1 #include <linux/gfp.h> 2 #include <linux/highmem.h> 3 #include <linux/kernel.h> 4 #include <linux/mmdebug.h> 5 #include <linux/mm_types.h> 6 #include <linux/mm_inline.h> 7 #include <linux/pagemap.h> 8 #include <linux/rcupdate.h> 9 #include <linux/smp.h> 10 #include <linux/swap.h> 11 #include <linux/rmap.h> 12 13 #include <asm/pgalloc.h> 14 #include <asm/tlb.h> 15 16 #ifndef CONFIG_MMU_GATHER_NO_GATHER 17 18 static bool tlb_next_batch(struct mmu_gather *tlb) 19 { 20 struct mmu_gather_batch *batch; 21 22 /* Limit batching if we have delayed rmaps pending */ 23 if (tlb->delayed_rmap && tlb->active != &tlb->local) 24 return false; 25 26 batch = tlb->active; 27 if (batch->next) { 28 tlb->active = batch->next; 29 return true; 30 } 31 32 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT) 33 return false; 34 35 batch = (void *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN); 36 if (!batch) 37 return false; 38 39 tlb->batch_count++; 40 batch->next = NULL; 41 batch->nr = 0; 42 batch->max = MAX_GATHER_BATCH; 43 44 tlb->active->next = batch; 45 tlb->active = batch; 46 47 return true; 48 } 49 50 #ifdef CONFIG_SMP 51 static void tlb_flush_rmap_batch(struct mmu_gather_batch *batch, struct vm_area_struct *vma) 52 { 53 for (int i = 0; i < batch->nr; i++) { 54 struct encoded_page *enc = batch->encoded_pages[i]; 55 56 if (encoded_page_flags(enc)) { 57 struct page *page = encoded_page_ptr(enc); 58 folio_remove_rmap_pte(page_folio(page), page, vma); 59 } 60 } 61 } 62 63 /** 64 * tlb_flush_rmaps - do pending rmap removals after we have flushed the TLB 65 * @tlb: the current mmu_gather 66 * @vma: The memory area from which the pages are being removed. 67 * 68 * Note that because of how tlb_next_batch() above works, we will 69 * never start multiple new batches with pending delayed rmaps, so 70 * we only need to walk through the current active batch and the 71 * original local one. 72 */ 73 void tlb_flush_rmaps(struct mmu_gather *tlb, struct vm_area_struct *vma) 74 { 75 if (!tlb->delayed_rmap) 76 return; 77 78 tlb_flush_rmap_batch(&tlb->local, vma); 79 if (tlb->active != &tlb->local) 80 tlb_flush_rmap_batch(tlb->active, vma); 81 tlb->delayed_rmap = 0; 82 } 83 #endif 84 85 static void tlb_batch_pages_flush(struct mmu_gather *tlb) 86 { 87 struct mmu_gather_batch *batch; 88 89 for (batch = &tlb->local; batch && batch->nr; batch = batch->next) { 90 struct encoded_page **pages = batch->encoded_pages; 91 92 do { 93 /* 94 * limit free batch count when PAGE_SIZE > 4K 95 */ 96 unsigned int nr = min(512U, batch->nr); 97 98 free_pages_and_swap_cache(pages, nr); 99 pages += nr; 100 batch->nr -= nr; 101 102 cond_resched(); 103 } while (batch->nr); 104 } 105 tlb->active = &tlb->local; 106 } 107 108 static void tlb_batch_list_free(struct mmu_gather *tlb) 109 { 110 struct mmu_gather_batch *batch, *next; 111 112 for (batch = tlb->local.next; batch; batch = next) { 113 next = batch->next; 114 free_pages((unsigned long)batch, 0); 115 } 116 tlb->local.next = NULL; 117 } 118 119 bool __tlb_remove_page_size(struct mmu_gather *tlb, struct encoded_page *page, int page_size) 120 { 121 struct mmu_gather_batch *batch; 122 123 VM_BUG_ON(!tlb->end); 124 125 #ifdef CONFIG_MMU_GATHER_PAGE_SIZE 126 VM_WARN_ON(tlb->page_size != page_size); 127 #endif 128 129 batch = tlb->active; 130 /* 131 * Add the page and check if we are full. If so 132 * force a flush. 133 */ 134 batch->encoded_pages[batch->nr++] = page; 135 if (batch->nr == batch->max) { 136 if (!tlb_next_batch(tlb)) 137 return true; 138 batch = tlb->active; 139 } 140 VM_BUG_ON_PAGE(batch->nr > batch->max, encoded_page_ptr(page)); 141 142 return false; 143 } 144 145 #endif /* MMU_GATHER_NO_GATHER */ 146 147 #ifdef CONFIG_MMU_GATHER_TABLE_FREE 148 149 static void __tlb_remove_table_free(struct mmu_table_batch *batch) 150 { 151 int i; 152 153 for (i = 0; i < batch->nr; i++) 154 __tlb_remove_table(batch->tables[i]); 155 156 free_page((unsigned long)batch); 157 } 158 159 #ifdef CONFIG_MMU_GATHER_RCU_TABLE_FREE 160 161 /* 162 * Semi RCU freeing of the page directories. 163 * 164 * This is needed by some architectures to implement software pagetable walkers. 165 * 166 * gup_fast() and other software pagetable walkers do a lockless page-table 167 * walk and therefore needs some synchronization with the freeing of the page 168 * directories. The chosen means to accomplish that is by disabling IRQs over 169 * the walk. 170 * 171 * Architectures that use IPIs to flush TLBs will then automagically DTRT, 172 * since we unlink the page, flush TLBs, free the page. Since the disabling of 173 * IRQs delays the completion of the TLB flush we can never observe an already 174 * freed page. 175 * 176 * Architectures that do not have this (PPC) need to delay the freeing by some 177 * other means, this is that means. 178 * 179 * What we do is batch the freed directory pages (tables) and RCU free them. 180 * We use the sched RCU variant, as that guarantees that IRQ/preempt disabling 181 * holds off grace periods. 182 * 183 * However, in order to batch these pages we need to allocate storage, this 184 * allocation is deep inside the MM code and can thus easily fail on memory 185 * pressure. To guarantee progress we fall back to single table freeing, see 186 * the implementation of tlb_remove_table_one(). 187 * 188 */ 189 190 static void tlb_remove_table_smp_sync(void *arg) 191 { 192 /* Simply deliver the interrupt */ 193 } 194 195 void tlb_remove_table_sync_one(void) 196 { 197 /* 198 * This isn't an RCU grace period and hence the page-tables cannot be 199 * assumed to be actually RCU-freed. 200 * 201 * It is however sufficient for software page-table walkers that rely on 202 * IRQ disabling. 203 */ 204 smp_call_function(tlb_remove_table_smp_sync, NULL, 1); 205 } 206 207 static void tlb_remove_table_rcu(struct rcu_head *head) 208 { 209 __tlb_remove_table_free(container_of(head, struct mmu_table_batch, rcu)); 210 } 211 212 static void tlb_remove_table_free(struct mmu_table_batch *batch) 213 { 214 call_rcu(&batch->rcu, tlb_remove_table_rcu); 215 } 216 217 #else /* !CONFIG_MMU_GATHER_RCU_TABLE_FREE */ 218 219 static void tlb_remove_table_free(struct mmu_table_batch *batch) 220 { 221 __tlb_remove_table_free(batch); 222 } 223 224 #endif /* CONFIG_MMU_GATHER_RCU_TABLE_FREE */ 225 226 /* 227 * If we want tlb_remove_table() to imply TLB invalidates. 228 */ 229 static inline void tlb_table_invalidate(struct mmu_gather *tlb) 230 { 231 if (tlb_needs_table_invalidate()) { 232 /* 233 * Invalidate page-table caches used by hardware walkers. Then 234 * we still need to RCU-sched wait while freeing the pages 235 * because software walkers can still be in-flight. 236 */ 237 tlb_flush_mmu_tlbonly(tlb); 238 } 239 } 240 241 static void tlb_remove_table_one(void *table) 242 { 243 tlb_remove_table_sync_one(); 244 __tlb_remove_table(table); 245 } 246 247 static void tlb_table_flush(struct mmu_gather *tlb) 248 { 249 struct mmu_table_batch **batch = &tlb->batch; 250 251 if (*batch) { 252 tlb_table_invalidate(tlb); 253 tlb_remove_table_free(*batch); 254 *batch = NULL; 255 } 256 } 257 258 void tlb_remove_table(struct mmu_gather *tlb, void *table) 259 { 260 struct mmu_table_batch **batch = &tlb->batch; 261 262 if (*batch == NULL) { 263 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN); 264 if (*batch == NULL) { 265 tlb_table_invalidate(tlb); 266 tlb_remove_table_one(table); 267 return; 268 } 269 (*batch)->nr = 0; 270 } 271 272 (*batch)->tables[(*batch)->nr++] = table; 273 if ((*batch)->nr == MAX_TABLE_BATCH) 274 tlb_table_flush(tlb); 275 } 276 277 static inline void tlb_table_init(struct mmu_gather *tlb) 278 { 279 tlb->batch = NULL; 280 } 281 282 #else /* !CONFIG_MMU_GATHER_TABLE_FREE */ 283 284 static inline void tlb_table_flush(struct mmu_gather *tlb) { } 285 static inline void tlb_table_init(struct mmu_gather *tlb) { } 286 287 #endif /* CONFIG_MMU_GATHER_TABLE_FREE */ 288 289 static void tlb_flush_mmu_free(struct mmu_gather *tlb) 290 { 291 tlb_table_flush(tlb); 292 #ifndef CONFIG_MMU_GATHER_NO_GATHER 293 tlb_batch_pages_flush(tlb); 294 #endif 295 } 296 297 void tlb_flush_mmu(struct mmu_gather *tlb) 298 { 299 tlb_flush_mmu_tlbonly(tlb); 300 tlb_flush_mmu_free(tlb); 301 } 302 303 static void __tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, 304 bool fullmm) 305 { 306 tlb->mm = mm; 307 tlb->fullmm = fullmm; 308 309 #ifndef CONFIG_MMU_GATHER_NO_GATHER 310 tlb->need_flush_all = 0; 311 tlb->local.next = NULL; 312 tlb->local.nr = 0; 313 tlb->local.max = ARRAY_SIZE(tlb->__pages); 314 tlb->active = &tlb->local; 315 tlb->batch_count = 0; 316 #endif 317 tlb->delayed_rmap = 0; 318 319 tlb_table_init(tlb); 320 #ifdef CONFIG_MMU_GATHER_PAGE_SIZE 321 tlb->page_size = 0; 322 #endif 323 324 __tlb_reset_range(tlb); 325 inc_tlb_flush_pending(tlb->mm); 326 } 327 328 /** 329 * tlb_gather_mmu - initialize an mmu_gather structure for page-table tear-down 330 * @tlb: the mmu_gather structure to initialize 331 * @mm: the mm_struct of the target address space 332 * 333 * Called to initialize an (on-stack) mmu_gather structure for page-table 334 * tear-down from @mm. 335 */ 336 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm) 337 { 338 __tlb_gather_mmu(tlb, mm, false); 339 } 340 341 /** 342 * tlb_gather_mmu_fullmm - initialize an mmu_gather structure for page-table tear-down 343 * @tlb: the mmu_gather structure to initialize 344 * @mm: the mm_struct of the target address space 345 * 346 * In this case, @mm is without users and we're going to destroy the 347 * full address space (exit/execve). 348 * 349 * Called to initialize an (on-stack) mmu_gather structure for page-table 350 * tear-down from @mm. 351 */ 352 void tlb_gather_mmu_fullmm(struct mmu_gather *tlb, struct mm_struct *mm) 353 { 354 __tlb_gather_mmu(tlb, mm, true); 355 } 356 357 /** 358 * tlb_finish_mmu - finish an mmu_gather structure 359 * @tlb: the mmu_gather structure to finish 360 * 361 * Called at the end of the shootdown operation to free up any resources that 362 * were required. 363 */ 364 void tlb_finish_mmu(struct mmu_gather *tlb) 365 { 366 /* 367 * If there are parallel threads are doing PTE changes on same range 368 * under non-exclusive lock (e.g., mmap_lock read-side) but defer TLB 369 * flush by batching, one thread may end up seeing inconsistent PTEs 370 * and result in having stale TLB entries. So flush TLB forcefully 371 * if we detect parallel PTE batching threads. 372 * 373 * However, some syscalls, e.g. munmap(), may free page tables, this 374 * needs force flush everything in the given range. Otherwise this 375 * may result in having stale TLB entries for some architectures, 376 * e.g. aarch64, that could specify flush what level TLB. 377 */ 378 if (mm_tlb_flush_nested(tlb->mm)) { 379 /* 380 * The aarch64 yields better performance with fullmm by 381 * avoiding multiple CPUs spamming TLBI messages at the 382 * same time. 383 * 384 * On x86 non-fullmm doesn't yield significant difference 385 * against fullmm. 386 */ 387 tlb->fullmm = 1; 388 __tlb_reset_range(tlb); 389 tlb->freed_tables = 1; 390 } 391 392 tlb_flush_mmu(tlb); 393 394 #ifndef CONFIG_MMU_GATHER_NO_GATHER 395 tlb_batch_list_free(tlb); 396 #endif 397 dec_tlb_flush_pending(tlb->mm); 398 } 399