subscriptions->invalidate_seq - 1;
949 		interval_tree_insert(&interval_sub->interval_tree,
950 				     &subscriptions->itree);
951 	}
952 	spin_unlock(&subscriptions->lock);
953 	return 0;
954 }
955 
956 /**
957  * mmu_interval_notifier_insert - Insert an interval notifier
958  * @interval_sub: Interval subscription to register
959  * @start: Starting virtual address to monitor
960  * @length: Length of the range to monitor
961  * @mm: mm_struct to attach to
962  * @ops: Interval notifier operations to be called on matching events
963  *
964  * This function subscribes the interval notifier for notifications from the
965  * mm.  Upon return the ops related to mmu_interval_notifier will be called
966  * whenever an event that intersects with the given range occurs.
967  *
968  * Upon return the range_notifier may not be present in the interval tree yet.
969  * The caller must use the normal interval notifier read flow via
970  * mmu_interval_read_begin() to establish SPTEs for this range.
971  */
972 int mmu_interval_notifier_insert(struct mmu_interval_notifier *interval_sub,
973 				 struct mm_struct *mm, unsigned long start,
974 				 unsigned long length,
975 				 const struct mmu_interval_notifier_ops *ops)
976 {
977 	struct mmu_notifier_subscriptions *subscriptions;
978 	int ret;
979 
980 	might_lock(&mm->mmap_lock);
981 
982 	subscriptions = smp_load_acquire(&mm->notifier_subscriptions);
983 	if (!subscriptions || !subscriptions->has_itree) {
984 		ret = mmu_notifier_register(NULL, mm);
985 		if (ret)
986 			return ret;
987 		subscriptions = mm->notifier_subscriptions;
988 	}
989 	return __mmu_interval_notifier_insert(interval_sub, mm, subscriptions,
990 					      start, length, ops);
991 }
992 EXPORT_SYMBOL_GPL(mmu_interval_notifier_insert);
993 
994 int mmu_interval_notifier_insert_locked(
995 	struct mmu_interval_notifier *interval_sub, struct mm_struct *mm,
996 	unsigned long start, unsigned long length,
997 	const struct mmu_interval_notifier_ops *ops)
998 {
999 	struct mmu_notifier_subscriptions *subscriptions =
1000 		mm->notifier_subscriptions;
1001 	int ret;
1002 
1003 	mmap_assert_write_locked(mm);
1004 
1005 	if (!subscriptions || !subscriptions->has_itree) {
1006 		ret = __mmu_notifier_register(NULL, mm);
1007 		if (ret)
1008 			return ret;
1009 		subscriptions = mm->notifier_subscriptions;
1010 	}
1011 	return __mmu_interval_notifier_insert(interval_sub, mm, subscriptions,
1012 					      start, length, ops);
1013 }
1014 EXPORT_SYMBOL_GPL(mmu_interval_notifier_insert_locked);
1015 
1016 static bool
1017 mmu_interval_seq_released(struct mmu_notifier_subscriptions *subscriptions,
1018 			  unsigned long seq)
1019 {
1020 	bool ret;
1021 
1022 	spin_lock(&subscriptions->lock);
1023 	ret = subscriptions->invalidate_seq != seq;
1024 	spin_unlock(&subscriptions->lock);
1025 	return ret;
1026 }
1027 
1028 /**
1029  * mmu_interval_notifier_remove - Remove a interval notifier
1030  * @interval_sub: Interval subscription to unregister
1031  *
1032  * This function must be paired with mmu_interval_notifier_insert(). It cannot
1033  * be called from any ops callback.
1034  *
1035  * Once this returns ops callbacks are no longer running on other CPUs and
1036  * will not be called in future.
1037  */
1038 void mmu_interval_notifier_remove(struct mmu_interval_notifier *interval_sub)
1039 {
1040 	struct mm_struct *mm = interval_sub->mm;
1041 	struct mmu_notifier_subscriptions *subscriptions =
1042 		mm->notifier_subscriptions;
1043 	unsigned long seq = 0;
1044 
1045 	might_sleep();
1046 
1047 	spin_lock(&subscriptions->lock);
1048 	if (mn_itree_is_invalidating(subscriptions)) {
1049 		/*
1050 		 * remove is being called after insert put this on the
1051 		 * deferred list, but before the deferred list was processed.
1052 		 */
1053 		if (RB_EMPTY_NODE(&interval_sub->interval_tree.rb)) {
1054 			hlist_del(&interval_sub->deferred_item);
1055 		} else {
1056 			hlist_add_head(&interval_sub->deferred_item,
1057 				       &subscriptions->deferred_list);
1058 			seq = subscriptions->invalidate_seq;
1059 		}
1060 	} else {
1061 		WARN_ON(RB_EMPTY_NODE(&interval_sub->interval_tree.rb));
1062 		interval_tree_remove(&interval_sub->interval_tree,
1063 				     &subscriptions->itree);
1064 	}
1065 	spin_unlock(&subscriptions->lock);
1066 
1067 	/*
1068 	 * The possible sleep on progress in the invalidation requires the
1069 	 * caller not hold any locks held by invalidation callbacks.
1070 	 */
1071 	lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
1072 	lock_map_release(&__mmu_notifier_invalidate_range_start_map);
1073 	if (seq)
1074 		wait_event(subscriptions->wq,
1075 			   mmu_interval_seq_released(subscriptions, seq));
1076 
1077 	/* pairs with mmgrab in mmu_interval_notifier_insert() */
1078 	mmdrop(mm);
1079 }
1080 EXPORT_SYMBOL_GPL(mmu_interval_notifier_remove);
1081 
1082 /**
1083  * mmu_notifier_synchronize - Ensure all mmu_notifiers are freed
1084  *
1085  * This function ensures that all outstanding async SRU work from
1086  * mmu_notifier_put() is completed. After it returns any mmu_notifier_ops
1087  * associated with an unused mmu_notifier will no longer be called.
1088  *
1089  * Before using the caller must ensure that all of its mmu_notifiers have been
1090  * fully released via mmu_notifier_put().
1091  *
1092  * Modules using the mmu_notifier_put() API should call this in their __exit
1093  * function to avoid module unloading races.
1094  */
1095 void mmu_notifier_synchronize(void)
1096 {
1097 	synchronize_srcu(&srcu);
1098 }
1099 EXPORT_SYMBOL_GPL(mmu_notifier_synchronize);
1100