1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/mmap.c 4 * 5 * Written by obz. 6 * 7 * Address space accounting code <alan@lxorguk.ukuu.org.uk> 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/kernel.h> 13 #include <linux/slab.h> 14 #include <linux/backing-dev.h> 15 #include <linux/mm.h> 16 #include <linux/mm_inline.h> 17 #include <linux/shm.h> 18 #include <linux/mman.h> 19 #include <linux/pagemap.h> 20 #include <linux/swap.h> 21 #include <linux/syscalls.h> 22 #include <linux/capability.h> 23 #include <linux/init.h> 24 #include <linux/file.h> 25 #include <linux/fs.h> 26 #include <linux/personality.h> 27 #include <linux/security.h> 28 #include <linux/hugetlb.h> 29 #include <linux/shmem_fs.h> 30 #include <linux/profile.h> 31 #include <linux/export.h> 32 #include <linux/mount.h> 33 #include <linux/mempolicy.h> 34 #include <linux/rmap.h> 35 #include <linux/mmu_notifier.h> 36 #include <linux/mmdebug.h> 37 #include <linux/perf_event.h> 38 #include <linux/audit.h> 39 #include <linux/khugepaged.h> 40 #include <linux/uprobes.h> 41 #include <linux/notifier.h> 42 #include <linux/memory.h> 43 #include <linux/printk.h> 44 #include <linux/userfaultfd_k.h> 45 #include <linux/moduleparam.h> 46 #include <linux/pkeys.h> 47 #include <linux/oom.h> 48 #include <linux/sched/mm.h> 49 #include <linux/ksm.h> 50 51 #include <linux/uaccess.h> 52 #include <asm/cacheflush.h> 53 #include <asm/tlb.h> 54 #include <asm/mmu_context.h> 55 56 #define CREATE_TRACE_POINTS 57 #include <trace/events/mmap.h> 58 59 #include "internal.h" 60 61 #ifndef arch_mmap_check 62 #define arch_mmap_check(addr, len, flags) (0) 63 #endif 64 65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 66 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN; 67 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX; 68 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS; 69 #endif 70 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 71 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN; 72 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX; 73 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS; 74 #endif 75 76 static bool ignore_rlimit_data; 77 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644); 78 79 static void unmap_region(struct mm_struct *mm, struct ma_state *mas, 80 struct vm_area_struct *vma, struct vm_area_struct *prev, 81 struct vm_area_struct *next, unsigned long start, 82 unsigned long end, unsigned long tree_end, bool mm_wr_locked); 83 84 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags) 85 { 86 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags)); 87 } 88 89 /* Update vma->vm_page_prot to reflect vma->vm_flags. */ 90 void vma_set_page_prot(struct vm_area_struct *vma) 91 { 92 unsigned long vm_flags = vma->vm_flags; 93 pgprot_t vm_page_prot; 94 95 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags); 96 if (vma_wants_writenotify(vma, vm_page_prot)) { 97 vm_flags &= ~VM_SHARED; 98 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags); 99 } 100 /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */ 101 WRITE_ONCE(vma->vm_page_prot, vm_page_prot); 102 } 103 104 /* 105 * Requires inode->i_mapping->i_mmap_rwsem 106 */ 107 static void __remove_shared_vm_struct(struct vm_area_struct *vma, 108 struct file *file, struct address_space *mapping) 109 { 110 if (vma->vm_flags & VM_SHARED) 111 mapping_unmap_writable(mapping); 112 113 flush_dcache_mmap_lock(mapping); 114 vma_interval_tree_remove(vma, &mapping->i_mmap); 115 flush_dcache_mmap_unlock(mapping); 116 } 117 118 /* 119 * Unlink a file-based vm structure from its interval tree, to hide 120 * vma from rmap and vmtruncate before freeing its page tables. 121 */ 122 void unlink_file_vma(struct vm_area_struct *vma) 123 { 124 struct file *file = vma->vm_file; 125 126 if (file) { 127 struct address_space *mapping = file->f_mapping; 128 i_mmap_lock_write(mapping); 129 __remove_shared_vm_struct(vma, file, mapping); 130 i_mmap_unlock_write(mapping); 131 } 132 } 133 134 /* 135 * Close a vm structure and free it. 136 */ 137 static void remove_vma(struct vm_area_struct *vma, bool unreachable) 138 { 139 might_sleep(); 140 if (vma->vm_ops && vma->vm_ops->close) 141 vma->vm_ops->close(vma); 142 if (vma->vm_file) 143 fput(vma->vm_file); 144 mpol_put(vma_policy(vma)); 145 if (unreachable) 146 __vm_area_free(vma); 147 else 148 vm_area_free(vma); 149 } 150 151 static inline struct vm_area_struct *vma_prev_limit(struct vma_iterator *vmi, 152 unsigned long min) 153 { 154 return mas_prev(&vmi->mas, min); 155 } 156 157 /* 158 * check_brk_limits() - Use platform specific check of range & verify mlock 159 * limits. 160 * @addr: The address to check 161 * @len: The size of increase. 162 * 163 * Return: 0 on success. 164 */ 165 static int check_brk_limits(unsigned long addr, unsigned long len) 166 { 167 unsigned long mapped_addr; 168 169 mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED); 170 if (IS_ERR_VALUE(mapped_addr)) 171 return mapped_addr; 172 173 return mlock_future_ok(current->mm, current->mm->def_flags, len) 174 ? 0 : -EAGAIN; 175 } 176 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *brkvma, 177 unsigned long addr, unsigned long request, unsigned long flags); 178 SYSCALL_DEFINE1(brk, unsigned long, brk) 179 { 180 unsigned long newbrk, oldbrk, origbrk; 181 struct mm_struct *mm = current->mm; 182 struct vm_area_struct *brkvma, *next = NULL; 183 unsigned long min_brk; 184 bool populate = false; 185 LIST_HEAD(uf); 186 struct vma_iterator vmi; 187 188 if (mmap_write_lock_killable(mm)) 189 return -EINTR; 190 191 origbrk = mm->brk; 192 193 #ifdef CONFIG_COMPAT_BRK 194 /* 195 * CONFIG_COMPAT_BRK can still be overridden by setting 196 * randomize_va_space to 2, which will still cause mm->start_brk 197 * to be arbitrarily shifted 198 */ 199 if (current->brk_randomized) 200 min_brk = mm->start_brk; 201 else 202 min_brk = mm->end_data; 203 #else 204 min_brk = mm->start_brk; 205 #endif 206 if (brk < min_brk) 207 goto out; 208 209 /* 210 * Check against rlimit here. If this check is done later after the test 211 * of oldbrk with newbrk then it can escape the test and let the data 212 * segment grow beyond its set limit the in case where the limit is 213 * not page aligned -Ram Gupta 214 */ 215 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk, 216 mm->end_data, mm->start_data)) 217 goto out; 218 219 newbrk = PAGE_ALIGN(brk); 220 oldbrk = PAGE_ALIGN(mm->brk); 221 if (oldbrk == newbrk) { 222 mm->brk = brk; 223 goto success; 224 } 225 226 /* Always allow shrinking brk. */ 227 if (brk <= mm->brk) { 228 /* Search one past newbrk */ 229 vma_iter_init(&vmi, mm, newbrk); 230 brkvma = vma_find(&vmi, oldbrk); 231 if (!brkvma || brkvma->vm_start >= oldbrk) 232 goto out; /* mapping intersects with an existing non-brk vma. */ 233 /* 234 * mm->brk must be protected by write mmap_lock. 235 * do_vma_munmap() will drop the lock on success, so update it 236 * before calling do_vma_munmap(). 237 */ 238 mm->brk = brk; 239 if (do_vma_munmap(&vmi, brkvma, newbrk, oldbrk, &uf, true)) 240 goto out; 241 242 goto success_unlocked; 243 } 244 245 if (check_brk_limits(oldbrk, newbrk - oldbrk)) 246 goto out; 247 248 /* 249 * Only check if the next VMA is within the stack_guard_gap of the 250 * expansion area 251 */ 252 vma_iter_init(&vmi, mm, oldbrk); 253 next = vma_find(&vmi, newbrk + PAGE_SIZE + stack_guard_gap); 254 if (next && newbrk + PAGE_SIZE > vm_start_gap(next)) 255 goto out; 256 257 brkvma = vma_prev_limit(&vmi, mm->start_brk); 258 /* Ok, looks good - let it rip. */ 259 if (do_brk_flags(&vmi, brkvma, oldbrk, newbrk - oldbrk, 0) < 0) 260 goto out; 261 262 mm->brk = brk; 263 if (mm->def_flags & VM_LOCKED) 264 populate = true; 265 266 success: 267 mmap_write_unlock(mm); 268 success_unlocked: 269 userfaultfd_unmap_complete(mm, &uf); 270 if (populate) 271 mm_populate(oldbrk, newbrk - oldbrk); 272 return brk; 273 274 out: 275 mm->brk = origbrk; 276 mmap_write_unlock(mm); 277 return origbrk; 278 } 279 280 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE) 281 static void validate_mm(struct mm_struct *mm) 282 { 283 int bug = 0; 284 int i = 0; 285 struct vm_area_struct *vma; 286 VMA_ITERATOR(vmi, mm, 0); 287 288 mt_validate(&mm->mm_mt); 289 for_each_vma(vmi, vma) { 290 #ifdef CONFIG_DEBUG_VM_RB 291 struct anon_vma *anon_vma = vma->anon_vma; 292 struct anon_vma_chain *avc; 293 #endif 294 unsigned long vmi_start, vmi_end; 295 bool warn = 0; 296 297 vmi_start = vma_iter_addr(&vmi); 298 vmi_end = vma_iter_end(&vmi); 299 if (VM_WARN_ON_ONCE_MM(vma->vm_end != vmi_end, mm)) 300 warn = 1; 301 302 if (VM_WARN_ON_ONCE_MM(vma->vm_start != vmi_start, mm)) 303 warn = 1; 304 305 if (warn) { 306 pr_emerg("issue in %s\n", current->comm); 307 dump_stack(); 308 dump_vma(vma); 309 pr_emerg("tree range: %px start %lx end %lx\n", vma, 310 vmi_start, vmi_end - 1); 311 vma_iter_dump_tree(&vmi); 312 } 313 314 #ifdef CONFIG_DEBUG_VM_RB 315 if (anon_vma) { 316 anon_vma_lock_read(anon_vma); 317 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 318 anon_vma_interval_tree_verify(avc); 319 anon_vma_unlock_read(anon_vma); 320 } 321 #endif 322 i++; 323 } 324 if (i != mm->map_count) { 325 pr_emerg("map_count %d vma iterator %d\n", mm->map_count, i); 326 bug = 1; 327 } 328 VM_BUG_ON_MM(bug, mm); 329 } 330 331 #else /* !CONFIG_DEBUG_VM_MAPLE_TREE */ 332 #define validate_mm(mm) do { } while (0) 333 #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */ 334 335 /* 336 * vma has some anon_vma assigned, and is already inserted on that 337 * anon_vma's interval trees. 338 * 339 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the 340 * vma must be removed from the anon_vma's interval trees using 341 * anon_vma_interval_tree_pre_update_vma(). 342 * 343 * After the update, the vma will be reinserted using 344 * anon_vma_interval_tree_post_update_vma(). 345 * 346 * The entire update must be protected by exclusive mmap_lock and by 347 * the root anon_vma's mutex. 348 */ 349 static inline void 350 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma) 351 { 352 struct anon_vma_chain *avc; 353 354 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 355 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root); 356 } 357 358 static inline void 359 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma) 360 { 361 struct anon_vma_chain *avc; 362 363 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 364 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root); 365 } 366 367 static unsigned long count_vma_pages_range(struct mm_struct *mm, 368 unsigned long addr, unsigned long end) 369 { 370 VMA_ITERATOR(vmi, mm, addr); 371 struct vm_area_struct *vma; 372 unsigned long nr_pages = 0; 373 374 for_each_vma_range(vmi, vma, end) { 375 unsigned long vm_start = max(addr, vma->vm_start); 376 unsigned long vm_end = min(end, vma->vm_end); 377 378 nr_pages += PHYS_PFN(vm_end - vm_start); 379 } 380 381 return nr_pages; 382 } 383 384 static void __vma_link_file(struct vm_area_struct *vma, 385 struct address_space *mapping) 386 { 387 if (vma->vm_flags & VM_SHARED) 388 mapping_allow_writable(mapping); 389 390 flush_dcache_mmap_lock(mapping); 391 vma_interval_tree_insert(vma, &mapping->i_mmap); 392 flush_dcache_mmap_unlock(mapping); 393 } 394 395 static int vma_link(struct mm_struct *mm, struct vm_area_struct *vma) 396 { 397 VMA_ITERATOR(vmi, mm, 0); 398 struct address_space *mapping = NULL; 399 400 vma_iter_config(&vmi, vma->vm_start, vma->vm_end); 401 if (vma_iter_prealloc(&vmi, vma)) 402 return -ENOMEM; 403 404 vma_start_write(vma); 405 406 vma_iter_store(&vmi, vma); 407 408 if (vma->vm_file) { 409 mapping = vma->vm_file->f_mapping; 410 i_mmap_lock_write(mapping); 411 __vma_link_file(vma, mapping); 412 i_mmap_unlock_write(mapping); 413 } 414 415 mm->map_count++; 416 validate_mm(mm); 417 return 0; 418 } 419 420 /* 421 * init_multi_vma_prep() - Initializer for struct vma_prepare 422 * @vp: The vma_prepare struct 423 * @vma: The vma that will be altered once locked 424 * @next: The next vma if it is to be adjusted 425 * @remove: The first vma to be removed 426 * @remove2: The second vma to be removed 427 */ 428 static inline void init_multi_vma_prep(struct vma_prepare *vp, 429 struct vm_area_struct *vma, struct vm_area_struct *next, 430 struct vm_area_struct *remove, struct vm_area_struct *remove2) 431 { 432 memset(vp, 0, sizeof(struct vma_prepare)); 433 vp->vma = vma; 434 vp->anon_vma = vma->anon_vma; 435 vp->remove = remove; 436 vp->remove2 = remove2; 437 vp->adj_next = next; 438 if (!vp->anon_vma && next) 439 vp->anon_vma = next->anon_vma; 440 441 vp->file = vma->vm_file; 442 if (vp->file) 443 vp->mapping = vma->vm_file->f_mapping; 444 445 } 446 447 /* 448 * init_vma_prep() - Initializer wrapper for vma_prepare struct 449 * @vp: The vma_prepare struct 450 * @vma: The vma that will be altered once locked 451 */ 452 static inline void init_vma_prep(struct vma_prepare *vp, 453 struct vm_area_struct *vma) 454 { 455 init_multi_vma_prep(vp, vma, NULL, NULL, NULL); 456 } 457 458 459 /* 460 * vma_prepare() - Helper function for handling locking VMAs prior to altering 461 * @vp: The initialized vma_prepare struct 462 */ 463 static inline void vma_prepare(struct vma_prepare *vp) 464 { 465 if (vp->file) { 466 uprobe_munmap(vp->vma, vp->vma->vm_start, vp->vma->vm_end); 467 468 if (vp->adj_next) 469 uprobe_munmap(vp->adj_next, vp->adj_next->vm_start, 470 vp->adj_next->vm_end); 471 472 i_mmap_lock_write(vp->mapping); 473 if (vp->insert && vp->insert->vm_file) { 474 /* 475 * Put into interval tree now, so instantiated pages 476 * are visible to arm/parisc __flush_dcache_page 477 * throughout; but we cannot insert into address 478 * space until vma start or end is updated. 479 */ 480 __vma_link_file(vp->insert, 481 vp->insert->vm_file->f_mapping); 482 } 483 } 484 485 if (vp->anon_vma) { 486 anon_vma_lock_write(vp->anon_vma); 487 anon_vma_interval_tree_pre_update_vma(vp->vma); 488 if (vp->adj_next) 489 anon_vma_interval_tree_pre_update_vma(vp->adj_next); 490 } 491 492 if (vp->file) { 493 flush_dcache_mmap_lock(vp->mapping); 494 vma_interval_tree_remove(vp->vma, &vp->mapping->i_mmap); 495 if (vp->adj_next) 496 vma_interval_tree_remove(vp->adj_next, 497 &vp->mapping->i_mmap); 498 } 499 500 } 501 502 /* 503 * vma_complete- Helper function for handling the unlocking after altering VMAs, 504 * or for inserting a VMA. 505 * 506 * @vp: The vma_prepare struct 507 * @vmi: The vma iterator 508 * @mm: The mm_struct 509 */ 510 static inline void vma_complete(struct vma_prepare *vp, 511 struct vma_iterator *vmi, struct mm_struct *mm) 512 { 513 if (vp->file) { 514 if (vp->adj_next) 515 vma_interval_tree_insert(vp->adj_next, 516 &vp->mapping->i_mmap); 517 vma_interval_tree_insert(vp->vma, &vp->mapping->i_mmap); 518 flush_dcache_mmap_unlock(vp->mapping); 519 } 520 521 if (vp->remove && vp->file) { 522 __remove_shared_vm_struct(vp->remove, vp->file, vp->mapping); 523 if (vp->remove2) 524 __remove_shared_vm_struct(vp->remove2, vp->file, 525 vp->mapping); 526 } else if (vp->insert) { 527 /* 528 * split_vma has split insert from vma, and needs 529 * us to insert it before dropping the locks 530 * (it may either follow vma or precede it). 531 */ 532 vma_iter_store(vmi, vp->insert); 533 mm->map_count++; 534 } 535 536 if (vp->anon_vma) { 537 anon_vma_interval_tree_post_update_vma(vp->vma); 538 if (vp->adj_next) 539 anon_vma_interval_tree_post_update_vma(vp->adj_next); 540 anon_vma_unlock_write(vp->anon_vma); 541 } 542 543 if (vp->file) { 544 i_mmap_unlock_write(vp->mapping); 545 uprobe_mmap(vp->vma); 546 547 if (vp->adj_next) 548 uprobe_mmap(vp->adj_next); 549 } 550 551 if (vp->remove) { 552 again: 553 vma_mark_detached(vp->remove, true); 554 if (vp->file) { 555 uprobe_munmap(vp->remove, vp->remove->vm_start, 556 vp->remove->vm_end); 557 fput(vp->file); 558 } 559 if (vp->remove->anon_vma) 560 anon_vma_merge(vp->vma, vp->remove); 561 mm->map_count--; 562 mpol_put(vma_policy(vp->remove)); 563 if (!vp->remove2) 564 WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end); 565 vm_area_free(vp->remove); 566 567 /* 568 * In mprotect's case 6 (see comments on vma_merge), 569 * we are removing both mid and next vmas 570 */ 571 if (vp->remove2) { 572 vp->remove = vp->remove2; 573 vp->remove2 = NULL; 574 goto again; 575 } 576 } 577 if (vp->insert && vp->file) 578 uprobe_mmap(vp->insert); 579 validate_mm(mm); 580 } 581 582 /* 583 * dup_anon_vma() - Helper function to duplicate anon_vma 584 * @dst: The destination VMA 585 * @src: The source VMA 586 * 587 * Returns: 0 on success. 588 */ 589 static inline int dup_anon_vma(struct vm_area_struct *dst, 590 struct vm_area_struct *src) 591 { 592 /* 593 * Easily overlooked: when mprotect shifts the boundary, make sure the 594 * expanding vma has anon_vma set if the shrinking vma had, to cover any 595 * anon pages imported. 596 */ 597 if (src->anon_vma && !dst->anon_vma) { 598 vma_assert_write_locked(dst); 599 dst->anon_vma = src->anon_vma; 600 return anon_vma_clone(dst, src); 601 } 602 603 return 0; 604 } 605 606 /* 607 * vma_expand - Expand an existing VMA 608 * 609 * @vmi: The vma iterator 610 * @vma: The vma to expand 611 * @start: The start of the vma 612 * @end: The exclusive end of the vma 613 * @pgoff: The page offset of vma 614 * @next: The current of next vma. 615 * 616 * Expand @vma to @start and @end. Can expand off the start and end. Will 617 * expand over @next if it's different from @vma and @end == @next->vm_end. 618 * Checking if the @vma can expand and merge with @next needs to be handled by 619 * the caller. 620 * 621 * Returns: 0 on success 622 */ 623 int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma, 624 unsigned long start, unsigned long end, pgoff_t pgoff, 625 struct vm_area_struct *next) 626 { 627 bool remove_next = false; 628 struct vma_prepare vp; 629 630 vma_start_write(vma); 631 if (next && (vma != next) && (end == next->vm_end)) { 632 int ret; 633 634 remove_next = true; 635 vma_start_write(next); 636 ret = dup_anon_vma(vma, next); 637 if (ret) 638 return ret; 639 } 640 641 init_multi_vma_prep(&vp, vma, NULL, remove_next ? next : NULL, NULL); 642 /* Not merging but overwriting any part of next is not handled. */ 643 VM_WARN_ON(next && !vp.remove && 644 next != vma && end > next->vm_start); 645 /* Only handles expanding */ 646 VM_WARN_ON(vma->vm_start < start || vma->vm_end > end); 647 648 /* Note: vma iterator must be pointing to 'start' */ 649 vma_iter_config(vmi, start, end); 650 if (vma_iter_prealloc(vmi, vma)) 651 goto nomem; 652 653 vma_prepare(&vp); 654 vma_adjust_trans_huge(vma, start, end, 0); 655 vma->vm_start = start; 656 vma->vm_end = end; 657 vma->vm_pgoff = pgoff; 658 vma_iter_store(vmi, vma); 659 660 vma_complete(&vp, vmi, vma->vm_mm); 661 return 0; 662 663 nomem: 664 return -ENOMEM; 665 } 666 667 /* 668 * vma_shrink() - Reduce an existing VMAs memory area 669 * @vmi: The vma iterator 670 * @vma: The VMA to modify 671 * @start: The new start 672 * @end: The new end 673 * 674 * Returns: 0 on success, -ENOMEM otherwise 675 */ 676 int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma, 677 unsigned long start, unsigned long end, pgoff_t pgoff) 678 { 679 struct vma_prepare vp; 680 681 WARN_ON((vma->vm_start != start) && (vma->vm_end != end)); 682 683 if (vma->vm_start < start) 684 vma_iter_config(vmi, vma->vm_start, start); 685 else 686 vma_iter_config(vmi, end, vma->vm_end); 687 688 if (vma_iter_prealloc(vmi, NULL)) 689 return -ENOMEM; 690 691 vma_start_write(vma); 692 693 init_vma_prep(&vp, vma); 694 vma_prepare(&vp); 695 vma_adjust_trans_huge(vma, start, end, 0); 696 697 vma_iter_clear(vmi); 698 vma->vm_start = start; 699 vma->vm_end = end; 700 vma->vm_pgoff = pgoff; 701 vma_complete(&vp, vmi, vma->vm_mm); 702 return 0; 703 } 704 705 /* 706 * If the vma has a ->close operation then the driver probably needs to release 707 * per-vma resources, so we don't attempt to merge those if the caller indicates 708 * the current vma may be removed as part of the merge. 709 */ 710 static inline bool is_mergeable_vma(struct vm_area_struct *vma, 711 struct file *file, unsigned long vm_flags, 712 struct vm_userfaultfd_ctx vm_userfaultfd_ctx, 713 struct anon_vma_name *anon_name, bool may_remove_vma) 714 { 715 /* 716 * VM_SOFTDIRTY should not prevent from VMA merging, if we 717 * match the flags but dirty bit -- the caller should mark 718 * merged VMA as dirty. If dirty bit won't be excluded from 719 * comparison, we increase pressure on the memory system forcing 720 * the kernel to generate new VMAs when old one could be 721 * extended instead. 722 */ 723 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY) 724 return false; 725 if (vma->vm_file != file) 726 return false; 727 if (may_remove_vma && vma->vm_ops && vma->vm_ops->close) 728 return false; 729 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx)) 730 return false; 731 if (!anon_vma_name_eq(anon_vma_name(vma), anon_name)) 732 return false; 733 return true; 734 } 735 736 static inline bool is_mergeable_anon_vma(struct anon_vma *anon_vma1, 737 struct anon_vma *anon_vma2, struct vm_area_struct *vma) 738 { 739 /* 740 * The list_is_singular() test is to avoid merging VMA cloned from 741 * parents. This can improve scalability caused by anon_vma lock. 742 */ 743 if ((!anon_vma1 || !anon_vma2) && (!vma || 744 list_is_singular(&vma->anon_vma_chain))) 745 return true; 746 return anon_vma1 == anon_vma2; 747 } 748 749 /* 750 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 751 * in front of (at a lower virtual address and file offset than) the vma. 752 * 753 * We cannot merge two vmas if they have differently assigned (non-NULL) 754 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 755 * 756 * We don't check here for the merged mmap wrapping around the end of pagecache 757 * indices (16TB on ia32) because do_mmap() does not permit mmap's which 758 * wrap, nor mmaps which cover the final page at index -1UL. 759 * 760 * We assume the vma may be removed as part of the merge. 761 */ 762 static bool 763 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags, 764 struct anon_vma *anon_vma, struct file *file, 765 pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx, 766 struct anon_vma_name *anon_name) 767 { 768 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, true) && 769 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 770 if (vma->vm_pgoff == vm_pgoff) 771 return true; 772 } 773 return false; 774 } 775 776 /* 777 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 778 * beyond (at a higher virtual address and file offset than) the vma. 779 * 780 * We cannot merge two vmas if they have differently assigned (non-NULL) 781 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 782 * 783 * We assume that vma is not removed as part of the merge. 784 */ 785 static bool 786 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags, 787 struct anon_vma *anon_vma, struct file *file, 788 pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx, 789 struct anon_vma_name *anon_name) 790 { 791 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, false) && 792 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 793 pgoff_t vm_pglen; 794 vm_pglen = vma_pages(vma); 795 if (vma->vm_pgoff + vm_pglen == vm_pgoff) 796 return true; 797 } 798 return false; 799 } 800 801 /* 802 * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name), 803 * figure out whether that can be merged with its predecessor or its 804 * successor. Or both (it neatly fills a hole). 805 * 806 * In most cases - when called for mmap, brk or mremap - [addr,end) is 807 * certain not to be mapped by the time vma_merge is called; but when 808 * called for mprotect, it is certain to be already mapped (either at 809 * an offset within prev, or at the start of next), and the flags of 810 * this area are about to be changed to vm_flags - and the no-change 811 * case has already been eliminated. 812 * 813 * The following mprotect cases have to be considered, where **** is 814 * the area passed down from mprotect_fixup, never extending beyond one 815 * vma, PPPP is the previous vma, CCCC is a concurrent vma that starts 816 * at the same address as **** and is of the same or larger span, and 817 * NNNN the next vma after ****: 818 * 819 * **** **** **** 820 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPCCCCCC 821 * cannot merge might become might become 822 * PPNNNNNNNNNN PPPPPPPPPPCC 823 * mmap, brk or case 4 below case 5 below 824 * mremap move: 825 * **** **** 826 * PPPP NNNN PPPPCCCCNNNN 827 * might become might become 828 * PPPPPPPPPPPP 1 or PPPPPPPPPPPP 6 or 829 * PPPPPPPPNNNN 2 or PPPPPPPPNNNN 7 or 830 * PPPPNNNNNNNN 3 PPPPNNNNNNNN 8 831 * 832 * It is important for case 8 that the vma CCCC overlapping the 833 * region **** is never going to extended over NNNN. Instead NNNN must 834 * be extended in region **** and CCCC must be removed. This way in 835 * all cases where vma_merge succeeds, the moment vma_merge drops the 836 * rmap_locks, the properties of the merged vma will be already 837 * correct for the whole merged range. Some of those properties like 838 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must 839 * be correct for the whole merged range immediately after the 840 * rmap_locks are released. Otherwise if NNNN would be removed and 841 * CCCC would be extended over the NNNN range, remove_migration_ptes 842 * or other rmap walkers (if working on addresses beyond the "end" 843 * parameter) may establish ptes with the wrong permissions of CCCC 844 * instead of the right permissions of NNNN. 845 * 846 * In the code below: 847 * PPPP is represented by *prev 848 * CCCC is represented by *curr or not represented at all (NULL) 849 * NNNN is represented by *next or not represented at all (NULL) 850 * **** is not represented - it will be merged and the vma containing the 851 * area is returned, or the function will return NULL 852 */ 853 struct vm_area_struct *vma_merge(struct vma_iterator *vmi, struct mm_struct *mm, 854 struct vm_area_struct *prev, unsigned long addr, 855 unsigned long end, unsigned long vm_flags, 856 struct anon_vma *anon_vma, struct file *file, 857 pgoff_t pgoff, struct mempolicy *policy, 858 struct vm_userfaultfd_ctx vm_userfaultfd_ctx, 859 struct anon_vma_name *anon_name) 860 { 861 struct vm_area_struct *curr, *next, *res; 862 struct vm_area_struct *vma, *adjust, *remove, *remove2; 863 struct vma_prepare vp; 864 pgoff_t vma_pgoff; 865 int err = 0; 866 bool merge_prev = false; 867 bool merge_next = false; 868 bool vma_expanded = false; 869 unsigned long vma_start = addr; 870 unsigned long vma_end = end; 871 pgoff_t pglen = (end - addr) >> PAGE_SHIFT; 872 long adj_start = 0; 873 874 /* 875 * We later require that vma->vm_flags == vm_flags, 876 * so this tests vma->vm_flags & VM_SPECIAL, too. 877 */ 878 if (vm_flags & VM_SPECIAL) 879 return NULL; 880 881 /* Does the input range span an existing VMA? (cases 5 - 8) */ 882 curr = find_vma_intersection(mm, prev ? prev->vm_end : 0, end); 883 884 if (!curr || /* cases 1 - 4 */ 885 end == curr->vm_end) /* cases 6 - 8, adjacent VMA */ 886 next = vma_lookup(mm, end); 887 else 888 next = NULL; /* case 5 */ 889 890 if (prev) { 891 vma_start = prev->vm_start; 892 vma_pgoff = prev->vm_pgoff; 893 894 /* Can we merge the predecessor? */ 895 if (addr == prev->vm_end && mpol_equal(vma_policy(prev), policy) 896 && can_vma_merge_after(prev, vm_flags, anon_vma, file, 897 pgoff, vm_userfaultfd_ctx, anon_name)) { 898 merge_prev = true; 899 vma_prev(vmi); 900 } 901 } 902 903 /* Can we merge the successor? */ 904 if (next && mpol_equal(policy, vma_policy(next)) && 905 can_vma_merge_before(next, vm_flags, anon_vma, file, pgoff+pglen, 906 vm_userfaultfd_ctx, anon_name)) { 907 merge_next = true; 908 } 909 910 /* Verify some invariant that must be enforced by the caller. */ 911 VM_WARN_ON(prev && addr <= prev->vm_start); 912 VM_WARN_ON(curr && (addr != curr->vm_start || end > curr->vm_end)); 913 VM_WARN_ON(addr >= end); 914 915 if (!merge_prev && !merge_next) 916 return NULL; /* Not mergeable. */ 917 918 if (merge_prev) 919 vma_start_write(prev); 920 921 res = vma = prev; 922 remove = remove2 = adjust = NULL; 923 924 /* Can we merge both the predecessor and the successor? */ 925 if (merge_prev && merge_next && 926 is_mergeable_anon_vma(prev->anon_vma, next->anon_vma, NULL)) { 927 vma_start_write(next); 928 remove = next; /* case 1 */ 929 vma_end = next->vm_end; 930 err = dup_anon_vma(prev, next); 931 if (curr) { /* case 6 */ 932 vma_start_write(curr); 933 remove = curr; 934 remove2 = next; 935 if (!next->anon_vma) 936 err = dup_anon_vma(prev, curr); 937 } 938 } else if (merge_prev) { /* case 2 */ 939 if (curr) { 940 vma_start_write(curr); 941 err = dup_anon_vma(prev, curr); 942 if (end == curr->vm_end) { /* case 7 */ 943 remove = curr; 944 } else { /* case 5 */ 945 adjust = curr; 946 adj_start = (end - curr->vm_start); 947 } 948 } 949 } else { /* merge_next */ 950 vma_start_write(next); 951 res = next; 952 if (prev && addr < prev->vm_end) { /* case 4 */ 953 vma_start_write(prev); 954 vma_end = addr; 955 adjust = next; 956 adj_start = -(prev->vm_end - addr); 957 err = dup_anon_vma(next, prev); 958 } else { 959 /* 960 * Note that cases 3 and 8 are the ONLY ones where prev 961 * is permitted to be (but is not necessarily) NULL. 962 */ 963 vma = next; /* case 3 */ 964 vma_start = addr; 965 vma_end = next->vm_end; 966 vma_pgoff = next->vm_pgoff - pglen; 967 if (curr) { /* case 8 */ 968 vma_pgoff = curr->vm_pgoff; 969 vma_start_write(curr); 970 remove = curr; 971 err = dup_anon_vma(next, curr); 972 } 973 } 974 } 975 976 /* Error in anon_vma clone. */ 977 if (err) 978 return NULL; 979 980 if (vma_start < vma->vm_start || vma_end > vma->vm_end) 981 vma_expanded = true; 982 983 if (vma_expanded) { 984 vma_iter_config(vmi, vma_start, vma_end); 985 } else { 986 vma_iter_config(vmi, adjust->vm_start + adj_start, 987 adjust->vm_end); 988 } 989 990 if (vma_iter_prealloc(vmi, vma)) 991 return NULL; 992 993 init_multi_vma_prep(&vp, vma, adjust, remove, remove2); 994 VM_WARN_ON(vp.anon_vma && adjust && adjust->anon_vma && 995 vp.anon_vma != adjust->anon_vma); 996 997 vma_prepare(&vp); 998 vma_adjust_trans_huge(vma, vma_start, vma_end, adj_start); 999 1000 vma->vm_start = vma_start; 1001 vma->vm_end = vma_end; 1002 vma->vm_pgoff = vma_pgoff; 1003 1004 if (vma_expanded) 1005 vma_iter_store(vmi, vma); 1006 1007 if (adj_start) { 1008 adjust->vm_start += adj_start; 1009 adjust->vm_pgoff += adj_start >> PAGE_SHIFT; 1010 if (adj_start < 0) { 1011 WARN_ON(vma_expanded); 1012 vma_iter_store(vmi, next); 1013 } 1014 } 1015 1016 vma_complete(&vp, vmi, mm); 1017 khugepaged_enter_vma(res, vm_flags); 1018 return res; 1019 } 1020 1021 /* 1022 * Rough compatibility check to quickly see if it's even worth looking 1023 * at sharing an anon_vma. 1024 * 1025 * They need to have the same vm_file, and the flags can only differ 1026 * in things that mprotect may change. 1027 * 1028 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that 1029 * we can merge the two vma's. For example, we refuse to merge a vma if 1030 * there is a vm_ops->close() function, because that indicates that the 1031 * driver is doing some kind of reference counting. But that doesn't 1032 * really matter for the anon_vma sharing case. 1033 */ 1034 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b) 1035 { 1036 return a->vm_end == b->vm_start && 1037 mpol_equal(vma_policy(a), vma_policy(b)) && 1038 a->vm_file == b->vm_file && 1039 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) && 1040 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT); 1041 } 1042 1043 /* 1044 * Do some basic sanity checking to see if we can re-use the anon_vma 1045 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be 1046 * the same as 'old', the other will be the new one that is trying 1047 * to share the anon_vma. 1048 * 1049 * NOTE! This runs with mmap_lock held for reading, so it is possible that 1050 * the anon_vma of 'old' is concurrently in the process of being set up 1051 * by another page fault trying to merge _that_. But that's ok: if it 1052 * is being set up, that automatically means that it will be a singleton 1053 * acceptable for merging, so we can do all of this optimistically. But 1054 * we do that READ_ONCE() to make sure that we never re-load the pointer. 1055 * 1056 * IOW: that the "list_is_singular()" test on the anon_vma_chain only 1057 * matters for the 'stable anon_vma' case (ie the thing we want to avoid 1058 * is to return an anon_vma that is "complex" due to having gone through 1059 * a fork). 1060 * 1061 * We also make sure that the two vma's are compatible (adjacent, 1062 * and with the same memory policies). That's all stable, even with just 1063 * a read lock on the mmap_lock. 1064 */ 1065 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b) 1066 { 1067 if (anon_vma_compatible(a, b)) { 1068 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma); 1069 1070 if (anon_vma && list_is_singular(&old->anon_vma_chain)) 1071 return anon_vma; 1072 } 1073 return NULL; 1074 } 1075 1076 /* 1077 * find_mergeable_anon_vma is used by anon_vma_prepare, to check 1078 * neighbouring vmas for a suitable anon_vma, before it goes off 1079 * to allocate a new anon_vma. It checks because a repetitive 1080 * sequence of mprotects and faults may otherwise lead to distinct 1081 * anon_vmas being allocated, preventing vma merge in subsequent 1082 * mprotect. 1083 */ 1084 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) 1085 { 1086 MA_STATE(mas, &vma->vm_mm->mm_mt, vma->vm_end, vma->vm_end); 1087 struct anon_vma *anon_vma = NULL; 1088 struct vm_area_struct *prev, *next; 1089 1090 /* Try next first. */ 1091 next = mas_walk(&mas); 1092 if (next) { 1093 anon_vma = reusable_anon_vma(next, vma, next); 1094 if (anon_vma) 1095 return anon_vma; 1096 } 1097 1098 prev = mas_prev(&mas, 0); 1099 VM_BUG_ON_VMA(prev != vma, vma); 1100 prev = mas_prev(&mas, 0); 1101 /* Try prev next. */ 1102 if (prev) 1103 anon_vma = reusable_anon_vma(prev, prev, vma); 1104 1105 /* 1106 * We might reach here with anon_vma == NULL if we can't find 1107 * any reusable anon_vma. 1108 * There's no absolute need to look only at touching neighbours: 1109 * we could search further afield for "compatible" anon_vmas. 1110 * But it would probably just be a waste of time searching, 1111 * or lead to too many vmas hanging off the same anon_vma. 1112 * We're trying to allow mprotect remerging later on, 1113 * not trying to minimize memory used for anon_vmas. 1114 */ 1115 return anon_vma; 1116 } 1117 1118 /* 1119 * If a hint addr is less than mmap_min_addr change hint to be as 1120 * low as possible but still greater than mmap_min_addr 1121 */ 1122 static inline unsigned long round_hint_to_min(unsigned long hint) 1123 { 1124 hint &= PAGE_MASK; 1125 if (((void *)hint != NULL) && 1126 (hint < mmap_min_addr)) 1127 return PAGE_ALIGN(mmap_min_addr); 1128 return hint; 1129 } 1130 1131 bool mlock_future_ok(struct mm_struct *mm, unsigned long flags, 1132 unsigned long bytes) 1133 { 1134 unsigned long locked_pages, limit_pages; 1135 1136 if (!(flags & VM_LOCKED) || capable(CAP_IPC_LOCK)) 1137 return true; 1138 1139 locked_pages = bytes >> PAGE_SHIFT; 1140 locked_pages += mm->locked_vm; 1141 1142 limit_pages = rlimit(RLIMIT_MEMLOCK); 1143 limit_pages >>= PAGE_SHIFT; 1144 1145 return locked_pages <= limit_pages; 1146 } 1147 1148 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode) 1149 { 1150 if (S_ISREG(inode->i_mode)) 1151 return MAX_LFS_FILESIZE; 1152 1153 if (S_ISBLK(inode->i_mode)) 1154 return MAX_LFS_FILESIZE; 1155 1156 if (S_ISSOCK(inode->i_mode)) 1157 return MAX_LFS_FILESIZE; 1158 1159 /* Special "we do even unsigned file positions" case */ 1160 if (file->f_mode & FMODE_UNSIGNED_OFFSET) 1161 return 0; 1162 1163 /* Yes, random drivers might want more. But I'm tired of buggy drivers */ 1164 return ULONG_MAX; 1165 } 1166 1167 static inline bool file_mmap_ok(struct file *file, struct inode *inode, 1168 unsigned long pgoff, unsigned long len) 1169 { 1170 u64 maxsize = file_mmap_size_max(file, inode); 1171 1172 if (maxsize && len > maxsize) 1173 return false; 1174 maxsize -= len; 1175 if (pgoff > maxsize >> PAGE_SHIFT) 1176 return false; 1177 return true; 1178 } 1179 1180 /* 1181 * The caller must write-lock current->mm->mmap_lock. 1182 */ 1183 unsigned long do_mmap(struct file *file, unsigned long addr, 1184 unsigned long len, unsigned long prot, 1185 unsigned long flags, vm_flags_t vm_flags, 1186 unsigned long pgoff, unsigned long *populate, 1187 struct list_head *uf) 1188 { 1189 struct mm_struct *mm = current->mm; 1190 int pkey = 0; 1191 1192 *populate = 0; 1193 1194 if (!len) 1195 return -EINVAL; 1196 1197 /* 1198 * Does the application expect PROT_READ to imply PROT_EXEC? 1199 * 1200 * (the exception is when the underlying filesystem is noexec 1201 * mounted, in which case we dont add PROT_EXEC.) 1202 */ 1203 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC)) 1204 if (!(file && path_noexec(&file->f_path))) 1205 prot |= PROT_EXEC; 1206 1207 /* force arch specific MAP_FIXED handling in get_unmapped_area */ 1208 if (flags & MAP_FIXED_NOREPLACE) 1209 flags |= MAP_FIXED; 1210 1211 if (!(flags & MAP_FIXED)) 1212 addr = round_hint_to_min(addr); 1213 1214 /* Careful about overflows.. */ 1215 len = PAGE_ALIGN(len); 1216 if (!len) 1217 return -ENOMEM; 1218 1219 /* offset overflow? */ 1220 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff) 1221 return -EOVERFLOW; 1222 1223 /* Too many mappings? */ 1224 if (mm->map_count > sysctl_max_map_count) 1225 return -ENOMEM; 1226 1227 /* Obtain the address to map to. we verify (or select) it and ensure 1228 * that it represents a valid section of the address space. 1229 */ 1230 addr = get_unmapped_area(file, addr, len, pgoff, flags); 1231 if (IS_ERR_VALUE(addr)) 1232 return addr; 1233 1234 if (flags & MAP_FIXED_NOREPLACE) { 1235 if (find_vma_intersection(mm, addr, addr + len)) 1236 return -EEXIST; 1237 } 1238 1239 if (prot == PROT_EXEC) { 1240 pkey = execute_only_pkey(mm); 1241 if (pkey < 0) 1242 pkey = 0; 1243 } 1244 1245 /* Do simple checking here so the lower-level routines won't have 1246 * to. we assume access permissions have been handled by the open 1247 * of the memory object, so we don't do any here. 1248 */ 1249 vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) | 1250 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 1251 1252 if (flags & MAP_LOCKED) 1253 if (!can_do_mlock()) 1254 return -EPERM; 1255 1256 if (!mlock_future_ok(mm, vm_flags, len)) 1257 return -EAGAIN; 1258 1259 if (file) { 1260 struct inode *inode = file_inode(file); 1261 unsigned long flags_mask; 1262 1263 if (!file_mmap_ok(file, inode, pgoff, len)) 1264 return -EOVERFLOW; 1265 1266 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags; 1267 1268 switch (flags & MAP_TYPE) { 1269 case MAP_SHARED: 1270 /* 1271 * Force use of MAP_SHARED_VALIDATE with non-legacy 1272 * flags. E.g. MAP_SYNC is dangerous to use with 1273 * MAP_SHARED as you don't know which consistency model 1274 * you will get. We silently ignore unsupported flags 1275 * with MAP_SHARED to preserve backward compatibility. 1276 */ 1277 flags &= LEGACY_MAP_MASK; 1278 fallthrough; 1279 case MAP_SHARED_VALIDATE: 1280 if (flags & ~flags_mask) 1281 return -EOPNOTSUPP; 1282 if (prot & PROT_WRITE) { 1283 if (!(file->f_mode & FMODE_WRITE)) 1284 return -EACCES; 1285 if (IS_SWAPFILE(file->f_mapping->host)) 1286 return -ETXTBSY; 1287 } 1288 1289 /* 1290 * Make sure we don't allow writing to an append-only 1291 * file.. 1292 */ 1293 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE)) 1294 return -EACCES; 1295 1296 vm_flags |= VM_SHARED | VM_MAYSHARE; 1297 if (!(file->f_mode & FMODE_WRITE)) 1298 vm_flags &= ~(VM_MAYWRITE | VM_SHARED); 1299 fallthrough; 1300 case MAP_PRIVATE: 1301 if (!(file->f_mode & FMODE_READ)) 1302 return -EACCES; 1303 if (path_noexec(&file->f_path)) { 1304 if (vm_flags & VM_EXEC) 1305 return -EPERM; 1306 vm_flags &= ~VM_MAYEXEC; 1307 } 1308 1309 if (!file->f_op->mmap) 1310 return -ENODEV; 1311 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1312 return -EINVAL; 1313 break; 1314 1315 default: 1316 return -EINVAL; 1317 } 1318 } else { 1319 switch (flags & MAP_TYPE) { 1320 case MAP_SHARED: 1321 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1322 return -EINVAL; 1323 /* 1324 * Ignore pgoff. 1325 */ 1326 pgoff = 0; 1327 vm_flags |= VM_SHARED | VM_MAYSHARE; 1328 break; 1329 case MAP_PRIVATE: 1330 /* 1331 * Set pgoff according to addr for anon_vma. 1332 */ 1333 pgoff = addr >> PAGE_SHIFT; 1334 break; 1335 default: 1336 return -EINVAL; 1337 } 1338 } 1339 1340 /* 1341 * Set 'VM_NORESERVE' if we should not account for the 1342 * memory use of this mapping. 1343 */ 1344 if (flags & MAP_NORESERVE) { 1345 /* We honor MAP_NORESERVE if allowed to overcommit */ 1346 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER) 1347 vm_flags |= VM_NORESERVE; 1348 1349 /* hugetlb applies strict overcommit unless MAP_NORESERVE */ 1350 if (file && is_file_hugepages(file)) 1351 vm_flags |= VM_NORESERVE; 1352 } 1353 1354 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf); 1355 if (!IS_ERR_VALUE(addr) && 1356 ((vm_flags & VM_LOCKED) || 1357 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE)) 1358 *populate = len; 1359 return addr; 1360 } 1361 1362 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len, 1363 unsigned long prot, unsigned long flags, 1364 unsigned long fd, unsigned long pgoff) 1365 { 1366 struct file *file = NULL; 1367 unsigned long retval; 1368 1369 if (!(flags & MAP_ANONYMOUS)) { 1370 audit_mmap_fd(fd, flags); 1371 file = fget(fd); 1372 if (!file) 1373 return -EBADF; 1374 if (is_file_hugepages(file)) { 1375 len = ALIGN(len, huge_page_size(hstate_file(file))); 1376 } else if (unlikely(flags & MAP_HUGETLB)) { 1377 retval = -EINVAL; 1378 goto out_fput; 1379 } 1380 } else if (flags & MAP_HUGETLB) { 1381 struct hstate *hs; 1382 1383 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 1384 if (!hs) 1385 return -EINVAL; 1386 1387 len = ALIGN(len, huge_page_size(hs)); 1388 /* 1389 * VM_NORESERVE is used because the reservations will be 1390 * taken when vm_ops->mmap() is called 1391 */ 1392 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, 1393 VM_NORESERVE, 1394 HUGETLB_ANONHUGE_INODE, 1395 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 1396 if (IS_ERR(file)) 1397 return PTR_ERR(file); 1398 } 1399 1400 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1401 out_fput: 1402 if (file) 1403 fput(file); 1404 return retval; 1405 } 1406 1407 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1408 unsigned long, prot, unsigned long, flags, 1409 unsigned long, fd, unsigned long, pgoff) 1410 { 1411 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff); 1412 } 1413 1414 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1415 struct mmap_arg_struct { 1416 unsigned long addr; 1417 unsigned long len; 1418 unsigned long prot; 1419 unsigned long flags; 1420 unsigned long fd; 1421 unsigned long offset; 1422 }; 1423 1424 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1425 { 1426 struct mmap_arg_struct a; 1427 1428 if (copy_from_user(&a, arg, sizeof(a))) 1429 return -EFAULT; 1430 if (offset_in_page(a.offset)) 1431 return -EINVAL; 1432 1433 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1434 a.offset >> PAGE_SHIFT); 1435 } 1436 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1437 1438 static bool vm_ops_needs_writenotify(const struct vm_operations_struct *vm_ops) 1439 { 1440 return vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite); 1441 } 1442 1443 static bool vma_is_shared_writable(struct vm_area_struct *vma) 1444 { 1445 return (vma->vm_flags & (VM_WRITE | VM_SHARED)) == 1446 (VM_WRITE | VM_SHARED); 1447 } 1448 1449 static bool vma_fs_can_writeback(struct vm_area_struct *vma) 1450 { 1451 /* No managed pages to writeback. */ 1452 if (vma->vm_flags & VM_PFNMAP) 1453 return false; 1454 1455 return vma->vm_file && vma->vm_file->f_mapping && 1456 mapping_can_writeback(vma->vm_file->f_mapping); 1457 } 1458 1459 /* 1460 * Does this VMA require the underlying folios to have their dirty state 1461 * tracked? 1462 */ 1463 bool vma_needs_dirty_tracking(struct vm_area_struct *vma) 1464 { 1465 /* Only shared, writable VMAs require dirty tracking. */ 1466 if (!vma_is_shared_writable(vma)) 1467 return false; 1468 1469 /* Does the filesystem need to be notified? */ 1470 if (vm_ops_needs_writenotify(vma->vm_ops)) 1471 return true; 1472 1473 /* 1474 * Even if the filesystem doesn't indicate a need for writenotify, if it 1475 * can writeback, dirty tracking is still required. 1476 */ 1477 return vma_fs_can_writeback(vma); 1478 } 1479 1480 /* 1481 * Some shared mappings will want the pages marked read-only 1482 * to track write events. If so, we'll downgrade vm_page_prot 1483 * to the private version (using protection_map[] without the 1484 * VM_SHARED bit). 1485 */ 1486 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot) 1487 { 1488 /* If it was private or non-writable, the write bit is already clear */ 1489 if (!vma_is_shared_writable(vma)) 1490 return 0; 1491 1492 /* The backer wishes to know when pages are first written to? */ 1493 if (vm_ops_needs_writenotify(vma->vm_ops)) 1494 return 1; 1495 1496 /* The open routine did something to the protections that pgprot_modify 1497 * won't preserve? */ 1498 if (pgprot_val(vm_page_prot) != 1499 pgprot_val(vm_pgprot_modify(vm_page_prot, vma->vm_flags))) 1500 return 0; 1501 1502 /* 1503 * Do we need to track softdirty? hugetlb does not support softdirty 1504 * tracking yet. 1505 */ 1506 if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma)) 1507 return 1; 1508 1509 /* Do we need write faults for uffd-wp tracking? */ 1510 if (userfaultfd_wp(vma)) 1511 return 1; 1512 1513 /* Can the mapping track the dirty pages? */ 1514 return vma_fs_can_writeback(vma); 1515 } 1516 1517 /* 1518 * We account for memory if it's a private writeable mapping, 1519 * not hugepages and VM_NORESERVE wasn't set. 1520 */ 1521 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags) 1522 { 1523 /* 1524 * hugetlb has its own accounting separate from the core VM 1525 * VM_HUGETLB may not be set yet so we cannot check for that flag. 1526 */ 1527 if (file && is_file_hugepages(file)) 1528 return 0; 1529 1530 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE; 1531 } 1532 1533 /** 1534 * unmapped_area() - Find an area between the low_limit and the high_limit with 1535 * the correct alignment and offset, all from @info. Note: current->mm is used 1536 * for the search. 1537 * 1538 * @info: The unmapped area information including the range [low_limit - 1539 * high_limit), the alignment offset and mask. 1540 * 1541 * Return: A memory address or -ENOMEM. 1542 */ 1543 static unsigned long unmapped_area(struct vm_unmapped_area_info *info) 1544 { 1545 unsigned long length, gap; 1546 unsigned long low_limit, high_limit; 1547 struct vm_area_struct *tmp; 1548 1549 MA_STATE(mas, ¤t->mm->mm_mt, 0, 0); 1550 1551 /* Adjust search length to account for worst case alignment overhead */ 1552 length = info->length + info->align_mask; 1553 if (length < info->length) 1554 return -ENOMEM; 1555 1556 low_limit = info->low_limit; 1557 if (low_limit < mmap_min_addr) 1558 low_limit = mmap_min_addr; 1559 high_limit = info->high_limit; 1560 retry: 1561 if (mas_empty_area(&mas, low_limit, high_limit - 1, length)) 1562 return -ENOMEM; 1563 1564 gap = mas.index; 1565 gap += (info->align_offset - gap) & info->align_mask; 1566 tmp = mas_next(&mas, ULONG_MAX); 1567 if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */ 1568 if (vm_start_gap(tmp) < gap + length - 1) { 1569 low_limit = tmp->vm_end; 1570 mas_reset(&mas); 1571 goto retry; 1572 } 1573 } else { 1574 tmp = mas_prev(&mas, 0); 1575 if (tmp && vm_end_gap(tmp) > gap) { 1576 low_limit = vm_end_gap(tmp); 1577 mas_reset(&mas); 1578 goto retry; 1579 } 1580 } 1581 1582 return gap; 1583 } 1584 1585 /** 1586 * unmapped_area_topdown() - Find an area between the low_limit and the 1587 * high_limit with the correct alignment and offset at the highest available 1588 * address, all from @info. Note: current->mm is used for the search. 1589 * 1590 * @info: The unmapped area information including the range [low_limit - 1591 * high_limit), the alignment offset and mask. 1592 * 1593 * Return: A memory address or -ENOMEM. 1594 */ 1595 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info) 1596 { 1597 unsigned long length, gap, gap_end; 1598 unsigned long low_limit, high_limit; 1599 struct vm_area_struct *tmp; 1600 1601 MA_STATE(mas, ¤t->mm->mm_mt, 0, 0); 1602 /* Adjust search length to account for worst case alignment overhead */ 1603 length = info->length + info->align_mask; 1604 if (length < info->length) 1605 return -ENOMEM; 1606 1607 low_limit = info->low_limit; 1608 if (low_limit < mmap_min_addr) 1609 low_limit = mmap_min_addr; 1610 high_limit = info->high_limit; 1611 retry: 1612 if (mas_empty_area_rev(&mas, low_limit, high_limit - 1, length)) 1613 return -ENOMEM; 1614 1615 gap = mas.last + 1 - info->length; 1616 gap -= (gap - info->align_offset) & info->align_mask; 1617 gap_end = mas.last; 1618 tmp = mas_next(&mas, ULONG_MAX); 1619 if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */ 1620 if (vm_start_gap(tmp) <= gap_end) { 1621 high_limit = vm_start_gap(tmp); 1622 mas_reset(&mas); 1623 goto retry; 1624 } 1625 } else { 1626 tmp = mas_prev(&mas, 0); 1627 if (tmp && vm_end_gap(tmp) > gap) { 1628 high_limit = tmp->vm_start; 1629 mas_reset(&mas); 1630 goto retry; 1631 } 1632 } 1633 1634 return gap; 1635 } 1636 1637 /* 1638 * Search for an unmapped address range. 1639 * 1640 * We are looking for a range that: 1641 * - does not intersect with any VMA; 1642 * - is contained within the [low_limit, high_limit) interval; 1643 * - is at least the desired size. 1644 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) 1645 */ 1646 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info) 1647 { 1648 unsigned long addr; 1649 1650 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN) 1651 addr = unmapped_area_topdown(info); 1652 else 1653 addr = unmapped_area(info); 1654 1655 trace_vm_unmapped_area(addr, info); 1656 return addr; 1657 } 1658 1659 /* Get an address range which is currently unmapped. 1660 * For shmat() with addr=0. 1661 * 1662 * Ugly calling convention alert: 1663 * Return value with the low bits set means error value, 1664 * ie 1665 * if (ret & ~PAGE_MASK) 1666 * error = ret; 1667 * 1668 * This function "knows" that -ENOMEM has the bits set. 1669 */ 1670 unsigned long 1671 generic_get_unmapped_area(struct file *filp, unsigned long addr, 1672 unsigned long len, unsigned long pgoff, 1673 unsigned long flags) 1674 { 1675 struct mm_struct *mm = current->mm; 1676 struct vm_area_struct *vma, *prev; 1677 struct vm_unmapped_area_info info; 1678 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags); 1679 1680 if (len > mmap_end - mmap_min_addr) 1681 return -ENOMEM; 1682 1683 if (flags & MAP_FIXED) 1684 return addr; 1685 1686 if (addr) { 1687 addr = PAGE_ALIGN(addr); 1688 vma = find_vma_prev(mm, addr, &prev); 1689 if (mmap_end - len >= addr && addr >= mmap_min_addr && 1690 (!vma || addr + len <= vm_start_gap(vma)) && 1691 (!prev || addr >= vm_end_gap(prev))) 1692 return addr; 1693 } 1694 1695 info.flags = 0; 1696 info.length = len; 1697 info.low_limit = mm->mmap_base; 1698 info.high_limit = mmap_end; 1699 info.align_mask = 0; 1700 info.align_offset = 0; 1701 return vm_unmapped_area(&info); 1702 } 1703 1704 #ifndef HAVE_ARCH_UNMAPPED_AREA 1705 unsigned long 1706 arch_get_unmapped_area(struct file *filp, unsigned long addr, 1707 unsigned long len, unsigned long pgoff, 1708 unsigned long flags) 1709 { 1710 return generic_get_unmapped_area(filp, addr, len, pgoff, flags); 1711 } 1712 #endif 1713 1714 /* 1715 * This mmap-allocator allocates new areas top-down from below the 1716 * stack's low limit (the base): 1717 */ 1718 unsigned long 1719 generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 1720 unsigned long len, unsigned long pgoff, 1721 unsigned long flags) 1722 { 1723 struct vm_area_struct *vma, *prev; 1724 struct mm_struct *mm = current->mm; 1725 struct vm_unmapped_area_info info; 1726 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags); 1727 1728 /* requested length too big for entire address space */ 1729 if (len > mmap_end - mmap_min_addr) 1730 return -ENOMEM; 1731 1732 if (flags & MAP_FIXED) 1733 return addr; 1734 1735 /* requesting a specific address */ 1736 if (addr) { 1737 addr = PAGE_ALIGN(addr); 1738 vma = find_vma_prev(mm, addr, &prev); 1739 if (mmap_end - len >= addr && addr >= mmap_min_addr && 1740 (!vma || addr + len <= vm_start_gap(vma)) && 1741 (!prev || addr >= vm_end_gap(prev))) 1742 return addr; 1743 } 1744 1745 info.flags = VM_UNMAPPED_AREA_TOPDOWN; 1746 info.length = len; 1747 info.low_limit = PAGE_SIZE; 1748 info.high_limit = arch_get_mmap_base(addr, mm->mmap_base); 1749 info.align_mask = 0; 1750 info.align_offset = 0; 1751 addr = vm_unmapped_area(&info); 1752 1753 /* 1754 * A failed mmap() very likely causes application failure, 1755 * so fall back to the bottom-up function here. This scenario 1756 * can happen with large stack limits and large mmap() 1757 * allocations. 1758 */ 1759 if (offset_in_page(addr)) { 1760 VM_BUG_ON(addr != -ENOMEM); 1761 info.flags = 0; 1762 info.low_limit = TASK_UNMAPPED_BASE; 1763 info.high_limit = mmap_end; 1764 addr = vm_unmapped_area(&info); 1765 } 1766 1767 return addr; 1768 } 1769 1770 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 1771 unsigned long 1772 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 1773 unsigned long len, unsigned long pgoff, 1774 unsigned long flags) 1775 { 1776 return generic_get_unmapped_area_topdown(filp, addr, len, pgoff, flags); 1777 } 1778 #endif 1779 1780 unsigned long 1781 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 1782 unsigned long pgoff, unsigned long flags) 1783 { 1784 unsigned long (*get_area)(struct file *, unsigned long, 1785 unsigned long, unsigned long, unsigned long); 1786 1787 unsigned long error = arch_mmap_check(addr, len, flags); 1788 if (error) 1789 return error; 1790 1791 /* Careful about overflows.. */ 1792 if (len > TASK_SIZE) 1793 return -ENOMEM; 1794 1795 get_area = current->mm->get_unmapped_area; 1796 if (file) { 1797 if (file->f_op->get_unmapped_area) 1798 get_area = file->f_op->get_unmapped_area; 1799 } else if (flags & MAP_SHARED) { 1800 /* 1801 * mmap_region() will call shmem_zero_setup() to create a file, 1802 * so use shmem's get_unmapped_area in case it can be huge. 1803 * do_mmap() will clear pgoff, so match alignment. 1804 */ 1805 pgoff = 0; 1806 get_area = shmem_get_unmapped_area; 1807 } 1808 1809 addr = get_area(file, addr, len, pgoff, flags); 1810 if (IS_ERR_VALUE(addr)) 1811 return addr; 1812 1813 if (addr > TASK_SIZE - len) 1814 return -ENOMEM; 1815 if (offset_in_page(addr)) 1816 return -EINVAL; 1817 1818 error = security_mmap_addr(addr); 1819 return error ? error : addr; 1820 } 1821 1822 EXPORT_SYMBOL(get_unmapped_area); 1823 1824 /** 1825 * find_vma_intersection() - Look up the first VMA which intersects the interval 1826 * @mm: The process address space. 1827 * @start_addr: The inclusive start user address. 1828 * @end_addr: The exclusive end user address. 1829 * 1830 * Returns: The first VMA within the provided range, %NULL otherwise. Assumes 1831 * start_addr < end_addr. 1832 */ 1833 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm, 1834 unsigned long start_addr, 1835 unsigned long end_addr) 1836 { 1837 unsigned long index = start_addr; 1838 1839 mmap_assert_locked(mm); 1840 return mt_find(&mm->mm_mt, &index, end_addr - 1); 1841 } 1842 EXPORT_SYMBOL(find_vma_intersection); 1843 1844 /** 1845 * find_vma() - Find the VMA for a given address, or the next VMA. 1846 * @mm: The mm_struct to check 1847 * @addr: The address 1848 * 1849 * Returns: The VMA associated with addr, or the next VMA. 1850 * May return %NULL in the case of no VMA at addr or above. 1851 */ 1852 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 1853 { 1854 unsigned long index = addr; 1855 1856 mmap_assert_locked(mm); 1857 return mt_find(&mm->mm_mt, &index, ULONG_MAX); 1858 } 1859 EXPORT_SYMBOL(find_vma); 1860 1861 /** 1862 * find_vma_prev() - Find the VMA for a given address, or the next vma and 1863 * set %pprev to the previous VMA, if any. 1864 * @mm: The mm_struct to check 1865 * @addr: The address 1866 * @pprev: The pointer to set to the previous VMA 1867 * 1868 * Note that RCU lock is missing here since the external mmap_lock() is used 1869 * instead. 1870 * 1871 * Returns: The VMA associated with @addr, or the next vma. 1872 * May return %NULL in the case of no vma at addr or above. 1873 */ 1874 struct vm_area_struct * 1875 find_vma_prev(struct mm_struct *mm, unsigned long addr, 1876 struct vm_area_struct **pprev) 1877 { 1878 struct vm_area_struct *vma; 1879 MA_STATE(mas, &mm->mm_mt, addr, addr); 1880 1881 vma = mas_walk(&mas); 1882 *pprev = mas_prev(&mas, 0); 1883 if (!vma) 1884 vma = mas_next(&mas, ULONG_MAX); 1885 return vma; 1886 } 1887 1888 /* 1889 * Verify that the stack growth is acceptable and 1890 * update accounting. This is shared with both the 1891 * grow-up and grow-down cases. 1892 */ 1893 static int acct_stack_growth(struct vm_area_struct *vma, 1894 unsigned long size, unsigned long grow) 1895 { 1896 struct mm_struct *mm = vma->vm_mm; 1897 unsigned long new_start; 1898 1899 /* address space limit tests */ 1900 if (!may_expand_vm(mm, vma->vm_flags, grow)) 1901 return -ENOMEM; 1902 1903 /* Stack limit test */ 1904 if (size > rlimit(RLIMIT_STACK)) 1905 return -ENOMEM; 1906 1907 /* mlock limit tests */ 1908 if (!mlock_future_ok(mm, vma->vm_flags, grow << PAGE_SHIFT)) 1909 return -ENOMEM; 1910 1911 /* Check to ensure the stack will not grow into a hugetlb-only region */ 1912 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : 1913 vma->vm_end - size; 1914 if (is_hugepage_only_range(vma->vm_mm, new_start, size)) 1915 return -EFAULT; 1916 1917 /* 1918 * Overcommit.. This must be the final test, as it will 1919 * update security statistics. 1920 */ 1921 if (security_vm_enough_memory_mm(mm, grow)) 1922 return -ENOMEM; 1923 1924 return 0; 1925 } 1926 1927 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64) 1928 /* 1929 * PA-RISC uses this for its stack; IA64 for its Register Backing Store. 1930 * vma is the last one with address > vma->vm_end. Have to extend vma. 1931 */ 1932 static int expand_upwards(struct vm_area_struct *vma, unsigned long address) 1933 { 1934 struct mm_struct *mm = vma->vm_mm; 1935 struct vm_area_struct *next; 1936 unsigned long gap_addr; 1937 int error = 0; 1938 MA_STATE(mas, &mm->mm_mt, vma->vm_start, address); 1939 1940 if (!(vma->vm_flags & VM_GROWSUP)) 1941 return -EFAULT; 1942 1943 /* Guard against exceeding limits of the address space. */ 1944 address &= PAGE_MASK; 1945 if (address >= (TASK_SIZE & PAGE_MASK)) 1946 return -ENOMEM; 1947 address += PAGE_SIZE; 1948 1949 /* Enforce stack_guard_gap */ 1950 gap_addr = address + stack_guard_gap; 1951 1952 /* Guard against overflow */ 1953 if (gap_addr < address || gap_addr > TASK_SIZE) 1954 gap_addr = TASK_SIZE; 1955 1956 next = find_vma_intersection(mm, vma->vm_end, gap_addr); 1957 if (next && vma_is_accessible(next)) { 1958 if (!(next->vm_flags & VM_GROWSUP)) 1959 return -ENOMEM; 1960 /* Check that both stack segments have the same anon_vma? */ 1961 } 1962 1963 if (next) 1964 mas_prev_range(&mas, address); 1965 1966 __mas_set_range(&mas, vma->vm_start, address - 1); 1967 if (mas_preallocate(&mas, vma, GFP_KERNEL)) 1968 return -ENOMEM; 1969 1970 /* We must make sure the anon_vma is allocated. */ 1971 if (unlikely(anon_vma_prepare(vma))) { 1972 mas_destroy(&mas); 1973 return -ENOMEM; 1974 } 1975 1976 /* Lock the VMA before expanding to prevent concurrent page faults */ 1977 vma_start_write(vma); 1978 /* 1979 * vma->vm_start/vm_end cannot change under us because the caller 1980 * is required to hold the mmap_lock in read mode. We need the 1981 * anon_vma lock to serialize against concurrent expand_stacks. 1982 */ 1983 anon_vma_lock_write(vma->anon_vma); 1984 1985 /* Somebody else might have raced and expanded it already */ 1986 if (address > vma->vm_end) { 1987 unsigned long size, grow; 1988 1989 size = address - vma->vm_start; 1990 grow = (address - vma->vm_end) >> PAGE_SHIFT; 1991 1992 error = -ENOMEM; 1993 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) { 1994 error = acct_stack_growth(vma, size, grow); 1995 if (!error) { 1996 /* 1997 * We only hold a shared mmap_lock lock here, so 1998 * we need to protect against concurrent vma 1999 * expansions. anon_vma_lock_write() doesn't 2000 * help here, as we don't guarantee that all 2001 * growable vmas in a mm share the same root 2002 * anon vma. So, we reuse mm->page_table_lock 2003 * to guard against concurrent vma expansions. 2004 */ 2005 spin_lock(&mm->page_table_lock); 2006 if (vma->vm_flags & VM_LOCKED) 2007 mm->locked_vm += grow; 2008 vm_stat_account(mm, vma->vm_flags, grow); 2009 anon_vma_interval_tree_pre_update_vma(vma); 2010 vma->vm_end = address; 2011 /* Overwrite old entry in mtree. */ 2012 mas_store_prealloc(&mas, vma); 2013 anon_vma_interval_tree_post_update_vma(vma); 2014 spin_unlock(&mm->page_table_lock); 2015 2016 perf_event_mmap(vma); 2017 } 2018 } 2019 } 2020 anon_vma_unlock_write(vma->anon_vma); 2021 khugepaged_enter_vma(vma, vma->vm_flags); 2022 mas_destroy(&mas); 2023 validate_mm(mm); 2024 return error; 2025 } 2026 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */ 2027 2028 /* 2029 * vma is the first one with address < vma->vm_start. Have to extend vma. 2030 * mmap_lock held for writing. 2031 */ 2032 int expand_downwards(struct vm_area_struct *vma, unsigned long address) 2033 { 2034 struct mm_struct *mm = vma->vm_mm; 2035 MA_STATE(mas, &mm->mm_mt, vma->vm_start, vma->vm_start); 2036 struct vm_area_struct *prev; 2037 int error = 0; 2038 2039 if (!(vma->vm_flags & VM_GROWSDOWN)) 2040 return -EFAULT; 2041 2042 address &= PAGE_MASK; 2043 if (address < mmap_min_addr || address < FIRST_USER_ADDRESS) 2044 return -EPERM; 2045 2046 /* Enforce stack_guard_gap */ 2047 prev = mas_prev(&mas, 0); 2048 /* Check that both stack segments have the same anon_vma? */ 2049 if (prev) { 2050 if (!(prev->vm_flags & VM_GROWSDOWN) && 2051 vma_is_accessible(prev) && 2052 (address - prev->vm_end < stack_guard_gap)) 2053 return -ENOMEM; 2054 } 2055 2056 if (prev) 2057 mas_next_range(&mas, vma->vm_start); 2058 2059 __mas_set_range(&mas, address, vma->vm_end - 1); 2060 if (mas_preallocate(&mas, vma, GFP_KERNEL)) 2061 return -ENOMEM; 2062 2063 /* We must make sure the anon_vma is allocated. */ 2064 if (unlikely(anon_vma_prepare(vma))) { 2065 mas_destroy(&mas); 2066 return -ENOMEM; 2067 } 2068 2069 /* Lock the VMA before expanding to prevent concurrent page faults */ 2070 vma_start_write(vma); 2071 /* 2072 * vma->vm_start/vm_end cannot change under us because the caller 2073 * is required to hold the mmap_lock in read mode. We need the 2074 * anon_vma lock to serialize against concurrent expand_stacks. 2075 */ 2076 anon_vma_lock_write(vma->anon_vma); 2077 2078 /* Somebody else might have raced and expanded it already */ 2079 if (address < vma->vm_start) { 2080 unsigned long size, grow; 2081 2082 size = vma->vm_end - address; 2083 grow = (vma->vm_start - address) >> PAGE_SHIFT; 2084 2085 error = -ENOMEM; 2086 if (grow <= vma->vm_pgoff) { 2087 error = acct_stack_growth(vma, size, grow); 2088 if (!error) { 2089 /* 2090 * We only hold a shared mmap_lock lock here, so 2091 * we need to protect against concurrent vma 2092 * expansions. anon_vma_lock_write() doesn't 2093 * help here, as we don't guarantee that all 2094 * growable vmas in a mm share the same root 2095 * anon vma. So, we reuse mm->page_table_lock 2096 * to guard against concurrent vma expansions. 2097 */ 2098 spin_lock(&mm->page_table_lock); 2099 if (vma->vm_flags & VM_LOCKED) 2100 mm->locked_vm += grow; 2101 vm_stat_account(mm, vma->vm_flags, grow); 2102 anon_vma_interval_tree_pre_update_vma(vma); 2103 vma->vm_start = address; 2104 vma->vm_pgoff -= grow; 2105 /* Overwrite old entry in mtree. */ 2106 mas_store_prealloc(&mas, vma); 2107 anon_vma_interval_tree_post_update_vma(vma); 2108 spin_unlock(&mm->page_table_lock); 2109 2110 perf_event_mmap(vma); 2111 } 2112 } 2113 } 2114 anon_vma_unlock_write(vma->anon_vma); 2115 khugepaged_enter_vma(vma, vma->vm_flags); 2116 mas_destroy(&mas); 2117 validate_mm(mm); 2118 return error; 2119 } 2120 2121 /* enforced gap between the expanding stack and other mappings. */ 2122 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT; 2123 2124 static int __init cmdline_parse_stack_guard_gap(char *p) 2125 { 2126 unsigned long val; 2127 char *endptr; 2128 2129 val = simple_strtoul(p, &endptr, 10); 2130 if (!*endptr) 2131 stack_guard_gap = val << PAGE_SHIFT; 2132 2133 return 1; 2134 } 2135 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap); 2136 2137 #ifdef CONFIG_STACK_GROWSUP 2138 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address) 2139 { 2140 return expand_upwards(vma, address); 2141 } 2142 2143 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr) 2144 { 2145 struct vm_area_struct *vma, *prev; 2146 2147 addr &= PAGE_MASK; 2148 vma = find_vma_prev(mm, addr, &prev); 2149 if (vma && (vma->vm_start <= addr)) 2150 return vma; 2151 if (!prev) 2152 return NULL; 2153 if (expand_stack_locked(prev, addr)) 2154 return NULL; 2155 if (prev->vm_flags & VM_LOCKED) 2156 populate_vma_page_range(prev, addr, prev->vm_end, NULL); 2157 return prev; 2158 } 2159 #else 2160 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address) 2161 { 2162 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) 2163 return -EINVAL; 2164 return expand_downwards(vma, address); 2165 } 2166 2167 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr) 2168 { 2169 struct vm_area_struct *vma; 2170 unsigned long start; 2171 2172 addr &= PAGE_MASK; 2173 vma = find_vma(mm, addr); 2174 if (!vma) 2175 return NULL; 2176 if (vma->vm_start <= addr) 2177 return vma; 2178 start = vma->vm_start; 2179 if (expand_stack_locked(vma, addr)) 2180 return NULL; 2181 if (vma->vm_flags & VM_LOCKED) 2182 populate_vma_page_range(vma, addr, start, NULL); 2183 return vma; 2184 } 2185 #endif 2186 2187 /* 2188 * IA64 has some horrid mapping rules: it can expand both up and down, 2189 * but with various special rules. 2190 * 2191 * We'll get rid of this architecture eventually, so the ugliness is 2192 * temporary. 2193 */ 2194 #ifdef CONFIG_IA64 2195 static inline bool vma_expand_ok(struct vm_area_struct *vma, unsigned long addr) 2196 { 2197 return REGION_NUMBER(addr) == REGION_NUMBER(vma->vm_start) && 2198 REGION_OFFSET(addr) < RGN_MAP_LIMIT; 2199 } 2200 2201 /* 2202 * IA64 stacks grow down, but there's a special register backing store 2203 * that can grow up. Only sequentially, though, so the new address must 2204 * match vm_end. 2205 */ 2206 static inline int vma_expand_up(struct vm_area_struct *vma, unsigned long addr) 2207 { 2208 if (!vma_expand_ok(vma, addr)) 2209 return -EFAULT; 2210 if (vma->vm_end != (addr & PAGE_MASK)) 2211 return -EFAULT; 2212 return expand_upwards(vma, addr); 2213 } 2214 2215 static inline bool vma_expand_down(struct vm_area_struct *vma, unsigned long addr) 2216 { 2217 if (!vma_expand_ok(vma, addr)) 2218 return -EFAULT; 2219 return expand_downwards(vma, addr); 2220 } 2221 2222 #elif defined(CONFIG_STACK_GROWSUP) 2223 2224 #define vma_expand_up(vma,addr) expand_upwards(vma, addr) 2225 #define vma_expand_down(vma, addr) (-EFAULT) 2226 2227 #else 2228 2229 #define vma_expand_up(vma,addr) (-EFAULT) 2230 #define vma_expand_down(vma, addr) expand_downwards(vma, addr) 2231 2232 #endif 2233 2234 /* 2235 * expand_stack(): legacy interface for page faulting. Don't use unless 2236 * you have to. 2237 * 2238 * This is called with the mm locked for reading, drops the lock, takes 2239 * the lock for writing, tries to look up a vma again, expands it if 2240 * necessary, and downgrades the lock to reading again. 2241 * 2242 * If no vma is found or it can't be expanded, it returns NULL and has 2243 * dropped the lock. 2244 */ 2245 struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr) 2246 { 2247 struct vm_area_struct *vma, *prev; 2248 2249 mmap_read_unlock(mm); 2250 if (mmap_write_lock_killable(mm)) 2251 return NULL; 2252 2253 vma = find_vma_prev(mm, addr, &prev); 2254 if (vma && vma->vm_start <= addr) 2255 goto success; 2256 2257 if (prev && !vma_expand_up(prev, addr)) { 2258 vma = prev; 2259 goto success; 2260 } 2261 2262 if (vma && !vma_expand_down(vma, addr)) 2263 goto success; 2264 2265 mmap_write_unlock(mm); 2266 return NULL; 2267 2268 success: 2269 mmap_write_downgrade(mm); 2270 return vma; 2271 } 2272 2273 /* 2274 * Ok - we have the memory areas we should free on a maple tree so release them, 2275 * and do the vma updates. 2276 * 2277 * Called with the mm semaphore held. 2278 */ 2279 static inline void remove_mt(struct mm_struct *mm, struct ma_state *mas) 2280 { 2281 unsigned long nr_accounted = 0; 2282 struct vm_area_struct *vma; 2283 2284 /* Update high watermark before we lower total_vm */ 2285 update_hiwater_vm(mm); 2286 mas_for_each(mas, vma, ULONG_MAX) { 2287 long nrpages = vma_pages(vma); 2288 2289 if (vma->vm_flags & VM_ACCOUNT) 2290 nr_accounted += nrpages; 2291 vm_stat_account(mm, vma->vm_flags, -nrpages); 2292 remove_vma(vma, false); 2293 } 2294 vm_unacct_memory(nr_accounted); 2295 } 2296 2297 /* 2298 * Get rid of page table information in the indicated region. 2299 * 2300 * Called with the mm semaphore held. 2301 */ 2302 static void unmap_region(struct mm_struct *mm, struct ma_state *mas, 2303 struct vm_area_struct *vma, struct vm_area_struct *prev, 2304 struct vm_area_struct *next, unsigned long start, 2305 unsigned long end, unsigned long tree_end, bool mm_wr_locked) 2306 { 2307 struct mmu_gather tlb; 2308 unsigned long mt_start = mas->index; 2309 2310 lru_add_drain(); 2311 tlb_gather_mmu(&tlb, mm); 2312 update_hiwater_rss(mm); 2313 unmap_vmas(&tlb, mas, vma, start, end, tree_end, mm_wr_locked); 2314 mas_set(mas, mt_start); 2315 free_pgtables(&tlb, mas, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS, 2316 next ? next->vm_start : USER_PGTABLES_CEILING, 2317 mm_wr_locked); 2318 tlb_finish_mmu(&tlb); 2319 } 2320 2321 /* 2322 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it 2323 * has already been checked or doesn't make sense to fail. 2324 * VMA Iterator will point to the end VMA. 2325 */ 2326 int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma, 2327 unsigned long addr, int new_below) 2328 { 2329 struct vma_prepare vp; 2330 struct vm_area_struct *new; 2331 int err; 2332 2333 WARN_ON(vma->vm_start >= addr); 2334 WARN_ON(vma->vm_end <= addr); 2335 2336 if (vma->vm_ops && vma->vm_ops->may_split) { 2337 err = vma->vm_ops->may_split(vma, addr); 2338 if (err) 2339 return err; 2340 } 2341 2342 new = vm_area_dup(vma); 2343 if (!new) 2344 return -ENOMEM; 2345 2346 if (new_below) { 2347 new->vm_end = addr; 2348 } else { 2349 new->vm_start = addr; 2350 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); 2351 } 2352 2353 err = -ENOMEM; 2354 vma_iter_config(vmi, new->vm_start, new->vm_end); 2355 if (vma_iter_prealloc(vmi, new)) 2356 goto out_free_vma; 2357 2358 err = vma_dup_policy(vma, new); 2359 if (err) 2360 goto out_free_vmi; 2361 2362 err = anon_vma_clone(new, vma); 2363 if (err) 2364 goto out_free_mpol; 2365 2366 if (new->vm_file) 2367 get_file(new->vm_file); 2368 2369 if (new->vm_ops && new->vm_ops->open) 2370 new->vm_ops->open(new); 2371 2372 vma_start_write(vma); 2373 vma_start_write(new); 2374 2375 init_vma_prep(&vp, vma); 2376 vp.insert = new; 2377 vma_prepare(&vp); 2378 vma_adjust_trans_huge(vma, vma->vm_start, addr, 0); 2379 2380 if (new_below) { 2381 vma->vm_start = addr; 2382 vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT; 2383 } else { 2384 vma->vm_end = addr; 2385 } 2386 2387 /* vma_complete stores the new vma */ 2388 vma_complete(&vp, vmi, vma->vm_mm); 2389 2390 /* Success. */ 2391 if (new_below) 2392 vma_next(vmi); 2393 return 0; 2394 2395 out_free_mpol: 2396 mpol_put(vma_policy(new)); 2397 out_free_vmi: 2398 vma_iter_free(vmi); 2399 out_free_vma: 2400 vm_area_free(new); 2401 return err; 2402 } 2403 2404 /* 2405 * Split a vma into two pieces at address 'addr', a new vma is allocated 2406 * either for the first part or the tail. 2407 */ 2408 int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma, 2409 unsigned long addr, int new_below) 2410 { 2411 if (vma->vm_mm->map_count >= sysctl_max_map_count) 2412 return -ENOMEM; 2413 2414 return __split_vma(vmi, vma, addr, new_below); 2415 } 2416 2417 /* 2418 * do_vmi_align_munmap() - munmap the aligned region from @start to @end. 2419 * @vmi: The vma iterator 2420 * @vma: The starting vm_area_struct 2421 * @mm: The mm_struct 2422 * @start: The aligned start address to munmap. 2423 * @end: The aligned end address to munmap. 2424 * @uf: The userfaultfd list_head 2425 * @unlock: Set to true to drop the mmap_lock. unlocking only happens on 2426 * success. 2427 * 2428 * Return: 0 on success and drops the lock if so directed, error and leaves the 2429 * lock held otherwise. 2430 */ 2431 static int 2432 do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma, 2433 struct mm_struct *mm, unsigned long start, 2434 unsigned long end, struct list_head *uf, bool unlock) 2435 { 2436 struct vm_area_struct *prev, *next = NULL; 2437 struct maple_tree mt_detach; 2438 int count = 0; 2439 int error = -ENOMEM; 2440 unsigned long locked_vm = 0; 2441 MA_STATE(mas_detach, &mt_detach, 0, 0); 2442 mt_init_flags(&mt_detach, vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK); 2443 mt_on_stack(mt_detach); 2444 2445 /* 2446 * If we need to split any vma, do it now to save pain later. 2447 * 2448 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially 2449 * unmapped vm_area_struct will remain in use: so lower split_vma 2450 * places tmp vma above, and higher split_vma places tmp vma below. 2451 */ 2452 2453 /* Does it split the first one? */ 2454 if (start > vma->vm_start) { 2455 2456 /* 2457 * Make sure that map_count on return from munmap() will 2458 * not exceed its limit; but let map_count go just above 2459 * its limit temporarily, to help free resources as expected. 2460 */ 2461 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count) 2462 goto map_count_exceeded; 2463 2464 error = __split_vma(vmi, vma, start, 1); 2465 if (error) 2466 goto start_split_failed; 2467 } 2468 2469 /* 2470 * Detach a range of VMAs from the mm. Using next as a temp variable as 2471 * it is always overwritten. 2472 */ 2473 next = vma; 2474 do { 2475 /* Does it split the end? */ 2476 if (next->vm_end > end) { 2477 error = __split_vma(vmi, next, end, 0); 2478 if (error) 2479 goto end_split_failed; 2480 } 2481 vma_start_write(next); 2482 mas_set(&mas_detach, count); 2483 error = mas_store_gfp(&mas_detach, next, GFP_KERNEL); 2484 if (error) 2485 goto munmap_gather_failed; 2486 vma_mark_detached(next, true); 2487 if (next->vm_flags & VM_LOCKED) 2488 locked_vm += vma_pages(next); 2489 2490 count++; 2491 if (unlikely(uf)) { 2492 /* 2493 * If userfaultfd_unmap_prep returns an error the vmas 2494 * will remain split, but userland will get a 2495 * highly unexpected error anyway. This is no 2496 * different than the case where the first of the two 2497 * __split_vma fails, but we don't undo the first 2498 * split, despite we could. This is unlikely enough 2499 * failure that it's not worth optimizing it for. 2500 */ 2501 error = userfaultfd_unmap_prep(next, start, end, uf); 2502 2503 if (error) 2504 goto userfaultfd_error; 2505 } 2506 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE 2507 BUG_ON(next->vm_start < start); 2508 BUG_ON(next->vm_start > end); 2509 #endif 2510 } for_each_vma_range(*vmi, next, end); 2511 2512 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE) 2513 /* Make sure no VMAs are about to be lost. */ 2514 { 2515 MA_STATE(test, &mt_detach, 0, 0); 2516 struct vm_area_struct *vma_mas, *vma_test; 2517 int test_count = 0; 2518 2519 vma_iter_set(vmi, start); 2520 rcu_read_lock(); 2521 vma_test = mas_find(&test, count - 1); 2522 for_each_vma_range(*vmi, vma_mas, end) { 2523 BUG_ON(vma_mas != vma_test); 2524 test_count++; 2525 vma_test = mas_next(&test, count - 1); 2526 } 2527 rcu_read_unlock(); 2528 BUG_ON(count != test_count); 2529 } 2530 #endif 2531 2532 while (vma_iter_addr(vmi) > start) 2533 vma_iter_prev_range(vmi); 2534 2535 error = vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL); 2536 if (error) 2537 goto clear_tree_failed; 2538 2539 /* Point of no return */ 2540 mm->locked_vm -= locked_vm; 2541 mm->map_count -= count; 2542 if (unlock) 2543 mmap_write_downgrade(mm); 2544 2545 prev = vma_iter_prev_range(vmi); 2546 next = vma_next(vmi); 2547 if (next) 2548 vma_iter_prev_range(vmi); 2549 2550 /* 2551 * We can free page tables without write-locking mmap_lock because VMAs 2552 * were isolated before we downgraded mmap_lock. 2553 */ 2554 mas_set(&mas_detach, 1); 2555 unmap_region(mm, &mas_detach, vma, prev, next, start, end, count, 2556 !unlock); 2557 /* Statistics and freeing VMAs */ 2558 mas_set(&mas_detach, 0); 2559 remove_mt(mm, &mas_detach); 2560 validate_mm(mm); 2561 if (unlock) 2562 mmap_read_unlock(mm); 2563 2564 __mt_destroy(&mt_detach); 2565 return 0; 2566 2567 clear_tree_failed: 2568 userfaultfd_error: 2569 munmap_gather_failed: 2570 end_split_failed: 2571 mas_set(&mas_detach, 0); 2572 mas_for_each(&mas_detach, next, end) 2573 vma_mark_detached(next, false); 2574 2575 __mt_destroy(&mt_detach); 2576 start_split_failed: 2577 map_count_exceeded: 2578 validate_mm(mm); 2579 return error; 2580 } 2581 2582 /* 2583 * do_vmi_munmap() - munmap a given range. 2584 * @vmi: The vma iterator 2585 * @mm: The mm_struct 2586 * @start: The start address to munmap 2587 * @len: The length of the range to munmap 2588 * @uf: The userfaultfd list_head 2589 * @unlock: set to true if the user wants to drop the mmap_lock on success 2590 * 2591 * This function takes a @mas that is either pointing to the previous VMA or set 2592 * to MA_START and sets it up to remove the mapping(s). The @len will be 2593 * aligned and any arch_unmap work will be preformed. 2594 * 2595 * Return: 0 on success and drops the lock if so directed, error and leaves the 2596 * lock held otherwise. 2597 */ 2598 int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm, 2599 unsigned long start, size_t len, struct list_head *uf, 2600 bool unlock) 2601 { 2602 unsigned long end; 2603 struct vm_area_struct *vma; 2604 2605 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start) 2606 return -EINVAL; 2607 2608 end = start + PAGE_ALIGN(len); 2609 if (end == start) 2610 return -EINVAL; 2611 2612 /* arch_unmap() might do unmaps itself. */ 2613 arch_unmap(mm, start, end); 2614 2615 /* Find the first overlapping VMA */ 2616 vma = vma_find(vmi, end); 2617 if (!vma) { 2618 if (unlock) 2619 mmap_write_unlock(mm); 2620 return 0; 2621 } 2622 2623 return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock); 2624 } 2625 2626 /* do_munmap() - Wrapper function for non-maple tree aware do_munmap() calls. 2627 * @mm: The mm_struct 2628 * @start: The start address to munmap 2629 * @len: The length to be munmapped. 2630 * @uf: The userfaultfd list_head 2631 * 2632 * Return: 0 on success, error otherwise. 2633 */ 2634 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, 2635 struct list_head *uf) 2636 { 2637 VMA_ITERATOR(vmi, mm, start); 2638 2639 return do_vmi_munmap(&vmi, mm, start, len, uf, false); 2640 } 2641 2642 unsigned long mmap_region(struct file *file, unsigned long addr, 2643 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2644 struct list_head *uf) 2645 { 2646 struct mm_struct *mm = current->mm; 2647 struct vm_area_struct *vma = NULL; 2648 struct vm_area_struct *next, *prev, *merge; 2649 pgoff_t pglen = len >> PAGE_SHIFT; 2650 unsigned long charged = 0; 2651 unsigned long end = addr + len; 2652 unsigned long merge_start = addr, merge_end = end; 2653 pgoff_t vm_pgoff; 2654 int error; 2655 VMA_ITERATOR(vmi, mm, addr); 2656 2657 /* Check against address space limit. */ 2658 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) { 2659 unsigned long nr_pages; 2660 2661 /* 2662 * MAP_FIXED may remove pages of mappings that intersects with 2663 * requested mapping. Account for the pages it would unmap. 2664 */ 2665 nr_pages = count_vma_pages_range(mm, addr, end); 2666 2667 if (!may_expand_vm(mm, vm_flags, 2668 (len >> PAGE_SHIFT) - nr_pages)) 2669 return -ENOMEM; 2670 } 2671 2672 /* Unmap any existing mapping in the area */ 2673 if (do_vmi_munmap(&vmi, mm, addr, len, uf, false)) 2674 return -ENOMEM; 2675 2676 /* 2677 * Private writable mapping: check memory availability 2678 */ 2679 if (accountable_mapping(file, vm_flags)) { 2680 charged = len >> PAGE_SHIFT; 2681 if (security_vm_enough_memory_mm(mm, charged)) 2682 return -ENOMEM; 2683 vm_flags |= VM_ACCOUNT; 2684 } 2685 2686 next = vma_next(&vmi); 2687 prev = vma_prev(&vmi); 2688 if (vm_flags & VM_SPECIAL) { 2689 if (prev) 2690 vma_iter_next_range(&vmi); 2691 goto cannot_expand; 2692 } 2693 2694 /* Attempt to expand an old mapping */ 2695 /* Check next */ 2696 if (next && next->vm_start == end && !vma_policy(next) && 2697 can_vma_merge_before(next, vm_flags, NULL, file, pgoff+pglen, 2698 NULL_VM_UFFD_CTX, NULL)) { 2699 merge_end = next->vm_end; 2700 vma = next; 2701 vm_pgoff = next->vm_pgoff - pglen; 2702 } 2703 2704 /* Check prev */ 2705 if (prev && prev->vm_end == addr && !vma_policy(prev) && 2706 (vma ? can_vma_merge_after(prev, vm_flags, vma->anon_vma, file, 2707 pgoff, vma->vm_userfaultfd_ctx, NULL) : 2708 can_vma_merge_after(prev, vm_flags, NULL, file, pgoff, 2709 NULL_VM_UFFD_CTX, NULL))) { 2710 merge_start = prev->vm_start; 2711 vma = prev; 2712 vm_pgoff = prev->vm_pgoff; 2713 } else if (prev) { 2714 vma_iter_next_range(&vmi); 2715 } 2716 2717 /* Actually expand, if possible */ 2718 if (vma && 2719 !vma_expand(&vmi, vma, merge_start, merge_end, vm_pgoff, next)) { 2720 khugepaged_enter_vma(vma, vm_flags); 2721 goto expanded; 2722 } 2723 2724 if (vma == prev) 2725 vma_iter_set(&vmi, addr); 2726 cannot_expand: 2727 2728 /* 2729 * Determine the object being mapped and call the appropriate 2730 * specific mapper. the address has already been validated, but 2731 * not unmapped, but the maps are removed from the list. 2732 */ 2733 vma = vm_area_alloc(mm); 2734 if (!vma) { 2735 error = -ENOMEM; 2736 goto unacct_error; 2737 } 2738 2739 vma_iter_config(&vmi, addr, end); 2740 vma->vm_start = addr; 2741 vma->vm_end = end; 2742 vm_flags_init(vma, vm_flags); 2743 vma->vm_page_prot = vm_get_page_prot(vm_flags); 2744 vma->vm_pgoff = pgoff; 2745 2746 if (file) { 2747 if (vm_flags & VM_SHARED) { 2748 error = mapping_map_writable(file->f_mapping); 2749 if (error) 2750 goto free_vma; 2751 } 2752 2753 vma->vm_file = get_file(file); 2754 error = call_mmap(file, vma); 2755 if (error) 2756 goto unmap_and_free_vma; 2757 2758 /* 2759 * Expansion is handled above, merging is handled below. 2760 * Drivers should not alter the address of the VMA. 2761 */ 2762 error = -EINVAL; 2763 if (WARN_ON((addr != vma->vm_start))) 2764 goto close_and_free_vma; 2765 2766 vma_iter_config(&vmi, addr, end); 2767 /* 2768 * If vm_flags changed after call_mmap(), we should try merge 2769 * vma again as we may succeed this time. 2770 */ 2771 if (unlikely(vm_flags != vma->vm_flags && prev)) { 2772 merge = vma_merge(&vmi, mm, prev, vma->vm_start, 2773 vma->vm_end, vma->vm_flags, NULL, 2774 vma->vm_file, vma->vm_pgoff, NULL, 2775 NULL_VM_UFFD_CTX, NULL); 2776 if (merge) { 2777 /* 2778 * ->mmap() can change vma->vm_file and fput 2779 * the original file. So fput the vma->vm_file 2780 * here or we would add an extra fput for file 2781 * and cause general protection fault 2782 * ultimately. 2783 */ 2784 fput(vma->vm_file); 2785 vm_area_free(vma); 2786 vma = merge; 2787 /* Update vm_flags to pick up the change. */ 2788 vm_flags = vma->vm_flags; 2789 goto unmap_writable; 2790 } 2791 } 2792 2793 vm_flags = vma->vm_flags; 2794 } else if (vm_flags & VM_SHARED) { 2795 error = shmem_zero_setup(vma); 2796 if (error) 2797 goto free_vma; 2798 } else { 2799 vma_set_anonymous(vma); 2800 } 2801 2802 if (map_deny_write_exec(vma, vma->vm_flags)) { 2803 error = -EACCES; 2804 goto close_and_free_vma; 2805 } 2806 2807 /* Allow architectures to sanity-check the vm_flags */ 2808 error = -EINVAL; 2809 if (!arch_validate_flags(vma->vm_flags)) 2810 goto close_and_free_vma; 2811 2812 error = -ENOMEM; 2813 if (vma_iter_prealloc(&vmi, vma)) 2814 goto close_and_free_vma; 2815 2816 /* Lock the VMA since it is modified after insertion into VMA tree */ 2817 vma_start_write(vma); 2818 vma_iter_store(&vmi, vma); 2819 mm->map_count++; 2820 if (vma->vm_file) { 2821 i_mmap_lock_write(vma->vm_file->f_mapping); 2822 if (vma->vm_flags & VM_SHARED) 2823 mapping_allow_writable(vma->vm_file->f_mapping); 2824 2825 flush_dcache_mmap_lock(vma->vm_file->f_mapping); 2826 vma_interval_tree_insert(vma, &vma->vm_file->f_mapping->i_mmap); 2827 flush_dcache_mmap_unlock(vma->vm_file->f_mapping); 2828 i_mmap_unlock_write(vma->vm_file->f_mapping); 2829 } 2830 2831 /* 2832 * vma_merge() calls khugepaged_enter_vma() either, the below 2833 * call covers the non-merge case. 2834 */ 2835 khugepaged_enter_vma(vma, vma->vm_flags); 2836 2837 /* Once vma denies write, undo our temporary denial count */ 2838 unmap_writable: 2839 if (file && vm_flags & VM_SHARED) 2840 mapping_unmap_writable(file->f_mapping); 2841 file = vma->vm_file; 2842 ksm_add_vma(vma); 2843 expanded: 2844 perf_event_mmap(vma); 2845 2846 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT); 2847 if (vm_flags & VM_LOCKED) { 2848 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) || 2849 is_vm_hugetlb_page(vma) || 2850 vma == get_gate_vma(current->mm)) 2851 vm_flags_clear(vma, VM_LOCKED_MASK); 2852 else 2853 mm->locked_vm += (len >> PAGE_SHIFT); 2854 } 2855 2856 if (file) 2857 uprobe_mmap(vma); 2858 2859 /* 2860 * New (or expanded) vma always get soft dirty status. 2861 * Otherwise user-space soft-dirty page tracker won't 2862 * be able to distinguish situation when vma area unmapped, 2863 * then new mapped in-place (which must be aimed as 2864 * a completely new data area). 2865 */ 2866 vm_flags_set(vma, VM_SOFTDIRTY); 2867 2868 vma_set_page_prot(vma); 2869 2870 validate_mm(mm); 2871 return addr; 2872 2873 close_and_free_vma: 2874 if (file && vma->vm_ops && vma->vm_ops->close) 2875 vma->vm_ops->close(vma); 2876 2877 if (file || vma->vm_file) { 2878 unmap_and_free_vma: 2879 fput(vma->vm_file); 2880 vma->vm_file = NULL; 2881 2882 vma_iter_set(&vmi, vma->vm_end); 2883 /* Undo any partial mapping done by a device driver. */ 2884 unmap_region(mm, &vmi.mas, vma, prev, next, vma->vm_start, 2885 vma->vm_end, vma->vm_end, true); 2886 } 2887 if (file && (vm_flags & VM_SHARED)) 2888 mapping_unmap_writable(file->f_mapping); 2889 free_vma: 2890 vm_area_free(vma); 2891 unacct_error: 2892 if (charged) 2893 vm_unacct_memory(charged); 2894 validate_mm(mm); 2895 return error; 2896 } 2897 2898 static int __vm_munmap(unsigned long start, size_t len, bool unlock) 2899 { 2900 int ret; 2901 struct mm_struct *mm = current->mm; 2902 LIST_HEAD(uf); 2903 VMA_ITERATOR(vmi, mm, start); 2904 2905 if (mmap_write_lock_killable(mm)) 2906 return -EINTR; 2907 2908 ret = do_vmi_munmap(&vmi, mm, start, len, &uf, unlock); 2909 if (ret || !unlock) 2910 mmap_write_unlock(mm); 2911 2912 userfaultfd_unmap_complete(mm, &uf); 2913 return ret; 2914 } 2915 2916 int vm_munmap(unsigned long start, size_t len) 2917 { 2918 return __vm_munmap(start, len, false); 2919 } 2920 EXPORT_SYMBOL(vm_munmap); 2921 2922 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 2923 { 2924 addr = untagged_addr(addr); 2925 return __vm_munmap(addr, len, true); 2926 } 2927 2928 2929 /* 2930 * Emulation of deprecated remap_file_pages() syscall. 2931 */ 2932 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size, 2933 unsigned long, prot, unsigned long, pgoff, unsigned long, flags) 2934 { 2935 2936 struct mm_struct *mm = current->mm; 2937 struct vm_area_struct *vma; 2938 unsigned long populate = 0; 2939 unsigned long ret = -EINVAL; 2940 struct file *file; 2941 2942 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/mm/remap_file_pages.rst.\n", 2943 current->comm, current->pid); 2944 2945 if (prot) 2946 return ret; 2947 start = start & PAGE_MASK; 2948 size = size & PAGE_MASK; 2949 2950 if (start + size <= start) 2951 return ret; 2952 2953 /* Does pgoff wrap? */ 2954 if (pgoff + (size >> PAGE_SHIFT) < pgoff) 2955 return ret; 2956 2957 if (mmap_write_lock_killable(mm)) 2958 return -EINTR; 2959 2960 vma = vma_lookup(mm, start); 2961 2962 if (!vma || !(vma->vm_flags & VM_SHARED)) 2963 goto out; 2964 2965 if (start + size > vma->vm_end) { 2966 VMA_ITERATOR(vmi, mm, vma->vm_end); 2967 struct vm_area_struct *next, *prev = vma; 2968 2969 for_each_vma_range(vmi, next, start + size) { 2970 /* hole between vmas ? */ 2971 if (next->vm_start != prev->vm_end) 2972 goto out; 2973 2974 if (next->vm_file != vma->vm_file) 2975 goto out; 2976 2977 if (next->vm_flags != vma->vm_flags) 2978 goto out; 2979 2980 if (start + size <= next->vm_end) 2981 break; 2982 2983 prev = next; 2984 } 2985 2986 if (!next) 2987 goto out; 2988 } 2989 2990 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0; 2991 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0; 2992 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0; 2993 2994 flags &= MAP_NONBLOCK; 2995 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE; 2996 if (vma->vm_flags & VM_LOCKED) 2997 flags |= MAP_LOCKED; 2998 2999 file = get_file(vma->vm_file); 3000 ret = do_mmap(vma->vm_file, start, size, 3001 prot, flags, 0, pgoff, &populate, NULL); 3002 fput(file); 3003 out: 3004 mmap_write_unlock(mm); 3005 if (populate) 3006 mm_populate(ret, populate); 3007 if (!IS_ERR_VALUE(ret)) 3008 ret = 0; 3009 return ret; 3010 } 3011 3012 /* 3013 * do_vma_munmap() - Unmap a full or partial vma. 3014 * @vmi: The vma iterator pointing at the vma 3015 * @vma: The first vma to be munmapped 3016 * @start: the start of the address to unmap 3017 * @end: The end of the address to unmap 3018 * @uf: The userfaultfd list_head 3019 * @unlock: Drop the lock on success 3020 * 3021 * unmaps a VMA mapping when the vma iterator is already in position. 3022 * Does not handle alignment. 3023 * 3024 * Return: 0 on success drops the lock of so directed, error on failure and will 3025 * still hold the lock. 3026 */ 3027 int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma, 3028 unsigned long start, unsigned long end, struct list_head *uf, 3029 bool unlock) 3030 { 3031 struct mm_struct *mm = vma->vm_mm; 3032 3033 arch_unmap(mm, start, end); 3034 return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock); 3035 } 3036 3037 /* 3038 * do_brk_flags() - Increase the brk vma if the flags match. 3039 * @vmi: The vma iterator 3040 * @addr: The start address 3041 * @len: The length of the increase 3042 * @vma: The vma, 3043 * @flags: The VMA Flags 3044 * 3045 * Extend the brk VMA from addr to addr + len. If the VMA is NULL or the flags 3046 * do not match then create a new anonymous VMA. Eventually we may be able to 3047 * do some brk-specific accounting here. 3048 */ 3049 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma, 3050 unsigned long addr, unsigned long len, unsigned long flags) 3051 { 3052 struct mm_struct *mm = current->mm; 3053 struct vma_prepare vp; 3054 3055 /* 3056 * Check against address space limits by the changed size 3057 * Note: This happens *after* clearing old mappings in some code paths. 3058 */ 3059 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; 3060 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT)) 3061 return -ENOMEM; 3062 3063 if (mm->map_count > sysctl_max_map_count) 3064 return -ENOMEM; 3065 3066 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT)) 3067 return -ENOMEM; 3068 3069 /* 3070 * Expand the existing vma if possible; Note that singular lists do not 3071 * occur after forking, so the expand will only happen on new VMAs. 3072 */ 3073 if (vma && vma->vm_end == addr && !vma_policy(vma) && 3074 can_vma_merge_after(vma, flags, NULL, NULL, 3075 addr >> PAGE_SHIFT, NULL_VM_UFFD_CTX, NULL)) { 3076 vma_iter_config(vmi, vma->vm_start, addr + len); 3077 if (vma_iter_prealloc(vmi, vma)) 3078 goto unacct_fail; 3079 3080 vma_start_write(vma); 3081 3082 init_vma_prep(&vp, vma); 3083 vma_prepare(&vp); 3084 vma_adjust_trans_huge(vma, vma->vm_start, addr + len, 0); 3085 vma->vm_end = addr + len; 3086 vm_flags_set(vma, VM_SOFTDIRTY); 3087 vma_iter_store(vmi, vma); 3088 3089 vma_complete(&vp, vmi, mm); 3090 khugepaged_enter_vma(vma, flags); 3091 goto out; 3092 } 3093 3094 if (vma) 3095 vma_iter_next_range(vmi); 3096 /* create a vma struct for an anonymous mapping */ 3097 vma = vm_area_alloc(mm); 3098 if (!vma) 3099 goto unacct_fail; 3100 3101 vma_set_anonymous(vma); 3102 vma->vm_start = addr; 3103 vma->vm_end = addr + len; 3104 vma->vm_pgoff = addr >> PAGE_SHIFT; 3105 vm_flags_init(vma, flags); 3106 vma->vm_page_prot = vm_get_page_prot(flags); 3107 vma_start_write(vma); 3108 if (vma_iter_store_gfp(vmi, vma, GFP_KERNEL)) 3109 goto mas_store_fail; 3110 3111 mm->map_count++; 3112 validate_mm(mm); 3113 ksm_add_vma(vma); 3114 out: 3115 perf_event_mmap(vma); 3116 mm->total_vm += len >> PAGE_SHIFT; 3117 mm->data_vm += len >> PAGE_SHIFT; 3118 if (flags & VM_LOCKED) 3119 mm->locked_vm += (len >> PAGE_SHIFT); 3120 vm_flags_set(vma, VM_SOFTDIRTY); 3121 return 0; 3122 3123 mas_store_fail: 3124 vm_area_free(vma); 3125 unacct_fail: 3126 vm_unacct_memory(len >> PAGE_SHIFT); 3127 return -ENOMEM; 3128 } 3129 3130 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags) 3131 { 3132 struct mm_struct *mm = current->mm; 3133 struct vm_area_struct *vma = NULL; 3134 unsigned long len; 3135 int ret; 3136 bool populate; 3137 LIST_HEAD(uf); 3138 VMA_ITERATOR(vmi, mm, addr); 3139 3140 len = PAGE_ALIGN(request); 3141 if (len < request) 3142 return -ENOMEM; 3143 if (!len) 3144 return 0; 3145 3146 if (mmap_write_lock_killable(mm)) 3147 return -EINTR; 3148 3149 /* Until we need other flags, refuse anything except VM_EXEC. */ 3150 if ((flags & (~VM_EXEC)) != 0) 3151 return -EINVAL; 3152 3153 ret = check_brk_limits(addr, len); 3154 if (ret) 3155 goto limits_failed; 3156 3157 ret = do_vmi_munmap(&vmi, mm, addr, len, &uf, 0); 3158 if (ret) 3159 goto munmap_failed; 3160 3161 vma = vma_prev(&vmi); 3162 ret = do_brk_flags(&vmi, vma, addr, len, flags); 3163 populate = ((mm->def_flags & VM_LOCKED) != 0); 3164 mmap_write_unlock(mm); 3165 userfaultfd_unmap_complete(mm, &uf); 3166 if (populate && !ret) 3167 mm_populate(addr, len); 3168 return ret; 3169 3170 munmap_failed: 3171 limits_failed: 3172 mmap_write_unlock(mm); 3173 return ret; 3174 } 3175 EXPORT_SYMBOL(vm_brk_flags); 3176 3177 int vm_brk(unsigned long addr, unsigned long len) 3178 { 3179 return vm_brk_flags(addr, len, 0); 3180 } 3181 EXPORT_SYMBOL(vm_brk); 3182 3183 /* Release all mmaps. */ 3184 void exit_mmap(struct mm_struct *mm) 3185 { 3186 struct mmu_gather tlb; 3187 struct vm_area_struct *vma; 3188 unsigned long nr_accounted = 0; 3189 MA_STATE(mas, &mm->mm_mt, 0, 0); 3190 int count = 0; 3191 3192 /* mm's last user has gone, and its about to be pulled down */ 3193 mmu_notifier_release(mm); 3194 3195 mmap_read_lock(mm); 3196 arch_exit_mmap(mm); 3197 3198 vma = mas_find(&mas, ULONG_MAX); 3199 if (!vma) { 3200 /* Can happen if dup_mmap() received an OOM */ 3201 mmap_read_unlock(mm); 3202 return; 3203 } 3204 3205 lru_add_drain(); 3206 flush_cache_mm(mm); 3207 tlb_gather_mmu_fullmm(&tlb, mm); 3208 /* update_hiwater_rss(mm) here? but nobody should be looking */ 3209 /* Use ULONG_MAX here to ensure all VMAs in the mm are unmapped */ 3210 unmap_vmas(&tlb, &mas, vma, 0, ULONG_MAX, ULONG_MAX, false); 3211 mmap_read_unlock(mm); 3212 3213 /* 3214 * Set MMF_OOM_SKIP to hide this task from the oom killer/reaper 3215 * because the memory has been already freed. 3216 */ 3217 set_bit(MMF_OOM_SKIP, &mm->flags); 3218 mmap_write_lock(mm); 3219 mt_clear_in_rcu(&mm->mm_mt); 3220 mas_set(&mas, vma->vm_end); 3221 free_pgtables(&tlb, &mas, vma, FIRST_USER_ADDRESS, 3222 USER_PGTABLES_CEILING, true); 3223 tlb_finish_mmu(&tlb); 3224 3225 /* 3226 * Walk the list again, actually closing and freeing it, with preemption 3227 * enabled, without holding any MM locks besides the unreachable 3228 * mmap_write_lock. 3229 */ 3230 mas_set(&mas, vma->vm_end); 3231 do { 3232 if (vma->vm_flags & VM_ACCOUNT) 3233 nr_accounted += vma_pages(vma); 3234 remove_vma(vma, true); 3235 count++; 3236 cond_resched(); 3237 } while ((vma = mas_find(&mas, ULONG_MAX)) != NULL); 3238 3239 BUG_ON(count != mm->map_count); 3240 3241 trace_exit_mmap(mm); 3242 __mt_destroy(&mm->mm_mt); 3243 mmap_write_unlock(mm); 3244 vm_unacct_memory(nr_accounted); 3245 } 3246 3247 /* Insert vm structure into process list sorted by address 3248 * and into the inode's i_mmap tree. If vm_file is non-NULL 3249 * then i_mmap_rwsem is taken here. 3250 */ 3251 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 3252 { 3253 unsigned long charged = vma_pages(vma); 3254 3255 3256 if (find_vma_intersection(mm, vma->vm_start, vma->vm_end)) 3257 return -ENOMEM; 3258 3259 if ((vma->vm_flags & VM_ACCOUNT) && 3260 security_vm_enough_memory_mm(mm, charged)) 3261 return -ENOMEM; 3262 3263 /* 3264 * The vm_pgoff of a purely anonymous vma should be irrelevant 3265 * until its first write fault, when page's anon_vma and index 3266 * are set. But now set the vm_pgoff it will almost certainly 3267 * end up with (unless mremap moves it elsewhere before that 3268 * first wfault), so /proc/pid/maps tells a consistent story. 3269 * 3270 * By setting it to reflect the virtual start address of the 3271 * vma, merges and splits can happen in a seamless way, just 3272 * using the existing file pgoff checks and manipulations. 3273 * Similarly in do_mmap and in do_brk_flags. 3274 */ 3275 if (vma_is_anonymous(vma)) { 3276 BUG_ON(vma->anon_vma); 3277 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; 3278 } 3279 3280 if (vma_link(mm, vma)) { 3281 vm_unacct_memory(charged); 3282 return -ENOMEM; 3283 } 3284 3285 return 0; 3286 } 3287 3288 /* 3289 * Copy the vma structure to a new location in the same mm, 3290 * prior to moving page table entries, to effect an mremap move. 3291 */ 3292 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 3293 unsigned long addr, unsigned long len, pgoff_t pgoff, 3294 bool *need_rmap_locks) 3295 { 3296 struct vm_area_struct *vma = *vmap; 3297 unsigned long vma_start = vma->vm_start; 3298 struct mm_struct *mm = vma->vm_mm; 3299 struct vm_area_struct *new_vma, *prev; 3300 bool faulted_in_anon_vma = true; 3301 VMA_ITERATOR(vmi, mm, addr); 3302 3303 /* 3304 * If anonymous vma has not yet been faulted, update new pgoff 3305 * to match new location, to increase its chance of merging. 3306 */ 3307 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) { 3308 pgoff = addr >> PAGE_SHIFT; 3309 faulted_in_anon_vma = false; 3310 } 3311 3312 new_vma = find_vma_prev(mm, addr, &prev); 3313 if (new_vma && new_vma->vm_start < addr + len) 3314 return NULL; /* should never get here */ 3315 3316 new_vma = vma_merge(&vmi, mm, prev, addr, addr + len, vma->vm_flags, 3317 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma), 3318 vma->vm_userfaultfd_ctx, anon_vma_name(vma)); 3319 if (new_vma) { 3320 /* 3321 * Source vma may have been merged into new_vma 3322 */ 3323 if (unlikely(vma_start >= new_vma->vm_start && 3324 vma_start < new_vma->vm_end)) { 3325 /* 3326 * The only way we can get a vma_merge with 3327 * self during an mremap is if the vma hasn't 3328 * been faulted in yet and we were allowed to 3329 * reset the dst vma->vm_pgoff to the 3330 * destination address of the mremap to allow 3331 * the merge to happen. mremap must change the 3332 * vm_pgoff linearity between src and dst vmas 3333 * (in turn preventing a vma_merge) to be 3334 * safe. It is only safe to keep the vm_pgoff 3335 * linear if there are no pages mapped yet. 3336 */ 3337 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma); 3338 *vmap = vma = new_vma; 3339 } 3340 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff); 3341 } else { 3342 new_vma = vm_area_dup(vma); 3343 if (!new_vma) 3344 goto out; 3345 new_vma->vm_start = addr; 3346 new_vma->vm_end = addr + len; 3347 new_vma->vm_pgoff = pgoff; 3348 if (vma_dup_policy(vma, new_vma)) 3349 goto out_free_vma; 3350 if (anon_vma_clone(new_vma, vma)) 3351 goto out_free_mempol; 3352 if (new_vma->vm_file) 3353 get_file(new_vma->vm_file); 3354 if (new_vma->vm_ops && new_vma->vm_ops->open) 3355 new_vma->vm_ops->open(new_vma); 3356 if (vma_link(mm, new_vma)) 3357 goto out_vma_link; 3358 *need_rmap_locks = false; 3359 } 3360 return new_vma; 3361 3362 out_vma_link: 3363 if (new_vma->vm_ops && new_vma->vm_ops->close) 3364 new_vma->vm_ops->close(new_vma); 3365 3366 if (new_vma->vm_file) 3367 fput(new_vma->vm_file); 3368 3369 unlink_anon_vmas(new_vma); 3370 out_free_mempol: 3371 mpol_put(vma_policy(new_vma)); 3372 out_free_vma: 3373 vm_area_free(new_vma); 3374 out: 3375 return NULL; 3376 } 3377 3378 /* 3379 * Return true if the calling process may expand its vm space by the passed 3380 * number of pages 3381 */ 3382 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages) 3383 { 3384 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT) 3385 return false; 3386 3387 if (is_data_mapping(flags) && 3388 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) { 3389 /* Workaround for Valgrind */ 3390 if (rlimit(RLIMIT_DATA) == 0 && 3391 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT) 3392 return true; 3393 3394 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n", 3395 current->comm, current->pid, 3396 (mm->data_vm + npages) << PAGE_SHIFT, 3397 rlimit(RLIMIT_DATA), 3398 ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data"); 3399 3400 if (!ignore_rlimit_data) 3401 return false; 3402 } 3403 3404 return true; 3405 } 3406 3407 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages) 3408 { 3409 WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages); 3410 3411 if (is_exec_mapping(flags)) 3412 mm->exec_vm += npages; 3413 else if (is_stack_mapping(flags)) 3414 mm->stack_vm += npages; 3415 else if (is_data_mapping(flags)) 3416 mm->data_vm += npages; 3417 } 3418 3419 static vm_fault_t special_mapping_fault(struct vm_fault *vmf); 3420 3421 /* 3422 * Having a close hook prevents vma merging regardless of flags. 3423 */ 3424 static void special_mapping_close(struct vm_area_struct *vma) 3425 { 3426 } 3427 3428 static const char *special_mapping_name(struct vm_area_struct *vma) 3429 { 3430 return ((struct vm_special_mapping *)vma->vm_private_data)->name; 3431 } 3432 3433 static int special_mapping_mremap(struct vm_area_struct *new_vma) 3434 { 3435 struct vm_special_mapping *sm = new_vma->vm_private_data; 3436 3437 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm)) 3438 return -EFAULT; 3439 3440 if (sm->mremap) 3441 return sm->mremap(sm, new_vma); 3442 3443 return 0; 3444 } 3445 3446 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr) 3447 { 3448 /* 3449 * Forbid splitting special mappings - kernel has expectations over 3450 * the number of pages in mapping. Together with VM_DONTEXPAND 3451 * the size of vma should stay the same over the special mapping's 3452 * lifetime. 3453 */ 3454 return -EINVAL; 3455 } 3456 3457 static const struct vm_operations_struct special_mapping_vmops = { 3458 .close = special_mapping_close, 3459 .fault = special_mapping_fault, 3460 .mremap = special_mapping_mremap, 3461 .name = special_mapping_name, 3462 /* vDSO code relies that VVAR can't be accessed remotely */ 3463 .access = NULL, 3464 .may_split = special_mapping_split, 3465 }; 3466 3467 static const struct vm_operations_struct legacy_special_mapping_vmops = { 3468 .close = special_mapping_close, 3469 .fault = special_mapping_fault, 3470 }; 3471 3472 static vm_fault_t special_mapping_fault(struct vm_fault *vmf) 3473 { 3474 struct vm_area_struct *vma = vmf->vma; 3475 pgoff_t pgoff; 3476 struct page **pages; 3477 3478 if (vma->vm_ops == &legacy_special_mapping_vmops) { 3479 pages = vma->vm_private_data; 3480 } else { 3481 struct vm_special_mapping *sm = vma->vm_private_data; 3482 3483 if (sm->fault) 3484 return sm->fault(sm, vmf->vma, vmf); 3485 3486 pages = sm->pages; 3487 } 3488 3489 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages) 3490 pgoff--; 3491 3492 if (*pages) { 3493 struct page *page = *pages; 3494 get_page(page); 3495 vmf->page = page; 3496 return 0; 3497 } 3498 3499 return VM_FAULT_SIGBUS; 3500 } 3501 3502 static struct vm_area_struct *__install_special_mapping( 3503 struct mm_struct *mm, 3504 unsigned long addr, unsigned long len, 3505 unsigned long vm_flags, void *priv, 3506 const struct vm_operations_struct *ops) 3507 { 3508 int ret; 3509 struct vm_area_struct *vma; 3510 3511 vma = vm_area_alloc(mm); 3512 if (unlikely(vma == NULL)) 3513 return ERR_PTR(-ENOMEM); 3514 3515 vma->vm_start = addr; 3516 vma->vm_end = addr + len; 3517 3518 vm_flags_init(vma, (vm_flags | mm->def_flags | 3519 VM_DONTEXPAND | VM_SOFTDIRTY) & ~VM_LOCKED_MASK); 3520 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 3521 3522 vma->vm_ops = ops; 3523 vma->vm_private_data = priv; 3524 3525 ret = insert_vm_struct(mm, vma); 3526 if (ret) 3527 goto out; 3528 3529 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT); 3530 3531 perf_event_mmap(vma); 3532 3533 return vma; 3534 3535 out: 3536 vm_area_free(vma); 3537 return ERR_PTR(ret); 3538 } 3539 3540 bool vma_is_special_mapping(const struct vm_area_struct *vma, 3541 const struct vm_special_mapping *sm) 3542 { 3543 return vma->vm_private_data == sm && 3544 (vma->vm_ops == &special_mapping_vmops || 3545 vma->vm_ops == &legacy_special_mapping_vmops); 3546 } 3547 3548 /* 3549 * Called with mm->mmap_lock held for writing. 3550 * Insert a new vma covering the given region, with the given flags. 3551 * Its pages are supplied by the given array of struct page *. 3552 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated. 3553 * The region past the last page supplied will always produce SIGBUS. 3554 * The array pointer and the pages it points to are assumed to stay alive 3555 * for as long as this mapping might exist. 3556 */ 3557 struct vm_area_struct *_install_special_mapping( 3558 struct mm_struct *mm, 3559 unsigned long addr, unsigned long len, 3560 unsigned long vm_flags, const struct vm_special_mapping *spec) 3561 { 3562 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec, 3563 &special_mapping_vmops); 3564 } 3565 3566 int install_special_mapping(struct mm_struct *mm, 3567 unsigned long addr, unsigned long len, 3568 unsigned long vm_flags, struct page **pages) 3569 { 3570 struct vm_area_struct *vma = __install_special_mapping( 3571 mm, addr, len, vm_flags, (void *)pages, 3572 &legacy_special_mapping_vmops); 3573 3574 return PTR_ERR_OR_ZERO(vma); 3575 } 3576 3577 static DEFINE_MUTEX(mm_all_locks_mutex); 3578 3579 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) 3580 { 3581 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 3582 /* 3583 * The LSB of head.next can't change from under us 3584 * because we hold the mm_all_locks_mutex. 3585 */ 3586 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock); 3587 /* 3588 * We can safely modify head.next after taking the 3589 * anon_vma->root->rwsem. If some other vma in this mm shares 3590 * the same anon_vma we won't take it again. 3591 * 3592 * No need of atomic instructions here, head.next 3593 * can't change from under us thanks to the 3594 * anon_vma->root->rwsem. 3595 */ 3596 if (__test_and_set_bit(0, (unsigned long *) 3597 &anon_vma->root->rb_root.rb_root.rb_node)) 3598 BUG(); 3599 } 3600 } 3601 3602 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) 3603 { 3604 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3605 /* 3606 * AS_MM_ALL_LOCKS can't change from under us because 3607 * we hold the mm_all_locks_mutex. 3608 * 3609 * Operations on ->flags have to be atomic because 3610 * even if AS_MM_ALL_LOCKS is stable thanks to the 3611 * mm_all_locks_mutex, there may be other cpus 3612 * changing other bitflags in parallel to us. 3613 */ 3614 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) 3615 BUG(); 3616 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock); 3617 } 3618 } 3619 3620 /* 3621 * This operation locks against the VM for all pte/vma/mm related 3622 * operations that could ever happen on a certain mm. This includes 3623 * vmtruncate, try_to_unmap, and all page faults. 3624 * 3625 * The caller must take the mmap_lock in write mode before calling 3626 * mm_take_all_locks(). The caller isn't allowed to release the 3627 * mmap_lock until mm_drop_all_locks() returns. 3628 * 3629 * mmap_lock in write mode is required in order to block all operations 3630 * that could modify pagetables and free pages without need of 3631 * altering the vma layout. It's also needed in write mode to avoid new 3632 * anon_vmas to be associated with existing vmas. 3633 * 3634 * A single task can't take more than one mm_take_all_locks() in a row 3635 * or it would deadlock. 3636 * 3637 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in 3638 * mapping->flags avoid to take the same lock twice, if more than one 3639 * vma in this mm is backed by the same anon_vma or address_space. 3640 * 3641 * We take locks in following order, accordingly to comment at beginning 3642 * of mm/rmap.c: 3643 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for 3644 * hugetlb mapping); 3645 * - all vmas marked locked 3646 * - all i_mmap_rwsem locks; 3647 * - all anon_vma->rwseml 3648 * 3649 * We can take all locks within these types randomly because the VM code 3650 * doesn't nest them and we protected from parallel mm_take_all_locks() by 3651 * mm_all_locks_mutex. 3652 * 3653 * mm_take_all_locks() and mm_drop_all_locks are expensive operations 3654 * that may have to take thousand of locks. 3655 * 3656 * mm_take_all_locks() can fail if it's interrupted by signals. 3657 */ 3658 int mm_take_all_locks(struct mm_struct *mm) 3659 { 3660 struct vm_area_struct *vma; 3661 struct anon_vma_chain *avc; 3662 MA_STATE(mas, &mm->mm_mt, 0, 0); 3663 3664 mmap_assert_write_locked(mm); 3665 3666 mutex_lock(&mm_all_locks_mutex); 3667 3668 /* 3669 * vma_start_write() does not have a complement in mm_drop_all_locks() 3670 * because vma_start_write() is always asymmetrical; it marks a VMA as 3671 * being written to until mmap_write_unlock() or mmap_write_downgrade() 3672 * is reached. 3673 */ 3674 mas_for_each(&mas, vma, ULONG_MAX) { 3675 if (signal_pending(current)) 3676 goto out_unlock; 3677 vma_start_write(vma); 3678 } 3679 3680 mas_set(&mas, 0); 3681 mas_for_each(&mas, vma, ULONG_MAX) { 3682 if (signal_pending(current)) 3683 goto out_unlock; 3684 if (vma->vm_file && vma->vm_file->f_mapping && 3685 is_vm_hugetlb_page(vma)) 3686 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3687 } 3688 3689 mas_set(&mas, 0); 3690 mas_for_each(&mas, vma, ULONG_MAX) { 3691 if (signal_pending(current)) 3692 goto out_unlock; 3693 if (vma->vm_file && vma->vm_file->f_mapping && 3694 !is_vm_hugetlb_page(vma)) 3695 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3696 } 3697 3698 mas_set(&mas, 0); 3699 mas_for_each(&mas, vma, ULONG_MAX) { 3700 if (signal_pending(current)) 3701 goto out_unlock; 3702 if (vma->anon_vma) 3703 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3704 vm_lock_anon_vma(mm, avc->anon_vma); 3705 } 3706 3707 return 0; 3708 3709 out_unlock: 3710 mm_drop_all_locks(mm); 3711 return -EINTR; 3712 } 3713 3714 static void vm_unlock_anon_vma(struct anon_vma *anon_vma) 3715 { 3716 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 3717 /* 3718 * The LSB of head.next can't change to 0 from under 3719 * us because we hold the mm_all_locks_mutex. 3720 * 3721 * We must however clear the bitflag before unlocking 3722 * the vma so the users using the anon_vma->rb_root will 3723 * never see our bitflag. 3724 * 3725 * No need of atomic instructions here, head.next 3726 * can't change from under us until we release the 3727 * anon_vma->root->rwsem. 3728 */ 3729 if (!__test_and_clear_bit(0, (unsigned long *) 3730 &anon_vma->root->rb_root.rb_root.rb_node)) 3731 BUG(); 3732 anon_vma_unlock_write(anon_vma); 3733 } 3734 } 3735 3736 static void vm_unlock_mapping(struct address_space *mapping) 3737 { 3738 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3739 /* 3740 * AS_MM_ALL_LOCKS can't change to 0 from under us 3741 * because we hold the mm_all_locks_mutex. 3742 */ 3743 i_mmap_unlock_write(mapping); 3744 if (!test_and_clear_bit(AS_MM_ALL_LOCKS, 3745 &mapping->flags)) 3746 BUG(); 3747 } 3748 } 3749 3750 /* 3751 * The mmap_lock cannot be released by the caller until 3752 * mm_drop_all_locks() returns. 3753 */ 3754 void mm_drop_all_locks(struct mm_struct *mm) 3755 { 3756 struct vm_area_struct *vma; 3757 struct anon_vma_chain *avc; 3758 MA_STATE(mas, &mm->mm_mt, 0, 0); 3759 3760 mmap_assert_write_locked(mm); 3761 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); 3762 3763 mas_for_each(&mas, vma, ULONG_MAX) { 3764 if (vma->anon_vma) 3765 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3766 vm_unlock_anon_vma(avc->anon_vma); 3767 if (vma->vm_file && vma->vm_file->f_mapping) 3768 vm_unlock_mapping(vma->vm_file->f_mapping); 3769 } 3770 3771 mutex_unlock(&mm_all_locks_mutex); 3772 } 3773 3774 /* 3775 * initialise the percpu counter for VM 3776 */ 3777 void __init mmap_init(void) 3778 { 3779 int ret; 3780 3781 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL); 3782 VM_BUG_ON(ret); 3783 } 3784 3785 /* 3786 * Initialise sysctl_user_reserve_kbytes. 3787 * 3788 * This is intended to prevent a user from starting a single memory hogging 3789 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER 3790 * mode. 3791 * 3792 * The default value is min(3% of free memory, 128MB) 3793 * 128MB is enough to recover with sshd/login, bash, and top/kill. 3794 */ 3795 static int init_user_reserve(void) 3796 { 3797 unsigned long free_kbytes; 3798 3799 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES)); 3800 3801 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17); 3802 return 0; 3803 } 3804 subsys_initcall(init_user_reserve); 3805 3806 /* 3807 * Initialise sysctl_admin_reserve_kbytes. 3808 * 3809 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin 3810 * to log in and kill a memory hogging process. 3811 * 3812 * Systems with more than 256MB will reserve 8MB, enough to recover 3813 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will 3814 * only reserve 3% of free pages by default. 3815 */ 3816 static int init_admin_reserve(void) 3817 { 3818 unsigned long free_kbytes; 3819 3820 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES)); 3821 3822 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13); 3823 return 0; 3824 } 3825 subsys_initcall(init_admin_reserve); 3826 3827 /* 3828 * Reinititalise user and admin reserves if memory is added or removed. 3829 * 3830 * The default user reserve max is 128MB, and the default max for the 3831 * admin reserve is 8MB. These are usually, but not always, enough to 3832 * enable recovery from a memory hogging process using login/sshd, a shell, 3833 * and tools like top. It may make sense to increase or even disable the 3834 * reserve depending on the existence of swap or variations in the recovery 3835 * tools. So, the admin may have changed them. 3836 * 3837 * If memory is added and the reserves have been eliminated or increased above 3838 * the default max, then we'll trust the admin. 3839 * 3840 * If memory is removed and there isn't enough free memory, then we 3841 * need to reset the reserves. 3842 * 3843 * Otherwise keep the reserve set by the admin. 3844 */ 3845 static int reserve_mem_notifier(struct notifier_block *nb, 3846 unsigned long action, void *data) 3847 { 3848 unsigned long tmp, free_kbytes; 3849 3850 switch (action) { 3851 case MEM_ONLINE: 3852 /* Default max is 128MB. Leave alone if modified by operator. */ 3853 tmp = sysctl_user_reserve_kbytes; 3854 if (0 < tmp && tmp < (1UL << 17)) 3855 init_user_reserve(); 3856 3857 /* Default max is 8MB. Leave alone if modified by operator. */ 3858 tmp = sysctl_admin_reserve_kbytes; 3859 if (0 < tmp && tmp < (1UL << 13)) 3860 init_admin_reserve(); 3861 3862 break; 3863 case MEM_OFFLINE: 3864 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES)); 3865 3866 if (sysctl_user_reserve_kbytes > free_kbytes) { 3867 init_user_reserve(); 3868 pr_info("vm.user_reserve_kbytes reset to %lu\n", 3869 sysctl_user_reserve_kbytes); 3870 } 3871 3872 if (sysctl_admin_reserve_kbytes > free_kbytes) { 3873 init_admin_reserve(); 3874 pr_info("vm.admin_reserve_kbytes reset to %lu\n", 3875 sysctl_admin_reserve_kbytes); 3876 } 3877 break; 3878 default: 3879 break; 3880 } 3881 return NOTIFY_OK; 3882 } 3883 3884 static int __meminit init_reserve_notifier(void) 3885 { 3886 if (hotplug_memory_notifier(reserve_mem_notifier, DEFAULT_CALLBACK_PRI)) 3887 pr_err("Failed registering memory add/remove notifier for admin reserve\n"); 3888 3889 return 0; 3890 } 3891 subsys_initcall(init_reserve_notifier); 3892