1 /* 2 * mm/mmap.c 3 * 4 * Written by obz. 5 * 6 * Address space accounting code <alan@lxorguk.ukuu.org.uk> 7 */ 8 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/kernel.h> 12 #include <linux/slab.h> 13 #include <linux/backing-dev.h> 14 #include <linux/mm.h> 15 #include <linux/vmacache.h> 16 #include <linux/shm.h> 17 #include <linux/mman.h> 18 #include <linux/pagemap.h> 19 #include <linux/swap.h> 20 #include <linux/syscalls.h> 21 #include <linux/capability.h> 22 #include <linux/init.h> 23 #include <linux/file.h> 24 #include <linux/fs.h> 25 #include <linux/personality.h> 26 #include <linux/security.h> 27 #include <linux/hugetlb.h> 28 #include <linux/shmem_fs.h> 29 #include <linux/profile.h> 30 #include <linux/export.h> 31 #include <linux/mount.h> 32 #include <linux/mempolicy.h> 33 #include <linux/rmap.h> 34 #include <linux/mmu_notifier.h> 35 #include <linux/mmdebug.h> 36 #include <linux/perf_event.h> 37 #include <linux/audit.h> 38 #include <linux/khugepaged.h> 39 #include <linux/uprobes.h> 40 #include <linux/rbtree_augmented.h> 41 #include <linux/notifier.h> 42 #include <linux/memory.h> 43 #include <linux/printk.h> 44 #include <linux/userfaultfd_k.h> 45 #include <linux/moduleparam.h> 46 #include <linux/pkeys.h> 47 48 #include <asm/uaccess.h> 49 #include <asm/cacheflush.h> 50 #include <asm/tlb.h> 51 #include <asm/mmu_context.h> 52 53 #include "internal.h" 54 55 #ifndef arch_mmap_check 56 #define arch_mmap_check(addr, len, flags) (0) 57 #endif 58 59 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 60 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN; 61 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX; 62 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS; 63 #endif 64 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 65 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN; 66 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX; 67 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS; 68 #endif 69 70 static bool ignore_rlimit_data; 71 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644); 72 73 static void unmap_region(struct mm_struct *mm, 74 struct vm_area_struct *vma, struct vm_area_struct *prev, 75 unsigned long start, unsigned long end); 76 77 /* description of effects of mapping type and prot in current implementation. 78 * this is due to the limited x86 page protection hardware. The expected 79 * behavior is in parens: 80 * 81 * map_type prot 82 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC 83 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes 84 * w: (no) no w: (no) no w: (yes) yes w: (no) no 85 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 86 * 87 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes 88 * w: (no) no w: (no) no w: (copy) copy w: (no) no 89 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 90 * 91 * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and 92 * MAP_PRIVATE: 93 * r: (no) no 94 * w: (no) no 95 * x: (yes) yes 96 */ 97 pgprot_t protection_map[16] = { 98 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111, 99 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111 100 }; 101 102 pgprot_t vm_get_page_prot(unsigned long vm_flags) 103 { 104 return __pgprot(pgprot_val(protection_map[vm_flags & 105 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) | 106 pgprot_val(arch_vm_get_page_prot(vm_flags))); 107 } 108 EXPORT_SYMBOL(vm_get_page_prot); 109 110 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags) 111 { 112 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags)); 113 } 114 115 /* Update vma->vm_page_prot to reflect vma->vm_flags. */ 116 void vma_set_page_prot(struct vm_area_struct *vma) 117 { 118 unsigned long vm_flags = vma->vm_flags; 119 pgprot_t vm_page_prot; 120 121 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags); 122 if (vma_wants_writenotify(vma, vm_page_prot)) { 123 vm_flags &= ~VM_SHARED; 124 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags); 125 } 126 /* remove_protection_ptes reads vma->vm_page_prot without mmap_sem */ 127 WRITE_ONCE(vma->vm_page_prot, vm_page_prot); 128 } 129 130 /* 131 * Requires inode->i_mapping->i_mmap_rwsem 132 */ 133 static void __remove_shared_vm_struct(struct vm_area_struct *vma, 134 struct file *file, struct address_space *mapping) 135 { 136 if (vma->vm_flags & VM_DENYWRITE) 137 atomic_inc(&file_inode(file)->i_writecount); 138 if (vma->vm_flags & VM_SHARED) 139 mapping_unmap_writable(mapping); 140 141 flush_dcache_mmap_lock(mapping); 142 vma_interval_tree_remove(vma, &mapping->i_mmap); 143 flush_dcache_mmap_unlock(mapping); 144 } 145 146 /* 147 * Unlink a file-based vm structure from its interval tree, to hide 148 * vma from rmap and vmtruncate before freeing its page tables. 149 */ 150 void unlink_file_vma(struct vm_area_struct *vma) 151 { 152 struct file *file = vma->vm_file; 153 154 if (file) { 155 struct address_space *mapping = file->f_mapping; 156 i_mmap_lock_write(mapping); 157 __remove_shared_vm_struct(vma, file, mapping); 158 i_mmap_unlock_write(mapping); 159 } 160 } 161 162 /* 163 * Close a vm structure and free it, returning the next. 164 */ 165 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma) 166 { 167 struct vm_area_struct *next = vma->vm_next; 168 169 might_sleep(); 170 if (vma->vm_ops && vma->vm_ops->close) 171 vma->vm_ops->close(vma); 172 if (vma->vm_file) 173 fput(vma->vm_file); 174 mpol_put(vma_policy(vma)); 175 kmem_cache_free(vm_area_cachep, vma); 176 return next; 177 } 178 179 static int do_brk(unsigned long addr, unsigned long len); 180 181 SYSCALL_DEFINE1(brk, unsigned long, brk) 182 { 183 unsigned long retval; 184 unsigned long newbrk, oldbrk; 185 struct mm_struct *mm = current->mm; 186 unsigned long min_brk; 187 bool populate; 188 189 if (down_write_killable(&mm->mmap_sem)) 190 return -EINTR; 191 192 #ifdef CONFIG_COMPAT_BRK 193 /* 194 * CONFIG_COMPAT_BRK can still be overridden by setting 195 * randomize_va_space to 2, which will still cause mm->start_brk 196 * to be arbitrarily shifted 197 */ 198 if (current->brk_randomized) 199 min_brk = mm->start_brk; 200 else 201 min_brk = mm->end_data; 202 #else 203 min_brk = mm->start_brk; 204 #endif 205 if (brk < min_brk) 206 goto out; 207 208 /* 209 * Check against rlimit here. If this check is done later after the test 210 * of oldbrk with newbrk then it can escape the test and let the data 211 * segment grow beyond its set limit the in case where the limit is 212 * not page aligned -Ram Gupta 213 */ 214 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk, 215 mm->end_data, mm->start_data)) 216 goto out; 217 218 newbrk = PAGE_ALIGN(brk); 219 oldbrk = PAGE_ALIGN(mm->brk); 220 if (oldbrk == newbrk) 221 goto set_brk; 222 223 /* Always allow shrinking brk. */ 224 if (brk <= mm->brk) { 225 if (!do_munmap(mm, newbrk, oldbrk-newbrk)) 226 goto set_brk; 227 goto out; 228 } 229 230 /* Check against existing mmap mappings. */ 231 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE)) 232 goto out; 233 234 /* Ok, looks good - let it rip. */ 235 if (do_brk(oldbrk, newbrk-oldbrk) < 0) 236 goto out; 237 238 set_brk: 239 mm->brk = brk; 240 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0; 241 up_write(&mm->mmap_sem); 242 if (populate) 243 mm_populate(oldbrk, newbrk - oldbrk); 244 return brk; 245 246 out: 247 retval = mm->brk; 248 up_write(&mm->mmap_sem); 249 return retval; 250 } 251 252 static long vma_compute_subtree_gap(struct vm_area_struct *vma) 253 { 254 unsigned long max, subtree_gap; 255 max = vma->vm_start; 256 if (vma->vm_prev) 257 max -= vma->vm_prev->vm_end; 258 if (vma->vm_rb.rb_left) { 259 subtree_gap = rb_entry(vma->vm_rb.rb_left, 260 struct vm_area_struct, vm_rb)->rb_subtree_gap; 261 if (subtree_gap > max) 262 max = subtree_gap; 263 } 264 if (vma->vm_rb.rb_right) { 265 subtree_gap = rb_entry(vma->vm_rb.rb_right, 266 struct vm_area_struct, vm_rb)->rb_subtree_gap; 267 if (subtree_gap > max) 268 max = subtree_gap; 269 } 270 return max; 271 } 272 273 #ifdef CONFIG_DEBUG_VM_RB 274 static int browse_rb(struct mm_struct *mm) 275 { 276 struct rb_root *root = &mm->mm_rb; 277 int i = 0, j, bug = 0; 278 struct rb_node *nd, *pn = NULL; 279 unsigned long prev = 0, pend = 0; 280 281 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 282 struct vm_area_struct *vma; 283 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 284 if (vma->vm_start < prev) { 285 pr_emerg("vm_start %lx < prev %lx\n", 286 vma->vm_start, prev); 287 bug = 1; 288 } 289 if (vma->vm_start < pend) { 290 pr_emerg("vm_start %lx < pend %lx\n", 291 vma->vm_start, pend); 292 bug = 1; 293 } 294 if (vma->vm_start > vma->vm_end) { 295 pr_emerg("vm_start %lx > vm_end %lx\n", 296 vma->vm_start, vma->vm_end); 297 bug = 1; 298 } 299 spin_lock(&mm->page_table_lock); 300 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) { 301 pr_emerg("free gap %lx, correct %lx\n", 302 vma->rb_subtree_gap, 303 vma_compute_subtree_gap(vma)); 304 bug = 1; 305 } 306 spin_unlock(&mm->page_table_lock); 307 i++; 308 pn = nd; 309 prev = vma->vm_start; 310 pend = vma->vm_end; 311 } 312 j = 0; 313 for (nd = pn; nd; nd = rb_prev(nd)) 314 j++; 315 if (i != j) { 316 pr_emerg("backwards %d, forwards %d\n", j, i); 317 bug = 1; 318 } 319 return bug ? -1 : i; 320 } 321 322 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore) 323 { 324 struct rb_node *nd; 325 326 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 327 struct vm_area_struct *vma; 328 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 329 VM_BUG_ON_VMA(vma != ignore && 330 vma->rb_subtree_gap != vma_compute_subtree_gap(vma), 331 vma); 332 } 333 } 334 335 static void validate_mm(struct mm_struct *mm) 336 { 337 int bug = 0; 338 int i = 0; 339 unsigned long highest_address = 0; 340 struct vm_area_struct *vma = mm->mmap; 341 342 while (vma) { 343 struct anon_vma *anon_vma = vma->anon_vma; 344 struct anon_vma_chain *avc; 345 346 if (anon_vma) { 347 anon_vma_lock_read(anon_vma); 348 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 349 anon_vma_interval_tree_verify(avc); 350 anon_vma_unlock_read(anon_vma); 351 } 352 353 highest_address = vma->vm_end; 354 vma = vma->vm_next; 355 i++; 356 } 357 if (i != mm->map_count) { 358 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i); 359 bug = 1; 360 } 361 if (highest_address != mm->highest_vm_end) { 362 pr_emerg("mm->highest_vm_end %lx, found %lx\n", 363 mm->highest_vm_end, highest_address); 364 bug = 1; 365 } 366 i = browse_rb(mm); 367 if (i != mm->map_count) { 368 if (i != -1) 369 pr_emerg("map_count %d rb %d\n", mm->map_count, i); 370 bug = 1; 371 } 372 VM_BUG_ON_MM(bug, mm); 373 } 374 #else 375 #define validate_mm_rb(root, ignore) do { } while (0) 376 #define validate_mm(mm) do { } while (0) 377 #endif 378 379 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb, 380 unsigned long, rb_subtree_gap, vma_compute_subtree_gap) 381 382 /* 383 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or 384 * vma->vm_prev->vm_end values changed, without modifying the vma's position 385 * in the rbtree. 386 */ 387 static void vma_gap_update(struct vm_area_struct *vma) 388 { 389 /* 390 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback 391 * function that does exacltly what we want. 392 */ 393 vma_gap_callbacks_propagate(&vma->vm_rb, NULL); 394 } 395 396 static inline void vma_rb_insert(struct vm_area_struct *vma, 397 struct rb_root *root) 398 { 399 /* All rb_subtree_gap values must be consistent prior to insertion */ 400 validate_mm_rb(root, NULL); 401 402 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks); 403 } 404 405 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root) 406 { 407 /* 408 * Note rb_erase_augmented is a fairly large inline function, 409 * so make sure we instantiate it only once with our desired 410 * augmented rbtree callbacks. 411 */ 412 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks); 413 } 414 415 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma, 416 struct rb_root *root, 417 struct vm_area_struct *ignore) 418 { 419 /* 420 * All rb_subtree_gap values must be consistent prior to erase, 421 * with the possible exception of the "next" vma being erased if 422 * next->vm_start was reduced. 423 */ 424 validate_mm_rb(root, ignore); 425 426 __vma_rb_erase(vma, root); 427 } 428 429 static __always_inline void vma_rb_erase(struct vm_area_struct *vma, 430 struct rb_root *root) 431 { 432 /* 433 * All rb_subtree_gap values must be consistent prior to erase, 434 * with the possible exception of the vma being erased. 435 */ 436 validate_mm_rb(root, vma); 437 438 __vma_rb_erase(vma, root); 439 } 440 441 /* 442 * vma has some anon_vma assigned, and is already inserted on that 443 * anon_vma's interval trees. 444 * 445 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the 446 * vma must be removed from the anon_vma's interval trees using 447 * anon_vma_interval_tree_pre_update_vma(). 448 * 449 * After the update, the vma will be reinserted using 450 * anon_vma_interval_tree_post_update_vma(). 451 * 452 * The entire update must be protected by exclusive mmap_sem and by 453 * the root anon_vma's mutex. 454 */ 455 static inline void 456 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma) 457 { 458 struct anon_vma_chain *avc; 459 460 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 461 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root); 462 } 463 464 static inline void 465 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma) 466 { 467 struct anon_vma_chain *avc; 468 469 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 470 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root); 471 } 472 473 static int find_vma_links(struct mm_struct *mm, unsigned long addr, 474 unsigned long end, struct vm_area_struct **pprev, 475 struct rb_node ***rb_link, struct rb_node **rb_parent) 476 { 477 struct rb_node **__rb_link, *__rb_parent, *rb_prev; 478 479 __rb_link = &mm->mm_rb.rb_node; 480 rb_prev = __rb_parent = NULL; 481 482 while (*__rb_link) { 483 struct vm_area_struct *vma_tmp; 484 485 __rb_parent = *__rb_link; 486 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb); 487 488 if (vma_tmp->vm_end > addr) { 489 /* Fail if an existing vma overlaps the area */ 490 if (vma_tmp->vm_start < end) 491 return -ENOMEM; 492 __rb_link = &__rb_parent->rb_left; 493 } else { 494 rb_prev = __rb_parent; 495 __rb_link = &__rb_parent->rb_right; 496 } 497 } 498 499 *pprev = NULL; 500 if (rb_prev) 501 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); 502 *rb_link = __rb_link; 503 *rb_parent = __rb_parent; 504 return 0; 505 } 506 507 static unsigned long count_vma_pages_range(struct mm_struct *mm, 508 unsigned long addr, unsigned long end) 509 { 510 unsigned long nr_pages = 0; 511 struct vm_area_struct *vma; 512 513 /* Find first overlaping mapping */ 514 vma = find_vma_intersection(mm, addr, end); 515 if (!vma) 516 return 0; 517 518 nr_pages = (min(end, vma->vm_end) - 519 max(addr, vma->vm_start)) >> PAGE_SHIFT; 520 521 /* Iterate over the rest of the overlaps */ 522 for (vma = vma->vm_next; vma; vma = vma->vm_next) { 523 unsigned long overlap_len; 524 525 if (vma->vm_start > end) 526 break; 527 528 overlap_len = min(end, vma->vm_end) - vma->vm_start; 529 nr_pages += overlap_len >> PAGE_SHIFT; 530 } 531 532 return nr_pages; 533 } 534 535 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma, 536 struct rb_node **rb_link, struct rb_node *rb_parent) 537 { 538 /* Update tracking information for the gap following the new vma. */ 539 if (vma->vm_next) 540 vma_gap_update(vma->vm_next); 541 else 542 mm->highest_vm_end = vma->vm_end; 543 544 /* 545 * vma->vm_prev wasn't known when we followed the rbtree to find the 546 * correct insertion point for that vma. As a result, we could not 547 * update the vma vm_rb parents rb_subtree_gap values on the way down. 548 * So, we first insert the vma with a zero rb_subtree_gap value 549 * (to be consistent with what we did on the way down), and then 550 * immediately update the gap to the correct value. Finally we 551 * rebalance the rbtree after all augmented values have been set. 552 */ 553 rb_link_node(&vma->vm_rb, rb_parent, rb_link); 554 vma->rb_subtree_gap = 0; 555 vma_gap_update(vma); 556 vma_rb_insert(vma, &mm->mm_rb); 557 } 558 559 static void __vma_link_file(struct vm_area_struct *vma) 560 { 561 struct file *file; 562 563 file = vma->vm_file; 564 if (file) { 565 struct address_space *mapping = file->f_mapping; 566 567 if (vma->vm_flags & VM_DENYWRITE) 568 atomic_dec(&file_inode(file)->i_writecount); 569 if (vma->vm_flags & VM_SHARED) 570 atomic_inc(&mapping->i_mmap_writable); 571 572 flush_dcache_mmap_lock(mapping); 573 vma_interval_tree_insert(vma, &mapping->i_mmap); 574 flush_dcache_mmap_unlock(mapping); 575 } 576 } 577 578 static void 579 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 580 struct vm_area_struct *prev, struct rb_node **rb_link, 581 struct rb_node *rb_parent) 582 { 583 __vma_link_list(mm, vma, prev, rb_parent); 584 __vma_link_rb(mm, vma, rb_link, rb_parent); 585 } 586 587 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 588 struct vm_area_struct *prev, struct rb_node **rb_link, 589 struct rb_node *rb_parent) 590 { 591 struct address_space *mapping = NULL; 592 593 if (vma->vm_file) { 594 mapping = vma->vm_file->f_mapping; 595 i_mmap_lock_write(mapping); 596 } 597 598 __vma_link(mm, vma, prev, rb_link, rb_parent); 599 __vma_link_file(vma); 600 601 if (mapping) 602 i_mmap_unlock_write(mapping); 603 604 mm->map_count++; 605 validate_mm(mm); 606 } 607 608 /* 609 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the 610 * mm's list and rbtree. It has already been inserted into the interval tree. 611 */ 612 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 613 { 614 struct vm_area_struct *prev; 615 struct rb_node **rb_link, *rb_parent; 616 617 if (find_vma_links(mm, vma->vm_start, vma->vm_end, 618 &prev, &rb_link, &rb_parent)) 619 BUG(); 620 __vma_link(mm, vma, prev, rb_link, rb_parent); 621 mm->map_count++; 622 } 623 624 static __always_inline void __vma_unlink_common(struct mm_struct *mm, 625 struct vm_area_struct *vma, 626 struct vm_area_struct *prev, 627 bool has_prev, 628 struct vm_area_struct *ignore) 629 { 630 struct vm_area_struct *next; 631 632 vma_rb_erase_ignore(vma, &mm->mm_rb, ignore); 633 next = vma->vm_next; 634 if (has_prev) 635 prev->vm_next = next; 636 else { 637 prev = vma->vm_prev; 638 if (prev) 639 prev->vm_next = next; 640 else 641 mm->mmap = next; 642 } 643 if (next) 644 next->vm_prev = prev; 645 646 /* Kill the cache */ 647 vmacache_invalidate(mm); 648 } 649 650 static inline void __vma_unlink_prev(struct mm_struct *mm, 651 struct vm_area_struct *vma, 652 struct vm_area_struct *prev) 653 { 654 __vma_unlink_common(mm, vma, prev, true, vma); 655 } 656 657 /* 658 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that 659 * is already present in an i_mmap tree without adjusting the tree. 660 * The following helper function should be used when such adjustments 661 * are necessary. The "insert" vma (if any) is to be inserted 662 * before we drop the necessary locks. 663 */ 664 int __vma_adjust(struct vm_area_struct *vma, unsigned long start, 665 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, 666 struct vm_area_struct *expand) 667 { 668 struct mm_struct *mm = vma->vm_mm; 669 struct vm_area_struct *next = vma->vm_next, *orig_vma = vma; 670 struct address_space *mapping = NULL; 671 struct rb_root *root = NULL; 672 struct anon_vma *anon_vma = NULL; 673 struct file *file = vma->vm_file; 674 bool start_changed = false, end_changed = false; 675 long adjust_next = 0; 676 int remove_next = 0; 677 678 if (next && !insert) { 679 struct vm_area_struct *exporter = NULL, *importer = NULL; 680 681 if (end >= next->vm_end) { 682 /* 683 * vma expands, overlapping all the next, and 684 * perhaps the one after too (mprotect case 6). 685 * The only other cases that gets here are 686 * case 1, case 7 and case 8. 687 */ 688 if (next == expand) { 689 /* 690 * The only case where we don't expand "vma" 691 * and we expand "next" instead is case 8. 692 */ 693 VM_WARN_ON(end != next->vm_end); 694 /* 695 * remove_next == 3 means we're 696 * removing "vma" and that to do so we 697 * swapped "vma" and "next". 698 */ 699 remove_next = 3; 700 VM_WARN_ON(file != next->vm_file); 701 swap(vma, next); 702 } else { 703 VM_WARN_ON(expand != vma); 704 /* 705 * case 1, 6, 7, remove_next == 2 is case 6, 706 * remove_next == 1 is case 1 or 7. 707 */ 708 remove_next = 1 + (end > next->vm_end); 709 VM_WARN_ON(remove_next == 2 && 710 end != next->vm_next->vm_end); 711 VM_WARN_ON(remove_next == 1 && 712 end != next->vm_end); 713 /* trim end to next, for case 6 first pass */ 714 end = next->vm_end; 715 } 716 717 exporter = next; 718 importer = vma; 719 720 /* 721 * If next doesn't have anon_vma, import from vma after 722 * next, if the vma overlaps with it. 723 */ 724 if (remove_next == 2 && !next->anon_vma) 725 exporter = next->vm_next; 726 727 } else if (end > next->vm_start) { 728 /* 729 * vma expands, overlapping part of the next: 730 * mprotect case 5 shifting the boundary up. 731 */ 732 adjust_next = (end - next->vm_start) >> PAGE_SHIFT; 733 exporter = next; 734 importer = vma; 735 VM_WARN_ON(expand != importer); 736 } else if (end < vma->vm_end) { 737 /* 738 * vma shrinks, and !insert tells it's not 739 * split_vma inserting another: so it must be 740 * mprotect case 4 shifting the boundary down. 741 */ 742 adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT); 743 exporter = vma; 744 importer = next; 745 VM_WARN_ON(expand != importer); 746 } 747 748 /* 749 * Easily overlooked: when mprotect shifts the boundary, 750 * make sure the expanding vma has anon_vma set if the 751 * shrinking vma had, to cover any anon pages imported. 752 */ 753 if (exporter && exporter->anon_vma && !importer->anon_vma) { 754 int error; 755 756 importer->anon_vma = exporter->anon_vma; 757 error = anon_vma_clone(importer, exporter); 758 if (error) 759 return error; 760 } 761 } 762 again: 763 vma_adjust_trans_huge(orig_vma, start, end, adjust_next); 764 765 if (file) { 766 mapping = file->f_mapping; 767 root = &mapping->i_mmap; 768 uprobe_munmap(vma, vma->vm_start, vma->vm_end); 769 770 if (adjust_next) 771 uprobe_munmap(next, next->vm_start, next->vm_end); 772 773 i_mmap_lock_write(mapping); 774 if (insert) { 775 /* 776 * Put into interval tree now, so instantiated pages 777 * are visible to arm/parisc __flush_dcache_page 778 * throughout; but we cannot insert into address 779 * space until vma start or end is updated. 780 */ 781 __vma_link_file(insert); 782 } 783 } 784 785 anon_vma = vma->anon_vma; 786 if (!anon_vma && adjust_next) 787 anon_vma = next->anon_vma; 788 if (anon_vma) { 789 VM_WARN_ON(adjust_next && next->anon_vma && 790 anon_vma != next->anon_vma); 791 anon_vma_lock_write(anon_vma); 792 anon_vma_interval_tree_pre_update_vma(vma); 793 if (adjust_next) 794 anon_vma_interval_tree_pre_update_vma(next); 795 } 796 797 if (root) { 798 flush_dcache_mmap_lock(mapping); 799 vma_interval_tree_remove(vma, root); 800 if (adjust_next) 801 vma_interval_tree_remove(next, root); 802 } 803 804 if (start != vma->vm_start) { 805 vma->vm_start = start; 806 start_changed = true; 807 } 808 if (end != vma->vm_end) { 809 vma->vm_end = end; 810 end_changed = true; 811 } 812 vma->vm_pgoff = pgoff; 813 if (adjust_next) { 814 next->vm_start += adjust_next << PAGE_SHIFT; 815 next->vm_pgoff += adjust_next; 816 } 817 818 if (root) { 819 if (adjust_next) 820 vma_interval_tree_insert(next, root); 821 vma_interval_tree_insert(vma, root); 822 flush_dcache_mmap_unlock(mapping); 823 } 824 825 if (remove_next) { 826 /* 827 * vma_merge has merged next into vma, and needs 828 * us to remove next before dropping the locks. 829 */ 830 if (remove_next != 3) 831 __vma_unlink_prev(mm, next, vma); 832 else 833 /* 834 * vma is not before next if they've been 835 * swapped. 836 * 837 * pre-swap() next->vm_start was reduced so 838 * tell validate_mm_rb to ignore pre-swap() 839 * "next" (which is stored in post-swap() 840 * "vma"). 841 */ 842 __vma_unlink_common(mm, next, NULL, false, vma); 843 if (file) 844 __remove_shared_vm_struct(next, file, mapping); 845 } else if (insert) { 846 /* 847 * split_vma has split insert from vma, and needs 848 * us to insert it before dropping the locks 849 * (it may either follow vma or precede it). 850 */ 851 __insert_vm_struct(mm, insert); 852 } else { 853 if (start_changed) 854 vma_gap_update(vma); 855 if (end_changed) { 856 if (!next) 857 mm->highest_vm_end = end; 858 else if (!adjust_next) 859 vma_gap_update(next); 860 } 861 } 862 863 if (anon_vma) { 864 anon_vma_interval_tree_post_update_vma(vma); 865 if (adjust_next) 866 anon_vma_interval_tree_post_update_vma(next); 867 anon_vma_unlock_write(anon_vma); 868 } 869 if (mapping) 870 i_mmap_unlock_write(mapping); 871 872 if (root) { 873 uprobe_mmap(vma); 874 875 if (adjust_next) 876 uprobe_mmap(next); 877 } 878 879 if (remove_next) { 880 if (file) { 881 uprobe_munmap(next, next->vm_start, next->vm_end); 882 fput(file); 883 } 884 if (next->anon_vma) 885 anon_vma_merge(vma, next); 886 mm->map_count--; 887 mpol_put(vma_policy(next)); 888 kmem_cache_free(vm_area_cachep, next); 889 /* 890 * In mprotect's case 6 (see comments on vma_merge), 891 * we must remove another next too. It would clutter 892 * up the code too much to do both in one go. 893 */ 894 if (remove_next != 3) { 895 /* 896 * If "next" was removed and vma->vm_end was 897 * expanded (up) over it, in turn 898 * "next->vm_prev->vm_end" changed and the 899 * "vma->vm_next" gap must be updated. 900 */ 901 next = vma->vm_next; 902 } else { 903 /* 904 * For the scope of the comment "next" and 905 * "vma" considered pre-swap(): if "vma" was 906 * removed, next->vm_start was expanded (down) 907 * over it and the "next" gap must be updated. 908 * Because of the swap() the post-swap() "vma" 909 * actually points to pre-swap() "next" 910 * (post-swap() "next" as opposed is now a 911 * dangling pointer). 912 */ 913 next = vma; 914 } 915 if (remove_next == 2) { 916 remove_next = 1; 917 end = next->vm_end; 918 goto again; 919 } 920 else if (next) 921 vma_gap_update(next); 922 else { 923 /* 924 * If remove_next == 2 we obviously can't 925 * reach this path. 926 * 927 * If remove_next == 3 we can't reach this 928 * path because pre-swap() next is always not 929 * NULL. pre-swap() "next" is not being 930 * removed and its next->vm_end is not altered 931 * (and furthermore "end" already matches 932 * next->vm_end in remove_next == 3). 933 * 934 * We reach this only in the remove_next == 1 935 * case if the "next" vma that was removed was 936 * the highest vma of the mm. However in such 937 * case next->vm_end == "end" and the extended 938 * "vma" has vma->vm_end == next->vm_end so 939 * mm->highest_vm_end doesn't need any update 940 * in remove_next == 1 case. 941 */ 942 VM_WARN_ON(mm->highest_vm_end != end); 943 } 944 } 945 if (insert && file) 946 uprobe_mmap(insert); 947 948 validate_mm(mm); 949 950 return 0; 951 } 952 953 /* 954 * If the vma has a ->close operation then the driver probably needs to release 955 * per-vma resources, so we don't attempt to merge those. 956 */ 957 static inline int is_mergeable_vma(struct vm_area_struct *vma, 958 struct file *file, unsigned long vm_flags, 959 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 960 { 961 /* 962 * VM_SOFTDIRTY should not prevent from VMA merging, if we 963 * match the flags but dirty bit -- the caller should mark 964 * merged VMA as dirty. If dirty bit won't be excluded from 965 * comparison, we increase pressue on the memory system forcing 966 * the kernel to generate new VMAs when old one could be 967 * extended instead. 968 */ 969 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY) 970 return 0; 971 if (vma->vm_file != file) 972 return 0; 973 if (vma->vm_ops && vma->vm_ops->close) 974 return 0; 975 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx)) 976 return 0; 977 return 1; 978 } 979 980 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1, 981 struct anon_vma *anon_vma2, 982 struct vm_area_struct *vma) 983 { 984 /* 985 * The list_is_singular() test is to avoid merging VMA cloned from 986 * parents. This can improve scalability caused by anon_vma lock. 987 */ 988 if ((!anon_vma1 || !anon_vma2) && (!vma || 989 list_is_singular(&vma->anon_vma_chain))) 990 return 1; 991 return anon_vma1 == anon_vma2; 992 } 993 994 /* 995 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 996 * in front of (at a lower virtual address and file offset than) the vma. 997 * 998 * We cannot merge two vmas if they have differently assigned (non-NULL) 999 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 1000 * 1001 * We don't check here for the merged mmap wrapping around the end of pagecache 1002 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which 1003 * wrap, nor mmaps which cover the final page at index -1UL. 1004 */ 1005 static int 1006 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags, 1007 struct anon_vma *anon_vma, struct file *file, 1008 pgoff_t vm_pgoff, 1009 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 1010 { 1011 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) && 1012 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 1013 if (vma->vm_pgoff == vm_pgoff) 1014 return 1; 1015 } 1016 return 0; 1017 } 1018 1019 /* 1020 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 1021 * beyond (at a higher virtual address and file offset than) the vma. 1022 * 1023 * We cannot merge two vmas if they have differently assigned (non-NULL) 1024 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 1025 */ 1026 static int 1027 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags, 1028 struct anon_vma *anon_vma, struct file *file, 1029 pgoff_t vm_pgoff, 1030 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 1031 { 1032 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) && 1033 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 1034 pgoff_t vm_pglen; 1035 vm_pglen = vma_pages(vma); 1036 if (vma->vm_pgoff + vm_pglen == vm_pgoff) 1037 return 1; 1038 } 1039 return 0; 1040 } 1041 1042 /* 1043 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out 1044 * whether that can be merged with its predecessor or its successor. 1045 * Or both (it neatly fills a hole). 1046 * 1047 * In most cases - when called for mmap, brk or mremap - [addr,end) is 1048 * certain not to be mapped by the time vma_merge is called; but when 1049 * called for mprotect, it is certain to be already mapped (either at 1050 * an offset within prev, or at the start of next), and the flags of 1051 * this area are about to be changed to vm_flags - and the no-change 1052 * case has already been eliminated. 1053 * 1054 * The following mprotect cases have to be considered, where AAAA is 1055 * the area passed down from mprotect_fixup, never extending beyond one 1056 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after: 1057 * 1058 * AAAA AAAA AAAA AAAA 1059 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX 1060 * cannot merge might become might become might become 1061 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or 1062 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or 1063 * mremap move: PPPPXXXXXXXX 8 1064 * AAAA 1065 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN 1066 * might become case 1 below case 2 below case 3 below 1067 * 1068 * It is important for case 8 that the the vma NNNN overlapping the 1069 * region AAAA is never going to extended over XXXX. Instead XXXX must 1070 * be extended in region AAAA and NNNN must be removed. This way in 1071 * all cases where vma_merge succeeds, the moment vma_adjust drops the 1072 * rmap_locks, the properties of the merged vma will be already 1073 * correct for the whole merged range. Some of those properties like 1074 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must 1075 * be correct for the whole merged range immediately after the 1076 * rmap_locks are released. Otherwise if XXXX would be removed and 1077 * NNNN would be extended over the XXXX range, remove_migration_ptes 1078 * or other rmap walkers (if working on addresses beyond the "end" 1079 * parameter) may establish ptes with the wrong permissions of NNNN 1080 * instead of the right permissions of XXXX. 1081 */ 1082 struct vm_area_struct *vma_merge(struct mm_struct *mm, 1083 struct vm_area_struct *prev, unsigned long addr, 1084 unsigned long end, unsigned long vm_flags, 1085 struct anon_vma *anon_vma, struct file *file, 1086 pgoff_t pgoff, struct mempolicy *policy, 1087 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 1088 { 1089 pgoff_t pglen = (end - addr) >> PAGE_SHIFT; 1090 struct vm_area_struct *area, *next; 1091 int err; 1092 1093 /* 1094 * We later require that vma->vm_flags == vm_flags, 1095 * so this tests vma->vm_flags & VM_SPECIAL, too. 1096 */ 1097 if (vm_flags & VM_SPECIAL) 1098 return NULL; 1099 1100 if (prev) 1101 next = prev->vm_next; 1102 else 1103 next = mm->mmap; 1104 area = next; 1105 if (area && area->vm_end == end) /* cases 6, 7, 8 */ 1106 next = next->vm_next; 1107 1108 /* verify some invariant that must be enforced by the caller */ 1109 VM_WARN_ON(prev && addr <= prev->vm_start); 1110 VM_WARN_ON(area && end > area->vm_end); 1111 VM_WARN_ON(addr >= end); 1112 1113 /* 1114 * Can it merge with the predecessor? 1115 */ 1116 if (prev && prev->vm_end == addr && 1117 mpol_equal(vma_policy(prev), policy) && 1118 can_vma_merge_after(prev, vm_flags, 1119 anon_vma, file, pgoff, 1120 vm_userfaultfd_ctx)) { 1121 /* 1122 * OK, it can. Can we now merge in the successor as well? 1123 */ 1124 if (next && end == next->vm_start && 1125 mpol_equal(policy, vma_policy(next)) && 1126 can_vma_merge_before(next, vm_flags, 1127 anon_vma, file, 1128 pgoff+pglen, 1129 vm_userfaultfd_ctx) && 1130 is_mergeable_anon_vma(prev->anon_vma, 1131 next->anon_vma, NULL)) { 1132 /* cases 1, 6 */ 1133 err = __vma_adjust(prev, prev->vm_start, 1134 next->vm_end, prev->vm_pgoff, NULL, 1135 prev); 1136 } else /* cases 2, 5, 7 */ 1137 err = __vma_adjust(prev, prev->vm_start, 1138 end, prev->vm_pgoff, NULL, prev); 1139 if (err) 1140 return NULL; 1141 khugepaged_enter_vma_merge(prev, vm_flags); 1142 return prev; 1143 } 1144 1145 /* 1146 * Can this new request be merged in front of next? 1147 */ 1148 if (next && end == next->vm_start && 1149 mpol_equal(policy, vma_policy(next)) && 1150 can_vma_merge_before(next, vm_flags, 1151 anon_vma, file, pgoff+pglen, 1152 vm_userfaultfd_ctx)) { 1153 if (prev && addr < prev->vm_end) /* case 4 */ 1154 err = __vma_adjust(prev, prev->vm_start, 1155 addr, prev->vm_pgoff, NULL, next); 1156 else { /* cases 3, 8 */ 1157 err = __vma_adjust(area, addr, next->vm_end, 1158 next->vm_pgoff - pglen, NULL, next); 1159 /* 1160 * In case 3 area is already equal to next and 1161 * this is a noop, but in case 8 "area" has 1162 * been removed and next was expanded over it. 1163 */ 1164 area = next; 1165 } 1166 if (err) 1167 return NULL; 1168 khugepaged_enter_vma_merge(area, vm_flags); 1169 return area; 1170 } 1171 1172 return NULL; 1173 } 1174 1175 /* 1176 * Rough compatbility check to quickly see if it's even worth looking 1177 * at sharing an anon_vma. 1178 * 1179 * They need to have the same vm_file, and the flags can only differ 1180 * in things that mprotect may change. 1181 * 1182 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that 1183 * we can merge the two vma's. For example, we refuse to merge a vma if 1184 * there is a vm_ops->close() function, because that indicates that the 1185 * driver is doing some kind of reference counting. But that doesn't 1186 * really matter for the anon_vma sharing case. 1187 */ 1188 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b) 1189 { 1190 return a->vm_end == b->vm_start && 1191 mpol_equal(vma_policy(a), vma_policy(b)) && 1192 a->vm_file == b->vm_file && 1193 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) && 1194 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT); 1195 } 1196 1197 /* 1198 * Do some basic sanity checking to see if we can re-use the anon_vma 1199 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be 1200 * the same as 'old', the other will be the new one that is trying 1201 * to share the anon_vma. 1202 * 1203 * NOTE! This runs with mm_sem held for reading, so it is possible that 1204 * the anon_vma of 'old' is concurrently in the process of being set up 1205 * by another page fault trying to merge _that_. But that's ok: if it 1206 * is being set up, that automatically means that it will be a singleton 1207 * acceptable for merging, so we can do all of this optimistically. But 1208 * we do that READ_ONCE() to make sure that we never re-load the pointer. 1209 * 1210 * IOW: that the "list_is_singular()" test on the anon_vma_chain only 1211 * matters for the 'stable anon_vma' case (ie the thing we want to avoid 1212 * is to return an anon_vma that is "complex" due to having gone through 1213 * a fork). 1214 * 1215 * We also make sure that the two vma's are compatible (adjacent, 1216 * and with the same memory policies). That's all stable, even with just 1217 * a read lock on the mm_sem. 1218 */ 1219 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b) 1220 { 1221 if (anon_vma_compatible(a, b)) { 1222 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma); 1223 1224 if (anon_vma && list_is_singular(&old->anon_vma_chain)) 1225 return anon_vma; 1226 } 1227 return NULL; 1228 } 1229 1230 /* 1231 * find_mergeable_anon_vma is used by anon_vma_prepare, to check 1232 * neighbouring vmas for a suitable anon_vma, before it goes off 1233 * to allocate a new anon_vma. It checks because a repetitive 1234 * sequence of mprotects and faults may otherwise lead to distinct 1235 * anon_vmas being allocated, preventing vma merge in subsequent 1236 * mprotect. 1237 */ 1238 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) 1239 { 1240 struct anon_vma *anon_vma; 1241 struct vm_area_struct *near; 1242 1243 near = vma->vm_next; 1244 if (!near) 1245 goto try_prev; 1246 1247 anon_vma = reusable_anon_vma(near, vma, near); 1248 if (anon_vma) 1249 return anon_vma; 1250 try_prev: 1251 near = vma->vm_prev; 1252 if (!near) 1253 goto none; 1254 1255 anon_vma = reusable_anon_vma(near, near, vma); 1256 if (anon_vma) 1257 return anon_vma; 1258 none: 1259 /* 1260 * There's no absolute need to look only at touching neighbours: 1261 * we could search further afield for "compatible" anon_vmas. 1262 * But it would probably just be a waste of time searching, 1263 * or lead to too many vmas hanging off the same anon_vma. 1264 * We're trying to allow mprotect remerging later on, 1265 * not trying to minimize memory used for anon_vmas. 1266 */ 1267 return NULL; 1268 } 1269 1270 /* 1271 * If a hint addr is less than mmap_min_addr change hint to be as 1272 * low as possible but still greater than mmap_min_addr 1273 */ 1274 static inline unsigned long round_hint_to_min(unsigned long hint) 1275 { 1276 hint &= PAGE_MASK; 1277 if (((void *)hint != NULL) && 1278 (hint < mmap_min_addr)) 1279 return PAGE_ALIGN(mmap_min_addr); 1280 return hint; 1281 } 1282 1283 static inline int mlock_future_check(struct mm_struct *mm, 1284 unsigned long flags, 1285 unsigned long len) 1286 { 1287 unsigned long locked, lock_limit; 1288 1289 /* mlock MCL_FUTURE? */ 1290 if (flags & VM_LOCKED) { 1291 locked = len >> PAGE_SHIFT; 1292 locked += mm->locked_vm; 1293 lock_limit = rlimit(RLIMIT_MEMLOCK); 1294 lock_limit >>= PAGE_SHIFT; 1295 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 1296 return -EAGAIN; 1297 } 1298 return 0; 1299 } 1300 1301 /* 1302 * The caller must hold down_write(¤t->mm->mmap_sem). 1303 */ 1304 unsigned long do_mmap(struct file *file, unsigned long addr, 1305 unsigned long len, unsigned long prot, 1306 unsigned long flags, vm_flags_t vm_flags, 1307 unsigned long pgoff, unsigned long *populate) 1308 { 1309 struct mm_struct *mm = current->mm; 1310 int pkey = 0; 1311 1312 *populate = 0; 1313 1314 if (!len) 1315 return -EINVAL; 1316 1317 /* 1318 * Does the application expect PROT_READ to imply PROT_EXEC? 1319 * 1320 * (the exception is when the underlying filesystem is noexec 1321 * mounted, in which case we dont add PROT_EXEC.) 1322 */ 1323 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC)) 1324 if (!(file && path_noexec(&file->f_path))) 1325 prot |= PROT_EXEC; 1326 1327 if (!(flags & MAP_FIXED)) 1328 addr = round_hint_to_min(addr); 1329 1330 /* Careful about overflows.. */ 1331 len = PAGE_ALIGN(len); 1332 if (!len) 1333 return -ENOMEM; 1334 1335 /* offset overflow? */ 1336 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff) 1337 return -EOVERFLOW; 1338 1339 /* Too many mappings? */ 1340 if (mm->map_count > sysctl_max_map_count) 1341 return -ENOMEM; 1342 1343 /* Obtain the address to map to. we verify (or select) it and ensure 1344 * that it represents a valid section of the address space. 1345 */ 1346 addr = get_unmapped_area(file, addr, len, pgoff, flags); 1347 if (offset_in_page(addr)) 1348 return addr; 1349 1350 if (prot == PROT_EXEC) { 1351 pkey = execute_only_pkey(mm); 1352 if (pkey < 0) 1353 pkey = 0; 1354 } 1355 1356 /* Do simple checking here so the lower-level routines won't have 1357 * to. we assume access permissions have been handled by the open 1358 * of the memory object, so we don't do any here. 1359 */ 1360 vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) | 1361 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 1362 1363 if (flags & MAP_LOCKED) 1364 if (!can_do_mlock()) 1365 return -EPERM; 1366 1367 if (mlock_future_check(mm, vm_flags, len)) 1368 return -EAGAIN; 1369 1370 if (file) { 1371 struct inode *inode = file_inode(file); 1372 1373 switch (flags & MAP_TYPE) { 1374 case MAP_SHARED: 1375 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE)) 1376 return -EACCES; 1377 1378 /* 1379 * Make sure we don't allow writing to an append-only 1380 * file.. 1381 */ 1382 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE)) 1383 return -EACCES; 1384 1385 /* 1386 * Make sure there are no mandatory locks on the file. 1387 */ 1388 if (locks_verify_locked(file)) 1389 return -EAGAIN; 1390 1391 vm_flags |= VM_SHARED | VM_MAYSHARE; 1392 if (!(file->f_mode & FMODE_WRITE)) 1393 vm_flags &= ~(VM_MAYWRITE | VM_SHARED); 1394 1395 /* fall through */ 1396 case MAP_PRIVATE: 1397 if (!(file->f_mode & FMODE_READ)) 1398 return -EACCES; 1399 if (path_noexec(&file->f_path)) { 1400 if (vm_flags & VM_EXEC) 1401 return -EPERM; 1402 vm_flags &= ~VM_MAYEXEC; 1403 } 1404 1405 if (!file->f_op->mmap) 1406 return -ENODEV; 1407 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1408 return -EINVAL; 1409 break; 1410 1411 default: 1412 return -EINVAL; 1413 } 1414 } else { 1415 switch (flags & MAP_TYPE) { 1416 case MAP_SHARED: 1417 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1418 return -EINVAL; 1419 /* 1420 * Ignore pgoff. 1421 */ 1422 pgoff = 0; 1423 vm_flags |= VM_SHARED | VM_MAYSHARE; 1424 break; 1425 case MAP_PRIVATE: 1426 /* 1427 * Set pgoff according to addr for anon_vma. 1428 */ 1429 pgoff = addr >> PAGE_SHIFT; 1430 break; 1431 default: 1432 return -EINVAL; 1433 } 1434 } 1435 1436 /* 1437 * Set 'VM_NORESERVE' if we should not account for the 1438 * memory use of this mapping. 1439 */ 1440 if (flags & MAP_NORESERVE) { 1441 /* We honor MAP_NORESERVE if allowed to overcommit */ 1442 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER) 1443 vm_flags |= VM_NORESERVE; 1444 1445 /* hugetlb applies strict overcommit unless MAP_NORESERVE */ 1446 if (file && is_file_hugepages(file)) 1447 vm_flags |= VM_NORESERVE; 1448 } 1449 1450 addr = mmap_region(file, addr, len, vm_flags, pgoff); 1451 if (!IS_ERR_VALUE(addr) && 1452 ((vm_flags & VM_LOCKED) || 1453 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE)) 1454 *populate = len; 1455 return addr; 1456 } 1457 1458 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1459 unsigned long, prot, unsigned long, flags, 1460 unsigned long, fd, unsigned long, pgoff) 1461 { 1462 struct file *file = NULL; 1463 unsigned long retval; 1464 1465 if (!(flags & MAP_ANONYMOUS)) { 1466 audit_mmap_fd(fd, flags); 1467 file = fget(fd); 1468 if (!file) 1469 return -EBADF; 1470 if (is_file_hugepages(file)) 1471 len = ALIGN(len, huge_page_size(hstate_file(file))); 1472 retval = -EINVAL; 1473 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file))) 1474 goto out_fput; 1475 } else if (flags & MAP_HUGETLB) { 1476 struct user_struct *user = NULL; 1477 struct hstate *hs; 1478 1479 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK); 1480 if (!hs) 1481 return -EINVAL; 1482 1483 len = ALIGN(len, huge_page_size(hs)); 1484 /* 1485 * VM_NORESERVE is used because the reservations will be 1486 * taken when vm_ops->mmap() is called 1487 * A dummy user value is used because we are not locking 1488 * memory so no accounting is necessary 1489 */ 1490 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, 1491 VM_NORESERVE, 1492 &user, HUGETLB_ANONHUGE_INODE, 1493 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 1494 if (IS_ERR(file)) 1495 return PTR_ERR(file); 1496 } 1497 1498 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE); 1499 1500 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1501 out_fput: 1502 if (file) 1503 fput(file); 1504 return retval; 1505 } 1506 1507 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1508 struct mmap_arg_struct { 1509 unsigned long addr; 1510 unsigned long len; 1511 unsigned long prot; 1512 unsigned long flags; 1513 unsigned long fd; 1514 unsigned long offset; 1515 }; 1516 1517 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1518 { 1519 struct mmap_arg_struct a; 1520 1521 if (copy_from_user(&a, arg, sizeof(a))) 1522 return -EFAULT; 1523 if (offset_in_page(a.offset)) 1524 return -EINVAL; 1525 1526 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1527 a.offset >> PAGE_SHIFT); 1528 } 1529 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1530 1531 /* 1532 * Some shared mappigns will want the pages marked read-only 1533 * to track write events. If so, we'll downgrade vm_page_prot 1534 * to the private version (using protection_map[] without the 1535 * VM_SHARED bit). 1536 */ 1537 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot) 1538 { 1539 vm_flags_t vm_flags = vma->vm_flags; 1540 const struct vm_operations_struct *vm_ops = vma->vm_ops; 1541 1542 /* If it was private or non-writable, the write bit is already clear */ 1543 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED))) 1544 return 0; 1545 1546 /* The backer wishes to know when pages are first written to? */ 1547 if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite)) 1548 return 1; 1549 1550 /* The open routine did something to the protections that pgprot_modify 1551 * won't preserve? */ 1552 if (pgprot_val(vm_page_prot) != 1553 pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags))) 1554 return 0; 1555 1556 /* Do we need to track softdirty? */ 1557 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY)) 1558 return 1; 1559 1560 /* Specialty mapping? */ 1561 if (vm_flags & VM_PFNMAP) 1562 return 0; 1563 1564 /* Can the mapping track the dirty pages? */ 1565 return vma->vm_file && vma->vm_file->f_mapping && 1566 mapping_cap_account_dirty(vma->vm_file->f_mapping); 1567 } 1568 1569 /* 1570 * We account for memory if it's a private writeable mapping, 1571 * not hugepages and VM_NORESERVE wasn't set. 1572 */ 1573 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags) 1574 { 1575 /* 1576 * hugetlb has its own accounting separate from the core VM 1577 * VM_HUGETLB may not be set yet so we cannot check for that flag. 1578 */ 1579 if (file && is_file_hugepages(file)) 1580 return 0; 1581 1582 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE; 1583 } 1584 1585 unsigned long mmap_region(struct file *file, unsigned long addr, 1586 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff) 1587 { 1588 struct mm_struct *mm = current->mm; 1589 struct vm_area_struct *vma, *prev; 1590 int error; 1591 struct rb_node **rb_link, *rb_parent; 1592 unsigned long charged = 0; 1593 1594 /* Check against address space limit. */ 1595 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) { 1596 unsigned long nr_pages; 1597 1598 /* 1599 * MAP_FIXED may remove pages of mappings that intersects with 1600 * requested mapping. Account for the pages it would unmap. 1601 */ 1602 nr_pages = count_vma_pages_range(mm, addr, addr + len); 1603 1604 if (!may_expand_vm(mm, vm_flags, 1605 (len >> PAGE_SHIFT) - nr_pages)) 1606 return -ENOMEM; 1607 } 1608 1609 /* Clear old maps */ 1610 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link, 1611 &rb_parent)) { 1612 if (do_munmap(mm, addr, len)) 1613 return -ENOMEM; 1614 } 1615 1616 /* 1617 * Private writable mapping: check memory availability 1618 */ 1619 if (accountable_mapping(file, vm_flags)) { 1620 charged = len >> PAGE_SHIFT; 1621 if (security_vm_enough_memory_mm(mm, charged)) 1622 return -ENOMEM; 1623 vm_flags |= VM_ACCOUNT; 1624 } 1625 1626 /* 1627 * Can we just expand an old mapping? 1628 */ 1629 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, 1630 NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX); 1631 if (vma) 1632 goto out; 1633 1634 /* 1635 * Determine the object being mapped and call the appropriate 1636 * specific mapper. the address has already been validated, but 1637 * not unmapped, but the maps are removed from the list. 1638 */ 1639 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 1640 if (!vma) { 1641 error = -ENOMEM; 1642 goto unacct_error; 1643 } 1644 1645 vma->vm_mm = mm; 1646 vma->vm_start = addr; 1647 vma->vm_end = addr + len; 1648 vma->vm_flags = vm_flags; 1649 vma->vm_page_prot = vm_get_page_prot(vm_flags); 1650 vma->vm_pgoff = pgoff; 1651 INIT_LIST_HEAD(&vma->anon_vma_chain); 1652 1653 if (file) { 1654 if (vm_flags & VM_DENYWRITE) { 1655 error = deny_write_access(file); 1656 if (error) 1657 goto free_vma; 1658 } 1659 if (vm_flags & VM_SHARED) { 1660 error = mapping_map_writable(file->f_mapping); 1661 if (error) 1662 goto allow_write_and_free_vma; 1663 } 1664 1665 /* ->mmap() can change vma->vm_file, but must guarantee that 1666 * vma_link() below can deny write-access if VM_DENYWRITE is set 1667 * and map writably if VM_SHARED is set. This usually means the 1668 * new file must not have been exposed to user-space, yet. 1669 */ 1670 vma->vm_file = get_file(file); 1671 error = file->f_op->mmap(file, vma); 1672 if (error) 1673 goto unmap_and_free_vma; 1674 1675 /* Can addr have changed?? 1676 * 1677 * Answer: Yes, several device drivers can do it in their 1678 * f_op->mmap method. -DaveM 1679 * Bug: If addr is changed, prev, rb_link, rb_parent should 1680 * be updated for vma_link() 1681 */ 1682 WARN_ON_ONCE(addr != vma->vm_start); 1683 1684 addr = vma->vm_start; 1685 vm_flags = vma->vm_flags; 1686 } else if (vm_flags & VM_SHARED) { 1687 error = shmem_zero_setup(vma); 1688 if (error) 1689 goto free_vma; 1690 } 1691 1692 vma_link(mm, vma, prev, rb_link, rb_parent); 1693 /* Once vma denies write, undo our temporary denial count */ 1694 if (file) { 1695 if (vm_flags & VM_SHARED) 1696 mapping_unmap_writable(file->f_mapping); 1697 if (vm_flags & VM_DENYWRITE) 1698 allow_write_access(file); 1699 } 1700 file = vma->vm_file; 1701 out: 1702 perf_event_mmap(vma); 1703 1704 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT); 1705 if (vm_flags & VM_LOCKED) { 1706 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) || 1707 vma == get_gate_vma(current->mm))) 1708 mm->locked_vm += (len >> PAGE_SHIFT); 1709 else 1710 vma->vm_flags &= VM_LOCKED_CLEAR_MASK; 1711 } 1712 1713 if (file) 1714 uprobe_mmap(vma); 1715 1716 /* 1717 * New (or expanded) vma always get soft dirty status. 1718 * Otherwise user-space soft-dirty page tracker won't 1719 * be able to distinguish situation when vma area unmapped, 1720 * then new mapped in-place (which must be aimed as 1721 * a completely new data area). 1722 */ 1723 vma->vm_flags |= VM_SOFTDIRTY; 1724 1725 vma_set_page_prot(vma); 1726 1727 return addr; 1728 1729 unmap_and_free_vma: 1730 vma->vm_file = NULL; 1731 fput(file); 1732 1733 /* Undo any partial mapping done by a device driver. */ 1734 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end); 1735 charged = 0; 1736 if (vm_flags & VM_SHARED) 1737 mapping_unmap_writable(file->f_mapping); 1738 allow_write_and_free_vma: 1739 if (vm_flags & VM_DENYWRITE) 1740 allow_write_access(file); 1741 free_vma: 1742 kmem_cache_free(vm_area_cachep, vma); 1743 unacct_error: 1744 if (charged) 1745 vm_unacct_memory(charged); 1746 return error; 1747 } 1748 1749 unsigned long unmapped_area(struct vm_unmapped_area_info *info) 1750 { 1751 /* 1752 * We implement the search by looking for an rbtree node that 1753 * immediately follows a suitable gap. That is, 1754 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length; 1755 * - gap_end = vma->vm_start >= info->low_limit + length; 1756 * - gap_end - gap_start >= length 1757 */ 1758 1759 struct mm_struct *mm = current->mm; 1760 struct vm_area_struct *vma; 1761 unsigned long length, low_limit, high_limit, gap_start, gap_end; 1762 1763 /* Adjust search length to account for worst case alignment overhead */ 1764 length = info->length + info->align_mask; 1765 if (length < info->length) 1766 return -ENOMEM; 1767 1768 /* Adjust search limits by the desired length */ 1769 if (info->high_limit < length) 1770 return -ENOMEM; 1771 high_limit = info->high_limit - length; 1772 1773 if (info->low_limit > high_limit) 1774 return -ENOMEM; 1775 low_limit = info->low_limit + length; 1776 1777 /* Check if rbtree root looks promising */ 1778 if (RB_EMPTY_ROOT(&mm->mm_rb)) 1779 goto check_highest; 1780 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb); 1781 if (vma->rb_subtree_gap < length) 1782 goto check_highest; 1783 1784 while (true) { 1785 /* Visit left subtree if it looks promising */ 1786 gap_end = vma->vm_start; 1787 if (gap_end >= low_limit && vma->vm_rb.rb_left) { 1788 struct vm_area_struct *left = 1789 rb_entry(vma->vm_rb.rb_left, 1790 struct vm_area_struct, vm_rb); 1791 if (left->rb_subtree_gap >= length) { 1792 vma = left; 1793 continue; 1794 } 1795 } 1796 1797 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0; 1798 check_current: 1799 /* Check if current node has a suitable gap */ 1800 if (gap_start > high_limit) 1801 return -ENOMEM; 1802 if (gap_end >= low_limit && gap_end - gap_start >= length) 1803 goto found; 1804 1805 /* Visit right subtree if it looks promising */ 1806 if (vma->vm_rb.rb_right) { 1807 struct vm_area_struct *right = 1808 rb_entry(vma->vm_rb.rb_right, 1809 struct vm_area_struct, vm_rb); 1810 if (right->rb_subtree_gap >= length) { 1811 vma = right; 1812 continue; 1813 } 1814 } 1815 1816 /* Go back up the rbtree to find next candidate node */ 1817 while (true) { 1818 struct rb_node *prev = &vma->vm_rb; 1819 if (!rb_parent(prev)) 1820 goto check_highest; 1821 vma = rb_entry(rb_parent(prev), 1822 struct vm_area_struct, vm_rb); 1823 if (prev == vma->vm_rb.rb_left) { 1824 gap_start = vma->vm_prev->vm_end; 1825 gap_end = vma->vm_start; 1826 goto check_current; 1827 } 1828 } 1829 } 1830 1831 check_highest: 1832 /* Check highest gap, which does not precede any rbtree node */ 1833 gap_start = mm->highest_vm_end; 1834 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */ 1835 if (gap_start > high_limit) 1836 return -ENOMEM; 1837 1838 found: 1839 /* We found a suitable gap. Clip it with the original low_limit. */ 1840 if (gap_start < info->low_limit) 1841 gap_start = info->low_limit; 1842 1843 /* Adjust gap address to the desired alignment */ 1844 gap_start += (info->align_offset - gap_start) & info->align_mask; 1845 1846 VM_BUG_ON(gap_start + info->length > info->high_limit); 1847 VM_BUG_ON(gap_start + info->length > gap_end); 1848 return gap_start; 1849 } 1850 1851 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info) 1852 { 1853 struct mm_struct *mm = current->mm; 1854 struct vm_area_struct *vma; 1855 unsigned long length, low_limit, high_limit, gap_start, gap_end; 1856 1857 /* Adjust search length to account for worst case alignment overhead */ 1858 length = info->length + info->align_mask; 1859 if (length < info->length) 1860 return -ENOMEM; 1861 1862 /* 1863 * Adjust search limits by the desired length. 1864 * See implementation comment at top of unmapped_area(). 1865 */ 1866 gap_end = info->high_limit; 1867 if (gap_end < length) 1868 return -ENOMEM; 1869 high_limit = gap_end - length; 1870 1871 if (info->low_limit > high_limit) 1872 return -ENOMEM; 1873 low_limit = info->low_limit + length; 1874 1875 /* Check highest gap, which does not precede any rbtree node */ 1876 gap_start = mm->highest_vm_end; 1877 if (gap_start <= high_limit) 1878 goto found_highest; 1879 1880 /* Check if rbtree root looks promising */ 1881 if (RB_EMPTY_ROOT(&mm->mm_rb)) 1882 return -ENOMEM; 1883 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb); 1884 if (vma->rb_subtree_gap < length) 1885 return -ENOMEM; 1886 1887 while (true) { 1888 /* Visit right subtree if it looks promising */ 1889 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0; 1890 if (gap_start <= high_limit && vma->vm_rb.rb_right) { 1891 struct vm_area_struct *right = 1892 rb_entry(vma->vm_rb.rb_right, 1893 struct vm_area_struct, vm_rb); 1894 if (right->rb_subtree_gap >= length) { 1895 vma = right; 1896 continue; 1897 } 1898 } 1899 1900 check_current: 1901 /* Check if current node has a suitable gap */ 1902 gap_end = vma->vm_start; 1903 if (gap_end < low_limit) 1904 return -ENOMEM; 1905 if (gap_start <= high_limit && gap_end - gap_start >= length) 1906 goto found; 1907 1908 /* Visit left subtree if it looks promising */ 1909 if (vma->vm_rb.rb_left) { 1910 struct vm_area_struct *left = 1911 rb_entry(vma->vm_rb.rb_left, 1912 struct vm_area_struct, vm_rb); 1913 if (left->rb_subtree_gap >= length) { 1914 vma = left; 1915 continue; 1916 } 1917 } 1918 1919 /* Go back up the rbtree to find next candidate node */ 1920 while (true) { 1921 struct rb_node *prev = &vma->vm_rb; 1922 if (!rb_parent(prev)) 1923 return -ENOMEM; 1924 vma = rb_entry(rb_parent(prev), 1925 struct vm_area_struct, vm_rb); 1926 if (prev == vma->vm_rb.rb_right) { 1927 gap_start = vma->vm_prev ? 1928 vma->vm_prev->vm_end : 0; 1929 goto check_current; 1930 } 1931 } 1932 } 1933 1934 found: 1935 /* We found a suitable gap. Clip it with the original high_limit. */ 1936 if (gap_end > info->high_limit) 1937 gap_end = info->high_limit; 1938 1939 found_highest: 1940 /* Compute highest gap address at the desired alignment */ 1941 gap_end -= info->length; 1942 gap_end -= (gap_end - info->align_offset) & info->align_mask; 1943 1944 VM_BUG_ON(gap_end < info->low_limit); 1945 VM_BUG_ON(gap_end < gap_start); 1946 return gap_end; 1947 } 1948 1949 /* Get an address range which is currently unmapped. 1950 * For shmat() with addr=0. 1951 * 1952 * Ugly calling convention alert: 1953 * Return value with the low bits set means error value, 1954 * ie 1955 * if (ret & ~PAGE_MASK) 1956 * error = ret; 1957 * 1958 * This function "knows" that -ENOMEM has the bits set. 1959 */ 1960 #ifndef HAVE_ARCH_UNMAPPED_AREA 1961 unsigned long 1962 arch_get_unmapped_area(struct file *filp, unsigned long addr, 1963 unsigned long len, unsigned long pgoff, unsigned long flags) 1964 { 1965 struct mm_struct *mm = current->mm; 1966 struct vm_area_struct *vma; 1967 struct vm_unmapped_area_info info; 1968 1969 if (len > TASK_SIZE - mmap_min_addr) 1970 return -ENOMEM; 1971 1972 if (flags & MAP_FIXED) 1973 return addr; 1974 1975 if (addr) { 1976 addr = PAGE_ALIGN(addr); 1977 vma = find_vma(mm, addr); 1978 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr && 1979 (!vma || addr + len <= vma->vm_start)) 1980 return addr; 1981 } 1982 1983 info.flags = 0; 1984 info.length = len; 1985 info.low_limit = mm->mmap_base; 1986 info.high_limit = TASK_SIZE; 1987 info.align_mask = 0; 1988 return vm_unmapped_area(&info); 1989 } 1990 #endif 1991 1992 /* 1993 * This mmap-allocator allocates new areas top-down from below the 1994 * stack's low limit (the base): 1995 */ 1996 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 1997 unsigned long 1998 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0, 1999 const unsigned long len, const unsigned long pgoff, 2000 const unsigned long flags) 2001 { 2002 struct vm_area_struct *vma; 2003 struct mm_struct *mm = current->mm; 2004 unsigned long addr = addr0; 2005 struct vm_unmapped_area_info info; 2006 2007 /* requested length too big for entire address space */ 2008 if (len > TASK_SIZE - mmap_min_addr) 2009 return -ENOMEM; 2010 2011 if (flags & MAP_FIXED) 2012 return addr; 2013 2014 /* requesting a specific address */ 2015 if (addr) { 2016 addr = PAGE_ALIGN(addr); 2017 vma = find_vma(mm, addr); 2018 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr && 2019 (!vma || addr + len <= vma->vm_start)) 2020 return addr; 2021 } 2022 2023 info.flags = VM_UNMAPPED_AREA_TOPDOWN; 2024 info.length = len; 2025 info.low_limit = max(PAGE_SIZE, mmap_min_addr); 2026 info.high_limit = mm->mmap_base; 2027 info.align_mask = 0; 2028 addr = vm_unmapped_area(&info); 2029 2030 /* 2031 * A failed mmap() very likely causes application failure, 2032 * so fall back to the bottom-up function here. This scenario 2033 * can happen with large stack limits and large mmap() 2034 * allocations. 2035 */ 2036 if (offset_in_page(addr)) { 2037 VM_BUG_ON(addr != -ENOMEM); 2038 info.flags = 0; 2039 info.low_limit = TASK_UNMAPPED_BASE; 2040 info.high_limit = TASK_SIZE; 2041 addr = vm_unmapped_area(&info); 2042 } 2043 2044 return addr; 2045 } 2046 #endif 2047 2048 unsigned long 2049 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 2050 unsigned long pgoff, unsigned long flags) 2051 { 2052 unsigned long (*get_area)(struct file *, unsigned long, 2053 unsigned long, unsigned long, unsigned long); 2054 2055 unsigned long error = arch_mmap_check(addr, len, flags); 2056 if (error) 2057 return error; 2058 2059 /* Careful about overflows.. */ 2060 if (len > TASK_SIZE) 2061 return -ENOMEM; 2062 2063 get_area = current->mm->get_unmapped_area; 2064 if (file) { 2065 if (file->f_op->get_unmapped_area) 2066 get_area = file->f_op->get_unmapped_area; 2067 } else if (flags & MAP_SHARED) { 2068 /* 2069 * mmap_region() will call shmem_zero_setup() to create a file, 2070 * so use shmem's get_unmapped_area in case it can be huge. 2071 * do_mmap_pgoff() will clear pgoff, so match alignment. 2072 */ 2073 pgoff = 0; 2074 get_area = shmem_get_unmapped_area; 2075 } 2076 2077 addr = get_area(file, addr, len, pgoff, flags); 2078 if (IS_ERR_VALUE(addr)) 2079 return addr; 2080 2081 if (addr > TASK_SIZE - len) 2082 return -ENOMEM; 2083 if (offset_in_page(addr)) 2084 return -EINVAL; 2085 2086 error = security_mmap_addr(addr); 2087 return error ? error : addr; 2088 } 2089 2090 EXPORT_SYMBOL(get_unmapped_area); 2091 2092 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2093 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 2094 { 2095 struct rb_node *rb_node; 2096 struct vm_area_struct *vma; 2097 2098 /* Check the cache first. */ 2099 vma = vmacache_find(mm, addr); 2100 if (likely(vma)) 2101 return vma; 2102 2103 rb_node = mm->mm_rb.rb_node; 2104 2105 while (rb_node) { 2106 struct vm_area_struct *tmp; 2107 2108 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb); 2109 2110 if (tmp->vm_end > addr) { 2111 vma = tmp; 2112 if (tmp->vm_start <= addr) 2113 break; 2114 rb_node = rb_node->rb_left; 2115 } else 2116 rb_node = rb_node->rb_right; 2117 } 2118 2119 if (vma) 2120 vmacache_update(addr, vma); 2121 return vma; 2122 } 2123 2124 EXPORT_SYMBOL(find_vma); 2125 2126 /* 2127 * Same as find_vma, but also return a pointer to the previous VMA in *pprev. 2128 */ 2129 struct vm_area_struct * 2130 find_vma_prev(struct mm_struct *mm, unsigned long addr, 2131 struct vm_area_struct **pprev) 2132 { 2133 struct vm_area_struct *vma; 2134 2135 vma = find_vma(mm, addr); 2136 if (vma) { 2137 *pprev = vma->vm_prev; 2138 } else { 2139 struct rb_node *rb_node = mm->mm_rb.rb_node; 2140 *pprev = NULL; 2141 while (rb_node) { 2142 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb); 2143 rb_node = rb_node->rb_right; 2144 } 2145 } 2146 return vma; 2147 } 2148 2149 /* 2150 * Verify that the stack growth is acceptable and 2151 * update accounting. This is shared with both the 2152 * grow-up and grow-down cases. 2153 */ 2154 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow) 2155 { 2156 struct mm_struct *mm = vma->vm_mm; 2157 struct rlimit *rlim = current->signal->rlim; 2158 unsigned long new_start, actual_size; 2159 2160 /* address space limit tests */ 2161 if (!may_expand_vm(mm, vma->vm_flags, grow)) 2162 return -ENOMEM; 2163 2164 /* Stack limit test */ 2165 actual_size = size; 2166 if (size && (vma->vm_flags & (VM_GROWSUP | VM_GROWSDOWN))) 2167 actual_size -= PAGE_SIZE; 2168 if (actual_size > READ_ONCE(rlim[RLIMIT_STACK].rlim_cur)) 2169 return -ENOMEM; 2170 2171 /* mlock limit tests */ 2172 if (vma->vm_flags & VM_LOCKED) { 2173 unsigned long locked; 2174 unsigned long limit; 2175 locked = mm->locked_vm + grow; 2176 limit = READ_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur); 2177 limit >>= PAGE_SHIFT; 2178 if (locked > limit && !capable(CAP_IPC_LOCK)) 2179 return -ENOMEM; 2180 } 2181 2182 /* Check to ensure the stack will not grow into a hugetlb-only region */ 2183 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : 2184 vma->vm_end - size; 2185 if (is_hugepage_only_range(vma->vm_mm, new_start, size)) 2186 return -EFAULT; 2187 2188 /* 2189 * Overcommit.. This must be the final test, as it will 2190 * update security statistics. 2191 */ 2192 if (security_vm_enough_memory_mm(mm, grow)) 2193 return -ENOMEM; 2194 2195 return 0; 2196 } 2197 2198 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64) 2199 /* 2200 * PA-RISC uses this for its stack; IA64 for its Register Backing Store. 2201 * vma is the last one with address > vma->vm_end. Have to extend vma. 2202 */ 2203 int expand_upwards(struct vm_area_struct *vma, unsigned long address) 2204 { 2205 struct mm_struct *mm = vma->vm_mm; 2206 int error = 0; 2207 2208 if (!(vma->vm_flags & VM_GROWSUP)) 2209 return -EFAULT; 2210 2211 /* Guard against wrapping around to address 0. */ 2212 if (address < PAGE_ALIGN(address+4)) 2213 address = PAGE_ALIGN(address+4); 2214 else 2215 return -ENOMEM; 2216 2217 /* We must make sure the anon_vma is allocated. */ 2218 if (unlikely(anon_vma_prepare(vma))) 2219 return -ENOMEM; 2220 2221 /* 2222 * vma->vm_start/vm_end cannot change under us because the caller 2223 * is required to hold the mmap_sem in read mode. We need the 2224 * anon_vma lock to serialize against concurrent expand_stacks. 2225 */ 2226 anon_vma_lock_write(vma->anon_vma); 2227 2228 /* Somebody else might have raced and expanded it already */ 2229 if (address > vma->vm_end) { 2230 unsigned long size, grow; 2231 2232 size = address - vma->vm_start; 2233 grow = (address - vma->vm_end) >> PAGE_SHIFT; 2234 2235 error = -ENOMEM; 2236 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) { 2237 error = acct_stack_growth(vma, size, grow); 2238 if (!error) { 2239 /* 2240 * vma_gap_update() doesn't support concurrent 2241 * updates, but we only hold a shared mmap_sem 2242 * lock here, so we need to protect against 2243 * concurrent vma expansions. 2244 * anon_vma_lock_write() doesn't help here, as 2245 * we don't guarantee that all growable vmas 2246 * in a mm share the same root anon vma. 2247 * So, we reuse mm->page_table_lock to guard 2248 * against concurrent vma expansions. 2249 */ 2250 spin_lock(&mm->page_table_lock); 2251 if (vma->vm_flags & VM_LOCKED) 2252 mm->locked_vm += grow; 2253 vm_stat_account(mm, vma->vm_flags, grow); 2254 anon_vma_interval_tree_pre_update_vma(vma); 2255 vma->vm_end = address; 2256 anon_vma_interval_tree_post_update_vma(vma); 2257 if (vma->vm_next) 2258 vma_gap_update(vma->vm_next); 2259 else 2260 mm->highest_vm_end = address; 2261 spin_unlock(&mm->page_table_lock); 2262 2263 perf_event_mmap(vma); 2264 } 2265 } 2266 } 2267 anon_vma_unlock_write(vma->anon_vma); 2268 khugepaged_enter_vma_merge(vma, vma->vm_flags); 2269 validate_mm(mm); 2270 return error; 2271 } 2272 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */ 2273 2274 /* 2275 * vma is the first one with address < vma->vm_start. Have to extend vma. 2276 */ 2277 int expand_downwards(struct vm_area_struct *vma, 2278 unsigned long address) 2279 { 2280 struct mm_struct *mm = vma->vm_mm; 2281 int error; 2282 2283 address &= PAGE_MASK; 2284 error = security_mmap_addr(address); 2285 if (error) 2286 return error; 2287 2288 /* We must make sure the anon_vma is allocated. */ 2289 if (unlikely(anon_vma_prepare(vma))) 2290 return -ENOMEM; 2291 2292 /* 2293 * vma->vm_start/vm_end cannot change under us because the caller 2294 * is required to hold the mmap_sem in read mode. We need the 2295 * anon_vma lock to serialize against concurrent expand_stacks. 2296 */ 2297 anon_vma_lock_write(vma->anon_vma); 2298 2299 /* Somebody else might have raced and expanded it already */ 2300 if (address < vma->vm_start) { 2301 unsigned long size, grow; 2302 2303 size = vma->vm_end - address; 2304 grow = (vma->vm_start - address) >> PAGE_SHIFT; 2305 2306 error = -ENOMEM; 2307 if (grow <= vma->vm_pgoff) { 2308 error = acct_stack_growth(vma, size, grow); 2309 if (!error) { 2310 /* 2311 * vma_gap_update() doesn't support concurrent 2312 * updates, but we only hold a shared mmap_sem 2313 * lock here, so we need to protect against 2314 * concurrent vma expansions. 2315 * anon_vma_lock_write() doesn't help here, as 2316 * we don't guarantee that all growable vmas 2317 * in a mm share the same root anon vma. 2318 * So, we reuse mm->page_table_lock to guard 2319 * against concurrent vma expansions. 2320 */ 2321 spin_lock(&mm->page_table_lock); 2322 if (vma->vm_flags & VM_LOCKED) 2323 mm->locked_vm += grow; 2324 vm_stat_account(mm, vma->vm_flags, grow); 2325 anon_vma_interval_tree_pre_update_vma(vma); 2326 vma->vm_start = address; 2327 vma->vm_pgoff -= grow; 2328 anon_vma_interval_tree_post_update_vma(vma); 2329 vma_gap_update(vma); 2330 spin_unlock(&mm->page_table_lock); 2331 2332 perf_event_mmap(vma); 2333 } 2334 } 2335 } 2336 anon_vma_unlock_write(vma->anon_vma); 2337 khugepaged_enter_vma_merge(vma, vma->vm_flags); 2338 validate_mm(mm); 2339 return error; 2340 } 2341 2342 /* 2343 * Note how expand_stack() refuses to expand the stack all the way to 2344 * abut the next virtual mapping, *unless* that mapping itself is also 2345 * a stack mapping. We want to leave room for a guard page, after all 2346 * (the guard page itself is not added here, that is done by the 2347 * actual page faulting logic) 2348 * 2349 * This matches the behavior of the guard page logic (see mm/memory.c: 2350 * check_stack_guard_page()), which only allows the guard page to be 2351 * removed under these circumstances. 2352 */ 2353 #ifdef CONFIG_STACK_GROWSUP 2354 int expand_stack(struct vm_area_struct *vma, unsigned long address) 2355 { 2356 struct vm_area_struct *next; 2357 2358 address &= PAGE_MASK; 2359 next = vma->vm_next; 2360 if (next && next->vm_start == address + PAGE_SIZE) { 2361 if (!(next->vm_flags & VM_GROWSUP)) 2362 return -ENOMEM; 2363 } 2364 return expand_upwards(vma, address); 2365 } 2366 2367 struct vm_area_struct * 2368 find_extend_vma(struct mm_struct *mm, unsigned long addr) 2369 { 2370 struct vm_area_struct *vma, *prev; 2371 2372 addr &= PAGE_MASK; 2373 vma = find_vma_prev(mm, addr, &prev); 2374 if (vma && (vma->vm_start <= addr)) 2375 return vma; 2376 if (!prev || expand_stack(prev, addr)) 2377 return NULL; 2378 if (prev->vm_flags & VM_LOCKED) 2379 populate_vma_page_range(prev, addr, prev->vm_end, NULL); 2380 return prev; 2381 } 2382 #else 2383 int expand_stack(struct vm_area_struct *vma, unsigned long address) 2384 { 2385 struct vm_area_struct *prev; 2386 2387 address &= PAGE_MASK; 2388 prev = vma->vm_prev; 2389 if (prev && prev->vm_end == address) { 2390 if (!(prev->vm_flags & VM_GROWSDOWN)) 2391 return -ENOMEM; 2392 } 2393 return expand_downwards(vma, address); 2394 } 2395 2396 struct vm_area_struct * 2397 find_extend_vma(struct mm_struct *mm, unsigned long addr) 2398 { 2399 struct vm_area_struct *vma; 2400 unsigned long start; 2401 2402 addr &= PAGE_MASK; 2403 vma = find_vma(mm, addr); 2404 if (!vma) 2405 return NULL; 2406 if (vma->vm_start <= addr) 2407 return vma; 2408 if (!(vma->vm_flags & VM_GROWSDOWN)) 2409 return NULL; 2410 start = vma->vm_start; 2411 if (expand_stack(vma, addr)) 2412 return NULL; 2413 if (vma->vm_flags & VM_LOCKED) 2414 populate_vma_page_range(vma, addr, start, NULL); 2415 return vma; 2416 } 2417 #endif 2418 2419 EXPORT_SYMBOL_GPL(find_extend_vma); 2420 2421 /* 2422 * Ok - we have the memory areas we should free on the vma list, 2423 * so release them, and do the vma updates. 2424 * 2425 * Called with the mm semaphore held. 2426 */ 2427 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma) 2428 { 2429 unsigned long nr_accounted = 0; 2430 2431 /* Update high watermark before we lower total_vm */ 2432 update_hiwater_vm(mm); 2433 do { 2434 long nrpages = vma_pages(vma); 2435 2436 if (vma->vm_flags & VM_ACCOUNT) 2437 nr_accounted += nrpages; 2438 vm_stat_account(mm, vma->vm_flags, -nrpages); 2439 vma = remove_vma(vma); 2440 } while (vma); 2441 vm_unacct_memory(nr_accounted); 2442 validate_mm(mm); 2443 } 2444 2445 /* 2446 * Get rid of page table information in the indicated region. 2447 * 2448 * Called with the mm semaphore held. 2449 */ 2450 static void unmap_region(struct mm_struct *mm, 2451 struct vm_area_struct *vma, struct vm_area_struct *prev, 2452 unsigned long start, unsigned long end) 2453 { 2454 struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap; 2455 struct mmu_gather tlb; 2456 2457 lru_add_drain(); 2458 tlb_gather_mmu(&tlb, mm, start, end); 2459 update_hiwater_rss(mm); 2460 unmap_vmas(&tlb, vma, start, end); 2461 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS, 2462 next ? next->vm_start : USER_PGTABLES_CEILING); 2463 tlb_finish_mmu(&tlb, start, end); 2464 } 2465 2466 /* 2467 * Create a list of vma's touched by the unmap, removing them from the mm's 2468 * vma list as we go.. 2469 */ 2470 static void 2471 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma, 2472 struct vm_area_struct *prev, unsigned long end) 2473 { 2474 struct vm_area_struct **insertion_point; 2475 struct vm_area_struct *tail_vma = NULL; 2476 2477 insertion_point = (prev ? &prev->vm_next : &mm->mmap); 2478 vma->vm_prev = NULL; 2479 do { 2480 vma_rb_erase(vma, &mm->mm_rb); 2481 mm->map_count--; 2482 tail_vma = vma; 2483 vma = vma->vm_next; 2484 } while (vma && vma->vm_start < end); 2485 *insertion_point = vma; 2486 if (vma) { 2487 vma->vm_prev = prev; 2488 vma_gap_update(vma); 2489 } else 2490 mm->highest_vm_end = prev ? prev->vm_end : 0; 2491 tail_vma->vm_next = NULL; 2492 2493 /* Kill the cache */ 2494 vmacache_invalidate(mm); 2495 } 2496 2497 /* 2498 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the 2499 * munmap path where it doesn't make sense to fail. 2500 */ 2501 static int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 2502 unsigned long addr, int new_below) 2503 { 2504 struct vm_area_struct *new; 2505 int err; 2506 2507 if (is_vm_hugetlb_page(vma) && (addr & 2508 ~(huge_page_mask(hstate_vma(vma))))) 2509 return -EINVAL; 2510 2511 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 2512 if (!new) 2513 return -ENOMEM; 2514 2515 /* most fields are the same, copy all, and then fixup */ 2516 *new = *vma; 2517 2518 INIT_LIST_HEAD(&new->anon_vma_chain); 2519 2520 if (new_below) 2521 new->vm_end = addr; 2522 else { 2523 new->vm_start = addr; 2524 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); 2525 } 2526 2527 err = vma_dup_policy(vma, new); 2528 if (err) 2529 goto out_free_vma; 2530 2531 err = anon_vma_clone(new, vma); 2532 if (err) 2533 goto out_free_mpol; 2534 2535 if (new->vm_file) 2536 get_file(new->vm_file); 2537 2538 if (new->vm_ops && new->vm_ops->open) 2539 new->vm_ops->open(new); 2540 2541 if (new_below) 2542 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff + 2543 ((addr - new->vm_start) >> PAGE_SHIFT), new); 2544 else 2545 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new); 2546 2547 /* Success. */ 2548 if (!err) 2549 return 0; 2550 2551 /* Clean everything up if vma_adjust failed. */ 2552 if (new->vm_ops && new->vm_ops->close) 2553 new->vm_ops->close(new); 2554 if (new->vm_file) 2555 fput(new->vm_file); 2556 unlink_anon_vmas(new); 2557 out_free_mpol: 2558 mpol_put(vma_policy(new)); 2559 out_free_vma: 2560 kmem_cache_free(vm_area_cachep, new); 2561 return err; 2562 } 2563 2564 /* 2565 * Split a vma into two pieces at address 'addr', a new vma is allocated 2566 * either for the first part or the tail. 2567 */ 2568 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 2569 unsigned long addr, int new_below) 2570 { 2571 if (mm->map_count >= sysctl_max_map_count) 2572 return -ENOMEM; 2573 2574 return __split_vma(mm, vma, addr, new_below); 2575 } 2576 2577 /* Munmap is split into 2 main parts -- this part which finds 2578 * what needs doing, and the areas themselves, which do the 2579 * work. This now handles partial unmappings. 2580 * Jeremy Fitzhardinge <jeremy@goop.org> 2581 */ 2582 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len) 2583 { 2584 unsigned long end; 2585 struct vm_area_struct *vma, *prev, *last; 2586 2587 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start) 2588 return -EINVAL; 2589 2590 len = PAGE_ALIGN(len); 2591 if (len == 0) 2592 return -EINVAL; 2593 2594 /* Find the first overlapping VMA */ 2595 vma = find_vma(mm, start); 2596 if (!vma) 2597 return 0; 2598 prev = vma->vm_prev; 2599 /* we have start < vma->vm_end */ 2600 2601 /* if it doesn't overlap, we have nothing.. */ 2602 end = start + len; 2603 if (vma->vm_start >= end) 2604 return 0; 2605 2606 /* 2607 * If we need to split any vma, do it now to save pain later. 2608 * 2609 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially 2610 * unmapped vm_area_struct will remain in use: so lower split_vma 2611 * places tmp vma above, and higher split_vma places tmp vma below. 2612 */ 2613 if (start > vma->vm_start) { 2614 int error; 2615 2616 /* 2617 * Make sure that map_count on return from munmap() will 2618 * not exceed its limit; but let map_count go just above 2619 * its limit temporarily, to help free resources as expected. 2620 */ 2621 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count) 2622 return -ENOMEM; 2623 2624 error = __split_vma(mm, vma, start, 0); 2625 if (error) 2626 return error; 2627 prev = vma; 2628 } 2629 2630 /* Does it split the last one? */ 2631 last = find_vma(mm, end); 2632 if (last && end > last->vm_start) { 2633 int error = __split_vma(mm, last, end, 1); 2634 if (error) 2635 return error; 2636 } 2637 vma = prev ? prev->vm_next : mm->mmap; 2638 2639 /* 2640 * unlock any mlock()ed ranges before detaching vmas 2641 */ 2642 if (mm->locked_vm) { 2643 struct vm_area_struct *tmp = vma; 2644 while (tmp && tmp->vm_start < end) { 2645 if (tmp->vm_flags & VM_LOCKED) { 2646 mm->locked_vm -= vma_pages(tmp); 2647 munlock_vma_pages_all(tmp); 2648 } 2649 tmp = tmp->vm_next; 2650 } 2651 } 2652 2653 /* 2654 * Remove the vma's, and unmap the actual pages 2655 */ 2656 detach_vmas_to_be_unmapped(mm, vma, prev, end); 2657 unmap_region(mm, vma, prev, start, end); 2658 2659 arch_unmap(mm, vma, start, end); 2660 2661 /* Fix up all other VM information */ 2662 remove_vma_list(mm, vma); 2663 2664 return 0; 2665 } 2666 2667 int vm_munmap(unsigned long start, size_t len) 2668 { 2669 int ret; 2670 struct mm_struct *mm = current->mm; 2671 2672 if (down_write_killable(&mm->mmap_sem)) 2673 return -EINTR; 2674 2675 ret = do_munmap(mm, start, len); 2676 up_write(&mm->mmap_sem); 2677 return ret; 2678 } 2679 EXPORT_SYMBOL(vm_munmap); 2680 2681 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 2682 { 2683 int ret; 2684 struct mm_struct *mm = current->mm; 2685 2686 profile_munmap(addr); 2687 if (down_write_killable(&mm->mmap_sem)) 2688 return -EINTR; 2689 ret = do_munmap(mm, addr, len); 2690 up_write(&mm->mmap_sem); 2691 return ret; 2692 } 2693 2694 2695 /* 2696 * Emulation of deprecated remap_file_pages() syscall. 2697 */ 2698 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size, 2699 unsigned long, prot, unsigned long, pgoff, unsigned long, flags) 2700 { 2701 2702 struct mm_struct *mm = current->mm; 2703 struct vm_area_struct *vma; 2704 unsigned long populate = 0; 2705 unsigned long ret = -EINVAL; 2706 struct file *file; 2707 2708 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.txt.\n", 2709 current->comm, current->pid); 2710 2711 if (prot) 2712 return ret; 2713 start = start & PAGE_MASK; 2714 size = size & PAGE_MASK; 2715 2716 if (start + size <= start) 2717 return ret; 2718 2719 /* Does pgoff wrap? */ 2720 if (pgoff + (size >> PAGE_SHIFT) < pgoff) 2721 return ret; 2722 2723 if (down_write_killable(&mm->mmap_sem)) 2724 return -EINTR; 2725 2726 vma = find_vma(mm, start); 2727 2728 if (!vma || !(vma->vm_flags & VM_SHARED)) 2729 goto out; 2730 2731 if (start < vma->vm_start) 2732 goto out; 2733 2734 if (start + size > vma->vm_end) { 2735 struct vm_area_struct *next; 2736 2737 for (next = vma->vm_next; next; next = next->vm_next) { 2738 /* hole between vmas ? */ 2739 if (next->vm_start != next->vm_prev->vm_end) 2740 goto out; 2741 2742 if (next->vm_file != vma->vm_file) 2743 goto out; 2744 2745 if (next->vm_flags != vma->vm_flags) 2746 goto out; 2747 2748 if (start + size <= next->vm_end) 2749 break; 2750 } 2751 2752 if (!next) 2753 goto out; 2754 } 2755 2756 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0; 2757 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0; 2758 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0; 2759 2760 flags &= MAP_NONBLOCK; 2761 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE; 2762 if (vma->vm_flags & VM_LOCKED) { 2763 struct vm_area_struct *tmp; 2764 flags |= MAP_LOCKED; 2765 2766 /* drop PG_Mlocked flag for over-mapped range */ 2767 for (tmp = vma; tmp->vm_start >= start + size; 2768 tmp = tmp->vm_next) { 2769 /* 2770 * Split pmd and munlock page on the border 2771 * of the range. 2772 */ 2773 vma_adjust_trans_huge(tmp, start, start + size, 0); 2774 2775 munlock_vma_pages_range(tmp, 2776 max(tmp->vm_start, start), 2777 min(tmp->vm_end, start + size)); 2778 } 2779 } 2780 2781 file = get_file(vma->vm_file); 2782 ret = do_mmap_pgoff(vma->vm_file, start, size, 2783 prot, flags, pgoff, &populate); 2784 fput(file); 2785 out: 2786 up_write(&mm->mmap_sem); 2787 if (populate) 2788 mm_populate(ret, populate); 2789 if (!IS_ERR_VALUE(ret)) 2790 ret = 0; 2791 return ret; 2792 } 2793 2794 static inline void verify_mm_writelocked(struct mm_struct *mm) 2795 { 2796 #ifdef CONFIG_DEBUG_VM 2797 if (unlikely(down_read_trylock(&mm->mmap_sem))) { 2798 WARN_ON(1); 2799 up_read(&mm->mmap_sem); 2800 } 2801 #endif 2802 } 2803 2804 /* 2805 * this is really a simplified "do_mmap". it only handles 2806 * anonymous maps. eventually we may be able to do some 2807 * brk-specific accounting here. 2808 */ 2809 static int do_brk(unsigned long addr, unsigned long request) 2810 { 2811 struct mm_struct *mm = current->mm; 2812 struct vm_area_struct *vma, *prev; 2813 unsigned long flags, len; 2814 struct rb_node **rb_link, *rb_parent; 2815 pgoff_t pgoff = addr >> PAGE_SHIFT; 2816 int error; 2817 2818 len = PAGE_ALIGN(request); 2819 if (len < request) 2820 return -ENOMEM; 2821 if (!len) 2822 return 0; 2823 2824 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; 2825 2826 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED); 2827 if (offset_in_page(error)) 2828 return error; 2829 2830 error = mlock_future_check(mm, mm->def_flags, len); 2831 if (error) 2832 return error; 2833 2834 /* 2835 * mm->mmap_sem is required to protect against another thread 2836 * changing the mappings in case we sleep. 2837 */ 2838 verify_mm_writelocked(mm); 2839 2840 /* 2841 * Clear old maps. this also does some error checking for us 2842 */ 2843 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link, 2844 &rb_parent)) { 2845 if (do_munmap(mm, addr, len)) 2846 return -ENOMEM; 2847 } 2848 2849 /* Check against address space limits *after* clearing old maps... */ 2850 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT)) 2851 return -ENOMEM; 2852 2853 if (mm->map_count > sysctl_max_map_count) 2854 return -ENOMEM; 2855 2856 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT)) 2857 return -ENOMEM; 2858 2859 /* Can we just expand an old private anonymous mapping? */ 2860 vma = vma_merge(mm, prev, addr, addr + len, flags, 2861 NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX); 2862 if (vma) 2863 goto out; 2864 2865 /* 2866 * create a vma struct for an anonymous mapping 2867 */ 2868 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 2869 if (!vma) { 2870 vm_unacct_memory(len >> PAGE_SHIFT); 2871 return -ENOMEM; 2872 } 2873 2874 INIT_LIST_HEAD(&vma->anon_vma_chain); 2875 vma->vm_mm = mm; 2876 vma->vm_start = addr; 2877 vma->vm_end = addr + len; 2878 vma->vm_pgoff = pgoff; 2879 vma->vm_flags = flags; 2880 vma->vm_page_prot = vm_get_page_prot(flags); 2881 vma_link(mm, vma, prev, rb_link, rb_parent); 2882 out: 2883 perf_event_mmap(vma); 2884 mm->total_vm += len >> PAGE_SHIFT; 2885 mm->data_vm += len >> PAGE_SHIFT; 2886 if (flags & VM_LOCKED) 2887 mm->locked_vm += (len >> PAGE_SHIFT); 2888 vma->vm_flags |= VM_SOFTDIRTY; 2889 return 0; 2890 } 2891 2892 int vm_brk(unsigned long addr, unsigned long len) 2893 { 2894 struct mm_struct *mm = current->mm; 2895 int ret; 2896 bool populate; 2897 2898 if (down_write_killable(&mm->mmap_sem)) 2899 return -EINTR; 2900 2901 ret = do_brk(addr, len); 2902 populate = ((mm->def_flags & VM_LOCKED) != 0); 2903 up_write(&mm->mmap_sem); 2904 if (populate && !ret) 2905 mm_populate(addr, len); 2906 return ret; 2907 } 2908 EXPORT_SYMBOL(vm_brk); 2909 2910 /* Release all mmaps. */ 2911 void exit_mmap(struct mm_struct *mm) 2912 { 2913 struct mmu_gather tlb; 2914 struct vm_area_struct *vma; 2915 unsigned long nr_accounted = 0; 2916 2917 /* mm's last user has gone, and its about to be pulled down */ 2918 mmu_notifier_release(mm); 2919 2920 if (mm->locked_vm) { 2921 vma = mm->mmap; 2922 while (vma) { 2923 if (vma->vm_flags & VM_LOCKED) 2924 munlock_vma_pages_all(vma); 2925 vma = vma->vm_next; 2926 } 2927 } 2928 2929 arch_exit_mmap(mm); 2930 2931 vma = mm->mmap; 2932 if (!vma) /* Can happen if dup_mmap() received an OOM */ 2933 return; 2934 2935 lru_add_drain(); 2936 flush_cache_mm(mm); 2937 tlb_gather_mmu(&tlb, mm, 0, -1); 2938 /* update_hiwater_rss(mm) here? but nobody should be looking */ 2939 /* Use -1 here to ensure all VMAs in the mm are unmapped */ 2940 unmap_vmas(&tlb, vma, 0, -1); 2941 2942 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING); 2943 tlb_finish_mmu(&tlb, 0, -1); 2944 2945 /* 2946 * Walk the list again, actually closing and freeing it, 2947 * with preemption enabled, without holding any MM locks. 2948 */ 2949 while (vma) { 2950 if (vma->vm_flags & VM_ACCOUNT) 2951 nr_accounted += vma_pages(vma); 2952 vma = remove_vma(vma); 2953 } 2954 vm_unacct_memory(nr_accounted); 2955 } 2956 2957 /* Insert vm structure into process list sorted by address 2958 * and into the inode's i_mmap tree. If vm_file is non-NULL 2959 * then i_mmap_rwsem is taken here. 2960 */ 2961 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 2962 { 2963 struct vm_area_struct *prev; 2964 struct rb_node **rb_link, *rb_parent; 2965 2966 if (find_vma_links(mm, vma->vm_start, vma->vm_end, 2967 &prev, &rb_link, &rb_parent)) 2968 return -ENOMEM; 2969 if ((vma->vm_flags & VM_ACCOUNT) && 2970 security_vm_enough_memory_mm(mm, vma_pages(vma))) 2971 return -ENOMEM; 2972 2973 /* 2974 * The vm_pgoff of a purely anonymous vma should be irrelevant 2975 * until its first write fault, when page's anon_vma and index 2976 * are set. But now set the vm_pgoff it will almost certainly 2977 * end up with (unless mremap moves it elsewhere before that 2978 * first wfault), so /proc/pid/maps tells a consistent story. 2979 * 2980 * By setting it to reflect the virtual start address of the 2981 * vma, merges and splits can happen in a seamless way, just 2982 * using the existing file pgoff checks and manipulations. 2983 * Similarly in do_mmap_pgoff and in do_brk. 2984 */ 2985 if (vma_is_anonymous(vma)) { 2986 BUG_ON(vma->anon_vma); 2987 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; 2988 } 2989 2990 vma_link(mm, vma, prev, rb_link, rb_parent); 2991 return 0; 2992 } 2993 2994 /* 2995 * Copy the vma structure to a new location in the same mm, 2996 * prior to moving page table entries, to effect an mremap move. 2997 */ 2998 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 2999 unsigned long addr, unsigned long len, pgoff_t pgoff, 3000 bool *need_rmap_locks) 3001 { 3002 struct vm_area_struct *vma = *vmap; 3003 unsigned long vma_start = vma->vm_start; 3004 struct mm_struct *mm = vma->vm_mm; 3005 struct vm_area_struct *new_vma, *prev; 3006 struct rb_node **rb_link, *rb_parent; 3007 bool faulted_in_anon_vma = true; 3008 3009 /* 3010 * If anonymous vma has not yet been faulted, update new pgoff 3011 * to match new location, to increase its chance of merging. 3012 */ 3013 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) { 3014 pgoff = addr >> PAGE_SHIFT; 3015 faulted_in_anon_vma = false; 3016 } 3017 3018 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) 3019 return NULL; /* should never get here */ 3020 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags, 3021 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma), 3022 vma->vm_userfaultfd_ctx); 3023 if (new_vma) { 3024 /* 3025 * Source vma may have been merged into new_vma 3026 */ 3027 if (unlikely(vma_start >= new_vma->vm_start && 3028 vma_start < new_vma->vm_end)) { 3029 /* 3030 * The only way we can get a vma_merge with 3031 * self during an mremap is if the vma hasn't 3032 * been faulted in yet and we were allowed to 3033 * reset the dst vma->vm_pgoff to the 3034 * destination address of the mremap to allow 3035 * the merge to happen. mremap must change the 3036 * vm_pgoff linearity between src and dst vmas 3037 * (in turn preventing a vma_merge) to be 3038 * safe. It is only safe to keep the vm_pgoff 3039 * linear if there are no pages mapped yet. 3040 */ 3041 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma); 3042 *vmap = vma = new_vma; 3043 } 3044 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff); 3045 } else { 3046 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 3047 if (!new_vma) 3048 goto out; 3049 *new_vma = *vma; 3050 new_vma->vm_start = addr; 3051 new_vma->vm_end = addr + len; 3052 new_vma->vm_pgoff = pgoff; 3053 if (vma_dup_policy(vma, new_vma)) 3054 goto out_free_vma; 3055 INIT_LIST_HEAD(&new_vma->anon_vma_chain); 3056 if (anon_vma_clone(new_vma, vma)) 3057 goto out_free_mempol; 3058 if (new_vma->vm_file) 3059 get_file(new_vma->vm_file); 3060 if (new_vma->vm_ops && new_vma->vm_ops->open) 3061 new_vma->vm_ops->open(new_vma); 3062 vma_link(mm, new_vma, prev, rb_link, rb_parent); 3063 *need_rmap_locks = false; 3064 } 3065 return new_vma; 3066 3067 out_free_mempol: 3068 mpol_put(vma_policy(new_vma)); 3069 out_free_vma: 3070 kmem_cache_free(vm_area_cachep, new_vma); 3071 out: 3072 return NULL; 3073 } 3074 3075 /* 3076 * Return true if the calling process may expand its vm space by the passed 3077 * number of pages 3078 */ 3079 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages) 3080 { 3081 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT) 3082 return false; 3083 3084 if (is_data_mapping(flags) && 3085 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) { 3086 /* Workaround for Valgrind */ 3087 if (rlimit(RLIMIT_DATA) == 0 && 3088 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT) 3089 return true; 3090 if (!ignore_rlimit_data) { 3091 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits or use boot option ignore_rlimit_data.\n", 3092 current->comm, current->pid, 3093 (mm->data_vm + npages) << PAGE_SHIFT, 3094 rlimit(RLIMIT_DATA)); 3095 return false; 3096 } 3097 } 3098 3099 return true; 3100 } 3101 3102 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages) 3103 { 3104 mm->total_vm += npages; 3105 3106 if (is_exec_mapping(flags)) 3107 mm->exec_vm += npages; 3108 else if (is_stack_mapping(flags)) 3109 mm->stack_vm += npages; 3110 else if (is_data_mapping(flags)) 3111 mm->data_vm += npages; 3112 } 3113 3114 static int special_mapping_fault(struct vm_area_struct *vma, 3115 struct vm_fault *vmf); 3116 3117 /* 3118 * Having a close hook prevents vma merging regardless of flags. 3119 */ 3120 static void special_mapping_close(struct vm_area_struct *vma) 3121 { 3122 } 3123 3124 static const char *special_mapping_name(struct vm_area_struct *vma) 3125 { 3126 return ((struct vm_special_mapping *)vma->vm_private_data)->name; 3127 } 3128 3129 static int special_mapping_mremap(struct vm_area_struct *new_vma) 3130 { 3131 struct vm_special_mapping *sm = new_vma->vm_private_data; 3132 3133 if (sm->mremap) 3134 return sm->mremap(sm, new_vma); 3135 return 0; 3136 } 3137 3138 static const struct vm_operations_struct special_mapping_vmops = { 3139 .close = special_mapping_close, 3140 .fault = special_mapping_fault, 3141 .mremap = special_mapping_mremap, 3142 .name = special_mapping_name, 3143 }; 3144 3145 static const struct vm_operations_struct legacy_special_mapping_vmops = { 3146 .close = special_mapping_close, 3147 .fault = special_mapping_fault, 3148 }; 3149 3150 static int special_mapping_fault(struct vm_area_struct *vma, 3151 struct vm_fault *vmf) 3152 { 3153 pgoff_t pgoff; 3154 struct page **pages; 3155 3156 if (vma->vm_ops == &legacy_special_mapping_vmops) { 3157 pages = vma->vm_private_data; 3158 } else { 3159 struct vm_special_mapping *sm = vma->vm_private_data; 3160 3161 if (sm->fault) 3162 return sm->fault(sm, vma, vmf); 3163 3164 pages = sm->pages; 3165 } 3166 3167 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages) 3168 pgoff--; 3169 3170 if (*pages) { 3171 struct page *page = *pages; 3172 get_page(page); 3173 vmf->page = page; 3174 return 0; 3175 } 3176 3177 return VM_FAULT_SIGBUS; 3178 } 3179 3180 static struct vm_area_struct *__install_special_mapping( 3181 struct mm_struct *mm, 3182 unsigned long addr, unsigned long len, 3183 unsigned long vm_flags, void *priv, 3184 const struct vm_operations_struct *ops) 3185 { 3186 int ret; 3187 struct vm_area_struct *vma; 3188 3189 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 3190 if (unlikely(vma == NULL)) 3191 return ERR_PTR(-ENOMEM); 3192 3193 INIT_LIST_HEAD(&vma->anon_vma_chain); 3194 vma->vm_mm = mm; 3195 vma->vm_start = addr; 3196 vma->vm_end = addr + len; 3197 3198 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY; 3199 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 3200 3201 vma->vm_ops = ops; 3202 vma->vm_private_data = priv; 3203 3204 ret = insert_vm_struct(mm, vma); 3205 if (ret) 3206 goto out; 3207 3208 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT); 3209 3210 perf_event_mmap(vma); 3211 3212 return vma; 3213 3214 out: 3215 kmem_cache_free(vm_area_cachep, vma); 3216 return ERR_PTR(ret); 3217 } 3218 3219 bool vma_is_special_mapping(const struct vm_area_struct *vma, 3220 const struct vm_special_mapping *sm) 3221 { 3222 return vma->vm_private_data == sm && 3223 (vma->vm_ops == &special_mapping_vmops || 3224 vma->vm_ops == &legacy_special_mapping_vmops); 3225 } 3226 3227 /* 3228 * Called with mm->mmap_sem held for writing. 3229 * Insert a new vma covering the given region, with the given flags. 3230 * Its pages are supplied by the given array of struct page *. 3231 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated. 3232 * The region past the last page supplied will always produce SIGBUS. 3233 * The array pointer and the pages it points to are assumed to stay alive 3234 * for as long as this mapping might exist. 3235 */ 3236 struct vm_area_struct *_install_special_mapping( 3237 struct mm_struct *mm, 3238 unsigned long addr, unsigned long len, 3239 unsigned long vm_flags, const struct vm_special_mapping *spec) 3240 { 3241 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec, 3242 &special_mapping_vmops); 3243 } 3244 3245 int install_special_mapping(struct mm_struct *mm, 3246 unsigned long addr, unsigned long len, 3247 unsigned long vm_flags, struct page **pages) 3248 { 3249 struct vm_area_struct *vma = __install_special_mapping( 3250 mm, addr, len, vm_flags, (void *)pages, 3251 &legacy_special_mapping_vmops); 3252 3253 return PTR_ERR_OR_ZERO(vma); 3254 } 3255 3256 static DEFINE_MUTEX(mm_all_locks_mutex); 3257 3258 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) 3259 { 3260 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) { 3261 /* 3262 * The LSB of head.next can't change from under us 3263 * because we hold the mm_all_locks_mutex. 3264 */ 3265 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem); 3266 /* 3267 * We can safely modify head.next after taking the 3268 * anon_vma->root->rwsem. If some other vma in this mm shares 3269 * the same anon_vma we won't take it again. 3270 * 3271 * No need of atomic instructions here, head.next 3272 * can't change from under us thanks to the 3273 * anon_vma->root->rwsem. 3274 */ 3275 if (__test_and_set_bit(0, (unsigned long *) 3276 &anon_vma->root->rb_root.rb_node)) 3277 BUG(); 3278 } 3279 } 3280 3281 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) 3282 { 3283 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3284 /* 3285 * AS_MM_ALL_LOCKS can't change from under us because 3286 * we hold the mm_all_locks_mutex. 3287 * 3288 * Operations on ->flags have to be atomic because 3289 * even if AS_MM_ALL_LOCKS is stable thanks to the 3290 * mm_all_locks_mutex, there may be other cpus 3291 * changing other bitflags in parallel to us. 3292 */ 3293 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) 3294 BUG(); 3295 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem); 3296 } 3297 } 3298 3299 /* 3300 * This operation locks against the VM for all pte/vma/mm related 3301 * operations that could ever happen on a certain mm. This includes 3302 * vmtruncate, try_to_unmap, and all page faults. 3303 * 3304 * The caller must take the mmap_sem in write mode before calling 3305 * mm_take_all_locks(). The caller isn't allowed to release the 3306 * mmap_sem until mm_drop_all_locks() returns. 3307 * 3308 * mmap_sem in write mode is required in order to block all operations 3309 * that could modify pagetables and free pages without need of 3310 * altering the vma layout. It's also needed in write mode to avoid new 3311 * anon_vmas to be associated with existing vmas. 3312 * 3313 * A single task can't take more than one mm_take_all_locks() in a row 3314 * or it would deadlock. 3315 * 3316 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in 3317 * mapping->flags avoid to take the same lock twice, if more than one 3318 * vma in this mm is backed by the same anon_vma or address_space. 3319 * 3320 * We take locks in following order, accordingly to comment at beginning 3321 * of mm/rmap.c: 3322 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for 3323 * hugetlb mapping); 3324 * - all i_mmap_rwsem locks; 3325 * - all anon_vma->rwseml 3326 * 3327 * We can take all locks within these types randomly because the VM code 3328 * doesn't nest them and we protected from parallel mm_take_all_locks() by 3329 * mm_all_locks_mutex. 3330 * 3331 * mm_take_all_locks() and mm_drop_all_locks are expensive operations 3332 * that may have to take thousand of locks. 3333 * 3334 * mm_take_all_locks() can fail if it's interrupted by signals. 3335 */ 3336 int mm_take_all_locks(struct mm_struct *mm) 3337 { 3338 struct vm_area_struct *vma; 3339 struct anon_vma_chain *avc; 3340 3341 BUG_ON(down_read_trylock(&mm->mmap_sem)); 3342 3343 mutex_lock(&mm_all_locks_mutex); 3344 3345 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3346 if (signal_pending(current)) 3347 goto out_unlock; 3348 if (vma->vm_file && vma->vm_file->f_mapping && 3349 is_vm_hugetlb_page(vma)) 3350 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3351 } 3352 3353 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3354 if (signal_pending(current)) 3355 goto out_unlock; 3356 if (vma->vm_file && vma->vm_file->f_mapping && 3357 !is_vm_hugetlb_page(vma)) 3358 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3359 } 3360 3361 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3362 if (signal_pending(current)) 3363 goto out_unlock; 3364 if (vma->anon_vma) 3365 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3366 vm_lock_anon_vma(mm, avc->anon_vma); 3367 } 3368 3369 return 0; 3370 3371 out_unlock: 3372 mm_drop_all_locks(mm); 3373 return -EINTR; 3374 } 3375 3376 static void vm_unlock_anon_vma(struct anon_vma *anon_vma) 3377 { 3378 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) { 3379 /* 3380 * The LSB of head.next can't change to 0 from under 3381 * us because we hold the mm_all_locks_mutex. 3382 * 3383 * We must however clear the bitflag before unlocking 3384 * the vma so the users using the anon_vma->rb_root will 3385 * never see our bitflag. 3386 * 3387 * No need of atomic instructions here, head.next 3388 * can't change from under us until we release the 3389 * anon_vma->root->rwsem. 3390 */ 3391 if (!__test_and_clear_bit(0, (unsigned long *) 3392 &anon_vma->root->rb_root.rb_node)) 3393 BUG(); 3394 anon_vma_unlock_write(anon_vma); 3395 } 3396 } 3397 3398 static void vm_unlock_mapping(struct address_space *mapping) 3399 { 3400 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3401 /* 3402 * AS_MM_ALL_LOCKS can't change to 0 from under us 3403 * because we hold the mm_all_locks_mutex. 3404 */ 3405 i_mmap_unlock_write(mapping); 3406 if (!test_and_clear_bit(AS_MM_ALL_LOCKS, 3407 &mapping->flags)) 3408 BUG(); 3409 } 3410 } 3411 3412 /* 3413 * The mmap_sem cannot be released by the caller until 3414 * mm_drop_all_locks() returns. 3415 */ 3416 void mm_drop_all_locks(struct mm_struct *mm) 3417 { 3418 struct vm_area_struct *vma; 3419 struct anon_vma_chain *avc; 3420 3421 BUG_ON(down_read_trylock(&mm->mmap_sem)); 3422 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); 3423 3424 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3425 if (vma->anon_vma) 3426 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3427 vm_unlock_anon_vma(avc->anon_vma); 3428 if (vma->vm_file && vma->vm_file->f_mapping) 3429 vm_unlock_mapping(vma->vm_file->f_mapping); 3430 } 3431 3432 mutex_unlock(&mm_all_locks_mutex); 3433 } 3434 3435 /* 3436 * initialise the VMA slab 3437 */ 3438 void __init mmap_init(void) 3439 { 3440 int ret; 3441 3442 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL); 3443 VM_BUG_ON(ret); 3444 } 3445 3446 /* 3447 * Initialise sysctl_user_reserve_kbytes. 3448 * 3449 * This is intended to prevent a user from starting a single memory hogging 3450 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER 3451 * mode. 3452 * 3453 * The default value is min(3% of free memory, 128MB) 3454 * 128MB is enough to recover with sshd/login, bash, and top/kill. 3455 */ 3456 static int init_user_reserve(void) 3457 { 3458 unsigned long free_kbytes; 3459 3460 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3461 3462 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17); 3463 return 0; 3464 } 3465 subsys_initcall(init_user_reserve); 3466 3467 /* 3468 * Initialise sysctl_admin_reserve_kbytes. 3469 * 3470 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin 3471 * to log in and kill a memory hogging process. 3472 * 3473 * Systems with more than 256MB will reserve 8MB, enough to recover 3474 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will 3475 * only reserve 3% of free pages by default. 3476 */ 3477 static int init_admin_reserve(void) 3478 { 3479 unsigned long free_kbytes; 3480 3481 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3482 3483 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13); 3484 return 0; 3485 } 3486 subsys_initcall(init_admin_reserve); 3487 3488 /* 3489 * Reinititalise user and admin reserves if memory is added or removed. 3490 * 3491 * The default user reserve max is 128MB, and the default max for the 3492 * admin reserve is 8MB. These are usually, but not always, enough to 3493 * enable recovery from a memory hogging process using login/sshd, a shell, 3494 * and tools like top. It may make sense to increase or even disable the 3495 * reserve depending on the existence of swap or variations in the recovery 3496 * tools. So, the admin may have changed them. 3497 * 3498 * If memory is added and the reserves have been eliminated or increased above 3499 * the default max, then we'll trust the admin. 3500 * 3501 * If memory is removed and there isn't enough free memory, then we 3502 * need to reset the reserves. 3503 * 3504 * Otherwise keep the reserve set by the admin. 3505 */ 3506 static int reserve_mem_notifier(struct notifier_block *nb, 3507 unsigned long action, void *data) 3508 { 3509 unsigned long tmp, free_kbytes; 3510 3511 switch (action) { 3512 case MEM_ONLINE: 3513 /* Default max is 128MB. Leave alone if modified by operator. */ 3514 tmp = sysctl_user_reserve_kbytes; 3515 if (0 < tmp && tmp < (1UL << 17)) 3516 init_user_reserve(); 3517 3518 /* Default max is 8MB. Leave alone if modified by operator. */ 3519 tmp = sysctl_admin_reserve_kbytes; 3520 if (0 < tmp && tmp < (1UL << 13)) 3521 init_admin_reserve(); 3522 3523 break; 3524 case MEM_OFFLINE: 3525 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3526 3527 if (sysctl_user_reserve_kbytes > free_kbytes) { 3528 init_user_reserve(); 3529 pr_info("vm.user_reserve_kbytes reset to %lu\n", 3530 sysctl_user_reserve_kbytes); 3531 } 3532 3533 if (sysctl_admin_reserve_kbytes > free_kbytes) { 3534 init_admin_reserve(); 3535 pr_info("vm.admin_reserve_kbytes reset to %lu\n", 3536 sysctl_admin_reserve_kbytes); 3537 } 3538 break; 3539 default: 3540 break; 3541 } 3542 return NOTIFY_OK; 3543 } 3544 3545 static struct notifier_block reserve_mem_nb = { 3546 .notifier_call = reserve_mem_notifier, 3547 }; 3548 3549 static int __meminit init_reserve_notifier(void) 3550 { 3551 if (register_hotmemory_notifier(&reserve_mem_nb)) 3552 pr_err("Failed registering memory add/remove notifier for admin reserve\n"); 3553 3554 return 0; 3555 } 3556 subsys_initcall(init_reserve_notifier); 3557