1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/mmap.c 4 * 5 * Written by obz. 6 * 7 * Address space accounting code <alan@lxorguk.ukuu.org.uk> 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/kernel.h> 13 #include <linux/slab.h> 14 #include <linux/backing-dev.h> 15 #include <linux/mm.h> 16 #include <linux/mm_inline.h> 17 #include <linux/shm.h> 18 #include <linux/mman.h> 19 #include <linux/pagemap.h> 20 #include <linux/swap.h> 21 #include <linux/syscalls.h> 22 #include <linux/capability.h> 23 #include <linux/init.h> 24 #include <linux/file.h> 25 #include <linux/fs.h> 26 #include <linux/personality.h> 27 #include <linux/security.h> 28 #include <linux/hugetlb.h> 29 #include <linux/shmem_fs.h> 30 #include <linux/profile.h> 31 #include <linux/export.h> 32 #include <linux/mount.h> 33 #include <linux/mempolicy.h> 34 #include <linux/rmap.h> 35 #include <linux/mmu_notifier.h> 36 #include <linux/mmdebug.h> 37 #include <linux/perf_event.h> 38 #include <linux/audit.h> 39 #include <linux/khugepaged.h> 40 #include <linux/uprobes.h> 41 #include <linux/notifier.h> 42 #include <linux/memory.h> 43 #include <linux/printk.h> 44 #include <linux/userfaultfd_k.h> 45 #include <linux/moduleparam.h> 46 #include <linux/pkeys.h> 47 #include <linux/oom.h> 48 #include <linux/sched/mm.h> 49 #include <linux/ksm.h> 50 51 #include <linux/uaccess.h> 52 #include <asm/cacheflush.h> 53 #include <asm/tlb.h> 54 #include <asm/mmu_context.h> 55 56 #define CREATE_TRACE_POINTS 57 #include <trace/events/mmap.h> 58 59 #include "internal.h" 60 61 #ifndef arch_mmap_check 62 #define arch_mmap_check(addr, len, flags) (0) 63 #endif 64 65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 66 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN; 67 int mmap_rnd_bits_max __ro_after_init = CONFIG_ARCH_MMAP_RND_BITS_MAX; 68 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS; 69 #endif 70 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 71 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN; 72 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX; 73 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS; 74 #endif 75 76 static bool ignore_rlimit_data; 77 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644); 78 79 static void unmap_region(struct mm_struct *mm, struct ma_state *mas, 80 struct vm_area_struct *vma, struct vm_area_struct *prev, 81 struct vm_area_struct *next, unsigned long start, 82 unsigned long end, unsigned long tree_end, bool mm_wr_locked); 83 84 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags) 85 { 86 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags)); 87 } 88 89 /* Update vma->vm_page_prot to reflect vma->vm_flags. */ 90 void vma_set_page_prot(struct vm_area_struct *vma) 91 { 92 unsigned long vm_flags = vma->vm_flags; 93 pgprot_t vm_page_prot; 94 95 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags); 96 if (vma_wants_writenotify(vma, vm_page_prot)) { 97 vm_flags &= ~VM_SHARED; 98 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags); 99 } 100 /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */ 101 WRITE_ONCE(vma->vm_page_prot, vm_page_prot); 102 } 103 104 /* 105 * Requires inode->i_mapping->i_mmap_rwsem 106 */ 107 static void __remove_shared_vm_struct(struct vm_area_struct *vma, 108 struct address_space *mapping) 109 { 110 if (vma_is_shared_maywrite(vma)) 111 mapping_unmap_writable(mapping); 112 113 flush_dcache_mmap_lock(mapping); 114 vma_interval_tree_remove(vma, &mapping->i_mmap); 115 flush_dcache_mmap_unlock(mapping); 116 } 117 118 /* 119 * Unlink a file-based vm structure from its interval tree, to hide 120 * vma from rmap and vmtruncate before freeing its page tables. 121 */ 122 void unlink_file_vma(struct vm_area_struct *vma) 123 { 124 struct file *file = vma->vm_file; 125 126 if (file) { 127 struct address_space *mapping = file->f_mapping; 128 i_mmap_lock_write(mapping); 129 __remove_shared_vm_struct(vma, mapping); 130 i_mmap_unlock_write(mapping); 131 } 132 } 133 134 void unlink_file_vma_batch_init(struct unlink_vma_file_batch *vb) 135 { 136 vb->count = 0; 137 } 138 139 static void unlink_file_vma_batch_process(struct unlink_vma_file_batch *vb) 140 { 141 struct address_space *mapping; 142 int i; 143 144 mapping = vb->vmas[0]->vm_file->f_mapping; 145 i_mmap_lock_write(mapping); 146 for (i = 0; i < vb->count; i++) { 147 VM_WARN_ON_ONCE(vb->vmas[i]->vm_file->f_mapping != mapping); 148 __remove_shared_vm_struct(vb->vmas[i], mapping); 149 } 150 i_mmap_unlock_write(mapping); 151 152 unlink_file_vma_batch_init(vb); 153 } 154 155 void unlink_file_vma_batch_add(struct unlink_vma_file_batch *vb, 156 struct vm_area_struct *vma) 157 { 158 if (vma->vm_file == NULL) 159 return; 160 161 if ((vb->count > 0 && vb->vmas[0]->vm_file != vma->vm_file) || 162 vb->count == ARRAY_SIZE(vb->vmas)) 163 unlink_file_vma_batch_process(vb); 164 165 vb->vmas[vb->count] = vma; 166 vb->count++; 167 } 168 169 void unlink_file_vma_batch_final(struct unlink_vma_file_batch *vb) 170 { 171 if (vb->count > 0) 172 unlink_file_vma_batch_process(vb); 173 } 174 175 /* 176 * Close a vm structure and free it. 177 */ 178 static void remove_vma(struct vm_area_struct *vma, bool unreachable) 179 { 180 might_sleep(); 181 if (vma->vm_ops && vma->vm_ops->close) 182 vma->vm_ops->close(vma); 183 if (vma->vm_file) 184 fput(vma->vm_file); 185 mpol_put(vma_policy(vma)); 186 if (unreachable) 187 __vm_area_free(vma); 188 else 189 vm_area_free(vma); 190 } 191 192 static inline struct vm_area_struct *vma_prev_limit(struct vma_iterator *vmi, 193 unsigned long min) 194 { 195 return mas_prev(&vmi->mas, min); 196 } 197 198 /* 199 * check_brk_limits() - Use platform specific check of range & verify mlock 200 * limits. 201 * @addr: The address to check 202 * @len: The size of increase. 203 * 204 * Return: 0 on success. 205 */ 206 static int check_brk_limits(unsigned long addr, unsigned long len) 207 { 208 unsigned long mapped_addr; 209 210 mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED); 211 if (IS_ERR_VALUE(mapped_addr)) 212 return mapped_addr; 213 214 return mlock_future_ok(current->mm, current->mm->def_flags, len) 215 ? 0 : -EAGAIN; 216 } 217 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *brkvma, 218 unsigned long addr, unsigned long request, unsigned long flags); 219 SYSCALL_DEFINE1(brk, unsigned long, brk) 220 { 221 unsigned long newbrk, oldbrk, origbrk; 222 struct mm_struct *mm = current->mm; 223 struct vm_area_struct *brkvma, *next = NULL; 224 unsigned long min_brk; 225 bool populate = false; 226 LIST_HEAD(uf); 227 struct vma_iterator vmi; 228 229 if (mmap_write_lock_killable(mm)) 230 return -EINTR; 231 232 origbrk = mm->brk; 233 234 #ifdef CONFIG_COMPAT_BRK 235 /* 236 * CONFIG_COMPAT_BRK can still be overridden by setting 237 * randomize_va_space to 2, which will still cause mm->start_brk 238 * to be arbitrarily shifted 239 */ 240 if (current->brk_randomized) 241 min_brk = mm->start_brk; 242 else 243 min_brk = mm->end_data; 244 #else 245 min_brk = mm->start_brk; 246 #endif 247 if (brk < min_brk) 248 goto out; 249 250 /* 251 * Check against rlimit here. If this check is done later after the test 252 * of oldbrk with newbrk then it can escape the test and let the data 253 * segment grow beyond its set limit the in case where the limit is 254 * not page aligned -Ram Gupta 255 */ 256 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk, 257 mm->end_data, mm->start_data)) 258 goto out; 259 260 newbrk = PAGE_ALIGN(brk); 261 oldbrk = PAGE_ALIGN(mm->brk); 262 if (oldbrk == newbrk) { 263 mm->brk = brk; 264 goto success; 265 } 266 267 /* Always allow shrinking brk. */ 268 if (brk <= mm->brk) { 269 /* Search one past newbrk */ 270 vma_iter_init(&vmi, mm, newbrk); 271 brkvma = vma_find(&vmi, oldbrk); 272 if (!brkvma || brkvma->vm_start >= oldbrk) 273 goto out; /* mapping intersects with an existing non-brk vma. */ 274 /* 275 * mm->brk must be protected by write mmap_lock. 276 * do_vma_munmap() will drop the lock on success, so update it 277 * before calling do_vma_munmap(). 278 */ 279 mm->brk = brk; 280 if (do_vma_munmap(&vmi, brkvma, newbrk, oldbrk, &uf, true)) 281 goto out; 282 283 goto success_unlocked; 284 } 285 286 if (check_brk_limits(oldbrk, newbrk - oldbrk)) 287 goto out; 288 289 /* 290 * Only check if the next VMA is within the stack_guard_gap of the 291 * expansion area 292 */ 293 vma_iter_init(&vmi, mm, oldbrk); 294 next = vma_find(&vmi, newbrk + PAGE_SIZE + stack_guard_gap); 295 if (next && newbrk + PAGE_SIZE > vm_start_gap(next)) 296 goto out; 297 298 brkvma = vma_prev_limit(&vmi, mm->start_brk); 299 /* Ok, looks good - let it rip. */ 300 if (do_brk_flags(&vmi, brkvma, oldbrk, newbrk - oldbrk, 0) < 0) 301 goto out; 302 303 mm->brk = brk; 304 if (mm->def_flags & VM_LOCKED) 305 populate = true; 306 307 success: 308 mmap_write_unlock(mm); 309 success_unlocked: 310 userfaultfd_unmap_complete(mm, &uf); 311 if (populate) 312 mm_populate(oldbrk, newbrk - oldbrk); 313 return brk; 314 315 out: 316 mm->brk = origbrk; 317 mmap_write_unlock(mm); 318 return origbrk; 319 } 320 321 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE) 322 static void validate_mm(struct mm_struct *mm) 323 { 324 int bug = 0; 325 int i = 0; 326 struct vm_area_struct *vma; 327 VMA_ITERATOR(vmi, mm, 0); 328 329 mt_validate(&mm->mm_mt); 330 for_each_vma(vmi, vma) { 331 #ifdef CONFIG_DEBUG_VM_RB 332 struct anon_vma *anon_vma = vma->anon_vma; 333 struct anon_vma_chain *avc; 334 #endif 335 unsigned long vmi_start, vmi_end; 336 bool warn = 0; 337 338 vmi_start = vma_iter_addr(&vmi); 339 vmi_end = vma_iter_end(&vmi); 340 if (VM_WARN_ON_ONCE_MM(vma->vm_end != vmi_end, mm)) 341 warn = 1; 342 343 if (VM_WARN_ON_ONCE_MM(vma->vm_start != vmi_start, mm)) 344 warn = 1; 345 346 if (warn) { 347 pr_emerg("issue in %s\n", current->comm); 348 dump_stack(); 349 dump_vma(vma); 350 pr_emerg("tree range: %px start %lx end %lx\n", vma, 351 vmi_start, vmi_end - 1); 352 vma_iter_dump_tree(&vmi); 353 } 354 355 #ifdef CONFIG_DEBUG_VM_RB 356 if (anon_vma) { 357 anon_vma_lock_read(anon_vma); 358 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 359 anon_vma_interval_tree_verify(avc); 360 anon_vma_unlock_read(anon_vma); 361 } 362 #endif 363 i++; 364 } 365 if (i != mm->map_count) { 366 pr_emerg("map_count %d vma iterator %d\n", mm->map_count, i); 367 bug = 1; 368 } 369 VM_BUG_ON_MM(bug, mm); 370 } 371 372 #else /* !CONFIG_DEBUG_VM_MAPLE_TREE */ 373 #define validate_mm(mm) do { } while (0) 374 #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */ 375 376 /* 377 * vma has some anon_vma assigned, and is already inserted on that 378 * anon_vma's interval trees. 379 * 380 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the 381 * vma must be removed from the anon_vma's interval trees using 382 * anon_vma_interval_tree_pre_update_vma(). 383 * 384 * After the update, the vma will be reinserted using 385 * anon_vma_interval_tree_post_update_vma(). 386 * 387 * The entire update must be protected by exclusive mmap_lock and by 388 * the root anon_vma's mutex. 389 */ 390 static inline void 391 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma) 392 { 393 struct anon_vma_chain *avc; 394 395 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 396 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root); 397 } 398 399 static inline void 400 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma) 401 { 402 struct anon_vma_chain *avc; 403 404 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 405 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root); 406 } 407 408 static unsigned long count_vma_pages_range(struct mm_struct *mm, 409 unsigned long addr, unsigned long end) 410 { 411 VMA_ITERATOR(vmi, mm, addr); 412 struct vm_area_struct *vma; 413 unsigned long nr_pages = 0; 414 415 for_each_vma_range(vmi, vma, end) { 416 unsigned long vm_start = max(addr, vma->vm_start); 417 unsigned long vm_end = min(end, vma->vm_end); 418 419 nr_pages += PHYS_PFN(vm_end - vm_start); 420 } 421 422 return nr_pages; 423 } 424 425 static void __vma_link_file(struct vm_area_struct *vma, 426 struct address_space *mapping) 427 { 428 if (vma_is_shared_maywrite(vma)) 429 mapping_allow_writable(mapping); 430 431 flush_dcache_mmap_lock(mapping); 432 vma_interval_tree_insert(vma, &mapping->i_mmap); 433 flush_dcache_mmap_unlock(mapping); 434 } 435 436 static void vma_link_file(struct vm_area_struct *vma) 437 { 438 struct file *file = vma->vm_file; 439 struct address_space *mapping; 440 441 if (file) { 442 mapping = file->f_mapping; 443 i_mmap_lock_write(mapping); 444 __vma_link_file(vma, mapping); 445 i_mmap_unlock_write(mapping); 446 } 447 } 448 449 static int vma_link(struct mm_struct *mm, struct vm_area_struct *vma) 450 { 451 VMA_ITERATOR(vmi, mm, 0); 452 453 vma_iter_config(&vmi, vma->vm_start, vma->vm_end); 454 if (vma_iter_prealloc(&vmi, vma)) 455 return -ENOMEM; 456 457 vma_start_write(vma); 458 vma_iter_store(&vmi, vma); 459 vma_link_file(vma); 460 mm->map_count++; 461 validate_mm(mm); 462 return 0; 463 } 464 465 /* 466 * init_multi_vma_prep() - Initializer for struct vma_prepare 467 * @vp: The vma_prepare struct 468 * @vma: The vma that will be altered once locked 469 * @next: The next vma if it is to be adjusted 470 * @remove: The first vma to be removed 471 * @remove2: The second vma to be removed 472 */ 473 static inline void init_multi_vma_prep(struct vma_prepare *vp, 474 struct vm_area_struct *vma, struct vm_area_struct *next, 475 struct vm_area_struct *remove, struct vm_area_struct *remove2) 476 { 477 memset(vp, 0, sizeof(struct vma_prepare)); 478 vp->vma = vma; 479 vp->anon_vma = vma->anon_vma; 480 vp->remove = remove; 481 vp->remove2 = remove2; 482 vp->adj_next = next; 483 if (!vp->anon_vma && next) 484 vp->anon_vma = next->anon_vma; 485 486 vp->file = vma->vm_file; 487 if (vp->file) 488 vp->mapping = vma->vm_file->f_mapping; 489 490 } 491 492 /* 493 * init_vma_prep() - Initializer wrapper for vma_prepare struct 494 * @vp: The vma_prepare struct 495 * @vma: The vma that will be altered once locked 496 */ 497 static inline void init_vma_prep(struct vma_prepare *vp, 498 struct vm_area_struct *vma) 499 { 500 init_multi_vma_prep(vp, vma, NULL, NULL, NULL); 501 } 502 503 504 /* 505 * vma_prepare() - Helper function for handling locking VMAs prior to altering 506 * @vp: The initialized vma_prepare struct 507 */ 508 static inline void vma_prepare(struct vma_prepare *vp) 509 { 510 if (vp->file) { 511 uprobe_munmap(vp->vma, vp->vma->vm_start, vp->vma->vm_end); 512 513 if (vp->adj_next) 514 uprobe_munmap(vp->adj_next, vp->adj_next->vm_start, 515 vp->adj_next->vm_end); 516 517 i_mmap_lock_write(vp->mapping); 518 if (vp->insert && vp->insert->vm_file) { 519 /* 520 * Put into interval tree now, so instantiated pages 521 * are visible to arm/parisc __flush_dcache_page 522 * throughout; but we cannot insert into address 523 * space until vma start or end is updated. 524 */ 525 __vma_link_file(vp->insert, 526 vp->insert->vm_file->f_mapping); 527 } 528 } 529 530 if (vp->anon_vma) { 531 anon_vma_lock_write(vp->anon_vma); 532 anon_vma_interval_tree_pre_update_vma(vp->vma); 533 if (vp->adj_next) 534 anon_vma_interval_tree_pre_update_vma(vp->adj_next); 535 } 536 537 if (vp->file) { 538 flush_dcache_mmap_lock(vp->mapping); 539 vma_interval_tree_remove(vp->vma, &vp->mapping->i_mmap); 540 if (vp->adj_next) 541 vma_interval_tree_remove(vp->adj_next, 542 &vp->mapping->i_mmap); 543 } 544 545 } 546 547 /* 548 * vma_complete- Helper function for handling the unlocking after altering VMAs, 549 * or for inserting a VMA. 550 * 551 * @vp: The vma_prepare struct 552 * @vmi: The vma iterator 553 * @mm: The mm_struct 554 */ 555 static inline void vma_complete(struct vma_prepare *vp, 556 struct vma_iterator *vmi, struct mm_struct *mm) 557 { 558 if (vp->file) { 559 if (vp->adj_next) 560 vma_interval_tree_insert(vp->adj_next, 561 &vp->mapping->i_mmap); 562 vma_interval_tree_insert(vp->vma, &vp->mapping->i_mmap); 563 flush_dcache_mmap_unlock(vp->mapping); 564 } 565 566 if (vp->remove && vp->file) { 567 __remove_shared_vm_struct(vp->remove, vp->mapping); 568 if (vp->remove2) 569 __remove_shared_vm_struct(vp->remove2, vp->mapping); 570 } else if (vp->insert) { 571 /* 572 * split_vma has split insert from vma, and needs 573 * us to insert it before dropping the locks 574 * (it may either follow vma or precede it). 575 */ 576 vma_iter_store(vmi, vp->insert); 577 mm->map_count++; 578 } 579 580 if (vp->anon_vma) { 581 anon_vma_interval_tree_post_update_vma(vp->vma); 582 if (vp->adj_next) 583 anon_vma_interval_tree_post_update_vma(vp->adj_next); 584 anon_vma_unlock_write(vp->anon_vma); 585 } 586 587 if (vp->file) { 588 i_mmap_unlock_write(vp->mapping); 589 uprobe_mmap(vp->vma); 590 591 if (vp->adj_next) 592 uprobe_mmap(vp->adj_next); 593 } 594 595 if (vp->remove) { 596 again: 597 vma_mark_detached(vp->remove, true); 598 if (vp->file) { 599 uprobe_munmap(vp->remove, vp->remove->vm_start, 600 vp->remove->vm_end); 601 fput(vp->file); 602 } 603 if (vp->remove->anon_vma) 604 anon_vma_merge(vp->vma, vp->remove); 605 mm->map_count--; 606 mpol_put(vma_policy(vp->remove)); 607 if (!vp->remove2) 608 WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end); 609 vm_area_free(vp->remove); 610 611 /* 612 * In mprotect's case 6 (see comments on vma_merge), 613 * we are removing both mid and next vmas 614 */ 615 if (vp->remove2) { 616 vp->remove = vp->remove2; 617 vp->remove2 = NULL; 618 goto again; 619 } 620 } 621 if (vp->insert && vp->file) 622 uprobe_mmap(vp->insert); 623 validate_mm(mm); 624 } 625 626 /* 627 * dup_anon_vma() - Helper function to duplicate anon_vma 628 * @dst: The destination VMA 629 * @src: The source VMA 630 * @dup: Pointer to the destination VMA when successful. 631 * 632 * Returns: 0 on success. 633 */ 634 static inline int dup_anon_vma(struct vm_area_struct *dst, 635 struct vm_area_struct *src, struct vm_area_struct **dup) 636 { 637 /* 638 * Easily overlooked: when mprotect shifts the boundary, make sure the 639 * expanding vma has anon_vma set if the shrinking vma had, to cover any 640 * anon pages imported. 641 */ 642 if (src->anon_vma && !dst->anon_vma) { 643 int ret; 644 645 vma_assert_write_locked(dst); 646 dst->anon_vma = src->anon_vma; 647 ret = anon_vma_clone(dst, src); 648 if (ret) 649 return ret; 650 651 *dup = dst; 652 } 653 654 return 0; 655 } 656 657 /* 658 * vma_expand - Expand an existing VMA 659 * 660 * @vmi: The vma iterator 661 * @vma: The vma to expand 662 * @start: The start of the vma 663 * @end: The exclusive end of the vma 664 * @pgoff: The page offset of vma 665 * @next: The current of next vma. 666 * 667 * Expand @vma to @start and @end. Can expand off the start and end. Will 668 * expand over @next if it's different from @vma and @end == @next->vm_end. 669 * Checking if the @vma can expand and merge with @next needs to be handled by 670 * the caller. 671 * 672 * Returns: 0 on success 673 */ 674 int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma, 675 unsigned long start, unsigned long end, pgoff_t pgoff, 676 struct vm_area_struct *next) 677 { 678 struct vm_area_struct *anon_dup = NULL; 679 bool remove_next = false; 680 struct vma_prepare vp; 681 682 vma_start_write(vma); 683 if (next && (vma != next) && (end == next->vm_end)) { 684 int ret; 685 686 remove_next = true; 687 vma_start_write(next); 688 ret = dup_anon_vma(vma, next, &anon_dup); 689 if (ret) 690 return ret; 691 } 692 693 init_multi_vma_prep(&vp, vma, NULL, remove_next ? next : NULL, NULL); 694 /* Not merging but overwriting any part of next is not handled. */ 695 VM_WARN_ON(next && !vp.remove && 696 next != vma && end > next->vm_start); 697 /* Only handles expanding */ 698 VM_WARN_ON(vma->vm_start < start || vma->vm_end > end); 699 700 /* Note: vma iterator must be pointing to 'start' */ 701 vma_iter_config(vmi, start, end); 702 if (vma_iter_prealloc(vmi, vma)) 703 goto nomem; 704 705 vma_prepare(&vp); 706 vma_adjust_trans_huge(vma, start, end, 0); 707 vma_set_range(vma, start, end, pgoff); 708 vma_iter_store(vmi, vma); 709 710 vma_complete(&vp, vmi, vma->vm_mm); 711 return 0; 712 713 nomem: 714 if (anon_dup) 715 unlink_anon_vmas(anon_dup); 716 return -ENOMEM; 717 } 718 719 /* 720 * vma_shrink() - Reduce an existing VMAs memory area 721 * @vmi: The vma iterator 722 * @vma: The VMA to modify 723 * @start: The new start 724 * @end: The new end 725 * 726 * Returns: 0 on success, -ENOMEM otherwise 727 */ 728 int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma, 729 unsigned long start, unsigned long end, pgoff_t pgoff) 730 { 731 struct vma_prepare vp; 732 733 WARN_ON((vma->vm_start != start) && (vma->vm_end != end)); 734 735 if (vma->vm_start < start) 736 vma_iter_config(vmi, vma->vm_start, start); 737 else 738 vma_iter_config(vmi, end, vma->vm_end); 739 740 if (vma_iter_prealloc(vmi, NULL)) 741 return -ENOMEM; 742 743 vma_start_write(vma); 744 745 init_vma_prep(&vp, vma); 746 vma_prepare(&vp); 747 vma_adjust_trans_huge(vma, start, end, 0); 748 749 vma_iter_clear(vmi); 750 vma_set_range(vma, start, end, pgoff); 751 vma_complete(&vp, vmi, vma->vm_mm); 752 return 0; 753 } 754 755 /* 756 * If the vma has a ->close operation then the driver probably needs to release 757 * per-vma resources, so we don't attempt to merge those if the caller indicates 758 * the current vma may be removed as part of the merge. 759 */ 760 static inline bool is_mergeable_vma(struct vm_area_struct *vma, 761 struct file *file, unsigned long vm_flags, 762 struct vm_userfaultfd_ctx vm_userfaultfd_ctx, 763 struct anon_vma_name *anon_name, bool may_remove_vma) 764 { 765 /* 766 * VM_SOFTDIRTY should not prevent from VMA merging, if we 767 * match the flags but dirty bit -- the caller should mark 768 * merged VMA as dirty. If dirty bit won't be excluded from 769 * comparison, we increase pressure on the memory system forcing 770 * the kernel to generate new VMAs when old one could be 771 * extended instead. 772 */ 773 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY) 774 return false; 775 if (vma->vm_file != file) 776 return false; 777 if (may_remove_vma && vma->vm_ops && vma->vm_ops->close) 778 return false; 779 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx)) 780 return false; 781 if (!anon_vma_name_eq(anon_vma_name(vma), anon_name)) 782 return false; 783 return true; 784 } 785 786 static inline bool is_mergeable_anon_vma(struct anon_vma *anon_vma1, 787 struct anon_vma *anon_vma2, struct vm_area_struct *vma) 788 { 789 /* 790 * The list_is_singular() test is to avoid merging VMA cloned from 791 * parents. This can improve scalability caused by anon_vma lock. 792 */ 793 if ((!anon_vma1 || !anon_vma2) && (!vma || 794 list_is_singular(&vma->anon_vma_chain))) 795 return true; 796 return anon_vma1 == anon_vma2; 797 } 798 799 /* 800 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 801 * in front of (at a lower virtual address and file offset than) the vma. 802 * 803 * We cannot merge two vmas if they have differently assigned (non-NULL) 804 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 805 * 806 * We don't check here for the merged mmap wrapping around the end of pagecache 807 * indices (16TB on ia32) because do_mmap() does not permit mmap's which 808 * wrap, nor mmaps which cover the final page at index -1UL. 809 * 810 * We assume the vma may be removed as part of the merge. 811 */ 812 static bool 813 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags, 814 struct anon_vma *anon_vma, struct file *file, 815 pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx, 816 struct anon_vma_name *anon_name) 817 { 818 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, true) && 819 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 820 if (vma->vm_pgoff == vm_pgoff) 821 return true; 822 } 823 return false; 824 } 825 826 /* 827 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 828 * beyond (at a higher virtual address and file offset than) the vma. 829 * 830 * We cannot merge two vmas if they have differently assigned (non-NULL) 831 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 832 * 833 * We assume that vma is not removed as part of the merge. 834 */ 835 static bool 836 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags, 837 struct anon_vma *anon_vma, struct file *file, 838 pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx, 839 struct anon_vma_name *anon_name) 840 { 841 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, false) && 842 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 843 pgoff_t vm_pglen; 844 vm_pglen = vma_pages(vma); 845 if (vma->vm_pgoff + vm_pglen == vm_pgoff) 846 return true; 847 } 848 return false; 849 } 850 851 /* 852 * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name), 853 * figure out whether that can be merged with its predecessor or its 854 * successor. Or both (it neatly fills a hole). 855 * 856 * In most cases - when called for mmap, brk or mremap - [addr,end) is 857 * certain not to be mapped by the time vma_merge is called; but when 858 * called for mprotect, it is certain to be already mapped (either at 859 * an offset within prev, or at the start of next), and the flags of 860 * this area are about to be changed to vm_flags - and the no-change 861 * case has already been eliminated. 862 * 863 * The following mprotect cases have to be considered, where **** is 864 * the area passed down from mprotect_fixup, never extending beyond one 865 * vma, PPPP is the previous vma, CCCC is a concurrent vma that starts 866 * at the same address as **** and is of the same or larger span, and 867 * NNNN the next vma after ****: 868 * 869 * **** **** **** 870 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPCCCCCC 871 * cannot merge might become might become 872 * PPNNNNNNNNNN PPPPPPPPPPCC 873 * mmap, brk or case 4 below case 5 below 874 * mremap move: 875 * **** **** 876 * PPPP NNNN PPPPCCCCNNNN 877 * might become might become 878 * PPPPPPPPPPPP 1 or PPPPPPPPPPPP 6 or 879 * PPPPPPPPNNNN 2 or PPPPPPPPNNNN 7 or 880 * PPPPNNNNNNNN 3 PPPPNNNNNNNN 8 881 * 882 * It is important for case 8 that the vma CCCC overlapping the 883 * region **** is never going to extended over NNNN. Instead NNNN must 884 * be extended in region **** and CCCC must be removed. This way in 885 * all cases where vma_merge succeeds, the moment vma_merge drops the 886 * rmap_locks, the properties of the merged vma will be already 887 * correct for the whole merged range. Some of those properties like 888 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must 889 * be correct for the whole merged range immediately after the 890 * rmap_locks are released. Otherwise if NNNN would be removed and 891 * CCCC would be extended over the NNNN range, remove_migration_ptes 892 * or other rmap walkers (if working on addresses beyond the "end" 893 * parameter) may establish ptes with the wrong permissions of CCCC 894 * instead of the right permissions of NNNN. 895 * 896 * In the code below: 897 * PPPP is represented by *prev 898 * CCCC is represented by *curr or not represented at all (NULL) 899 * NNNN is represented by *next or not represented at all (NULL) 900 * **** is not represented - it will be merged and the vma containing the 901 * area is returned, or the function will return NULL 902 */ 903 static struct vm_area_struct 904 *vma_merge(struct vma_iterator *vmi, struct vm_area_struct *prev, 905 struct vm_area_struct *src, unsigned long addr, unsigned long end, 906 unsigned long vm_flags, pgoff_t pgoff, struct mempolicy *policy, 907 struct vm_userfaultfd_ctx vm_userfaultfd_ctx, 908 struct anon_vma_name *anon_name) 909 { 910 struct mm_struct *mm = src->vm_mm; 911 struct anon_vma *anon_vma = src->anon_vma; 912 struct file *file = src->vm_file; 913 struct vm_area_struct *curr, *next, *res; 914 struct vm_area_struct *vma, *adjust, *remove, *remove2; 915 struct vm_area_struct *anon_dup = NULL; 916 struct vma_prepare vp; 917 pgoff_t vma_pgoff; 918 int err = 0; 919 bool merge_prev = false; 920 bool merge_next = false; 921 bool vma_expanded = false; 922 unsigned long vma_start = addr; 923 unsigned long vma_end = end; 924 pgoff_t pglen = (end - addr) >> PAGE_SHIFT; 925 long adj_start = 0; 926 927 /* 928 * We later require that vma->vm_flags == vm_flags, 929 * so this tests vma->vm_flags & VM_SPECIAL, too. 930 */ 931 if (vm_flags & VM_SPECIAL) 932 return NULL; 933 934 /* Does the input range span an existing VMA? (cases 5 - 8) */ 935 curr = find_vma_intersection(mm, prev ? prev->vm_end : 0, end); 936 937 if (!curr || /* cases 1 - 4 */ 938 end == curr->vm_end) /* cases 6 - 8, adjacent VMA */ 939 next = vma_lookup(mm, end); 940 else 941 next = NULL; /* case 5 */ 942 943 if (prev) { 944 vma_start = prev->vm_start; 945 vma_pgoff = prev->vm_pgoff; 946 947 /* Can we merge the predecessor? */ 948 if (addr == prev->vm_end && mpol_equal(vma_policy(prev), policy) 949 && can_vma_merge_after(prev, vm_flags, anon_vma, file, 950 pgoff, vm_userfaultfd_ctx, anon_name)) { 951 merge_prev = true; 952 vma_prev(vmi); 953 } 954 } 955 956 /* Can we merge the successor? */ 957 if (next && mpol_equal(policy, vma_policy(next)) && 958 can_vma_merge_before(next, vm_flags, anon_vma, file, pgoff+pglen, 959 vm_userfaultfd_ctx, anon_name)) { 960 merge_next = true; 961 } 962 963 /* Verify some invariant that must be enforced by the caller. */ 964 VM_WARN_ON(prev && addr <= prev->vm_start); 965 VM_WARN_ON(curr && (addr != curr->vm_start || end > curr->vm_end)); 966 VM_WARN_ON(addr >= end); 967 968 if (!merge_prev && !merge_next) 969 return NULL; /* Not mergeable. */ 970 971 if (merge_prev) 972 vma_start_write(prev); 973 974 res = vma = prev; 975 remove = remove2 = adjust = NULL; 976 977 /* Can we merge both the predecessor and the successor? */ 978 if (merge_prev && merge_next && 979 is_mergeable_anon_vma(prev->anon_vma, next->anon_vma, NULL)) { 980 vma_start_write(next); 981 remove = next; /* case 1 */ 982 vma_end = next->vm_end; 983 err = dup_anon_vma(prev, next, &anon_dup); 984 if (curr) { /* case 6 */ 985 vma_start_write(curr); 986 remove = curr; 987 remove2 = next; 988 /* 989 * Note that the dup_anon_vma below cannot overwrite err 990 * since the first caller would do nothing unless next 991 * has an anon_vma. 992 */ 993 if (!next->anon_vma) 994 err = dup_anon_vma(prev, curr, &anon_dup); 995 } 996 } else if (merge_prev) { /* case 2 */ 997 if (curr) { 998 vma_start_write(curr); 999 if (end == curr->vm_end) { /* case 7 */ 1000 /* 1001 * can_vma_merge_after() assumed we would not be 1002 * removing prev vma, so it skipped the check 1003 * for vm_ops->close, but we are removing curr 1004 */ 1005 if (curr->vm_ops && curr->vm_ops->close) 1006 err = -EINVAL; 1007 remove = curr; 1008 } else { /* case 5 */ 1009 adjust = curr; 1010 adj_start = (end - curr->vm_start); 1011 } 1012 if (!err) 1013 err = dup_anon_vma(prev, curr, &anon_dup); 1014 } 1015 } else { /* merge_next */ 1016 vma_start_write(next); 1017 res = next; 1018 if (prev && addr < prev->vm_end) { /* case 4 */ 1019 vma_start_write(prev); 1020 vma_end = addr; 1021 adjust = next; 1022 adj_start = -(prev->vm_end - addr); 1023 err = dup_anon_vma(next, prev, &anon_dup); 1024 } else { 1025 /* 1026 * Note that cases 3 and 8 are the ONLY ones where prev 1027 * is permitted to be (but is not necessarily) NULL. 1028 */ 1029 vma = next; /* case 3 */ 1030 vma_start = addr; 1031 vma_end = next->vm_end; 1032 vma_pgoff = next->vm_pgoff - pglen; 1033 if (curr) { /* case 8 */ 1034 vma_pgoff = curr->vm_pgoff; 1035 vma_start_write(curr); 1036 remove = curr; 1037 err = dup_anon_vma(next, curr, &anon_dup); 1038 } 1039 } 1040 } 1041 1042 /* Error in anon_vma clone. */ 1043 if (err) 1044 goto anon_vma_fail; 1045 1046 if (vma_start < vma->vm_start || vma_end > vma->vm_end) 1047 vma_expanded = true; 1048 1049 if (vma_expanded) { 1050 vma_iter_config(vmi, vma_start, vma_end); 1051 } else { 1052 vma_iter_config(vmi, adjust->vm_start + adj_start, 1053 adjust->vm_end); 1054 } 1055 1056 if (vma_iter_prealloc(vmi, vma)) 1057 goto prealloc_fail; 1058 1059 init_multi_vma_prep(&vp, vma, adjust, remove, remove2); 1060 VM_WARN_ON(vp.anon_vma && adjust && adjust->anon_vma && 1061 vp.anon_vma != adjust->anon_vma); 1062 1063 vma_prepare(&vp); 1064 vma_adjust_trans_huge(vma, vma_start, vma_end, adj_start); 1065 vma_set_range(vma, vma_start, vma_end, vma_pgoff); 1066 1067 if (vma_expanded) 1068 vma_iter_store(vmi, vma); 1069 1070 if (adj_start) { 1071 adjust->vm_start += adj_start; 1072 adjust->vm_pgoff += adj_start >> PAGE_SHIFT; 1073 if (adj_start < 0) { 1074 WARN_ON(vma_expanded); 1075 vma_iter_store(vmi, next); 1076 } 1077 } 1078 1079 vma_complete(&vp, vmi, mm); 1080 khugepaged_enter_vma(res, vm_flags); 1081 return res; 1082 1083 prealloc_fail: 1084 if (anon_dup) 1085 unlink_anon_vmas(anon_dup); 1086 1087 anon_vma_fail: 1088 vma_iter_set(vmi, addr); 1089 vma_iter_load(vmi); 1090 return NULL; 1091 } 1092 1093 /* 1094 * Rough compatibility check to quickly see if it's even worth looking 1095 * at sharing an anon_vma. 1096 * 1097 * They need to have the same vm_file, and the flags can only differ 1098 * in things that mprotect may change. 1099 * 1100 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that 1101 * we can merge the two vma's. For example, we refuse to merge a vma if 1102 * there is a vm_ops->close() function, because that indicates that the 1103 * driver is doing some kind of reference counting. But that doesn't 1104 * really matter for the anon_vma sharing case. 1105 */ 1106 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b) 1107 { 1108 return a->vm_end == b->vm_start && 1109 mpol_equal(vma_policy(a), vma_policy(b)) && 1110 a->vm_file == b->vm_file && 1111 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) && 1112 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT); 1113 } 1114 1115 /* 1116 * Do some basic sanity checking to see if we can re-use the anon_vma 1117 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be 1118 * the same as 'old', the other will be the new one that is trying 1119 * to share the anon_vma. 1120 * 1121 * NOTE! This runs with mmap_lock held for reading, so it is possible that 1122 * the anon_vma of 'old' is concurrently in the process of being set up 1123 * by another page fault trying to merge _that_. But that's ok: if it 1124 * is being set up, that automatically means that it will be a singleton 1125 * acceptable for merging, so we can do all of this optimistically. But 1126 * we do that READ_ONCE() to make sure that we never re-load the pointer. 1127 * 1128 * IOW: that the "list_is_singular()" test on the anon_vma_chain only 1129 * matters for the 'stable anon_vma' case (ie the thing we want to avoid 1130 * is to return an anon_vma that is "complex" due to having gone through 1131 * a fork). 1132 * 1133 * We also make sure that the two vma's are compatible (adjacent, 1134 * and with the same memory policies). That's all stable, even with just 1135 * a read lock on the mmap_lock. 1136 */ 1137 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b) 1138 { 1139 if (anon_vma_compatible(a, b)) { 1140 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma); 1141 1142 if (anon_vma && list_is_singular(&old->anon_vma_chain)) 1143 return anon_vma; 1144 } 1145 return NULL; 1146 } 1147 1148 /* 1149 * find_mergeable_anon_vma is used by anon_vma_prepare, to check 1150 * neighbouring vmas for a suitable anon_vma, before it goes off 1151 * to allocate a new anon_vma. It checks because a repetitive 1152 * sequence of mprotects and faults may otherwise lead to distinct 1153 * anon_vmas being allocated, preventing vma merge in subsequent 1154 * mprotect. 1155 */ 1156 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) 1157 { 1158 struct anon_vma *anon_vma = NULL; 1159 struct vm_area_struct *prev, *next; 1160 VMA_ITERATOR(vmi, vma->vm_mm, vma->vm_end); 1161 1162 /* Try next first. */ 1163 next = vma_iter_load(&vmi); 1164 if (next) { 1165 anon_vma = reusable_anon_vma(next, vma, next); 1166 if (anon_vma) 1167 return anon_vma; 1168 } 1169 1170 prev = vma_prev(&vmi); 1171 VM_BUG_ON_VMA(prev != vma, vma); 1172 prev = vma_prev(&vmi); 1173 /* Try prev next. */ 1174 if (prev) 1175 anon_vma = reusable_anon_vma(prev, prev, vma); 1176 1177 /* 1178 * We might reach here with anon_vma == NULL if we can't find 1179 * any reusable anon_vma. 1180 * There's no absolute need to look only at touching neighbours: 1181 * we could search further afield for "compatible" anon_vmas. 1182 * But it would probably just be a waste of time searching, 1183 * or lead to too many vmas hanging off the same anon_vma. 1184 * We're trying to allow mprotect remerging later on, 1185 * not trying to minimize memory used for anon_vmas. 1186 */ 1187 return anon_vma; 1188 } 1189 1190 /* 1191 * If a hint addr is less than mmap_min_addr change hint to be as 1192 * low as possible but still greater than mmap_min_addr 1193 */ 1194 static inline unsigned long round_hint_to_min(unsigned long hint) 1195 { 1196 hint &= PAGE_MASK; 1197 if (((void *)hint != NULL) && 1198 (hint < mmap_min_addr)) 1199 return PAGE_ALIGN(mmap_min_addr); 1200 return hint; 1201 } 1202 1203 bool mlock_future_ok(struct mm_struct *mm, unsigned long flags, 1204 unsigned long bytes) 1205 { 1206 unsigned long locked_pages, limit_pages; 1207 1208 if (!(flags & VM_LOCKED) || capable(CAP_IPC_LOCK)) 1209 return true; 1210 1211 locked_pages = bytes >> PAGE_SHIFT; 1212 locked_pages += mm->locked_vm; 1213 1214 limit_pages = rlimit(RLIMIT_MEMLOCK); 1215 limit_pages >>= PAGE_SHIFT; 1216 1217 return locked_pages <= limit_pages; 1218 } 1219 1220 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode) 1221 { 1222 if (S_ISREG(inode->i_mode)) 1223 return MAX_LFS_FILESIZE; 1224 1225 if (S_ISBLK(inode->i_mode)) 1226 return MAX_LFS_FILESIZE; 1227 1228 if (S_ISSOCK(inode->i_mode)) 1229 return MAX_LFS_FILESIZE; 1230 1231 /* Special "we do even unsigned file positions" case */ 1232 if (file->f_mode & FMODE_UNSIGNED_OFFSET) 1233 return 0; 1234 1235 /* Yes, random drivers might want more. But I'm tired of buggy drivers */ 1236 return ULONG_MAX; 1237 } 1238 1239 static inline bool file_mmap_ok(struct file *file, struct inode *inode, 1240 unsigned long pgoff, unsigned long len) 1241 { 1242 u64 maxsize = file_mmap_size_max(file, inode); 1243 1244 if (maxsize && len > maxsize) 1245 return false; 1246 maxsize -= len; 1247 if (pgoff > maxsize >> PAGE_SHIFT) 1248 return false; 1249 return true; 1250 } 1251 1252 /* 1253 * The caller must write-lock current->mm->mmap_lock. 1254 */ 1255 unsigned long do_mmap(struct file *file, unsigned long addr, 1256 unsigned long len, unsigned long prot, 1257 unsigned long flags, vm_flags_t vm_flags, 1258 unsigned long pgoff, unsigned long *populate, 1259 struct list_head *uf) 1260 { 1261 struct mm_struct *mm = current->mm; 1262 int pkey = 0; 1263 1264 *populate = 0; 1265 1266 if (!len) 1267 return -EINVAL; 1268 1269 /* 1270 * Does the application expect PROT_READ to imply PROT_EXEC? 1271 * 1272 * (the exception is when the underlying filesystem is noexec 1273 * mounted, in which case we don't add PROT_EXEC.) 1274 */ 1275 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC)) 1276 if (!(file && path_noexec(&file->f_path))) 1277 prot |= PROT_EXEC; 1278 1279 /* force arch specific MAP_FIXED handling in get_unmapped_area */ 1280 if (flags & MAP_FIXED_NOREPLACE) 1281 flags |= MAP_FIXED; 1282 1283 if (!(flags & MAP_FIXED)) 1284 addr = round_hint_to_min(addr); 1285 1286 /* Careful about overflows.. */ 1287 len = PAGE_ALIGN(len); 1288 if (!len) 1289 return -ENOMEM; 1290 1291 /* offset overflow? */ 1292 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff) 1293 return -EOVERFLOW; 1294 1295 /* Too many mappings? */ 1296 if (mm->map_count > sysctl_max_map_count) 1297 return -ENOMEM; 1298 1299 /* 1300 * addr is returned from get_unmapped_area, 1301 * There are two cases: 1302 * 1> MAP_FIXED == false 1303 * unallocated memory, no need to check sealing. 1304 * 1> MAP_FIXED == true 1305 * sealing is checked inside mmap_region when 1306 * do_vmi_munmap is called. 1307 */ 1308 1309 if (prot == PROT_EXEC) { 1310 pkey = execute_only_pkey(mm); 1311 if (pkey < 0) 1312 pkey = 0; 1313 } 1314 1315 /* Do simple checking here so the lower-level routines won't have 1316 * to. we assume access permissions have been handled by the open 1317 * of the memory object, so we don't do any here. 1318 */ 1319 vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) | 1320 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 1321 1322 /* Obtain the address to map to. we verify (or select) it and ensure 1323 * that it represents a valid section of the address space. 1324 */ 1325 addr = __get_unmapped_area(file, addr, len, pgoff, flags, vm_flags); 1326 if (IS_ERR_VALUE(addr)) 1327 return addr; 1328 1329 if (flags & MAP_FIXED_NOREPLACE) { 1330 if (find_vma_intersection(mm, addr, addr + len)) 1331 return -EEXIST; 1332 } 1333 1334 if (flags & MAP_LOCKED) 1335 if (!can_do_mlock()) 1336 return -EPERM; 1337 1338 if (!mlock_future_ok(mm, vm_flags, len)) 1339 return -EAGAIN; 1340 1341 if (file) { 1342 struct inode *inode = file_inode(file); 1343 unsigned long flags_mask; 1344 1345 if (!file_mmap_ok(file, inode, pgoff, len)) 1346 return -EOVERFLOW; 1347 1348 flags_mask = LEGACY_MAP_MASK; 1349 if (file->f_op->fop_flags & FOP_MMAP_SYNC) 1350 flags_mask |= MAP_SYNC; 1351 1352 switch (flags & MAP_TYPE) { 1353 case MAP_SHARED: 1354 /* 1355 * Force use of MAP_SHARED_VALIDATE with non-legacy 1356 * flags. E.g. MAP_SYNC is dangerous to use with 1357 * MAP_SHARED as you don't know which consistency model 1358 * you will get. We silently ignore unsupported flags 1359 * with MAP_SHARED to preserve backward compatibility. 1360 */ 1361 flags &= LEGACY_MAP_MASK; 1362 fallthrough; 1363 case MAP_SHARED_VALIDATE: 1364 if (flags & ~flags_mask) 1365 return -EOPNOTSUPP; 1366 if (prot & PROT_WRITE) { 1367 if (!(file->f_mode & FMODE_WRITE)) 1368 return -EACCES; 1369 if (IS_SWAPFILE(file->f_mapping->host)) 1370 return -ETXTBSY; 1371 } 1372 1373 /* 1374 * Make sure we don't allow writing to an append-only 1375 * file.. 1376 */ 1377 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE)) 1378 return -EACCES; 1379 1380 vm_flags |= VM_SHARED | VM_MAYSHARE; 1381 if (!(file->f_mode & FMODE_WRITE)) 1382 vm_flags &= ~(VM_MAYWRITE | VM_SHARED); 1383 fallthrough; 1384 case MAP_PRIVATE: 1385 if (!(file->f_mode & FMODE_READ)) 1386 return -EACCES; 1387 if (path_noexec(&file->f_path)) { 1388 if (vm_flags & VM_EXEC) 1389 return -EPERM; 1390 vm_flags &= ~VM_MAYEXEC; 1391 } 1392 1393 if (!file->f_op->mmap) 1394 return -ENODEV; 1395 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1396 return -EINVAL; 1397 break; 1398 1399 default: 1400 return -EINVAL; 1401 } 1402 } else { 1403 switch (flags & MAP_TYPE) { 1404 case MAP_SHARED: 1405 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1406 return -EINVAL; 1407 /* 1408 * Ignore pgoff. 1409 */ 1410 pgoff = 0; 1411 vm_flags |= VM_SHARED | VM_MAYSHARE; 1412 break; 1413 case MAP_PRIVATE: 1414 /* 1415 * Set pgoff according to addr for anon_vma. 1416 */ 1417 pgoff = addr >> PAGE_SHIFT; 1418 break; 1419 default: 1420 return -EINVAL; 1421 } 1422 } 1423 1424 /* 1425 * Set 'VM_NORESERVE' if we should not account for the 1426 * memory use of this mapping. 1427 */ 1428 if (flags & MAP_NORESERVE) { 1429 /* We honor MAP_NORESERVE if allowed to overcommit */ 1430 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER) 1431 vm_flags |= VM_NORESERVE; 1432 1433 /* hugetlb applies strict overcommit unless MAP_NORESERVE */ 1434 if (file && is_file_hugepages(file)) 1435 vm_flags |= VM_NORESERVE; 1436 } 1437 1438 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf); 1439 if (!IS_ERR_VALUE(addr) && 1440 ((vm_flags & VM_LOCKED) || 1441 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE)) 1442 *populate = len; 1443 return addr; 1444 } 1445 1446 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len, 1447 unsigned long prot, unsigned long flags, 1448 unsigned long fd, unsigned long pgoff) 1449 { 1450 struct file *file = NULL; 1451 unsigned long retval; 1452 1453 if (!(flags & MAP_ANONYMOUS)) { 1454 audit_mmap_fd(fd, flags); 1455 file = fget(fd); 1456 if (!file) 1457 return -EBADF; 1458 if (is_file_hugepages(file)) { 1459 len = ALIGN(len, huge_page_size(hstate_file(file))); 1460 } else if (unlikely(flags & MAP_HUGETLB)) { 1461 retval = -EINVAL; 1462 goto out_fput; 1463 } 1464 } else if (flags & MAP_HUGETLB) { 1465 struct hstate *hs; 1466 1467 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 1468 if (!hs) 1469 return -EINVAL; 1470 1471 len = ALIGN(len, huge_page_size(hs)); 1472 /* 1473 * VM_NORESERVE is used because the reservations will be 1474 * taken when vm_ops->mmap() is called 1475 */ 1476 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, 1477 VM_NORESERVE, 1478 HUGETLB_ANONHUGE_INODE, 1479 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 1480 if (IS_ERR(file)) 1481 return PTR_ERR(file); 1482 } 1483 1484 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1485 out_fput: 1486 if (file) 1487 fput(file); 1488 return retval; 1489 } 1490 1491 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1492 unsigned long, prot, unsigned long, flags, 1493 unsigned long, fd, unsigned long, pgoff) 1494 { 1495 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff); 1496 } 1497 1498 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1499 struct mmap_arg_struct { 1500 unsigned long addr; 1501 unsigned long len; 1502 unsigned long prot; 1503 unsigned long flags; 1504 unsigned long fd; 1505 unsigned long offset; 1506 }; 1507 1508 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1509 { 1510 struct mmap_arg_struct a; 1511 1512 if (copy_from_user(&a, arg, sizeof(a))) 1513 return -EFAULT; 1514 if (offset_in_page(a.offset)) 1515 return -EINVAL; 1516 1517 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1518 a.offset >> PAGE_SHIFT); 1519 } 1520 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1521 1522 static bool vm_ops_needs_writenotify(const struct vm_operations_struct *vm_ops) 1523 { 1524 return vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite); 1525 } 1526 1527 static bool vma_is_shared_writable(struct vm_area_struct *vma) 1528 { 1529 return (vma->vm_flags & (VM_WRITE | VM_SHARED)) == 1530 (VM_WRITE | VM_SHARED); 1531 } 1532 1533 static bool vma_fs_can_writeback(struct vm_area_struct *vma) 1534 { 1535 /* No managed pages to writeback. */ 1536 if (vma->vm_flags & VM_PFNMAP) 1537 return false; 1538 1539 return vma->vm_file && vma->vm_file->f_mapping && 1540 mapping_can_writeback(vma->vm_file->f_mapping); 1541 } 1542 1543 /* 1544 * Does this VMA require the underlying folios to have their dirty state 1545 * tracked? 1546 */ 1547 bool vma_needs_dirty_tracking(struct vm_area_struct *vma) 1548 { 1549 /* Only shared, writable VMAs require dirty tracking. */ 1550 if (!vma_is_shared_writable(vma)) 1551 return false; 1552 1553 /* Does the filesystem need to be notified? */ 1554 if (vm_ops_needs_writenotify(vma->vm_ops)) 1555 return true; 1556 1557 /* 1558 * Even if the filesystem doesn't indicate a need for writenotify, if it 1559 * can writeback, dirty tracking is still required. 1560 */ 1561 return vma_fs_can_writeback(vma); 1562 } 1563 1564 /* 1565 * Some shared mappings will want the pages marked read-only 1566 * to track write events. If so, we'll downgrade vm_page_prot 1567 * to the private version (using protection_map[] without the 1568 * VM_SHARED bit). 1569 */ 1570 bool vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot) 1571 { 1572 /* If it was private or non-writable, the write bit is already clear */ 1573 if (!vma_is_shared_writable(vma)) 1574 return false; 1575 1576 /* The backer wishes to know when pages are first written to? */ 1577 if (vm_ops_needs_writenotify(vma->vm_ops)) 1578 return true; 1579 1580 /* The open routine did something to the protections that pgprot_modify 1581 * won't preserve? */ 1582 if (pgprot_val(vm_page_prot) != 1583 pgprot_val(vm_pgprot_modify(vm_page_prot, vma->vm_flags))) 1584 return false; 1585 1586 /* 1587 * Do we need to track softdirty? hugetlb does not support softdirty 1588 * tracking yet. 1589 */ 1590 if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma)) 1591 return true; 1592 1593 /* Do we need write faults for uffd-wp tracking? */ 1594 if (userfaultfd_wp(vma)) 1595 return true; 1596 1597 /* Can the mapping track the dirty pages? */ 1598 return vma_fs_can_writeback(vma); 1599 } 1600 1601 /* 1602 * We account for memory if it's a private writeable mapping, 1603 * not hugepages and VM_NORESERVE wasn't set. 1604 */ 1605 static inline bool accountable_mapping(struct file *file, vm_flags_t vm_flags) 1606 { 1607 /* 1608 * hugetlb has its own accounting separate from the core VM 1609 * VM_HUGETLB may not be set yet so we cannot check for that flag. 1610 */ 1611 if (file && is_file_hugepages(file)) 1612 return false; 1613 1614 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE; 1615 } 1616 1617 /** 1618 * unmapped_area() - Find an area between the low_limit and the high_limit with 1619 * the correct alignment and offset, all from @info. Note: current->mm is used 1620 * for the search. 1621 * 1622 * @info: The unmapped area information including the range [low_limit - 1623 * high_limit), the alignment offset and mask. 1624 * 1625 * Return: A memory address or -ENOMEM. 1626 */ 1627 static unsigned long unmapped_area(struct vm_unmapped_area_info *info) 1628 { 1629 unsigned long length, gap; 1630 unsigned long low_limit, high_limit; 1631 struct vm_area_struct *tmp; 1632 VMA_ITERATOR(vmi, current->mm, 0); 1633 1634 /* Adjust search length to account for worst case alignment overhead */ 1635 length = info->length + info->align_mask + info->start_gap; 1636 if (length < info->length) 1637 return -ENOMEM; 1638 1639 low_limit = info->low_limit; 1640 if (low_limit < mmap_min_addr) 1641 low_limit = mmap_min_addr; 1642 high_limit = info->high_limit; 1643 retry: 1644 if (vma_iter_area_lowest(&vmi, low_limit, high_limit, length)) 1645 return -ENOMEM; 1646 1647 /* 1648 * Adjust for the gap first so it doesn't interfere with the 1649 * later alignment. The first step is the minimum needed to 1650 * fulill the start gap, the next steps is the minimum to align 1651 * that. It is the minimum needed to fulill both. 1652 */ 1653 gap = vma_iter_addr(&vmi) + info->start_gap; 1654 gap += (info->align_offset - gap) & info->align_mask; 1655 tmp = vma_next(&vmi); 1656 if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */ 1657 if (vm_start_gap(tmp) < gap + length - 1) { 1658 low_limit = tmp->vm_end; 1659 vma_iter_reset(&vmi); 1660 goto retry; 1661 } 1662 } else { 1663 tmp = vma_prev(&vmi); 1664 if (tmp && vm_end_gap(tmp) > gap) { 1665 low_limit = vm_end_gap(tmp); 1666 vma_iter_reset(&vmi); 1667 goto retry; 1668 } 1669 } 1670 1671 return gap; 1672 } 1673 1674 /** 1675 * unmapped_area_topdown() - Find an area between the low_limit and the 1676 * high_limit with the correct alignment and offset at the highest available 1677 * address, all from @info. Note: current->mm is used for the search. 1678 * 1679 * @info: The unmapped area information including the range [low_limit - 1680 * high_limit), the alignment offset and mask. 1681 * 1682 * Return: A memory address or -ENOMEM. 1683 */ 1684 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info) 1685 { 1686 unsigned long length, gap, gap_end; 1687 unsigned long low_limit, high_limit; 1688 struct vm_area_struct *tmp; 1689 VMA_ITERATOR(vmi, current->mm, 0); 1690 1691 /* Adjust search length to account for worst case alignment overhead */ 1692 length = info->length + info->align_mask + info->start_gap; 1693 if (length < info->length) 1694 return -ENOMEM; 1695 1696 low_limit = info->low_limit; 1697 if (low_limit < mmap_min_addr) 1698 low_limit = mmap_min_addr; 1699 high_limit = info->high_limit; 1700 retry: 1701 if (vma_iter_area_highest(&vmi, low_limit, high_limit, length)) 1702 return -ENOMEM; 1703 1704 gap = vma_iter_end(&vmi) - info->length; 1705 gap -= (gap - info->align_offset) & info->align_mask; 1706 gap_end = vma_iter_end(&vmi); 1707 tmp = vma_next(&vmi); 1708 if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */ 1709 if (vm_start_gap(tmp) < gap_end) { 1710 high_limit = vm_start_gap(tmp); 1711 vma_iter_reset(&vmi); 1712 goto retry; 1713 } 1714 } else { 1715 tmp = vma_prev(&vmi); 1716 if (tmp && vm_end_gap(tmp) > gap) { 1717 high_limit = tmp->vm_start; 1718 vma_iter_reset(&vmi); 1719 goto retry; 1720 } 1721 } 1722 1723 return gap; 1724 } 1725 1726 /* 1727 * Search for an unmapped address range. 1728 * 1729 * We are looking for a range that: 1730 * - does not intersect with any VMA; 1731 * - is contained within the [low_limit, high_limit) interval; 1732 * - is at least the desired size. 1733 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) 1734 */ 1735 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info) 1736 { 1737 unsigned long addr; 1738 1739 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN) 1740 addr = unmapped_area_topdown(info); 1741 else 1742 addr = unmapped_area(info); 1743 1744 trace_vm_unmapped_area(addr, info); 1745 return addr; 1746 } 1747 1748 /* Get an address range which is currently unmapped. 1749 * For shmat() with addr=0. 1750 * 1751 * Ugly calling convention alert: 1752 * Return value with the low bits set means error value, 1753 * ie 1754 * if (ret & ~PAGE_MASK) 1755 * error = ret; 1756 * 1757 * This function "knows" that -ENOMEM has the bits set. 1758 */ 1759 unsigned long 1760 generic_get_unmapped_area(struct file *filp, unsigned long addr, 1761 unsigned long len, unsigned long pgoff, 1762 unsigned long flags) 1763 { 1764 struct mm_struct *mm = current->mm; 1765 struct vm_area_struct *vma, *prev; 1766 struct vm_unmapped_area_info info = {}; 1767 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags); 1768 1769 if (len > mmap_end - mmap_min_addr) 1770 return -ENOMEM; 1771 1772 if (flags & MAP_FIXED) 1773 return addr; 1774 1775 if (addr) { 1776 addr = PAGE_ALIGN(addr); 1777 vma = find_vma_prev(mm, addr, &prev); 1778 if (mmap_end - len >= addr && addr >= mmap_min_addr && 1779 (!vma || addr + len <= vm_start_gap(vma)) && 1780 (!prev || addr >= vm_end_gap(prev))) 1781 return addr; 1782 } 1783 1784 info.length = len; 1785 info.low_limit = mm->mmap_base; 1786 info.high_limit = mmap_end; 1787 return vm_unmapped_area(&info); 1788 } 1789 1790 #ifndef HAVE_ARCH_UNMAPPED_AREA 1791 unsigned long 1792 arch_get_unmapped_area(struct file *filp, unsigned long addr, 1793 unsigned long len, unsigned long pgoff, 1794 unsigned long flags) 1795 { 1796 return generic_get_unmapped_area(filp, addr, len, pgoff, flags); 1797 } 1798 #endif 1799 1800 /* 1801 * This mmap-allocator allocates new areas top-down from below the 1802 * stack's low limit (the base): 1803 */ 1804 unsigned long 1805 generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 1806 unsigned long len, unsigned long pgoff, 1807 unsigned long flags) 1808 { 1809 struct vm_area_struct *vma, *prev; 1810 struct mm_struct *mm = current->mm; 1811 struct vm_unmapped_area_info info = {}; 1812 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags); 1813 1814 /* requested length too big for entire address space */ 1815 if (len > mmap_end - mmap_min_addr) 1816 return -ENOMEM; 1817 1818 if (flags & MAP_FIXED) 1819 return addr; 1820 1821 /* requesting a specific address */ 1822 if (addr) { 1823 addr = PAGE_ALIGN(addr); 1824 vma = find_vma_prev(mm, addr, &prev); 1825 if (mmap_end - len >= addr && addr >= mmap_min_addr && 1826 (!vma || addr + len <= vm_start_gap(vma)) && 1827 (!prev || addr >= vm_end_gap(prev))) 1828 return addr; 1829 } 1830 1831 info.flags = VM_UNMAPPED_AREA_TOPDOWN; 1832 info.length = len; 1833 info.low_limit = PAGE_SIZE; 1834 info.high_limit = arch_get_mmap_base(addr, mm->mmap_base); 1835 addr = vm_unmapped_area(&info); 1836 1837 /* 1838 * A failed mmap() very likely causes application failure, 1839 * so fall back to the bottom-up function here. This scenario 1840 * can happen with large stack limits and large mmap() 1841 * allocations. 1842 */ 1843 if (offset_in_page(addr)) { 1844 VM_BUG_ON(addr != -ENOMEM); 1845 info.flags = 0; 1846 info.low_limit = TASK_UNMAPPED_BASE; 1847 info.high_limit = mmap_end; 1848 addr = vm_unmapped_area(&info); 1849 } 1850 1851 return addr; 1852 } 1853 1854 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 1855 unsigned long 1856 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 1857 unsigned long len, unsigned long pgoff, 1858 unsigned long flags) 1859 { 1860 return generic_get_unmapped_area_topdown(filp, addr, len, pgoff, flags); 1861 } 1862 #endif 1863 1864 #ifndef HAVE_ARCH_UNMAPPED_AREA_VMFLAGS 1865 unsigned long 1866 arch_get_unmapped_area_vmflags(struct file *filp, unsigned long addr, unsigned long len, 1867 unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags) 1868 { 1869 return arch_get_unmapped_area(filp, addr, len, pgoff, flags); 1870 } 1871 1872 unsigned long 1873 arch_get_unmapped_area_topdown_vmflags(struct file *filp, unsigned long addr, 1874 unsigned long len, unsigned long pgoff, 1875 unsigned long flags, vm_flags_t vm_flags) 1876 { 1877 return arch_get_unmapped_area_topdown(filp, addr, len, pgoff, flags); 1878 } 1879 #endif 1880 1881 unsigned long mm_get_unmapped_area_vmflags(struct mm_struct *mm, struct file *filp, 1882 unsigned long addr, unsigned long len, 1883 unsigned long pgoff, unsigned long flags, 1884 vm_flags_t vm_flags) 1885 { 1886 if (test_bit(MMF_TOPDOWN, &mm->flags)) 1887 return arch_get_unmapped_area_topdown_vmflags(filp, addr, len, pgoff, 1888 flags, vm_flags); 1889 return arch_get_unmapped_area_vmflags(filp, addr, len, pgoff, flags, vm_flags); 1890 } 1891 1892 unsigned long 1893 __get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 1894 unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags) 1895 { 1896 unsigned long (*get_area)(struct file *, unsigned long, 1897 unsigned long, unsigned long, unsigned long) 1898 = NULL; 1899 1900 unsigned long error = arch_mmap_check(addr, len, flags); 1901 if (error) 1902 return error; 1903 1904 /* Careful about overflows.. */ 1905 if (len > TASK_SIZE) 1906 return -ENOMEM; 1907 1908 if (file) { 1909 if (file->f_op->get_unmapped_area) 1910 get_area = file->f_op->get_unmapped_area; 1911 } else if (flags & MAP_SHARED) { 1912 /* 1913 * mmap_region() will call shmem_zero_setup() to create a file, 1914 * so use shmem's get_unmapped_area in case it can be huge. 1915 */ 1916 get_area = shmem_get_unmapped_area; 1917 } 1918 1919 /* Always treat pgoff as zero for anonymous memory. */ 1920 if (!file) 1921 pgoff = 0; 1922 1923 if (get_area) { 1924 addr = get_area(file, addr, len, pgoff, flags); 1925 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { 1926 /* Ensures that larger anonymous mappings are THP aligned. */ 1927 addr = thp_get_unmapped_area_vmflags(file, addr, len, 1928 pgoff, flags, vm_flags); 1929 } else { 1930 addr = mm_get_unmapped_area_vmflags(current->mm, file, addr, len, 1931 pgoff, flags, vm_flags); 1932 } 1933 if (IS_ERR_VALUE(addr)) 1934 return addr; 1935 1936 if (addr > TASK_SIZE - len) 1937 return -ENOMEM; 1938 if (offset_in_page(addr)) 1939 return -EINVAL; 1940 1941 error = security_mmap_addr(addr); 1942 return error ? error : addr; 1943 } 1944 1945 unsigned long 1946 mm_get_unmapped_area(struct mm_struct *mm, struct file *file, 1947 unsigned long addr, unsigned long len, 1948 unsigned long pgoff, unsigned long flags) 1949 { 1950 if (test_bit(MMF_TOPDOWN, &mm->flags)) 1951 return arch_get_unmapped_area_topdown(file, addr, len, pgoff, flags); 1952 return arch_get_unmapped_area(file, addr, len, pgoff, flags); 1953 } 1954 EXPORT_SYMBOL(mm_get_unmapped_area); 1955 1956 /** 1957 * find_vma_intersection() - Look up the first VMA which intersects the interval 1958 * @mm: The process address space. 1959 * @start_addr: The inclusive start user address. 1960 * @end_addr: The exclusive end user address. 1961 * 1962 * Returns: The first VMA within the provided range, %NULL otherwise. Assumes 1963 * start_addr < end_addr. 1964 */ 1965 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm, 1966 unsigned long start_addr, 1967 unsigned long end_addr) 1968 { 1969 unsigned long index = start_addr; 1970 1971 mmap_assert_locked(mm); 1972 return mt_find(&mm->mm_mt, &index, end_addr - 1); 1973 } 1974 EXPORT_SYMBOL(find_vma_intersection); 1975 1976 /** 1977 * find_vma() - Find the VMA for a given address, or the next VMA. 1978 * @mm: The mm_struct to check 1979 * @addr: The address 1980 * 1981 * Returns: The VMA associated with addr, or the next VMA. 1982 * May return %NULL in the case of no VMA at addr or above. 1983 */ 1984 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 1985 { 1986 unsigned long index = addr; 1987 1988 mmap_assert_locked(mm); 1989 return mt_find(&mm->mm_mt, &index, ULONG_MAX); 1990 } 1991 EXPORT_SYMBOL(find_vma); 1992 1993 /** 1994 * find_vma_prev() - Find the VMA for a given address, or the next vma and 1995 * set %pprev to the previous VMA, if any. 1996 * @mm: The mm_struct to check 1997 * @addr: The address 1998 * @pprev: The pointer to set to the previous VMA 1999 * 2000 * Note that RCU lock is missing here since the external mmap_lock() is used 2001 * instead. 2002 * 2003 * Returns: The VMA associated with @addr, or the next vma. 2004 * May return %NULL in the case of no vma at addr or above. 2005 */ 2006 struct vm_area_struct * 2007 find_vma_prev(struct mm_struct *mm, unsigned long addr, 2008 struct vm_area_struct **pprev) 2009 { 2010 struct vm_area_struct *vma; 2011 VMA_ITERATOR(vmi, mm, addr); 2012 2013 vma = vma_iter_load(&vmi); 2014 *pprev = vma_prev(&vmi); 2015 if (!vma) 2016 vma = vma_next(&vmi); 2017 return vma; 2018 } 2019 2020 /* 2021 * Verify that the stack growth is acceptable and 2022 * update accounting. This is shared with both the 2023 * grow-up and grow-down cases. 2024 */ 2025 static int acct_stack_growth(struct vm_area_struct *vma, 2026 unsigned long size, unsigned long grow) 2027 { 2028 struct mm_struct *mm = vma->vm_mm; 2029 unsigned long new_start; 2030 2031 /* address space limit tests */ 2032 if (!may_expand_vm(mm, vma->vm_flags, grow)) 2033 return -ENOMEM; 2034 2035 /* Stack limit test */ 2036 if (size > rlimit(RLIMIT_STACK)) 2037 return -ENOMEM; 2038 2039 /* mlock limit tests */ 2040 if (!mlock_future_ok(mm, vma->vm_flags, grow << PAGE_SHIFT)) 2041 return -ENOMEM; 2042 2043 /* Check to ensure the stack will not grow into a hugetlb-only region */ 2044 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : 2045 vma->vm_end - size; 2046 if (is_hugepage_only_range(vma->vm_mm, new_start, size)) 2047 return -EFAULT; 2048 2049 /* 2050 * Overcommit.. This must be the final test, as it will 2051 * update security statistics. 2052 */ 2053 if (security_vm_enough_memory_mm(mm, grow)) 2054 return -ENOMEM; 2055 2056 return 0; 2057 } 2058 2059 #if defined(CONFIG_STACK_GROWSUP) 2060 /* 2061 * PA-RISC uses this for its stack. 2062 * vma is the last one with address > vma->vm_end. Have to extend vma. 2063 */ 2064 static int expand_upwards(struct vm_area_struct *vma, unsigned long address) 2065 { 2066 struct mm_struct *mm = vma->vm_mm; 2067 struct vm_area_struct *next; 2068 unsigned long gap_addr; 2069 int error = 0; 2070 VMA_ITERATOR(vmi, mm, vma->vm_start); 2071 2072 if (!(vma->vm_flags & VM_GROWSUP)) 2073 return -EFAULT; 2074 2075 /* Guard against exceeding limits of the address space. */ 2076 address &= PAGE_MASK; 2077 if (address >= (TASK_SIZE & PAGE_MASK)) 2078 return -ENOMEM; 2079 address += PAGE_SIZE; 2080 2081 /* Enforce stack_guard_gap */ 2082 gap_addr = address + stack_guard_gap; 2083 2084 /* Guard against overflow */ 2085 if (gap_addr < address || gap_addr > TASK_SIZE) 2086 gap_addr = TASK_SIZE; 2087 2088 next = find_vma_intersection(mm, vma->vm_end, gap_addr); 2089 if (next && vma_is_accessible(next)) { 2090 if (!(next->vm_flags & VM_GROWSUP)) 2091 return -ENOMEM; 2092 /* Check that both stack segments have the same anon_vma? */ 2093 } 2094 2095 if (next) 2096 vma_iter_prev_range_limit(&vmi, address); 2097 2098 vma_iter_config(&vmi, vma->vm_start, address); 2099 if (vma_iter_prealloc(&vmi, vma)) 2100 return -ENOMEM; 2101 2102 /* We must make sure the anon_vma is allocated. */ 2103 if (unlikely(anon_vma_prepare(vma))) { 2104 vma_iter_free(&vmi); 2105 return -ENOMEM; 2106 } 2107 2108 /* Lock the VMA before expanding to prevent concurrent page faults */ 2109 vma_start_write(vma); 2110 /* 2111 * vma->vm_start/vm_end cannot change under us because the caller 2112 * is required to hold the mmap_lock in read mode. We need the 2113 * anon_vma lock to serialize against concurrent expand_stacks. 2114 */ 2115 anon_vma_lock_write(vma->anon_vma); 2116 2117 /* Somebody else might have raced and expanded it already */ 2118 if (address > vma->vm_end) { 2119 unsigned long size, grow; 2120 2121 size = address - vma->vm_start; 2122 grow = (address - vma->vm_end) >> PAGE_SHIFT; 2123 2124 error = -ENOMEM; 2125 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) { 2126 error = acct_stack_growth(vma, size, grow); 2127 if (!error) { 2128 /* 2129 * We only hold a shared mmap_lock lock here, so 2130 * we need to protect against concurrent vma 2131 * expansions. anon_vma_lock_write() doesn't 2132 * help here, as we don't guarantee that all 2133 * growable vmas in a mm share the same root 2134 * anon vma. So, we reuse mm->page_table_lock 2135 * to guard against concurrent vma expansions. 2136 */ 2137 spin_lock(&mm->page_table_lock); 2138 if (vma->vm_flags & VM_LOCKED) 2139 mm->locked_vm += grow; 2140 vm_stat_account(mm, vma->vm_flags, grow); 2141 anon_vma_interval_tree_pre_update_vma(vma); 2142 vma->vm_end = address; 2143 /* Overwrite old entry in mtree. */ 2144 vma_iter_store(&vmi, vma); 2145 anon_vma_interval_tree_post_update_vma(vma); 2146 spin_unlock(&mm->page_table_lock); 2147 2148 perf_event_mmap(vma); 2149 } 2150 } 2151 } 2152 anon_vma_unlock_write(vma->anon_vma); 2153 vma_iter_free(&vmi); 2154 validate_mm(mm); 2155 return error; 2156 } 2157 #endif /* CONFIG_STACK_GROWSUP */ 2158 2159 /* 2160 * vma is the first one with address < vma->vm_start. Have to extend vma. 2161 * mmap_lock held for writing. 2162 */ 2163 int expand_downwards(struct vm_area_struct *vma, unsigned long address) 2164 { 2165 struct mm_struct *mm = vma->vm_mm; 2166 struct vm_area_struct *prev; 2167 int error = 0; 2168 VMA_ITERATOR(vmi, mm, vma->vm_start); 2169 2170 if (!(vma->vm_flags & VM_GROWSDOWN)) 2171 return -EFAULT; 2172 2173 address &= PAGE_MASK; 2174 if (address < mmap_min_addr || address < FIRST_USER_ADDRESS) 2175 return -EPERM; 2176 2177 /* Enforce stack_guard_gap */ 2178 prev = vma_prev(&vmi); 2179 /* Check that both stack segments have the same anon_vma? */ 2180 if (prev) { 2181 if (!(prev->vm_flags & VM_GROWSDOWN) && 2182 vma_is_accessible(prev) && 2183 (address - prev->vm_end < stack_guard_gap)) 2184 return -ENOMEM; 2185 } 2186 2187 if (prev) 2188 vma_iter_next_range_limit(&vmi, vma->vm_start); 2189 2190 vma_iter_config(&vmi, address, vma->vm_end); 2191 if (vma_iter_prealloc(&vmi, vma)) 2192 return -ENOMEM; 2193 2194 /* We must make sure the anon_vma is allocated. */ 2195 if (unlikely(anon_vma_prepare(vma))) { 2196 vma_iter_free(&vmi); 2197 return -ENOMEM; 2198 } 2199 2200 /* Lock the VMA before expanding to prevent concurrent page faults */ 2201 vma_start_write(vma); 2202 /* 2203 * vma->vm_start/vm_end cannot change under us because the caller 2204 * is required to hold the mmap_lock in read mode. We need the 2205 * anon_vma lock to serialize against concurrent expand_stacks. 2206 */ 2207 anon_vma_lock_write(vma->anon_vma); 2208 2209 /* Somebody else might have raced and expanded it already */ 2210 if (address < vma->vm_start) { 2211 unsigned long size, grow; 2212 2213 size = vma->vm_end - address; 2214 grow = (vma->vm_start - address) >> PAGE_SHIFT; 2215 2216 error = -ENOMEM; 2217 if (grow <= vma->vm_pgoff) { 2218 error = acct_stack_growth(vma, size, grow); 2219 if (!error) { 2220 /* 2221 * We only hold a shared mmap_lock lock here, so 2222 * we need to protect against concurrent vma 2223 * expansions. anon_vma_lock_write() doesn't 2224 * help here, as we don't guarantee that all 2225 * growable vmas in a mm share the same root 2226 * anon vma. So, we reuse mm->page_table_lock 2227 * to guard against concurrent vma expansions. 2228 */ 2229 spin_lock(&mm->page_table_lock); 2230 if (vma->vm_flags & VM_LOCKED) 2231 mm->locked_vm += grow; 2232 vm_stat_account(mm, vma->vm_flags, grow); 2233 anon_vma_interval_tree_pre_update_vma(vma); 2234 vma->vm_start = address; 2235 vma->vm_pgoff -= grow; 2236 /* Overwrite old entry in mtree. */ 2237 vma_iter_store(&vmi, vma); 2238 anon_vma_interval_tree_post_update_vma(vma); 2239 spin_unlock(&mm->page_table_lock); 2240 2241 perf_event_mmap(vma); 2242 } 2243 } 2244 } 2245 anon_vma_unlock_write(vma->anon_vma); 2246 vma_iter_free(&vmi); 2247 validate_mm(mm); 2248 return error; 2249 } 2250 2251 /* enforced gap between the expanding stack and other mappings. */ 2252 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT; 2253 2254 static int __init cmdline_parse_stack_guard_gap(char *p) 2255 { 2256 unsigned long val; 2257 char *endptr; 2258 2259 val = simple_strtoul(p, &endptr, 10); 2260 if (!*endptr) 2261 stack_guard_gap = val << PAGE_SHIFT; 2262 2263 return 1; 2264 } 2265 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap); 2266 2267 #ifdef CONFIG_STACK_GROWSUP 2268 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address) 2269 { 2270 return expand_upwards(vma, address); 2271 } 2272 2273 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr) 2274 { 2275 struct vm_area_struct *vma, *prev; 2276 2277 addr &= PAGE_MASK; 2278 vma = find_vma_prev(mm, addr, &prev); 2279 if (vma && (vma->vm_start <= addr)) 2280 return vma; 2281 if (!prev) 2282 return NULL; 2283 if (expand_stack_locked(prev, addr)) 2284 return NULL; 2285 if (prev->vm_flags & VM_LOCKED) 2286 populate_vma_page_range(prev, addr, prev->vm_end, NULL); 2287 return prev; 2288 } 2289 #else 2290 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address) 2291 { 2292 return expand_downwards(vma, address); 2293 } 2294 2295 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr) 2296 { 2297 struct vm_area_struct *vma; 2298 unsigned long start; 2299 2300 addr &= PAGE_MASK; 2301 vma = find_vma(mm, addr); 2302 if (!vma) 2303 return NULL; 2304 if (vma->vm_start <= addr) 2305 return vma; 2306 start = vma->vm_start; 2307 if (expand_stack_locked(vma, addr)) 2308 return NULL; 2309 if (vma->vm_flags & VM_LOCKED) 2310 populate_vma_page_range(vma, addr, start, NULL); 2311 return vma; 2312 } 2313 #endif 2314 2315 #if defined(CONFIG_STACK_GROWSUP) 2316 2317 #define vma_expand_up(vma,addr) expand_upwards(vma, addr) 2318 #define vma_expand_down(vma, addr) (-EFAULT) 2319 2320 #else 2321 2322 #define vma_expand_up(vma,addr) (-EFAULT) 2323 #define vma_expand_down(vma, addr) expand_downwards(vma, addr) 2324 2325 #endif 2326 2327 /* 2328 * expand_stack(): legacy interface for page faulting. Don't use unless 2329 * you have to. 2330 * 2331 * This is called with the mm locked for reading, drops the lock, takes 2332 * the lock for writing, tries to look up a vma again, expands it if 2333 * necessary, and downgrades the lock to reading again. 2334 * 2335 * If no vma is found or it can't be expanded, it returns NULL and has 2336 * dropped the lock. 2337 */ 2338 struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr) 2339 { 2340 struct vm_area_struct *vma, *prev; 2341 2342 mmap_read_unlock(mm); 2343 if (mmap_write_lock_killable(mm)) 2344 return NULL; 2345 2346 vma = find_vma_prev(mm, addr, &prev); 2347 if (vma && vma->vm_start <= addr) 2348 goto success; 2349 2350 if (prev && !vma_expand_up(prev, addr)) { 2351 vma = prev; 2352 goto success; 2353 } 2354 2355 if (vma && !vma_expand_down(vma, addr)) 2356 goto success; 2357 2358 mmap_write_unlock(mm); 2359 return NULL; 2360 2361 success: 2362 mmap_write_downgrade(mm); 2363 return vma; 2364 } 2365 2366 /* 2367 * Ok - we have the memory areas we should free on a maple tree so release them, 2368 * and do the vma updates. 2369 * 2370 * Called with the mm semaphore held. 2371 */ 2372 static inline void remove_mt(struct mm_struct *mm, struct ma_state *mas) 2373 { 2374 unsigned long nr_accounted = 0; 2375 struct vm_area_struct *vma; 2376 2377 /* Update high watermark before we lower total_vm */ 2378 update_hiwater_vm(mm); 2379 mas_for_each(mas, vma, ULONG_MAX) { 2380 long nrpages = vma_pages(vma); 2381 2382 if (vma->vm_flags & VM_ACCOUNT) 2383 nr_accounted += nrpages; 2384 vm_stat_account(mm, vma->vm_flags, -nrpages); 2385 remove_vma(vma, false); 2386 } 2387 vm_unacct_memory(nr_accounted); 2388 } 2389 2390 /* 2391 * Get rid of page table information in the indicated region. 2392 * 2393 * Called with the mm semaphore held. 2394 */ 2395 static void unmap_region(struct mm_struct *mm, struct ma_state *mas, 2396 struct vm_area_struct *vma, struct vm_area_struct *prev, 2397 struct vm_area_struct *next, unsigned long start, 2398 unsigned long end, unsigned long tree_end, bool mm_wr_locked) 2399 { 2400 struct mmu_gather tlb; 2401 unsigned long mt_start = mas->index; 2402 2403 lru_add_drain(); 2404 tlb_gather_mmu(&tlb, mm); 2405 update_hiwater_rss(mm); 2406 unmap_vmas(&tlb, mas, vma, start, end, tree_end, mm_wr_locked); 2407 mas_set(mas, mt_start); 2408 free_pgtables(&tlb, mas, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS, 2409 next ? next->vm_start : USER_PGTABLES_CEILING, 2410 mm_wr_locked); 2411 tlb_finish_mmu(&tlb); 2412 } 2413 2414 /* 2415 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it 2416 * has already been checked or doesn't make sense to fail. 2417 * VMA Iterator will point to the end VMA. 2418 */ 2419 static int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma, 2420 unsigned long addr, int new_below) 2421 { 2422 struct vma_prepare vp; 2423 struct vm_area_struct *new; 2424 int err; 2425 2426 WARN_ON(vma->vm_start >= addr); 2427 WARN_ON(vma->vm_end <= addr); 2428 2429 if (vma->vm_ops && vma->vm_ops->may_split) { 2430 err = vma->vm_ops->may_split(vma, addr); 2431 if (err) 2432 return err; 2433 } 2434 2435 new = vm_area_dup(vma); 2436 if (!new) 2437 return -ENOMEM; 2438 2439 if (new_below) { 2440 new->vm_end = addr; 2441 } else { 2442 new->vm_start = addr; 2443 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); 2444 } 2445 2446 err = -ENOMEM; 2447 vma_iter_config(vmi, new->vm_start, new->vm_end); 2448 if (vma_iter_prealloc(vmi, new)) 2449 goto out_free_vma; 2450 2451 err = vma_dup_policy(vma, new); 2452 if (err) 2453 goto out_free_vmi; 2454 2455 err = anon_vma_clone(new, vma); 2456 if (err) 2457 goto out_free_mpol; 2458 2459 if (new->vm_file) 2460 get_file(new->vm_file); 2461 2462 if (new->vm_ops && new->vm_ops->open) 2463 new->vm_ops->open(new); 2464 2465 vma_start_write(vma); 2466 vma_start_write(new); 2467 2468 init_vma_prep(&vp, vma); 2469 vp.insert = new; 2470 vma_prepare(&vp); 2471 vma_adjust_trans_huge(vma, vma->vm_start, addr, 0); 2472 2473 if (new_below) { 2474 vma->vm_start = addr; 2475 vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT; 2476 } else { 2477 vma->vm_end = addr; 2478 } 2479 2480 /* vma_complete stores the new vma */ 2481 vma_complete(&vp, vmi, vma->vm_mm); 2482 2483 /* Success. */ 2484 if (new_below) 2485 vma_next(vmi); 2486 return 0; 2487 2488 out_free_mpol: 2489 mpol_put(vma_policy(new)); 2490 out_free_vmi: 2491 vma_iter_free(vmi); 2492 out_free_vma: 2493 vm_area_free(new); 2494 return err; 2495 } 2496 2497 /* 2498 * Split a vma into two pieces at address 'addr', a new vma is allocated 2499 * either for the first part or the tail. 2500 */ 2501 static int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma, 2502 unsigned long addr, int new_below) 2503 { 2504 if (vma->vm_mm->map_count >= sysctl_max_map_count) 2505 return -ENOMEM; 2506 2507 return __split_vma(vmi, vma, addr, new_below); 2508 } 2509 2510 /* 2511 * We are about to modify one or multiple of a VMA's flags, policy, userfaultfd 2512 * context and anonymous VMA name within the range [start, end). 2513 * 2514 * As a result, we might be able to merge the newly modified VMA range with an 2515 * adjacent VMA with identical properties. 2516 * 2517 * If no merge is possible and the range does not span the entirety of the VMA, 2518 * we then need to split the VMA to accommodate the change. 2519 * 2520 * The function returns either the merged VMA, the original VMA if a split was 2521 * required instead, or an error if the split failed. 2522 */ 2523 struct vm_area_struct *vma_modify(struct vma_iterator *vmi, 2524 struct vm_area_struct *prev, 2525 struct vm_area_struct *vma, 2526 unsigned long start, unsigned long end, 2527 unsigned long vm_flags, 2528 struct mempolicy *policy, 2529 struct vm_userfaultfd_ctx uffd_ctx, 2530 struct anon_vma_name *anon_name) 2531 { 2532 pgoff_t pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT); 2533 struct vm_area_struct *merged; 2534 2535 merged = vma_merge(vmi, prev, vma, start, end, vm_flags, 2536 pgoff, policy, uffd_ctx, anon_name); 2537 if (merged) 2538 return merged; 2539 2540 if (vma->vm_start < start) { 2541 int err = split_vma(vmi, vma, start, 1); 2542 2543 if (err) 2544 return ERR_PTR(err); 2545 } 2546 2547 if (vma->vm_end > end) { 2548 int err = split_vma(vmi, vma, end, 0); 2549 2550 if (err) 2551 return ERR_PTR(err); 2552 } 2553 2554 return vma; 2555 } 2556 2557 /* 2558 * Attempt to merge a newly mapped VMA with those adjacent to it. The caller 2559 * must ensure that [start, end) does not overlap any existing VMA. 2560 */ 2561 static struct vm_area_struct 2562 *vma_merge_new_vma(struct vma_iterator *vmi, struct vm_area_struct *prev, 2563 struct vm_area_struct *vma, unsigned long start, 2564 unsigned long end, pgoff_t pgoff) 2565 { 2566 return vma_merge(vmi, prev, vma, start, end, vma->vm_flags, pgoff, 2567 vma_policy(vma), vma->vm_userfaultfd_ctx, anon_vma_name(vma)); 2568 } 2569 2570 /* 2571 * Expand vma by delta bytes, potentially merging with an immediately adjacent 2572 * VMA with identical properties. 2573 */ 2574 struct vm_area_struct *vma_merge_extend(struct vma_iterator *vmi, 2575 struct vm_area_struct *vma, 2576 unsigned long delta) 2577 { 2578 pgoff_t pgoff = vma->vm_pgoff + vma_pages(vma); 2579 2580 /* vma is specified as prev, so case 1 or 2 will apply. */ 2581 return vma_merge(vmi, vma, vma, vma->vm_end, vma->vm_end + delta, 2582 vma->vm_flags, pgoff, vma_policy(vma), 2583 vma->vm_userfaultfd_ctx, anon_vma_name(vma)); 2584 } 2585 2586 /* 2587 * do_vmi_align_munmap() - munmap the aligned region from @start to @end. 2588 * @vmi: The vma iterator 2589 * @vma: The starting vm_area_struct 2590 * @mm: The mm_struct 2591 * @start: The aligned start address to munmap. 2592 * @end: The aligned end address to munmap. 2593 * @uf: The userfaultfd list_head 2594 * @unlock: Set to true to drop the mmap_lock. unlocking only happens on 2595 * success. 2596 * 2597 * Return: 0 on success and drops the lock if so directed, error and leaves the 2598 * lock held otherwise. 2599 */ 2600 static int 2601 do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma, 2602 struct mm_struct *mm, unsigned long start, 2603 unsigned long end, struct list_head *uf, bool unlock) 2604 { 2605 struct vm_area_struct *prev, *next = NULL; 2606 struct maple_tree mt_detach; 2607 int count = 0; 2608 int error = -ENOMEM; 2609 unsigned long locked_vm = 0; 2610 MA_STATE(mas_detach, &mt_detach, 0, 0); 2611 mt_init_flags(&mt_detach, vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK); 2612 mt_on_stack(mt_detach); 2613 2614 /* 2615 * If we need to split any vma, do it now to save pain later. 2616 * 2617 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially 2618 * unmapped vm_area_struct will remain in use: so lower split_vma 2619 * places tmp vma above, and higher split_vma places tmp vma below. 2620 */ 2621 2622 /* Does it split the first one? */ 2623 if (start > vma->vm_start) { 2624 2625 /* 2626 * Make sure that map_count on return from munmap() will 2627 * not exceed its limit; but let map_count go just above 2628 * its limit temporarily, to help free resources as expected. 2629 */ 2630 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count) 2631 goto map_count_exceeded; 2632 2633 error = __split_vma(vmi, vma, start, 1); 2634 if (error) 2635 goto start_split_failed; 2636 } 2637 2638 /* 2639 * Detach a range of VMAs from the mm. Using next as a temp variable as 2640 * it is always overwritten. 2641 */ 2642 next = vma; 2643 do { 2644 /* Does it split the end? */ 2645 if (next->vm_end > end) { 2646 error = __split_vma(vmi, next, end, 0); 2647 if (error) 2648 goto end_split_failed; 2649 } 2650 vma_start_write(next); 2651 mas_set(&mas_detach, count); 2652 error = mas_store_gfp(&mas_detach, next, GFP_KERNEL); 2653 if (error) 2654 goto munmap_gather_failed; 2655 vma_mark_detached(next, true); 2656 if (next->vm_flags & VM_LOCKED) 2657 locked_vm += vma_pages(next); 2658 2659 count++; 2660 if (unlikely(uf)) { 2661 /* 2662 * If userfaultfd_unmap_prep returns an error the vmas 2663 * will remain split, but userland will get a 2664 * highly unexpected error anyway. This is no 2665 * different than the case where the first of the two 2666 * __split_vma fails, but we don't undo the first 2667 * split, despite we could. This is unlikely enough 2668 * failure that it's not worth optimizing it for. 2669 */ 2670 error = userfaultfd_unmap_prep(next, start, end, uf); 2671 2672 if (error) 2673 goto userfaultfd_error; 2674 } 2675 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE 2676 BUG_ON(next->vm_start < start); 2677 BUG_ON(next->vm_start > end); 2678 #endif 2679 } for_each_vma_range(*vmi, next, end); 2680 2681 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE) 2682 /* Make sure no VMAs are about to be lost. */ 2683 { 2684 MA_STATE(test, &mt_detach, 0, 0); 2685 struct vm_area_struct *vma_mas, *vma_test; 2686 int test_count = 0; 2687 2688 vma_iter_set(vmi, start); 2689 rcu_read_lock(); 2690 vma_test = mas_find(&test, count - 1); 2691 for_each_vma_range(*vmi, vma_mas, end) { 2692 BUG_ON(vma_mas != vma_test); 2693 test_count++; 2694 vma_test = mas_next(&test, count - 1); 2695 } 2696 rcu_read_unlock(); 2697 BUG_ON(count != test_count); 2698 } 2699 #endif 2700 2701 while (vma_iter_addr(vmi) > start) 2702 vma_iter_prev_range(vmi); 2703 2704 error = vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL); 2705 if (error) 2706 goto clear_tree_failed; 2707 2708 /* Point of no return */ 2709 mm->locked_vm -= locked_vm; 2710 mm->map_count -= count; 2711 if (unlock) 2712 mmap_write_downgrade(mm); 2713 2714 prev = vma_iter_prev_range(vmi); 2715 next = vma_next(vmi); 2716 if (next) 2717 vma_iter_prev_range(vmi); 2718 2719 /* 2720 * We can free page tables without write-locking mmap_lock because VMAs 2721 * were isolated before we downgraded mmap_lock. 2722 */ 2723 mas_set(&mas_detach, 1); 2724 unmap_region(mm, &mas_detach, vma, prev, next, start, end, count, 2725 !unlock); 2726 /* Statistics and freeing VMAs */ 2727 mas_set(&mas_detach, 0); 2728 remove_mt(mm, &mas_detach); 2729 validate_mm(mm); 2730 if (unlock) 2731 mmap_read_unlock(mm); 2732 2733 __mt_destroy(&mt_detach); 2734 return 0; 2735 2736 clear_tree_failed: 2737 userfaultfd_error: 2738 munmap_gather_failed: 2739 end_split_failed: 2740 mas_set(&mas_detach, 0); 2741 mas_for_each(&mas_detach, next, end) 2742 vma_mark_detached(next, false); 2743 2744 __mt_destroy(&mt_detach); 2745 start_split_failed: 2746 map_count_exceeded: 2747 validate_mm(mm); 2748 return error; 2749 } 2750 2751 /* 2752 * do_vmi_munmap() - munmap a given range. 2753 * @vmi: The vma iterator 2754 * @mm: The mm_struct 2755 * @start: The start address to munmap 2756 * @len: The length of the range to munmap 2757 * @uf: The userfaultfd list_head 2758 * @unlock: set to true if the user wants to drop the mmap_lock on success 2759 * 2760 * This function takes a @mas that is either pointing to the previous VMA or set 2761 * to MA_START and sets it up to remove the mapping(s). The @len will be 2762 * aligned and any arch_unmap work will be preformed. 2763 * 2764 * Return: 0 on success and drops the lock if so directed, error and leaves the 2765 * lock held otherwise. 2766 */ 2767 int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm, 2768 unsigned long start, size_t len, struct list_head *uf, 2769 bool unlock) 2770 { 2771 unsigned long end; 2772 struct vm_area_struct *vma; 2773 2774 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start) 2775 return -EINVAL; 2776 2777 end = start + PAGE_ALIGN(len); 2778 if (end == start) 2779 return -EINVAL; 2780 2781 /* 2782 * Check if memory is sealed before arch_unmap. 2783 * Prevent unmapping a sealed VMA. 2784 * can_modify_mm assumes we have acquired the lock on MM. 2785 */ 2786 if (unlikely(!can_modify_mm(mm, start, end))) 2787 return -EPERM; 2788 2789 /* arch_unmap() might do unmaps itself. */ 2790 arch_unmap(mm, start, end); 2791 2792 /* Find the first overlapping VMA */ 2793 vma = vma_find(vmi, end); 2794 if (!vma) { 2795 if (unlock) 2796 mmap_write_unlock(mm); 2797 return 0; 2798 } 2799 2800 return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock); 2801 } 2802 2803 /* do_munmap() - Wrapper function for non-maple tree aware do_munmap() calls. 2804 * @mm: The mm_struct 2805 * @start: The start address to munmap 2806 * @len: The length to be munmapped. 2807 * @uf: The userfaultfd list_head 2808 * 2809 * Return: 0 on success, error otherwise. 2810 */ 2811 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, 2812 struct list_head *uf) 2813 { 2814 VMA_ITERATOR(vmi, mm, start); 2815 2816 return do_vmi_munmap(&vmi, mm, start, len, uf, false); 2817 } 2818 2819 unsigned long mmap_region(struct file *file, unsigned long addr, 2820 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2821 struct list_head *uf) 2822 { 2823 struct mm_struct *mm = current->mm; 2824 struct vm_area_struct *vma = NULL; 2825 struct vm_area_struct *next, *prev, *merge; 2826 pgoff_t pglen = len >> PAGE_SHIFT; 2827 unsigned long charged = 0; 2828 unsigned long end = addr + len; 2829 unsigned long merge_start = addr, merge_end = end; 2830 bool writable_file_mapping = false; 2831 pgoff_t vm_pgoff; 2832 int error; 2833 VMA_ITERATOR(vmi, mm, addr); 2834 2835 /* Check against address space limit. */ 2836 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) { 2837 unsigned long nr_pages; 2838 2839 /* 2840 * MAP_FIXED may remove pages of mappings that intersects with 2841 * requested mapping. Account for the pages it would unmap. 2842 */ 2843 nr_pages = count_vma_pages_range(mm, addr, end); 2844 2845 if (!may_expand_vm(mm, vm_flags, 2846 (len >> PAGE_SHIFT) - nr_pages)) 2847 return -ENOMEM; 2848 } 2849 2850 /* Unmap any existing mapping in the area */ 2851 error = do_vmi_munmap(&vmi, mm, addr, len, uf, false); 2852 if (error == -EPERM) 2853 return error; 2854 else if (error) 2855 return -ENOMEM; 2856 2857 /* 2858 * Private writable mapping: check memory availability 2859 */ 2860 if (accountable_mapping(file, vm_flags)) { 2861 charged = len >> PAGE_SHIFT; 2862 if (security_vm_enough_memory_mm(mm, charged)) 2863 return -ENOMEM; 2864 vm_flags |= VM_ACCOUNT; 2865 } 2866 2867 next = vma_next(&vmi); 2868 prev = vma_prev(&vmi); 2869 if (vm_flags & VM_SPECIAL) { 2870 if (prev) 2871 vma_iter_next_range(&vmi); 2872 goto cannot_expand; 2873 } 2874 2875 /* Attempt to expand an old mapping */ 2876 /* Check next */ 2877 if (next && next->vm_start == end && !vma_policy(next) && 2878 can_vma_merge_before(next, vm_flags, NULL, file, pgoff+pglen, 2879 NULL_VM_UFFD_CTX, NULL)) { 2880 merge_end = next->vm_end; 2881 vma = next; 2882 vm_pgoff = next->vm_pgoff - pglen; 2883 } 2884 2885 /* Check prev */ 2886 if (prev && prev->vm_end == addr && !vma_policy(prev) && 2887 (vma ? can_vma_merge_after(prev, vm_flags, vma->anon_vma, file, 2888 pgoff, vma->vm_userfaultfd_ctx, NULL) : 2889 can_vma_merge_after(prev, vm_flags, NULL, file, pgoff, 2890 NULL_VM_UFFD_CTX, NULL))) { 2891 merge_start = prev->vm_start; 2892 vma = prev; 2893 vm_pgoff = prev->vm_pgoff; 2894 } else if (prev) { 2895 vma_iter_next_range(&vmi); 2896 } 2897 2898 /* Actually expand, if possible */ 2899 if (vma && 2900 !vma_expand(&vmi, vma, merge_start, merge_end, vm_pgoff, next)) { 2901 khugepaged_enter_vma(vma, vm_flags); 2902 goto expanded; 2903 } 2904 2905 if (vma == prev) 2906 vma_iter_set(&vmi, addr); 2907 cannot_expand: 2908 2909 /* 2910 * Determine the object being mapped and call the appropriate 2911 * specific mapper. the address has already been validated, but 2912 * not unmapped, but the maps are removed from the list. 2913 */ 2914 vma = vm_area_alloc(mm); 2915 if (!vma) { 2916 error = -ENOMEM; 2917 goto unacct_error; 2918 } 2919 2920 vma_iter_config(&vmi, addr, end); 2921 vma_set_range(vma, addr, end, pgoff); 2922 vm_flags_init(vma, vm_flags); 2923 vma->vm_page_prot = vm_get_page_prot(vm_flags); 2924 2925 if (file) { 2926 vma->vm_file = get_file(file); 2927 error = call_mmap(file, vma); 2928 if (error) 2929 goto unmap_and_free_vma; 2930 2931 if (vma_is_shared_maywrite(vma)) { 2932 error = mapping_map_writable(file->f_mapping); 2933 if (error) 2934 goto close_and_free_vma; 2935 2936 writable_file_mapping = true; 2937 } 2938 2939 /* 2940 * Expansion is handled above, merging is handled below. 2941 * Drivers should not alter the address of the VMA. 2942 */ 2943 error = -EINVAL; 2944 if (WARN_ON((addr != vma->vm_start))) 2945 goto close_and_free_vma; 2946 2947 vma_iter_config(&vmi, addr, end); 2948 /* 2949 * If vm_flags changed after call_mmap(), we should try merge 2950 * vma again as we may succeed this time. 2951 */ 2952 if (unlikely(vm_flags != vma->vm_flags && prev)) { 2953 merge = vma_merge_new_vma(&vmi, prev, vma, 2954 vma->vm_start, vma->vm_end, 2955 vma->vm_pgoff); 2956 if (merge) { 2957 /* 2958 * ->mmap() can change vma->vm_file and fput 2959 * the original file. So fput the vma->vm_file 2960 * here or we would add an extra fput for file 2961 * and cause general protection fault 2962 * ultimately. 2963 */ 2964 fput(vma->vm_file); 2965 vm_area_free(vma); 2966 vma = merge; 2967 /* Update vm_flags to pick up the change. */ 2968 vm_flags = vma->vm_flags; 2969 goto unmap_writable; 2970 } 2971 } 2972 2973 vm_flags = vma->vm_flags; 2974 } else if (vm_flags & VM_SHARED) { 2975 error = shmem_zero_setup(vma); 2976 if (error) 2977 goto free_vma; 2978 } else { 2979 vma_set_anonymous(vma); 2980 } 2981 2982 if (map_deny_write_exec(vma, vma->vm_flags)) { 2983 error = -EACCES; 2984 goto close_and_free_vma; 2985 } 2986 2987 /* Allow architectures to sanity-check the vm_flags */ 2988 error = -EINVAL; 2989 if (!arch_validate_flags(vma->vm_flags)) 2990 goto close_and_free_vma; 2991 2992 error = -ENOMEM; 2993 if (vma_iter_prealloc(&vmi, vma)) 2994 goto close_and_free_vma; 2995 2996 /* Lock the VMA since it is modified after insertion into VMA tree */ 2997 vma_start_write(vma); 2998 vma_iter_store(&vmi, vma); 2999 mm->map_count++; 3000 vma_link_file(vma); 3001 3002 /* 3003 * vma_merge() calls khugepaged_enter_vma() either, the below 3004 * call covers the non-merge case. 3005 */ 3006 khugepaged_enter_vma(vma, vma->vm_flags); 3007 3008 /* Once vma denies write, undo our temporary denial count */ 3009 unmap_writable: 3010 if (writable_file_mapping) 3011 mapping_unmap_writable(file->f_mapping); 3012 file = vma->vm_file; 3013 ksm_add_vma(vma); 3014 expanded: 3015 perf_event_mmap(vma); 3016 3017 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT); 3018 if (vm_flags & VM_LOCKED) { 3019 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) || 3020 is_vm_hugetlb_page(vma) || 3021 vma == get_gate_vma(current->mm)) 3022 vm_flags_clear(vma, VM_LOCKED_MASK); 3023 else 3024 mm->locked_vm += (len >> PAGE_SHIFT); 3025 } 3026 3027 if (file) 3028 uprobe_mmap(vma); 3029 3030 /* 3031 * New (or expanded) vma always get soft dirty status. 3032 * Otherwise user-space soft-dirty page tracker won't 3033 * be able to distinguish situation when vma area unmapped, 3034 * then new mapped in-place (which must be aimed as 3035 * a completely new data area). 3036 */ 3037 vm_flags_set(vma, VM_SOFTDIRTY); 3038 3039 vma_set_page_prot(vma); 3040 3041 validate_mm(mm); 3042 return addr; 3043 3044 close_and_free_vma: 3045 if (file && vma->vm_ops && vma->vm_ops->close) 3046 vma->vm_ops->close(vma); 3047 3048 if (file || vma->vm_file) { 3049 unmap_and_free_vma: 3050 fput(vma->vm_file); 3051 vma->vm_file = NULL; 3052 3053 vma_iter_set(&vmi, vma->vm_end); 3054 /* Undo any partial mapping done by a device driver. */ 3055 unmap_region(mm, &vmi.mas, vma, prev, next, vma->vm_start, 3056 vma->vm_end, vma->vm_end, true); 3057 } 3058 if (writable_file_mapping) 3059 mapping_unmap_writable(file->f_mapping); 3060 free_vma: 3061 vm_area_free(vma); 3062 unacct_error: 3063 if (charged) 3064 vm_unacct_memory(charged); 3065 validate_mm(mm); 3066 return error; 3067 } 3068 3069 static int __vm_munmap(unsigned long start, size_t len, bool unlock) 3070 { 3071 int ret; 3072 struct mm_struct *mm = current->mm; 3073 LIST_HEAD(uf); 3074 VMA_ITERATOR(vmi, mm, start); 3075 3076 if (mmap_write_lock_killable(mm)) 3077 return -EINTR; 3078 3079 ret = do_vmi_munmap(&vmi, mm, start, len, &uf, unlock); 3080 if (ret || !unlock) 3081 mmap_write_unlock(mm); 3082 3083 userfaultfd_unmap_complete(mm, &uf); 3084 return ret; 3085 } 3086 3087 int vm_munmap(unsigned long start, size_t len) 3088 { 3089 return __vm_munmap(start, len, false); 3090 } 3091 EXPORT_SYMBOL(vm_munmap); 3092 3093 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 3094 { 3095 addr = untagged_addr(addr); 3096 return __vm_munmap(addr, len, true); 3097 } 3098 3099 3100 /* 3101 * Emulation of deprecated remap_file_pages() syscall. 3102 */ 3103 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size, 3104 unsigned long, prot, unsigned long, pgoff, unsigned long, flags) 3105 { 3106 3107 struct mm_struct *mm = current->mm; 3108 struct vm_area_struct *vma; 3109 unsigned long populate = 0; 3110 unsigned long ret = -EINVAL; 3111 struct file *file; 3112 3113 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/mm/remap_file_pages.rst.\n", 3114 current->comm, current->pid); 3115 3116 if (prot) 3117 return ret; 3118 start = start & PAGE_MASK; 3119 size = size & PAGE_MASK; 3120 3121 if (start + size <= start) 3122 return ret; 3123 3124 /* Does pgoff wrap? */ 3125 if (pgoff + (size >> PAGE_SHIFT) < pgoff) 3126 return ret; 3127 3128 if (mmap_write_lock_killable(mm)) 3129 return -EINTR; 3130 3131 vma = vma_lookup(mm, start); 3132 3133 if (!vma || !(vma->vm_flags & VM_SHARED)) 3134 goto out; 3135 3136 if (start + size > vma->vm_end) { 3137 VMA_ITERATOR(vmi, mm, vma->vm_end); 3138 struct vm_area_struct *next, *prev = vma; 3139 3140 for_each_vma_range(vmi, next, start + size) { 3141 /* hole between vmas ? */ 3142 if (next->vm_start != prev->vm_end) 3143 goto out; 3144 3145 if (next->vm_file != vma->vm_file) 3146 goto out; 3147 3148 if (next->vm_flags != vma->vm_flags) 3149 goto out; 3150 3151 if (start + size <= next->vm_end) 3152 break; 3153 3154 prev = next; 3155 } 3156 3157 if (!next) 3158 goto out; 3159 } 3160 3161 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0; 3162 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0; 3163 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0; 3164 3165 flags &= MAP_NONBLOCK; 3166 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE; 3167 if (vma->vm_flags & VM_LOCKED) 3168 flags |= MAP_LOCKED; 3169 3170 file = get_file(vma->vm_file); 3171 ret = do_mmap(vma->vm_file, start, size, 3172 prot, flags, 0, pgoff, &populate, NULL); 3173 fput(file); 3174 out: 3175 mmap_write_unlock(mm); 3176 if (populate) 3177 mm_populate(ret, populate); 3178 if (!IS_ERR_VALUE(ret)) 3179 ret = 0; 3180 return ret; 3181 } 3182 3183 /* 3184 * do_vma_munmap() - Unmap a full or partial vma. 3185 * @vmi: The vma iterator pointing at the vma 3186 * @vma: The first vma to be munmapped 3187 * @start: the start of the address to unmap 3188 * @end: The end of the address to unmap 3189 * @uf: The userfaultfd list_head 3190 * @unlock: Drop the lock on success 3191 * 3192 * unmaps a VMA mapping when the vma iterator is already in position. 3193 * Does not handle alignment. 3194 * 3195 * Return: 0 on success drops the lock of so directed, error on failure and will 3196 * still hold the lock. 3197 */ 3198 int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma, 3199 unsigned long start, unsigned long end, struct list_head *uf, 3200 bool unlock) 3201 { 3202 struct mm_struct *mm = vma->vm_mm; 3203 3204 /* 3205 * Check if memory is sealed before arch_unmap. 3206 * Prevent unmapping a sealed VMA. 3207 * can_modify_mm assumes we have acquired the lock on MM. 3208 */ 3209 if (unlikely(!can_modify_mm(mm, start, end))) 3210 return -EPERM; 3211 3212 arch_unmap(mm, start, end); 3213 return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock); 3214 } 3215 3216 /* 3217 * do_brk_flags() - Increase the brk vma if the flags match. 3218 * @vmi: The vma iterator 3219 * @addr: The start address 3220 * @len: The length of the increase 3221 * @vma: The vma, 3222 * @flags: The VMA Flags 3223 * 3224 * Extend the brk VMA from addr to addr + len. If the VMA is NULL or the flags 3225 * do not match then create a new anonymous VMA. Eventually we may be able to 3226 * do some brk-specific accounting here. 3227 */ 3228 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma, 3229 unsigned long addr, unsigned long len, unsigned long flags) 3230 { 3231 struct mm_struct *mm = current->mm; 3232 struct vma_prepare vp; 3233 3234 /* 3235 * Check against address space limits by the changed size 3236 * Note: This happens *after* clearing old mappings in some code paths. 3237 */ 3238 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; 3239 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT)) 3240 return -ENOMEM; 3241 3242 if (mm->map_count > sysctl_max_map_count) 3243 return -ENOMEM; 3244 3245 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT)) 3246 return -ENOMEM; 3247 3248 /* 3249 * Expand the existing vma if possible; Note that singular lists do not 3250 * occur after forking, so the expand will only happen on new VMAs. 3251 */ 3252 if (vma && vma->vm_end == addr && !vma_policy(vma) && 3253 can_vma_merge_after(vma, flags, NULL, NULL, 3254 addr >> PAGE_SHIFT, NULL_VM_UFFD_CTX, NULL)) { 3255 vma_iter_config(vmi, vma->vm_start, addr + len); 3256 if (vma_iter_prealloc(vmi, vma)) 3257 goto unacct_fail; 3258 3259 vma_start_write(vma); 3260 3261 init_vma_prep(&vp, vma); 3262 vma_prepare(&vp); 3263 vma_adjust_trans_huge(vma, vma->vm_start, addr + len, 0); 3264 vma->vm_end = addr + len; 3265 vm_flags_set(vma, VM_SOFTDIRTY); 3266 vma_iter_store(vmi, vma); 3267 3268 vma_complete(&vp, vmi, mm); 3269 khugepaged_enter_vma(vma, flags); 3270 goto out; 3271 } 3272 3273 if (vma) 3274 vma_iter_next_range(vmi); 3275 /* create a vma struct for an anonymous mapping */ 3276 vma = vm_area_alloc(mm); 3277 if (!vma) 3278 goto unacct_fail; 3279 3280 vma_set_anonymous(vma); 3281 vma_set_range(vma, addr, addr + len, addr >> PAGE_SHIFT); 3282 vm_flags_init(vma, flags); 3283 vma->vm_page_prot = vm_get_page_prot(flags); 3284 vma_start_write(vma); 3285 if (vma_iter_store_gfp(vmi, vma, GFP_KERNEL)) 3286 goto mas_store_fail; 3287 3288 mm->map_count++; 3289 validate_mm(mm); 3290 ksm_add_vma(vma); 3291 out: 3292 perf_event_mmap(vma); 3293 mm->total_vm += len >> PAGE_SHIFT; 3294 mm->data_vm += len >> PAGE_SHIFT; 3295 if (flags & VM_LOCKED) 3296 mm->locked_vm += (len >> PAGE_SHIFT); 3297 vm_flags_set(vma, VM_SOFTDIRTY); 3298 return 0; 3299 3300 mas_store_fail: 3301 vm_area_free(vma); 3302 unacct_fail: 3303 vm_unacct_memory(len >> PAGE_SHIFT); 3304 return -ENOMEM; 3305 } 3306 3307 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags) 3308 { 3309 struct mm_struct *mm = current->mm; 3310 struct vm_area_struct *vma = NULL; 3311 unsigned long len; 3312 int ret; 3313 bool populate; 3314 LIST_HEAD(uf); 3315 VMA_ITERATOR(vmi, mm, addr); 3316 3317 len = PAGE_ALIGN(request); 3318 if (len < request) 3319 return -ENOMEM; 3320 if (!len) 3321 return 0; 3322 3323 /* Until we need other flags, refuse anything except VM_EXEC. */ 3324 if ((flags & (~VM_EXEC)) != 0) 3325 return -EINVAL; 3326 3327 if (mmap_write_lock_killable(mm)) 3328 return -EINTR; 3329 3330 ret = check_brk_limits(addr, len); 3331 if (ret) 3332 goto limits_failed; 3333 3334 ret = do_vmi_munmap(&vmi, mm, addr, len, &uf, 0); 3335 if (ret) 3336 goto munmap_failed; 3337 3338 vma = vma_prev(&vmi); 3339 ret = do_brk_flags(&vmi, vma, addr, len, flags); 3340 populate = ((mm->def_flags & VM_LOCKED) != 0); 3341 mmap_write_unlock(mm); 3342 userfaultfd_unmap_complete(mm, &uf); 3343 if (populate && !ret) 3344 mm_populate(addr, len); 3345 return ret; 3346 3347 munmap_failed: 3348 limits_failed: 3349 mmap_write_unlock(mm); 3350 return ret; 3351 } 3352 EXPORT_SYMBOL(vm_brk_flags); 3353 3354 /* Release all mmaps. */ 3355 void exit_mmap(struct mm_struct *mm) 3356 { 3357 struct mmu_gather tlb; 3358 struct vm_area_struct *vma; 3359 unsigned long nr_accounted = 0; 3360 VMA_ITERATOR(vmi, mm, 0); 3361 int count = 0; 3362 3363 /* mm's last user has gone, and its about to be pulled down */ 3364 mmu_notifier_release(mm); 3365 3366 mmap_read_lock(mm); 3367 arch_exit_mmap(mm); 3368 3369 vma = vma_next(&vmi); 3370 if (!vma || unlikely(xa_is_zero(vma))) { 3371 /* Can happen if dup_mmap() received an OOM */ 3372 mmap_read_unlock(mm); 3373 mmap_write_lock(mm); 3374 goto destroy; 3375 } 3376 3377 lru_add_drain(); 3378 flush_cache_mm(mm); 3379 tlb_gather_mmu_fullmm(&tlb, mm); 3380 /* update_hiwater_rss(mm) here? but nobody should be looking */ 3381 /* Use ULONG_MAX here to ensure all VMAs in the mm are unmapped */ 3382 unmap_vmas(&tlb, &vmi.mas, vma, 0, ULONG_MAX, ULONG_MAX, false); 3383 mmap_read_unlock(mm); 3384 3385 /* 3386 * Set MMF_OOM_SKIP to hide this task from the oom killer/reaper 3387 * because the memory has been already freed. 3388 */ 3389 set_bit(MMF_OOM_SKIP, &mm->flags); 3390 mmap_write_lock(mm); 3391 mt_clear_in_rcu(&mm->mm_mt); 3392 vma_iter_set(&vmi, vma->vm_end); 3393 free_pgtables(&tlb, &vmi.mas, vma, FIRST_USER_ADDRESS, 3394 USER_PGTABLES_CEILING, true); 3395 tlb_finish_mmu(&tlb); 3396 3397 /* 3398 * Walk the list again, actually closing and freeing it, with preemption 3399 * enabled, without holding any MM locks besides the unreachable 3400 * mmap_write_lock. 3401 */ 3402 vma_iter_set(&vmi, vma->vm_end); 3403 do { 3404 if (vma->vm_flags & VM_ACCOUNT) 3405 nr_accounted += vma_pages(vma); 3406 remove_vma(vma, true); 3407 count++; 3408 cond_resched(); 3409 vma = vma_next(&vmi); 3410 } while (vma && likely(!xa_is_zero(vma))); 3411 3412 BUG_ON(count != mm->map_count); 3413 3414 trace_exit_mmap(mm); 3415 destroy: 3416 __mt_destroy(&mm->mm_mt); 3417 mmap_write_unlock(mm); 3418 vm_unacct_memory(nr_accounted); 3419 } 3420 3421 /* Insert vm structure into process list sorted by address 3422 * and into the inode's i_mmap tree. If vm_file is non-NULL 3423 * then i_mmap_rwsem is taken here. 3424 */ 3425 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 3426 { 3427 unsigned long charged = vma_pages(vma); 3428 3429 3430 if (find_vma_intersection(mm, vma->vm_start, vma->vm_end)) 3431 return -ENOMEM; 3432 3433 if ((vma->vm_flags & VM_ACCOUNT) && 3434 security_vm_enough_memory_mm(mm, charged)) 3435 return -ENOMEM; 3436 3437 /* 3438 * The vm_pgoff of a purely anonymous vma should be irrelevant 3439 * until its first write fault, when page's anon_vma and index 3440 * are set. But now set the vm_pgoff it will almost certainly 3441 * end up with (unless mremap moves it elsewhere before that 3442 * first wfault), so /proc/pid/maps tells a consistent story. 3443 * 3444 * By setting it to reflect the virtual start address of the 3445 * vma, merges and splits can happen in a seamless way, just 3446 * using the existing file pgoff checks and manipulations. 3447 * Similarly in do_mmap and in do_brk_flags. 3448 */ 3449 if (vma_is_anonymous(vma)) { 3450 BUG_ON(vma->anon_vma); 3451 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; 3452 } 3453 3454 if (vma_link(mm, vma)) { 3455 if (vma->vm_flags & VM_ACCOUNT) 3456 vm_unacct_memory(charged); 3457 return -ENOMEM; 3458 } 3459 3460 return 0; 3461 } 3462 3463 /* 3464 * Copy the vma structure to a new location in the same mm, 3465 * prior to moving page table entries, to effect an mremap move. 3466 */ 3467 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 3468 unsigned long addr, unsigned long len, pgoff_t pgoff, 3469 bool *need_rmap_locks) 3470 { 3471 struct vm_area_struct *vma = *vmap; 3472 unsigned long vma_start = vma->vm_start; 3473 struct mm_struct *mm = vma->vm_mm; 3474 struct vm_area_struct *new_vma, *prev; 3475 bool faulted_in_anon_vma = true; 3476 VMA_ITERATOR(vmi, mm, addr); 3477 3478 /* 3479 * If anonymous vma has not yet been faulted, update new pgoff 3480 * to match new location, to increase its chance of merging. 3481 */ 3482 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) { 3483 pgoff = addr >> PAGE_SHIFT; 3484 faulted_in_anon_vma = false; 3485 } 3486 3487 new_vma = find_vma_prev(mm, addr, &prev); 3488 if (new_vma && new_vma->vm_start < addr + len) 3489 return NULL; /* should never get here */ 3490 3491 new_vma = vma_merge_new_vma(&vmi, prev, vma, addr, addr + len, pgoff); 3492 if (new_vma) { 3493 /* 3494 * Source vma may have been merged into new_vma 3495 */ 3496 if (unlikely(vma_start >= new_vma->vm_start && 3497 vma_start < new_vma->vm_end)) { 3498 /* 3499 * The only way we can get a vma_merge with 3500 * self during an mremap is if the vma hasn't 3501 * been faulted in yet and we were allowed to 3502 * reset the dst vma->vm_pgoff to the 3503 * destination address of the mremap to allow 3504 * the merge to happen. mremap must change the 3505 * vm_pgoff linearity between src and dst vmas 3506 * (in turn preventing a vma_merge) to be 3507 * safe. It is only safe to keep the vm_pgoff 3508 * linear if there are no pages mapped yet. 3509 */ 3510 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma); 3511 *vmap = vma = new_vma; 3512 } 3513 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff); 3514 } else { 3515 new_vma = vm_area_dup(vma); 3516 if (!new_vma) 3517 goto out; 3518 vma_set_range(new_vma, addr, addr + len, pgoff); 3519 if (vma_dup_policy(vma, new_vma)) 3520 goto out_free_vma; 3521 if (anon_vma_clone(new_vma, vma)) 3522 goto out_free_mempol; 3523 if (new_vma->vm_file) 3524 get_file(new_vma->vm_file); 3525 if (new_vma->vm_ops && new_vma->vm_ops->open) 3526 new_vma->vm_ops->open(new_vma); 3527 if (vma_link(mm, new_vma)) 3528 goto out_vma_link; 3529 *need_rmap_locks = false; 3530 } 3531 return new_vma; 3532 3533 out_vma_link: 3534 if (new_vma->vm_ops && new_vma->vm_ops->close) 3535 new_vma->vm_ops->close(new_vma); 3536 3537 if (new_vma->vm_file) 3538 fput(new_vma->vm_file); 3539 3540 unlink_anon_vmas(new_vma); 3541 out_free_mempol: 3542 mpol_put(vma_policy(new_vma)); 3543 out_free_vma: 3544 vm_area_free(new_vma); 3545 out: 3546 return NULL; 3547 } 3548 3549 /* 3550 * Return true if the calling process may expand its vm space by the passed 3551 * number of pages 3552 */ 3553 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages) 3554 { 3555 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT) 3556 return false; 3557 3558 if (is_data_mapping(flags) && 3559 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) { 3560 /* Workaround for Valgrind */ 3561 if (rlimit(RLIMIT_DATA) == 0 && 3562 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT) 3563 return true; 3564 3565 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n", 3566 current->comm, current->pid, 3567 (mm->data_vm + npages) << PAGE_SHIFT, 3568 rlimit(RLIMIT_DATA), 3569 ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data"); 3570 3571 if (!ignore_rlimit_data) 3572 return false; 3573 } 3574 3575 return true; 3576 } 3577 3578 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages) 3579 { 3580 WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages); 3581 3582 if (is_exec_mapping(flags)) 3583 mm->exec_vm += npages; 3584 else if (is_stack_mapping(flags)) 3585 mm->stack_vm += npages; 3586 else if (is_data_mapping(flags)) 3587 mm->data_vm += npages; 3588 } 3589 3590 static vm_fault_t special_mapping_fault(struct vm_fault *vmf); 3591 3592 /* 3593 * Having a close hook prevents vma merging regardless of flags. 3594 */ 3595 static void special_mapping_close(struct vm_area_struct *vma) 3596 { 3597 } 3598 3599 static const char *special_mapping_name(struct vm_area_struct *vma) 3600 { 3601 return ((struct vm_special_mapping *)vma->vm_private_data)->name; 3602 } 3603 3604 static int special_mapping_mremap(struct vm_area_struct *new_vma) 3605 { 3606 struct vm_special_mapping *sm = new_vma->vm_private_data; 3607 3608 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm)) 3609 return -EFAULT; 3610 3611 if (sm->mremap) 3612 return sm->mremap(sm, new_vma); 3613 3614 return 0; 3615 } 3616 3617 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr) 3618 { 3619 /* 3620 * Forbid splitting special mappings - kernel has expectations over 3621 * the number of pages in mapping. Together with VM_DONTEXPAND 3622 * the size of vma should stay the same over the special mapping's 3623 * lifetime. 3624 */ 3625 return -EINVAL; 3626 } 3627 3628 static const struct vm_operations_struct special_mapping_vmops = { 3629 .close = special_mapping_close, 3630 .fault = special_mapping_fault, 3631 .mremap = special_mapping_mremap, 3632 .name = special_mapping_name, 3633 /* vDSO code relies that VVAR can't be accessed remotely */ 3634 .access = NULL, 3635 .may_split = special_mapping_split, 3636 }; 3637 3638 static const struct vm_operations_struct legacy_special_mapping_vmops = { 3639 .close = special_mapping_close, 3640 .fault = special_mapping_fault, 3641 }; 3642 3643 static vm_fault_t special_mapping_fault(struct vm_fault *vmf) 3644 { 3645 struct vm_area_struct *vma = vmf->vma; 3646 pgoff_t pgoff; 3647 struct page **pages; 3648 3649 if (vma->vm_ops == &legacy_special_mapping_vmops) { 3650 pages = vma->vm_private_data; 3651 } else { 3652 struct vm_special_mapping *sm = vma->vm_private_data; 3653 3654 if (sm->fault) 3655 return sm->fault(sm, vmf->vma, vmf); 3656 3657 pages = sm->pages; 3658 } 3659 3660 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages) 3661 pgoff--; 3662 3663 if (*pages) { 3664 struct page *page = *pages; 3665 get_page(page); 3666 vmf->page = page; 3667 return 0; 3668 } 3669 3670 return VM_FAULT_SIGBUS; 3671 } 3672 3673 static struct vm_area_struct *__install_special_mapping( 3674 struct mm_struct *mm, 3675 unsigned long addr, unsigned long len, 3676 unsigned long vm_flags, void *priv, 3677 const struct vm_operations_struct *ops) 3678 { 3679 int ret; 3680 struct vm_area_struct *vma; 3681 3682 vma = vm_area_alloc(mm); 3683 if (unlikely(vma == NULL)) 3684 return ERR_PTR(-ENOMEM); 3685 3686 vma_set_range(vma, addr, addr + len, 0); 3687 vm_flags_init(vma, (vm_flags | mm->def_flags | 3688 VM_DONTEXPAND | VM_SOFTDIRTY) & ~VM_LOCKED_MASK); 3689 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 3690 3691 vma->vm_ops = ops; 3692 vma->vm_private_data = priv; 3693 3694 ret = insert_vm_struct(mm, vma); 3695 if (ret) 3696 goto out; 3697 3698 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT); 3699 3700 perf_event_mmap(vma); 3701 3702 return vma; 3703 3704 out: 3705 vm_area_free(vma); 3706 return ERR_PTR(ret); 3707 } 3708 3709 bool vma_is_special_mapping(const struct vm_area_struct *vma, 3710 const struct vm_special_mapping *sm) 3711 { 3712 return vma->vm_private_data == sm && 3713 (vma->vm_ops == &special_mapping_vmops || 3714 vma->vm_ops == &legacy_special_mapping_vmops); 3715 } 3716 3717 /* 3718 * Called with mm->mmap_lock held for writing. 3719 * Insert a new vma covering the given region, with the given flags. 3720 * Its pages are supplied by the given array of struct page *. 3721 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated. 3722 * The region past the last page supplied will always produce SIGBUS. 3723 * The array pointer and the pages it points to are assumed to stay alive 3724 * for as long as this mapping might exist. 3725 */ 3726 struct vm_area_struct *_install_special_mapping( 3727 struct mm_struct *mm, 3728 unsigned long addr, unsigned long len, 3729 unsigned long vm_flags, const struct vm_special_mapping *spec) 3730 { 3731 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec, 3732 &special_mapping_vmops); 3733 } 3734 3735 int install_special_mapping(struct mm_struct *mm, 3736 unsigned long addr, unsigned long len, 3737 unsigned long vm_flags, struct page **pages) 3738 { 3739 struct vm_area_struct *vma = __install_special_mapping( 3740 mm, addr, len, vm_flags, (void *)pages, 3741 &legacy_special_mapping_vmops); 3742 3743 return PTR_ERR_OR_ZERO(vma); 3744 } 3745 3746 static DEFINE_MUTEX(mm_all_locks_mutex); 3747 3748 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) 3749 { 3750 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 3751 /* 3752 * The LSB of head.next can't change from under us 3753 * because we hold the mm_all_locks_mutex. 3754 */ 3755 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock); 3756 /* 3757 * We can safely modify head.next after taking the 3758 * anon_vma->root->rwsem. If some other vma in this mm shares 3759 * the same anon_vma we won't take it again. 3760 * 3761 * No need of atomic instructions here, head.next 3762 * can't change from under us thanks to the 3763 * anon_vma->root->rwsem. 3764 */ 3765 if (__test_and_set_bit(0, (unsigned long *) 3766 &anon_vma->root->rb_root.rb_root.rb_node)) 3767 BUG(); 3768 } 3769 } 3770 3771 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) 3772 { 3773 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3774 /* 3775 * AS_MM_ALL_LOCKS can't change from under us because 3776 * we hold the mm_all_locks_mutex. 3777 * 3778 * Operations on ->flags have to be atomic because 3779 * even if AS_MM_ALL_LOCKS is stable thanks to the 3780 * mm_all_locks_mutex, there may be other cpus 3781 * changing other bitflags in parallel to us. 3782 */ 3783 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) 3784 BUG(); 3785 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock); 3786 } 3787 } 3788 3789 /* 3790 * This operation locks against the VM for all pte/vma/mm related 3791 * operations that could ever happen on a certain mm. This includes 3792 * vmtruncate, try_to_unmap, and all page faults. 3793 * 3794 * The caller must take the mmap_lock in write mode before calling 3795 * mm_take_all_locks(). The caller isn't allowed to release the 3796 * mmap_lock until mm_drop_all_locks() returns. 3797 * 3798 * mmap_lock in write mode is required in order to block all operations 3799 * that could modify pagetables and free pages without need of 3800 * altering the vma layout. It's also needed in write mode to avoid new 3801 * anon_vmas to be associated with existing vmas. 3802 * 3803 * A single task can't take more than one mm_take_all_locks() in a row 3804 * or it would deadlock. 3805 * 3806 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in 3807 * mapping->flags avoid to take the same lock twice, if more than one 3808 * vma in this mm is backed by the same anon_vma or address_space. 3809 * 3810 * We take locks in following order, accordingly to comment at beginning 3811 * of mm/rmap.c: 3812 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for 3813 * hugetlb mapping); 3814 * - all vmas marked locked 3815 * - all i_mmap_rwsem locks; 3816 * - all anon_vma->rwseml 3817 * 3818 * We can take all locks within these types randomly because the VM code 3819 * doesn't nest them and we protected from parallel mm_take_all_locks() by 3820 * mm_all_locks_mutex. 3821 * 3822 * mm_take_all_locks() and mm_drop_all_locks are expensive operations 3823 * that may have to take thousand of locks. 3824 * 3825 * mm_take_all_locks() can fail if it's interrupted by signals. 3826 */ 3827 int mm_take_all_locks(struct mm_struct *mm) 3828 { 3829 struct vm_area_struct *vma; 3830 struct anon_vma_chain *avc; 3831 VMA_ITERATOR(vmi, mm, 0); 3832 3833 mmap_assert_write_locked(mm); 3834 3835 mutex_lock(&mm_all_locks_mutex); 3836 3837 /* 3838 * vma_start_write() does not have a complement in mm_drop_all_locks() 3839 * because vma_start_write() is always asymmetrical; it marks a VMA as 3840 * being written to until mmap_write_unlock() or mmap_write_downgrade() 3841 * is reached. 3842 */ 3843 for_each_vma(vmi, vma) { 3844 if (signal_pending(current)) 3845 goto out_unlock; 3846 vma_start_write(vma); 3847 } 3848 3849 vma_iter_init(&vmi, mm, 0); 3850 for_each_vma(vmi, vma) { 3851 if (signal_pending(current)) 3852 goto out_unlock; 3853 if (vma->vm_file && vma->vm_file->f_mapping && 3854 is_vm_hugetlb_page(vma)) 3855 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3856 } 3857 3858 vma_iter_init(&vmi, mm, 0); 3859 for_each_vma(vmi, vma) { 3860 if (signal_pending(current)) 3861 goto out_unlock; 3862 if (vma->vm_file && vma->vm_file->f_mapping && 3863 !is_vm_hugetlb_page(vma)) 3864 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3865 } 3866 3867 vma_iter_init(&vmi, mm, 0); 3868 for_each_vma(vmi, vma) { 3869 if (signal_pending(current)) 3870 goto out_unlock; 3871 if (vma->anon_vma) 3872 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3873 vm_lock_anon_vma(mm, avc->anon_vma); 3874 } 3875 3876 return 0; 3877 3878 out_unlock: 3879 mm_drop_all_locks(mm); 3880 return -EINTR; 3881 } 3882 3883 static void vm_unlock_anon_vma(struct anon_vma *anon_vma) 3884 { 3885 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 3886 /* 3887 * The LSB of head.next can't change to 0 from under 3888 * us because we hold the mm_all_locks_mutex. 3889 * 3890 * We must however clear the bitflag before unlocking 3891 * the vma so the users using the anon_vma->rb_root will 3892 * never see our bitflag. 3893 * 3894 * No need of atomic instructions here, head.next 3895 * can't change from under us until we release the 3896 * anon_vma->root->rwsem. 3897 */ 3898 if (!__test_and_clear_bit(0, (unsigned long *) 3899 &anon_vma->root->rb_root.rb_root.rb_node)) 3900 BUG(); 3901 anon_vma_unlock_write(anon_vma); 3902 } 3903 } 3904 3905 static void vm_unlock_mapping(struct address_space *mapping) 3906 { 3907 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3908 /* 3909 * AS_MM_ALL_LOCKS can't change to 0 from under us 3910 * because we hold the mm_all_locks_mutex. 3911 */ 3912 i_mmap_unlock_write(mapping); 3913 if (!test_and_clear_bit(AS_MM_ALL_LOCKS, 3914 &mapping->flags)) 3915 BUG(); 3916 } 3917 } 3918 3919 /* 3920 * The mmap_lock cannot be released by the caller until 3921 * mm_drop_all_locks() returns. 3922 */ 3923 void mm_drop_all_locks(struct mm_struct *mm) 3924 { 3925 struct vm_area_struct *vma; 3926 struct anon_vma_chain *avc; 3927 VMA_ITERATOR(vmi, mm, 0); 3928 3929 mmap_assert_write_locked(mm); 3930 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); 3931 3932 for_each_vma(vmi, vma) { 3933 if (vma->anon_vma) 3934 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3935 vm_unlock_anon_vma(avc->anon_vma); 3936 if (vma->vm_file && vma->vm_file->f_mapping) 3937 vm_unlock_mapping(vma->vm_file->f_mapping); 3938 } 3939 3940 mutex_unlock(&mm_all_locks_mutex); 3941 } 3942 3943 /* 3944 * initialise the percpu counter for VM 3945 */ 3946 void __init mmap_init(void) 3947 { 3948 int ret; 3949 3950 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL); 3951 VM_BUG_ON(ret); 3952 } 3953 3954 /* 3955 * Initialise sysctl_user_reserve_kbytes. 3956 * 3957 * This is intended to prevent a user from starting a single memory hogging 3958 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER 3959 * mode. 3960 * 3961 * The default value is min(3% of free memory, 128MB) 3962 * 128MB is enough to recover with sshd/login, bash, and top/kill. 3963 */ 3964 static int init_user_reserve(void) 3965 { 3966 unsigned long free_kbytes; 3967 3968 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES)); 3969 3970 sysctl_user_reserve_kbytes = min(free_kbytes / 32, SZ_128K); 3971 return 0; 3972 } 3973 subsys_initcall(init_user_reserve); 3974 3975 /* 3976 * Initialise sysctl_admin_reserve_kbytes. 3977 * 3978 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin 3979 * to log in and kill a memory hogging process. 3980 * 3981 * Systems with more than 256MB will reserve 8MB, enough to recover 3982 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will 3983 * only reserve 3% of free pages by default. 3984 */ 3985 static int init_admin_reserve(void) 3986 { 3987 unsigned long free_kbytes; 3988 3989 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES)); 3990 3991 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, SZ_8K); 3992 return 0; 3993 } 3994 subsys_initcall(init_admin_reserve); 3995 3996 /* 3997 * Reinititalise user and admin reserves if memory is added or removed. 3998 * 3999 * The default user reserve max is 128MB, and the default max for the 4000 * admin reserve is 8MB. These are usually, but not always, enough to 4001 * enable recovery from a memory hogging process using login/sshd, a shell, 4002 * and tools like top. It may make sense to increase or even disable the 4003 * reserve depending on the existence of swap or variations in the recovery 4004 * tools. So, the admin may have changed them. 4005 * 4006 * If memory is added and the reserves have been eliminated or increased above 4007 * the default max, then we'll trust the admin. 4008 * 4009 * If memory is removed and there isn't enough free memory, then we 4010 * need to reset the reserves. 4011 * 4012 * Otherwise keep the reserve set by the admin. 4013 */ 4014 static int reserve_mem_notifier(struct notifier_block *nb, 4015 unsigned long action, void *data) 4016 { 4017 unsigned long tmp, free_kbytes; 4018 4019 switch (action) { 4020 case MEM_ONLINE: 4021 /* Default max is 128MB. Leave alone if modified by operator. */ 4022 tmp = sysctl_user_reserve_kbytes; 4023 if (tmp > 0 && tmp < SZ_128K) 4024 init_user_reserve(); 4025 4026 /* Default max is 8MB. Leave alone if modified by operator. */ 4027 tmp = sysctl_admin_reserve_kbytes; 4028 if (tmp > 0 && tmp < SZ_8K) 4029 init_admin_reserve(); 4030 4031 break; 4032 case MEM_OFFLINE: 4033 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES)); 4034 4035 if (sysctl_user_reserve_kbytes > free_kbytes) { 4036 init_user_reserve(); 4037 pr_info("vm.user_reserve_kbytes reset to %lu\n", 4038 sysctl_user_reserve_kbytes); 4039 } 4040 4041 if (sysctl_admin_reserve_kbytes > free_kbytes) { 4042 init_admin_reserve(); 4043 pr_info("vm.admin_reserve_kbytes reset to %lu\n", 4044 sysctl_admin_reserve_kbytes); 4045 } 4046 break; 4047 default: 4048 break; 4049 } 4050 return NOTIFY_OK; 4051 } 4052 4053 static int __meminit init_reserve_notifier(void) 4054 { 4055 if (hotplug_memory_notifier(reserve_mem_notifier, DEFAULT_CALLBACK_PRI)) 4056 pr_err("Failed registering memory add/remove notifier for admin reserve\n"); 4057 4058 return 0; 4059 } 4060 subsys_initcall(init_reserve_notifier); 4061