xref: /linux/mm/mmap.c (revision f3a8b6645dc2e60d11f20c1c23afd964ff4e55ae)
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
14 #include <linux/mm.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/shmem_fs.h>
29 #include <linux/profile.h>
30 #include <linux/export.h>
31 #include <linux/mount.h>
32 #include <linux/mempolicy.h>
33 #include <linux/rmap.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/mmdebug.h>
36 #include <linux/perf_event.h>
37 #include <linux/audit.h>
38 #include <linux/khugepaged.h>
39 #include <linux/uprobes.h>
40 #include <linux/rbtree_augmented.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
47 
48 #include <asm/uaccess.h>
49 #include <asm/cacheflush.h>
50 #include <asm/tlb.h>
51 #include <asm/mmu_context.h>
52 
53 #include "internal.h"
54 
55 #ifndef arch_mmap_check
56 #define arch_mmap_check(addr, len, flags)	(0)
57 #endif
58 
59 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
60 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
61 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
62 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
63 #endif
64 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
65 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
66 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
67 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
68 #endif
69 
70 static bool ignore_rlimit_data;
71 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
72 
73 static void unmap_region(struct mm_struct *mm,
74 		struct vm_area_struct *vma, struct vm_area_struct *prev,
75 		unsigned long start, unsigned long end);
76 
77 /* description of effects of mapping type and prot in current implementation.
78  * this is due to the limited x86 page protection hardware.  The expected
79  * behavior is in parens:
80  *
81  * map_type	prot
82  *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
83  * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
84  *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
85  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
86  *
87  * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
88  *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
89  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
90  *
91  * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
92  * MAP_PRIVATE:
93  *								r: (no) no
94  *								w: (no) no
95  *								x: (yes) yes
96  */
97 pgprot_t protection_map[16] = {
98 	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
99 	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
100 };
101 
102 pgprot_t vm_get_page_prot(unsigned long vm_flags)
103 {
104 	return __pgprot(pgprot_val(protection_map[vm_flags &
105 				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
106 			pgprot_val(arch_vm_get_page_prot(vm_flags)));
107 }
108 EXPORT_SYMBOL(vm_get_page_prot);
109 
110 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
111 {
112 	return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
113 }
114 
115 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
116 void vma_set_page_prot(struct vm_area_struct *vma)
117 {
118 	unsigned long vm_flags = vma->vm_flags;
119 	pgprot_t vm_page_prot;
120 
121 	vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
122 	if (vma_wants_writenotify(vma, vm_page_prot)) {
123 		vm_flags &= ~VM_SHARED;
124 		vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
125 	}
126 	/* remove_protection_ptes reads vma->vm_page_prot without mmap_sem */
127 	WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
128 }
129 
130 /*
131  * Requires inode->i_mapping->i_mmap_rwsem
132  */
133 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
134 		struct file *file, struct address_space *mapping)
135 {
136 	if (vma->vm_flags & VM_DENYWRITE)
137 		atomic_inc(&file_inode(file)->i_writecount);
138 	if (vma->vm_flags & VM_SHARED)
139 		mapping_unmap_writable(mapping);
140 
141 	flush_dcache_mmap_lock(mapping);
142 	vma_interval_tree_remove(vma, &mapping->i_mmap);
143 	flush_dcache_mmap_unlock(mapping);
144 }
145 
146 /*
147  * Unlink a file-based vm structure from its interval tree, to hide
148  * vma from rmap and vmtruncate before freeing its page tables.
149  */
150 void unlink_file_vma(struct vm_area_struct *vma)
151 {
152 	struct file *file = vma->vm_file;
153 
154 	if (file) {
155 		struct address_space *mapping = file->f_mapping;
156 		i_mmap_lock_write(mapping);
157 		__remove_shared_vm_struct(vma, file, mapping);
158 		i_mmap_unlock_write(mapping);
159 	}
160 }
161 
162 /*
163  * Close a vm structure and free it, returning the next.
164  */
165 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
166 {
167 	struct vm_area_struct *next = vma->vm_next;
168 
169 	might_sleep();
170 	if (vma->vm_ops && vma->vm_ops->close)
171 		vma->vm_ops->close(vma);
172 	if (vma->vm_file)
173 		fput(vma->vm_file);
174 	mpol_put(vma_policy(vma));
175 	kmem_cache_free(vm_area_cachep, vma);
176 	return next;
177 }
178 
179 static int do_brk(unsigned long addr, unsigned long len);
180 
181 SYSCALL_DEFINE1(brk, unsigned long, brk)
182 {
183 	unsigned long retval;
184 	unsigned long newbrk, oldbrk;
185 	struct mm_struct *mm = current->mm;
186 	unsigned long min_brk;
187 	bool populate;
188 
189 	if (down_write_killable(&mm->mmap_sem))
190 		return -EINTR;
191 
192 #ifdef CONFIG_COMPAT_BRK
193 	/*
194 	 * CONFIG_COMPAT_BRK can still be overridden by setting
195 	 * randomize_va_space to 2, which will still cause mm->start_brk
196 	 * to be arbitrarily shifted
197 	 */
198 	if (current->brk_randomized)
199 		min_brk = mm->start_brk;
200 	else
201 		min_brk = mm->end_data;
202 #else
203 	min_brk = mm->start_brk;
204 #endif
205 	if (brk < min_brk)
206 		goto out;
207 
208 	/*
209 	 * Check against rlimit here. If this check is done later after the test
210 	 * of oldbrk with newbrk then it can escape the test and let the data
211 	 * segment grow beyond its set limit the in case where the limit is
212 	 * not page aligned -Ram Gupta
213 	 */
214 	if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
215 			      mm->end_data, mm->start_data))
216 		goto out;
217 
218 	newbrk = PAGE_ALIGN(brk);
219 	oldbrk = PAGE_ALIGN(mm->brk);
220 	if (oldbrk == newbrk)
221 		goto set_brk;
222 
223 	/* Always allow shrinking brk. */
224 	if (brk <= mm->brk) {
225 		if (!do_munmap(mm, newbrk, oldbrk-newbrk))
226 			goto set_brk;
227 		goto out;
228 	}
229 
230 	/* Check against existing mmap mappings. */
231 	if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
232 		goto out;
233 
234 	/* Ok, looks good - let it rip. */
235 	if (do_brk(oldbrk, newbrk-oldbrk) < 0)
236 		goto out;
237 
238 set_brk:
239 	mm->brk = brk;
240 	populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
241 	up_write(&mm->mmap_sem);
242 	if (populate)
243 		mm_populate(oldbrk, newbrk - oldbrk);
244 	return brk;
245 
246 out:
247 	retval = mm->brk;
248 	up_write(&mm->mmap_sem);
249 	return retval;
250 }
251 
252 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
253 {
254 	unsigned long max, subtree_gap;
255 	max = vma->vm_start;
256 	if (vma->vm_prev)
257 		max -= vma->vm_prev->vm_end;
258 	if (vma->vm_rb.rb_left) {
259 		subtree_gap = rb_entry(vma->vm_rb.rb_left,
260 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
261 		if (subtree_gap > max)
262 			max = subtree_gap;
263 	}
264 	if (vma->vm_rb.rb_right) {
265 		subtree_gap = rb_entry(vma->vm_rb.rb_right,
266 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
267 		if (subtree_gap > max)
268 			max = subtree_gap;
269 	}
270 	return max;
271 }
272 
273 #ifdef CONFIG_DEBUG_VM_RB
274 static int browse_rb(struct mm_struct *mm)
275 {
276 	struct rb_root *root = &mm->mm_rb;
277 	int i = 0, j, bug = 0;
278 	struct rb_node *nd, *pn = NULL;
279 	unsigned long prev = 0, pend = 0;
280 
281 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
282 		struct vm_area_struct *vma;
283 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
284 		if (vma->vm_start < prev) {
285 			pr_emerg("vm_start %lx < prev %lx\n",
286 				  vma->vm_start, prev);
287 			bug = 1;
288 		}
289 		if (vma->vm_start < pend) {
290 			pr_emerg("vm_start %lx < pend %lx\n",
291 				  vma->vm_start, pend);
292 			bug = 1;
293 		}
294 		if (vma->vm_start > vma->vm_end) {
295 			pr_emerg("vm_start %lx > vm_end %lx\n",
296 				  vma->vm_start, vma->vm_end);
297 			bug = 1;
298 		}
299 		spin_lock(&mm->page_table_lock);
300 		if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
301 			pr_emerg("free gap %lx, correct %lx\n",
302 			       vma->rb_subtree_gap,
303 			       vma_compute_subtree_gap(vma));
304 			bug = 1;
305 		}
306 		spin_unlock(&mm->page_table_lock);
307 		i++;
308 		pn = nd;
309 		prev = vma->vm_start;
310 		pend = vma->vm_end;
311 	}
312 	j = 0;
313 	for (nd = pn; nd; nd = rb_prev(nd))
314 		j++;
315 	if (i != j) {
316 		pr_emerg("backwards %d, forwards %d\n", j, i);
317 		bug = 1;
318 	}
319 	return bug ? -1 : i;
320 }
321 
322 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
323 {
324 	struct rb_node *nd;
325 
326 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
327 		struct vm_area_struct *vma;
328 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
329 		VM_BUG_ON_VMA(vma != ignore &&
330 			vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
331 			vma);
332 	}
333 }
334 
335 static void validate_mm(struct mm_struct *mm)
336 {
337 	int bug = 0;
338 	int i = 0;
339 	unsigned long highest_address = 0;
340 	struct vm_area_struct *vma = mm->mmap;
341 
342 	while (vma) {
343 		struct anon_vma *anon_vma = vma->anon_vma;
344 		struct anon_vma_chain *avc;
345 
346 		if (anon_vma) {
347 			anon_vma_lock_read(anon_vma);
348 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
349 				anon_vma_interval_tree_verify(avc);
350 			anon_vma_unlock_read(anon_vma);
351 		}
352 
353 		highest_address = vma->vm_end;
354 		vma = vma->vm_next;
355 		i++;
356 	}
357 	if (i != mm->map_count) {
358 		pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
359 		bug = 1;
360 	}
361 	if (highest_address != mm->highest_vm_end) {
362 		pr_emerg("mm->highest_vm_end %lx, found %lx\n",
363 			  mm->highest_vm_end, highest_address);
364 		bug = 1;
365 	}
366 	i = browse_rb(mm);
367 	if (i != mm->map_count) {
368 		if (i != -1)
369 			pr_emerg("map_count %d rb %d\n", mm->map_count, i);
370 		bug = 1;
371 	}
372 	VM_BUG_ON_MM(bug, mm);
373 }
374 #else
375 #define validate_mm_rb(root, ignore) do { } while (0)
376 #define validate_mm(mm) do { } while (0)
377 #endif
378 
379 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
380 		     unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
381 
382 /*
383  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
384  * vma->vm_prev->vm_end values changed, without modifying the vma's position
385  * in the rbtree.
386  */
387 static void vma_gap_update(struct vm_area_struct *vma)
388 {
389 	/*
390 	 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
391 	 * function that does exacltly what we want.
392 	 */
393 	vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
394 }
395 
396 static inline void vma_rb_insert(struct vm_area_struct *vma,
397 				 struct rb_root *root)
398 {
399 	/* All rb_subtree_gap values must be consistent prior to insertion */
400 	validate_mm_rb(root, NULL);
401 
402 	rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
403 }
404 
405 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
406 {
407 	/*
408 	 * Note rb_erase_augmented is a fairly large inline function,
409 	 * so make sure we instantiate it only once with our desired
410 	 * augmented rbtree callbacks.
411 	 */
412 	rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
413 }
414 
415 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
416 						struct rb_root *root,
417 						struct vm_area_struct *ignore)
418 {
419 	/*
420 	 * All rb_subtree_gap values must be consistent prior to erase,
421 	 * with the possible exception of the "next" vma being erased if
422 	 * next->vm_start was reduced.
423 	 */
424 	validate_mm_rb(root, ignore);
425 
426 	__vma_rb_erase(vma, root);
427 }
428 
429 static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
430 					 struct rb_root *root)
431 {
432 	/*
433 	 * All rb_subtree_gap values must be consistent prior to erase,
434 	 * with the possible exception of the vma being erased.
435 	 */
436 	validate_mm_rb(root, vma);
437 
438 	__vma_rb_erase(vma, root);
439 }
440 
441 /*
442  * vma has some anon_vma assigned, and is already inserted on that
443  * anon_vma's interval trees.
444  *
445  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
446  * vma must be removed from the anon_vma's interval trees using
447  * anon_vma_interval_tree_pre_update_vma().
448  *
449  * After the update, the vma will be reinserted using
450  * anon_vma_interval_tree_post_update_vma().
451  *
452  * The entire update must be protected by exclusive mmap_sem and by
453  * the root anon_vma's mutex.
454  */
455 static inline void
456 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
457 {
458 	struct anon_vma_chain *avc;
459 
460 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
461 		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
462 }
463 
464 static inline void
465 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
466 {
467 	struct anon_vma_chain *avc;
468 
469 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
470 		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
471 }
472 
473 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
474 		unsigned long end, struct vm_area_struct **pprev,
475 		struct rb_node ***rb_link, struct rb_node **rb_parent)
476 {
477 	struct rb_node **__rb_link, *__rb_parent, *rb_prev;
478 
479 	__rb_link = &mm->mm_rb.rb_node;
480 	rb_prev = __rb_parent = NULL;
481 
482 	while (*__rb_link) {
483 		struct vm_area_struct *vma_tmp;
484 
485 		__rb_parent = *__rb_link;
486 		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
487 
488 		if (vma_tmp->vm_end > addr) {
489 			/* Fail if an existing vma overlaps the area */
490 			if (vma_tmp->vm_start < end)
491 				return -ENOMEM;
492 			__rb_link = &__rb_parent->rb_left;
493 		} else {
494 			rb_prev = __rb_parent;
495 			__rb_link = &__rb_parent->rb_right;
496 		}
497 	}
498 
499 	*pprev = NULL;
500 	if (rb_prev)
501 		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
502 	*rb_link = __rb_link;
503 	*rb_parent = __rb_parent;
504 	return 0;
505 }
506 
507 static unsigned long count_vma_pages_range(struct mm_struct *mm,
508 		unsigned long addr, unsigned long end)
509 {
510 	unsigned long nr_pages = 0;
511 	struct vm_area_struct *vma;
512 
513 	/* Find first overlaping mapping */
514 	vma = find_vma_intersection(mm, addr, end);
515 	if (!vma)
516 		return 0;
517 
518 	nr_pages = (min(end, vma->vm_end) -
519 		max(addr, vma->vm_start)) >> PAGE_SHIFT;
520 
521 	/* Iterate over the rest of the overlaps */
522 	for (vma = vma->vm_next; vma; vma = vma->vm_next) {
523 		unsigned long overlap_len;
524 
525 		if (vma->vm_start > end)
526 			break;
527 
528 		overlap_len = min(end, vma->vm_end) - vma->vm_start;
529 		nr_pages += overlap_len >> PAGE_SHIFT;
530 	}
531 
532 	return nr_pages;
533 }
534 
535 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
536 		struct rb_node **rb_link, struct rb_node *rb_parent)
537 {
538 	/* Update tracking information for the gap following the new vma. */
539 	if (vma->vm_next)
540 		vma_gap_update(vma->vm_next);
541 	else
542 		mm->highest_vm_end = vma->vm_end;
543 
544 	/*
545 	 * vma->vm_prev wasn't known when we followed the rbtree to find the
546 	 * correct insertion point for that vma. As a result, we could not
547 	 * update the vma vm_rb parents rb_subtree_gap values on the way down.
548 	 * So, we first insert the vma with a zero rb_subtree_gap value
549 	 * (to be consistent with what we did on the way down), and then
550 	 * immediately update the gap to the correct value. Finally we
551 	 * rebalance the rbtree after all augmented values have been set.
552 	 */
553 	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
554 	vma->rb_subtree_gap = 0;
555 	vma_gap_update(vma);
556 	vma_rb_insert(vma, &mm->mm_rb);
557 }
558 
559 static void __vma_link_file(struct vm_area_struct *vma)
560 {
561 	struct file *file;
562 
563 	file = vma->vm_file;
564 	if (file) {
565 		struct address_space *mapping = file->f_mapping;
566 
567 		if (vma->vm_flags & VM_DENYWRITE)
568 			atomic_dec(&file_inode(file)->i_writecount);
569 		if (vma->vm_flags & VM_SHARED)
570 			atomic_inc(&mapping->i_mmap_writable);
571 
572 		flush_dcache_mmap_lock(mapping);
573 		vma_interval_tree_insert(vma, &mapping->i_mmap);
574 		flush_dcache_mmap_unlock(mapping);
575 	}
576 }
577 
578 static void
579 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
580 	struct vm_area_struct *prev, struct rb_node **rb_link,
581 	struct rb_node *rb_parent)
582 {
583 	__vma_link_list(mm, vma, prev, rb_parent);
584 	__vma_link_rb(mm, vma, rb_link, rb_parent);
585 }
586 
587 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
588 			struct vm_area_struct *prev, struct rb_node **rb_link,
589 			struct rb_node *rb_parent)
590 {
591 	struct address_space *mapping = NULL;
592 
593 	if (vma->vm_file) {
594 		mapping = vma->vm_file->f_mapping;
595 		i_mmap_lock_write(mapping);
596 	}
597 
598 	__vma_link(mm, vma, prev, rb_link, rb_parent);
599 	__vma_link_file(vma);
600 
601 	if (mapping)
602 		i_mmap_unlock_write(mapping);
603 
604 	mm->map_count++;
605 	validate_mm(mm);
606 }
607 
608 /*
609  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
610  * mm's list and rbtree.  It has already been inserted into the interval tree.
611  */
612 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
613 {
614 	struct vm_area_struct *prev;
615 	struct rb_node **rb_link, *rb_parent;
616 
617 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
618 			   &prev, &rb_link, &rb_parent))
619 		BUG();
620 	__vma_link(mm, vma, prev, rb_link, rb_parent);
621 	mm->map_count++;
622 }
623 
624 static __always_inline void __vma_unlink_common(struct mm_struct *mm,
625 						struct vm_area_struct *vma,
626 						struct vm_area_struct *prev,
627 						bool has_prev,
628 						struct vm_area_struct *ignore)
629 {
630 	struct vm_area_struct *next;
631 
632 	vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
633 	next = vma->vm_next;
634 	if (has_prev)
635 		prev->vm_next = next;
636 	else {
637 		prev = vma->vm_prev;
638 		if (prev)
639 			prev->vm_next = next;
640 		else
641 			mm->mmap = next;
642 	}
643 	if (next)
644 		next->vm_prev = prev;
645 
646 	/* Kill the cache */
647 	vmacache_invalidate(mm);
648 }
649 
650 static inline void __vma_unlink_prev(struct mm_struct *mm,
651 				     struct vm_area_struct *vma,
652 				     struct vm_area_struct *prev)
653 {
654 	__vma_unlink_common(mm, vma, prev, true, vma);
655 }
656 
657 /*
658  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
659  * is already present in an i_mmap tree without adjusting the tree.
660  * The following helper function should be used when such adjustments
661  * are necessary.  The "insert" vma (if any) is to be inserted
662  * before we drop the necessary locks.
663  */
664 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
665 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
666 	struct vm_area_struct *expand)
667 {
668 	struct mm_struct *mm = vma->vm_mm;
669 	struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
670 	struct address_space *mapping = NULL;
671 	struct rb_root *root = NULL;
672 	struct anon_vma *anon_vma = NULL;
673 	struct file *file = vma->vm_file;
674 	bool start_changed = false, end_changed = false;
675 	long adjust_next = 0;
676 	int remove_next = 0;
677 
678 	if (next && !insert) {
679 		struct vm_area_struct *exporter = NULL, *importer = NULL;
680 
681 		if (end >= next->vm_end) {
682 			/*
683 			 * vma expands, overlapping all the next, and
684 			 * perhaps the one after too (mprotect case 6).
685 			 * The only other cases that gets here are
686 			 * case 1, case 7 and case 8.
687 			 */
688 			if (next == expand) {
689 				/*
690 				 * The only case where we don't expand "vma"
691 				 * and we expand "next" instead is case 8.
692 				 */
693 				VM_WARN_ON(end != next->vm_end);
694 				/*
695 				 * remove_next == 3 means we're
696 				 * removing "vma" and that to do so we
697 				 * swapped "vma" and "next".
698 				 */
699 				remove_next = 3;
700 				VM_WARN_ON(file != next->vm_file);
701 				swap(vma, next);
702 			} else {
703 				VM_WARN_ON(expand != vma);
704 				/*
705 				 * case 1, 6, 7, remove_next == 2 is case 6,
706 				 * remove_next == 1 is case 1 or 7.
707 				 */
708 				remove_next = 1 + (end > next->vm_end);
709 				VM_WARN_ON(remove_next == 2 &&
710 					   end != next->vm_next->vm_end);
711 				VM_WARN_ON(remove_next == 1 &&
712 					   end != next->vm_end);
713 				/* trim end to next, for case 6 first pass */
714 				end = next->vm_end;
715 			}
716 
717 			exporter = next;
718 			importer = vma;
719 
720 			/*
721 			 * If next doesn't have anon_vma, import from vma after
722 			 * next, if the vma overlaps with it.
723 			 */
724 			if (remove_next == 2 && !next->anon_vma)
725 				exporter = next->vm_next;
726 
727 		} else if (end > next->vm_start) {
728 			/*
729 			 * vma expands, overlapping part of the next:
730 			 * mprotect case 5 shifting the boundary up.
731 			 */
732 			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
733 			exporter = next;
734 			importer = vma;
735 			VM_WARN_ON(expand != importer);
736 		} else if (end < vma->vm_end) {
737 			/*
738 			 * vma shrinks, and !insert tells it's not
739 			 * split_vma inserting another: so it must be
740 			 * mprotect case 4 shifting the boundary down.
741 			 */
742 			adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
743 			exporter = vma;
744 			importer = next;
745 			VM_WARN_ON(expand != importer);
746 		}
747 
748 		/*
749 		 * Easily overlooked: when mprotect shifts the boundary,
750 		 * make sure the expanding vma has anon_vma set if the
751 		 * shrinking vma had, to cover any anon pages imported.
752 		 */
753 		if (exporter && exporter->anon_vma && !importer->anon_vma) {
754 			int error;
755 
756 			importer->anon_vma = exporter->anon_vma;
757 			error = anon_vma_clone(importer, exporter);
758 			if (error)
759 				return error;
760 		}
761 	}
762 again:
763 	vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
764 
765 	if (file) {
766 		mapping = file->f_mapping;
767 		root = &mapping->i_mmap;
768 		uprobe_munmap(vma, vma->vm_start, vma->vm_end);
769 
770 		if (adjust_next)
771 			uprobe_munmap(next, next->vm_start, next->vm_end);
772 
773 		i_mmap_lock_write(mapping);
774 		if (insert) {
775 			/*
776 			 * Put into interval tree now, so instantiated pages
777 			 * are visible to arm/parisc __flush_dcache_page
778 			 * throughout; but we cannot insert into address
779 			 * space until vma start or end is updated.
780 			 */
781 			__vma_link_file(insert);
782 		}
783 	}
784 
785 	anon_vma = vma->anon_vma;
786 	if (!anon_vma && adjust_next)
787 		anon_vma = next->anon_vma;
788 	if (anon_vma) {
789 		VM_WARN_ON(adjust_next && next->anon_vma &&
790 			   anon_vma != next->anon_vma);
791 		anon_vma_lock_write(anon_vma);
792 		anon_vma_interval_tree_pre_update_vma(vma);
793 		if (adjust_next)
794 			anon_vma_interval_tree_pre_update_vma(next);
795 	}
796 
797 	if (root) {
798 		flush_dcache_mmap_lock(mapping);
799 		vma_interval_tree_remove(vma, root);
800 		if (adjust_next)
801 			vma_interval_tree_remove(next, root);
802 	}
803 
804 	if (start != vma->vm_start) {
805 		vma->vm_start = start;
806 		start_changed = true;
807 	}
808 	if (end != vma->vm_end) {
809 		vma->vm_end = end;
810 		end_changed = true;
811 	}
812 	vma->vm_pgoff = pgoff;
813 	if (adjust_next) {
814 		next->vm_start += adjust_next << PAGE_SHIFT;
815 		next->vm_pgoff += adjust_next;
816 	}
817 
818 	if (root) {
819 		if (adjust_next)
820 			vma_interval_tree_insert(next, root);
821 		vma_interval_tree_insert(vma, root);
822 		flush_dcache_mmap_unlock(mapping);
823 	}
824 
825 	if (remove_next) {
826 		/*
827 		 * vma_merge has merged next into vma, and needs
828 		 * us to remove next before dropping the locks.
829 		 */
830 		if (remove_next != 3)
831 			__vma_unlink_prev(mm, next, vma);
832 		else
833 			/*
834 			 * vma is not before next if they've been
835 			 * swapped.
836 			 *
837 			 * pre-swap() next->vm_start was reduced so
838 			 * tell validate_mm_rb to ignore pre-swap()
839 			 * "next" (which is stored in post-swap()
840 			 * "vma").
841 			 */
842 			__vma_unlink_common(mm, next, NULL, false, vma);
843 		if (file)
844 			__remove_shared_vm_struct(next, file, mapping);
845 	} else if (insert) {
846 		/*
847 		 * split_vma has split insert from vma, and needs
848 		 * us to insert it before dropping the locks
849 		 * (it may either follow vma or precede it).
850 		 */
851 		__insert_vm_struct(mm, insert);
852 	} else {
853 		if (start_changed)
854 			vma_gap_update(vma);
855 		if (end_changed) {
856 			if (!next)
857 				mm->highest_vm_end = end;
858 			else if (!adjust_next)
859 				vma_gap_update(next);
860 		}
861 	}
862 
863 	if (anon_vma) {
864 		anon_vma_interval_tree_post_update_vma(vma);
865 		if (adjust_next)
866 			anon_vma_interval_tree_post_update_vma(next);
867 		anon_vma_unlock_write(anon_vma);
868 	}
869 	if (mapping)
870 		i_mmap_unlock_write(mapping);
871 
872 	if (root) {
873 		uprobe_mmap(vma);
874 
875 		if (adjust_next)
876 			uprobe_mmap(next);
877 	}
878 
879 	if (remove_next) {
880 		if (file) {
881 			uprobe_munmap(next, next->vm_start, next->vm_end);
882 			fput(file);
883 		}
884 		if (next->anon_vma)
885 			anon_vma_merge(vma, next);
886 		mm->map_count--;
887 		mpol_put(vma_policy(next));
888 		kmem_cache_free(vm_area_cachep, next);
889 		/*
890 		 * In mprotect's case 6 (see comments on vma_merge),
891 		 * we must remove another next too. It would clutter
892 		 * up the code too much to do both in one go.
893 		 */
894 		if (remove_next != 3) {
895 			/*
896 			 * If "next" was removed and vma->vm_end was
897 			 * expanded (up) over it, in turn
898 			 * "next->vm_prev->vm_end" changed and the
899 			 * "vma->vm_next" gap must be updated.
900 			 */
901 			next = vma->vm_next;
902 		} else {
903 			/*
904 			 * For the scope of the comment "next" and
905 			 * "vma" considered pre-swap(): if "vma" was
906 			 * removed, next->vm_start was expanded (down)
907 			 * over it and the "next" gap must be updated.
908 			 * Because of the swap() the post-swap() "vma"
909 			 * actually points to pre-swap() "next"
910 			 * (post-swap() "next" as opposed is now a
911 			 * dangling pointer).
912 			 */
913 			next = vma;
914 		}
915 		if (remove_next == 2) {
916 			remove_next = 1;
917 			end = next->vm_end;
918 			goto again;
919 		}
920 		else if (next)
921 			vma_gap_update(next);
922 		else {
923 			/*
924 			 * If remove_next == 2 we obviously can't
925 			 * reach this path.
926 			 *
927 			 * If remove_next == 3 we can't reach this
928 			 * path because pre-swap() next is always not
929 			 * NULL. pre-swap() "next" is not being
930 			 * removed and its next->vm_end is not altered
931 			 * (and furthermore "end" already matches
932 			 * next->vm_end in remove_next == 3).
933 			 *
934 			 * We reach this only in the remove_next == 1
935 			 * case if the "next" vma that was removed was
936 			 * the highest vma of the mm. However in such
937 			 * case next->vm_end == "end" and the extended
938 			 * "vma" has vma->vm_end == next->vm_end so
939 			 * mm->highest_vm_end doesn't need any update
940 			 * in remove_next == 1 case.
941 			 */
942 			VM_WARN_ON(mm->highest_vm_end != end);
943 		}
944 	}
945 	if (insert && file)
946 		uprobe_mmap(insert);
947 
948 	validate_mm(mm);
949 
950 	return 0;
951 }
952 
953 /*
954  * If the vma has a ->close operation then the driver probably needs to release
955  * per-vma resources, so we don't attempt to merge those.
956  */
957 static inline int is_mergeable_vma(struct vm_area_struct *vma,
958 				struct file *file, unsigned long vm_flags,
959 				struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
960 {
961 	/*
962 	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
963 	 * match the flags but dirty bit -- the caller should mark
964 	 * merged VMA as dirty. If dirty bit won't be excluded from
965 	 * comparison, we increase pressue on the memory system forcing
966 	 * the kernel to generate new VMAs when old one could be
967 	 * extended instead.
968 	 */
969 	if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
970 		return 0;
971 	if (vma->vm_file != file)
972 		return 0;
973 	if (vma->vm_ops && vma->vm_ops->close)
974 		return 0;
975 	if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
976 		return 0;
977 	return 1;
978 }
979 
980 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
981 					struct anon_vma *anon_vma2,
982 					struct vm_area_struct *vma)
983 {
984 	/*
985 	 * The list_is_singular() test is to avoid merging VMA cloned from
986 	 * parents. This can improve scalability caused by anon_vma lock.
987 	 */
988 	if ((!anon_vma1 || !anon_vma2) && (!vma ||
989 		list_is_singular(&vma->anon_vma_chain)))
990 		return 1;
991 	return anon_vma1 == anon_vma2;
992 }
993 
994 /*
995  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
996  * in front of (at a lower virtual address and file offset than) the vma.
997  *
998  * We cannot merge two vmas if they have differently assigned (non-NULL)
999  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1000  *
1001  * We don't check here for the merged mmap wrapping around the end of pagecache
1002  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
1003  * wrap, nor mmaps which cover the final page at index -1UL.
1004  */
1005 static int
1006 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1007 		     struct anon_vma *anon_vma, struct file *file,
1008 		     pgoff_t vm_pgoff,
1009 		     struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1010 {
1011 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1012 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1013 		if (vma->vm_pgoff == vm_pgoff)
1014 			return 1;
1015 	}
1016 	return 0;
1017 }
1018 
1019 /*
1020  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1021  * beyond (at a higher virtual address and file offset than) the vma.
1022  *
1023  * We cannot merge two vmas if they have differently assigned (non-NULL)
1024  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1025  */
1026 static int
1027 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1028 		    struct anon_vma *anon_vma, struct file *file,
1029 		    pgoff_t vm_pgoff,
1030 		    struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1031 {
1032 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1033 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1034 		pgoff_t vm_pglen;
1035 		vm_pglen = vma_pages(vma);
1036 		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1037 			return 1;
1038 	}
1039 	return 0;
1040 }
1041 
1042 /*
1043  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1044  * whether that can be merged with its predecessor or its successor.
1045  * Or both (it neatly fills a hole).
1046  *
1047  * In most cases - when called for mmap, brk or mremap - [addr,end) is
1048  * certain not to be mapped by the time vma_merge is called; but when
1049  * called for mprotect, it is certain to be already mapped (either at
1050  * an offset within prev, or at the start of next), and the flags of
1051  * this area are about to be changed to vm_flags - and the no-change
1052  * case has already been eliminated.
1053  *
1054  * The following mprotect cases have to be considered, where AAAA is
1055  * the area passed down from mprotect_fixup, never extending beyond one
1056  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1057  *
1058  *     AAAA             AAAA                AAAA          AAAA
1059  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
1060  *    cannot merge    might become    might become    might become
1061  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
1062  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
1063  *    mremap move:                                    PPPPXXXXXXXX 8
1064  *        AAAA
1065  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
1066  *    might become    case 1 below    case 2 below    case 3 below
1067  *
1068  * It is important for case 8 that the the vma NNNN overlapping the
1069  * region AAAA is never going to extended over XXXX. Instead XXXX must
1070  * be extended in region AAAA and NNNN must be removed. This way in
1071  * all cases where vma_merge succeeds, the moment vma_adjust drops the
1072  * rmap_locks, the properties of the merged vma will be already
1073  * correct for the whole merged range. Some of those properties like
1074  * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1075  * be correct for the whole merged range immediately after the
1076  * rmap_locks are released. Otherwise if XXXX would be removed and
1077  * NNNN would be extended over the XXXX range, remove_migration_ptes
1078  * or other rmap walkers (if working on addresses beyond the "end"
1079  * parameter) may establish ptes with the wrong permissions of NNNN
1080  * instead of the right permissions of XXXX.
1081  */
1082 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1083 			struct vm_area_struct *prev, unsigned long addr,
1084 			unsigned long end, unsigned long vm_flags,
1085 			struct anon_vma *anon_vma, struct file *file,
1086 			pgoff_t pgoff, struct mempolicy *policy,
1087 			struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1088 {
1089 	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1090 	struct vm_area_struct *area, *next;
1091 	int err;
1092 
1093 	/*
1094 	 * We later require that vma->vm_flags == vm_flags,
1095 	 * so this tests vma->vm_flags & VM_SPECIAL, too.
1096 	 */
1097 	if (vm_flags & VM_SPECIAL)
1098 		return NULL;
1099 
1100 	if (prev)
1101 		next = prev->vm_next;
1102 	else
1103 		next = mm->mmap;
1104 	area = next;
1105 	if (area && area->vm_end == end)		/* cases 6, 7, 8 */
1106 		next = next->vm_next;
1107 
1108 	/* verify some invariant that must be enforced by the caller */
1109 	VM_WARN_ON(prev && addr <= prev->vm_start);
1110 	VM_WARN_ON(area && end > area->vm_end);
1111 	VM_WARN_ON(addr >= end);
1112 
1113 	/*
1114 	 * Can it merge with the predecessor?
1115 	 */
1116 	if (prev && prev->vm_end == addr &&
1117 			mpol_equal(vma_policy(prev), policy) &&
1118 			can_vma_merge_after(prev, vm_flags,
1119 					    anon_vma, file, pgoff,
1120 					    vm_userfaultfd_ctx)) {
1121 		/*
1122 		 * OK, it can.  Can we now merge in the successor as well?
1123 		 */
1124 		if (next && end == next->vm_start &&
1125 				mpol_equal(policy, vma_policy(next)) &&
1126 				can_vma_merge_before(next, vm_flags,
1127 						     anon_vma, file,
1128 						     pgoff+pglen,
1129 						     vm_userfaultfd_ctx) &&
1130 				is_mergeable_anon_vma(prev->anon_vma,
1131 						      next->anon_vma, NULL)) {
1132 							/* cases 1, 6 */
1133 			err = __vma_adjust(prev, prev->vm_start,
1134 					 next->vm_end, prev->vm_pgoff, NULL,
1135 					 prev);
1136 		} else					/* cases 2, 5, 7 */
1137 			err = __vma_adjust(prev, prev->vm_start,
1138 					 end, prev->vm_pgoff, NULL, prev);
1139 		if (err)
1140 			return NULL;
1141 		khugepaged_enter_vma_merge(prev, vm_flags);
1142 		return prev;
1143 	}
1144 
1145 	/*
1146 	 * Can this new request be merged in front of next?
1147 	 */
1148 	if (next && end == next->vm_start &&
1149 			mpol_equal(policy, vma_policy(next)) &&
1150 			can_vma_merge_before(next, vm_flags,
1151 					     anon_vma, file, pgoff+pglen,
1152 					     vm_userfaultfd_ctx)) {
1153 		if (prev && addr < prev->vm_end)	/* case 4 */
1154 			err = __vma_adjust(prev, prev->vm_start,
1155 					 addr, prev->vm_pgoff, NULL, next);
1156 		else {					/* cases 3, 8 */
1157 			err = __vma_adjust(area, addr, next->vm_end,
1158 					 next->vm_pgoff - pglen, NULL, next);
1159 			/*
1160 			 * In case 3 area is already equal to next and
1161 			 * this is a noop, but in case 8 "area" has
1162 			 * been removed and next was expanded over it.
1163 			 */
1164 			area = next;
1165 		}
1166 		if (err)
1167 			return NULL;
1168 		khugepaged_enter_vma_merge(area, vm_flags);
1169 		return area;
1170 	}
1171 
1172 	return NULL;
1173 }
1174 
1175 /*
1176  * Rough compatbility check to quickly see if it's even worth looking
1177  * at sharing an anon_vma.
1178  *
1179  * They need to have the same vm_file, and the flags can only differ
1180  * in things that mprotect may change.
1181  *
1182  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1183  * we can merge the two vma's. For example, we refuse to merge a vma if
1184  * there is a vm_ops->close() function, because that indicates that the
1185  * driver is doing some kind of reference counting. But that doesn't
1186  * really matter for the anon_vma sharing case.
1187  */
1188 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1189 {
1190 	return a->vm_end == b->vm_start &&
1191 		mpol_equal(vma_policy(a), vma_policy(b)) &&
1192 		a->vm_file == b->vm_file &&
1193 		!((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1194 		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1195 }
1196 
1197 /*
1198  * Do some basic sanity checking to see if we can re-use the anon_vma
1199  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1200  * the same as 'old', the other will be the new one that is trying
1201  * to share the anon_vma.
1202  *
1203  * NOTE! This runs with mm_sem held for reading, so it is possible that
1204  * the anon_vma of 'old' is concurrently in the process of being set up
1205  * by another page fault trying to merge _that_. But that's ok: if it
1206  * is being set up, that automatically means that it will be a singleton
1207  * acceptable for merging, so we can do all of this optimistically. But
1208  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1209  *
1210  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1211  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1212  * is to return an anon_vma that is "complex" due to having gone through
1213  * a fork).
1214  *
1215  * We also make sure that the two vma's are compatible (adjacent,
1216  * and with the same memory policies). That's all stable, even with just
1217  * a read lock on the mm_sem.
1218  */
1219 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1220 {
1221 	if (anon_vma_compatible(a, b)) {
1222 		struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1223 
1224 		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1225 			return anon_vma;
1226 	}
1227 	return NULL;
1228 }
1229 
1230 /*
1231  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1232  * neighbouring vmas for a suitable anon_vma, before it goes off
1233  * to allocate a new anon_vma.  It checks because a repetitive
1234  * sequence of mprotects and faults may otherwise lead to distinct
1235  * anon_vmas being allocated, preventing vma merge in subsequent
1236  * mprotect.
1237  */
1238 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1239 {
1240 	struct anon_vma *anon_vma;
1241 	struct vm_area_struct *near;
1242 
1243 	near = vma->vm_next;
1244 	if (!near)
1245 		goto try_prev;
1246 
1247 	anon_vma = reusable_anon_vma(near, vma, near);
1248 	if (anon_vma)
1249 		return anon_vma;
1250 try_prev:
1251 	near = vma->vm_prev;
1252 	if (!near)
1253 		goto none;
1254 
1255 	anon_vma = reusable_anon_vma(near, near, vma);
1256 	if (anon_vma)
1257 		return anon_vma;
1258 none:
1259 	/*
1260 	 * There's no absolute need to look only at touching neighbours:
1261 	 * we could search further afield for "compatible" anon_vmas.
1262 	 * But it would probably just be a waste of time searching,
1263 	 * or lead to too many vmas hanging off the same anon_vma.
1264 	 * We're trying to allow mprotect remerging later on,
1265 	 * not trying to minimize memory used for anon_vmas.
1266 	 */
1267 	return NULL;
1268 }
1269 
1270 /*
1271  * If a hint addr is less than mmap_min_addr change hint to be as
1272  * low as possible but still greater than mmap_min_addr
1273  */
1274 static inline unsigned long round_hint_to_min(unsigned long hint)
1275 {
1276 	hint &= PAGE_MASK;
1277 	if (((void *)hint != NULL) &&
1278 	    (hint < mmap_min_addr))
1279 		return PAGE_ALIGN(mmap_min_addr);
1280 	return hint;
1281 }
1282 
1283 static inline int mlock_future_check(struct mm_struct *mm,
1284 				     unsigned long flags,
1285 				     unsigned long len)
1286 {
1287 	unsigned long locked, lock_limit;
1288 
1289 	/*  mlock MCL_FUTURE? */
1290 	if (flags & VM_LOCKED) {
1291 		locked = len >> PAGE_SHIFT;
1292 		locked += mm->locked_vm;
1293 		lock_limit = rlimit(RLIMIT_MEMLOCK);
1294 		lock_limit >>= PAGE_SHIFT;
1295 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1296 			return -EAGAIN;
1297 	}
1298 	return 0;
1299 }
1300 
1301 /*
1302  * The caller must hold down_write(&current->mm->mmap_sem).
1303  */
1304 unsigned long do_mmap(struct file *file, unsigned long addr,
1305 			unsigned long len, unsigned long prot,
1306 			unsigned long flags, vm_flags_t vm_flags,
1307 			unsigned long pgoff, unsigned long *populate)
1308 {
1309 	struct mm_struct *mm = current->mm;
1310 	int pkey = 0;
1311 
1312 	*populate = 0;
1313 
1314 	if (!len)
1315 		return -EINVAL;
1316 
1317 	/*
1318 	 * Does the application expect PROT_READ to imply PROT_EXEC?
1319 	 *
1320 	 * (the exception is when the underlying filesystem is noexec
1321 	 *  mounted, in which case we dont add PROT_EXEC.)
1322 	 */
1323 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1324 		if (!(file && path_noexec(&file->f_path)))
1325 			prot |= PROT_EXEC;
1326 
1327 	if (!(flags & MAP_FIXED))
1328 		addr = round_hint_to_min(addr);
1329 
1330 	/* Careful about overflows.. */
1331 	len = PAGE_ALIGN(len);
1332 	if (!len)
1333 		return -ENOMEM;
1334 
1335 	/* offset overflow? */
1336 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1337 		return -EOVERFLOW;
1338 
1339 	/* Too many mappings? */
1340 	if (mm->map_count > sysctl_max_map_count)
1341 		return -ENOMEM;
1342 
1343 	/* Obtain the address to map to. we verify (or select) it and ensure
1344 	 * that it represents a valid section of the address space.
1345 	 */
1346 	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1347 	if (offset_in_page(addr))
1348 		return addr;
1349 
1350 	if (prot == PROT_EXEC) {
1351 		pkey = execute_only_pkey(mm);
1352 		if (pkey < 0)
1353 			pkey = 0;
1354 	}
1355 
1356 	/* Do simple checking here so the lower-level routines won't have
1357 	 * to. we assume access permissions have been handled by the open
1358 	 * of the memory object, so we don't do any here.
1359 	 */
1360 	vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1361 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1362 
1363 	if (flags & MAP_LOCKED)
1364 		if (!can_do_mlock())
1365 			return -EPERM;
1366 
1367 	if (mlock_future_check(mm, vm_flags, len))
1368 		return -EAGAIN;
1369 
1370 	if (file) {
1371 		struct inode *inode = file_inode(file);
1372 
1373 		switch (flags & MAP_TYPE) {
1374 		case MAP_SHARED:
1375 			if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1376 				return -EACCES;
1377 
1378 			/*
1379 			 * Make sure we don't allow writing to an append-only
1380 			 * file..
1381 			 */
1382 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1383 				return -EACCES;
1384 
1385 			/*
1386 			 * Make sure there are no mandatory locks on the file.
1387 			 */
1388 			if (locks_verify_locked(file))
1389 				return -EAGAIN;
1390 
1391 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1392 			if (!(file->f_mode & FMODE_WRITE))
1393 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1394 
1395 			/* fall through */
1396 		case MAP_PRIVATE:
1397 			if (!(file->f_mode & FMODE_READ))
1398 				return -EACCES;
1399 			if (path_noexec(&file->f_path)) {
1400 				if (vm_flags & VM_EXEC)
1401 					return -EPERM;
1402 				vm_flags &= ~VM_MAYEXEC;
1403 			}
1404 
1405 			if (!file->f_op->mmap)
1406 				return -ENODEV;
1407 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1408 				return -EINVAL;
1409 			break;
1410 
1411 		default:
1412 			return -EINVAL;
1413 		}
1414 	} else {
1415 		switch (flags & MAP_TYPE) {
1416 		case MAP_SHARED:
1417 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1418 				return -EINVAL;
1419 			/*
1420 			 * Ignore pgoff.
1421 			 */
1422 			pgoff = 0;
1423 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1424 			break;
1425 		case MAP_PRIVATE:
1426 			/*
1427 			 * Set pgoff according to addr for anon_vma.
1428 			 */
1429 			pgoff = addr >> PAGE_SHIFT;
1430 			break;
1431 		default:
1432 			return -EINVAL;
1433 		}
1434 	}
1435 
1436 	/*
1437 	 * Set 'VM_NORESERVE' if we should not account for the
1438 	 * memory use of this mapping.
1439 	 */
1440 	if (flags & MAP_NORESERVE) {
1441 		/* We honor MAP_NORESERVE if allowed to overcommit */
1442 		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1443 			vm_flags |= VM_NORESERVE;
1444 
1445 		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1446 		if (file && is_file_hugepages(file))
1447 			vm_flags |= VM_NORESERVE;
1448 	}
1449 
1450 	addr = mmap_region(file, addr, len, vm_flags, pgoff);
1451 	if (!IS_ERR_VALUE(addr) &&
1452 	    ((vm_flags & VM_LOCKED) ||
1453 	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1454 		*populate = len;
1455 	return addr;
1456 }
1457 
1458 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1459 		unsigned long, prot, unsigned long, flags,
1460 		unsigned long, fd, unsigned long, pgoff)
1461 {
1462 	struct file *file = NULL;
1463 	unsigned long retval;
1464 
1465 	if (!(flags & MAP_ANONYMOUS)) {
1466 		audit_mmap_fd(fd, flags);
1467 		file = fget(fd);
1468 		if (!file)
1469 			return -EBADF;
1470 		if (is_file_hugepages(file))
1471 			len = ALIGN(len, huge_page_size(hstate_file(file)));
1472 		retval = -EINVAL;
1473 		if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1474 			goto out_fput;
1475 	} else if (flags & MAP_HUGETLB) {
1476 		struct user_struct *user = NULL;
1477 		struct hstate *hs;
1478 
1479 		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1480 		if (!hs)
1481 			return -EINVAL;
1482 
1483 		len = ALIGN(len, huge_page_size(hs));
1484 		/*
1485 		 * VM_NORESERVE is used because the reservations will be
1486 		 * taken when vm_ops->mmap() is called
1487 		 * A dummy user value is used because we are not locking
1488 		 * memory so no accounting is necessary
1489 		 */
1490 		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1491 				VM_NORESERVE,
1492 				&user, HUGETLB_ANONHUGE_INODE,
1493 				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1494 		if (IS_ERR(file))
1495 			return PTR_ERR(file);
1496 	}
1497 
1498 	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1499 
1500 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1501 out_fput:
1502 	if (file)
1503 		fput(file);
1504 	return retval;
1505 }
1506 
1507 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1508 struct mmap_arg_struct {
1509 	unsigned long addr;
1510 	unsigned long len;
1511 	unsigned long prot;
1512 	unsigned long flags;
1513 	unsigned long fd;
1514 	unsigned long offset;
1515 };
1516 
1517 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1518 {
1519 	struct mmap_arg_struct a;
1520 
1521 	if (copy_from_user(&a, arg, sizeof(a)))
1522 		return -EFAULT;
1523 	if (offset_in_page(a.offset))
1524 		return -EINVAL;
1525 
1526 	return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1527 			      a.offset >> PAGE_SHIFT);
1528 }
1529 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1530 
1531 /*
1532  * Some shared mappigns will want the pages marked read-only
1533  * to track write events. If so, we'll downgrade vm_page_prot
1534  * to the private version (using protection_map[] without the
1535  * VM_SHARED bit).
1536  */
1537 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1538 {
1539 	vm_flags_t vm_flags = vma->vm_flags;
1540 	const struct vm_operations_struct *vm_ops = vma->vm_ops;
1541 
1542 	/* If it was private or non-writable, the write bit is already clear */
1543 	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1544 		return 0;
1545 
1546 	/* The backer wishes to know when pages are first written to? */
1547 	if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1548 		return 1;
1549 
1550 	/* The open routine did something to the protections that pgprot_modify
1551 	 * won't preserve? */
1552 	if (pgprot_val(vm_page_prot) !=
1553 	    pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1554 		return 0;
1555 
1556 	/* Do we need to track softdirty? */
1557 	if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1558 		return 1;
1559 
1560 	/* Specialty mapping? */
1561 	if (vm_flags & VM_PFNMAP)
1562 		return 0;
1563 
1564 	/* Can the mapping track the dirty pages? */
1565 	return vma->vm_file && vma->vm_file->f_mapping &&
1566 		mapping_cap_account_dirty(vma->vm_file->f_mapping);
1567 }
1568 
1569 /*
1570  * We account for memory if it's a private writeable mapping,
1571  * not hugepages and VM_NORESERVE wasn't set.
1572  */
1573 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1574 {
1575 	/*
1576 	 * hugetlb has its own accounting separate from the core VM
1577 	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1578 	 */
1579 	if (file && is_file_hugepages(file))
1580 		return 0;
1581 
1582 	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1583 }
1584 
1585 unsigned long mmap_region(struct file *file, unsigned long addr,
1586 		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1587 {
1588 	struct mm_struct *mm = current->mm;
1589 	struct vm_area_struct *vma, *prev;
1590 	int error;
1591 	struct rb_node **rb_link, *rb_parent;
1592 	unsigned long charged = 0;
1593 
1594 	/* Check against address space limit. */
1595 	if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1596 		unsigned long nr_pages;
1597 
1598 		/*
1599 		 * MAP_FIXED may remove pages of mappings that intersects with
1600 		 * requested mapping. Account for the pages it would unmap.
1601 		 */
1602 		nr_pages = count_vma_pages_range(mm, addr, addr + len);
1603 
1604 		if (!may_expand_vm(mm, vm_flags,
1605 					(len >> PAGE_SHIFT) - nr_pages))
1606 			return -ENOMEM;
1607 	}
1608 
1609 	/* Clear old maps */
1610 	while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1611 			      &rb_parent)) {
1612 		if (do_munmap(mm, addr, len))
1613 			return -ENOMEM;
1614 	}
1615 
1616 	/*
1617 	 * Private writable mapping: check memory availability
1618 	 */
1619 	if (accountable_mapping(file, vm_flags)) {
1620 		charged = len >> PAGE_SHIFT;
1621 		if (security_vm_enough_memory_mm(mm, charged))
1622 			return -ENOMEM;
1623 		vm_flags |= VM_ACCOUNT;
1624 	}
1625 
1626 	/*
1627 	 * Can we just expand an old mapping?
1628 	 */
1629 	vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1630 			NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1631 	if (vma)
1632 		goto out;
1633 
1634 	/*
1635 	 * Determine the object being mapped and call the appropriate
1636 	 * specific mapper. the address has already been validated, but
1637 	 * not unmapped, but the maps are removed from the list.
1638 	 */
1639 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1640 	if (!vma) {
1641 		error = -ENOMEM;
1642 		goto unacct_error;
1643 	}
1644 
1645 	vma->vm_mm = mm;
1646 	vma->vm_start = addr;
1647 	vma->vm_end = addr + len;
1648 	vma->vm_flags = vm_flags;
1649 	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1650 	vma->vm_pgoff = pgoff;
1651 	INIT_LIST_HEAD(&vma->anon_vma_chain);
1652 
1653 	if (file) {
1654 		if (vm_flags & VM_DENYWRITE) {
1655 			error = deny_write_access(file);
1656 			if (error)
1657 				goto free_vma;
1658 		}
1659 		if (vm_flags & VM_SHARED) {
1660 			error = mapping_map_writable(file->f_mapping);
1661 			if (error)
1662 				goto allow_write_and_free_vma;
1663 		}
1664 
1665 		/* ->mmap() can change vma->vm_file, but must guarantee that
1666 		 * vma_link() below can deny write-access if VM_DENYWRITE is set
1667 		 * and map writably if VM_SHARED is set. This usually means the
1668 		 * new file must not have been exposed to user-space, yet.
1669 		 */
1670 		vma->vm_file = get_file(file);
1671 		error = file->f_op->mmap(file, vma);
1672 		if (error)
1673 			goto unmap_and_free_vma;
1674 
1675 		/* Can addr have changed??
1676 		 *
1677 		 * Answer: Yes, several device drivers can do it in their
1678 		 *         f_op->mmap method. -DaveM
1679 		 * Bug: If addr is changed, prev, rb_link, rb_parent should
1680 		 *      be updated for vma_link()
1681 		 */
1682 		WARN_ON_ONCE(addr != vma->vm_start);
1683 
1684 		addr = vma->vm_start;
1685 		vm_flags = vma->vm_flags;
1686 	} else if (vm_flags & VM_SHARED) {
1687 		error = shmem_zero_setup(vma);
1688 		if (error)
1689 			goto free_vma;
1690 	}
1691 
1692 	vma_link(mm, vma, prev, rb_link, rb_parent);
1693 	/* Once vma denies write, undo our temporary denial count */
1694 	if (file) {
1695 		if (vm_flags & VM_SHARED)
1696 			mapping_unmap_writable(file->f_mapping);
1697 		if (vm_flags & VM_DENYWRITE)
1698 			allow_write_access(file);
1699 	}
1700 	file = vma->vm_file;
1701 out:
1702 	perf_event_mmap(vma);
1703 
1704 	vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1705 	if (vm_flags & VM_LOCKED) {
1706 		if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1707 					vma == get_gate_vma(current->mm)))
1708 			mm->locked_vm += (len >> PAGE_SHIFT);
1709 		else
1710 			vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1711 	}
1712 
1713 	if (file)
1714 		uprobe_mmap(vma);
1715 
1716 	/*
1717 	 * New (or expanded) vma always get soft dirty status.
1718 	 * Otherwise user-space soft-dirty page tracker won't
1719 	 * be able to distinguish situation when vma area unmapped,
1720 	 * then new mapped in-place (which must be aimed as
1721 	 * a completely new data area).
1722 	 */
1723 	vma->vm_flags |= VM_SOFTDIRTY;
1724 
1725 	vma_set_page_prot(vma);
1726 
1727 	return addr;
1728 
1729 unmap_and_free_vma:
1730 	vma->vm_file = NULL;
1731 	fput(file);
1732 
1733 	/* Undo any partial mapping done by a device driver. */
1734 	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1735 	charged = 0;
1736 	if (vm_flags & VM_SHARED)
1737 		mapping_unmap_writable(file->f_mapping);
1738 allow_write_and_free_vma:
1739 	if (vm_flags & VM_DENYWRITE)
1740 		allow_write_access(file);
1741 free_vma:
1742 	kmem_cache_free(vm_area_cachep, vma);
1743 unacct_error:
1744 	if (charged)
1745 		vm_unacct_memory(charged);
1746 	return error;
1747 }
1748 
1749 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1750 {
1751 	/*
1752 	 * We implement the search by looking for an rbtree node that
1753 	 * immediately follows a suitable gap. That is,
1754 	 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1755 	 * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1756 	 * - gap_end - gap_start >= length
1757 	 */
1758 
1759 	struct mm_struct *mm = current->mm;
1760 	struct vm_area_struct *vma;
1761 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1762 
1763 	/* Adjust search length to account for worst case alignment overhead */
1764 	length = info->length + info->align_mask;
1765 	if (length < info->length)
1766 		return -ENOMEM;
1767 
1768 	/* Adjust search limits by the desired length */
1769 	if (info->high_limit < length)
1770 		return -ENOMEM;
1771 	high_limit = info->high_limit - length;
1772 
1773 	if (info->low_limit > high_limit)
1774 		return -ENOMEM;
1775 	low_limit = info->low_limit + length;
1776 
1777 	/* Check if rbtree root looks promising */
1778 	if (RB_EMPTY_ROOT(&mm->mm_rb))
1779 		goto check_highest;
1780 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1781 	if (vma->rb_subtree_gap < length)
1782 		goto check_highest;
1783 
1784 	while (true) {
1785 		/* Visit left subtree if it looks promising */
1786 		gap_end = vma->vm_start;
1787 		if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1788 			struct vm_area_struct *left =
1789 				rb_entry(vma->vm_rb.rb_left,
1790 					 struct vm_area_struct, vm_rb);
1791 			if (left->rb_subtree_gap >= length) {
1792 				vma = left;
1793 				continue;
1794 			}
1795 		}
1796 
1797 		gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1798 check_current:
1799 		/* Check if current node has a suitable gap */
1800 		if (gap_start > high_limit)
1801 			return -ENOMEM;
1802 		if (gap_end >= low_limit && gap_end - gap_start >= length)
1803 			goto found;
1804 
1805 		/* Visit right subtree if it looks promising */
1806 		if (vma->vm_rb.rb_right) {
1807 			struct vm_area_struct *right =
1808 				rb_entry(vma->vm_rb.rb_right,
1809 					 struct vm_area_struct, vm_rb);
1810 			if (right->rb_subtree_gap >= length) {
1811 				vma = right;
1812 				continue;
1813 			}
1814 		}
1815 
1816 		/* Go back up the rbtree to find next candidate node */
1817 		while (true) {
1818 			struct rb_node *prev = &vma->vm_rb;
1819 			if (!rb_parent(prev))
1820 				goto check_highest;
1821 			vma = rb_entry(rb_parent(prev),
1822 				       struct vm_area_struct, vm_rb);
1823 			if (prev == vma->vm_rb.rb_left) {
1824 				gap_start = vma->vm_prev->vm_end;
1825 				gap_end = vma->vm_start;
1826 				goto check_current;
1827 			}
1828 		}
1829 	}
1830 
1831 check_highest:
1832 	/* Check highest gap, which does not precede any rbtree node */
1833 	gap_start = mm->highest_vm_end;
1834 	gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1835 	if (gap_start > high_limit)
1836 		return -ENOMEM;
1837 
1838 found:
1839 	/* We found a suitable gap. Clip it with the original low_limit. */
1840 	if (gap_start < info->low_limit)
1841 		gap_start = info->low_limit;
1842 
1843 	/* Adjust gap address to the desired alignment */
1844 	gap_start += (info->align_offset - gap_start) & info->align_mask;
1845 
1846 	VM_BUG_ON(gap_start + info->length > info->high_limit);
1847 	VM_BUG_ON(gap_start + info->length > gap_end);
1848 	return gap_start;
1849 }
1850 
1851 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1852 {
1853 	struct mm_struct *mm = current->mm;
1854 	struct vm_area_struct *vma;
1855 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1856 
1857 	/* Adjust search length to account for worst case alignment overhead */
1858 	length = info->length + info->align_mask;
1859 	if (length < info->length)
1860 		return -ENOMEM;
1861 
1862 	/*
1863 	 * Adjust search limits by the desired length.
1864 	 * See implementation comment at top of unmapped_area().
1865 	 */
1866 	gap_end = info->high_limit;
1867 	if (gap_end < length)
1868 		return -ENOMEM;
1869 	high_limit = gap_end - length;
1870 
1871 	if (info->low_limit > high_limit)
1872 		return -ENOMEM;
1873 	low_limit = info->low_limit + length;
1874 
1875 	/* Check highest gap, which does not precede any rbtree node */
1876 	gap_start = mm->highest_vm_end;
1877 	if (gap_start <= high_limit)
1878 		goto found_highest;
1879 
1880 	/* Check if rbtree root looks promising */
1881 	if (RB_EMPTY_ROOT(&mm->mm_rb))
1882 		return -ENOMEM;
1883 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1884 	if (vma->rb_subtree_gap < length)
1885 		return -ENOMEM;
1886 
1887 	while (true) {
1888 		/* Visit right subtree if it looks promising */
1889 		gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1890 		if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1891 			struct vm_area_struct *right =
1892 				rb_entry(vma->vm_rb.rb_right,
1893 					 struct vm_area_struct, vm_rb);
1894 			if (right->rb_subtree_gap >= length) {
1895 				vma = right;
1896 				continue;
1897 			}
1898 		}
1899 
1900 check_current:
1901 		/* Check if current node has a suitable gap */
1902 		gap_end = vma->vm_start;
1903 		if (gap_end < low_limit)
1904 			return -ENOMEM;
1905 		if (gap_start <= high_limit && gap_end - gap_start >= length)
1906 			goto found;
1907 
1908 		/* Visit left subtree if it looks promising */
1909 		if (vma->vm_rb.rb_left) {
1910 			struct vm_area_struct *left =
1911 				rb_entry(vma->vm_rb.rb_left,
1912 					 struct vm_area_struct, vm_rb);
1913 			if (left->rb_subtree_gap >= length) {
1914 				vma = left;
1915 				continue;
1916 			}
1917 		}
1918 
1919 		/* Go back up the rbtree to find next candidate node */
1920 		while (true) {
1921 			struct rb_node *prev = &vma->vm_rb;
1922 			if (!rb_parent(prev))
1923 				return -ENOMEM;
1924 			vma = rb_entry(rb_parent(prev),
1925 				       struct vm_area_struct, vm_rb);
1926 			if (prev == vma->vm_rb.rb_right) {
1927 				gap_start = vma->vm_prev ?
1928 					vma->vm_prev->vm_end : 0;
1929 				goto check_current;
1930 			}
1931 		}
1932 	}
1933 
1934 found:
1935 	/* We found a suitable gap. Clip it with the original high_limit. */
1936 	if (gap_end > info->high_limit)
1937 		gap_end = info->high_limit;
1938 
1939 found_highest:
1940 	/* Compute highest gap address at the desired alignment */
1941 	gap_end -= info->length;
1942 	gap_end -= (gap_end - info->align_offset) & info->align_mask;
1943 
1944 	VM_BUG_ON(gap_end < info->low_limit);
1945 	VM_BUG_ON(gap_end < gap_start);
1946 	return gap_end;
1947 }
1948 
1949 /* Get an address range which is currently unmapped.
1950  * For shmat() with addr=0.
1951  *
1952  * Ugly calling convention alert:
1953  * Return value with the low bits set means error value,
1954  * ie
1955  *	if (ret & ~PAGE_MASK)
1956  *		error = ret;
1957  *
1958  * This function "knows" that -ENOMEM has the bits set.
1959  */
1960 #ifndef HAVE_ARCH_UNMAPPED_AREA
1961 unsigned long
1962 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1963 		unsigned long len, unsigned long pgoff, unsigned long flags)
1964 {
1965 	struct mm_struct *mm = current->mm;
1966 	struct vm_area_struct *vma;
1967 	struct vm_unmapped_area_info info;
1968 
1969 	if (len > TASK_SIZE - mmap_min_addr)
1970 		return -ENOMEM;
1971 
1972 	if (flags & MAP_FIXED)
1973 		return addr;
1974 
1975 	if (addr) {
1976 		addr = PAGE_ALIGN(addr);
1977 		vma = find_vma(mm, addr);
1978 		if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1979 		    (!vma || addr + len <= vma->vm_start))
1980 			return addr;
1981 	}
1982 
1983 	info.flags = 0;
1984 	info.length = len;
1985 	info.low_limit = mm->mmap_base;
1986 	info.high_limit = TASK_SIZE;
1987 	info.align_mask = 0;
1988 	return vm_unmapped_area(&info);
1989 }
1990 #endif
1991 
1992 /*
1993  * This mmap-allocator allocates new areas top-down from below the
1994  * stack's low limit (the base):
1995  */
1996 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1997 unsigned long
1998 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1999 			  const unsigned long len, const unsigned long pgoff,
2000 			  const unsigned long flags)
2001 {
2002 	struct vm_area_struct *vma;
2003 	struct mm_struct *mm = current->mm;
2004 	unsigned long addr = addr0;
2005 	struct vm_unmapped_area_info info;
2006 
2007 	/* requested length too big for entire address space */
2008 	if (len > TASK_SIZE - mmap_min_addr)
2009 		return -ENOMEM;
2010 
2011 	if (flags & MAP_FIXED)
2012 		return addr;
2013 
2014 	/* requesting a specific address */
2015 	if (addr) {
2016 		addr = PAGE_ALIGN(addr);
2017 		vma = find_vma(mm, addr);
2018 		if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
2019 				(!vma || addr + len <= vma->vm_start))
2020 			return addr;
2021 	}
2022 
2023 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2024 	info.length = len;
2025 	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2026 	info.high_limit = mm->mmap_base;
2027 	info.align_mask = 0;
2028 	addr = vm_unmapped_area(&info);
2029 
2030 	/*
2031 	 * A failed mmap() very likely causes application failure,
2032 	 * so fall back to the bottom-up function here. This scenario
2033 	 * can happen with large stack limits and large mmap()
2034 	 * allocations.
2035 	 */
2036 	if (offset_in_page(addr)) {
2037 		VM_BUG_ON(addr != -ENOMEM);
2038 		info.flags = 0;
2039 		info.low_limit = TASK_UNMAPPED_BASE;
2040 		info.high_limit = TASK_SIZE;
2041 		addr = vm_unmapped_area(&info);
2042 	}
2043 
2044 	return addr;
2045 }
2046 #endif
2047 
2048 unsigned long
2049 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2050 		unsigned long pgoff, unsigned long flags)
2051 {
2052 	unsigned long (*get_area)(struct file *, unsigned long,
2053 				  unsigned long, unsigned long, unsigned long);
2054 
2055 	unsigned long error = arch_mmap_check(addr, len, flags);
2056 	if (error)
2057 		return error;
2058 
2059 	/* Careful about overflows.. */
2060 	if (len > TASK_SIZE)
2061 		return -ENOMEM;
2062 
2063 	get_area = current->mm->get_unmapped_area;
2064 	if (file) {
2065 		if (file->f_op->get_unmapped_area)
2066 			get_area = file->f_op->get_unmapped_area;
2067 	} else if (flags & MAP_SHARED) {
2068 		/*
2069 		 * mmap_region() will call shmem_zero_setup() to create a file,
2070 		 * so use shmem's get_unmapped_area in case it can be huge.
2071 		 * do_mmap_pgoff() will clear pgoff, so match alignment.
2072 		 */
2073 		pgoff = 0;
2074 		get_area = shmem_get_unmapped_area;
2075 	}
2076 
2077 	addr = get_area(file, addr, len, pgoff, flags);
2078 	if (IS_ERR_VALUE(addr))
2079 		return addr;
2080 
2081 	if (addr > TASK_SIZE - len)
2082 		return -ENOMEM;
2083 	if (offset_in_page(addr))
2084 		return -EINVAL;
2085 
2086 	error = security_mmap_addr(addr);
2087 	return error ? error : addr;
2088 }
2089 
2090 EXPORT_SYMBOL(get_unmapped_area);
2091 
2092 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2093 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2094 {
2095 	struct rb_node *rb_node;
2096 	struct vm_area_struct *vma;
2097 
2098 	/* Check the cache first. */
2099 	vma = vmacache_find(mm, addr);
2100 	if (likely(vma))
2101 		return vma;
2102 
2103 	rb_node = mm->mm_rb.rb_node;
2104 
2105 	while (rb_node) {
2106 		struct vm_area_struct *tmp;
2107 
2108 		tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2109 
2110 		if (tmp->vm_end > addr) {
2111 			vma = tmp;
2112 			if (tmp->vm_start <= addr)
2113 				break;
2114 			rb_node = rb_node->rb_left;
2115 		} else
2116 			rb_node = rb_node->rb_right;
2117 	}
2118 
2119 	if (vma)
2120 		vmacache_update(addr, vma);
2121 	return vma;
2122 }
2123 
2124 EXPORT_SYMBOL(find_vma);
2125 
2126 /*
2127  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2128  */
2129 struct vm_area_struct *
2130 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2131 			struct vm_area_struct **pprev)
2132 {
2133 	struct vm_area_struct *vma;
2134 
2135 	vma = find_vma(mm, addr);
2136 	if (vma) {
2137 		*pprev = vma->vm_prev;
2138 	} else {
2139 		struct rb_node *rb_node = mm->mm_rb.rb_node;
2140 		*pprev = NULL;
2141 		while (rb_node) {
2142 			*pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2143 			rb_node = rb_node->rb_right;
2144 		}
2145 	}
2146 	return vma;
2147 }
2148 
2149 /*
2150  * Verify that the stack growth is acceptable and
2151  * update accounting. This is shared with both the
2152  * grow-up and grow-down cases.
2153  */
2154 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
2155 {
2156 	struct mm_struct *mm = vma->vm_mm;
2157 	struct rlimit *rlim = current->signal->rlim;
2158 	unsigned long new_start, actual_size;
2159 
2160 	/* address space limit tests */
2161 	if (!may_expand_vm(mm, vma->vm_flags, grow))
2162 		return -ENOMEM;
2163 
2164 	/* Stack limit test */
2165 	actual_size = size;
2166 	if (size && (vma->vm_flags & (VM_GROWSUP | VM_GROWSDOWN)))
2167 		actual_size -= PAGE_SIZE;
2168 	if (actual_size > READ_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2169 		return -ENOMEM;
2170 
2171 	/* mlock limit tests */
2172 	if (vma->vm_flags & VM_LOCKED) {
2173 		unsigned long locked;
2174 		unsigned long limit;
2175 		locked = mm->locked_vm + grow;
2176 		limit = READ_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2177 		limit >>= PAGE_SHIFT;
2178 		if (locked > limit && !capable(CAP_IPC_LOCK))
2179 			return -ENOMEM;
2180 	}
2181 
2182 	/* Check to ensure the stack will not grow into a hugetlb-only region */
2183 	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2184 			vma->vm_end - size;
2185 	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2186 		return -EFAULT;
2187 
2188 	/*
2189 	 * Overcommit..  This must be the final test, as it will
2190 	 * update security statistics.
2191 	 */
2192 	if (security_vm_enough_memory_mm(mm, grow))
2193 		return -ENOMEM;
2194 
2195 	return 0;
2196 }
2197 
2198 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2199 /*
2200  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2201  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2202  */
2203 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2204 {
2205 	struct mm_struct *mm = vma->vm_mm;
2206 	int error = 0;
2207 
2208 	if (!(vma->vm_flags & VM_GROWSUP))
2209 		return -EFAULT;
2210 
2211 	/* Guard against wrapping around to address 0. */
2212 	if (address < PAGE_ALIGN(address+4))
2213 		address = PAGE_ALIGN(address+4);
2214 	else
2215 		return -ENOMEM;
2216 
2217 	/* We must make sure the anon_vma is allocated. */
2218 	if (unlikely(anon_vma_prepare(vma)))
2219 		return -ENOMEM;
2220 
2221 	/*
2222 	 * vma->vm_start/vm_end cannot change under us because the caller
2223 	 * is required to hold the mmap_sem in read mode.  We need the
2224 	 * anon_vma lock to serialize against concurrent expand_stacks.
2225 	 */
2226 	anon_vma_lock_write(vma->anon_vma);
2227 
2228 	/* Somebody else might have raced and expanded it already */
2229 	if (address > vma->vm_end) {
2230 		unsigned long size, grow;
2231 
2232 		size = address - vma->vm_start;
2233 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
2234 
2235 		error = -ENOMEM;
2236 		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2237 			error = acct_stack_growth(vma, size, grow);
2238 			if (!error) {
2239 				/*
2240 				 * vma_gap_update() doesn't support concurrent
2241 				 * updates, but we only hold a shared mmap_sem
2242 				 * lock here, so we need to protect against
2243 				 * concurrent vma expansions.
2244 				 * anon_vma_lock_write() doesn't help here, as
2245 				 * we don't guarantee that all growable vmas
2246 				 * in a mm share the same root anon vma.
2247 				 * So, we reuse mm->page_table_lock to guard
2248 				 * against concurrent vma expansions.
2249 				 */
2250 				spin_lock(&mm->page_table_lock);
2251 				if (vma->vm_flags & VM_LOCKED)
2252 					mm->locked_vm += grow;
2253 				vm_stat_account(mm, vma->vm_flags, grow);
2254 				anon_vma_interval_tree_pre_update_vma(vma);
2255 				vma->vm_end = address;
2256 				anon_vma_interval_tree_post_update_vma(vma);
2257 				if (vma->vm_next)
2258 					vma_gap_update(vma->vm_next);
2259 				else
2260 					mm->highest_vm_end = address;
2261 				spin_unlock(&mm->page_table_lock);
2262 
2263 				perf_event_mmap(vma);
2264 			}
2265 		}
2266 	}
2267 	anon_vma_unlock_write(vma->anon_vma);
2268 	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2269 	validate_mm(mm);
2270 	return error;
2271 }
2272 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2273 
2274 /*
2275  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2276  */
2277 int expand_downwards(struct vm_area_struct *vma,
2278 				   unsigned long address)
2279 {
2280 	struct mm_struct *mm = vma->vm_mm;
2281 	int error;
2282 
2283 	address &= PAGE_MASK;
2284 	error = security_mmap_addr(address);
2285 	if (error)
2286 		return error;
2287 
2288 	/* We must make sure the anon_vma is allocated. */
2289 	if (unlikely(anon_vma_prepare(vma)))
2290 		return -ENOMEM;
2291 
2292 	/*
2293 	 * vma->vm_start/vm_end cannot change under us because the caller
2294 	 * is required to hold the mmap_sem in read mode.  We need the
2295 	 * anon_vma lock to serialize against concurrent expand_stacks.
2296 	 */
2297 	anon_vma_lock_write(vma->anon_vma);
2298 
2299 	/* Somebody else might have raced and expanded it already */
2300 	if (address < vma->vm_start) {
2301 		unsigned long size, grow;
2302 
2303 		size = vma->vm_end - address;
2304 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
2305 
2306 		error = -ENOMEM;
2307 		if (grow <= vma->vm_pgoff) {
2308 			error = acct_stack_growth(vma, size, grow);
2309 			if (!error) {
2310 				/*
2311 				 * vma_gap_update() doesn't support concurrent
2312 				 * updates, but we only hold a shared mmap_sem
2313 				 * lock here, so we need to protect against
2314 				 * concurrent vma expansions.
2315 				 * anon_vma_lock_write() doesn't help here, as
2316 				 * we don't guarantee that all growable vmas
2317 				 * in a mm share the same root anon vma.
2318 				 * So, we reuse mm->page_table_lock to guard
2319 				 * against concurrent vma expansions.
2320 				 */
2321 				spin_lock(&mm->page_table_lock);
2322 				if (vma->vm_flags & VM_LOCKED)
2323 					mm->locked_vm += grow;
2324 				vm_stat_account(mm, vma->vm_flags, grow);
2325 				anon_vma_interval_tree_pre_update_vma(vma);
2326 				vma->vm_start = address;
2327 				vma->vm_pgoff -= grow;
2328 				anon_vma_interval_tree_post_update_vma(vma);
2329 				vma_gap_update(vma);
2330 				spin_unlock(&mm->page_table_lock);
2331 
2332 				perf_event_mmap(vma);
2333 			}
2334 		}
2335 	}
2336 	anon_vma_unlock_write(vma->anon_vma);
2337 	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2338 	validate_mm(mm);
2339 	return error;
2340 }
2341 
2342 /*
2343  * Note how expand_stack() refuses to expand the stack all the way to
2344  * abut the next virtual mapping, *unless* that mapping itself is also
2345  * a stack mapping. We want to leave room for a guard page, after all
2346  * (the guard page itself is not added here, that is done by the
2347  * actual page faulting logic)
2348  *
2349  * This matches the behavior of the guard page logic (see mm/memory.c:
2350  * check_stack_guard_page()), which only allows the guard page to be
2351  * removed under these circumstances.
2352  */
2353 #ifdef CONFIG_STACK_GROWSUP
2354 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2355 {
2356 	struct vm_area_struct *next;
2357 
2358 	address &= PAGE_MASK;
2359 	next = vma->vm_next;
2360 	if (next && next->vm_start == address + PAGE_SIZE) {
2361 		if (!(next->vm_flags & VM_GROWSUP))
2362 			return -ENOMEM;
2363 	}
2364 	return expand_upwards(vma, address);
2365 }
2366 
2367 struct vm_area_struct *
2368 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2369 {
2370 	struct vm_area_struct *vma, *prev;
2371 
2372 	addr &= PAGE_MASK;
2373 	vma = find_vma_prev(mm, addr, &prev);
2374 	if (vma && (vma->vm_start <= addr))
2375 		return vma;
2376 	if (!prev || expand_stack(prev, addr))
2377 		return NULL;
2378 	if (prev->vm_flags & VM_LOCKED)
2379 		populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2380 	return prev;
2381 }
2382 #else
2383 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2384 {
2385 	struct vm_area_struct *prev;
2386 
2387 	address &= PAGE_MASK;
2388 	prev = vma->vm_prev;
2389 	if (prev && prev->vm_end == address) {
2390 		if (!(prev->vm_flags & VM_GROWSDOWN))
2391 			return -ENOMEM;
2392 	}
2393 	return expand_downwards(vma, address);
2394 }
2395 
2396 struct vm_area_struct *
2397 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2398 {
2399 	struct vm_area_struct *vma;
2400 	unsigned long start;
2401 
2402 	addr &= PAGE_MASK;
2403 	vma = find_vma(mm, addr);
2404 	if (!vma)
2405 		return NULL;
2406 	if (vma->vm_start <= addr)
2407 		return vma;
2408 	if (!(vma->vm_flags & VM_GROWSDOWN))
2409 		return NULL;
2410 	start = vma->vm_start;
2411 	if (expand_stack(vma, addr))
2412 		return NULL;
2413 	if (vma->vm_flags & VM_LOCKED)
2414 		populate_vma_page_range(vma, addr, start, NULL);
2415 	return vma;
2416 }
2417 #endif
2418 
2419 EXPORT_SYMBOL_GPL(find_extend_vma);
2420 
2421 /*
2422  * Ok - we have the memory areas we should free on the vma list,
2423  * so release them, and do the vma updates.
2424  *
2425  * Called with the mm semaphore held.
2426  */
2427 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2428 {
2429 	unsigned long nr_accounted = 0;
2430 
2431 	/* Update high watermark before we lower total_vm */
2432 	update_hiwater_vm(mm);
2433 	do {
2434 		long nrpages = vma_pages(vma);
2435 
2436 		if (vma->vm_flags & VM_ACCOUNT)
2437 			nr_accounted += nrpages;
2438 		vm_stat_account(mm, vma->vm_flags, -nrpages);
2439 		vma = remove_vma(vma);
2440 	} while (vma);
2441 	vm_unacct_memory(nr_accounted);
2442 	validate_mm(mm);
2443 }
2444 
2445 /*
2446  * Get rid of page table information in the indicated region.
2447  *
2448  * Called with the mm semaphore held.
2449  */
2450 static void unmap_region(struct mm_struct *mm,
2451 		struct vm_area_struct *vma, struct vm_area_struct *prev,
2452 		unsigned long start, unsigned long end)
2453 {
2454 	struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2455 	struct mmu_gather tlb;
2456 
2457 	lru_add_drain();
2458 	tlb_gather_mmu(&tlb, mm, start, end);
2459 	update_hiwater_rss(mm);
2460 	unmap_vmas(&tlb, vma, start, end);
2461 	free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2462 				 next ? next->vm_start : USER_PGTABLES_CEILING);
2463 	tlb_finish_mmu(&tlb, start, end);
2464 }
2465 
2466 /*
2467  * Create a list of vma's touched by the unmap, removing them from the mm's
2468  * vma list as we go..
2469  */
2470 static void
2471 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2472 	struct vm_area_struct *prev, unsigned long end)
2473 {
2474 	struct vm_area_struct **insertion_point;
2475 	struct vm_area_struct *tail_vma = NULL;
2476 
2477 	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2478 	vma->vm_prev = NULL;
2479 	do {
2480 		vma_rb_erase(vma, &mm->mm_rb);
2481 		mm->map_count--;
2482 		tail_vma = vma;
2483 		vma = vma->vm_next;
2484 	} while (vma && vma->vm_start < end);
2485 	*insertion_point = vma;
2486 	if (vma) {
2487 		vma->vm_prev = prev;
2488 		vma_gap_update(vma);
2489 	} else
2490 		mm->highest_vm_end = prev ? prev->vm_end : 0;
2491 	tail_vma->vm_next = NULL;
2492 
2493 	/* Kill the cache */
2494 	vmacache_invalidate(mm);
2495 }
2496 
2497 /*
2498  * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
2499  * munmap path where it doesn't make sense to fail.
2500  */
2501 static int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2502 	      unsigned long addr, int new_below)
2503 {
2504 	struct vm_area_struct *new;
2505 	int err;
2506 
2507 	if (is_vm_hugetlb_page(vma) && (addr &
2508 					~(huge_page_mask(hstate_vma(vma)))))
2509 		return -EINVAL;
2510 
2511 	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2512 	if (!new)
2513 		return -ENOMEM;
2514 
2515 	/* most fields are the same, copy all, and then fixup */
2516 	*new = *vma;
2517 
2518 	INIT_LIST_HEAD(&new->anon_vma_chain);
2519 
2520 	if (new_below)
2521 		new->vm_end = addr;
2522 	else {
2523 		new->vm_start = addr;
2524 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2525 	}
2526 
2527 	err = vma_dup_policy(vma, new);
2528 	if (err)
2529 		goto out_free_vma;
2530 
2531 	err = anon_vma_clone(new, vma);
2532 	if (err)
2533 		goto out_free_mpol;
2534 
2535 	if (new->vm_file)
2536 		get_file(new->vm_file);
2537 
2538 	if (new->vm_ops && new->vm_ops->open)
2539 		new->vm_ops->open(new);
2540 
2541 	if (new_below)
2542 		err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2543 			((addr - new->vm_start) >> PAGE_SHIFT), new);
2544 	else
2545 		err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2546 
2547 	/* Success. */
2548 	if (!err)
2549 		return 0;
2550 
2551 	/* Clean everything up if vma_adjust failed. */
2552 	if (new->vm_ops && new->vm_ops->close)
2553 		new->vm_ops->close(new);
2554 	if (new->vm_file)
2555 		fput(new->vm_file);
2556 	unlink_anon_vmas(new);
2557  out_free_mpol:
2558 	mpol_put(vma_policy(new));
2559  out_free_vma:
2560 	kmem_cache_free(vm_area_cachep, new);
2561 	return err;
2562 }
2563 
2564 /*
2565  * Split a vma into two pieces at address 'addr', a new vma is allocated
2566  * either for the first part or the tail.
2567  */
2568 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2569 	      unsigned long addr, int new_below)
2570 {
2571 	if (mm->map_count >= sysctl_max_map_count)
2572 		return -ENOMEM;
2573 
2574 	return __split_vma(mm, vma, addr, new_below);
2575 }
2576 
2577 /* Munmap is split into 2 main parts -- this part which finds
2578  * what needs doing, and the areas themselves, which do the
2579  * work.  This now handles partial unmappings.
2580  * Jeremy Fitzhardinge <jeremy@goop.org>
2581  */
2582 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2583 {
2584 	unsigned long end;
2585 	struct vm_area_struct *vma, *prev, *last;
2586 
2587 	if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2588 		return -EINVAL;
2589 
2590 	len = PAGE_ALIGN(len);
2591 	if (len == 0)
2592 		return -EINVAL;
2593 
2594 	/* Find the first overlapping VMA */
2595 	vma = find_vma(mm, start);
2596 	if (!vma)
2597 		return 0;
2598 	prev = vma->vm_prev;
2599 	/* we have  start < vma->vm_end  */
2600 
2601 	/* if it doesn't overlap, we have nothing.. */
2602 	end = start + len;
2603 	if (vma->vm_start >= end)
2604 		return 0;
2605 
2606 	/*
2607 	 * If we need to split any vma, do it now to save pain later.
2608 	 *
2609 	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2610 	 * unmapped vm_area_struct will remain in use: so lower split_vma
2611 	 * places tmp vma above, and higher split_vma places tmp vma below.
2612 	 */
2613 	if (start > vma->vm_start) {
2614 		int error;
2615 
2616 		/*
2617 		 * Make sure that map_count on return from munmap() will
2618 		 * not exceed its limit; but let map_count go just above
2619 		 * its limit temporarily, to help free resources as expected.
2620 		 */
2621 		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2622 			return -ENOMEM;
2623 
2624 		error = __split_vma(mm, vma, start, 0);
2625 		if (error)
2626 			return error;
2627 		prev = vma;
2628 	}
2629 
2630 	/* Does it split the last one? */
2631 	last = find_vma(mm, end);
2632 	if (last && end > last->vm_start) {
2633 		int error = __split_vma(mm, last, end, 1);
2634 		if (error)
2635 			return error;
2636 	}
2637 	vma = prev ? prev->vm_next : mm->mmap;
2638 
2639 	/*
2640 	 * unlock any mlock()ed ranges before detaching vmas
2641 	 */
2642 	if (mm->locked_vm) {
2643 		struct vm_area_struct *tmp = vma;
2644 		while (tmp && tmp->vm_start < end) {
2645 			if (tmp->vm_flags & VM_LOCKED) {
2646 				mm->locked_vm -= vma_pages(tmp);
2647 				munlock_vma_pages_all(tmp);
2648 			}
2649 			tmp = tmp->vm_next;
2650 		}
2651 	}
2652 
2653 	/*
2654 	 * Remove the vma's, and unmap the actual pages
2655 	 */
2656 	detach_vmas_to_be_unmapped(mm, vma, prev, end);
2657 	unmap_region(mm, vma, prev, start, end);
2658 
2659 	arch_unmap(mm, vma, start, end);
2660 
2661 	/* Fix up all other VM information */
2662 	remove_vma_list(mm, vma);
2663 
2664 	return 0;
2665 }
2666 
2667 int vm_munmap(unsigned long start, size_t len)
2668 {
2669 	int ret;
2670 	struct mm_struct *mm = current->mm;
2671 
2672 	if (down_write_killable(&mm->mmap_sem))
2673 		return -EINTR;
2674 
2675 	ret = do_munmap(mm, start, len);
2676 	up_write(&mm->mmap_sem);
2677 	return ret;
2678 }
2679 EXPORT_SYMBOL(vm_munmap);
2680 
2681 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2682 {
2683 	int ret;
2684 	struct mm_struct *mm = current->mm;
2685 
2686 	profile_munmap(addr);
2687 	if (down_write_killable(&mm->mmap_sem))
2688 		return -EINTR;
2689 	ret = do_munmap(mm, addr, len);
2690 	up_write(&mm->mmap_sem);
2691 	return ret;
2692 }
2693 
2694 
2695 /*
2696  * Emulation of deprecated remap_file_pages() syscall.
2697  */
2698 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2699 		unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2700 {
2701 
2702 	struct mm_struct *mm = current->mm;
2703 	struct vm_area_struct *vma;
2704 	unsigned long populate = 0;
2705 	unsigned long ret = -EINVAL;
2706 	struct file *file;
2707 
2708 	pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.txt.\n",
2709 		     current->comm, current->pid);
2710 
2711 	if (prot)
2712 		return ret;
2713 	start = start & PAGE_MASK;
2714 	size = size & PAGE_MASK;
2715 
2716 	if (start + size <= start)
2717 		return ret;
2718 
2719 	/* Does pgoff wrap? */
2720 	if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2721 		return ret;
2722 
2723 	if (down_write_killable(&mm->mmap_sem))
2724 		return -EINTR;
2725 
2726 	vma = find_vma(mm, start);
2727 
2728 	if (!vma || !(vma->vm_flags & VM_SHARED))
2729 		goto out;
2730 
2731 	if (start < vma->vm_start)
2732 		goto out;
2733 
2734 	if (start + size > vma->vm_end) {
2735 		struct vm_area_struct *next;
2736 
2737 		for (next = vma->vm_next; next; next = next->vm_next) {
2738 			/* hole between vmas ? */
2739 			if (next->vm_start != next->vm_prev->vm_end)
2740 				goto out;
2741 
2742 			if (next->vm_file != vma->vm_file)
2743 				goto out;
2744 
2745 			if (next->vm_flags != vma->vm_flags)
2746 				goto out;
2747 
2748 			if (start + size <= next->vm_end)
2749 				break;
2750 		}
2751 
2752 		if (!next)
2753 			goto out;
2754 	}
2755 
2756 	prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2757 	prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2758 	prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2759 
2760 	flags &= MAP_NONBLOCK;
2761 	flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2762 	if (vma->vm_flags & VM_LOCKED) {
2763 		struct vm_area_struct *tmp;
2764 		flags |= MAP_LOCKED;
2765 
2766 		/* drop PG_Mlocked flag for over-mapped range */
2767 		for (tmp = vma; tmp->vm_start >= start + size;
2768 				tmp = tmp->vm_next) {
2769 			/*
2770 			 * Split pmd and munlock page on the border
2771 			 * of the range.
2772 			 */
2773 			vma_adjust_trans_huge(tmp, start, start + size, 0);
2774 
2775 			munlock_vma_pages_range(tmp,
2776 					max(tmp->vm_start, start),
2777 					min(tmp->vm_end, start + size));
2778 		}
2779 	}
2780 
2781 	file = get_file(vma->vm_file);
2782 	ret = do_mmap_pgoff(vma->vm_file, start, size,
2783 			prot, flags, pgoff, &populate);
2784 	fput(file);
2785 out:
2786 	up_write(&mm->mmap_sem);
2787 	if (populate)
2788 		mm_populate(ret, populate);
2789 	if (!IS_ERR_VALUE(ret))
2790 		ret = 0;
2791 	return ret;
2792 }
2793 
2794 static inline void verify_mm_writelocked(struct mm_struct *mm)
2795 {
2796 #ifdef CONFIG_DEBUG_VM
2797 	if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2798 		WARN_ON(1);
2799 		up_read(&mm->mmap_sem);
2800 	}
2801 #endif
2802 }
2803 
2804 /*
2805  *  this is really a simplified "do_mmap".  it only handles
2806  *  anonymous maps.  eventually we may be able to do some
2807  *  brk-specific accounting here.
2808  */
2809 static int do_brk(unsigned long addr, unsigned long request)
2810 {
2811 	struct mm_struct *mm = current->mm;
2812 	struct vm_area_struct *vma, *prev;
2813 	unsigned long flags, len;
2814 	struct rb_node **rb_link, *rb_parent;
2815 	pgoff_t pgoff = addr >> PAGE_SHIFT;
2816 	int error;
2817 
2818 	len = PAGE_ALIGN(request);
2819 	if (len < request)
2820 		return -ENOMEM;
2821 	if (!len)
2822 		return 0;
2823 
2824 	flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2825 
2826 	error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2827 	if (offset_in_page(error))
2828 		return error;
2829 
2830 	error = mlock_future_check(mm, mm->def_flags, len);
2831 	if (error)
2832 		return error;
2833 
2834 	/*
2835 	 * mm->mmap_sem is required to protect against another thread
2836 	 * changing the mappings in case we sleep.
2837 	 */
2838 	verify_mm_writelocked(mm);
2839 
2840 	/*
2841 	 * Clear old maps.  this also does some error checking for us
2842 	 */
2843 	while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
2844 			      &rb_parent)) {
2845 		if (do_munmap(mm, addr, len))
2846 			return -ENOMEM;
2847 	}
2848 
2849 	/* Check against address space limits *after* clearing old maps... */
2850 	if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
2851 		return -ENOMEM;
2852 
2853 	if (mm->map_count > sysctl_max_map_count)
2854 		return -ENOMEM;
2855 
2856 	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2857 		return -ENOMEM;
2858 
2859 	/* Can we just expand an old private anonymous mapping? */
2860 	vma = vma_merge(mm, prev, addr, addr + len, flags,
2861 			NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
2862 	if (vma)
2863 		goto out;
2864 
2865 	/*
2866 	 * create a vma struct for an anonymous mapping
2867 	 */
2868 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2869 	if (!vma) {
2870 		vm_unacct_memory(len >> PAGE_SHIFT);
2871 		return -ENOMEM;
2872 	}
2873 
2874 	INIT_LIST_HEAD(&vma->anon_vma_chain);
2875 	vma->vm_mm = mm;
2876 	vma->vm_start = addr;
2877 	vma->vm_end = addr + len;
2878 	vma->vm_pgoff = pgoff;
2879 	vma->vm_flags = flags;
2880 	vma->vm_page_prot = vm_get_page_prot(flags);
2881 	vma_link(mm, vma, prev, rb_link, rb_parent);
2882 out:
2883 	perf_event_mmap(vma);
2884 	mm->total_vm += len >> PAGE_SHIFT;
2885 	mm->data_vm += len >> PAGE_SHIFT;
2886 	if (flags & VM_LOCKED)
2887 		mm->locked_vm += (len >> PAGE_SHIFT);
2888 	vma->vm_flags |= VM_SOFTDIRTY;
2889 	return 0;
2890 }
2891 
2892 int vm_brk(unsigned long addr, unsigned long len)
2893 {
2894 	struct mm_struct *mm = current->mm;
2895 	int ret;
2896 	bool populate;
2897 
2898 	if (down_write_killable(&mm->mmap_sem))
2899 		return -EINTR;
2900 
2901 	ret = do_brk(addr, len);
2902 	populate = ((mm->def_flags & VM_LOCKED) != 0);
2903 	up_write(&mm->mmap_sem);
2904 	if (populate && !ret)
2905 		mm_populate(addr, len);
2906 	return ret;
2907 }
2908 EXPORT_SYMBOL(vm_brk);
2909 
2910 /* Release all mmaps. */
2911 void exit_mmap(struct mm_struct *mm)
2912 {
2913 	struct mmu_gather tlb;
2914 	struct vm_area_struct *vma;
2915 	unsigned long nr_accounted = 0;
2916 
2917 	/* mm's last user has gone, and its about to be pulled down */
2918 	mmu_notifier_release(mm);
2919 
2920 	if (mm->locked_vm) {
2921 		vma = mm->mmap;
2922 		while (vma) {
2923 			if (vma->vm_flags & VM_LOCKED)
2924 				munlock_vma_pages_all(vma);
2925 			vma = vma->vm_next;
2926 		}
2927 	}
2928 
2929 	arch_exit_mmap(mm);
2930 
2931 	vma = mm->mmap;
2932 	if (!vma)	/* Can happen if dup_mmap() received an OOM */
2933 		return;
2934 
2935 	lru_add_drain();
2936 	flush_cache_mm(mm);
2937 	tlb_gather_mmu(&tlb, mm, 0, -1);
2938 	/* update_hiwater_rss(mm) here? but nobody should be looking */
2939 	/* Use -1 here to ensure all VMAs in the mm are unmapped */
2940 	unmap_vmas(&tlb, vma, 0, -1);
2941 
2942 	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2943 	tlb_finish_mmu(&tlb, 0, -1);
2944 
2945 	/*
2946 	 * Walk the list again, actually closing and freeing it,
2947 	 * with preemption enabled, without holding any MM locks.
2948 	 */
2949 	while (vma) {
2950 		if (vma->vm_flags & VM_ACCOUNT)
2951 			nr_accounted += vma_pages(vma);
2952 		vma = remove_vma(vma);
2953 	}
2954 	vm_unacct_memory(nr_accounted);
2955 }
2956 
2957 /* Insert vm structure into process list sorted by address
2958  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2959  * then i_mmap_rwsem is taken here.
2960  */
2961 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2962 {
2963 	struct vm_area_struct *prev;
2964 	struct rb_node **rb_link, *rb_parent;
2965 
2966 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2967 			   &prev, &rb_link, &rb_parent))
2968 		return -ENOMEM;
2969 	if ((vma->vm_flags & VM_ACCOUNT) &&
2970 	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
2971 		return -ENOMEM;
2972 
2973 	/*
2974 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
2975 	 * until its first write fault, when page's anon_vma and index
2976 	 * are set.  But now set the vm_pgoff it will almost certainly
2977 	 * end up with (unless mremap moves it elsewhere before that
2978 	 * first wfault), so /proc/pid/maps tells a consistent story.
2979 	 *
2980 	 * By setting it to reflect the virtual start address of the
2981 	 * vma, merges and splits can happen in a seamless way, just
2982 	 * using the existing file pgoff checks and manipulations.
2983 	 * Similarly in do_mmap_pgoff and in do_brk.
2984 	 */
2985 	if (vma_is_anonymous(vma)) {
2986 		BUG_ON(vma->anon_vma);
2987 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2988 	}
2989 
2990 	vma_link(mm, vma, prev, rb_link, rb_parent);
2991 	return 0;
2992 }
2993 
2994 /*
2995  * Copy the vma structure to a new location in the same mm,
2996  * prior to moving page table entries, to effect an mremap move.
2997  */
2998 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2999 	unsigned long addr, unsigned long len, pgoff_t pgoff,
3000 	bool *need_rmap_locks)
3001 {
3002 	struct vm_area_struct *vma = *vmap;
3003 	unsigned long vma_start = vma->vm_start;
3004 	struct mm_struct *mm = vma->vm_mm;
3005 	struct vm_area_struct *new_vma, *prev;
3006 	struct rb_node **rb_link, *rb_parent;
3007 	bool faulted_in_anon_vma = true;
3008 
3009 	/*
3010 	 * If anonymous vma has not yet been faulted, update new pgoff
3011 	 * to match new location, to increase its chance of merging.
3012 	 */
3013 	if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3014 		pgoff = addr >> PAGE_SHIFT;
3015 		faulted_in_anon_vma = false;
3016 	}
3017 
3018 	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3019 		return NULL;	/* should never get here */
3020 	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3021 			    vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3022 			    vma->vm_userfaultfd_ctx);
3023 	if (new_vma) {
3024 		/*
3025 		 * Source vma may have been merged into new_vma
3026 		 */
3027 		if (unlikely(vma_start >= new_vma->vm_start &&
3028 			     vma_start < new_vma->vm_end)) {
3029 			/*
3030 			 * The only way we can get a vma_merge with
3031 			 * self during an mremap is if the vma hasn't
3032 			 * been faulted in yet and we were allowed to
3033 			 * reset the dst vma->vm_pgoff to the
3034 			 * destination address of the mremap to allow
3035 			 * the merge to happen. mremap must change the
3036 			 * vm_pgoff linearity between src and dst vmas
3037 			 * (in turn preventing a vma_merge) to be
3038 			 * safe. It is only safe to keep the vm_pgoff
3039 			 * linear if there are no pages mapped yet.
3040 			 */
3041 			VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3042 			*vmap = vma = new_vma;
3043 		}
3044 		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3045 	} else {
3046 		new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
3047 		if (!new_vma)
3048 			goto out;
3049 		*new_vma = *vma;
3050 		new_vma->vm_start = addr;
3051 		new_vma->vm_end = addr + len;
3052 		new_vma->vm_pgoff = pgoff;
3053 		if (vma_dup_policy(vma, new_vma))
3054 			goto out_free_vma;
3055 		INIT_LIST_HEAD(&new_vma->anon_vma_chain);
3056 		if (anon_vma_clone(new_vma, vma))
3057 			goto out_free_mempol;
3058 		if (new_vma->vm_file)
3059 			get_file(new_vma->vm_file);
3060 		if (new_vma->vm_ops && new_vma->vm_ops->open)
3061 			new_vma->vm_ops->open(new_vma);
3062 		vma_link(mm, new_vma, prev, rb_link, rb_parent);
3063 		*need_rmap_locks = false;
3064 	}
3065 	return new_vma;
3066 
3067 out_free_mempol:
3068 	mpol_put(vma_policy(new_vma));
3069 out_free_vma:
3070 	kmem_cache_free(vm_area_cachep, new_vma);
3071 out:
3072 	return NULL;
3073 }
3074 
3075 /*
3076  * Return true if the calling process may expand its vm space by the passed
3077  * number of pages
3078  */
3079 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3080 {
3081 	if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3082 		return false;
3083 
3084 	if (is_data_mapping(flags) &&
3085 	    mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3086 		/* Workaround for Valgrind */
3087 		if (rlimit(RLIMIT_DATA) == 0 &&
3088 		    mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3089 			return true;
3090 		if (!ignore_rlimit_data) {
3091 			pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits or use boot option ignore_rlimit_data.\n",
3092 				     current->comm, current->pid,
3093 				     (mm->data_vm + npages) << PAGE_SHIFT,
3094 				     rlimit(RLIMIT_DATA));
3095 			return false;
3096 		}
3097 	}
3098 
3099 	return true;
3100 }
3101 
3102 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3103 {
3104 	mm->total_vm += npages;
3105 
3106 	if (is_exec_mapping(flags))
3107 		mm->exec_vm += npages;
3108 	else if (is_stack_mapping(flags))
3109 		mm->stack_vm += npages;
3110 	else if (is_data_mapping(flags))
3111 		mm->data_vm += npages;
3112 }
3113 
3114 static int special_mapping_fault(struct vm_area_struct *vma,
3115 				 struct vm_fault *vmf);
3116 
3117 /*
3118  * Having a close hook prevents vma merging regardless of flags.
3119  */
3120 static void special_mapping_close(struct vm_area_struct *vma)
3121 {
3122 }
3123 
3124 static const char *special_mapping_name(struct vm_area_struct *vma)
3125 {
3126 	return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3127 }
3128 
3129 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3130 {
3131 	struct vm_special_mapping *sm = new_vma->vm_private_data;
3132 
3133 	if (sm->mremap)
3134 		return sm->mremap(sm, new_vma);
3135 	return 0;
3136 }
3137 
3138 static const struct vm_operations_struct special_mapping_vmops = {
3139 	.close = special_mapping_close,
3140 	.fault = special_mapping_fault,
3141 	.mremap = special_mapping_mremap,
3142 	.name = special_mapping_name,
3143 };
3144 
3145 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3146 	.close = special_mapping_close,
3147 	.fault = special_mapping_fault,
3148 };
3149 
3150 static int special_mapping_fault(struct vm_area_struct *vma,
3151 				struct vm_fault *vmf)
3152 {
3153 	pgoff_t pgoff;
3154 	struct page **pages;
3155 
3156 	if (vma->vm_ops == &legacy_special_mapping_vmops) {
3157 		pages = vma->vm_private_data;
3158 	} else {
3159 		struct vm_special_mapping *sm = vma->vm_private_data;
3160 
3161 		if (sm->fault)
3162 			return sm->fault(sm, vma, vmf);
3163 
3164 		pages = sm->pages;
3165 	}
3166 
3167 	for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3168 		pgoff--;
3169 
3170 	if (*pages) {
3171 		struct page *page = *pages;
3172 		get_page(page);
3173 		vmf->page = page;
3174 		return 0;
3175 	}
3176 
3177 	return VM_FAULT_SIGBUS;
3178 }
3179 
3180 static struct vm_area_struct *__install_special_mapping(
3181 	struct mm_struct *mm,
3182 	unsigned long addr, unsigned long len,
3183 	unsigned long vm_flags, void *priv,
3184 	const struct vm_operations_struct *ops)
3185 {
3186 	int ret;
3187 	struct vm_area_struct *vma;
3188 
3189 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
3190 	if (unlikely(vma == NULL))
3191 		return ERR_PTR(-ENOMEM);
3192 
3193 	INIT_LIST_HEAD(&vma->anon_vma_chain);
3194 	vma->vm_mm = mm;
3195 	vma->vm_start = addr;
3196 	vma->vm_end = addr + len;
3197 
3198 	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3199 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3200 
3201 	vma->vm_ops = ops;
3202 	vma->vm_private_data = priv;
3203 
3204 	ret = insert_vm_struct(mm, vma);
3205 	if (ret)
3206 		goto out;
3207 
3208 	vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3209 
3210 	perf_event_mmap(vma);
3211 
3212 	return vma;
3213 
3214 out:
3215 	kmem_cache_free(vm_area_cachep, vma);
3216 	return ERR_PTR(ret);
3217 }
3218 
3219 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3220 	const struct vm_special_mapping *sm)
3221 {
3222 	return vma->vm_private_data == sm &&
3223 		(vma->vm_ops == &special_mapping_vmops ||
3224 		 vma->vm_ops == &legacy_special_mapping_vmops);
3225 }
3226 
3227 /*
3228  * Called with mm->mmap_sem held for writing.
3229  * Insert a new vma covering the given region, with the given flags.
3230  * Its pages are supplied by the given array of struct page *.
3231  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3232  * The region past the last page supplied will always produce SIGBUS.
3233  * The array pointer and the pages it points to are assumed to stay alive
3234  * for as long as this mapping might exist.
3235  */
3236 struct vm_area_struct *_install_special_mapping(
3237 	struct mm_struct *mm,
3238 	unsigned long addr, unsigned long len,
3239 	unsigned long vm_flags, const struct vm_special_mapping *spec)
3240 {
3241 	return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3242 					&special_mapping_vmops);
3243 }
3244 
3245 int install_special_mapping(struct mm_struct *mm,
3246 			    unsigned long addr, unsigned long len,
3247 			    unsigned long vm_flags, struct page **pages)
3248 {
3249 	struct vm_area_struct *vma = __install_special_mapping(
3250 		mm, addr, len, vm_flags, (void *)pages,
3251 		&legacy_special_mapping_vmops);
3252 
3253 	return PTR_ERR_OR_ZERO(vma);
3254 }
3255 
3256 static DEFINE_MUTEX(mm_all_locks_mutex);
3257 
3258 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3259 {
3260 	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3261 		/*
3262 		 * The LSB of head.next can't change from under us
3263 		 * because we hold the mm_all_locks_mutex.
3264 		 */
3265 		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3266 		/*
3267 		 * We can safely modify head.next after taking the
3268 		 * anon_vma->root->rwsem. If some other vma in this mm shares
3269 		 * the same anon_vma we won't take it again.
3270 		 *
3271 		 * No need of atomic instructions here, head.next
3272 		 * can't change from under us thanks to the
3273 		 * anon_vma->root->rwsem.
3274 		 */
3275 		if (__test_and_set_bit(0, (unsigned long *)
3276 				       &anon_vma->root->rb_root.rb_node))
3277 			BUG();
3278 	}
3279 }
3280 
3281 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3282 {
3283 	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3284 		/*
3285 		 * AS_MM_ALL_LOCKS can't change from under us because
3286 		 * we hold the mm_all_locks_mutex.
3287 		 *
3288 		 * Operations on ->flags have to be atomic because
3289 		 * even if AS_MM_ALL_LOCKS is stable thanks to the
3290 		 * mm_all_locks_mutex, there may be other cpus
3291 		 * changing other bitflags in parallel to us.
3292 		 */
3293 		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3294 			BUG();
3295 		down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3296 	}
3297 }
3298 
3299 /*
3300  * This operation locks against the VM for all pte/vma/mm related
3301  * operations that could ever happen on a certain mm. This includes
3302  * vmtruncate, try_to_unmap, and all page faults.
3303  *
3304  * The caller must take the mmap_sem in write mode before calling
3305  * mm_take_all_locks(). The caller isn't allowed to release the
3306  * mmap_sem until mm_drop_all_locks() returns.
3307  *
3308  * mmap_sem in write mode is required in order to block all operations
3309  * that could modify pagetables and free pages without need of
3310  * altering the vma layout. It's also needed in write mode to avoid new
3311  * anon_vmas to be associated with existing vmas.
3312  *
3313  * A single task can't take more than one mm_take_all_locks() in a row
3314  * or it would deadlock.
3315  *
3316  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3317  * mapping->flags avoid to take the same lock twice, if more than one
3318  * vma in this mm is backed by the same anon_vma or address_space.
3319  *
3320  * We take locks in following order, accordingly to comment at beginning
3321  * of mm/rmap.c:
3322  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3323  *     hugetlb mapping);
3324  *   - all i_mmap_rwsem locks;
3325  *   - all anon_vma->rwseml
3326  *
3327  * We can take all locks within these types randomly because the VM code
3328  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3329  * mm_all_locks_mutex.
3330  *
3331  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3332  * that may have to take thousand of locks.
3333  *
3334  * mm_take_all_locks() can fail if it's interrupted by signals.
3335  */
3336 int mm_take_all_locks(struct mm_struct *mm)
3337 {
3338 	struct vm_area_struct *vma;
3339 	struct anon_vma_chain *avc;
3340 
3341 	BUG_ON(down_read_trylock(&mm->mmap_sem));
3342 
3343 	mutex_lock(&mm_all_locks_mutex);
3344 
3345 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3346 		if (signal_pending(current))
3347 			goto out_unlock;
3348 		if (vma->vm_file && vma->vm_file->f_mapping &&
3349 				is_vm_hugetlb_page(vma))
3350 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3351 	}
3352 
3353 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3354 		if (signal_pending(current))
3355 			goto out_unlock;
3356 		if (vma->vm_file && vma->vm_file->f_mapping &&
3357 				!is_vm_hugetlb_page(vma))
3358 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3359 	}
3360 
3361 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3362 		if (signal_pending(current))
3363 			goto out_unlock;
3364 		if (vma->anon_vma)
3365 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3366 				vm_lock_anon_vma(mm, avc->anon_vma);
3367 	}
3368 
3369 	return 0;
3370 
3371 out_unlock:
3372 	mm_drop_all_locks(mm);
3373 	return -EINTR;
3374 }
3375 
3376 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3377 {
3378 	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3379 		/*
3380 		 * The LSB of head.next can't change to 0 from under
3381 		 * us because we hold the mm_all_locks_mutex.
3382 		 *
3383 		 * We must however clear the bitflag before unlocking
3384 		 * the vma so the users using the anon_vma->rb_root will
3385 		 * never see our bitflag.
3386 		 *
3387 		 * No need of atomic instructions here, head.next
3388 		 * can't change from under us until we release the
3389 		 * anon_vma->root->rwsem.
3390 		 */
3391 		if (!__test_and_clear_bit(0, (unsigned long *)
3392 					  &anon_vma->root->rb_root.rb_node))
3393 			BUG();
3394 		anon_vma_unlock_write(anon_vma);
3395 	}
3396 }
3397 
3398 static void vm_unlock_mapping(struct address_space *mapping)
3399 {
3400 	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3401 		/*
3402 		 * AS_MM_ALL_LOCKS can't change to 0 from under us
3403 		 * because we hold the mm_all_locks_mutex.
3404 		 */
3405 		i_mmap_unlock_write(mapping);
3406 		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3407 					&mapping->flags))
3408 			BUG();
3409 	}
3410 }
3411 
3412 /*
3413  * The mmap_sem cannot be released by the caller until
3414  * mm_drop_all_locks() returns.
3415  */
3416 void mm_drop_all_locks(struct mm_struct *mm)
3417 {
3418 	struct vm_area_struct *vma;
3419 	struct anon_vma_chain *avc;
3420 
3421 	BUG_ON(down_read_trylock(&mm->mmap_sem));
3422 	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3423 
3424 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3425 		if (vma->anon_vma)
3426 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3427 				vm_unlock_anon_vma(avc->anon_vma);
3428 		if (vma->vm_file && vma->vm_file->f_mapping)
3429 			vm_unlock_mapping(vma->vm_file->f_mapping);
3430 	}
3431 
3432 	mutex_unlock(&mm_all_locks_mutex);
3433 }
3434 
3435 /*
3436  * initialise the VMA slab
3437  */
3438 void __init mmap_init(void)
3439 {
3440 	int ret;
3441 
3442 	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3443 	VM_BUG_ON(ret);
3444 }
3445 
3446 /*
3447  * Initialise sysctl_user_reserve_kbytes.
3448  *
3449  * This is intended to prevent a user from starting a single memory hogging
3450  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3451  * mode.
3452  *
3453  * The default value is min(3% of free memory, 128MB)
3454  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3455  */
3456 static int init_user_reserve(void)
3457 {
3458 	unsigned long free_kbytes;
3459 
3460 	free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3461 
3462 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3463 	return 0;
3464 }
3465 subsys_initcall(init_user_reserve);
3466 
3467 /*
3468  * Initialise sysctl_admin_reserve_kbytes.
3469  *
3470  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3471  * to log in and kill a memory hogging process.
3472  *
3473  * Systems with more than 256MB will reserve 8MB, enough to recover
3474  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3475  * only reserve 3% of free pages by default.
3476  */
3477 static int init_admin_reserve(void)
3478 {
3479 	unsigned long free_kbytes;
3480 
3481 	free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3482 
3483 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3484 	return 0;
3485 }
3486 subsys_initcall(init_admin_reserve);
3487 
3488 /*
3489  * Reinititalise user and admin reserves if memory is added or removed.
3490  *
3491  * The default user reserve max is 128MB, and the default max for the
3492  * admin reserve is 8MB. These are usually, but not always, enough to
3493  * enable recovery from a memory hogging process using login/sshd, a shell,
3494  * and tools like top. It may make sense to increase or even disable the
3495  * reserve depending on the existence of swap or variations in the recovery
3496  * tools. So, the admin may have changed them.
3497  *
3498  * If memory is added and the reserves have been eliminated or increased above
3499  * the default max, then we'll trust the admin.
3500  *
3501  * If memory is removed and there isn't enough free memory, then we
3502  * need to reset the reserves.
3503  *
3504  * Otherwise keep the reserve set by the admin.
3505  */
3506 static int reserve_mem_notifier(struct notifier_block *nb,
3507 			     unsigned long action, void *data)
3508 {
3509 	unsigned long tmp, free_kbytes;
3510 
3511 	switch (action) {
3512 	case MEM_ONLINE:
3513 		/* Default max is 128MB. Leave alone if modified by operator. */
3514 		tmp = sysctl_user_reserve_kbytes;
3515 		if (0 < tmp && tmp < (1UL << 17))
3516 			init_user_reserve();
3517 
3518 		/* Default max is 8MB.  Leave alone if modified by operator. */
3519 		tmp = sysctl_admin_reserve_kbytes;
3520 		if (0 < tmp && tmp < (1UL << 13))
3521 			init_admin_reserve();
3522 
3523 		break;
3524 	case MEM_OFFLINE:
3525 		free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3526 
3527 		if (sysctl_user_reserve_kbytes > free_kbytes) {
3528 			init_user_reserve();
3529 			pr_info("vm.user_reserve_kbytes reset to %lu\n",
3530 				sysctl_user_reserve_kbytes);
3531 		}
3532 
3533 		if (sysctl_admin_reserve_kbytes > free_kbytes) {
3534 			init_admin_reserve();
3535 			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3536 				sysctl_admin_reserve_kbytes);
3537 		}
3538 		break;
3539 	default:
3540 		break;
3541 	}
3542 	return NOTIFY_OK;
3543 }
3544 
3545 static struct notifier_block reserve_mem_nb = {
3546 	.notifier_call = reserve_mem_notifier,
3547 };
3548 
3549 static int __meminit init_reserve_notifier(void)
3550 {
3551 	if (register_hotmemory_notifier(&reserve_mem_nb))
3552 		pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3553 
3554 	return 0;
3555 }
3556 subsys_initcall(init_reserve_notifier);
3557