xref: /linux/mm/mmap.c (revision fbc90c042cd1dc7258ebfebe6d226017e5b5ac8c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/mmap.c
4  *
5  * Written by obz.
6  *
7  * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/mm_inline.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
47 #include <linux/oom.h>
48 #include <linux/sched/mm.h>
49 #include <linux/ksm.h>
50 
51 #include <linux/uaccess.h>
52 #include <asm/cacheflush.h>
53 #include <asm/tlb.h>
54 #include <asm/mmu_context.h>
55 
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/mmap.h>
58 
59 #include "internal.h"
60 
61 #ifndef arch_mmap_check
62 #define arch_mmap_check(addr, len, flags)	(0)
63 #endif
64 
65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
66 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
67 int mmap_rnd_bits_max __ro_after_init = CONFIG_ARCH_MMAP_RND_BITS_MAX;
68 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
69 #endif
70 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
71 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
72 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
73 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
74 #endif
75 
76 static bool ignore_rlimit_data;
77 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
78 
79 static void unmap_region(struct mm_struct *mm, struct ma_state *mas,
80 		struct vm_area_struct *vma, struct vm_area_struct *prev,
81 		struct vm_area_struct *next, unsigned long start,
82 		unsigned long end, unsigned long tree_end, bool mm_wr_locked);
83 
84 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
85 {
86 	return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
87 }
88 
89 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
90 void vma_set_page_prot(struct vm_area_struct *vma)
91 {
92 	unsigned long vm_flags = vma->vm_flags;
93 	pgprot_t vm_page_prot;
94 
95 	vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
96 	if (vma_wants_writenotify(vma, vm_page_prot)) {
97 		vm_flags &= ~VM_SHARED;
98 		vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
99 	}
100 	/* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
101 	WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
102 }
103 
104 /*
105  * Requires inode->i_mapping->i_mmap_rwsem
106  */
107 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
108 				      struct address_space *mapping)
109 {
110 	if (vma_is_shared_maywrite(vma))
111 		mapping_unmap_writable(mapping);
112 
113 	flush_dcache_mmap_lock(mapping);
114 	vma_interval_tree_remove(vma, &mapping->i_mmap);
115 	flush_dcache_mmap_unlock(mapping);
116 }
117 
118 /*
119  * Unlink a file-based vm structure from its interval tree, to hide
120  * vma from rmap and vmtruncate before freeing its page tables.
121  */
122 void unlink_file_vma(struct vm_area_struct *vma)
123 {
124 	struct file *file = vma->vm_file;
125 
126 	if (file) {
127 		struct address_space *mapping = file->f_mapping;
128 		i_mmap_lock_write(mapping);
129 		__remove_shared_vm_struct(vma, mapping);
130 		i_mmap_unlock_write(mapping);
131 	}
132 }
133 
134 void unlink_file_vma_batch_init(struct unlink_vma_file_batch *vb)
135 {
136 	vb->count = 0;
137 }
138 
139 static void unlink_file_vma_batch_process(struct unlink_vma_file_batch *vb)
140 {
141 	struct address_space *mapping;
142 	int i;
143 
144 	mapping = vb->vmas[0]->vm_file->f_mapping;
145 	i_mmap_lock_write(mapping);
146 	for (i = 0; i < vb->count; i++) {
147 		VM_WARN_ON_ONCE(vb->vmas[i]->vm_file->f_mapping != mapping);
148 		__remove_shared_vm_struct(vb->vmas[i], mapping);
149 	}
150 	i_mmap_unlock_write(mapping);
151 
152 	unlink_file_vma_batch_init(vb);
153 }
154 
155 void unlink_file_vma_batch_add(struct unlink_vma_file_batch *vb,
156 			       struct vm_area_struct *vma)
157 {
158 	if (vma->vm_file == NULL)
159 		return;
160 
161 	if ((vb->count > 0 && vb->vmas[0]->vm_file != vma->vm_file) ||
162 	    vb->count == ARRAY_SIZE(vb->vmas))
163 		unlink_file_vma_batch_process(vb);
164 
165 	vb->vmas[vb->count] = vma;
166 	vb->count++;
167 }
168 
169 void unlink_file_vma_batch_final(struct unlink_vma_file_batch *vb)
170 {
171 	if (vb->count > 0)
172 		unlink_file_vma_batch_process(vb);
173 }
174 
175 /*
176  * Close a vm structure and free it.
177  */
178 static void remove_vma(struct vm_area_struct *vma, bool unreachable)
179 {
180 	might_sleep();
181 	if (vma->vm_ops && vma->vm_ops->close)
182 		vma->vm_ops->close(vma);
183 	if (vma->vm_file)
184 		fput(vma->vm_file);
185 	mpol_put(vma_policy(vma));
186 	if (unreachable)
187 		__vm_area_free(vma);
188 	else
189 		vm_area_free(vma);
190 }
191 
192 static inline struct vm_area_struct *vma_prev_limit(struct vma_iterator *vmi,
193 						    unsigned long min)
194 {
195 	return mas_prev(&vmi->mas, min);
196 }
197 
198 /*
199  * check_brk_limits() - Use platform specific check of range & verify mlock
200  * limits.
201  * @addr: The address to check
202  * @len: The size of increase.
203  *
204  * Return: 0 on success.
205  */
206 static int check_brk_limits(unsigned long addr, unsigned long len)
207 {
208 	unsigned long mapped_addr;
209 
210 	mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
211 	if (IS_ERR_VALUE(mapped_addr))
212 		return mapped_addr;
213 
214 	return mlock_future_ok(current->mm, current->mm->def_flags, len)
215 		? 0 : -EAGAIN;
216 }
217 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *brkvma,
218 		unsigned long addr, unsigned long request, unsigned long flags);
219 SYSCALL_DEFINE1(brk, unsigned long, brk)
220 {
221 	unsigned long newbrk, oldbrk, origbrk;
222 	struct mm_struct *mm = current->mm;
223 	struct vm_area_struct *brkvma, *next = NULL;
224 	unsigned long min_brk;
225 	bool populate = false;
226 	LIST_HEAD(uf);
227 	struct vma_iterator vmi;
228 
229 	if (mmap_write_lock_killable(mm))
230 		return -EINTR;
231 
232 	origbrk = mm->brk;
233 
234 #ifdef CONFIG_COMPAT_BRK
235 	/*
236 	 * CONFIG_COMPAT_BRK can still be overridden by setting
237 	 * randomize_va_space to 2, which will still cause mm->start_brk
238 	 * to be arbitrarily shifted
239 	 */
240 	if (current->brk_randomized)
241 		min_brk = mm->start_brk;
242 	else
243 		min_brk = mm->end_data;
244 #else
245 	min_brk = mm->start_brk;
246 #endif
247 	if (brk < min_brk)
248 		goto out;
249 
250 	/*
251 	 * Check against rlimit here. If this check is done later after the test
252 	 * of oldbrk with newbrk then it can escape the test and let the data
253 	 * segment grow beyond its set limit the in case where the limit is
254 	 * not page aligned -Ram Gupta
255 	 */
256 	if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
257 			      mm->end_data, mm->start_data))
258 		goto out;
259 
260 	newbrk = PAGE_ALIGN(brk);
261 	oldbrk = PAGE_ALIGN(mm->brk);
262 	if (oldbrk == newbrk) {
263 		mm->brk = brk;
264 		goto success;
265 	}
266 
267 	/* Always allow shrinking brk. */
268 	if (brk <= mm->brk) {
269 		/* Search one past newbrk */
270 		vma_iter_init(&vmi, mm, newbrk);
271 		brkvma = vma_find(&vmi, oldbrk);
272 		if (!brkvma || brkvma->vm_start >= oldbrk)
273 			goto out; /* mapping intersects with an existing non-brk vma. */
274 		/*
275 		 * mm->brk must be protected by write mmap_lock.
276 		 * do_vma_munmap() will drop the lock on success,  so update it
277 		 * before calling do_vma_munmap().
278 		 */
279 		mm->brk = brk;
280 		if (do_vma_munmap(&vmi, brkvma, newbrk, oldbrk, &uf, true))
281 			goto out;
282 
283 		goto success_unlocked;
284 	}
285 
286 	if (check_brk_limits(oldbrk, newbrk - oldbrk))
287 		goto out;
288 
289 	/*
290 	 * Only check if the next VMA is within the stack_guard_gap of the
291 	 * expansion area
292 	 */
293 	vma_iter_init(&vmi, mm, oldbrk);
294 	next = vma_find(&vmi, newbrk + PAGE_SIZE + stack_guard_gap);
295 	if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
296 		goto out;
297 
298 	brkvma = vma_prev_limit(&vmi, mm->start_brk);
299 	/* Ok, looks good - let it rip. */
300 	if (do_brk_flags(&vmi, brkvma, oldbrk, newbrk - oldbrk, 0) < 0)
301 		goto out;
302 
303 	mm->brk = brk;
304 	if (mm->def_flags & VM_LOCKED)
305 		populate = true;
306 
307 success:
308 	mmap_write_unlock(mm);
309 success_unlocked:
310 	userfaultfd_unmap_complete(mm, &uf);
311 	if (populate)
312 		mm_populate(oldbrk, newbrk - oldbrk);
313 	return brk;
314 
315 out:
316 	mm->brk = origbrk;
317 	mmap_write_unlock(mm);
318 	return origbrk;
319 }
320 
321 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
322 static void validate_mm(struct mm_struct *mm)
323 {
324 	int bug = 0;
325 	int i = 0;
326 	struct vm_area_struct *vma;
327 	VMA_ITERATOR(vmi, mm, 0);
328 
329 	mt_validate(&mm->mm_mt);
330 	for_each_vma(vmi, vma) {
331 #ifdef CONFIG_DEBUG_VM_RB
332 		struct anon_vma *anon_vma = vma->anon_vma;
333 		struct anon_vma_chain *avc;
334 #endif
335 		unsigned long vmi_start, vmi_end;
336 		bool warn = 0;
337 
338 		vmi_start = vma_iter_addr(&vmi);
339 		vmi_end = vma_iter_end(&vmi);
340 		if (VM_WARN_ON_ONCE_MM(vma->vm_end != vmi_end, mm))
341 			warn = 1;
342 
343 		if (VM_WARN_ON_ONCE_MM(vma->vm_start != vmi_start, mm))
344 			warn = 1;
345 
346 		if (warn) {
347 			pr_emerg("issue in %s\n", current->comm);
348 			dump_stack();
349 			dump_vma(vma);
350 			pr_emerg("tree range: %px start %lx end %lx\n", vma,
351 				 vmi_start, vmi_end - 1);
352 			vma_iter_dump_tree(&vmi);
353 		}
354 
355 #ifdef CONFIG_DEBUG_VM_RB
356 		if (anon_vma) {
357 			anon_vma_lock_read(anon_vma);
358 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
359 				anon_vma_interval_tree_verify(avc);
360 			anon_vma_unlock_read(anon_vma);
361 		}
362 #endif
363 		i++;
364 	}
365 	if (i != mm->map_count) {
366 		pr_emerg("map_count %d vma iterator %d\n", mm->map_count, i);
367 		bug = 1;
368 	}
369 	VM_BUG_ON_MM(bug, mm);
370 }
371 
372 #else /* !CONFIG_DEBUG_VM_MAPLE_TREE */
373 #define validate_mm(mm) do { } while (0)
374 #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */
375 
376 /*
377  * vma has some anon_vma assigned, and is already inserted on that
378  * anon_vma's interval trees.
379  *
380  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
381  * vma must be removed from the anon_vma's interval trees using
382  * anon_vma_interval_tree_pre_update_vma().
383  *
384  * After the update, the vma will be reinserted using
385  * anon_vma_interval_tree_post_update_vma().
386  *
387  * The entire update must be protected by exclusive mmap_lock and by
388  * the root anon_vma's mutex.
389  */
390 static inline void
391 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
392 {
393 	struct anon_vma_chain *avc;
394 
395 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
396 		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
397 }
398 
399 static inline void
400 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
401 {
402 	struct anon_vma_chain *avc;
403 
404 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
405 		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
406 }
407 
408 static unsigned long count_vma_pages_range(struct mm_struct *mm,
409 		unsigned long addr, unsigned long end)
410 {
411 	VMA_ITERATOR(vmi, mm, addr);
412 	struct vm_area_struct *vma;
413 	unsigned long nr_pages = 0;
414 
415 	for_each_vma_range(vmi, vma, end) {
416 		unsigned long vm_start = max(addr, vma->vm_start);
417 		unsigned long vm_end = min(end, vma->vm_end);
418 
419 		nr_pages += PHYS_PFN(vm_end - vm_start);
420 	}
421 
422 	return nr_pages;
423 }
424 
425 static void __vma_link_file(struct vm_area_struct *vma,
426 			    struct address_space *mapping)
427 {
428 	if (vma_is_shared_maywrite(vma))
429 		mapping_allow_writable(mapping);
430 
431 	flush_dcache_mmap_lock(mapping);
432 	vma_interval_tree_insert(vma, &mapping->i_mmap);
433 	flush_dcache_mmap_unlock(mapping);
434 }
435 
436 static void vma_link_file(struct vm_area_struct *vma)
437 {
438 	struct file *file = vma->vm_file;
439 	struct address_space *mapping;
440 
441 	if (file) {
442 		mapping = file->f_mapping;
443 		i_mmap_lock_write(mapping);
444 		__vma_link_file(vma, mapping);
445 		i_mmap_unlock_write(mapping);
446 	}
447 }
448 
449 static int vma_link(struct mm_struct *mm, struct vm_area_struct *vma)
450 {
451 	VMA_ITERATOR(vmi, mm, 0);
452 
453 	vma_iter_config(&vmi, vma->vm_start, vma->vm_end);
454 	if (vma_iter_prealloc(&vmi, vma))
455 		return -ENOMEM;
456 
457 	vma_start_write(vma);
458 	vma_iter_store(&vmi, vma);
459 	vma_link_file(vma);
460 	mm->map_count++;
461 	validate_mm(mm);
462 	return 0;
463 }
464 
465 /*
466  * init_multi_vma_prep() - Initializer for struct vma_prepare
467  * @vp: The vma_prepare struct
468  * @vma: The vma that will be altered once locked
469  * @next: The next vma if it is to be adjusted
470  * @remove: The first vma to be removed
471  * @remove2: The second vma to be removed
472  */
473 static inline void init_multi_vma_prep(struct vma_prepare *vp,
474 		struct vm_area_struct *vma, struct vm_area_struct *next,
475 		struct vm_area_struct *remove, struct vm_area_struct *remove2)
476 {
477 	memset(vp, 0, sizeof(struct vma_prepare));
478 	vp->vma = vma;
479 	vp->anon_vma = vma->anon_vma;
480 	vp->remove = remove;
481 	vp->remove2 = remove2;
482 	vp->adj_next = next;
483 	if (!vp->anon_vma && next)
484 		vp->anon_vma = next->anon_vma;
485 
486 	vp->file = vma->vm_file;
487 	if (vp->file)
488 		vp->mapping = vma->vm_file->f_mapping;
489 
490 }
491 
492 /*
493  * init_vma_prep() - Initializer wrapper for vma_prepare struct
494  * @vp: The vma_prepare struct
495  * @vma: The vma that will be altered once locked
496  */
497 static inline void init_vma_prep(struct vma_prepare *vp,
498 				 struct vm_area_struct *vma)
499 {
500 	init_multi_vma_prep(vp, vma, NULL, NULL, NULL);
501 }
502 
503 
504 /*
505  * vma_prepare() - Helper function for handling locking VMAs prior to altering
506  * @vp: The initialized vma_prepare struct
507  */
508 static inline void vma_prepare(struct vma_prepare *vp)
509 {
510 	if (vp->file) {
511 		uprobe_munmap(vp->vma, vp->vma->vm_start, vp->vma->vm_end);
512 
513 		if (vp->adj_next)
514 			uprobe_munmap(vp->adj_next, vp->adj_next->vm_start,
515 				      vp->adj_next->vm_end);
516 
517 		i_mmap_lock_write(vp->mapping);
518 		if (vp->insert && vp->insert->vm_file) {
519 			/*
520 			 * Put into interval tree now, so instantiated pages
521 			 * are visible to arm/parisc __flush_dcache_page
522 			 * throughout; but we cannot insert into address
523 			 * space until vma start or end is updated.
524 			 */
525 			__vma_link_file(vp->insert,
526 					vp->insert->vm_file->f_mapping);
527 		}
528 	}
529 
530 	if (vp->anon_vma) {
531 		anon_vma_lock_write(vp->anon_vma);
532 		anon_vma_interval_tree_pre_update_vma(vp->vma);
533 		if (vp->adj_next)
534 			anon_vma_interval_tree_pre_update_vma(vp->adj_next);
535 	}
536 
537 	if (vp->file) {
538 		flush_dcache_mmap_lock(vp->mapping);
539 		vma_interval_tree_remove(vp->vma, &vp->mapping->i_mmap);
540 		if (vp->adj_next)
541 			vma_interval_tree_remove(vp->adj_next,
542 						 &vp->mapping->i_mmap);
543 	}
544 
545 }
546 
547 /*
548  * vma_complete- Helper function for handling the unlocking after altering VMAs,
549  * or for inserting a VMA.
550  *
551  * @vp: The vma_prepare struct
552  * @vmi: The vma iterator
553  * @mm: The mm_struct
554  */
555 static inline void vma_complete(struct vma_prepare *vp,
556 				struct vma_iterator *vmi, struct mm_struct *mm)
557 {
558 	if (vp->file) {
559 		if (vp->adj_next)
560 			vma_interval_tree_insert(vp->adj_next,
561 						 &vp->mapping->i_mmap);
562 		vma_interval_tree_insert(vp->vma, &vp->mapping->i_mmap);
563 		flush_dcache_mmap_unlock(vp->mapping);
564 	}
565 
566 	if (vp->remove && vp->file) {
567 		__remove_shared_vm_struct(vp->remove, vp->mapping);
568 		if (vp->remove2)
569 			__remove_shared_vm_struct(vp->remove2, vp->mapping);
570 	} else if (vp->insert) {
571 		/*
572 		 * split_vma has split insert from vma, and needs
573 		 * us to insert it before dropping the locks
574 		 * (it may either follow vma or precede it).
575 		 */
576 		vma_iter_store(vmi, vp->insert);
577 		mm->map_count++;
578 	}
579 
580 	if (vp->anon_vma) {
581 		anon_vma_interval_tree_post_update_vma(vp->vma);
582 		if (vp->adj_next)
583 			anon_vma_interval_tree_post_update_vma(vp->adj_next);
584 		anon_vma_unlock_write(vp->anon_vma);
585 	}
586 
587 	if (vp->file) {
588 		i_mmap_unlock_write(vp->mapping);
589 		uprobe_mmap(vp->vma);
590 
591 		if (vp->adj_next)
592 			uprobe_mmap(vp->adj_next);
593 	}
594 
595 	if (vp->remove) {
596 again:
597 		vma_mark_detached(vp->remove, true);
598 		if (vp->file) {
599 			uprobe_munmap(vp->remove, vp->remove->vm_start,
600 				      vp->remove->vm_end);
601 			fput(vp->file);
602 		}
603 		if (vp->remove->anon_vma)
604 			anon_vma_merge(vp->vma, vp->remove);
605 		mm->map_count--;
606 		mpol_put(vma_policy(vp->remove));
607 		if (!vp->remove2)
608 			WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end);
609 		vm_area_free(vp->remove);
610 
611 		/*
612 		 * In mprotect's case 6 (see comments on vma_merge),
613 		 * we are removing both mid and next vmas
614 		 */
615 		if (vp->remove2) {
616 			vp->remove = vp->remove2;
617 			vp->remove2 = NULL;
618 			goto again;
619 		}
620 	}
621 	if (vp->insert && vp->file)
622 		uprobe_mmap(vp->insert);
623 	validate_mm(mm);
624 }
625 
626 /*
627  * dup_anon_vma() - Helper function to duplicate anon_vma
628  * @dst: The destination VMA
629  * @src: The source VMA
630  * @dup: Pointer to the destination VMA when successful.
631  *
632  * Returns: 0 on success.
633  */
634 static inline int dup_anon_vma(struct vm_area_struct *dst,
635 		struct vm_area_struct *src, struct vm_area_struct **dup)
636 {
637 	/*
638 	 * Easily overlooked: when mprotect shifts the boundary, make sure the
639 	 * expanding vma has anon_vma set if the shrinking vma had, to cover any
640 	 * anon pages imported.
641 	 */
642 	if (src->anon_vma && !dst->anon_vma) {
643 		int ret;
644 
645 		vma_assert_write_locked(dst);
646 		dst->anon_vma = src->anon_vma;
647 		ret = anon_vma_clone(dst, src);
648 		if (ret)
649 			return ret;
650 
651 		*dup = dst;
652 	}
653 
654 	return 0;
655 }
656 
657 /*
658  * vma_expand - Expand an existing VMA
659  *
660  * @vmi: The vma iterator
661  * @vma: The vma to expand
662  * @start: The start of the vma
663  * @end: The exclusive end of the vma
664  * @pgoff: The page offset of vma
665  * @next: The current of next vma.
666  *
667  * Expand @vma to @start and @end.  Can expand off the start and end.  Will
668  * expand over @next if it's different from @vma and @end == @next->vm_end.
669  * Checking if the @vma can expand and merge with @next needs to be handled by
670  * the caller.
671  *
672  * Returns: 0 on success
673  */
674 int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
675 	       unsigned long start, unsigned long end, pgoff_t pgoff,
676 	       struct vm_area_struct *next)
677 {
678 	struct vm_area_struct *anon_dup = NULL;
679 	bool remove_next = false;
680 	struct vma_prepare vp;
681 
682 	vma_start_write(vma);
683 	if (next && (vma != next) && (end == next->vm_end)) {
684 		int ret;
685 
686 		remove_next = true;
687 		vma_start_write(next);
688 		ret = dup_anon_vma(vma, next, &anon_dup);
689 		if (ret)
690 			return ret;
691 	}
692 
693 	init_multi_vma_prep(&vp, vma, NULL, remove_next ? next : NULL, NULL);
694 	/* Not merging but overwriting any part of next is not handled. */
695 	VM_WARN_ON(next && !vp.remove &&
696 		  next != vma && end > next->vm_start);
697 	/* Only handles expanding */
698 	VM_WARN_ON(vma->vm_start < start || vma->vm_end > end);
699 
700 	/* Note: vma iterator must be pointing to 'start' */
701 	vma_iter_config(vmi, start, end);
702 	if (vma_iter_prealloc(vmi, vma))
703 		goto nomem;
704 
705 	vma_prepare(&vp);
706 	vma_adjust_trans_huge(vma, start, end, 0);
707 	vma_set_range(vma, start, end, pgoff);
708 	vma_iter_store(vmi, vma);
709 
710 	vma_complete(&vp, vmi, vma->vm_mm);
711 	return 0;
712 
713 nomem:
714 	if (anon_dup)
715 		unlink_anon_vmas(anon_dup);
716 	return -ENOMEM;
717 }
718 
719 /*
720  * vma_shrink() - Reduce an existing VMAs memory area
721  * @vmi: The vma iterator
722  * @vma: The VMA to modify
723  * @start: The new start
724  * @end: The new end
725  *
726  * Returns: 0 on success, -ENOMEM otherwise
727  */
728 int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
729 	       unsigned long start, unsigned long end, pgoff_t pgoff)
730 {
731 	struct vma_prepare vp;
732 
733 	WARN_ON((vma->vm_start != start) && (vma->vm_end != end));
734 
735 	if (vma->vm_start < start)
736 		vma_iter_config(vmi, vma->vm_start, start);
737 	else
738 		vma_iter_config(vmi, end, vma->vm_end);
739 
740 	if (vma_iter_prealloc(vmi, NULL))
741 		return -ENOMEM;
742 
743 	vma_start_write(vma);
744 
745 	init_vma_prep(&vp, vma);
746 	vma_prepare(&vp);
747 	vma_adjust_trans_huge(vma, start, end, 0);
748 
749 	vma_iter_clear(vmi);
750 	vma_set_range(vma, start, end, pgoff);
751 	vma_complete(&vp, vmi, vma->vm_mm);
752 	return 0;
753 }
754 
755 /*
756  * If the vma has a ->close operation then the driver probably needs to release
757  * per-vma resources, so we don't attempt to merge those if the caller indicates
758  * the current vma may be removed as part of the merge.
759  */
760 static inline bool is_mergeable_vma(struct vm_area_struct *vma,
761 		struct file *file, unsigned long vm_flags,
762 		struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
763 		struct anon_vma_name *anon_name, bool may_remove_vma)
764 {
765 	/*
766 	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
767 	 * match the flags but dirty bit -- the caller should mark
768 	 * merged VMA as dirty. If dirty bit won't be excluded from
769 	 * comparison, we increase pressure on the memory system forcing
770 	 * the kernel to generate new VMAs when old one could be
771 	 * extended instead.
772 	 */
773 	if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
774 		return false;
775 	if (vma->vm_file != file)
776 		return false;
777 	if (may_remove_vma && vma->vm_ops && vma->vm_ops->close)
778 		return false;
779 	if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
780 		return false;
781 	if (!anon_vma_name_eq(anon_vma_name(vma), anon_name))
782 		return false;
783 	return true;
784 }
785 
786 static inline bool is_mergeable_anon_vma(struct anon_vma *anon_vma1,
787 		 struct anon_vma *anon_vma2, struct vm_area_struct *vma)
788 {
789 	/*
790 	 * The list_is_singular() test is to avoid merging VMA cloned from
791 	 * parents. This can improve scalability caused by anon_vma lock.
792 	 */
793 	if ((!anon_vma1 || !anon_vma2) && (!vma ||
794 		list_is_singular(&vma->anon_vma_chain)))
795 		return true;
796 	return anon_vma1 == anon_vma2;
797 }
798 
799 /*
800  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
801  * in front of (at a lower virtual address and file offset than) the vma.
802  *
803  * We cannot merge two vmas if they have differently assigned (non-NULL)
804  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
805  *
806  * We don't check here for the merged mmap wrapping around the end of pagecache
807  * indices (16TB on ia32) because do_mmap() does not permit mmap's which
808  * wrap, nor mmaps which cover the final page at index -1UL.
809  *
810  * We assume the vma may be removed as part of the merge.
811  */
812 static bool
813 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
814 		struct anon_vma *anon_vma, struct file *file,
815 		pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
816 		struct anon_vma_name *anon_name)
817 {
818 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, true) &&
819 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
820 		if (vma->vm_pgoff == vm_pgoff)
821 			return true;
822 	}
823 	return false;
824 }
825 
826 /*
827  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
828  * beyond (at a higher virtual address and file offset than) the vma.
829  *
830  * We cannot merge two vmas if they have differently assigned (non-NULL)
831  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
832  *
833  * We assume that vma is not removed as part of the merge.
834  */
835 static bool
836 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
837 		struct anon_vma *anon_vma, struct file *file,
838 		pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
839 		struct anon_vma_name *anon_name)
840 {
841 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, false) &&
842 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
843 		pgoff_t vm_pglen;
844 		vm_pglen = vma_pages(vma);
845 		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
846 			return true;
847 	}
848 	return false;
849 }
850 
851 /*
852  * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name),
853  * figure out whether that can be merged with its predecessor or its
854  * successor.  Or both (it neatly fills a hole).
855  *
856  * In most cases - when called for mmap, brk or mremap - [addr,end) is
857  * certain not to be mapped by the time vma_merge is called; but when
858  * called for mprotect, it is certain to be already mapped (either at
859  * an offset within prev, or at the start of next), and the flags of
860  * this area are about to be changed to vm_flags - and the no-change
861  * case has already been eliminated.
862  *
863  * The following mprotect cases have to be considered, where **** is
864  * the area passed down from mprotect_fixup, never extending beyond one
865  * vma, PPPP is the previous vma, CCCC is a concurrent vma that starts
866  * at the same address as **** and is of the same or larger span, and
867  * NNNN the next vma after ****:
868  *
869  *     ****             ****                   ****
870  *    PPPPPPNNNNNN    PPPPPPNNNNNN       PPPPPPCCCCCC
871  *    cannot merge    might become       might become
872  *                    PPNNNNNNNNNN       PPPPPPPPPPCC
873  *    mmap, brk or    case 4 below       case 5 below
874  *    mremap move:
875  *                        ****               ****
876  *                    PPPP    NNNN       PPPPCCCCNNNN
877  *                    might become       might become
878  *                    PPPPPPPPPPPP 1 or  PPPPPPPPPPPP 6 or
879  *                    PPPPPPPPNNNN 2 or  PPPPPPPPNNNN 7 or
880  *                    PPPPNNNNNNNN 3     PPPPNNNNNNNN 8
881  *
882  * It is important for case 8 that the vma CCCC overlapping the
883  * region **** is never going to extended over NNNN. Instead NNNN must
884  * be extended in region **** and CCCC must be removed. This way in
885  * all cases where vma_merge succeeds, the moment vma_merge drops the
886  * rmap_locks, the properties of the merged vma will be already
887  * correct for the whole merged range. Some of those properties like
888  * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
889  * be correct for the whole merged range immediately after the
890  * rmap_locks are released. Otherwise if NNNN would be removed and
891  * CCCC would be extended over the NNNN range, remove_migration_ptes
892  * or other rmap walkers (if working on addresses beyond the "end"
893  * parameter) may establish ptes with the wrong permissions of CCCC
894  * instead of the right permissions of NNNN.
895  *
896  * In the code below:
897  * PPPP is represented by *prev
898  * CCCC is represented by *curr or not represented at all (NULL)
899  * NNNN is represented by *next or not represented at all (NULL)
900  * **** is not represented - it will be merged and the vma containing the
901  *      area is returned, or the function will return NULL
902  */
903 static struct vm_area_struct
904 *vma_merge(struct vma_iterator *vmi, struct vm_area_struct *prev,
905 	   struct vm_area_struct *src, unsigned long addr, unsigned long end,
906 	   unsigned long vm_flags, pgoff_t pgoff, struct mempolicy *policy,
907 	   struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
908 	   struct anon_vma_name *anon_name)
909 {
910 	struct mm_struct *mm = src->vm_mm;
911 	struct anon_vma *anon_vma = src->anon_vma;
912 	struct file *file = src->vm_file;
913 	struct vm_area_struct *curr, *next, *res;
914 	struct vm_area_struct *vma, *adjust, *remove, *remove2;
915 	struct vm_area_struct *anon_dup = NULL;
916 	struct vma_prepare vp;
917 	pgoff_t vma_pgoff;
918 	int err = 0;
919 	bool merge_prev = false;
920 	bool merge_next = false;
921 	bool vma_expanded = false;
922 	unsigned long vma_start = addr;
923 	unsigned long vma_end = end;
924 	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
925 	long adj_start = 0;
926 
927 	/*
928 	 * We later require that vma->vm_flags == vm_flags,
929 	 * so this tests vma->vm_flags & VM_SPECIAL, too.
930 	 */
931 	if (vm_flags & VM_SPECIAL)
932 		return NULL;
933 
934 	/* Does the input range span an existing VMA? (cases 5 - 8) */
935 	curr = find_vma_intersection(mm, prev ? prev->vm_end : 0, end);
936 
937 	if (!curr ||			/* cases 1 - 4 */
938 	    end == curr->vm_end)	/* cases 6 - 8, adjacent VMA */
939 		next = vma_lookup(mm, end);
940 	else
941 		next = NULL;		/* case 5 */
942 
943 	if (prev) {
944 		vma_start = prev->vm_start;
945 		vma_pgoff = prev->vm_pgoff;
946 
947 		/* Can we merge the predecessor? */
948 		if (addr == prev->vm_end && mpol_equal(vma_policy(prev), policy)
949 		    && can_vma_merge_after(prev, vm_flags, anon_vma, file,
950 					   pgoff, vm_userfaultfd_ctx, anon_name)) {
951 			merge_prev = true;
952 			vma_prev(vmi);
953 		}
954 	}
955 
956 	/* Can we merge the successor? */
957 	if (next && mpol_equal(policy, vma_policy(next)) &&
958 	    can_vma_merge_before(next, vm_flags, anon_vma, file, pgoff+pglen,
959 				 vm_userfaultfd_ctx, anon_name)) {
960 		merge_next = true;
961 	}
962 
963 	/* Verify some invariant that must be enforced by the caller. */
964 	VM_WARN_ON(prev && addr <= prev->vm_start);
965 	VM_WARN_ON(curr && (addr != curr->vm_start || end > curr->vm_end));
966 	VM_WARN_ON(addr >= end);
967 
968 	if (!merge_prev && !merge_next)
969 		return NULL; /* Not mergeable. */
970 
971 	if (merge_prev)
972 		vma_start_write(prev);
973 
974 	res = vma = prev;
975 	remove = remove2 = adjust = NULL;
976 
977 	/* Can we merge both the predecessor and the successor? */
978 	if (merge_prev && merge_next &&
979 	    is_mergeable_anon_vma(prev->anon_vma, next->anon_vma, NULL)) {
980 		vma_start_write(next);
981 		remove = next;				/* case 1 */
982 		vma_end = next->vm_end;
983 		err = dup_anon_vma(prev, next, &anon_dup);
984 		if (curr) {				/* case 6 */
985 			vma_start_write(curr);
986 			remove = curr;
987 			remove2 = next;
988 			/*
989 			 * Note that the dup_anon_vma below cannot overwrite err
990 			 * since the first caller would do nothing unless next
991 			 * has an anon_vma.
992 			 */
993 			if (!next->anon_vma)
994 				err = dup_anon_vma(prev, curr, &anon_dup);
995 		}
996 	} else if (merge_prev) {			/* case 2 */
997 		if (curr) {
998 			vma_start_write(curr);
999 			if (end == curr->vm_end) {	/* case 7 */
1000 				/*
1001 				 * can_vma_merge_after() assumed we would not be
1002 				 * removing prev vma, so it skipped the check
1003 				 * for vm_ops->close, but we are removing curr
1004 				 */
1005 				if (curr->vm_ops && curr->vm_ops->close)
1006 					err = -EINVAL;
1007 				remove = curr;
1008 			} else {			/* case 5 */
1009 				adjust = curr;
1010 				adj_start = (end - curr->vm_start);
1011 			}
1012 			if (!err)
1013 				err = dup_anon_vma(prev, curr, &anon_dup);
1014 		}
1015 	} else { /* merge_next */
1016 		vma_start_write(next);
1017 		res = next;
1018 		if (prev && addr < prev->vm_end) {	/* case 4 */
1019 			vma_start_write(prev);
1020 			vma_end = addr;
1021 			adjust = next;
1022 			adj_start = -(prev->vm_end - addr);
1023 			err = dup_anon_vma(next, prev, &anon_dup);
1024 		} else {
1025 			/*
1026 			 * Note that cases 3 and 8 are the ONLY ones where prev
1027 			 * is permitted to be (but is not necessarily) NULL.
1028 			 */
1029 			vma = next;			/* case 3 */
1030 			vma_start = addr;
1031 			vma_end = next->vm_end;
1032 			vma_pgoff = next->vm_pgoff - pglen;
1033 			if (curr) {			/* case 8 */
1034 				vma_pgoff = curr->vm_pgoff;
1035 				vma_start_write(curr);
1036 				remove = curr;
1037 				err = dup_anon_vma(next, curr, &anon_dup);
1038 			}
1039 		}
1040 	}
1041 
1042 	/* Error in anon_vma clone. */
1043 	if (err)
1044 		goto anon_vma_fail;
1045 
1046 	if (vma_start < vma->vm_start || vma_end > vma->vm_end)
1047 		vma_expanded = true;
1048 
1049 	if (vma_expanded) {
1050 		vma_iter_config(vmi, vma_start, vma_end);
1051 	} else {
1052 		vma_iter_config(vmi, adjust->vm_start + adj_start,
1053 				adjust->vm_end);
1054 	}
1055 
1056 	if (vma_iter_prealloc(vmi, vma))
1057 		goto prealloc_fail;
1058 
1059 	init_multi_vma_prep(&vp, vma, adjust, remove, remove2);
1060 	VM_WARN_ON(vp.anon_vma && adjust && adjust->anon_vma &&
1061 		   vp.anon_vma != adjust->anon_vma);
1062 
1063 	vma_prepare(&vp);
1064 	vma_adjust_trans_huge(vma, vma_start, vma_end, adj_start);
1065 	vma_set_range(vma, vma_start, vma_end, vma_pgoff);
1066 
1067 	if (vma_expanded)
1068 		vma_iter_store(vmi, vma);
1069 
1070 	if (adj_start) {
1071 		adjust->vm_start += adj_start;
1072 		adjust->vm_pgoff += adj_start >> PAGE_SHIFT;
1073 		if (adj_start < 0) {
1074 			WARN_ON(vma_expanded);
1075 			vma_iter_store(vmi, next);
1076 		}
1077 	}
1078 
1079 	vma_complete(&vp, vmi, mm);
1080 	khugepaged_enter_vma(res, vm_flags);
1081 	return res;
1082 
1083 prealloc_fail:
1084 	if (anon_dup)
1085 		unlink_anon_vmas(anon_dup);
1086 
1087 anon_vma_fail:
1088 	vma_iter_set(vmi, addr);
1089 	vma_iter_load(vmi);
1090 	return NULL;
1091 }
1092 
1093 /*
1094  * Rough compatibility check to quickly see if it's even worth looking
1095  * at sharing an anon_vma.
1096  *
1097  * They need to have the same vm_file, and the flags can only differ
1098  * in things that mprotect may change.
1099  *
1100  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1101  * we can merge the two vma's. For example, we refuse to merge a vma if
1102  * there is a vm_ops->close() function, because that indicates that the
1103  * driver is doing some kind of reference counting. But that doesn't
1104  * really matter for the anon_vma sharing case.
1105  */
1106 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1107 {
1108 	return a->vm_end == b->vm_start &&
1109 		mpol_equal(vma_policy(a), vma_policy(b)) &&
1110 		a->vm_file == b->vm_file &&
1111 		!((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1112 		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1113 }
1114 
1115 /*
1116  * Do some basic sanity checking to see if we can re-use the anon_vma
1117  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1118  * the same as 'old', the other will be the new one that is trying
1119  * to share the anon_vma.
1120  *
1121  * NOTE! This runs with mmap_lock held for reading, so it is possible that
1122  * the anon_vma of 'old' is concurrently in the process of being set up
1123  * by another page fault trying to merge _that_. But that's ok: if it
1124  * is being set up, that automatically means that it will be a singleton
1125  * acceptable for merging, so we can do all of this optimistically. But
1126  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1127  *
1128  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1129  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1130  * is to return an anon_vma that is "complex" due to having gone through
1131  * a fork).
1132  *
1133  * We also make sure that the two vma's are compatible (adjacent,
1134  * and with the same memory policies). That's all stable, even with just
1135  * a read lock on the mmap_lock.
1136  */
1137 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1138 {
1139 	if (anon_vma_compatible(a, b)) {
1140 		struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1141 
1142 		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1143 			return anon_vma;
1144 	}
1145 	return NULL;
1146 }
1147 
1148 /*
1149  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1150  * neighbouring vmas for a suitable anon_vma, before it goes off
1151  * to allocate a new anon_vma.  It checks because a repetitive
1152  * sequence of mprotects and faults may otherwise lead to distinct
1153  * anon_vmas being allocated, preventing vma merge in subsequent
1154  * mprotect.
1155  */
1156 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1157 {
1158 	struct anon_vma *anon_vma = NULL;
1159 	struct vm_area_struct *prev, *next;
1160 	VMA_ITERATOR(vmi, vma->vm_mm, vma->vm_end);
1161 
1162 	/* Try next first. */
1163 	next = vma_iter_load(&vmi);
1164 	if (next) {
1165 		anon_vma = reusable_anon_vma(next, vma, next);
1166 		if (anon_vma)
1167 			return anon_vma;
1168 	}
1169 
1170 	prev = vma_prev(&vmi);
1171 	VM_BUG_ON_VMA(prev != vma, vma);
1172 	prev = vma_prev(&vmi);
1173 	/* Try prev next. */
1174 	if (prev)
1175 		anon_vma = reusable_anon_vma(prev, prev, vma);
1176 
1177 	/*
1178 	 * We might reach here with anon_vma == NULL if we can't find
1179 	 * any reusable anon_vma.
1180 	 * There's no absolute need to look only at touching neighbours:
1181 	 * we could search further afield for "compatible" anon_vmas.
1182 	 * But it would probably just be a waste of time searching,
1183 	 * or lead to too many vmas hanging off the same anon_vma.
1184 	 * We're trying to allow mprotect remerging later on,
1185 	 * not trying to minimize memory used for anon_vmas.
1186 	 */
1187 	return anon_vma;
1188 }
1189 
1190 /*
1191  * If a hint addr is less than mmap_min_addr change hint to be as
1192  * low as possible but still greater than mmap_min_addr
1193  */
1194 static inline unsigned long round_hint_to_min(unsigned long hint)
1195 {
1196 	hint &= PAGE_MASK;
1197 	if (((void *)hint != NULL) &&
1198 	    (hint < mmap_min_addr))
1199 		return PAGE_ALIGN(mmap_min_addr);
1200 	return hint;
1201 }
1202 
1203 bool mlock_future_ok(struct mm_struct *mm, unsigned long flags,
1204 			unsigned long bytes)
1205 {
1206 	unsigned long locked_pages, limit_pages;
1207 
1208 	if (!(flags & VM_LOCKED) || capable(CAP_IPC_LOCK))
1209 		return true;
1210 
1211 	locked_pages = bytes >> PAGE_SHIFT;
1212 	locked_pages += mm->locked_vm;
1213 
1214 	limit_pages = rlimit(RLIMIT_MEMLOCK);
1215 	limit_pages >>= PAGE_SHIFT;
1216 
1217 	return locked_pages <= limit_pages;
1218 }
1219 
1220 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1221 {
1222 	if (S_ISREG(inode->i_mode))
1223 		return MAX_LFS_FILESIZE;
1224 
1225 	if (S_ISBLK(inode->i_mode))
1226 		return MAX_LFS_FILESIZE;
1227 
1228 	if (S_ISSOCK(inode->i_mode))
1229 		return MAX_LFS_FILESIZE;
1230 
1231 	/* Special "we do even unsigned file positions" case */
1232 	if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1233 		return 0;
1234 
1235 	/* Yes, random drivers might want more. But I'm tired of buggy drivers */
1236 	return ULONG_MAX;
1237 }
1238 
1239 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1240 				unsigned long pgoff, unsigned long len)
1241 {
1242 	u64 maxsize = file_mmap_size_max(file, inode);
1243 
1244 	if (maxsize && len > maxsize)
1245 		return false;
1246 	maxsize -= len;
1247 	if (pgoff > maxsize >> PAGE_SHIFT)
1248 		return false;
1249 	return true;
1250 }
1251 
1252 /*
1253  * The caller must write-lock current->mm->mmap_lock.
1254  */
1255 unsigned long do_mmap(struct file *file, unsigned long addr,
1256 			unsigned long len, unsigned long prot,
1257 			unsigned long flags, vm_flags_t vm_flags,
1258 			unsigned long pgoff, unsigned long *populate,
1259 			struct list_head *uf)
1260 {
1261 	struct mm_struct *mm = current->mm;
1262 	int pkey = 0;
1263 
1264 	*populate = 0;
1265 
1266 	if (!len)
1267 		return -EINVAL;
1268 
1269 	/*
1270 	 * Does the application expect PROT_READ to imply PROT_EXEC?
1271 	 *
1272 	 * (the exception is when the underlying filesystem is noexec
1273 	 *  mounted, in which case we don't add PROT_EXEC.)
1274 	 */
1275 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1276 		if (!(file && path_noexec(&file->f_path)))
1277 			prot |= PROT_EXEC;
1278 
1279 	/* force arch specific MAP_FIXED handling in get_unmapped_area */
1280 	if (flags & MAP_FIXED_NOREPLACE)
1281 		flags |= MAP_FIXED;
1282 
1283 	if (!(flags & MAP_FIXED))
1284 		addr = round_hint_to_min(addr);
1285 
1286 	/* Careful about overflows.. */
1287 	len = PAGE_ALIGN(len);
1288 	if (!len)
1289 		return -ENOMEM;
1290 
1291 	/* offset overflow? */
1292 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1293 		return -EOVERFLOW;
1294 
1295 	/* Too many mappings? */
1296 	if (mm->map_count > sysctl_max_map_count)
1297 		return -ENOMEM;
1298 
1299 	/*
1300 	 * addr is returned from get_unmapped_area,
1301 	 * There are two cases:
1302 	 * 1> MAP_FIXED == false
1303 	 *	unallocated memory, no need to check sealing.
1304 	 * 1> MAP_FIXED == true
1305 	 *	sealing is checked inside mmap_region when
1306 	 *	do_vmi_munmap is called.
1307 	 */
1308 
1309 	if (prot == PROT_EXEC) {
1310 		pkey = execute_only_pkey(mm);
1311 		if (pkey < 0)
1312 			pkey = 0;
1313 	}
1314 
1315 	/* Do simple checking here so the lower-level routines won't have
1316 	 * to. we assume access permissions have been handled by the open
1317 	 * of the memory object, so we don't do any here.
1318 	 */
1319 	vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1320 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1321 
1322 	/* Obtain the address to map to. we verify (or select) it and ensure
1323 	 * that it represents a valid section of the address space.
1324 	 */
1325 	addr = __get_unmapped_area(file, addr, len, pgoff, flags, vm_flags);
1326 	if (IS_ERR_VALUE(addr))
1327 		return addr;
1328 
1329 	if (flags & MAP_FIXED_NOREPLACE) {
1330 		if (find_vma_intersection(mm, addr, addr + len))
1331 			return -EEXIST;
1332 	}
1333 
1334 	if (flags & MAP_LOCKED)
1335 		if (!can_do_mlock())
1336 			return -EPERM;
1337 
1338 	if (!mlock_future_ok(mm, vm_flags, len))
1339 		return -EAGAIN;
1340 
1341 	if (file) {
1342 		struct inode *inode = file_inode(file);
1343 		unsigned long flags_mask;
1344 
1345 		if (!file_mmap_ok(file, inode, pgoff, len))
1346 			return -EOVERFLOW;
1347 
1348 		flags_mask = LEGACY_MAP_MASK;
1349 		if (file->f_op->fop_flags & FOP_MMAP_SYNC)
1350 			flags_mask |= MAP_SYNC;
1351 
1352 		switch (flags & MAP_TYPE) {
1353 		case MAP_SHARED:
1354 			/*
1355 			 * Force use of MAP_SHARED_VALIDATE with non-legacy
1356 			 * flags. E.g. MAP_SYNC is dangerous to use with
1357 			 * MAP_SHARED as you don't know which consistency model
1358 			 * you will get. We silently ignore unsupported flags
1359 			 * with MAP_SHARED to preserve backward compatibility.
1360 			 */
1361 			flags &= LEGACY_MAP_MASK;
1362 			fallthrough;
1363 		case MAP_SHARED_VALIDATE:
1364 			if (flags & ~flags_mask)
1365 				return -EOPNOTSUPP;
1366 			if (prot & PROT_WRITE) {
1367 				if (!(file->f_mode & FMODE_WRITE))
1368 					return -EACCES;
1369 				if (IS_SWAPFILE(file->f_mapping->host))
1370 					return -ETXTBSY;
1371 			}
1372 
1373 			/*
1374 			 * Make sure we don't allow writing to an append-only
1375 			 * file..
1376 			 */
1377 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1378 				return -EACCES;
1379 
1380 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1381 			if (!(file->f_mode & FMODE_WRITE))
1382 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1383 			fallthrough;
1384 		case MAP_PRIVATE:
1385 			if (!(file->f_mode & FMODE_READ))
1386 				return -EACCES;
1387 			if (path_noexec(&file->f_path)) {
1388 				if (vm_flags & VM_EXEC)
1389 					return -EPERM;
1390 				vm_flags &= ~VM_MAYEXEC;
1391 			}
1392 
1393 			if (!file->f_op->mmap)
1394 				return -ENODEV;
1395 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1396 				return -EINVAL;
1397 			break;
1398 
1399 		default:
1400 			return -EINVAL;
1401 		}
1402 	} else {
1403 		switch (flags & MAP_TYPE) {
1404 		case MAP_SHARED:
1405 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1406 				return -EINVAL;
1407 			/*
1408 			 * Ignore pgoff.
1409 			 */
1410 			pgoff = 0;
1411 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1412 			break;
1413 		case MAP_PRIVATE:
1414 			/*
1415 			 * Set pgoff according to addr for anon_vma.
1416 			 */
1417 			pgoff = addr >> PAGE_SHIFT;
1418 			break;
1419 		default:
1420 			return -EINVAL;
1421 		}
1422 	}
1423 
1424 	/*
1425 	 * Set 'VM_NORESERVE' if we should not account for the
1426 	 * memory use of this mapping.
1427 	 */
1428 	if (flags & MAP_NORESERVE) {
1429 		/* We honor MAP_NORESERVE if allowed to overcommit */
1430 		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1431 			vm_flags |= VM_NORESERVE;
1432 
1433 		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1434 		if (file && is_file_hugepages(file))
1435 			vm_flags |= VM_NORESERVE;
1436 	}
1437 
1438 	addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1439 	if (!IS_ERR_VALUE(addr) &&
1440 	    ((vm_flags & VM_LOCKED) ||
1441 	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1442 		*populate = len;
1443 	return addr;
1444 }
1445 
1446 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1447 			      unsigned long prot, unsigned long flags,
1448 			      unsigned long fd, unsigned long pgoff)
1449 {
1450 	struct file *file = NULL;
1451 	unsigned long retval;
1452 
1453 	if (!(flags & MAP_ANONYMOUS)) {
1454 		audit_mmap_fd(fd, flags);
1455 		file = fget(fd);
1456 		if (!file)
1457 			return -EBADF;
1458 		if (is_file_hugepages(file)) {
1459 			len = ALIGN(len, huge_page_size(hstate_file(file)));
1460 		} else if (unlikely(flags & MAP_HUGETLB)) {
1461 			retval = -EINVAL;
1462 			goto out_fput;
1463 		}
1464 	} else if (flags & MAP_HUGETLB) {
1465 		struct hstate *hs;
1466 
1467 		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1468 		if (!hs)
1469 			return -EINVAL;
1470 
1471 		len = ALIGN(len, huge_page_size(hs));
1472 		/*
1473 		 * VM_NORESERVE is used because the reservations will be
1474 		 * taken when vm_ops->mmap() is called
1475 		 */
1476 		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1477 				VM_NORESERVE,
1478 				HUGETLB_ANONHUGE_INODE,
1479 				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1480 		if (IS_ERR(file))
1481 			return PTR_ERR(file);
1482 	}
1483 
1484 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1485 out_fput:
1486 	if (file)
1487 		fput(file);
1488 	return retval;
1489 }
1490 
1491 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1492 		unsigned long, prot, unsigned long, flags,
1493 		unsigned long, fd, unsigned long, pgoff)
1494 {
1495 	return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1496 }
1497 
1498 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1499 struct mmap_arg_struct {
1500 	unsigned long addr;
1501 	unsigned long len;
1502 	unsigned long prot;
1503 	unsigned long flags;
1504 	unsigned long fd;
1505 	unsigned long offset;
1506 };
1507 
1508 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1509 {
1510 	struct mmap_arg_struct a;
1511 
1512 	if (copy_from_user(&a, arg, sizeof(a)))
1513 		return -EFAULT;
1514 	if (offset_in_page(a.offset))
1515 		return -EINVAL;
1516 
1517 	return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1518 			       a.offset >> PAGE_SHIFT);
1519 }
1520 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1521 
1522 static bool vm_ops_needs_writenotify(const struct vm_operations_struct *vm_ops)
1523 {
1524 	return vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite);
1525 }
1526 
1527 static bool vma_is_shared_writable(struct vm_area_struct *vma)
1528 {
1529 	return (vma->vm_flags & (VM_WRITE | VM_SHARED)) ==
1530 		(VM_WRITE | VM_SHARED);
1531 }
1532 
1533 static bool vma_fs_can_writeback(struct vm_area_struct *vma)
1534 {
1535 	/* No managed pages to writeback. */
1536 	if (vma->vm_flags & VM_PFNMAP)
1537 		return false;
1538 
1539 	return vma->vm_file && vma->vm_file->f_mapping &&
1540 		mapping_can_writeback(vma->vm_file->f_mapping);
1541 }
1542 
1543 /*
1544  * Does this VMA require the underlying folios to have their dirty state
1545  * tracked?
1546  */
1547 bool vma_needs_dirty_tracking(struct vm_area_struct *vma)
1548 {
1549 	/* Only shared, writable VMAs require dirty tracking. */
1550 	if (!vma_is_shared_writable(vma))
1551 		return false;
1552 
1553 	/* Does the filesystem need to be notified? */
1554 	if (vm_ops_needs_writenotify(vma->vm_ops))
1555 		return true;
1556 
1557 	/*
1558 	 * Even if the filesystem doesn't indicate a need for writenotify, if it
1559 	 * can writeback, dirty tracking is still required.
1560 	 */
1561 	return vma_fs_can_writeback(vma);
1562 }
1563 
1564 /*
1565  * Some shared mappings will want the pages marked read-only
1566  * to track write events. If so, we'll downgrade vm_page_prot
1567  * to the private version (using protection_map[] without the
1568  * VM_SHARED bit).
1569  */
1570 bool vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1571 {
1572 	/* If it was private or non-writable, the write bit is already clear */
1573 	if (!vma_is_shared_writable(vma))
1574 		return false;
1575 
1576 	/* The backer wishes to know when pages are first written to? */
1577 	if (vm_ops_needs_writenotify(vma->vm_ops))
1578 		return true;
1579 
1580 	/* The open routine did something to the protections that pgprot_modify
1581 	 * won't preserve? */
1582 	if (pgprot_val(vm_page_prot) !=
1583 	    pgprot_val(vm_pgprot_modify(vm_page_prot, vma->vm_flags)))
1584 		return false;
1585 
1586 	/*
1587 	 * Do we need to track softdirty? hugetlb does not support softdirty
1588 	 * tracking yet.
1589 	 */
1590 	if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma))
1591 		return true;
1592 
1593 	/* Do we need write faults for uffd-wp tracking? */
1594 	if (userfaultfd_wp(vma))
1595 		return true;
1596 
1597 	/* Can the mapping track the dirty pages? */
1598 	return vma_fs_can_writeback(vma);
1599 }
1600 
1601 /*
1602  * We account for memory if it's a private writeable mapping,
1603  * not hugepages and VM_NORESERVE wasn't set.
1604  */
1605 static inline bool accountable_mapping(struct file *file, vm_flags_t vm_flags)
1606 {
1607 	/*
1608 	 * hugetlb has its own accounting separate from the core VM
1609 	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1610 	 */
1611 	if (file && is_file_hugepages(file))
1612 		return false;
1613 
1614 	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1615 }
1616 
1617 /**
1618  * unmapped_area() - Find an area between the low_limit and the high_limit with
1619  * the correct alignment and offset, all from @info. Note: current->mm is used
1620  * for the search.
1621  *
1622  * @info: The unmapped area information including the range [low_limit -
1623  * high_limit), the alignment offset and mask.
1624  *
1625  * Return: A memory address or -ENOMEM.
1626  */
1627 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1628 {
1629 	unsigned long length, gap;
1630 	unsigned long low_limit, high_limit;
1631 	struct vm_area_struct *tmp;
1632 	VMA_ITERATOR(vmi, current->mm, 0);
1633 
1634 	/* Adjust search length to account for worst case alignment overhead */
1635 	length = info->length + info->align_mask + info->start_gap;
1636 	if (length < info->length)
1637 		return -ENOMEM;
1638 
1639 	low_limit = info->low_limit;
1640 	if (low_limit < mmap_min_addr)
1641 		low_limit = mmap_min_addr;
1642 	high_limit = info->high_limit;
1643 retry:
1644 	if (vma_iter_area_lowest(&vmi, low_limit, high_limit, length))
1645 		return -ENOMEM;
1646 
1647 	/*
1648 	 * Adjust for the gap first so it doesn't interfere with the
1649 	 * later alignment. The first step is the minimum needed to
1650 	 * fulill the start gap, the next steps is the minimum to align
1651 	 * that. It is the minimum needed to fulill both.
1652 	 */
1653 	gap = vma_iter_addr(&vmi) + info->start_gap;
1654 	gap += (info->align_offset - gap) & info->align_mask;
1655 	tmp = vma_next(&vmi);
1656 	if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
1657 		if (vm_start_gap(tmp) < gap + length - 1) {
1658 			low_limit = tmp->vm_end;
1659 			vma_iter_reset(&vmi);
1660 			goto retry;
1661 		}
1662 	} else {
1663 		tmp = vma_prev(&vmi);
1664 		if (tmp && vm_end_gap(tmp) > gap) {
1665 			low_limit = vm_end_gap(tmp);
1666 			vma_iter_reset(&vmi);
1667 			goto retry;
1668 		}
1669 	}
1670 
1671 	return gap;
1672 }
1673 
1674 /**
1675  * unmapped_area_topdown() - Find an area between the low_limit and the
1676  * high_limit with the correct alignment and offset at the highest available
1677  * address, all from @info. Note: current->mm is used for the search.
1678  *
1679  * @info: The unmapped area information including the range [low_limit -
1680  * high_limit), the alignment offset and mask.
1681  *
1682  * Return: A memory address or -ENOMEM.
1683  */
1684 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1685 {
1686 	unsigned long length, gap, gap_end;
1687 	unsigned long low_limit, high_limit;
1688 	struct vm_area_struct *tmp;
1689 	VMA_ITERATOR(vmi, current->mm, 0);
1690 
1691 	/* Adjust search length to account for worst case alignment overhead */
1692 	length = info->length + info->align_mask + info->start_gap;
1693 	if (length < info->length)
1694 		return -ENOMEM;
1695 
1696 	low_limit = info->low_limit;
1697 	if (low_limit < mmap_min_addr)
1698 		low_limit = mmap_min_addr;
1699 	high_limit = info->high_limit;
1700 retry:
1701 	if (vma_iter_area_highest(&vmi, low_limit, high_limit, length))
1702 		return -ENOMEM;
1703 
1704 	gap = vma_iter_end(&vmi) - info->length;
1705 	gap -= (gap - info->align_offset) & info->align_mask;
1706 	gap_end = vma_iter_end(&vmi);
1707 	tmp = vma_next(&vmi);
1708 	if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
1709 		if (vm_start_gap(tmp) < gap_end) {
1710 			high_limit = vm_start_gap(tmp);
1711 			vma_iter_reset(&vmi);
1712 			goto retry;
1713 		}
1714 	} else {
1715 		tmp = vma_prev(&vmi);
1716 		if (tmp && vm_end_gap(tmp) > gap) {
1717 			high_limit = tmp->vm_start;
1718 			vma_iter_reset(&vmi);
1719 			goto retry;
1720 		}
1721 	}
1722 
1723 	return gap;
1724 }
1725 
1726 /*
1727  * Search for an unmapped address range.
1728  *
1729  * We are looking for a range that:
1730  * - does not intersect with any VMA;
1731  * - is contained within the [low_limit, high_limit) interval;
1732  * - is at least the desired size.
1733  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1734  */
1735 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
1736 {
1737 	unsigned long addr;
1738 
1739 	if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
1740 		addr = unmapped_area_topdown(info);
1741 	else
1742 		addr = unmapped_area(info);
1743 
1744 	trace_vm_unmapped_area(addr, info);
1745 	return addr;
1746 }
1747 
1748 /* Get an address range which is currently unmapped.
1749  * For shmat() with addr=0.
1750  *
1751  * Ugly calling convention alert:
1752  * Return value with the low bits set means error value,
1753  * ie
1754  *	if (ret & ~PAGE_MASK)
1755  *		error = ret;
1756  *
1757  * This function "knows" that -ENOMEM has the bits set.
1758  */
1759 unsigned long
1760 generic_get_unmapped_area(struct file *filp, unsigned long addr,
1761 			  unsigned long len, unsigned long pgoff,
1762 			  unsigned long flags)
1763 {
1764 	struct mm_struct *mm = current->mm;
1765 	struct vm_area_struct *vma, *prev;
1766 	struct vm_unmapped_area_info info = {};
1767 	const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1768 
1769 	if (len > mmap_end - mmap_min_addr)
1770 		return -ENOMEM;
1771 
1772 	if (flags & MAP_FIXED)
1773 		return addr;
1774 
1775 	if (addr) {
1776 		addr = PAGE_ALIGN(addr);
1777 		vma = find_vma_prev(mm, addr, &prev);
1778 		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1779 		    (!vma || addr + len <= vm_start_gap(vma)) &&
1780 		    (!prev || addr >= vm_end_gap(prev)))
1781 			return addr;
1782 	}
1783 
1784 	info.length = len;
1785 	info.low_limit = mm->mmap_base;
1786 	info.high_limit = mmap_end;
1787 	return vm_unmapped_area(&info);
1788 }
1789 
1790 #ifndef HAVE_ARCH_UNMAPPED_AREA
1791 unsigned long
1792 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1793 		       unsigned long len, unsigned long pgoff,
1794 		       unsigned long flags)
1795 {
1796 	return generic_get_unmapped_area(filp, addr, len, pgoff, flags);
1797 }
1798 #endif
1799 
1800 /*
1801  * This mmap-allocator allocates new areas top-down from below the
1802  * stack's low limit (the base):
1803  */
1804 unsigned long
1805 generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1806 				  unsigned long len, unsigned long pgoff,
1807 				  unsigned long flags)
1808 {
1809 	struct vm_area_struct *vma, *prev;
1810 	struct mm_struct *mm = current->mm;
1811 	struct vm_unmapped_area_info info = {};
1812 	const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1813 
1814 	/* requested length too big for entire address space */
1815 	if (len > mmap_end - mmap_min_addr)
1816 		return -ENOMEM;
1817 
1818 	if (flags & MAP_FIXED)
1819 		return addr;
1820 
1821 	/* requesting a specific address */
1822 	if (addr) {
1823 		addr = PAGE_ALIGN(addr);
1824 		vma = find_vma_prev(mm, addr, &prev);
1825 		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1826 				(!vma || addr + len <= vm_start_gap(vma)) &&
1827 				(!prev || addr >= vm_end_gap(prev)))
1828 			return addr;
1829 	}
1830 
1831 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1832 	info.length = len;
1833 	info.low_limit = PAGE_SIZE;
1834 	info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
1835 	addr = vm_unmapped_area(&info);
1836 
1837 	/*
1838 	 * A failed mmap() very likely causes application failure,
1839 	 * so fall back to the bottom-up function here. This scenario
1840 	 * can happen with large stack limits and large mmap()
1841 	 * allocations.
1842 	 */
1843 	if (offset_in_page(addr)) {
1844 		VM_BUG_ON(addr != -ENOMEM);
1845 		info.flags = 0;
1846 		info.low_limit = TASK_UNMAPPED_BASE;
1847 		info.high_limit = mmap_end;
1848 		addr = vm_unmapped_area(&info);
1849 	}
1850 
1851 	return addr;
1852 }
1853 
1854 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1855 unsigned long
1856 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1857 			       unsigned long len, unsigned long pgoff,
1858 			       unsigned long flags)
1859 {
1860 	return generic_get_unmapped_area_topdown(filp, addr, len, pgoff, flags);
1861 }
1862 #endif
1863 
1864 #ifndef HAVE_ARCH_UNMAPPED_AREA_VMFLAGS
1865 unsigned long
1866 arch_get_unmapped_area_vmflags(struct file *filp, unsigned long addr, unsigned long len,
1867 			       unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags)
1868 {
1869 	return arch_get_unmapped_area(filp, addr, len, pgoff, flags);
1870 }
1871 
1872 unsigned long
1873 arch_get_unmapped_area_topdown_vmflags(struct file *filp, unsigned long addr,
1874 				       unsigned long len, unsigned long pgoff,
1875 				       unsigned long flags, vm_flags_t vm_flags)
1876 {
1877 	return arch_get_unmapped_area_topdown(filp, addr, len, pgoff, flags);
1878 }
1879 #endif
1880 
1881 unsigned long mm_get_unmapped_area_vmflags(struct mm_struct *mm, struct file *filp,
1882 					   unsigned long addr, unsigned long len,
1883 					   unsigned long pgoff, unsigned long flags,
1884 					   vm_flags_t vm_flags)
1885 {
1886 	if (test_bit(MMF_TOPDOWN, &mm->flags))
1887 		return arch_get_unmapped_area_topdown_vmflags(filp, addr, len, pgoff,
1888 							      flags, vm_flags);
1889 	return arch_get_unmapped_area_vmflags(filp, addr, len, pgoff, flags, vm_flags);
1890 }
1891 
1892 unsigned long
1893 __get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1894 		unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags)
1895 {
1896 	unsigned long (*get_area)(struct file *, unsigned long,
1897 				  unsigned long, unsigned long, unsigned long)
1898 				  = NULL;
1899 
1900 	unsigned long error = arch_mmap_check(addr, len, flags);
1901 	if (error)
1902 		return error;
1903 
1904 	/* Careful about overflows.. */
1905 	if (len > TASK_SIZE)
1906 		return -ENOMEM;
1907 
1908 	if (file) {
1909 		if (file->f_op->get_unmapped_area)
1910 			get_area = file->f_op->get_unmapped_area;
1911 	} else if (flags & MAP_SHARED) {
1912 		/*
1913 		 * mmap_region() will call shmem_zero_setup() to create a file,
1914 		 * so use shmem's get_unmapped_area in case it can be huge.
1915 		 */
1916 		get_area = shmem_get_unmapped_area;
1917 	}
1918 
1919 	/* Always treat pgoff as zero for anonymous memory. */
1920 	if (!file)
1921 		pgoff = 0;
1922 
1923 	if (get_area) {
1924 		addr = get_area(file, addr, len, pgoff, flags);
1925 	} else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1926 		/* Ensures that larger anonymous mappings are THP aligned. */
1927 		addr = thp_get_unmapped_area_vmflags(file, addr, len,
1928 						     pgoff, flags, vm_flags);
1929 	} else {
1930 		addr = mm_get_unmapped_area_vmflags(current->mm, file, addr, len,
1931 						    pgoff, flags, vm_flags);
1932 	}
1933 	if (IS_ERR_VALUE(addr))
1934 		return addr;
1935 
1936 	if (addr > TASK_SIZE - len)
1937 		return -ENOMEM;
1938 	if (offset_in_page(addr))
1939 		return -EINVAL;
1940 
1941 	error = security_mmap_addr(addr);
1942 	return error ? error : addr;
1943 }
1944 
1945 unsigned long
1946 mm_get_unmapped_area(struct mm_struct *mm, struct file *file,
1947 		     unsigned long addr, unsigned long len,
1948 		     unsigned long pgoff, unsigned long flags)
1949 {
1950 	if (test_bit(MMF_TOPDOWN, &mm->flags))
1951 		return arch_get_unmapped_area_topdown(file, addr, len, pgoff, flags);
1952 	return arch_get_unmapped_area(file, addr, len, pgoff, flags);
1953 }
1954 EXPORT_SYMBOL(mm_get_unmapped_area);
1955 
1956 /**
1957  * find_vma_intersection() - Look up the first VMA which intersects the interval
1958  * @mm: The process address space.
1959  * @start_addr: The inclusive start user address.
1960  * @end_addr: The exclusive end user address.
1961  *
1962  * Returns: The first VMA within the provided range, %NULL otherwise.  Assumes
1963  * start_addr < end_addr.
1964  */
1965 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
1966 					     unsigned long start_addr,
1967 					     unsigned long end_addr)
1968 {
1969 	unsigned long index = start_addr;
1970 
1971 	mmap_assert_locked(mm);
1972 	return mt_find(&mm->mm_mt, &index, end_addr - 1);
1973 }
1974 EXPORT_SYMBOL(find_vma_intersection);
1975 
1976 /**
1977  * find_vma() - Find the VMA for a given address, or the next VMA.
1978  * @mm: The mm_struct to check
1979  * @addr: The address
1980  *
1981  * Returns: The VMA associated with addr, or the next VMA.
1982  * May return %NULL in the case of no VMA at addr or above.
1983  */
1984 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1985 {
1986 	unsigned long index = addr;
1987 
1988 	mmap_assert_locked(mm);
1989 	return mt_find(&mm->mm_mt, &index, ULONG_MAX);
1990 }
1991 EXPORT_SYMBOL(find_vma);
1992 
1993 /**
1994  * find_vma_prev() - Find the VMA for a given address, or the next vma and
1995  * set %pprev to the previous VMA, if any.
1996  * @mm: The mm_struct to check
1997  * @addr: The address
1998  * @pprev: The pointer to set to the previous VMA
1999  *
2000  * Note that RCU lock is missing here since the external mmap_lock() is used
2001  * instead.
2002  *
2003  * Returns: The VMA associated with @addr, or the next vma.
2004  * May return %NULL in the case of no vma at addr or above.
2005  */
2006 struct vm_area_struct *
2007 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2008 			struct vm_area_struct **pprev)
2009 {
2010 	struct vm_area_struct *vma;
2011 	VMA_ITERATOR(vmi, mm, addr);
2012 
2013 	vma = vma_iter_load(&vmi);
2014 	*pprev = vma_prev(&vmi);
2015 	if (!vma)
2016 		vma = vma_next(&vmi);
2017 	return vma;
2018 }
2019 
2020 /*
2021  * Verify that the stack growth is acceptable and
2022  * update accounting. This is shared with both the
2023  * grow-up and grow-down cases.
2024  */
2025 static int acct_stack_growth(struct vm_area_struct *vma,
2026 			     unsigned long size, unsigned long grow)
2027 {
2028 	struct mm_struct *mm = vma->vm_mm;
2029 	unsigned long new_start;
2030 
2031 	/* address space limit tests */
2032 	if (!may_expand_vm(mm, vma->vm_flags, grow))
2033 		return -ENOMEM;
2034 
2035 	/* Stack limit test */
2036 	if (size > rlimit(RLIMIT_STACK))
2037 		return -ENOMEM;
2038 
2039 	/* mlock limit tests */
2040 	if (!mlock_future_ok(mm, vma->vm_flags, grow << PAGE_SHIFT))
2041 		return -ENOMEM;
2042 
2043 	/* Check to ensure the stack will not grow into a hugetlb-only region */
2044 	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2045 			vma->vm_end - size;
2046 	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2047 		return -EFAULT;
2048 
2049 	/*
2050 	 * Overcommit..  This must be the final test, as it will
2051 	 * update security statistics.
2052 	 */
2053 	if (security_vm_enough_memory_mm(mm, grow))
2054 		return -ENOMEM;
2055 
2056 	return 0;
2057 }
2058 
2059 #if defined(CONFIG_STACK_GROWSUP)
2060 /*
2061  * PA-RISC uses this for its stack.
2062  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2063  */
2064 static int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2065 {
2066 	struct mm_struct *mm = vma->vm_mm;
2067 	struct vm_area_struct *next;
2068 	unsigned long gap_addr;
2069 	int error = 0;
2070 	VMA_ITERATOR(vmi, mm, vma->vm_start);
2071 
2072 	if (!(vma->vm_flags & VM_GROWSUP))
2073 		return -EFAULT;
2074 
2075 	/* Guard against exceeding limits of the address space. */
2076 	address &= PAGE_MASK;
2077 	if (address >= (TASK_SIZE & PAGE_MASK))
2078 		return -ENOMEM;
2079 	address += PAGE_SIZE;
2080 
2081 	/* Enforce stack_guard_gap */
2082 	gap_addr = address + stack_guard_gap;
2083 
2084 	/* Guard against overflow */
2085 	if (gap_addr < address || gap_addr > TASK_SIZE)
2086 		gap_addr = TASK_SIZE;
2087 
2088 	next = find_vma_intersection(mm, vma->vm_end, gap_addr);
2089 	if (next && vma_is_accessible(next)) {
2090 		if (!(next->vm_flags & VM_GROWSUP))
2091 			return -ENOMEM;
2092 		/* Check that both stack segments have the same anon_vma? */
2093 	}
2094 
2095 	if (next)
2096 		vma_iter_prev_range_limit(&vmi, address);
2097 
2098 	vma_iter_config(&vmi, vma->vm_start, address);
2099 	if (vma_iter_prealloc(&vmi, vma))
2100 		return -ENOMEM;
2101 
2102 	/* We must make sure the anon_vma is allocated. */
2103 	if (unlikely(anon_vma_prepare(vma))) {
2104 		vma_iter_free(&vmi);
2105 		return -ENOMEM;
2106 	}
2107 
2108 	/* Lock the VMA before expanding to prevent concurrent page faults */
2109 	vma_start_write(vma);
2110 	/*
2111 	 * vma->vm_start/vm_end cannot change under us because the caller
2112 	 * is required to hold the mmap_lock in read mode.  We need the
2113 	 * anon_vma lock to serialize against concurrent expand_stacks.
2114 	 */
2115 	anon_vma_lock_write(vma->anon_vma);
2116 
2117 	/* Somebody else might have raced and expanded it already */
2118 	if (address > vma->vm_end) {
2119 		unsigned long size, grow;
2120 
2121 		size = address - vma->vm_start;
2122 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
2123 
2124 		error = -ENOMEM;
2125 		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2126 			error = acct_stack_growth(vma, size, grow);
2127 			if (!error) {
2128 				/*
2129 				 * We only hold a shared mmap_lock lock here, so
2130 				 * we need to protect against concurrent vma
2131 				 * expansions.  anon_vma_lock_write() doesn't
2132 				 * help here, as we don't guarantee that all
2133 				 * growable vmas in a mm share the same root
2134 				 * anon vma.  So, we reuse mm->page_table_lock
2135 				 * to guard against concurrent vma expansions.
2136 				 */
2137 				spin_lock(&mm->page_table_lock);
2138 				if (vma->vm_flags & VM_LOCKED)
2139 					mm->locked_vm += grow;
2140 				vm_stat_account(mm, vma->vm_flags, grow);
2141 				anon_vma_interval_tree_pre_update_vma(vma);
2142 				vma->vm_end = address;
2143 				/* Overwrite old entry in mtree. */
2144 				vma_iter_store(&vmi, vma);
2145 				anon_vma_interval_tree_post_update_vma(vma);
2146 				spin_unlock(&mm->page_table_lock);
2147 
2148 				perf_event_mmap(vma);
2149 			}
2150 		}
2151 	}
2152 	anon_vma_unlock_write(vma->anon_vma);
2153 	vma_iter_free(&vmi);
2154 	validate_mm(mm);
2155 	return error;
2156 }
2157 #endif /* CONFIG_STACK_GROWSUP */
2158 
2159 /*
2160  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2161  * mmap_lock held for writing.
2162  */
2163 int expand_downwards(struct vm_area_struct *vma, unsigned long address)
2164 {
2165 	struct mm_struct *mm = vma->vm_mm;
2166 	struct vm_area_struct *prev;
2167 	int error = 0;
2168 	VMA_ITERATOR(vmi, mm, vma->vm_start);
2169 
2170 	if (!(vma->vm_flags & VM_GROWSDOWN))
2171 		return -EFAULT;
2172 
2173 	address &= PAGE_MASK;
2174 	if (address < mmap_min_addr || address < FIRST_USER_ADDRESS)
2175 		return -EPERM;
2176 
2177 	/* Enforce stack_guard_gap */
2178 	prev = vma_prev(&vmi);
2179 	/* Check that both stack segments have the same anon_vma? */
2180 	if (prev) {
2181 		if (!(prev->vm_flags & VM_GROWSDOWN) &&
2182 		    vma_is_accessible(prev) &&
2183 		    (address - prev->vm_end < stack_guard_gap))
2184 			return -ENOMEM;
2185 	}
2186 
2187 	if (prev)
2188 		vma_iter_next_range_limit(&vmi, vma->vm_start);
2189 
2190 	vma_iter_config(&vmi, address, vma->vm_end);
2191 	if (vma_iter_prealloc(&vmi, vma))
2192 		return -ENOMEM;
2193 
2194 	/* We must make sure the anon_vma is allocated. */
2195 	if (unlikely(anon_vma_prepare(vma))) {
2196 		vma_iter_free(&vmi);
2197 		return -ENOMEM;
2198 	}
2199 
2200 	/* Lock the VMA before expanding to prevent concurrent page faults */
2201 	vma_start_write(vma);
2202 	/*
2203 	 * vma->vm_start/vm_end cannot change under us because the caller
2204 	 * is required to hold the mmap_lock in read mode.  We need the
2205 	 * anon_vma lock to serialize against concurrent expand_stacks.
2206 	 */
2207 	anon_vma_lock_write(vma->anon_vma);
2208 
2209 	/* Somebody else might have raced and expanded it already */
2210 	if (address < vma->vm_start) {
2211 		unsigned long size, grow;
2212 
2213 		size = vma->vm_end - address;
2214 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
2215 
2216 		error = -ENOMEM;
2217 		if (grow <= vma->vm_pgoff) {
2218 			error = acct_stack_growth(vma, size, grow);
2219 			if (!error) {
2220 				/*
2221 				 * We only hold a shared mmap_lock lock here, so
2222 				 * we need to protect against concurrent vma
2223 				 * expansions.  anon_vma_lock_write() doesn't
2224 				 * help here, as we don't guarantee that all
2225 				 * growable vmas in a mm share the same root
2226 				 * anon vma.  So, we reuse mm->page_table_lock
2227 				 * to guard against concurrent vma expansions.
2228 				 */
2229 				spin_lock(&mm->page_table_lock);
2230 				if (vma->vm_flags & VM_LOCKED)
2231 					mm->locked_vm += grow;
2232 				vm_stat_account(mm, vma->vm_flags, grow);
2233 				anon_vma_interval_tree_pre_update_vma(vma);
2234 				vma->vm_start = address;
2235 				vma->vm_pgoff -= grow;
2236 				/* Overwrite old entry in mtree. */
2237 				vma_iter_store(&vmi, vma);
2238 				anon_vma_interval_tree_post_update_vma(vma);
2239 				spin_unlock(&mm->page_table_lock);
2240 
2241 				perf_event_mmap(vma);
2242 			}
2243 		}
2244 	}
2245 	anon_vma_unlock_write(vma->anon_vma);
2246 	vma_iter_free(&vmi);
2247 	validate_mm(mm);
2248 	return error;
2249 }
2250 
2251 /* enforced gap between the expanding stack and other mappings. */
2252 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2253 
2254 static int __init cmdline_parse_stack_guard_gap(char *p)
2255 {
2256 	unsigned long val;
2257 	char *endptr;
2258 
2259 	val = simple_strtoul(p, &endptr, 10);
2260 	if (!*endptr)
2261 		stack_guard_gap = val << PAGE_SHIFT;
2262 
2263 	return 1;
2264 }
2265 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2266 
2267 #ifdef CONFIG_STACK_GROWSUP
2268 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
2269 {
2270 	return expand_upwards(vma, address);
2271 }
2272 
2273 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
2274 {
2275 	struct vm_area_struct *vma, *prev;
2276 
2277 	addr &= PAGE_MASK;
2278 	vma = find_vma_prev(mm, addr, &prev);
2279 	if (vma && (vma->vm_start <= addr))
2280 		return vma;
2281 	if (!prev)
2282 		return NULL;
2283 	if (expand_stack_locked(prev, addr))
2284 		return NULL;
2285 	if (prev->vm_flags & VM_LOCKED)
2286 		populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2287 	return prev;
2288 }
2289 #else
2290 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
2291 {
2292 	return expand_downwards(vma, address);
2293 }
2294 
2295 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
2296 {
2297 	struct vm_area_struct *vma;
2298 	unsigned long start;
2299 
2300 	addr &= PAGE_MASK;
2301 	vma = find_vma(mm, addr);
2302 	if (!vma)
2303 		return NULL;
2304 	if (vma->vm_start <= addr)
2305 		return vma;
2306 	start = vma->vm_start;
2307 	if (expand_stack_locked(vma, addr))
2308 		return NULL;
2309 	if (vma->vm_flags & VM_LOCKED)
2310 		populate_vma_page_range(vma, addr, start, NULL);
2311 	return vma;
2312 }
2313 #endif
2314 
2315 #if defined(CONFIG_STACK_GROWSUP)
2316 
2317 #define vma_expand_up(vma,addr) expand_upwards(vma, addr)
2318 #define vma_expand_down(vma, addr) (-EFAULT)
2319 
2320 #else
2321 
2322 #define vma_expand_up(vma,addr) (-EFAULT)
2323 #define vma_expand_down(vma, addr) expand_downwards(vma, addr)
2324 
2325 #endif
2326 
2327 /*
2328  * expand_stack(): legacy interface for page faulting. Don't use unless
2329  * you have to.
2330  *
2331  * This is called with the mm locked for reading, drops the lock, takes
2332  * the lock for writing, tries to look up a vma again, expands it if
2333  * necessary, and downgrades the lock to reading again.
2334  *
2335  * If no vma is found or it can't be expanded, it returns NULL and has
2336  * dropped the lock.
2337  */
2338 struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr)
2339 {
2340 	struct vm_area_struct *vma, *prev;
2341 
2342 	mmap_read_unlock(mm);
2343 	if (mmap_write_lock_killable(mm))
2344 		return NULL;
2345 
2346 	vma = find_vma_prev(mm, addr, &prev);
2347 	if (vma && vma->vm_start <= addr)
2348 		goto success;
2349 
2350 	if (prev && !vma_expand_up(prev, addr)) {
2351 		vma = prev;
2352 		goto success;
2353 	}
2354 
2355 	if (vma && !vma_expand_down(vma, addr))
2356 		goto success;
2357 
2358 	mmap_write_unlock(mm);
2359 	return NULL;
2360 
2361 success:
2362 	mmap_write_downgrade(mm);
2363 	return vma;
2364 }
2365 
2366 /*
2367  * Ok - we have the memory areas we should free on a maple tree so release them,
2368  * and do the vma updates.
2369  *
2370  * Called with the mm semaphore held.
2371  */
2372 static inline void remove_mt(struct mm_struct *mm, struct ma_state *mas)
2373 {
2374 	unsigned long nr_accounted = 0;
2375 	struct vm_area_struct *vma;
2376 
2377 	/* Update high watermark before we lower total_vm */
2378 	update_hiwater_vm(mm);
2379 	mas_for_each(mas, vma, ULONG_MAX) {
2380 		long nrpages = vma_pages(vma);
2381 
2382 		if (vma->vm_flags & VM_ACCOUNT)
2383 			nr_accounted += nrpages;
2384 		vm_stat_account(mm, vma->vm_flags, -nrpages);
2385 		remove_vma(vma, false);
2386 	}
2387 	vm_unacct_memory(nr_accounted);
2388 }
2389 
2390 /*
2391  * Get rid of page table information in the indicated region.
2392  *
2393  * Called with the mm semaphore held.
2394  */
2395 static void unmap_region(struct mm_struct *mm, struct ma_state *mas,
2396 		struct vm_area_struct *vma, struct vm_area_struct *prev,
2397 		struct vm_area_struct *next, unsigned long start,
2398 		unsigned long end, unsigned long tree_end, bool mm_wr_locked)
2399 {
2400 	struct mmu_gather tlb;
2401 	unsigned long mt_start = mas->index;
2402 
2403 	lru_add_drain();
2404 	tlb_gather_mmu(&tlb, mm);
2405 	update_hiwater_rss(mm);
2406 	unmap_vmas(&tlb, mas, vma, start, end, tree_end, mm_wr_locked);
2407 	mas_set(mas, mt_start);
2408 	free_pgtables(&tlb, mas, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2409 				 next ? next->vm_start : USER_PGTABLES_CEILING,
2410 				 mm_wr_locked);
2411 	tlb_finish_mmu(&tlb);
2412 }
2413 
2414 /*
2415  * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2416  * has already been checked or doesn't make sense to fail.
2417  * VMA Iterator will point to the end VMA.
2418  */
2419 static int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
2420 		       unsigned long addr, int new_below)
2421 {
2422 	struct vma_prepare vp;
2423 	struct vm_area_struct *new;
2424 	int err;
2425 
2426 	WARN_ON(vma->vm_start >= addr);
2427 	WARN_ON(vma->vm_end <= addr);
2428 
2429 	if (vma->vm_ops && vma->vm_ops->may_split) {
2430 		err = vma->vm_ops->may_split(vma, addr);
2431 		if (err)
2432 			return err;
2433 	}
2434 
2435 	new = vm_area_dup(vma);
2436 	if (!new)
2437 		return -ENOMEM;
2438 
2439 	if (new_below) {
2440 		new->vm_end = addr;
2441 	} else {
2442 		new->vm_start = addr;
2443 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2444 	}
2445 
2446 	err = -ENOMEM;
2447 	vma_iter_config(vmi, new->vm_start, new->vm_end);
2448 	if (vma_iter_prealloc(vmi, new))
2449 		goto out_free_vma;
2450 
2451 	err = vma_dup_policy(vma, new);
2452 	if (err)
2453 		goto out_free_vmi;
2454 
2455 	err = anon_vma_clone(new, vma);
2456 	if (err)
2457 		goto out_free_mpol;
2458 
2459 	if (new->vm_file)
2460 		get_file(new->vm_file);
2461 
2462 	if (new->vm_ops && new->vm_ops->open)
2463 		new->vm_ops->open(new);
2464 
2465 	vma_start_write(vma);
2466 	vma_start_write(new);
2467 
2468 	init_vma_prep(&vp, vma);
2469 	vp.insert = new;
2470 	vma_prepare(&vp);
2471 	vma_adjust_trans_huge(vma, vma->vm_start, addr, 0);
2472 
2473 	if (new_below) {
2474 		vma->vm_start = addr;
2475 		vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT;
2476 	} else {
2477 		vma->vm_end = addr;
2478 	}
2479 
2480 	/* vma_complete stores the new vma */
2481 	vma_complete(&vp, vmi, vma->vm_mm);
2482 
2483 	/* Success. */
2484 	if (new_below)
2485 		vma_next(vmi);
2486 	return 0;
2487 
2488 out_free_mpol:
2489 	mpol_put(vma_policy(new));
2490 out_free_vmi:
2491 	vma_iter_free(vmi);
2492 out_free_vma:
2493 	vm_area_free(new);
2494 	return err;
2495 }
2496 
2497 /*
2498  * Split a vma into two pieces at address 'addr', a new vma is allocated
2499  * either for the first part or the tail.
2500  */
2501 static int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
2502 		     unsigned long addr, int new_below)
2503 {
2504 	if (vma->vm_mm->map_count >= sysctl_max_map_count)
2505 		return -ENOMEM;
2506 
2507 	return __split_vma(vmi, vma, addr, new_below);
2508 }
2509 
2510 /*
2511  * We are about to modify one or multiple of a VMA's flags, policy, userfaultfd
2512  * context and anonymous VMA name within the range [start, end).
2513  *
2514  * As a result, we might be able to merge the newly modified VMA range with an
2515  * adjacent VMA with identical properties.
2516  *
2517  * If no merge is possible and the range does not span the entirety of the VMA,
2518  * we then need to split the VMA to accommodate the change.
2519  *
2520  * The function returns either the merged VMA, the original VMA if a split was
2521  * required instead, or an error if the split failed.
2522  */
2523 struct vm_area_struct *vma_modify(struct vma_iterator *vmi,
2524 				  struct vm_area_struct *prev,
2525 				  struct vm_area_struct *vma,
2526 				  unsigned long start, unsigned long end,
2527 				  unsigned long vm_flags,
2528 				  struct mempolicy *policy,
2529 				  struct vm_userfaultfd_ctx uffd_ctx,
2530 				  struct anon_vma_name *anon_name)
2531 {
2532 	pgoff_t pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
2533 	struct vm_area_struct *merged;
2534 
2535 	merged = vma_merge(vmi, prev, vma, start, end, vm_flags,
2536 			   pgoff, policy, uffd_ctx, anon_name);
2537 	if (merged)
2538 		return merged;
2539 
2540 	if (vma->vm_start < start) {
2541 		int err = split_vma(vmi, vma, start, 1);
2542 
2543 		if (err)
2544 			return ERR_PTR(err);
2545 	}
2546 
2547 	if (vma->vm_end > end) {
2548 		int err = split_vma(vmi, vma, end, 0);
2549 
2550 		if (err)
2551 			return ERR_PTR(err);
2552 	}
2553 
2554 	return vma;
2555 }
2556 
2557 /*
2558  * Attempt to merge a newly mapped VMA with those adjacent to it. The caller
2559  * must ensure that [start, end) does not overlap any existing VMA.
2560  */
2561 static struct vm_area_struct
2562 *vma_merge_new_vma(struct vma_iterator *vmi, struct vm_area_struct *prev,
2563 		   struct vm_area_struct *vma, unsigned long start,
2564 		   unsigned long end, pgoff_t pgoff)
2565 {
2566 	return vma_merge(vmi, prev, vma, start, end, vma->vm_flags, pgoff,
2567 			 vma_policy(vma), vma->vm_userfaultfd_ctx, anon_vma_name(vma));
2568 }
2569 
2570 /*
2571  * Expand vma by delta bytes, potentially merging with an immediately adjacent
2572  * VMA with identical properties.
2573  */
2574 struct vm_area_struct *vma_merge_extend(struct vma_iterator *vmi,
2575 					struct vm_area_struct *vma,
2576 					unsigned long delta)
2577 {
2578 	pgoff_t pgoff = vma->vm_pgoff + vma_pages(vma);
2579 
2580 	/* vma is specified as prev, so case 1 or 2 will apply. */
2581 	return vma_merge(vmi, vma, vma, vma->vm_end, vma->vm_end + delta,
2582 			 vma->vm_flags, pgoff, vma_policy(vma),
2583 			 vma->vm_userfaultfd_ctx, anon_vma_name(vma));
2584 }
2585 
2586 /*
2587  * do_vmi_align_munmap() - munmap the aligned region from @start to @end.
2588  * @vmi: The vma iterator
2589  * @vma: The starting vm_area_struct
2590  * @mm: The mm_struct
2591  * @start: The aligned start address to munmap.
2592  * @end: The aligned end address to munmap.
2593  * @uf: The userfaultfd list_head
2594  * @unlock: Set to true to drop the mmap_lock.  unlocking only happens on
2595  * success.
2596  *
2597  * Return: 0 on success and drops the lock if so directed, error and leaves the
2598  * lock held otherwise.
2599  */
2600 static int
2601 do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
2602 		    struct mm_struct *mm, unsigned long start,
2603 		    unsigned long end, struct list_head *uf, bool unlock)
2604 {
2605 	struct vm_area_struct *prev, *next = NULL;
2606 	struct maple_tree mt_detach;
2607 	int count = 0;
2608 	int error = -ENOMEM;
2609 	unsigned long locked_vm = 0;
2610 	MA_STATE(mas_detach, &mt_detach, 0, 0);
2611 	mt_init_flags(&mt_detach, vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK);
2612 	mt_on_stack(mt_detach);
2613 
2614 	/*
2615 	 * If we need to split any vma, do it now to save pain later.
2616 	 *
2617 	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2618 	 * unmapped vm_area_struct will remain in use: so lower split_vma
2619 	 * places tmp vma above, and higher split_vma places tmp vma below.
2620 	 */
2621 
2622 	/* Does it split the first one? */
2623 	if (start > vma->vm_start) {
2624 
2625 		/*
2626 		 * Make sure that map_count on return from munmap() will
2627 		 * not exceed its limit; but let map_count go just above
2628 		 * its limit temporarily, to help free resources as expected.
2629 		 */
2630 		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2631 			goto map_count_exceeded;
2632 
2633 		error = __split_vma(vmi, vma, start, 1);
2634 		if (error)
2635 			goto start_split_failed;
2636 	}
2637 
2638 	/*
2639 	 * Detach a range of VMAs from the mm. Using next as a temp variable as
2640 	 * it is always overwritten.
2641 	 */
2642 	next = vma;
2643 	do {
2644 		/* Does it split the end? */
2645 		if (next->vm_end > end) {
2646 			error = __split_vma(vmi, next, end, 0);
2647 			if (error)
2648 				goto end_split_failed;
2649 		}
2650 		vma_start_write(next);
2651 		mas_set(&mas_detach, count);
2652 		error = mas_store_gfp(&mas_detach, next, GFP_KERNEL);
2653 		if (error)
2654 			goto munmap_gather_failed;
2655 		vma_mark_detached(next, true);
2656 		if (next->vm_flags & VM_LOCKED)
2657 			locked_vm += vma_pages(next);
2658 
2659 		count++;
2660 		if (unlikely(uf)) {
2661 			/*
2662 			 * If userfaultfd_unmap_prep returns an error the vmas
2663 			 * will remain split, but userland will get a
2664 			 * highly unexpected error anyway. This is no
2665 			 * different than the case where the first of the two
2666 			 * __split_vma fails, but we don't undo the first
2667 			 * split, despite we could. This is unlikely enough
2668 			 * failure that it's not worth optimizing it for.
2669 			 */
2670 			error = userfaultfd_unmap_prep(next, start, end, uf);
2671 
2672 			if (error)
2673 				goto userfaultfd_error;
2674 		}
2675 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE
2676 		BUG_ON(next->vm_start < start);
2677 		BUG_ON(next->vm_start > end);
2678 #endif
2679 	} for_each_vma_range(*vmi, next, end);
2680 
2681 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
2682 	/* Make sure no VMAs are about to be lost. */
2683 	{
2684 		MA_STATE(test, &mt_detach, 0, 0);
2685 		struct vm_area_struct *vma_mas, *vma_test;
2686 		int test_count = 0;
2687 
2688 		vma_iter_set(vmi, start);
2689 		rcu_read_lock();
2690 		vma_test = mas_find(&test, count - 1);
2691 		for_each_vma_range(*vmi, vma_mas, end) {
2692 			BUG_ON(vma_mas != vma_test);
2693 			test_count++;
2694 			vma_test = mas_next(&test, count - 1);
2695 		}
2696 		rcu_read_unlock();
2697 		BUG_ON(count != test_count);
2698 	}
2699 #endif
2700 
2701 	while (vma_iter_addr(vmi) > start)
2702 		vma_iter_prev_range(vmi);
2703 
2704 	error = vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL);
2705 	if (error)
2706 		goto clear_tree_failed;
2707 
2708 	/* Point of no return */
2709 	mm->locked_vm -= locked_vm;
2710 	mm->map_count -= count;
2711 	if (unlock)
2712 		mmap_write_downgrade(mm);
2713 
2714 	prev = vma_iter_prev_range(vmi);
2715 	next = vma_next(vmi);
2716 	if (next)
2717 		vma_iter_prev_range(vmi);
2718 
2719 	/*
2720 	 * We can free page tables without write-locking mmap_lock because VMAs
2721 	 * were isolated before we downgraded mmap_lock.
2722 	 */
2723 	mas_set(&mas_detach, 1);
2724 	unmap_region(mm, &mas_detach, vma, prev, next, start, end, count,
2725 		     !unlock);
2726 	/* Statistics and freeing VMAs */
2727 	mas_set(&mas_detach, 0);
2728 	remove_mt(mm, &mas_detach);
2729 	validate_mm(mm);
2730 	if (unlock)
2731 		mmap_read_unlock(mm);
2732 
2733 	__mt_destroy(&mt_detach);
2734 	return 0;
2735 
2736 clear_tree_failed:
2737 userfaultfd_error:
2738 munmap_gather_failed:
2739 end_split_failed:
2740 	mas_set(&mas_detach, 0);
2741 	mas_for_each(&mas_detach, next, end)
2742 		vma_mark_detached(next, false);
2743 
2744 	__mt_destroy(&mt_detach);
2745 start_split_failed:
2746 map_count_exceeded:
2747 	validate_mm(mm);
2748 	return error;
2749 }
2750 
2751 /*
2752  * do_vmi_munmap() - munmap a given range.
2753  * @vmi: The vma iterator
2754  * @mm: The mm_struct
2755  * @start: The start address to munmap
2756  * @len: The length of the range to munmap
2757  * @uf: The userfaultfd list_head
2758  * @unlock: set to true if the user wants to drop the mmap_lock on success
2759  *
2760  * This function takes a @mas that is either pointing to the previous VMA or set
2761  * to MA_START and sets it up to remove the mapping(s).  The @len will be
2762  * aligned and any arch_unmap work will be preformed.
2763  *
2764  * Return: 0 on success and drops the lock if so directed, error and leaves the
2765  * lock held otherwise.
2766  */
2767 int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
2768 		  unsigned long start, size_t len, struct list_head *uf,
2769 		  bool unlock)
2770 {
2771 	unsigned long end;
2772 	struct vm_area_struct *vma;
2773 
2774 	if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2775 		return -EINVAL;
2776 
2777 	end = start + PAGE_ALIGN(len);
2778 	if (end == start)
2779 		return -EINVAL;
2780 
2781 	/*
2782 	 * Check if memory is sealed before arch_unmap.
2783 	 * Prevent unmapping a sealed VMA.
2784 	 * can_modify_mm assumes we have acquired the lock on MM.
2785 	 */
2786 	if (unlikely(!can_modify_mm(mm, start, end)))
2787 		return -EPERM;
2788 
2789 	 /* arch_unmap() might do unmaps itself.  */
2790 	arch_unmap(mm, start, end);
2791 
2792 	/* Find the first overlapping VMA */
2793 	vma = vma_find(vmi, end);
2794 	if (!vma) {
2795 		if (unlock)
2796 			mmap_write_unlock(mm);
2797 		return 0;
2798 	}
2799 
2800 	return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock);
2801 }
2802 
2803 /* do_munmap() - Wrapper function for non-maple tree aware do_munmap() calls.
2804  * @mm: The mm_struct
2805  * @start: The start address to munmap
2806  * @len: The length to be munmapped.
2807  * @uf: The userfaultfd list_head
2808  *
2809  * Return: 0 on success, error otherwise.
2810  */
2811 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2812 	      struct list_head *uf)
2813 {
2814 	VMA_ITERATOR(vmi, mm, start);
2815 
2816 	return do_vmi_munmap(&vmi, mm, start, len, uf, false);
2817 }
2818 
2819 unsigned long mmap_region(struct file *file, unsigned long addr,
2820 		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2821 		struct list_head *uf)
2822 {
2823 	struct mm_struct *mm = current->mm;
2824 	struct vm_area_struct *vma = NULL;
2825 	struct vm_area_struct *next, *prev, *merge;
2826 	pgoff_t pglen = len >> PAGE_SHIFT;
2827 	unsigned long charged = 0;
2828 	unsigned long end = addr + len;
2829 	unsigned long merge_start = addr, merge_end = end;
2830 	bool writable_file_mapping = false;
2831 	pgoff_t vm_pgoff;
2832 	int error;
2833 	VMA_ITERATOR(vmi, mm, addr);
2834 
2835 	/* Check against address space limit. */
2836 	if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
2837 		unsigned long nr_pages;
2838 
2839 		/*
2840 		 * MAP_FIXED may remove pages of mappings that intersects with
2841 		 * requested mapping. Account for the pages it would unmap.
2842 		 */
2843 		nr_pages = count_vma_pages_range(mm, addr, end);
2844 
2845 		if (!may_expand_vm(mm, vm_flags,
2846 					(len >> PAGE_SHIFT) - nr_pages))
2847 			return -ENOMEM;
2848 	}
2849 
2850 	/* Unmap any existing mapping in the area */
2851 	error = do_vmi_munmap(&vmi, mm, addr, len, uf, false);
2852 	if (error == -EPERM)
2853 		return error;
2854 	else if (error)
2855 		return -ENOMEM;
2856 
2857 	/*
2858 	 * Private writable mapping: check memory availability
2859 	 */
2860 	if (accountable_mapping(file, vm_flags)) {
2861 		charged = len >> PAGE_SHIFT;
2862 		if (security_vm_enough_memory_mm(mm, charged))
2863 			return -ENOMEM;
2864 		vm_flags |= VM_ACCOUNT;
2865 	}
2866 
2867 	next = vma_next(&vmi);
2868 	prev = vma_prev(&vmi);
2869 	if (vm_flags & VM_SPECIAL) {
2870 		if (prev)
2871 			vma_iter_next_range(&vmi);
2872 		goto cannot_expand;
2873 	}
2874 
2875 	/* Attempt to expand an old mapping */
2876 	/* Check next */
2877 	if (next && next->vm_start == end && !vma_policy(next) &&
2878 	    can_vma_merge_before(next, vm_flags, NULL, file, pgoff+pglen,
2879 				 NULL_VM_UFFD_CTX, NULL)) {
2880 		merge_end = next->vm_end;
2881 		vma = next;
2882 		vm_pgoff = next->vm_pgoff - pglen;
2883 	}
2884 
2885 	/* Check prev */
2886 	if (prev && prev->vm_end == addr && !vma_policy(prev) &&
2887 	    (vma ? can_vma_merge_after(prev, vm_flags, vma->anon_vma, file,
2888 				       pgoff, vma->vm_userfaultfd_ctx, NULL) :
2889 		   can_vma_merge_after(prev, vm_flags, NULL, file, pgoff,
2890 				       NULL_VM_UFFD_CTX, NULL))) {
2891 		merge_start = prev->vm_start;
2892 		vma = prev;
2893 		vm_pgoff = prev->vm_pgoff;
2894 	} else if (prev) {
2895 		vma_iter_next_range(&vmi);
2896 	}
2897 
2898 	/* Actually expand, if possible */
2899 	if (vma &&
2900 	    !vma_expand(&vmi, vma, merge_start, merge_end, vm_pgoff, next)) {
2901 		khugepaged_enter_vma(vma, vm_flags);
2902 		goto expanded;
2903 	}
2904 
2905 	if (vma == prev)
2906 		vma_iter_set(&vmi, addr);
2907 cannot_expand:
2908 
2909 	/*
2910 	 * Determine the object being mapped and call the appropriate
2911 	 * specific mapper. the address has already been validated, but
2912 	 * not unmapped, but the maps are removed from the list.
2913 	 */
2914 	vma = vm_area_alloc(mm);
2915 	if (!vma) {
2916 		error = -ENOMEM;
2917 		goto unacct_error;
2918 	}
2919 
2920 	vma_iter_config(&vmi, addr, end);
2921 	vma_set_range(vma, addr, end, pgoff);
2922 	vm_flags_init(vma, vm_flags);
2923 	vma->vm_page_prot = vm_get_page_prot(vm_flags);
2924 
2925 	if (file) {
2926 		vma->vm_file = get_file(file);
2927 		error = call_mmap(file, vma);
2928 		if (error)
2929 			goto unmap_and_free_vma;
2930 
2931 		if (vma_is_shared_maywrite(vma)) {
2932 			error = mapping_map_writable(file->f_mapping);
2933 			if (error)
2934 				goto close_and_free_vma;
2935 
2936 			writable_file_mapping = true;
2937 		}
2938 
2939 		/*
2940 		 * Expansion is handled above, merging is handled below.
2941 		 * Drivers should not alter the address of the VMA.
2942 		 */
2943 		error = -EINVAL;
2944 		if (WARN_ON((addr != vma->vm_start)))
2945 			goto close_and_free_vma;
2946 
2947 		vma_iter_config(&vmi, addr, end);
2948 		/*
2949 		 * If vm_flags changed after call_mmap(), we should try merge
2950 		 * vma again as we may succeed this time.
2951 		 */
2952 		if (unlikely(vm_flags != vma->vm_flags && prev)) {
2953 			merge = vma_merge_new_vma(&vmi, prev, vma,
2954 						  vma->vm_start, vma->vm_end,
2955 						  vma->vm_pgoff);
2956 			if (merge) {
2957 				/*
2958 				 * ->mmap() can change vma->vm_file and fput
2959 				 * the original file. So fput the vma->vm_file
2960 				 * here or we would add an extra fput for file
2961 				 * and cause general protection fault
2962 				 * ultimately.
2963 				 */
2964 				fput(vma->vm_file);
2965 				vm_area_free(vma);
2966 				vma = merge;
2967 				/* Update vm_flags to pick up the change. */
2968 				vm_flags = vma->vm_flags;
2969 				goto unmap_writable;
2970 			}
2971 		}
2972 
2973 		vm_flags = vma->vm_flags;
2974 	} else if (vm_flags & VM_SHARED) {
2975 		error = shmem_zero_setup(vma);
2976 		if (error)
2977 			goto free_vma;
2978 	} else {
2979 		vma_set_anonymous(vma);
2980 	}
2981 
2982 	if (map_deny_write_exec(vma, vma->vm_flags)) {
2983 		error = -EACCES;
2984 		goto close_and_free_vma;
2985 	}
2986 
2987 	/* Allow architectures to sanity-check the vm_flags */
2988 	error = -EINVAL;
2989 	if (!arch_validate_flags(vma->vm_flags))
2990 		goto close_and_free_vma;
2991 
2992 	error = -ENOMEM;
2993 	if (vma_iter_prealloc(&vmi, vma))
2994 		goto close_and_free_vma;
2995 
2996 	/* Lock the VMA since it is modified after insertion into VMA tree */
2997 	vma_start_write(vma);
2998 	vma_iter_store(&vmi, vma);
2999 	mm->map_count++;
3000 	vma_link_file(vma);
3001 
3002 	/*
3003 	 * vma_merge() calls khugepaged_enter_vma() either, the below
3004 	 * call covers the non-merge case.
3005 	 */
3006 	khugepaged_enter_vma(vma, vma->vm_flags);
3007 
3008 	/* Once vma denies write, undo our temporary denial count */
3009 unmap_writable:
3010 	if (writable_file_mapping)
3011 		mapping_unmap_writable(file->f_mapping);
3012 	file = vma->vm_file;
3013 	ksm_add_vma(vma);
3014 expanded:
3015 	perf_event_mmap(vma);
3016 
3017 	vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
3018 	if (vm_flags & VM_LOCKED) {
3019 		if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
3020 					is_vm_hugetlb_page(vma) ||
3021 					vma == get_gate_vma(current->mm))
3022 			vm_flags_clear(vma, VM_LOCKED_MASK);
3023 		else
3024 			mm->locked_vm += (len >> PAGE_SHIFT);
3025 	}
3026 
3027 	if (file)
3028 		uprobe_mmap(vma);
3029 
3030 	/*
3031 	 * New (or expanded) vma always get soft dirty status.
3032 	 * Otherwise user-space soft-dirty page tracker won't
3033 	 * be able to distinguish situation when vma area unmapped,
3034 	 * then new mapped in-place (which must be aimed as
3035 	 * a completely new data area).
3036 	 */
3037 	vm_flags_set(vma, VM_SOFTDIRTY);
3038 
3039 	vma_set_page_prot(vma);
3040 
3041 	validate_mm(mm);
3042 	return addr;
3043 
3044 close_and_free_vma:
3045 	if (file && vma->vm_ops && vma->vm_ops->close)
3046 		vma->vm_ops->close(vma);
3047 
3048 	if (file || vma->vm_file) {
3049 unmap_and_free_vma:
3050 		fput(vma->vm_file);
3051 		vma->vm_file = NULL;
3052 
3053 		vma_iter_set(&vmi, vma->vm_end);
3054 		/* Undo any partial mapping done by a device driver. */
3055 		unmap_region(mm, &vmi.mas, vma, prev, next, vma->vm_start,
3056 			     vma->vm_end, vma->vm_end, true);
3057 	}
3058 	if (writable_file_mapping)
3059 		mapping_unmap_writable(file->f_mapping);
3060 free_vma:
3061 	vm_area_free(vma);
3062 unacct_error:
3063 	if (charged)
3064 		vm_unacct_memory(charged);
3065 	validate_mm(mm);
3066 	return error;
3067 }
3068 
3069 static int __vm_munmap(unsigned long start, size_t len, bool unlock)
3070 {
3071 	int ret;
3072 	struct mm_struct *mm = current->mm;
3073 	LIST_HEAD(uf);
3074 	VMA_ITERATOR(vmi, mm, start);
3075 
3076 	if (mmap_write_lock_killable(mm))
3077 		return -EINTR;
3078 
3079 	ret = do_vmi_munmap(&vmi, mm, start, len, &uf, unlock);
3080 	if (ret || !unlock)
3081 		mmap_write_unlock(mm);
3082 
3083 	userfaultfd_unmap_complete(mm, &uf);
3084 	return ret;
3085 }
3086 
3087 int vm_munmap(unsigned long start, size_t len)
3088 {
3089 	return __vm_munmap(start, len, false);
3090 }
3091 EXPORT_SYMBOL(vm_munmap);
3092 
3093 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
3094 {
3095 	addr = untagged_addr(addr);
3096 	return __vm_munmap(addr, len, true);
3097 }
3098 
3099 
3100 /*
3101  * Emulation of deprecated remap_file_pages() syscall.
3102  */
3103 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
3104 		unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
3105 {
3106 
3107 	struct mm_struct *mm = current->mm;
3108 	struct vm_area_struct *vma;
3109 	unsigned long populate = 0;
3110 	unsigned long ret = -EINVAL;
3111 	struct file *file;
3112 
3113 	pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/mm/remap_file_pages.rst.\n",
3114 		     current->comm, current->pid);
3115 
3116 	if (prot)
3117 		return ret;
3118 	start = start & PAGE_MASK;
3119 	size = size & PAGE_MASK;
3120 
3121 	if (start + size <= start)
3122 		return ret;
3123 
3124 	/* Does pgoff wrap? */
3125 	if (pgoff + (size >> PAGE_SHIFT) < pgoff)
3126 		return ret;
3127 
3128 	if (mmap_write_lock_killable(mm))
3129 		return -EINTR;
3130 
3131 	vma = vma_lookup(mm, start);
3132 
3133 	if (!vma || !(vma->vm_flags & VM_SHARED))
3134 		goto out;
3135 
3136 	if (start + size > vma->vm_end) {
3137 		VMA_ITERATOR(vmi, mm, vma->vm_end);
3138 		struct vm_area_struct *next, *prev = vma;
3139 
3140 		for_each_vma_range(vmi, next, start + size) {
3141 			/* hole between vmas ? */
3142 			if (next->vm_start != prev->vm_end)
3143 				goto out;
3144 
3145 			if (next->vm_file != vma->vm_file)
3146 				goto out;
3147 
3148 			if (next->vm_flags != vma->vm_flags)
3149 				goto out;
3150 
3151 			if (start + size <= next->vm_end)
3152 				break;
3153 
3154 			prev = next;
3155 		}
3156 
3157 		if (!next)
3158 			goto out;
3159 	}
3160 
3161 	prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
3162 	prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
3163 	prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
3164 
3165 	flags &= MAP_NONBLOCK;
3166 	flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
3167 	if (vma->vm_flags & VM_LOCKED)
3168 		flags |= MAP_LOCKED;
3169 
3170 	file = get_file(vma->vm_file);
3171 	ret = do_mmap(vma->vm_file, start, size,
3172 			prot, flags, 0, pgoff, &populate, NULL);
3173 	fput(file);
3174 out:
3175 	mmap_write_unlock(mm);
3176 	if (populate)
3177 		mm_populate(ret, populate);
3178 	if (!IS_ERR_VALUE(ret))
3179 		ret = 0;
3180 	return ret;
3181 }
3182 
3183 /*
3184  * do_vma_munmap() - Unmap a full or partial vma.
3185  * @vmi: The vma iterator pointing at the vma
3186  * @vma: The first vma to be munmapped
3187  * @start: the start of the address to unmap
3188  * @end: The end of the address to unmap
3189  * @uf: The userfaultfd list_head
3190  * @unlock: Drop the lock on success
3191  *
3192  * unmaps a VMA mapping when the vma iterator is already in position.
3193  * Does not handle alignment.
3194  *
3195  * Return: 0 on success drops the lock of so directed, error on failure and will
3196  * still hold the lock.
3197  */
3198 int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3199 		unsigned long start, unsigned long end, struct list_head *uf,
3200 		bool unlock)
3201 {
3202 	struct mm_struct *mm = vma->vm_mm;
3203 
3204 	/*
3205 	 * Check if memory is sealed before arch_unmap.
3206 	 * Prevent unmapping a sealed VMA.
3207 	 * can_modify_mm assumes we have acquired the lock on MM.
3208 	 */
3209 	if (unlikely(!can_modify_mm(mm, start, end)))
3210 		return -EPERM;
3211 
3212 	arch_unmap(mm, start, end);
3213 	return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock);
3214 }
3215 
3216 /*
3217  * do_brk_flags() - Increase the brk vma if the flags match.
3218  * @vmi: The vma iterator
3219  * @addr: The start address
3220  * @len: The length of the increase
3221  * @vma: The vma,
3222  * @flags: The VMA Flags
3223  *
3224  * Extend the brk VMA from addr to addr + len.  If the VMA is NULL or the flags
3225  * do not match then create a new anonymous VMA.  Eventually we may be able to
3226  * do some brk-specific accounting here.
3227  */
3228 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma,
3229 		unsigned long addr, unsigned long len, unsigned long flags)
3230 {
3231 	struct mm_struct *mm = current->mm;
3232 	struct vma_prepare vp;
3233 
3234 	/*
3235 	 * Check against address space limits by the changed size
3236 	 * Note: This happens *after* clearing old mappings in some code paths.
3237 	 */
3238 	flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
3239 	if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3240 		return -ENOMEM;
3241 
3242 	if (mm->map_count > sysctl_max_map_count)
3243 		return -ENOMEM;
3244 
3245 	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3246 		return -ENOMEM;
3247 
3248 	/*
3249 	 * Expand the existing vma if possible; Note that singular lists do not
3250 	 * occur after forking, so the expand will only happen on new VMAs.
3251 	 */
3252 	if (vma && vma->vm_end == addr && !vma_policy(vma) &&
3253 	    can_vma_merge_after(vma, flags, NULL, NULL,
3254 				addr >> PAGE_SHIFT, NULL_VM_UFFD_CTX, NULL)) {
3255 		vma_iter_config(vmi, vma->vm_start, addr + len);
3256 		if (vma_iter_prealloc(vmi, vma))
3257 			goto unacct_fail;
3258 
3259 		vma_start_write(vma);
3260 
3261 		init_vma_prep(&vp, vma);
3262 		vma_prepare(&vp);
3263 		vma_adjust_trans_huge(vma, vma->vm_start, addr + len, 0);
3264 		vma->vm_end = addr + len;
3265 		vm_flags_set(vma, VM_SOFTDIRTY);
3266 		vma_iter_store(vmi, vma);
3267 
3268 		vma_complete(&vp, vmi, mm);
3269 		khugepaged_enter_vma(vma, flags);
3270 		goto out;
3271 	}
3272 
3273 	if (vma)
3274 		vma_iter_next_range(vmi);
3275 	/* create a vma struct for an anonymous mapping */
3276 	vma = vm_area_alloc(mm);
3277 	if (!vma)
3278 		goto unacct_fail;
3279 
3280 	vma_set_anonymous(vma);
3281 	vma_set_range(vma, addr, addr + len, addr >> PAGE_SHIFT);
3282 	vm_flags_init(vma, flags);
3283 	vma->vm_page_prot = vm_get_page_prot(flags);
3284 	vma_start_write(vma);
3285 	if (vma_iter_store_gfp(vmi, vma, GFP_KERNEL))
3286 		goto mas_store_fail;
3287 
3288 	mm->map_count++;
3289 	validate_mm(mm);
3290 	ksm_add_vma(vma);
3291 out:
3292 	perf_event_mmap(vma);
3293 	mm->total_vm += len >> PAGE_SHIFT;
3294 	mm->data_vm += len >> PAGE_SHIFT;
3295 	if (flags & VM_LOCKED)
3296 		mm->locked_vm += (len >> PAGE_SHIFT);
3297 	vm_flags_set(vma, VM_SOFTDIRTY);
3298 	return 0;
3299 
3300 mas_store_fail:
3301 	vm_area_free(vma);
3302 unacct_fail:
3303 	vm_unacct_memory(len >> PAGE_SHIFT);
3304 	return -ENOMEM;
3305 }
3306 
3307 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3308 {
3309 	struct mm_struct *mm = current->mm;
3310 	struct vm_area_struct *vma = NULL;
3311 	unsigned long len;
3312 	int ret;
3313 	bool populate;
3314 	LIST_HEAD(uf);
3315 	VMA_ITERATOR(vmi, mm, addr);
3316 
3317 	len = PAGE_ALIGN(request);
3318 	if (len < request)
3319 		return -ENOMEM;
3320 	if (!len)
3321 		return 0;
3322 
3323 	/* Until we need other flags, refuse anything except VM_EXEC. */
3324 	if ((flags & (~VM_EXEC)) != 0)
3325 		return -EINVAL;
3326 
3327 	if (mmap_write_lock_killable(mm))
3328 		return -EINTR;
3329 
3330 	ret = check_brk_limits(addr, len);
3331 	if (ret)
3332 		goto limits_failed;
3333 
3334 	ret = do_vmi_munmap(&vmi, mm, addr, len, &uf, 0);
3335 	if (ret)
3336 		goto munmap_failed;
3337 
3338 	vma = vma_prev(&vmi);
3339 	ret = do_brk_flags(&vmi, vma, addr, len, flags);
3340 	populate = ((mm->def_flags & VM_LOCKED) != 0);
3341 	mmap_write_unlock(mm);
3342 	userfaultfd_unmap_complete(mm, &uf);
3343 	if (populate && !ret)
3344 		mm_populate(addr, len);
3345 	return ret;
3346 
3347 munmap_failed:
3348 limits_failed:
3349 	mmap_write_unlock(mm);
3350 	return ret;
3351 }
3352 EXPORT_SYMBOL(vm_brk_flags);
3353 
3354 /* Release all mmaps. */
3355 void exit_mmap(struct mm_struct *mm)
3356 {
3357 	struct mmu_gather tlb;
3358 	struct vm_area_struct *vma;
3359 	unsigned long nr_accounted = 0;
3360 	VMA_ITERATOR(vmi, mm, 0);
3361 	int count = 0;
3362 
3363 	/* mm's last user has gone, and its about to be pulled down */
3364 	mmu_notifier_release(mm);
3365 
3366 	mmap_read_lock(mm);
3367 	arch_exit_mmap(mm);
3368 
3369 	vma = vma_next(&vmi);
3370 	if (!vma || unlikely(xa_is_zero(vma))) {
3371 		/* Can happen if dup_mmap() received an OOM */
3372 		mmap_read_unlock(mm);
3373 		mmap_write_lock(mm);
3374 		goto destroy;
3375 	}
3376 
3377 	lru_add_drain();
3378 	flush_cache_mm(mm);
3379 	tlb_gather_mmu_fullmm(&tlb, mm);
3380 	/* update_hiwater_rss(mm) here? but nobody should be looking */
3381 	/* Use ULONG_MAX here to ensure all VMAs in the mm are unmapped */
3382 	unmap_vmas(&tlb, &vmi.mas, vma, 0, ULONG_MAX, ULONG_MAX, false);
3383 	mmap_read_unlock(mm);
3384 
3385 	/*
3386 	 * Set MMF_OOM_SKIP to hide this task from the oom killer/reaper
3387 	 * because the memory has been already freed.
3388 	 */
3389 	set_bit(MMF_OOM_SKIP, &mm->flags);
3390 	mmap_write_lock(mm);
3391 	mt_clear_in_rcu(&mm->mm_mt);
3392 	vma_iter_set(&vmi, vma->vm_end);
3393 	free_pgtables(&tlb, &vmi.mas, vma, FIRST_USER_ADDRESS,
3394 		      USER_PGTABLES_CEILING, true);
3395 	tlb_finish_mmu(&tlb);
3396 
3397 	/*
3398 	 * Walk the list again, actually closing and freeing it, with preemption
3399 	 * enabled, without holding any MM locks besides the unreachable
3400 	 * mmap_write_lock.
3401 	 */
3402 	vma_iter_set(&vmi, vma->vm_end);
3403 	do {
3404 		if (vma->vm_flags & VM_ACCOUNT)
3405 			nr_accounted += vma_pages(vma);
3406 		remove_vma(vma, true);
3407 		count++;
3408 		cond_resched();
3409 		vma = vma_next(&vmi);
3410 	} while (vma && likely(!xa_is_zero(vma)));
3411 
3412 	BUG_ON(count != mm->map_count);
3413 
3414 	trace_exit_mmap(mm);
3415 destroy:
3416 	__mt_destroy(&mm->mm_mt);
3417 	mmap_write_unlock(mm);
3418 	vm_unacct_memory(nr_accounted);
3419 }
3420 
3421 /* Insert vm structure into process list sorted by address
3422  * and into the inode's i_mmap tree.  If vm_file is non-NULL
3423  * then i_mmap_rwsem is taken here.
3424  */
3425 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3426 {
3427 	unsigned long charged = vma_pages(vma);
3428 
3429 
3430 	if (find_vma_intersection(mm, vma->vm_start, vma->vm_end))
3431 		return -ENOMEM;
3432 
3433 	if ((vma->vm_flags & VM_ACCOUNT) &&
3434 	     security_vm_enough_memory_mm(mm, charged))
3435 		return -ENOMEM;
3436 
3437 	/*
3438 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
3439 	 * until its first write fault, when page's anon_vma and index
3440 	 * are set.  But now set the vm_pgoff it will almost certainly
3441 	 * end up with (unless mremap moves it elsewhere before that
3442 	 * first wfault), so /proc/pid/maps tells a consistent story.
3443 	 *
3444 	 * By setting it to reflect the virtual start address of the
3445 	 * vma, merges and splits can happen in a seamless way, just
3446 	 * using the existing file pgoff checks and manipulations.
3447 	 * Similarly in do_mmap and in do_brk_flags.
3448 	 */
3449 	if (vma_is_anonymous(vma)) {
3450 		BUG_ON(vma->anon_vma);
3451 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3452 	}
3453 
3454 	if (vma_link(mm, vma)) {
3455 		if (vma->vm_flags & VM_ACCOUNT)
3456 			vm_unacct_memory(charged);
3457 		return -ENOMEM;
3458 	}
3459 
3460 	return 0;
3461 }
3462 
3463 /*
3464  * Copy the vma structure to a new location in the same mm,
3465  * prior to moving page table entries, to effect an mremap move.
3466  */
3467 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3468 	unsigned long addr, unsigned long len, pgoff_t pgoff,
3469 	bool *need_rmap_locks)
3470 {
3471 	struct vm_area_struct *vma = *vmap;
3472 	unsigned long vma_start = vma->vm_start;
3473 	struct mm_struct *mm = vma->vm_mm;
3474 	struct vm_area_struct *new_vma, *prev;
3475 	bool faulted_in_anon_vma = true;
3476 	VMA_ITERATOR(vmi, mm, addr);
3477 
3478 	/*
3479 	 * If anonymous vma has not yet been faulted, update new pgoff
3480 	 * to match new location, to increase its chance of merging.
3481 	 */
3482 	if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3483 		pgoff = addr >> PAGE_SHIFT;
3484 		faulted_in_anon_vma = false;
3485 	}
3486 
3487 	new_vma = find_vma_prev(mm, addr, &prev);
3488 	if (new_vma && new_vma->vm_start < addr + len)
3489 		return NULL;	/* should never get here */
3490 
3491 	new_vma = vma_merge_new_vma(&vmi, prev, vma, addr, addr + len, pgoff);
3492 	if (new_vma) {
3493 		/*
3494 		 * Source vma may have been merged into new_vma
3495 		 */
3496 		if (unlikely(vma_start >= new_vma->vm_start &&
3497 			     vma_start < new_vma->vm_end)) {
3498 			/*
3499 			 * The only way we can get a vma_merge with
3500 			 * self during an mremap is if the vma hasn't
3501 			 * been faulted in yet and we were allowed to
3502 			 * reset the dst vma->vm_pgoff to the
3503 			 * destination address of the mremap to allow
3504 			 * the merge to happen. mremap must change the
3505 			 * vm_pgoff linearity between src and dst vmas
3506 			 * (in turn preventing a vma_merge) to be
3507 			 * safe. It is only safe to keep the vm_pgoff
3508 			 * linear if there are no pages mapped yet.
3509 			 */
3510 			VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3511 			*vmap = vma = new_vma;
3512 		}
3513 		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3514 	} else {
3515 		new_vma = vm_area_dup(vma);
3516 		if (!new_vma)
3517 			goto out;
3518 		vma_set_range(new_vma, addr, addr + len, pgoff);
3519 		if (vma_dup_policy(vma, new_vma))
3520 			goto out_free_vma;
3521 		if (anon_vma_clone(new_vma, vma))
3522 			goto out_free_mempol;
3523 		if (new_vma->vm_file)
3524 			get_file(new_vma->vm_file);
3525 		if (new_vma->vm_ops && new_vma->vm_ops->open)
3526 			new_vma->vm_ops->open(new_vma);
3527 		if (vma_link(mm, new_vma))
3528 			goto out_vma_link;
3529 		*need_rmap_locks = false;
3530 	}
3531 	return new_vma;
3532 
3533 out_vma_link:
3534 	if (new_vma->vm_ops && new_vma->vm_ops->close)
3535 		new_vma->vm_ops->close(new_vma);
3536 
3537 	if (new_vma->vm_file)
3538 		fput(new_vma->vm_file);
3539 
3540 	unlink_anon_vmas(new_vma);
3541 out_free_mempol:
3542 	mpol_put(vma_policy(new_vma));
3543 out_free_vma:
3544 	vm_area_free(new_vma);
3545 out:
3546 	return NULL;
3547 }
3548 
3549 /*
3550  * Return true if the calling process may expand its vm space by the passed
3551  * number of pages
3552  */
3553 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3554 {
3555 	if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3556 		return false;
3557 
3558 	if (is_data_mapping(flags) &&
3559 	    mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3560 		/* Workaround for Valgrind */
3561 		if (rlimit(RLIMIT_DATA) == 0 &&
3562 		    mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3563 			return true;
3564 
3565 		pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3566 			     current->comm, current->pid,
3567 			     (mm->data_vm + npages) << PAGE_SHIFT,
3568 			     rlimit(RLIMIT_DATA),
3569 			     ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3570 
3571 		if (!ignore_rlimit_data)
3572 			return false;
3573 	}
3574 
3575 	return true;
3576 }
3577 
3578 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3579 {
3580 	WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages);
3581 
3582 	if (is_exec_mapping(flags))
3583 		mm->exec_vm += npages;
3584 	else if (is_stack_mapping(flags))
3585 		mm->stack_vm += npages;
3586 	else if (is_data_mapping(flags))
3587 		mm->data_vm += npages;
3588 }
3589 
3590 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3591 
3592 /*
3593  * Having a close hook prevents vma merging regardless of flags.
3594  */
3595 static void special_mapping_close(struct vm_area_struct *vma)
3596 {
3597 }
3598 
3599 static const char *special_mapping_name(struct vm_area_struct *vma)
3600 {
3601 	return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3602 }
3603 
3604 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3605 {
3606 	struct vm_special_mapping *sm = new_vma->vm_private_data;
3607 
3608 	if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3609 		return -EFAULT;
3610 
3611 	if (sm->mremap)
3612 		return sm->mremap(sm, new_vma);
3613 
3614 	return 0;
3615 }
3616 
3617 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
3618 {
3619 	/*
3620 	 * Forbid splitting special mappings - kernel has expectations over
3621 	 * the number of pages in mapping. Together with VM_DONTEXPAND
3622 	 * the size of vma should stay the same over the special mapping's
3623 	 * lifetime.
3624 	 */
3625 	return -EINVAL;
3626 }
3627 
3628 static const struct vm_operations_struct special_mapping_vmops = {
3629 	.close = special_mapping_close,
3630 	.fault = special_mapping_fault,
3631 	.mremap = special_mapping_mremap,
3632 	.name = special_mapping_name,
3633 	/* vDSO code relies that VVAR can't be accessed remotely */
3634 	.access = NULL,
3635 	.may_split = special_mapping_split,
3636 };
3637 
3638 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3639 	.close = special_mapping_close,
3640 	.fault = special_mapping_fault,
3641 };
3642 
3643 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3644 {
3645 	struct vm_area_struct *vma = vmf->vma;
3646 	pgoff_t pgoff;
3647 	struct page **pages;
3648 
3649 	if (vma->vm_ops == &legacy_special_mapping_vmops) {
3650 		pages = vma->vm_private_data;
3651 	} else {
3652 		struct vm_special_mapping *sm = vma->vm_private_data;
3653 
3654 		if (sm->fault)
3655 			return sm->fault(sm, vmf->vma, vmf);
3656 
3657 		pages = sm->pages;
3658 	}
3659 
3660 	for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3661 		pgoff--;
3662 
3663 	if (*pages) {
3664 		struct page *page = *pages;
3665 		get_page(page);
3666 		vmf->page = page;
3667 		return 0;
3668 	}
3669 
3670 	return VM_FAULT_SIGBUS;
3671 }
3672 
3673 static struct vm_area_struct *__install_special_mapping(
3674 	struct mm_struct *mm,
3675 	unsigned long addr, unsigned long len,
3676 	unsigned long vm_flags, void *priv,
3677 	const struct vm_operations_struct *ops)
3678 {
3679 	int ret;
3680 	struct vm_area_struct *vma;
3681 
3682 	vma = vm_area_alloc(mm);
3683 	if (unlikely(vma == NULL))
3684 		return ERR_PTR(-ENOMEM);
3685 
3686 	vma_set_range(vma, addr, addr + len, 0);
3687 	vm_flags_init(vma, (vm_flags | mm->def_flags |
3688 		      VM_DONTEXPAND | VM_SOFTDIRTY) & ~VM_LOCKED_MASK);
3689 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3690 
3691 	vma->vm_ops = ops;
3692 	vma->vm_private_data = priv;
3693 
3694 	ret = insert_vm_struct(mm, vma);
3695 	if (ret)
3696 		goto out;
3697 
3698 	vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3699 
3700 	perf_event_mmap(vma);
3701 
3702 	return vma;
3703 
3704 out:
3705 	vm_area_free(vma);
3706 	return ERR_PTR(ret);
3707 }
3708 
3709 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3710 	const struct vm_special_mapping *sm)
3711 {
3712 	return vma->vm_private_data == sm &&
3713 		(vma->vm_ops == &special_mapping_vmops ||
3714 		 vma->vm_ops == &legacy_special_mapping_vmops);
3715 }
3716 
3717 /*
3718  * Called with mm->mmap_lock held for writing.
3719  * Insert a new vma covering the given region, with the given flags.
3720  * Its pages are supplied by the given array of struct page *.
3721  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3722  * The region past the last page supplied will always produce SIGBUS.
3723  * The array pointer and the pages it points to are assumed to stay alive
3724  * for as long as this mapping might exist.
3725  */
3726 struct vm_area_struct *_install_special_mapping(
3727 	struct mm_struct *mm,
3728 	unsigned long addr, unsigned long len,
3729 	unsigned long vm_flags, const struct vm_special_mapping *spec)
3730 {
3731 	return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3732 					&special_mapping_vmops);
3733 }
3734 
3735 int install_special_mapping(struct mm_struct *mm,
3736 			    unsigned long addr, unsigned long len,
3737 			    unsigned long vm_flags, struct page **pages)
3738 {
3739 	struct vm_area_struct *vma = __install_special_mapping(
3740 		mm, addr, len, vm_flags, (void *)pages,
3741 		&legacy_special_mapping_vmops);
3742 
3743 	return PTR_ERR_OR_ZERO(vma);
3744 }
3745 
3746 static DEFINE_MUTEX(mm_all_locks_mutex);
3747 
3748 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3749 {
3750 	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3751 		/*
3752 		 * The LSB of head.next can't change from under us
3753 		 * because we hold the mm_all_locks_mutex.
3754 		 */
3755 		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3756 		/*
3757 		 * We can safely modify head.next after taking the
3758 		 * anon_vma->root->rwsem. If some other vma in this mm shares
3759 		 * the same anon_vma we won't take it again.
3760 		 *
3761 		 * No need of atomic instructions here, head.next
3762 		 * can't change from under us thanks to the
3763 		 * anon_vma->root->rwsem.
3764 		 */
3765 		if (__test_and_set_bit(0, (unsigned long *)
3766 				       &anon_vma->root->rb_root.rb_root.rb_node))
3767 			BUG();
3768 	}
3769 }
3770 
3771 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3772 {
3773 	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3774 		/*
3775 		 * AS_MM_ALL_LOCKS can't change from under us because
3776 		 * we hold the mm_all_locks_mutex.
3777 		 *
3778 		 * Operations on ->flags have to be atomic because
3779 		 * even if AS_MM_ALL_LOCKS is stable thanks to the
3780 		 * mm_all_locks_mutex, there may be other cpus
3781 		 * changing other bitflags in parallel to us.
3782 		 */
3783 		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3784 			BUG();
3785 		down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3786 	}
3787 }
3788 
3789 /*
3790  * This operation locks against the VM for all pte/vma/mm related
3791  * operations that could ever happen on a certain mm. This includes
3792  * vmtruncate, try_to_unmap, and all page faults.
3793  *
3794  * The caller must take the mmap_lock in write mode before calling
3795  * mm_take_all_locks(). The caller isn't allowed to release the
3796  * mmap_lock until mm_drop_all_locks() returns.
3797  *
3798  * mmap_lock in write mode is required in order to block all operations
3799  * that could modify pagetables and free pages without need of
3800  * altering the vma layout. It's also needed in write mode to avoid new
3801  * anon_vmas to be associated with existing vmas.
3802  *
3803  * A single task can't take more than one mm_take_all_locks() in a row
3804  * or it would deadlock.
3805  *
3806  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3807  * mapping->flags avoid to take the same lock twice, if more than one
3808  * vma in this mm is backed by the same anon_vma or address_space.
3809  *
3810  * We take locks in following order, accordingly to comment at beginning
3811  * of mm/rmap.c:
3812  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3813  *     hugetlb mapping);
3814  *   - all vmas marked locked
3815  *   - all i_mmap_rwsem locks;
3816  *   - all anon_vma->rwseml
3817  *
3818  * We can take all locks within these types randomly because the VM code
3819  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3820  * mm_all_locks_mutex.
3821  *
3822  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3823  * that may have to take thousand of locks.
3824  *
3825  * mm_take_all_locks() can fail if it's interrupted by signals.
3826  */
3827 int mm_take_all_locks(struct mm_struct *mm)
3828 {
3829 	struct vm_area_struct *vma;
3830 	struct anon_vma_chain *avc;
3831 	VMA_ITERATOR(vmi, mm, 0);
3832 
3833 	mmap_assert_write_locked(mm);
3834 
3835 	mutex_lock(&mm_all_locks_mutex);
3836 
3837 	/*
3838 	 * vma_start_write() does not have a complement in mm_drop_all_locks()
3839 	 * because vma_start_write() is always asymmetrical; it marks a VMA as
3840 	 * being written to until mmap_write_unlock() or mmap_write_downgrade()
3841 	 * is reached.
3842 	 */
3843 	for_each_vma(vmi, vma) {
3844 		if (signal_pending(current))
3845 			goto out_unlock;
3846 		vma_start_write(vma);
3847 	}
3848 
3849 	vma_iter_init(&vmi, mm, 0);
3850 	for_each_vma(vmi, vma) {
3851 		if (signal_pending(current))
3852 			goto out_unlock;
3853 		if (vma->vm_file && vma->vm_file->f_mapping &&
3854 				is_vm_hugetlb_page(vma))
3855 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3856 	}
3857 
3858 	vma_iter_init(&vmi, mm, 0);
3859 	for_each_vma(vmi, vma) {
3860 		if (signal_pending(current))
3861 			goto out_unlock;
3862 		if (vma->vm_file && vma->vm_file->f_mapping &&
3863 				!is_vm_hugetlb_page(vma))
3864 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3865 	}
3866 
3867 	vma_iter_init(&vmi, mm, 0);
3868 	for_each_vma(vmi, vma) {
3869 		if (signal_pending(current))
3870 			goto out_unlock;
3871 		if (vma->anon_vma)
3872 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3873 				vm_lock_anon_vma(mm, avc->anon_vma);
3874 	}
3875 
3876 	return 0;
3877 
3878 out_unlock:
3879 	mm_drop_all_locks(mm);
3880 	return -EINTR;
3881 }
3882 
3883 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3884 {
3885 	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3886 		/*
3887 		 * The LSB of head.next can't change to 0 from under
3888 		 * us because we hold the mm_all_locks_mutex.
3889 		 *
3890 		 * We must however clear the bitflag before unlocking
3891 		 * the vma so the users using the anon_vma->rb_root will
3892 		 * never see our bitflag.
3893 		 *
3894 		 * No need of atomic instructions here, head.next
3895 		 * can't change from under us until we release the
3896 		 * anon_vma->root->rwsem.
3897 		 */
3898 		if (!__test_and_clear_bit(0, (unsigned long *)
3899 					  &anon_vma->root->rb_root.rb_root.rb_node))
3900 			BUG();
3901 		anon_vma_unlock_write(anon_vma);
3902 	}
3903 }
3904 
3905 static void vm_unlock_mapping(struct address_space *mapping)
3906 {
3907 	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3908 		/*
3909 		 * AS_MM_ALL_LOCKS can't change to 0 from under us
3910 		 * because we hold the mm_all_locks_mutex.
3911 		 */
3912 		i_mmap_unlock_write(mapping);
3913 		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3914 					&mapping->flags))
3915 			BUG();
3916 	}
3917 }
3918 
3919 /*
3920  * The mmap_lock cannot be released by the caller until
3921  * mm_drop_all_locks() returns.
3922  */
3923 void mm_drop_all_locks(struct mm_struct *mm)
3924 {
3925 	struct vm_area_struct *vma;
3926 	struct anon_vma_chain *avc;
3927 	VMA_ITERATOR(vmi, mm, 0);
3928 
3929 	mmap_assert_write_locked(mm);
3930 	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3931 
3932 	for_each_vma(vmi, vma) {
3933 		if (vma->anon_vma)
3934 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3935 				vm_unlock_anon_vma(avc->anon_vma);
3936 		if (vma->vm_file && vma->vm_file->f_mapping)
3937 			vm_unlock_mapping(vma->vm_file->f_mapping);
3938 	}
3939 
3940 	mutex_unlock(&mm_all_locks_mutex);
3941 }
3942 
3943 /*
3944  * initialise the percpu counter for VM
3945  */
3946 void __init mmap_init(void)
3947 {
3948 	int ret;
3949 
3950 	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3951 	VM_BUG_ON(ret);
3952 }
3953 
3954 /*
3955  * Initialise sysctl_user_reserve_kbytes.
3956  *
3957  * This is intended to prevent a user from starting a single memory hogging
3958  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3959  * mode.
3960  *
3961  * The default value is min(3% of free memory, 128MB)
3962  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3963  */
3964 static int init_user_reserve(void)
3965 {
3966 	unsigned long free_kbytes;
3967 
3968 	free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
3969 
3970 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, SZ_128K);
3971 	return 0;
3972 }
3973 subsys_initcall(init_user_reserve);
3974 
3975 /*
3976  * Initialise sysctl_admin_reserve_kbytes.
3977  *
3978  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3979  * to log in and kill a memory hogging process.
3980  *
3981  * Systems with more than 256MB will reserve 8MB, enough to recover
3982  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3983  * only reserve 3% of free pages by default.
3984  */
3985 static int init_admin_reserve(void)
3986 {
3987 	unsigned long free_kbytes;
3988 
3989 	free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
3990 
3991 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, SZ_8K);
3992 	return 0;
3993 }
3994 subsys_initcall(init_admin_reserve);
3995 
3996 /*
3997  * Reinititalise user and admin reserves if memory is added or removed.
3998  *
3999  * The default user reserve max is 128MB, and the default max for the
4000  * admin reserve is 8MB. These are usually, but not always, enough to
4001  * enable recovery from a memory hogging process using login/sshd, a shell,
4002  * and tools like top. It may make sense to increase or even disable the
4003  * reserve depending on the existence of swap or variations in the recovery
4004  * tools. So, the admin may have changed them.
4005  *
4006  * If memory is added and the reserves have been eliminated or increased above
4007  * the default max, then we'll trust the admin.
4008  *
4009  * If memory is removed and there isn't enough free memory, then we
4010  * need to reset the reserves.
4011  *
4012  * Otherwise keep the reserve set by the admin.
4013  */
4014 static int reserve_mem_notifier(struct notifier_block *nb,
4015 			     unsigned long action, void *data)
4016 {
4017 	unsigned long tmp, free_kbytes;
4018 
4019 	switch (action) {
4020 	case MEM_ONLINE:
4021 		/* Default max is 128MB. Leave alone if modified by operator. */
4022 		tmp = sysctl_user_reserve_kbytes;
4023 		if (tmp > 0 && tmp < SZ_128K)
4024 			init_user_reserve();
4025 
4026 		/* Default max is 8MB.  Leave alone if modified by operator. */
4027 		tmp = sysctl_admin_reserve_kbytes;
4028 		if (tmp > 0 && tmp < SZ_8K)
4029 			init_admin_reserve();
4030 
4031 		break;
4032 	case MEM_OFFLINE:
4033 		free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
4034 
4035 		if (sysctl_user_reserve_kbytes > free_kbytes) {
4036 			init_user_reserve();
4037 			pr_info("vm.user_reserve_kbytes reset to %lu\n",
4038 				sysctl_user_reserve_kbytes);
4039 		}
4040 
4041 		if (sysctl_admin_reserve_kbytes > free_kbytes) {
4042 			init_admin_reserve();
4043 			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
4044 				sysctl_admin_reserve_kbytes);
4045 		}
4046 		break;
4047 	default:
4048 		break;
4049 	}
4050 	return NOTIFY_OK;
4051 }
4052 
4053 static int __meminit init_reserve_notifier(void)
4054 {
4055 	if (hotplug_memory_notifier(reserve_mem_notifier, DEFAULT_CALLBACK_PRI))
4056 		pr_err("Failed registering memory add/remove notifier for admin reserve\n");
4057 
4058 	return 0;
4059 }
4060 subsys_initcall(init_reserve_notifier);
4061