xref: /linux/mm/mmu_notifier.c (revision 03f7c1d2a49acd30e38789cd809d3300721e9b0e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/mmu_notifier.c
4  *
5  *  Copyright (C) 2008  Qumranet, Inc.
6  *  Copyright (C) 2008  SGI
7  *             Christoph Lameter <cl@linux.com>
8  */
9 
10 #include <linux/rculist.h>
11 #include <linux/mmu_notifier.h>
12 #include <linux/export.h>
13 #include <linux/mm.h>
14 #include <linux/err.h>
15 #include <linux/interval_tree.h>
16 #include <linux/srcu.h>
17 #include <linux/rcupdate.h>
18 #include <linux/sched.h>
19 #include <linux/sched/mm.h>
20 #include <linux/slab.h>
21 
22 /* global SRCU for all MMs */
23 DEFINE_STATIC_SRCU(srcu);
24 
25 #ifdef CONFIG_LOCKDEP
26 struct lockdep_map __mmu_notifier_invalidate_range_start_map = {
27 	.name = "mmu_notifier_invalidate_range_start"
28 };
29 #endif
30 
31 /*
32  * The mmu_notifier_subscriptions structure is allocated and installed in
33  * mm->notifier_subscriptions inside the mm_take_all_locks() protected
34  * critical section and it's released only when mm_count reaches zero
35  * in mmdrop().
36  */
37 struct mmu_notifier_subscriptions {
38 	/* all mmu notifiers registered in this mm are queued in this list */
39 	struct hlist_head list;
40 	bool has_itree;
41 	/* to serialize the list modifications and hlist_unhashed */
42 	spinlock_t lock;
43 	unsigned long invalidate_seq;
44 	unsigned long active_invalidate_ranges;
45 	struct rb_root_cached itree;
46 	wait_queue_head_t wq;
47 	struct hlist_head deferred_list;
48 };
49 
50 /*
51  * This is a collision-retry read-side/write-side 'lock', a lot like a
52  * seqcount, however this allows multiple write-sides to hold it at
53  * once. Conceptually the write side is protecting the values of the PTEs in
54  * this mm, such that PTES cannot be read into SPTEs (shadow PTEs) while any
55  * writer exists.
56  *
57  * Note that the core mm creates nested invalidate_range_start()/end() regions
58  * within the same thread, and runs invalidate_range_start()/end() in parallel
59  * on multiple CPUs. This is designed to not reduce concurrency or block
60  * progress on the mm side.
61  *
62  * As a secondary function, holding the full write side also serves to prevent
63  * writers for the itree, this is an optimization to avoid extra locking
64  * during invalidate_range_start/end notifiers.
65  *
66  * The write side has two states, fully excluded:
67  *  - mm->active_invalidate_ranges != 0
68  *  - subscriptions->invalidate_seq & 1 == True (odd)
69  *  - some range on the mm_struct is being invalidated
70  *  - the itree is not allowed to change
71  *
72  * And partially excluded:
73  *  - mm->active_invalidate_ranges != 0
74  *  - subscriptions->invalidate_seq & 1 == False (even)
75  *  - some range on the mm_struct is being invalidated
76  *  - the itree is allowed to change
77  *
78  * Operations on notifier_subscriptions->invalidate_seq (under spinlock):
79  *    seq |= 1  # Begin writing
80  *    seq++     # Release the writing state
81  *    seq & 1   # True if a writer exists
82  *
83  * The later state avoids some expensive work on inv_end in the common case of
84  * no mmu_interval_notifier monitoring the VA.
85  */
86 static bool
87 mn_itree_is_invalidating(struct mmu_notifier_subscriptions *subscriptions)
88 {
89 	lockdep_assert_held(&subscriptions->lock);
90 	return subscriptions->invalidate_seq & 1;
91 }
92 
93 static struct mmu_interval_notifier *
94 mn_itree_inv_start_range(struct mmu_notifier_subscriptions *subscriptions,
95 			 const struct mmu_notifier_range *range,
96 			 unsigned long *seq)
97 {
98 	struct interval_tree_node *node;
99 	struct mmu_interval_notifier *res = NULL;
100 
101 	spin_lock(&subscriptions->lock);
102 	subscriptions->active_invalidate_ranges++;
103 	node = interval_tree_iter_first(&subscriptions->itree, range->start,
104 					range->end - 1);
105 	if (node) {
106 		subscriptions->invalidate_seq |= 1;
107 		res = container_of(node, struct mmu_interval_notifier,
108 				   interval_tree);
109 	}
110 
111 	*seq = subscriptions->invalidate_seq;
112 	spin_unlock(&subscriptions->lock);
113 	return res;
114 }
115 
116 static struct mmu_interval_notifier *
117 mn_itree_inv_next(struct mmu_interval_notifier *interval_sub,
118 		  const struct mmu_notifier_range *range)
119 {
120 	struct interval_tree_node *node;
121 
122 	node = interval_tree_iter_next(&interval_sub->interval_tree,
123 				       range->start, range->end - 1);
124 	if (!node)
125 		return NULL;
126 	return container_of(node, struct mmu_interval_notifier, interval_tree);
127 }
128 
129 static void mn_itree_inv_end(struct mmu_notifier_subscriptions *subscriptions)
130 {
131 	struct mmu_interval_notifier *interval_sub;
132 	struct hlist_node *next;
133 
134 	spin_lock(&subscriptions->lock);
135 	if (--subscriptions->active_invalidate_ranges ||
136 	    !mn_itree_is_invalidating(subscriptions)) {
137 		spin_unlock(&subscriptions->lock);
138 		return;
139 	}
140 
141 	/* Make invalidate_seq even */
142 	subscriptions->invalidate_seq++;
143 
144 	/*
145 	 * The inv_end incorporates a deferred mechanism like rtnl_unlock().
146 	 * Adds and removes are queued until the final inv_end happens then
147 	 * they are progressed. This arrangement for tree updates is used to
148 	 * avoid using a blocking lock during invalidate_range_start.
149 	 */
150 	hlist_for_each_entry_safe(interval_sub, next,
151 				  &subscriptions->deferred_list,
152 				  deferred_item) {
153 		if (RB_EMPTY_NODE(&interval_sub->interval_tree.rb))
154 			interval_tree_insert(&interval_sub->interval_tree,
155 					     &subscriptions->itree);
156 		else
157 			interval_tree_remove(&interval_sub->interval_tree,
158 					     &subscriptions->itree);
159 		hlist_del(&interval_sub->deferred_item);
160 	}
161 	spin_unlock(&subscriptions->lock);
162 
163 	wake_up_all(&subscriptions->wq);
164 }
165 
166 /**
167  * mmu_interval_read_begin - Begin a read side critical section against a VA
168  *                           range
169  * @interval_sub: The interval subscription
170  *
171  * mmu_iterval_read_begin()/mmu_iterval_read_retry() implement a
172  * collision-retry scheme similar to seqcount for the VA range under
173  * subscription. If the mm invokes invalidation during the critical section
174  * then mmu_interval_read_retry() will return true.
175  *
176  * This is useful to obtain shadow PTEs where teardown or setup of the SPTEs
177  * require a blocking context.  The critical region formed by this can sleep,
178  * and the required 'user_lock' can also be a sleeping lock.
179  *
180  * The caller is required to provide a 'user_lock' to serialize both teardown
181  * and setup.
182  *
183  * The return value should be passed to mmu_interval_read_retry().
184  */
185 unsigned long
186 mmu_interval_read_begin(struct mmu_interval_notifier *interval_sub)
187 {
188 	struct mmu_notifier_subscriptions *subscriptions =
189 		interval_sub->mm->notifier_subscriptions;
190 	unsigned long seq;
191 	bool is_invalidating;
192 
193 	/*
194 	 * If the subscription has a different seq value under the user_lock
195 	 * than we started with then it has collided.
196 	 *
197 	 * If the subscription currently has the same seq value as the
198 	 * subscriptions seq, then it is currently between
199 	 * invalidate_start/end and is colliding.
200 	 *
201 	 * The locking looks broadly like this:
202 	 *   mn_tree_invalidate_start():          mmu_interval_read_begin():
203 	 *                                         spin_lock
204 	 *                                          seq = READ_ONCE(interval_sub->invalidate_seq);
205 	 *                                          seq == subs->invalidate_seq
206 	 *                                         spin_unlock
207 	 *    spin_lock
208 	 *     seq = ++subscriptions->invalidate_seq
209 	 *    spin_unlock
210 	 *     op->invalidate_range():
211 	 *       user_lock
212 	 *        mmu_interval_set_seq()
213 	 *         interval_sub->invalidate_seq = seq
214 	 *       user_unlock
215 	 *
216 	 *                          [Required: mmu_interval_read_retry() == true]
217 	 *
218 	 *   mn_itree_inv_end():
219 	 *    spin_lock
220 	 *     seq = ++subscriptions->invalidate_seq
221 	 *    spin_unlock
222 	 *
223 	 *                                        user_lock
224 	 *                                         mmu_interval_read_retry():
225 	 *                                          interval_sub->invalidate_seq != seq
226 	 *                                        user_unlock
227 	 *
228 	 * Barriers are not needed here as any races here are closed by an
229 	 * eventual mmu_interval_read_retry(), which provides a barrier via the
230 	 * user_lock.
231 	 */
232 	spin_lock(&subscriptions->lock);
233 	/* Pairs with the WRITE_ONCE in mmu_interval_set_seq() */
234 	seq = READ_ONCE(interval_sub->invalidate_seq);
235 	is_invalidating = seq == subscriptions->invalidate_seq;
236 	spin_unlock(&subscriptions->lock);
237 
238 	/*
239 	 * interval_sub->invalidate_seq must always be set to an odd value via
240 	 * mmu_interval_set_seq() using the provided cur_seq from
241 	 * mn_itree_inv_start_range(). This ensures that if seq does wrap we
242 	 * will always clear the below sleep in some reasonable time as
243 	 * subscriptions->invalidate_seq is even in the idle state.
244 	 */
245 	lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
246 	lock_map_release(&__mmu_notifier_invalidate_range_start_map);
247 	if (is_invalidating)
248 		wait_event(subscriptions->wq,
249 			   READ_ONCE(subscriptions->invalidate_seq) != seq);
250 
251 	/*
252 	 * Notice that mmu_interval_read_retry() can already be true at this
253 	 * point, avoiding loops here allows the caller to provide a global
254 	 * time bound.
255 	 */
256 
257 	return seq;
258 }
259 EXPORT_SYMBOL_GPL(mmu_interval_read_begin);
260 
261 static void mn_itree_release(struct mmu_notifier_subscriptions *subscriptions,
262 			     struct mm_struct *mm)
263 {
264 	struct mmu_notifier_range range = {
265 		.flags = MMU_NOTIFIER_RANGE_BLOCKABLE,
266 		.event = MMU_NOTIFY_RELEASE,
267 		.mm = mm,
268 		.start = 0,
269 		.end = ULONG_MAX,
270 	};
271 	struct mmu_interval_notifier *interval_sub;
272 	unsigned long cur_seq;
273 	bool ret;
274 
275 	for (interval_sub =
276 		     mn_itree_inv_start_range(subscriptions, &range, &cur_seq);
277 	     interval_sub;
278 	     interval_sub = mn_itree_inv_next(interval_sub, &range)) {
279 		ret = interval_sub->ops->invalidate(interval_sub, &range,
280 						    cur_seq);
281 		WARN_ON(!ret);
282 	}
283 
284 	mn_itree_inv_end(subscriptions);
285 }
286 
287 /*
288  * This function can't run concurrently against mmu_notifier_register
289  * because mm->mm_users > 0 during mmu_notifier_register and exit_mmap
290  * runs with mm_users == 0. Other tasks may still invoke mmu notifiers
291  * in parallel despite there being no task using this mm any more,
292  * through the vmas outside of the exit_mmap context, such as with
293  * vmtruncate. This serializes against mmu_notifier_unregister with
294  * the notifier_subscriptions->lock in addition to SRCU and it serializes
295  * against the other mmu notifiers with SRCU. struct mmu_notifier_subscriptions
296  * can't go away from under us as exit_mmap holds an mm_count pin
297  * itself.
298  */
299 static void mn_hlist_release(struct mmu_notifier_subscriptions *subscriptions,
300 			     struct mm_struct *mm)
301 {
302 	struct mmu_notifier *subscription;
303 	int id;
304 
305 	/*
306 	 * SRCU here will block mmu_notifier_unregister until
307 	 * ->release returns.
308 	 */
309 	id = srcu_read_lock(&srcu);
310 	hlist_for_each_entry_rcu(subscription, &subscriptions->list, hlist,
311 				 srcu_read_lock_held(&srcu))
312 		/*
313 		 * If ->release runs before mmu_notifier_unregister it must be
314 		 * handled, as it's the only way for the driver to flush all
315 		 * existing sptes and stop the driver from establishing any more
316 		 * sptes before all the pages in the mm are freed.
317 		 */
318 		if (subscription->ops->release)
319 			subscription->ops->release(subscription, mm);
320 
321 	spin_lock(&subscriptions->lock);
322 	while (unlikely(!hlist_empty(&subscriptions->list))) {
323 		subscription = hlist_entry(subscriptions->list.first,
324 					   struct mmu_notifier, hlist);
325 		/*
326 		 * We arrived before mmu_notifier_unregister so
327 		 * mmu_notifier_unregister will do nothing other than to wait
328 		 * for ->release to finish and for mmu_notifier_unregister to
329 		 * return.
330 		 */
331 		hlist_del_init_rcu(&subscription->hlist);
332 	}
333 	spin_unlock(&subscriptions->lock);
334 	srcu_read_unlock(&srcu, id);
335 
336 	/*
337 	 * synchronize_srcu here prevents mmu_notifier_release from returning to
338 	 * exit_mmap (which would proceed with freeing all pages in the mm)
339 	 * until the ->release method returns, if it was invoked by
340 	 * mmu_notifier_unregister.
341 	 *
342 	 * The notifier_subscriptions can't go away from under us because
343 	 * one mm_count is held by exit_mmap.
344 	 */
345 	synchronize_srcu(&srcu);
346 }
347 
348 void __mmu_notifier_release(struct mm_struct *mm)
349 {
350 	struct mmu_notifier_subscriptions *subscriptions =
351 		mm->notifier_subscriptions;
352 
353 	if (subscriptions->has_itree)
354 		mn_itree_release(subscriptions, mm);
355 
356 	if (!hlist_empty(&subscriptions->list))
357 		mn_hlist_release(subscriptions, mm);
358 }
359 
360 /*
361  * If no young bitflag is supported by the hardware, ->clear_flush_young can
362  * unmap the address and return 1 or 0 depending if the mapping previously
363  * existed or not.
364  */
365 int __mmu_notifier_clear_flush_young(struct mm_struct *mm,
366 					unsigned long start,
367 					unsigned long end)
368 {
369 	struct mmu_notifier *subscription;
370 	int young = 0, id;
371 
372 	id = srcu_read_lock(&srcu);
373 	hlist_for_each_entry_rcu(subscription,
374 				 &mm->notifier_subscriptions->list, hlist,
375 				 srcu_read_lock_held(&srcu)) {
376 		if (subscription->ops->clear_flush_young)
377 			young |= subscription->ops->clear_flush_young(
378 				subscription, mm, start, end);
379 	}
380 	srcu_read_unlock(&srcu, id);
381 
382 	return young;
383 }
384 
385 int __mmu_notifier_clear_young(struct mm_struct *mm,
386 			       unsigned long start,
387 			       unsigned long end)
388 {
389 	struct mmu_notifier *subscription;
390 	int young = 0, id;
391 
392 	id = srcu_read_lock(&srcu);
393 	hlist_for_each_entry_rcu(subscription,
394 				 &mm->notifier_subscriptions->list, hlist,
395 				 srcu_read_lock_held(&srcu)) {
396 		if (subscription->ops->clear_young)
397 			young |= subscription->ops->clear_young(subscription,
398 								mm, start, end);
399 	}
400 	srcu_read_unlock(&srcu, id);
401 
402 	return young;
403 }
404 
405 int __mmu_notifier_test_young(struct mm_struct *mm,
406 			      unsigned long address)
407 {
408 	struct mmu_notifier *subscription;
409 	int young = 0, id;
410 
411 	id = srcu_read_lock(&srcu);
412 	hlist_for_each_entry_rcu(subscription,
413 				 &mm->notifier_subscriptions->list, hlist,
414 				 srcu_read_lock_held(&srcu)) {
415 		if (subscription->ops->test_young) {
416 			young = subscription->ops->test_young(subscription, mm,
417 							      address);
418 			if (young)
419 				break;
420 		}
421 	}
422 	srcu_read_unlock(&srcu, id);
423 
424 	return young;
425 }
426 
427 void __mmu_notifier_change_pte(struct mm_struct *mm, unsigned long address,
428 			       pte_t pte)
429 {
430 	struct mmu_notifier *subscription;
431 	int id;
432 
433 	id = srcu_read_lock(&srcu);
434 	hlist_for_each_entry_rcu(subscription,
435 				 &mm->notifier_subscriptions->list, hlist,
436 				 srcu_read_lock_held(&srcu)) {
437 		if (subscription->ops->change_pte)
438 			subscription->ops->change_pte(subscription, mm, address,
439 						      pte);
440 	}
441 	srcu_read_unlock(&srcu, id);
442 }
443 
444 static int mn_itree_invalidate(struct mmu_notifier_subscriptions *subscriptions,
445 			       const struct mmu_notifier_range *range)
446 {
447 	struct mmu_interval_notifier *interval_sub;
448 	unsigned long cur_seq;
449 
450 	for (interval_sub =
451 		     mn_itree_inv_start_range(subscriptions, range, &cur_seq);
452 	     interval_sub;
453 	     interval_sub = mn_itree_inv_next(interval_sub, range)) {
454 		bool ret;
455 
456 		ret = interval_sub->ops->invalidate(interval_sub, range,
457 						    cur_seq);
458 		if (!ret) {
459 			if (WARN_ON(mmu_notifier_range_blockable(range)))
460 				continue;
461 			goto out_would_block;
462 		}
463 	}
464 	return 0;
465 
466 out_would_block:
467 	/*
468 	 * On -EAGAIN the non-blocking caller is not allowed to call
469 	 * invalidate_range_end()
470 	 */
471 	mn_itree_inv_end(subscriptions);
472 	return -EAGAIN;
473 }
474 
475 static int mn_hlist_invalidate_range_start(
476 	struct mmu_notifier_subscriptions *subscriptions,
477 	struct mmu_notifier_range *range)
478 {
479 	struct mmu_notifier *subscription;
480 	int ret = 0;
481 	int id;
482 
483 	id = srcu_read_lock(&srcu);
484 	hlist_for_each_entry_rcu(subscription, &subscriptions->list, hlist,
485 				 srcu_read_lock_held(&srcu)) {
486 		const struct mmu_notifier_ops *ops = subscription->ops;
487 
488 		if (ops->invalidate_range_start) {
489 			int _ret;
490 
491 			if (!mmu_notifier_range_blockable(range))
492 				non_block_start();
493 			_ret = ops->invalidate_range_start(subscription, range);
494 			if (!mmu_notifier_range_blockable(range))
495 				non_block_end();
496 			if (_ret) {
497 				pr_info("%pS callback failed with %d in %sblockable context.\n",
498 					ops->invalidate_range_start, _ret,
499 					!mmu_notifier_range_blockable(range) ?
500 						"non-" :
501 						"");
502 				WARN_ON(mmu_notifier_range_blockable(range) ||
503 					_ret != -EAGAIN);
504 				/*
505 				 * We call all the notifiers on any EAGAIN,
506 				 * there is no way for a notifier to know if
507 				 * its start method failed, thus a start that
508 				 * does EAGAIN can't also do end.
509 				 */
510 				WARN_ON(ops->invalidate_range_end);
511 				ret = _ret;
512 			}
513 		}
514 	}
515 
516 	if (ret) {
517 		/*
518 		 * Must be non-blocking to get here.  If there are multiple
519 		 * notifiers and one or more failed start, any that succeeded
520 		 * start are expecting their end to be called.  Do so now.
521 		 */
522 		hlist_for_each_entry_rcu(subscription, &subscriptions->list,
523 					 hlist, srcu_read_lock_held(&srcu)) {
524 			if (!subscription->ops->invalidate_range_end)
525 				continue;
526 
527 			subscription->ops->invalidate_range_end(subscription,
528 								range);
529 		}
530 	}
531 	srcu_read_unlock(&srcu, id);
532 
533 	return ret;
534 }
535 
536 int __mmu_notifier_invalidate_range_start(struct mmu_notifier_range *range)
537 {
538 	struct mmu_notifier_subscriptions *subscriptions =
539 		range->mm->notifier_subscriptions;
540 	int ret;
541 
542 	if (subscriptions->has_itree) {
543 		ret = mn_itree_invalidate(subscriptions, range);
544 		if (ret)
545 			return ret;
546 	}
547 	if (!hlist_empty(&subscriptions->list))
548 		return mn_hlist_invalidate_range_start(subscriptions, range);
549 	return 0;
550 }
551 
552 static void
553 mn_hlist_invalidate_end(struct mmu_notifier_subscriptions *subscriptions,
554 			struct mmu_notifier_range *range, bool only_end)
555 {
556 	struct mmu_notifier *subscription;
557 	int id;
558 
559 	id = srcu_read_lock(&srcu);
560 	hlist_for_each_entry_rcu(subscription, &subscriptions->list, hlist,
561 				 srcu_read_lock_held(&srcu)) {
562 		/*
563 		 * Call invalidate_range here too to avoid the need for the
564 		 * subsystem of having to register an invalidate_range_end
565 		 * call-back when there is invalidate_range already. Usually a
566 		 * subsystem registers either invalidate_range_start()/end() or
567 		 * invalidate_range(), so this will be no additional overhead
568 		 * (besides the pointer check).
569 		 *
570 		 * We skip call to invalidate_range() if we know it is safe ie
571 		 * call site use mmu_notifier_invalidate_range_only_end() which
572 		 * is safe to do when we know that a call to invalidate_range()
573 		 * already happen under page table lock.
574 		 */
575 		if (!only_end && subscription->ops->invalidate_range)
576 			subscription->ops->invalidate_range(subscription,
577 							    range->mm,
578 							    range->start,
579 							    range->end);
580 		if (subscription->ops->invalidate_range_end) {
581 			if (!mmu_notifier_range_blockable(range))
582 				non_block_start();
583 			subscription->ops->invalidate_range_end(subscription,
584 								range);
585 			if (!mmu_notifier_range_blockable(range))
586 				non_block_end();
587 		}
588 	}
589 	srcu_read_unlock(&srcu, id);
590 }
591 
592 void __mmu_notifier_invalidate_range_end(struct mmu_notifier_range *range,
593 					 bool only_end)
594 {
595 	struct mmu_notifier_subscriptions *subscriptions =
596 		range->mm->notifier_subscriptions;
597 
598 	lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
599 	if (subscriptions->has_itree)
600 		mn_itree_inv_end(subscriptions);
601 
602 	if (!hlist_empty(&subscriptions->list))
603 		mn_hlist_invalidate_end(subscriptions, range, only_end);
604 	lock_map_release(&__mmu_notifier_invalidate_range_start_map);
605 }
606 
607 void __mmu_notifier_invalidate_range(struct mm_struct *mm,
608 				  unsigned long start, unsigned long end)
609 {
610 	struct mmu_notifier *subscription;
611 	int id;
612 
613 	id = srcu_read_lock(&srcu);
614 	hlist_for_each_entry_rcu(subscription,
615 				 &mm->notifier_subscriptions->list, hlist,
616 				 srcu_read_lock_held(&srcu)) {
617 		if (subscription->ops->invalidate_range)
618 			subscription->ops->invalidate_range(subscription, mm,
619 							    start, end);
620 	}
621 	srcu_read_unlock(&srcu, id);
622 }
623 
624 /*
625  * Same as mmu_notifier_register but here the caller must hold the mmap_lock in
626  * write mode. A NULL mn signals the notifier is being registered for itree
627  * mode.
628  */
629 int __mmu_notifier_register(struct mmu_notifier *subscription,
630 			    struct mm_struct *mm)
631 {
632 	struct mmu_notifier_subscriptions *subscriptions = NULL;
633 	int ret;
634 
635 	mmap_assert_write_locked(mm);
636 	BUG_ON(atomic_read(&mm->mm_users) <= 0);
637 
638 	if (!mm->notifier_subscriptions) {
639 		/*
640 		 * kmalloc cannot be called under mm_take_all_locks(), but we
641 		 * know that mm->notifier_subscriptions can't change while we
642 		 * hold the write side of the mmap_lock.
643 		 */
644 		subscriptions = kzalloc(
645 			sizeof(struct mmu_notifier_subscriptions), GFP_KERNEL);
646 		if (!subscriptions)
647 			return -ENOMEM;
648 
649 		INIT_HLIST_HEAD(&subscriptions->list);
650 		spin_lock_init(&subscriptions->lock);
651 		subscriptions->invalidate_seq = 2;
652 		subscriptions->itree = RB_ROOT_CACHED;
653 		init_waitqueue_head(&subscriptions->wq);
654 		INIT_HLIST_HEAD(&subscriptions->deferred_list);
655 	}
656 
657 	ret = mm_take_all_locks(mm);
658 	if (unlikely(ret))
659 		goto out_clean;
660 
661 	/*
662 	 * Serialize the update against mmu_notifier_unregister. A
663 	 * side note: mmu_notifier_release can't run concurrently with
664 	 * us because we hold the mm_users pin (either implicitly as
665 	 * current->mm or explicitly with get_task_mm() or similar).
666 	 * We can't race against any other mmu notifier method either
667 	 * thanks to mm_take_all_locks().
668 	 *
669 	 * release semantics on the initialization of the
670 	 * mmu_notifier_subscriptions's contents are provided for unlocked
671 	 * readers.  acquire can only be used while holding the mmgrab or
672 	 * mmget, and is safe because once created the
673 	 * mmu_notifier_subscriptions is not freed until the mm is destroyed.
674 	 * As above, users holding the mmap_lock or one of the
675 	 * mm_take_all_locks() do not need to use acquire semantics.
676 	 */
677 	if (subscriptions)
678 		smp_store_release(&mm->notifier_subscriptions, subscriptions);
679 
680 	if (subscription) {
681 		/* Pairs with the mmdrop in mmu_notifier_unregister_* */
682 		mmgrab(mm);
683 		subscription->mm = mm;
684 		subscription->users = 1;
685 
686 		spin_lock(&mm->notifier_subscriptions->lock);
687 		hlist_add_head_rcu(&subscription->hlist,
688 				   &mm->notifier_subscriptions->list);
689 		spin_unlock(&mm->notifier_subscriptions->lock);
690 	} else
691 		mm->notifier_subscriptions->has_itree = true;
692 
693 	mm_drop_all_locks(mm);
694 	BUG_ON(atomic_read(&mm->mm_users) <= 0);
695 	return 0;
696 
697 out_clean:
698 	kfree(subscriptions);
699 	return ret;
700 }
701 EXPORT_SYMBOL_GPL(__mmu_notifier_register);
702 
703 /**
704  * mmu_notifier_register - Register a notifier on a mm
705  * @subscription: The notifier to attach
706  * @mm: The mm to attach the notifier to
707  *
708  * Must not hold mmap_lock nor any other VM related lock when calling
709  * this registration function. Must also ensure mm_users can't go down
710  * to zero while this runs to avoid races with mmu_notifier_release,
711  * so mm has to be current->mm or the mm should be pinned safely such
712  * as with get_task_mm(). If the mm is not current->mm, the mm_users
713  * pin should be released by calling mmput after mmu_notifier_register
714  * returns.
715  *
716  * mmu_notifier_unregister() or mmu_notifier_put() must be always called to
717  * unregister the notifier.
718  *
719  * While the caller has a mmu_notifier get the subscription->mm pointer will remain
720  * valid, and can be converted to an active mm pointer via mmget_not_zero().
721  */
722 int mmu_notifier_register(struct mmu_notifier *subscription,
723 			  struct mm_struct *mm)
724 {
725 	int ret;
726 
727 	mmap_write_lock(mm);
728 	ret = __mmu_notifier_register(subscription, mm);
729 	mmap_write_unlock(mm);
730 	return ret;
731 }
732 EXPORT_SYMBOL_GPL(mmu_notifier_register);
733 
734 static struct mmu_notifier *
735 find_get_mmu_notifier(struct mm_struct *mm, const struct mmu_notifier_ops *ops)
736 {
737 	struct mmu_notifier *subscription;
738 
739 	spin_lock(&mm->notifier_subscriptions->lock);
740 	hlist_for_each_entry_rcu(subscription,
741 				 &mm->notifier_subscriptions->list, hlist,
742 				 lockdep_is_held(&mm->notifier_subscriptions->lock)) {
743 		if (subscription->ops != ops)
744 			continue;
745 
746 		if (likely(subscription->users != UINT_MAX))
747 			subscription->users++;
748 		else
749 			subscription = ERR_PTR(-EOVERFLOW);
750 		spin_unlock(&mm->notifier_subscriptions->lock);
751 		return subscription;
752 	}
753 	spin_unlock(&mm->notifier_subscriptions->lock);
754 	return NULL;
755 }
756 
757 /**
758  * mmu_notifier_get_locked - Return the single struct mmu_notifier for
759  *                           the mm & ops
760  * @ops: The operations struct being subscribe with
761  * @mm : The mm to attach notifiers too
762  *
763  * This function either allocates a new mmu_notifier via
764  * ops->alloc_notifier(), or returns an already existing notifier on the
765  * list. The value of the ops pointer is used to determine when two notifiers
766  * are the same.
767  *
768  * Each call to mmu_notifier_get() must be paired with a call to
769  * mmu_notifier_put(). The caller must hold the write side of mm->mmap_lock.
770  *
771  * While the caller has a mmu_notifier get the mm pointer will remain valid,
772  * and can be converted to an active mm pointer via mmget_not_zero().
773  */
774 struct mmu_notifier *mmu_notifier_get_locked(const struct mmu_notifier_ops *ops,
775 					     struct mm_struct *mm)
776 {
777 	struct mmu_notifier *subscription;
778 	int ret;
779 
780 	mmap_assert_write_locked(mm);
781 
782 	if (mm->notifier_subscriptions) {
783 		subscription = find_get_mmu_notifier(mm, ops);
784 		if (subscription)
785 			return subscription;
786 	}
787 
788 	subscription = ops->alloc_notifier(mm);
789 	if (IS_ERR(subscription))
790 		return subscription;
791 	subscription->ops = ops;
792 	ret = __mmu_notifier_register(subscription, mm);
793 	if (ret)
794 		goto out_free;
795 	return subscription;
796 out_free:
797 	subscription->ops->free_notifier(subscription);
798 	return ERR_PTR(ret);
799 }
800 EXPORT_SYMBOL_GPL(mmu_notifier_get_locked);
801 
802 /* this is called after the last mmu_notifier_unregister() returned */
803 void __mmu_notifier_subscriptions_destroy(struct mm_struct *mm)
804 {
805 	BUG_ON(!hlist_empty(&mm->notifier_subscriptions->list));
806 	kfree(mm->notifier_subscriptions);
807 	mm->notifier_subscriptions = LIST_POISON1; /* debug */
808 }
809 
810 /*
811  * This releases the mm_count pin automatically and frees the mm
812  * structure if it was the last user of it. It serializes against
813  * running mmu notifiers with SRCU and against mmu_notifier_unregister
814  * with the unregister lock + SRCU. All sptes must be dropped before
815  * calling mmu_notifier_unregister. ->release or any other notifier
816  * method may be invoked concurrently with mmu_notifier_unregister,
817  * and only after mmu_notifier_unregister returned we're guaranteed
818  * that ->release or any other method can't run anymore.
819  */
820 void mmu_notifier_unregister(struct mmu_notifier *subscription,
821 			     struct mm_struct *mm)
822 {
823 	BUG_ON(atomic_read(&mm->mm_count) <= 0);
824 
825 	if (!hlist_unhashed(&subscription->hlist)) {
826 		/*
827 		 * SRCU here will force exit_mmap to wait for ->release to
828 		 * finish before freeing the pages.
829 		 */
830 		int id;
831 
832 		id = srcu_read_lock(&srcu);
833 		/*
834 		 * exit_mmap will block in mmu_notifier_release to guarantee
835 		 * that ->release is called before freeing the pages.
836 		 */
837 		if (subscription->ops->release)
838 			subscription->ops->release(subscription, mm);
839 		srcu_read_unlock(&srcu, id);
840 
841 		spin_lock(&mm->notifier_subscriptions->lock);
842 		/*
843 		 * Can not use list_del_rcu() since __mmu_notifier_release
844 		 * can delete it before we hold the lock.
845 		 */
846 		hlist_del_init_rcu(&subscription->hlist);
847 		spin_unlock(&mm->notifier_subscriptions->lock);
848 	}
849 
850 	/*
851 	 * Wait for any running method to finish, of course including
852 	 * ->release if it was run by mmu_notifier_release instead of us.
853 	 */
854 	synchronize_srcu(&srcu);
855 
856 	BUG_ON(atomic_read(&mm->mm_count) <= 0);
857 
858 	mmdrop(mm);
859 }
860 EXPORT_SYMBOL_GPL(mmu_notifier_unregister);
861 
862 static void mmu_notifier_free_rcu(struct rcu_head *rcu)
863 {
864 	struct mmu_notifier *subscription =
865 		container_of(rcu, struct mmu_notifier, rcu);
866 	struct mm_struct *mm = subscription->mm;
867 
868 	subscription->ops->free_notifier(subscription);
869 	/* Pairs with the get in __mmu_notifier_register() */
870 	mmdrop(mm);
871 }
872 
873 /**
874  * mmu_notifier_put - Release the reference on the notifier
875  * @subscription: The notifier to act on
876  *
877  * This function must be paired with each mmu_notifier_get(), it releases the
878  * reference obtained by the get. If this is the last reference then process
879  * to free the notifier will be run asynchronously.
880  *
881  * Unlike mmu_notifier_unregister() the get/put flow only calls ops->release
882  * when the mm_struct is destroyed. Instead free_notifier is always called to
883  * release any resources held by the user.
884  *
885  * As ops->release is not guaranteed to be called, the user must ensure that
886  * all sptes are dropped, and no new sptes can be established before
887  * mmu_notifier_put() is called.
888  *
889  * This function can be called from the ops->release callback, however the
890  * caller must still ensure it is called pairwise with mmu_notifier_get().
891  *
892  * Modules calling this function must call mmu_notifier_synchronize() in
893  * their __exit functions to ensure the async work is completed.
894  */
895 void mmu_notifier_put(struct mmu_notifier *subscription)
896 {
897 	struct mm_struct *mm = subscription->mm;
898 
899 	spin_lock(&mm->notifier_subscriptions->lock);
900 	if (WARN_ON(!subscription->users) || --subscription->users)
901 		goto out_unlock;
902 	hlist_del_init_rcu(&subscription->hlist);
903 	spin_unlock(&mm->notifier_subscriptions->lock);
904 
905 	call_srcu(&srcu, &subscription->rcu, mmu_notifier_free_rcu);
906 	return;
907 
908 out_unlock:
909 	spin_unlock(&mm->notifier_subscriptions->lock);
910 }
911 EXPORT_SYMBOL_GPL(mmu_notifier_put);
912 
913 static int __mmu_interval_notifier_insert(
914 	struct mmu_interval_notifier *interval_sub, struct mm_struct *mm,
915 	struct mmu_notifier_subscriptions *subscriptions, unsigned long start,
916 	unsigned long length, const struct mmu_interval_notifier_ops *ops)
917 {
918 	interval_sub->mm = mm;
919 	interval_sub->ops = ops;
920 	RB_CLEAR_NODE(&interval_sub->interval_tree.rb);
921 	interval_sub->interval_tree.start = start;
922 	/*
923 	 * Note that the representation of the intervals in the interval tree
924 	 * considers the ending point as contained in the interval.
925 	 */
926 	if (length == 0 ||
927 	    check_add_overflow(start, length - 1,
928 			       &interval_sub->interval_tree.last))
929 		return -EOVERFLOW;
930 
931 	/* Must call with a mmget() held */
932 	if (WARN_ON(atomic_read(&mm->mm_users) <= 0))
933 		return -EINVAL;
934 
935 	/* pairs with mmdrop in mmu_interval_notifier_remove() */
936 	mmgrab(mm);
937 
938 	/*
939 	 * If some invalidate_range_start/end region is going on in parallel
940 	 * we don't know what VA ranges are affected, so we must assume this
941 	 * new range is included.
942 	 *
943 	 * If the itree is invalidating then we are not allowed to change
944 	 * it. Retrying until invalidation is done is tricky due to the
945 	 * possibility for live lock, instead defer the add to
946 	 * mn_itree_inv_end() so this algorithm is deterministic.
947 	 *
948 	 * In all cases the value for the interval_sub->invalidate_seq should be
949 	 * odd, see mmu_interval_read_begin()
950 	 */
951 	spin_lock(&subscriptions->lock);
952 	if (subscriptions->active_invalidate_ranges) {
953 		if (mn_itree_is_invalidating(subscriptions))
954 			hlist_add_head(&interval_sub->deferred_item,
955 				       &subscriptions->deferred_list);
956 		else {
957 			subscriptions->invalidate_seq |= 1;
958 			interval_tree_insert(&interval_sub->interval_tree,
959 					     &subscriptions->itree);
960 		}
961 		interval_sub->invalidate_seq = subscriptions->invalidate_seq;
962 	} else {
963 		WARN_ON(mn_itree_is_invalidating(subscriptions));
964 		/*
965 		 * The starting seq for a subscription not under invalidation
966 		 * should be odd, not equal to the current invalidate_seq and
967 		 * invalidate_seq should not 'wrap' to the new seq any time
968 		 * soon.
969 		 */
970 		interval_sub->invalidate_seq =
971 			subscriptions->invalidate_seq - 1;
972 		interval_tree_insert(&interval_sub->interval_tree,
973 				     &subscriptions->itree);
974 	}
975 	spin_unlock(&subscriptions->lock);
976 	return 0;
977 }
978 
979 /**
980  * mmu_interval_notifier_insert - Insert an interval notifier
981  * @interval_sub: Interval subscription to register
982  * @start: Starting virtual address to monitor
983  * @length: Length of the range to monitor
984  * @mm: mm_struct to attach to
985  * @ops: Interval notifier operations to be called on matching events
986  *
987  * This function subscribes the interval notifier for notifications from the
988  * mm.  Upon return the ops related to mmu_interval_notifier will be called
989  * whenever an event that intersects with the given range occurs.
990  *
991  * Upon return the range_notifier may not be present in the interval tree yet.
992  * The caller must use the normal interval notifier read flow via
993  * mmu_interval_read_begin() to establish SPTEs for this range.
994  */
995 int mmu_interval_notifier_insert(struct mmu_interval_notifier *interval_sub,
996 				 struct mm_struct *mm, unsigned long start,
997 				 unsigned long length,
998 				 const struct mmu_interval_notifier_ops *ops)
999 {
1000 	struct mmu_notifier_subscriptions *subscriptions;
1001 	int ret;
1002 
1003 	might_lock(&mm->mmap_lock);
1004 
1005 	subscriptions = smp_load_acquire(&mm->notifier_subscriptions);
1006 	if (!subscriptions || !subscriptions->has_itree) {
1007 		ret = mmu_notifier_register(NULL, mm);
1008 		if (ret)
1009 			return ret;
1010 		subscriptions = mm->notifier_subscriptions;
1011 	}
1012 	return __mmu_interval_notifier_insert(interval_sub, mm, subscriptions,
1013 					      start, length, ops);
1014 }
1015 EXPORT_SYMBOL_GPL(mmu_interval_notifier_insert);
1016 
1017 int mmu_interval_notifier_insert_locked(
1018 	struct mmu_interval_notifier *interval_sub, struct mm_struct *mm,
1019 	unsigned long start, unsigned long length,
1020 	const struct mmu_interval_notifier_ops *ops)
1021 {
1022 	struct mmu_notifier_subscriptions *subscriptions =
1023 		mm->notifier_subscriptions;
1024 	int ret;
1025 
1026 	mmap_assert_write_locked(mm);
1027 
1028 	if (!subscriptions || !subscriptions->has_itree) {
1029 		ret = __mmu_notifier_register(NULL, mm);
1030 		if (ret)
1031 			return ret;
1032 		subscriptions = mm->notifier_subscriptions;
1033 	}
1034 	return __mmu_interval_notifier_insert(interval_sub, mm, subscriptions,
1035 					      start, length, ops);
1036 }
1037 EXPORT_SYMBOL_GPL(mmu_interval_notifier_insert_locked);
1038 
1039 static bool
1040 mmu_interval_seq_released(struct mmu_notifier_subscriptions *subscriptions,
1041 			  unsigned long seq)
1042 {
1043 	bool ret;
1044 
1045 	spin_lock(&subscriptions->lock);
1046 	ret = subscriptions->invalidate_seq != seq;
1047 	spin_unlock(&subscriptions->lock);
1048 	return ret;
1049 }
1050 
1051 /**
1052  * mmu_interval_notifier_remove - Remove a interval notifier
1053  * @interval_sub: Interval subscription to unregister
1054  *
1055  * This function must be paired with mmu_interval_notifier_insert(). It cannot
1056  * be called from any ops callback.
1057  *
1058  * Once this returns ops callbacks are no longer running on other CPUs and
1059  * will not be called in future.
1060  */
1061 void mmu_interval_notifier_remove(struct mmu_interval_notifier *interval_sub)
1062 {
1063 	struct mm_struct *mm = interval_sub->mm;
1064 	struct mmu_notifier_subscriptions *subscriptions =
1065 		mm->notifier_subscriptions;
1066 	unsigned long seq = 0;
1067 
1068 	might_sleep();
1069 
1070 	spin_lock(&subscriptions->lock);
1071 	if (mn_itree_is_invalidating(subscriptions)) {
1072 		/*
1073 		 * remove is being called after insert put this on the
1074 		 * deferred list, but before the deferred list was processed.
1075 		 */
1076 		if (RB_EMPTY_NODE(&interval_sub->interval_tree.rb)) {
1077 			hlist_del(&interval_sub->deferred_item);
1078 		} else {
1079 			hlist_add_head(&interval_sub->deferred_item,
1080 				       &subscriptions->deferred_list);
1081 			seq = subscriptions->invalidate_seq;
1082 		}
1083 	} else {
1084 		WARN_ON(RB_EMPTY_NODE(&interval_sub->interval_tree.rb));
1085 		interval_tree_remove(&interval_sub->interval_tree,
1086 				     &subscriptions->itree);
1087 	}
1088 	spin_unlock(&subscriptions->lock);
1089 
1090 	/*
1091 	 * The possible sleep on progress in the invalidation requires the
1092 	 * caller not hold any locks held by invalidation callbacks.
1093 	 */
1094 	lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
1095 	lock_map_release(&__mmu_notifier_invalidate_range_start_map);
1096 	if (seq)
1097 		wait_event(subscriptions->wq,
1098 			   mmu_interval_seq_released(subscriptions, seq));
1099 
1100 	/* pairs with mmgrab in mmu_interval_notifier_insert() */
1101 	mmdrop(mm);
1102 }
1103 EXPORT_SYMBOL_GPL(mmu_interval_notifier_remove);
1104 
1105 /**
1106  * mmu_notifier_synchronize - Ensure all mmu_notifiers are freed
1107  *
1108  * This function ensures that all outstanding async SRU work from
1109  * mmu_notifier_put() is completed. After it returns any mmu_notifier_ops
1110  * associated with an unused mmu_notifier will no longer be called.
1111  *
1112  * Before using the caller must ensure that all of its mmu_notifiers have been
1113  * fully released via mmu_notifier_put().
1114  *
1115  * Modules using the mmu_notifier_put() API should call this in their __exit
1116  * function to avoid module unloading races.
1117  */
1118 void mmu_notifier_synchronize(void)
1119 {
1120 	synchronize_srcu(&srcu);
1121 }
1122 EXPORT_SYMBOL_GPL(mmu_notifier_synchronize);
1123 
1124 bool
1125 mmu_notifier_range_update_to_read_only(const struct mmu_notifier_range *range)
1126 {
1127 	if (!range->vma || range->event != MMU_NOTIFY_PROTECTION_VMA)
1128 		return false;
1129 	/* Return true if the vma still have the read flag set. */
1130 	return range->vma->vm_flags & VM_READ;
1131 }
1132 EXPORT_SYMBOL_GPL(mmu_notifier_range_update_to_read_only);
1133