xref: /linux/mm/mmap.c (revision f217d94fc632fece2a41030c2eebc4ed34a48b2a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/mmap.c
4  *
5  * Written by obz.
6  *
7  * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/mm_inline.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
47 #include <linux/oom.h>
48 #include <linux/sched/mm.h>
49 #include <linux/ksm.h>
50 
51 #include <linux/uaccess.h>
52 #include <asm/cacheflush.h>
53 #include <asm/tlb.h>
54 #include <asm/mmu_context.h>
55 
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/mmap.h>
58 
59 #include "internal.h"
60 
61 #ifndef arch_mmap_check
62 #define arch_mmap_check(addr, len, flags)	(0)
63 #endif
64 
65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
66 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
67 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
68 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
69 #endif
70 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
71 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
72 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
73 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
74 #endif
75 
76 static bool ignore_rlimit_data;
77 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
78 
79 static void unmap_region(struct mm_struct *mm, struct maple_tree *mt,
80 		struct vm_area_struct *vma, struct vm_area_struct *prev,
81 		struct vm_area_struct *next, unsigned long start,
82 		unsigned long end, bool mm_wr_locked);
83 
84 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
85 {
86 	return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
87 }
88 
89 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
90 void vma_set_page_prot(struct vm_area_struct *vma)
91 {
92 	unsigned long vm_flags = vma->vm_flags;
93 	pgprot_t vm_page_prot;
94 
95 	vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
96 	if (vma_wants_writenotify(vma, vm_page_prot)) {
97 		vm_flags &= ~VM_SHARED;
98 		vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
99 	}
100 	/* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
101 	WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
102 }
103 
104 /*
105  * Requires inode->i_mapping->i_mmap_rwsem
106  */
107 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
108 		struct file *file, struct address_space *mapping)
109 {
110 	if (vma->vm_flags & VM_SHARED)
111 		mapping_unmap_writable(mapping);
112 
113 	flush_dcache_mmap_lock(mapping);
114 	vma_interval_tree_remove(vma, &mapping->i_mmap);
115 	flush_dcache_mmap_unlock(mapping);
116 }
117 
118 /*
119  * Unlink a file-based vm structure from its interval tree, to hide
120  * vma from rmap and vmtruncate before freeing its page tables.
121  */
122 void unlink_file_vma(struct vm_area_struct *vma)
123 {
124 	struct file *file = vma->vm_file;
125 
126 	if (file) {
127 		struct address_space *mapping = file->f_mapping;
128 		i_mmap_lock_write(mapping);
129 		__remove_shared_vm_struct(vma, file, mapping);
130 		i_mmap_unlock_write(mapping);
131 	}
132 }
133 
134 /*
135  * Close a vm structure and free it.
136  */
137 static void remove_vma(struct vm_area_struct *vma, bool unreachable)
138 {
139 	might_sleep();
140 	if (vma->vm_ops && vma->vm_ops->close)
141 		vma->vm_ops->close(vma);
142 	if (vma->vm_file)
143 		fput(vma->vm_file);
144 	mpol_put(vma_policy(vma));
145 	if (unreachable)
146 		__vm_area_free(vma);
147 	else
148 		vm_area_free(vma);
149 }
150 
151 static inline struct vm_area_struct *vma_prev_limit(struct vma_iterator *vmi,
152 						    unsigned long min)
153 {
154 	return mas_prev(&vmi->mas, min);
155 }
156 
157 static inline int vma_iter_clear_gfp(struct vma_iterator *vmi,
158 			unsigned long start, unsigned long end, gfp_t gfp)
159 {
160 	vmi->mas.index = start;
161 	vmi->mas.last = end - 1;
162 	mas_store_gfp(&vmi->mas, NULL, gfp);
163 	if (unlikely(mas_is_err(&vmi->mas)))
164 		return -ENOMEM;
165 
166 	return 0;
167 }
168 
169 /*
170  * check_brk_limits() - Use platform specific check of range & verify mlock
171  * limits.
172  * @addr: The address to check
173  * @len: The size of increase.
174  *
175  * Return: 0 on success.
176  */
177 static int check_brk_limits(unsigned long addr, unsigned long len)
178 {
179 	unsigned long mapped_addr;
180 
181 	mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
182 	if (IS_ERR_VALUE(mapped_addr))
183 		return mapped_addr;
184 
185 	return mlock_future_check(current->mm, current->mm->def_flags, len);
186 }
187 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *brkvma,
188 		unsigned long addr, unsigned long request, unsigned long flags);
189 SYSCALL_DEFINE1(brk, unsigned long, brk)
190 {
191 	unsigned long newbrk, oldbrk, origbrk;
192 	struct mm_struct *mm = current->mm;
193 	struct vm_area_struct *brkvma, *next = NULL;
194 	unsigned long min_brk;
195 	bool populate;
196 	bool downgraded = false;
197 	LIST_HEAD(uf);
198 	struct vma_iterator vmi;
199 
200 	if (mmap_write_lock_killable(mm))
201 		return -EINTR;
202 
203 	origbrk = mm->brk;
204 
205 #ifdef CONFIG_COMPAT_BRK
206 	/*
207 	 * CONFIG_COMPAT_BRK can still be overridden by setting
208 	 * randomize_va_space to 2, which will still cause mm->start_brk
209 	 * to be arbitrarily shifted
210 	 */
211 	if (current->brk_randomized)
212 		min_brk = mm->start_brk;
213 	else
214 		min_brk = mm->end_data;
215 #else
216 	min_brk = mm->start_brk;
217 #endif
218 	if (brk < min_brk)
219 		goto out;
220 
221 	/*
222 	 * Check against rlimit here. If this check is done later after the test
223 	 * of oldbrk with newbrk then it can escape the test and let the data
224 	 * segment grow beyond its set limit the in case where the limit is
225 	 * not page aligned -Ram Gupta
226 	 */
227 	if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
228 			      mm->end_data, mm->start_data))
229 		goto out;
230 
231 	newbrk = PAGE_ALIGN(brk);
232 	oldbrk = PAGE_ALIGN(mm->brk);
233 	if (oldbrk == newbrk) {
234 		mm->brk = brk;
235 		goto success;
236 	}
237 
238 	/*
239 	 * Always allow shrinking brk.
240 	 * do_vma_munmap() may downgrade mmap_lock to read.
241 	 */
242 	if (brk <= mm->brk) {
243 		int ret;
244 
245 		/* Search one past newbrk */
246 		vma_iter_init(&vmi, mm, newbrk);
247 		brkvma = vma_find(&vmi, oldbrk);
248 		if (!brkvma || brkvma->vm_start >= oldbrk)
249 			goto out; /* mapping intersects with an existing non-brk vma. */
250 		/*
251 		 * mm->brk must be protected by write mmap_lock.
252 		 * do_vma_munmap() may downgrade the lock,  so update it
253 		 * before calling do_vma_munmap().
254 		 */
255 		mm->brk = brk;
256 		ret = do_vma_munmap(&vmi, brkvma, newbrk, oldbrk, &uf, true);
257 		if (ret == 1)  {
258 			downgraded = true;
259 			goto success;
260 		} else if (!ret)
261 			goto success;
262 
263 		mm->brk = origbrk;
264 		goto out;
265 	}
266 
267 	if (check_brk_limits(oldbrk, newbrk - oldbrk))
268 		goto out;
269 
270 	/*
271 	 * Only check if the next VMA is within the stack_guard_gap of the
272 	 * expansion area
273 	 */
274 	vma_iter_init(&vmi, mm, oldbrk);
275 	next = vma_find(&vmi, newbrk + PAGE_SIZE + stack_guard_gap);
276 	if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
277 		goto out;
278 
279 	brkvma = vma_prev_limit(&vmi, mm->start_brk);
280 	/* Ok, looks good - let it rip. */
281 	if (do_brk_flags(&vmi, brkvma, oldbrk, newbrk - oldbrk, 0) < 0)
282 		goto out;
283 
284 	mm->brk = brk;
285 
286 success:
287 	populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
288 	if (downgraded)
289 		mmap_read_unlock(mm);
290 	else
291 		mmap_write_unlock(mm);
292 	userfaultfd_unmap_complete(mm, &uf);
293 	if (populate)
294 		mm_populate(oldbrk, newbrk - oldbrk);
295 	return brk;
296 
297 out:
298 	mmap_write_unlock(mm);
299 	return origbrk;
300 }
301 
302 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
303 extern void mt_validate(struct maple_tree *mt);
304 extern void mt_dump(const struct maple_tree *mt);
305 
306 /* Validate the maple tree */
307 static void validate_mm_mt(struct mm_struct *mm)
308 {
309 	struct maple_tree *mt = &mm->mm_mt;
310 	struct vm_area_struct *vma_mt;
311 
312 	MA_STATE(mas, mt, 0, 0);
313 
314 	mt_validate(&mm->mm_mt);
315 	mas_for_each(&mas, vma_mt, ULONG_MAX) {
316 		if ((vma_mt->vm_start != mas.index) ||
317 		    (vma_mt->vm_end - 1 != mas.last)) {
318 			pr_emerg("issue in %s\n", current->comm);
319 			dump_stack();
320 			dump_vma(vma_mt);
321 			pr_emerg("mt piv: %p %lu - %lu\n", vma_mt,
322 				 mas.index, mas.last);
323 			pr_emerg("mt vma: %p %lu - %lu\n", vma_mt,
324 				 vma_mt->vm_start, vma_mt->vm_end);
325 
326 			mt_dump(mas.tree);
327 			if (vma_mt->vm_end != mas.last + 1) {
328 				pr_err("vma: %p vma_mt %lu-%lu\tmt %lu-%lu\n",
329 						mm, vma_mt->vm_start, vma_mt->vm_end,
330 						mas.index, mas.last);
331 				mt_dump(mas.tree);
332 			}
333 			VM_BUG_ON_MM(vma_mt->vm_end != mas.last + 1, mm);
334 			if (vma_mt->vm_start != mas.index) {
335 				pr_err("vma: %p vma_mt %p %lu - %lu doesn't match\n",
336 						mm, vma_mt, vma_mt->vm_start, vma_mt->vm_end);
337 				mt_dump(mas.tree);
338 			}
339 			VM_BUG_ON_MM(vma_mt->vm_start != mas.index, mm);
340 		}
341 	}
342 }
343 
344 static void validate_mm(struct mm_struct *mm)
345 {
346 	int bug = 0;
347 	int i = 0;
348 	struct vm_area_struct *vma;
349 	MA_STATE(mas, &mm->mm_mt, 0, 0);
350 
351 	validate_mm_mt(mm);
352 
353 	mas_for_each(&mas, vma, ULONG_MAX) {
354 #ifdef CONFIG_DEBUG_VM_RB
355 		struct anon_vma *anon_vma = vma->anon_vma;
356 		struct anon_vma_chain *avc;
357 
358 		if (anon_vma) {
359 			anon_vma_lock_read(anon_vma);
360 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
361 				anon_vma_interval_tree_verify(avc);
362 			anon_vma_unlock_read(anon_vma);
363 		}
364 #endif
365 		i++;
366 	}
367 	if (i != mm->map_count) {
368 		pr_emerg("map_count %d mas_for_each %d\n", mm->map_count, i);
369 		bug = 1;
370 	}
371 	VM_BUG_ON_MM(bug, mm);
372 }
373 
374 #else /* !CONFIG_DEBUG_VM_MAPLE_TREE */
375 #define validate_mm_mt(root) do { } while (0)
376 #define validate_mm(mm) do { } while (0)
377 #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */
378 
379 /*
380  * vma has some anon_vma assigned, and is already inserted on that
381  * anon_vma's interval trees.
382  *
383  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
384  * vma must be removed from the anon_vma's interval trees using
385  * anon_vma_interval_tree_pre_update_vma().
386  *
387  * After the update, the vma will be reinserted using
388  * anon_vma_interval_tree_post_update_vma().
389  *
390  * The entire update must be protected by exclusive mmap_lock and by
391  * the root anon_vma's mutex.
392  */
393 static inline void
394 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
395 {
396 	struct anon_vma_chain *avc;
397 
398 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
399 		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
400 }
401 
402 static inline void
403 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
404 {
405 	struct anon_vma_chain *avc;
406 
407 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
408 		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
409 }
410 
411 static unsigned long count_vma_pages_range(struct mm_struct *mm,
412 		unsigned long addr, unsigned long end)
413 {
414 	VMA_ITERATOR(vmi, mm, addr);
415 	struct vm_area_struct *vma;
416 	unsigned long nr_pages = 0;
417 
418 	for_each_vma_range(vmi, vma, end) {
419 		unsigned long vm_start = max(addr, vma->vm_start);
420 		unsigned long vm_end = min(end, vma->vm_end);
421 
422 		nr_pages += PHYS_PFN(vm_end - vm_start);
423 	}
424 
425 	return nr_pages;
426 }
427 
428 static void __vma_link_file(struct vm_area_struct *vma,
429 			    struct address_space *mapping)
430 {
431 	if (vma->vm_flags & VM_SHARED)
432 		mapping_allow_writable(mapping);
433 
434 	flush_dcache_mmap_lock(mapping);
435 	vma_interval_tree_insert(vma, &mapping->i_mmap);
436 	flush_dcache_mmap_unlock(mapping);
437 }
438 
439 static int vma_link(struct mm_struct *mm, struct vm_area_struct *vma)
440 {
441 	VMA_ITERATOR(vmi, mm, 0);
442 	struct address_space *mapping = NULL;
443 
444 	if (vma_iter_prealloc(&vmi))
445 		return -ENOMEM;
446 
447 	if (vma->vm_file) {
448 		mapping = vma->vm_file->f_mapping;
449 		i_mmap_lock_write(mapping);
450 	}
451 
452 	vma_iter_store(&vmi, vma);
453 
454 	if (mapping) {
455 		__vma_link_file(vma, mapping);
456 		i_mmap_unlock_write(mapping);
457 	}
458 
459 	mm->map_count++;
460 	validate_mm(mm);
461 	return 0;
462 }
463 
464 /*
465  * init_multi_vma_prep() - Initializer for struct vma_prepare
466  * @vp: The vma_prepare struct
467  * @vma: The vma that will be altered once locked
468  * @next: The next vma if it is to be adjusted
469  * @remove: The first vma to be removed
470  * @remove2: The second vma to be removed
471  */
472 static inline void init_multi_vma_prep(struct vma_prepare *vp,
473 		struct vm_area_struct *vma, struct vm_area_struct *next,
474 		struct vm_area_struct *remove, struct vm_area_struct *remove2)
475 {
476 	memset(vp, 0, sizeof(struct vma_prepare));
477 	vp->vma = vma;
478 	vp->anon_vma = vma->anon_vma;
479 	vp->remove = remove;
480 	vp->remove2 = remove2;
481 	vp->adj_next = next;
482 	if (!vp->anon_vma && next)
483 		vp->anon_vma = next->anon_vma;
484 
485 	vp->file = vma->vm_file;
486 	if (vp->file)
487 		vp->mapping = vma->vm_file->f_mapping;
488 
489 }
490 
491 /*
492  * init_vma_prep() - Initializer wrapper for vma_prepare struct
493  * @vp: The vma_prepare struct
494  * @vma: The vma that will be altered once locked
495  */
496 static inline void init_vma_prep(struct vma_prepare *vp,
497 				 struct vm_area_struct *vma)
498 {
499 	init_multi_vma_prep(vp, vma, NULL, NULL, NULL);
500 }
501 
502 
503 /*
504  * vma_prepare() - Helper function for handling locking VMAs prior to altering
505  * @vp: The initialized vma_prepare struct
506  */
507 static inline void vma_prepare(struct vma_prepare *vp)
508 {
509 	vma_start_write(vp->vma);
510 	if (vp->adj_next)
511 		vma_start_write(vp->adj_next);
512 	/* vp->insert is always a newly created VMA, no need for locking */
513 	if (vp->remove)
514 		vma_start_write(vp->remove);
515 	if (vp->remove2)
516 		vma_start_write(vp->remove2);
517 
518 	if (vp->file) {
519 		uprobe_munmap(vp->vma, vp->vma->vm_start, vp->vma->vm_end);
520 
521 		if (vp->adj_next)
522 			uprobe_munmap(vp->adj_next, vp->adj_next->vm_start,
523 				      vp->adj_next->vm_end);
524 
525 		i_mmap_lock_write(vp->mapping);
526 		if (vp->insert && vp->insert->vm_file) {
527 			/*
528 			 * Put into interval tree now, so instantiated pages
529 			 * are visible to arm/parisc __flush_dcache_page
530 			 * throughout; but we cannot insert into address
531 			 * space until vma start or end is updated.
532 			 */
533 			__vma_link_file(vp->insert,
534 					vp->insert->vm_file->f_mapping);
535 		}
536 	}
537 
538 	if (vp->anon_vma) {
539 		anon_vma_lock_write(vp->anon_vma);
540 		anon_vma_interval_tree_pre_update_vma(vp->vma);
541 		if (vp->adj_next)
542 			anon_vma_interval_tree_pre_update_vma(vp->adj_next);
543 	}
544 
545 	if (vp->file) {
546 		flush_dcache_mmap_lock(vp->mapping);
547 		vma_interval_tree_remove(vp->vma, &vp->mapping->i_mmap);
548 		if (vp->adj_next)
549 			vma_interval_tree_remove(vp->adj_next,
550 						 &vp->mapping->i_mmap);
551 	}
552 
553 }
554 
555 /*
556  * vma_complete- Helper function for handling the unlocking after altering VMAs,
557  * or for inserting a VMA.
558  *
559  * @vp: The vma_prepare struct
560  * @vmi: The vma iterator
561  * @mm: The mm_struct
562  */
563 static inline void vma_complete(struct vma_prepare *vp,
564 				struct vma_iterator *vmi, struct mm_struct *mm)
565 {
566 	if (vp->file) {
567 		if (vp->adj_next)
568 			vma_interval_tree_insert(vp->adj_next,
569 						 &vp->mapping->i_mmap);
570 		vma_interval_tree_insert(vp->vma, &vp->mapping->i_mmap);
571 		flush_dcache_mmap_unlock(vp->mapping);
572 	}
573 
574 	if (vp->remove && vp->file) {
575 		__remove_shared_vm_struct(vp->remove, vp->file, vp->mapping);
576 		if (vp->remove2)
577 			__remove_shared_vm_struct(vp->remove2, vp->file,
578 						  vp->mapping);
579 	} else if (vp->insert) {
580 		/*
581 		 * split_vma has split insert from vma, and needs
582 		 * us to insert it before dropping the locks
583 		 * (it may either follow vma or precede it).
584 		 */
585 		vma_iter_store(vmi, vp->insert);
586 		mm->map_count++;
587 	}
588 
589 	if (vp->anon_vma) {
590 		anon_vma_interval_tree_post_update_vma(vp->vma);
591 		if (vp->adj_next)
592 			anon_vma_interval_tree_post_update_vma(vp->adj_next);
593 		anon_vma_unlock_write(vp->anon_vma);
594 	}
595 
596 	if (vp->file) {
597 		i_mmap_unlock_write(vp->mapping);
598 		uprobe_mmap(vp->vma);
599 
600 		if (vp->adj_next)
601 			uprobe_mmap(vp->adj_next);
602 	}
603 
604 	if (vp->remove) {
605 again:
606 		vma_mark_detached(vp->remove, true);
607 		if (vp->file) {
608 			uprobe_munmap(vp->remove, vp->remove->vm_start,
609 				      vp->remove->vm_end);
610 			fput(vp->file);
611 		}
612 		if (vp->remove->anon_vma)
613 			anon_vma_merge(vp->vma, vp->remove);
614 		mm->map_count--;
615 		mpol_put(vma_policy(vp->remove));
616 		if (!vp->remove2)
617 			WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end);
618 		vm_area_free(vp->remove);
619 
620 		/*
621 		 * In mprotect's case 6 (see comments on vma_merge),
622 		 * we are removing both mid and next vmas
623 		 */
624 		if (vp->remove2) {
625 			vp->remove = vp->remove2;
626 			vp->remove2 = NULL;
627 			goto again;
628 		}
629 	}
630 	if (vp->insert && vp->file)
631 		uprobe_mmap(vp->insert);
632 }
633 
634 /*
635  * dup_anon_vma() - Helper function to duplicate anon_vma
636  * @dst: The destination VMA
637  * @src: The source VMA
638  *
639  * Returns: 0 on success.
640  */
641 static inline int dup_anon_vma(struct vm_area_struct *dst,
642 			       struct vm_area_struct *src)
643 {
644 	/*
645 	 * Easily overlooked: when mprotect shifts the boundary, make sure the
646 	 * expanding vma has anon_vma set if the shrinking vma had, to cover any
647 	 * anon pages imported.
648 	 */
649 	if (src->anon_vma && !dst->anon_vma) {
650 		dst->anon_vma = src->anon_vma;
651 		return anon_vma_clone(dst, src);
652 	}
653 
654 	return 0;
655 }
656 
657 /*
658  * vma_expand - Expand an existing VMA
659  *
660  * @vmi: The vma iterator
661  * @vma: The vma to expand
662  * @start: The start of the vma
663  * @end: The exclusive end of the vma
664  * @pgoff: The page offset of vma
665  * @next: The current of next vma.
666  *
667  * Expand @vma to @start and @end.  Can expand off the start and end.  Will
668  * expand over @next if it's different from @vma and @end == @next->vm_end.
669  * Checking if the @vma can expand and merge with @next needs to be handled by
670  * the caller.
671  *
672  * Returns: 0 on success
673  */
674 int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
675 	       unsigned long start, unsigned long end, pgoff_t pgoff,
676 	       struct vm_area_struct *next)
677 {
678 	bool remove_next = false;
679 	struct vma_prepare vp;
680 
681 	if (next && (vma != next) && (end == next->vm_end)) {
682 		int ret;
683 
684 		remove_next = true;
685 		ret = dup_anon_vma(vma, next);
686 		if (ret)
687 			return ret;
688 	}
689 
690 	init_multi_vma_prep(&vp, vma, NULL, remove_next ? next : NULL, NULL);
691 	/* Not merging but overwriting any part of next is not handled. */
692 	VM_WARN_ON(next && !vp.remove &&
693 		  next != vma && end > next->vm_start);
694 	/* Only handles expanding */
695 	VM_WARN_ON(vma->vm_start < start || vma->vm_end > end);
696 
697 	if (vma_iter_prealloc(vmi))
698 		goto nomem;
699 
700 	vma_prepare(&vp);
701 	vma_adjust_trans_huge(vma, start, end, 0);
702 	/* VMA iterator points to previous, so set to start if necessary */
703 	if (vma_iter_addr(vmi) != start)
704 		vma_iter_set(vmi, start);
705 
706 	vma->vm_start = start;
707 	vma->vm_end = end;
708 	vma->vm_pgoff = pgoff;
709 	/* Note: mas must be pointing to the expanding VMA */
710 	vma_iter_store(vmi, vma);
711 
712 	vma_complete(&vp, vmi, vma->vm_mm);
713 	validate_mm(vma->vm_mm);
714 	return 0;
715 
716 nomem:
717 	return -ENOMEM;
718 }
719 
720 /*
721  * vma_shrink() - Reduce an existing VMAs memory area
722  * @vmi: The vma iterator
723  * @vma: The VMA to modify
724  * @start: The new start
725  * @end: The new end
726  *
727  * Returns: 0 on success, -ENOMEM otherwise
728  */
729 int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
730 	       unsigned long start, unsigned long end, pgoff_t pgoff)
731 {
732 	struct vma_prepare vp;
733 
734 	WARN_ON((vma->vm_start != start) && (vma->vm_end != end));
735 
736 	if (vma_iter_prealloc(vmi))
737 		return -ENOMEM;
738 
739 	init_vma_prep(&vp, vma);
740 	vma_prepare(&vp);
741 	vma_adjust_trans_huge(vma, start, end, 0);
742 
743 	if (vma->vm_start < start)
744 		vma_iter_clear(vmi, vma->vm_start, start);
745 
746 	if (vma->vm_end > end)
747 		vma_iter_clear(vmi, end, vma->vm_end);
748 
749 	vma->vm_start = start;
750 	vma->vm_end = end;
751 	vma->vm_pgoff = pgoff;
752 	vma_complete(&vp, vmi, vma->vm_mm);
753 	validate_mm(vma->vm_mm);
754 	return 0;
755 }
756 
757 /*
758  * If the vma has a ->close operation then the driver probably needs to release
759  * per-vma resources, so we don't attempt to merge those if the caller indicates
760  * the current vma may be removed as part of the merge.
761  */
762 static inline bool is_mergeable_vma(struct vm_area_struct *vma,
763 		struct file *file, unsigned long vm_flags,
764 		struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
765 		struct anon_vma_name *anon_name, bool may_remove_vma)
766 {
767 	/*
768 	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
769 	 * match the flags but dirty bit -- the caller should mark
770 	 * merged VMA as dirty. If dirty bit won't be excluded from
771 	 * comparison, we increase pressure on the memory system forcing
772 	 * the kernel to generate new VMAs when old one could be
773 	 * extended instead.
774 	 */
775 	if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
776 		return false;
777 	if (vma->vm_file != file)
778 		return false;
779 	if (may_remove_vma && vma->vm_ops && vma->vm_ops->close)
780 		return false;
781 	if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
782 		return false;
783 	if (!anon_vma_name_eq(anon_vma_name(vma), anon_name))
784 		return false;
785 	return true;
786 }
787 
788 static inline bool is_mergeable_anon_vma(struct anon_vma *anon_vma1,
789 		 struct anon_vma *anon_vma2, struct vm_area_struct *vma)
790 {
791 	/*
792 	 * The list_is_singular() test is to avoid merging VMA cloned from
793 	 * parents. This can improve scalability caused by anon_vma lock.
794 	 */
795 	if ((!anon_vma1 || !anon_vma2) && (!vma ||
796 		list_is_singular(&vma->anon_vma_chain)))
797 		return true;
798 	return anon_vma1 == anon_vma2;
799 }
800 
801 /*
802  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
803  * in front of (at a lower virtual address and file offset than) the vma.
804  *
805  * We cannot merge two vmas if they have differently assigned (non-NULL)
806  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
807  *
808  * We don't check here for the merged mmap wrapping around the end of pagecache
809  * indices (16TB on ia32) because do_mmap() does not permit mmap's which
810  * wrap, nor mmaps which cover the final page at index -1UL.
811  *
812  * We assume the vma may be removed as part of the merge.
813  */
814 static bool
815 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
816 		struct anon_vma *anon_vma, struct file *file,
817 		pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
818 		struct anon_vma_name *anon_name)
819 {
820 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, true) &&
821 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
822 		if (vma->vm_pgoff == vm_pgoff)
823 			return true;
824 	}
825 	return false;
826 }
827 
828 /*
829  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
830  * beyond (at a higher virtual address and file offset than) the vma.
831  *
832  * We cannot merge two vmas if they have differently assigned (non-NULL)
833  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
834  *
835  * We assume that vma is not removed as part of the merge.
836  */
837 static bool
838 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
839 		struct anon_vma *anon_vma, struct file *file,
840 		pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
841 		struct anon_vma_name *anon_name)
842 {
843 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, false) &&
844 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
845 		pgoff_t vm_pglen;
846 		vm_pglen = vma_pages(vma);
847 		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
848 			return true;
849 	}
850 	return false;
851 }
852 
853 /*
854  * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name),
855  * figure out whether that can be merged with its predecessor or its
856  * successor.  Or both (it neatly fills a hole).
857  *
858  * In most cases - when called for mmap, brk or mremap - [addr,end) is
859  * certain not to be mapped by the time vma_merge is called; but when
860  * called for mprotect, it is certain to be already mapped (either at
861  * an offset within prev, or at the start of next), and the flags of
862  * this area are about to be changed to vm_flags - and the no-change
863  * case has already been eliminated.
864  *
865  * The following mprotect cases have to be considered, where **** is
866  * the area passed down from mprotect_fixup, never extending beyond one
867  * vma, PPPP is the previous vma, CCCC is a concurrent vma that starts
868  * at the same address as **** and is of the same or larger span, and
869  * NNNN the next vma after ****:
870  *
871  *     ****             ****                   ****
872  *    PPPPPPNNNNNN    PPPPPPNNNNNN       PPPPPPCCCCCC
873  *    cannot merge    might become       might become
874  *                    PPNNNNNNNNNN       PPPPPPPPPPCC
875  *    mmap, brk or    case 4 below       case 5 below
876  *    mremap move:
877  *                        ****               ****
878  *                    PPPP    NNNN       PPPPCCCCNNNN
879  *                    might become       might become
880  *                    PPPPPPPPPPPP 1 or  PPPPPPPPPPPP 6 or
881  *                    PPPPPPPPNNNN 2 or  PPPPPPPPNNNN 7 or
882  *                    PPPPNNNNNNNN 3     PPPPNNNNNNNN 8
883  *
884  * It is important for case 8 that the vma CCCC overlapping the
885  * region **** is never going to extended over NNNN. Instead NNNN must
886  * be extended in region **** and CCCC must be removed. This way in
887  * all cases where vma_merge succeeds, the moment vma_merge drops the
888  * rmap_locks, the properties of the merged vma will be already
889  * correct for the whole merged range. Some of those properties like
890  * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
891  * be correct for the whole merged range immediately after the
892  * rmap_locks are released. Otherwise if NNNN would be removed and
893  * CCCC would be extended over the NNNN range, remove_migration_ptes
894  * or other rmap walkers (if working on addresses beyond the "end"
895  * parameter) may establish ptes with the wrong permissions of CCCC
896  * instead of the right permissions of NNNN.
897  *
898  * In the code below:
899  * PPPP is represented by *prev
900  * CCCC is represented by *curr or not represented at all (NULL)
901  * NNNN is represented by *next or not represented at all (NULL)
902  * **** is not represented - it will be merged and the vma containing the
903  *      area is returned, or the function will return NULL
904  */
905 struct vm_area_struct *vma_merge(struct vma_iterator *vmi, struct mm_struct *mm,
906 			struct vm_area_struct *prev, unsigned long addr,
907 			unsigned long end, unsigned long vm_flags,
908 			struct anon_vma *anon_vma, struct file *file,
909 			pgoff_t pgoff, struct mempolicy *policy,
910 			struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
911 			struct anon_vma_name *anon_name)
912 {
913 	struct vm_area_struct *curr, *next, *res;
914 	struct vm_area_struct *vma, *adjust, *remove, *remove2;
915 	struct vma_prepare vp;
916 	pgoff_t vma_pgoff;
917 	int err = 0;
918 	bool merge_prev = false;
919 	bool merge_next = false;
920 	bool vma_expanded = false;
921 	unsigned long vma_start = addr;
922 	unsigned long vma_end = end;
923 	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
924 	long adj_start = 0;
925 
926 	validate_mm(mm);
927 	/*
928 	 * We later require that vma->vm_flags == vm_flags,
929 	 * so this tests vma->vm_flags & VM_SPECIAL, too.
930 	 */
931 	if (vm_flags & VM_SPECIAL)
932 		return NULL;
933 
934 	/* Does the input range span an existing VMA? (cases 5 - 8) */
935 	curr = find_vma_intersection(mm, prev ? prev->vm_end : 0, end);
936 
937 	if (!curr ||			/* cases 1 - 4 */
938 	    end == curr->vm_end)	/* cases 6 - 8, adjacent VMA */
939 		next = vma_lookup(mm, end);
940 	else
941 		next = NULL;		/* case 5 */
942 
943 	if (prev) {
944 		vma_start = prev->vm_start;
945 		vma_pgoff = prev->vm_pgoff;
946 
947 		/* Can we merge the predecessor? */
948 		if (addr == prev->vm_end && mpol_equal(vma_policy(prev), policy)
949 		    && can_vma_merge_after(prev, vm_flags, anon_vma, file,
950 					   pgoff, vm_userfaultfd_ctx, anon_name)) {
951 			merge_prev = true;
952 			vma_prev(vmi);
953 		}
954 	}
955 
956 	/* Can we merge the successor? */
957 	if (next && mpol_equal(policy, vma_policy(next)) &&
958 	    can_vma_merge_before(next, vm_flags, anon_vma, file, pgoff+pglen,
959 				 vm_userfaultfd_ctx, anon_name)) {
960 		merge_next = true;
961 	}
962 
963 	/* Verify some invariant that must be enforced by the caller. */
964 	VM_WARN_ON(prev && addr <= prev->vm_start);
965 	VM_WARN_ON(curr && (addr != curr->vm_start || end > curr->vm_end));
966 	VM_WARN_ON(addr >= end);
967 
968 	if (!merge_prev && !merge_next)
969 		return NULL; /* Not mergeable. */
970 
971 	res = vma = prev;
972 	remove = remove2 = adjust = NULL;
973 
974 	/* Can we merge both the predecessor and the successor? */
975 	if (merge_prev && merge_next &&
976 	    is_mergeable_anon_vma(prev->anon_vma, next->anon_vma, NULL)) {
977 		remove = next;				/* case 1 */
978 		vma_end = next->vm_end;
979 		err = dup_anon_vma(prev, next);
980 		if (curr) {				/* case 6 */
981 			remove = curr;
982 			remove2 = next;
983 			if (!next->anon_vma)
984 				err = dup_anon_vma(prev, curr);
985 		}
986 	} else if (merge_prev) {			/* case 2 */
987 		if (curr) {
988 			err = dup_anon_vma(prev, curr);
989 			if (end == curr->vm_end) {	/* case 7 */
990 				remove = curr;
991 			} else {			/* case 5 */
992 				adjust = curr;
993 				adj_start = (end - curr->vm_start);
994 			}
995 		}
996 	} else { /* merge_next */
997 		res = next;
998 		if (prev && addr < prev->vm_end) {	/* case 4 */
999 			vma_end = addr;
1000 			adjust = next;
1001 			adj_start = -(prev->vm_end - addr);
1002 			err = dup_anon_vma(next, prev);
1003 		} else {
1004 			/*
1005 			 * Note that cases 3 and 8 are the ONLY ones where prev
1006 			 * is permitted to be (but is not necessarily) NULL.
1007 			 */
1008 			vma = next;			/* case 3 */
1009 			vma_start = addr;
1010 			vma_end = next->vm_end;
1011 			vma_pgoff = next->vm_pgoff - pglen;
1012 			if (curr) {			/* case 8 */
1013 				vma_pgoff = curr->vm_pgoff;
1014 				remove = curr;
1015 				err = dup_anon_vma(next, curr);
1016 			}
1017 		}
1018 	}
1019 
1020 	/* Error in anon_vma clone. */
1021 	if (err)
1022 		return NULL;
1023 
1024 	if (vma_iter_prealloc(vmi))
1025 		return NULL;
1026 
1027 	init_multi_vma_prep(&vp, vma, adjust, remove, remove2);
1028 	VM_WARN_ON(vp.anon_vma && adjust && adjust->anon_vma &&
1029 		   vp.anon_vma != adjust->anon_vma);
1030 
1031 	vma_prepare(&vp);
1032 	vma_adjust_trans_huge(vma, vma_start, vma_end, adj_start);
1033 	if (vma_start < vma->vm_start || vma_end > vma->vm_end)
1034 		vma_expanded = true;
1035 
1036 	vma->vm_start = vma_start;
1037 	vma->vm_end = vma_end;
1038 	vma->vm_pgoff = vma_pgoff;
1039 
1040 	if (vma_expanded)
1041 		vma_iter_store(vmi, vma);
1042 
1043 	if (adj_start) {
1044 		adjust->vm_start += adj_start;
1045 		adjust->vm_pgoff += adj_start >> PAGE_SHIFT;
1046 		if (adj_start < 0) {
1047 			WARN_ON(vma_expanded);
1048 			vma_iter_store(vmi, next);
1049 		}
1050 	}
1051 
1052 	vma_complete(&vp, vmi, mm);
1053 	vma_iter_free(vmi);
1054 	validate_mm(mm);
1055 	khugepaged_enter_vma(res, vm_flags);
1056 
1057 	return res;
1058 }
1059 
1060 /*
1061  * Rough compatibility check to quickly see if it's even worth looking
1062  * at sharing an anon_vma.
1063  *
1064  * They need to have the same vm_file, and the flags can only differ
1065  * in things that mprotect may change.
1066  *
1067  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1068  * we can merge the two vma's. For example, we refuse to merge a vma if
1069  * there is a vm_ops->close() function, because that indicates that the
1070  * driver is doing some kind of reference counting. But that doesn't
1071  * really matter for the anon_vma sharing case.
1072  */
1073 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1074 {
1075 	return a->vm_end == b->vm_start &&
1076 		mpol_equal(vma_policy(a), vma_policy(b)) &&
1077 		a->vm_file == b->vm_file &&
1078 		!((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1079 		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1080 }
1081 
1082 /*
1083  * Do some basic sanity checking to see if we can re-use the anon_vma
1084  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1085  * the same as 'old', the other will be the new one that is trying
1086  * to share the anon_vma.
1087  *
1088  * NOTE! This runs with mmap_lock held for reading, so it is possible that
1089  * the anon_vma of 'old' is concurrently in the process of being set up
1090  * by another page fault trying to merge _that_. But that's ok: if it
1091  * is being set up, that automatically means that it will be a singleton
1092  * acceptable for merging, so we can do all of this optimistically. But
1093  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1094  *
1095  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1096  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1097  * is to return an anon_vma that is "complex" due to having gone through
1098  * a fork).
1099  *
1100  * We also make sure that the two vma's are compatible (adjacent,
1101  * and with the same memory policies). That's all stable, even with just
1102  * a read lock on the mmap_lock.
1103  */
1104 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1105 {
1106 	if (anon_vma_compatible(a, b)) {
1107 		struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1108 
1109 		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1110 			return anon_vma;
1111 	}
1112 	return NULL;
1113 }
1114 
1115 /*
1116  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1117  * neighbouring vmas for a suitable anon_vma, before it goes off
1118  * to allocate a new anon_vma.  It checks because a repetitive
1119  * sequence of mprotects and faults may otherwise lead to distinct
1120  * anon_vmas being allocated, preventing vma merge in subsequent
1121  * mprotect.
1122  */
1123 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1124 {
1125 	MA_STATE(mas, &vma->vm_mm->mm_mt, vma->vm_end, vma->vm_end);
1126 	struct anon_vma *anon_vma = NULL;
1127 	struct vm_area_struct *prev, *next;
1128 
1129 	/* Try next first. */
1130 	next = mas_walk(&mas);
1131 	if (next) {
1132 		anon_vma = reusable_anon_vma(next, vma, next);
1133 		if (anon_vma)
1134 			return anon_vma;
1135 	}
1136 
1137 	prev = mas_prev(&mas, 0);
1138 	VM_BUG_ON_VMA(prev != vma, vma);
1139 	prev = mas_prev(&mas, 0);
1140 	/* Try prev next. */
1141 	if (prev)
1142 		anon_vma = reusable_anon_vma(prev, prev, vma);
1143 
1144 	/*
1145 	 * We might reach here with anon_vma == NULL if we can't find
1146 	 * any reusable anon_vma.
1147 	 * There's no absolute need to look only at touching neighbours:
1148 	 * we could search further afield for "compatible" anon_vmas.
1149 	 * But it would probably just be a waste of time searching,
1150 	 * or lead to too many vmas hanging off the same anon_vma.
1151 	 * We're trying to allow mprotect remerging later on,
1152 	 * not trying to minimize memory used for anon_vmas.
1153 	 */
1154 	return anon_vma;
1155 }
1156 
1157 /*
1158  * If a hint addr is less than mmap_min_addr change hint to be as
1159  * low as possible but still greater than mmap_min_addr
1160  */
1161 static inline unsigned long round_hint_to_min(unsigned long hint)
1162 {
1163 	hint &= PAGE_MASK;
1164 	if (((void *)hint != NULL) &&
1165 	    (hint < mmap_min_addr))
1166 		return PAGE_ALIGN(mmap_min_addr);
1167 	return hint;
1168 }
1169 
1170 int mlock_future_check(struct mm_struct *mm, unsigned long flags,
1171 		       unsigned long len)
1172 {
1173 	unsigned long locked, lock_limit;
1174 
1175 	/*  mlock MCL_FUTURE? */
1176 	if (flags & VM_LOCKED) {
1177 		locked = len >> PAGE_SHIFT;
1178 		locked += mm->locked_vm;
1179 		lock_limit = rlimit(RLIMIT_MEMLOCK);
1180 		lock_limit >>= PAGE_SHIFT;
1181 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1182 			return -EAGAIN;
1183 	}
1184 	return 0;
1185 }
1186 
1187 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1188 {
1189 	if (S_ISREG(inode->i_mode))
1190 		return MAX_LFS_FILESIZE;
1191 
1192 	if (S_ISBLK(inode->i_mode))
1193 		return MAX_LFS_FILESIZE;
1194 
1195 	if (S_ISSOCK(inode->i_mode))
1196 		return MAX_LFS_FILESIZE;
1197 
1198 	/* Special "we do even unsigned file positions" case */
1199 	if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1200 		return 0;
1201 
1202 	/* Yes, random drivers might want more. But I'm tired of buggy drivers */
1203 	return ULONG_MAX;
1204 }
1205 
1206 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1207 				unsigned long pgoff, unsigned long len)
1208 {
1209 	u64 maxsize = file_mmap_size_max(file, inode);
1210 
1211 	if (maxsize && len > maxsize)
1212 		return false;
1213 	maxsize -= len;
1214 	if (pgoff > maxsize >> PAGE_SHIFT)
1215 		return false;
1216 	return true;
1217 }
1218 
1219 /*
1220  * The caller must write-lock current->mm->mmap_lock.
1221  */
1222 unsigned long do_mmap(struct file *file, unsigned long addr,
1223 			unsigned long len, unsigned long prot,
1224 			unsigned long flags, unsigned long pgoff,
1225 			unsigned long *populate, struct list_head *uf)
1226 {
1227 	struct mm_struct *mm = current->mm;
1228 	vm_flags_t vm_flags;
1229 	int pkey = 0;
1230 
1231 	validate_mm(mm);
1232 	*populate = 0;
1233 
1234 	if (!len)
1235 		return -EINVAL;
1236 
1237 	/*
1238 	 * Does the application expect PROT_READ to imply PROT_EXEC?
1239 	 *
1240 	 * (the exception is when the underlying filesystem is noexec
1241 	 *  mounted, in which case we dont add PROT_EXEC.)
1242 	 */
1243 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1244 		if (!(file && path_noexec(&file->f_path)))
1245 			prot |= PROT_EXEC;
1246 
1247 	/* force arch specific MAP_FIXED handling in get_unmapped_area */
1248 	if (flags & MAP_FIXED_NOREPLACE)
1249 		flags |= MAP_FIXED;
1250 
1251 	if (!(flags & MAP_FIXED))
1252 		addr = round_hint_to_min(addr);
1253 
1254 	/* Careful about overflows.. */
1255 	len = PAGE_ALIGN(len);
1256 	if (!len)
1257 		return -ENOMEM;
1258 
1259 	/* offset overflow? */
1260 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1261 		return -EOVERFLOW;
1262 
1263 	/* Too many mappings? */
1264 	if (mm->map_count > sysctl_max_map_count)
1265 		return -ENOMEM;
1266 
1267 	/* Obtain the address to map to. we verify (or select) it and ensure
1268 	 * that it represents a valid section of the address space.
1269 	 */
1270 	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1271 	if (IS_ERR_VALUE(addr))
1272 		return addr;
1273 
1274 	if (flags & MAP_FIXED_NOREPLACE) {
1275 		if (find_vma_intersection(mm, addr, addr + len))
1276 			return -EEXIST;
1277 	}
1278 
1279 	if (prot == PROT_EXEC) {
1280 		pkey = execute_only_pkey(mm);
1281 		if (pkey < 0)
1282 			pkey = 0;
1283 	}
1284 
1285 	/* Do simple checking here so the lower-level routines won't have
1286 	 * to. we assume access permissions have been handled by the open
1287 	 * of the memory object, so we don't do any here.
1288 	 */
1289 	vm_flags = calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1290 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1291 
1292 	if (flags & MAP_LOCKED)
1293 		if (!can_do_mlock())
1294 			return -EPERM;
1295 
1296 	if (mlock_future_check(mm, vm_flags, len))
1297 		return -EAGAIN;
1298 
1299 	if (file) {
1300 		struct inode *inode = file_inode(file);
1301 		unsigned long flags_mask;
1302 
1303 		if (!file_mmap_ok(file, inode, pgoff, len))
1304 			return -EOVERFLOW;
1305 
1306 		flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1307 
1308 		switch (flags & MAP_TYPE) {
1309 		case MAP_SHARED:
1310 			/*
1311 			 * Force use of MAP_SHARED_VALIDATE with non-legacy
1312 			 * flags. E.g. MAP_SYNC is dangerous to use with
1313 			 * MAP_SHARED as you don't know which consistency model
1314 			 * you will get. We silently ignore unsupported flags
1315 			 * with MAP_SHARED to preserve backward compatibility.
1316 			 */
1317 			flags &= LEGACY_MAP_MASK;
1318 			fallthrough;
1319 		case MAP_SHARED_VALIDATE:
1320 			if (flags & ~flags_mask)
1321 				return -EOPNOTSUPP;
1322 			if (prot & PROT_WRITE) {
1323 				if (!(file->f_mode & FMODE_WRITE))
1324 					return -EACCES;
1325 				if (IS_SWAPFILE(file->f_mapping->host))
1326 					return -ETXTBSY;
1327 			}
1328 
1329 			/*
1330 			 * Make sure we don't allow writing to an append-only
1331 			 * file..
1332 			 */
1333 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1334 				return -EACCES;
1335 
1336 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1337 			if (!(file->f_mode & FMODE_WRITE))
1338 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1339 			fallthrough;
1340 		case MAP_PRIVATE:
1341 			if (!(file->f_mode & FMODE_READ))
1342 				return -EACCES;
1343 			if (path_noexec(&file->f_path)) {
1344 				if (vm_flags & VM_EXEC)
1345 					return -EPERM;
1346 				vm_flags &= ~VM_MAYEXEC;
1347 			}
1348 
1349 			if (!file->f_op->mmap)
1350 				return -ENODEV;
1351 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1352 				return -EINVAL;
1353 			break;
1354 
1355 		default:
1356 			return -EINVAL;
1357 		}
1358 	} else {
1359 		switch (flags & MAP_TYPE) {
1360 		case MAP_SHARED:
1361 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1362 				return -EINVAL;
1363 			/*
1364 			 * Ignore pgoff.
1365 			 */
1366 			pgoff = 0;
1367 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1368 			break;
1369 		case MAP_PRIVATE:
1370 			/*
1371 			 * Set pgoff according to addr for anon_vma.
1372 			 */
1373 			pgoff = addr >> PAGE_SHIFT;
1374 			break;
1375 		default:
1376 			return -EINVAL;
1377 		}
1378 	}
1379 
1380 	/*
1381 	 * Set 'VM_NORESERVE' if we should not account for the
1382 	 * memory use of this mapping.
1383 	 */
1384 	if (flags & MAP_NORESERVE) {
1385 		/* We honor MAP_NORESERVE if allowed to overcommit */
1386 		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1387 			vm_flags |= VM_NORESERVE;
1388 
1389 		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1390 		if (file && is_file_hugepages(file))
1391 			vm_flags |= VM_NORESERVE;
1392 	}
1393 
1394 	addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1395 	if (!IS_ERR_VALUE(addr) &&
1396 	    ((vm_flags & VM_LOCKED) ||
1397 	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1398 		*populate = len;
1399 	return addr;
1400 }
1401 
1402 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1403 			      unsigned long prot, unsigned long flags,
1404 			      unsigned long fd, unsigned long pgoff)
1405 {
1406 	struct file *file = NULL;
1407 	unsigned long retval;
1408 
1409 	if (!(flags & MAP_ANONYMOUS)) {
1410 		audit_mmap_fd(fd, flags);
1411 		file = fget(fd);
1412 		if (!file)
1413 			return -EBADF;
1414 		if (is_file_hugepages(file)) {
1415 			len = ALIGN(len, huge_page_size(hstate_file(file)));
1416 		} else if (unlikely(flags & MAP_HUGETLB)) {
1417 			retval = -EINVAL;
1418 			goto out_fput;
1419 		}
1420 	} else if (flags & MAP_HUGETLB) {
1421 		struct hstate *hs;
1422 
1423 		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1424 		if (!hs)
1425 			return -EINVAL;
1426 
1427 		len = ALIGN(len, huge_page_size(hs));
1428 		/*
1429 		 * VM_NORESERVE is used because the reservations will be
1430 		 * taken when vm_ops->mmap() is called
1431 		 */
1432 		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1433 				VM_NORESERVE,
1434 				HUGETLB_ANONHUGE_INODE,
1435 				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1436 		if (IS_ERR(file))
1437 			return PTR_ERR(file);
1438 	}
1439 
1440 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1441 out_fput:
1442 	if (file)
1443 		fput(file);
1444 	return retval;
1445 }
1446 
1447 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1448 		unsigned long, prot, unsigned long, flags,
1449 		unsigned long, fd, unsigned long, pgoff)
1450 {
1451 	return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1452 }
1453 
1454 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1455 struct mmap_arg_struct {
1456 	unsigned long addr;
1457 	unsigned long len;
1458 	unsigned long prot;
1459 	unsigned long flags;
1460 	unsigned long fd;
1461 	unsigned long offset;
1462 };
1463 
1464 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1465 {
1466 	struct mmap_arg_struct a;
1467 
1468 	if (copy_from_user(&a, arg, sizeof(a)))
1469 		return -EFAULT;
1470 	if (offset_in_page(a.offset))
1471 		return -EINVAL;
1472 
1473 	return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1474 			       a.offset >> PAGE_SHIFT);
1475 }
1476 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1477 
1478 /*
1479  * Some shared mappings will want the pages marked read-only
1480  * to track write events. If so, we'll downgrade vm_page_prot
1481  * to the private version (using protection_map[] without the
1482  * VM_SHARED bit).
1483  */
1484 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1485 {
1486 	vm_flags_t vm_flags = vma->vm_flags;
1487 	const struct vm_operations_struct *vm_ops = vma->vm_ops;
1488 
1489 	/* If it was private or non-writable, the write bit is already clear */
1490 	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1491 		return 0;
1492 
1493 	/* The backer wishes to know when pages are first written to? */
1494 	if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1495 		return 1;
1496 
1497 	/* The open routine did something to the protections that pgprot_modify
1498 	 * won't preserve? */
1499 	if (pgprot_val(vm_page_prot) !=
1500 	    pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1501 		return 0;
1502 
1503 	/*
1504 	 * Do we need to track softdirty? hugetlb does not support softdirty
1505 	 * tracking yet.
1506 	 */
1507 	if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma))
1508 		return 1;
1509 
1510 	/* Do we need write faults for uffd-wp tracking? */
1511 	if (userfaultfd_wp(vma))
1512 		return 1;
1513 
1514 	/* Specialty mapping? */
1515 	if (vm_flags & VM_PFNMAP)
1516 		return 0;
1517 
1518 	/* Can the mapping track the dirty pages? */
1519 	return vma->vm_file && vma->vm_file->f_mapping &&
1520 		mapping_can_writeback(vma->vm_file->f_mapping);
1521 }
1522 
1523 /*
1524  * We account for memory if it's a private writeable mapping,
1525  * not hugepages and VM_NORESERVE wasn't set.
1526  */
1527 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1528 {
1529 	/*
1530 	 * hugetlb has its own accounting separate from the core VM
1531 	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1532 	 */
1533 	if (file && is_file_hugepages(file))
1534 		return 0;
1535 
1536 	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1537 }
1538 
1539 /**
1540  * unmapped_area() - Find an area between the low_limit and the high_limit with
1541  * the correct alignment and offset, all from @info. Note: current->mm is used
1542  * for the search.
1543  *
1544  * @info: The unmapped area information including the range [low_limit -
1545  * high_limit), the alignment offset and mask.
1546  *
1547  * Return: A memory address or -ENOMEM.
1548  */
1549 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1550 {
1551 	unsigned long length, gap;
1552 	unsigned long low_limit, high_limit;
1553 	struct vm_area_struct *tmp;
1554 
1555 	MA_STATE(mas, &current->mm->mm_mt, 0, 0);
1556 
1557 	/* Adjust search length to account for worst case alignment overhead */
1558 	length = info->length + info->align_mask;
1559 	if (length < info->length)
1560 		return -ENOMEM;
1561 
1562 	low_limit = info->low_limit;
1563 	if (low_limit < mmap_min_addr)
1564 		low_limit = mmap_min_addr;
1565 	high_limit = info->high_limit;
1566 retry:
1567 	if (mas_empty_area(&mas, low_limit, high_limit - 1, length))
1568 		return -ENOMEM;
1569 
1570 	gap = mas.index;
1571 	gap += (info->align_offset - gap) & info->align_mask;
1572 	tmp = mas_next(&mas, ULONG_MAX);
1573 	if (tmp && (tmp->vm_flags & VM_GROWSDOWN)) { /* Avoid prev check if possible */
1574 		if (vm_start_gap(tmp) < gap + length - 1) {
1575 			low_limit = tmp->vm_end;
1576 			mas_reset(&mas);
1577 			goto retry;
1578 		}
1579 	} else {
1580 		tmp = mas_prev(&mas, 0);
1581 		if (tmp && vm_end_gap(tmp) > gap) {
1582 			low_limit = vm_end_gap(tmp);
1583 			mas_reset(&mas);
1584 			goto retry;
1585 		}
1586 	}
1587 
1588 	return gap;
1589 }
1590 
1591 /**
1592  * unmapped_area_topdown() - Find an area between the low_limit and the
1593  * high_limit with the correct alignment and offset at the highest available
1594  * address, all from @info. Note: current->mm is used for the search.
1595  *
1596  * @info: The unmapped area information including the range [low_limit -
1597  * high_limit), the alignment offset and mask.
1598  *
1599  * Return: A memory address or -ENOMEM.
1600  */
1601 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1602 {
1603 	unsigned long length, gap, gap_end;
1604 	unsigned long low_limit, high_limit;
1605 	struct vm_area_struct *tmp;
1606 
1607 	MA_STATE(mas, &current->mm->mm_mt, 0, 0);
1608 	/* Adjust search length to account for worst case alignment overhead */
1609 	length = info->length + info->align_mask;
1610 	if (length < info->length)
1611 		return -ENOMEM;
1612 
1613 	low_limit = info->low_limit;
1614 	if (low_limit < mmap_min_addr)
1615 		low_limit = mmap_min_addr;
1616 	high_limit = info->high_limit;
1617 retry:
1618 	if (mas_empty_area_rev(&mas, low_limit, high_limit - 1, length))
1619 		return -ENOMEM;
1620 
1621 	gap = mas.last + 1 - info->length;
1622 	gap -= (gap - info->align_offset) & info->align_mask;
1623 	gap_end = mas.last;
1624 	tmp = mas_next(&mas, ULONG_MAX);
1625 	if (tmp && (tmp->vm_flags & VM_GROWSDOWN)) { /* Avoid prev check if possible */
1626 		if (vm_start_gap(tmp) <= gap_end) {
1627 			high_limit = vm_start_gap(tmp);
1628 			mas_reset(&mas);
1629 			goto retry;
1630 		}
1631 	} else {
1632 		tmp = mas_prev(&mas, 0);
1633 		if (tmp && vm_end_gap(tmp) > gap) {
1634 			high_limit = tmp->vm_start;
1635 			mas_reset(&mas);
1636 			goto retry;
1637 		}
1638 	}
1639 
1640 	return gap;
1641 }
1642 
1643 /*
1644  * Search for an unmapped address range.
1645  *
1646  * We are looking for a range that:
1647  * - does not intersect with any VMA;
1648  * - is contained within the [low_limit, high_limit) interval;
1649  * - is at least the desired size.
1650  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1651  */
1652 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
1653 {
1654 	unsigned long addr;
1655 
1656 	if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
1657 		addr = unmapped_area_topdown(info);
1658 	else
1659 		addr = unmapped_area(info);
1660 
1661 	trace_vm_unmapped_area(addr, info);
1662 	return addr;
1663 }
1664 
1665 /* Get an address range which is currently unmapped.
1666  * For shmat() with addr=0.
1667  *
1668  * Ugly calling convention alert:
1669  * Return value with the low bits set means error value,
1670  * ie
1671  *	if (ret & ~PAGE_MASK)
1672  *		error = ret;
1673  *
1674  * This function "knows" that -ENOMEM has the bits set.
1675  */
1676 unsigned long
1677 generic_get_unmapped_area(struct file *filp, unsigned long addr,
1678 			  unsigned long len, unsigned long pgoff,
1679 			  unsigned long flags)
1680 {
1681 	struct mm_struct *mm = current->mm;
1682 	struct vm_area_struct *vma, *prev;
1683 	struct vm_unmapped_area_info info;
1684 	const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1685 
1686 	if (len > mmap_end - mmap_min_addr)
1687 		return -ENOMEM;
1688 
1689 	if (flags & MAP_FIXED)
1690 		return addr;
1691 
1692 	if (addr) {
1693 		addr = PAGE_ALIGN(addr);
1694 		vma = find_vma_prev(mm, addr, &prev);
1695 		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1696 		    (!vma || addr + len <= vm_start_gap(vma)) &&
1697 		    (!prev || addr >= vm_end_gap(prev)))
1698 			return addr;
1699 	}
1700 
1701 	info.flags = 0;
1702 	info.length = len;
1703 	info.low_limit = mm->mmap_base;
1704 	info.high_limit = mmap_end;
1705 	info.align_mask = 0;
1706 	info.align_offset = 0;
1707 	return vm_unmapped_area(&info);
1708 }
1709 
1710 #ifndef HAVE_ARCH_UNMAPPED_AREA
1711 unsigned long
1712 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1713 		       unsigned long len, unsigned long pgoff,
1714 		       unsigned long flags)
1715 {
1716 	return generic_get_unmapped_area(filp, addr, len, pgoff, flags);
1717 }
1718 #endif
1719 
1720 /*
1721  * This mmap-allocator allocates new areas top-down from below the
1722  * stack's low limit (the base):
1723  */
1724 unsigned long
1725 generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1726 				  unsigned long len, unsigned long pgoff,
1727 				  unsigned long flags)
1728 {
1729 	struct vm_area_struct *vma, *prev;
1730 	struct mm_struct *mm = current->mm;
1731 	struct vm_unmapped_area_info info;
1732 	const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1733 
1734 	/* requested length too big for entire address space */
1735 	if (len > mmap_end - mmap_min_addr)
1736 		return -ENOMEM;
1737 
1738 	if (flags & MAP_FIXED)
1739 		return addr;
1740 
1741 	/* requesting a specific address */
1742 	if (addr) {
1743 		addr = PAGE_ALIGN(addr);
1744 		vma = find_vma_prev(mm, addr, &prev);
1745 		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1746 				(!vma || addr + len <= vm_start_gap(vma)) &&
1747 				(!prev || addr >= vm_end_gap(prev)))
1748 			return addr;
1749 	}
1750 
1751 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1752 	info.length = len;
1753 	info.low_limit = PAGE_SIZE;
1754 	info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
1755 	info.align_mask = 0;
1756 	info.align_offset = 0;
1757 	addr = vm_unmapped_area(&info);
1758 
1759 	/*
1760 	 * A failed mmap() very likely causes application failure,
1761 	 * so fall back to the bottom-up function here. This scenario
1762 	 * can happen with large stack limits and large mmap()
1763 	 * allocations.
1764 	 */
1765 	if (offset_in_page(addr)) {
1766 		VM_BUG_ON(addr != -ENOMEM);
1767 		info.flags = 0;
1768 		info.low_limit = TASK_UNMAPPED_BASE;
1769 		info.high_limit = mmap_end;
1770 		addr = vm_unmapped_area(&info);
1771 	}
1772 
1773 	return addr;
1774 }
1775 
1776 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1777 unsigned long
1778 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1779 			       unsigned long len, unsigned long pgoff,
1780 			       unsigned long flags)
1781 {
1782 	return generic_get_unmapped_area_topdown(filp, addr, len, pgoff, flags);
1783 }
1784 #endif
1785 
1786 unsigned long
1787 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1788 		unsigned long pgoff, unsigned long flags)
1789 {
1790 	unsigned long (*get_area)(struct file *, unsigned long,
1791 				  unsigned long, unsigned long, unsigned long);
1792 
1793 	unsigned long error = arch_mmap_check(addr, len, flags);
1794 	if (error)
1795 		return error;
1796 
1797 	/* Careful about overflows.. */
1798 	if (len > TASK_SIZE)
1799 		return -ENOMEM;
1800 
1801 	get_area = current->mm->get_unmapped_area;
1802 	if (file) {
1803 		if (file->f_op->get_unmapped_area)
1804 			get_area = file->f_op->get_unmapped_area;
1805 	} else if (flags & MAP_SHARED) {
1806 		/*
1807 		 * mmap_region() will call shmem_zero_setup() to create a file,
1808 		 * so use shmem's get_unmapped_area in case it can be huge.
1809 		 * do_mmap() will clear pgoff, so match alignment.
1810 		 */
1811 		pgoff = 0;
1812 		get_area = shmem_get_unmapped_area;
1813 	}
1814 
1815 	addr = get_area(file, addr, len, pgoff, flags);
1816 	if (IS_ERR_VALUE(addr))
1817 		return addr;
1818 
1819 	if (addr > TASK_SIZE - len)
1820 		return -ENOMEM;
1821 	if (offset_in_page(addr))
1822 		return -EINVAL;
1823 
1824 	error = security_mmap_addr(addr);
1825 	return error ? error : addr;
1826 }
1827 
1828 EXPORT_SYMBOL(get_unmapped_area);
1829 
1830 /**
1831  * find_vma_intersection() - Look up the first VMA which intersects the interval
1832  * @mm: The process address space.
1833  * @start_addr: The inclusive start user address.
1834  * @end_addr: The exclusive end user address.
1835  *
1836  * Returns: The first VMA within the provided range, %NULL otherwise.  Assumes
1837  * start_addr < end_addr.
1838  */
1839 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
1840 					     unsigned long start_addr,
1841 					     unsigned long end_addr)
1842 {
1843 	unsigned long index = start_addr;
1844 
1845 	mmap_assert_locked(mm);
1846 	return mt_find(&mm->mm_mt, &index, end_addr - 1);
1847 }
1848 EXPORT_SYMBOL(find_vma_intersection);
1849 
1850 /**
1851  * find_vma() - Find the VMA for a given address, or the next VMA.
1852  * @mm: The mm_struct to check
1853  * @addr: The address
1854  *
1855  * Returns: The VMA associated with addr, or the next VMA.
1856  * May return %NULL in the case of no VMA at addr or above.
1857  */
1858 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1859 {
1860 	unsigned long index = addr;
1861 
1862 	mmap_assert_locked(mm);
1863 	return mt_find(&mm->mm_mt, &index, ULONG_MAX);
1864 }
1865 EXPORT_SYMBOL(find_vma);
1866 
1867 /**
1868  * find_vma_prev() - Find the VMA for a given address, or the next vma and
1869  * set %pprev to the previous VMA, if any.
1870  * @mm: The mm_struct to check
1871  * @addr: The address
1872  * @pprev: The pointer to set to the previous VMA
1873  *
1874  * Note that RCU lock is missing here since the external mmap_lock() is used
1875  * instead.
1876  *
1877  * Returns: The VMA associated with @addr, or the next vma.
1878  * May return %NULL in the case of no vma at addr or above.
1879  */
1880 struct vm_area_struct *
1881 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1882 			struct vm_area_struct **pprev)
1883 {
1884 	struct vm_area_struct *vma;
1885 	MA_STATE(mas, &mm->mm_mt, addr, addr);
1886 
1887 	vma = mas_walk(&mas);
1888 	*pprev = mas_prev(&mas, 0);
1889 	if (!vma)
1890 		vma = mas_next(&mas, ULONG_MAX);
1891 	return vma;
1892 }
1893 
1894 /*
1895  * Verify that the stack growth is acceptable and
1896  * update accounting. This is shared with both the
1897  * grow-up and grow-down cases.
1898  */
1899 static int acct_stack_growth(struct vm_area_struct *vma,
1900 			     unsigned long size, unsigned long grow)
1901 {
1902 	struct mm_struct *mm = vma->vm_mm;
1903 	unsigned long new_start;
1904 
1905 	/* address space limit tests */
1906 	if (!may_expand_vm(mm, vma->vm_flags, grow))
1907 		return -ENOMEM;
1908 
1909 	/* Stack limit test */
1910 	if (size > rlimit(RLIMIT_STACK))
1911 		return -ENOMEM;
1912 
1913 	/* mlock limit tests */
1914 	if (mlock_future_check(mm, vma->vm_flags, grow << PAGE_SHIFT))
1915 		return -ENOMEM;
1916 
1917 	/* Check to ensure the stack will not grow into a hugetlb-only region */
1918 	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1919 			vma->vm_end - size;
1920 	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1921 		return -EFAULT;
1922 
1923 	/*
1924 	 * Overcommit..  This must be the final test, as it will
1925 	 * update security statistics.
1926 	 */
1927 	if (security_vm_enough_memory_mm(mm, grow))
1928 		return -ENOMEM;
1929 
1930 	return 0;
1931 }
1932 
1933 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1934 /*
1935  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1936  * vma is the last one with address > vma->vm_end.  Have to extend vma.
1937  */
1938 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1939 {
1940 	struct mm_struct *mm = vma->vm_mm;
1941 	struct vm_area_struct *next;
1942 	unsigned long gap_addr;
1943 	int error = 0;
1944 	MA_STATE(mas, &mm->mm_mt, 0, 0);
1945 
1946 	if (!(vma->vm_flags & VM_GROWSUP))
1947 		return -EFAULT;
1948 
1949 	/* Guard against exceeding limits of the address space. */
1950 	address &= PAGE_MASK;
1951 	if (address >= (TASK_SIZE & PAGE_MASK))
1952 		return -ENOMEM;
1953 	address += PAGE_SIZE;
1954 
1955 	/* Enforce stack_guard_gap */
1956 	gap_addr = address + stack_guard_gap;
1957 
1958 	/* Guard against overflow */
1959 	if (gap_addr < address || gap_addr > TASK_SIZE)
1960 		gap_addr = TASK_SIZE;
1961 
1962 	next = find_vma_intersection(mm, vma->vm_end, gap_addr);
1963 	if (next && vma_is_accessible(next)) {
1964 		if (!(next->vm_flags & VM_GROWSUP))
1965 			return -ENOMEM;
1966 		/* Check that both stack segments have the same anon_vma? */
1967 	}
1968 
1969 	if (mas_preallocate(&mas, GFP_KERNEL))
1970 		return -ENOMEM;
1971 
1972 	/* We must make sure the anon_vma is allocated. */
1973 	if (unlikely(anon_vma_prepare(vma))) {
1974 		mas_destroy(&mas);
1975 		return -ENOMEM;
1976 	}
1977 
1978 	/*
1979 	 * vma->vm_start/vm_end cannot change under us because the caller
1980 	 * is required to hold the mmap_lock in read mode.  We need the
1981 	 * anon_vma lock to serialize against concurrent expand_stacks.
1982 	 */
1983 	anon_vma_lock_write(vma->anon_vma);
1984 
1985 	/* Somebody else might have raced and expanded it already */
1986 	if (address > vma->vm_end) {
1987 		unsigned long size, grow;
1988 
1989 		size = address - vma->vm_start;
1990 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
1991 
1992 		error = -ENOMEM;
1993 		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
1994 			error = acct_stack_growth(vma, size, grow);
1995 			if (!error) {
1996 				/*
1997 				 * We only hold a shared mmap_lock lock here, so
1998 				 * we need to protect against concurrent vma
1999 				 * expansions.  anon_vma_lock_write() doesn't
2000 				 * help here, as we don't guarantee that all
2001 				 * growable vmas in a mm share the same root
2002 				 * anon vma.  So, we reuse mm->page_table_lock
2003 				 * to guard against concurrent vma expansions.
2004 				 */
2005 				spin_lock(&mm->page_table_lock);
2006 				if (vma->vm_flags & VM_LOCKED)
2007 					mm->locked_vm += grow;
2008 				vm_stat_account(mm, vma->vm_flags, grow);
2009 				anon_vma_interval_tree_pre_update_vma(vma);
2010 				vma->vm_end = address;
2011 				/* Overwrite old entry in mtree. */
2012 				mas_set_range(&mas, vma->vm_start, address - 1);
2013 				mas_store_prealloc(&mas, vma);
2014 				anon_vma_interval_tree_post_update_vma(vma);
2015 				spin_unlock(&mm->page_table_lock);
2016 
2017 				perf_event_mmap(vma);
2018 			}
2019 		}
2020 	}
2021 	anon_vma_unlock_write(vma->anon_vma);
2022 	khugepaged_enter_vma(vma, vma->vm_flags);
2023 	mas_destroy(&mas);
2024 	return error;
2025 }
2026 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2027 
2028 /*
2029  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2030  */
2031 int expand_downwards(struct vm_area_struct *vma, unsigned long address)
2032 {
2033 	struct mm_struct *mm = vma->vm_mm;
2034 	MA_STATE(mas, &mm->mm_mt, vma->vm_start, vma->vm_start);
2035 	struct vm_area_struct *prev;
2036 	int error = 0;
2037 
2038 	address &= PAGE_MASK;
2039 	if (address < mmap_min_addr)
2040 		return -EPERM;
2041 
2042 	/* Enforce stack_guard_gap */
2043 	prev = mas_prev(&mas, 0);
2044 	/* Check that both stack segments have the same anon_vma? */
2045 	if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2046 			vma_is_accessible(prev)) {
2047 		if (address - prev->vm_end < stack_guard_gap)
2048 			return -ENOMEM;
2049 	}
2050 
2051 	if (mas_preallocate(&mas, GFP_KERNEL))
2052 		return -ENOMEM;
2053 
2054 	/* We must make sure the anon_vma is allocated. */
2055 	if (unlikely(anon_vma_prepare(vma))) {
2056 		mas_destroy(&mas);
2057 		return -ENOMEM;
2058 	}
2059 
2060 	/*
2061 	 * vma->vm_start/vm_end cannot change under us because the caller
2062 	 * is required to hold the mmap_lock in read mode.  We need the
2063 	 * anon_vma lock to serialize against concurrent expand_stacks.
2064 	 */
2065 	anon_vma_lock_write(vma->anon_vma);
2066 
2067 	/* Somebody else might have raced and expanded it already */
2068 	if (address < vma->vm_start) {
2069 		unsigned long size, grow;
2070 
2071 		size = vma->vm_end - address;
2072 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
2073 
2074 		error = -ENOMEM;
2075 		if (grow <= vma->vm_pgoff) {
2076 			error = acct_stack_growth(vma, size, grow);
2077 			if (!error) {
2078 				/*
2079 				 * We only hold a shared mmap_lock lock here, so
2080 				 * we need to protect against concurrent vma
2081 				 * expansions.  anon_vma_lock_write() doesn't
2082 				 * help here, as we don't guarantee that all
2083 				 * growable vmas in a mm share the same root
2084 				 * anon vma.  So, we reuse mm->page_table_lock
2085 				 * to guard against concurrent vma expansions.
2086 				 */
2087 				spin_lock(&mm->page_table_lock);
2088 				if (vma->vm_flags & VM_LOCKED)
2089 					mm->locked_vm += grow;
2090 				vm_stat_account(mm, vma->vm_flags, grow);
2091 				anon_vma_interval_tree_pre_update_vma(vma);
2092 				vma->vm_start = address;
2093 				vma->vm_pgoff -= grow;
2094 				/* Overwrite old entry in mtree. */
2095 				mas_set_range(&mas, address, vma->vm_end - 1);
2096 				mas_store_prealloc(&mas, vma);
2097 				anon_vma_interval_tree_post_update_vma(vma);
2098 				spin_unlock(&mm->page_table_lock);
2099 
2100 				perf_event_mmap(vma);
2101 			}
2102 		}
2103 	}
2104 	anon_vma_unlock_write(vma->anon_vma);
2105 	khugepaged_enter_vma(vma, vma->vm_flags);
2106 	mas_destroy(&mas);
2107 	return error;
2108 }
2109 
2110 /* enforced gap between the expanding stack and other mappings. */
2111 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2112 
2113 static int __init cmdline_parse_stack_guard_gap(char *p)
2114 {
2115 	unsigned long val;
2116 	char *endptr;
2117 
2118 	val = simple_strtoul(p, &endptr, 10);
2119 	if (!*endptr)
2120 		stack_guard_gap = val << PAGE_SHIFT;
2121 
2122 	return 1;
2123 }
2124 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2125 
2126 #ifdef CONFIG_STACK_GROWSUP
2127 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2128 {
2129 	return expand_upwards(vma, address);
2130 }
2131 
2132 struct vm_area_struct *
2133 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2134 {
2135 	struct vm_area_struct *vma, *prev;
2136 
2137 	addr &= PAGE_MASK;
2138 	vma = find_vma_prev(mm, addr, &prev);
2139 	if (vma && (vma->vm_start <= addr))
2140 		return vma;
2141 	if (!prev || expand_stack(prev, addr))
2142 		return NULL;
2143 	if (prev->vm_flags & VM_LOCKED)
2144 		populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2145 	return prev;
2146 }
2147 #else
2148 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2149 {
2150 	return expand_downwards(vma, address);
2151 }
2152 
2153 struct vm_area_struct *
2154 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2155 {
2156 	struct vm_area_struct *vma;
2157 	unsigned long start;
2158 
2159 	addr &= PAGE_MASK;
2160 	vma = find_vma(mm, addr);
2161 	if (!vma)
2162 		return NULL;
2163 	if (vma->vm_start <= addr)
2164 		return vma;
2165 	if (!(vma->vm_flags & VM_GROWSDOWN))
2166 		return NULL;
2167 	start = vma->vm_start;
2168 	if (expand_stack(vma, addr))
2169 		return NULL;
2170 	if (vma->vm_flags & VM_LOCKED)
2171 		populate_vma_page_range(vma, addr, start, NULL);
2172 	return vma;
2173 }
2174 #endif
2175 
2176 EXPORT_SYMBOL_GPL(find_extend_vma);
2177 
2178 /*
2179  * Ok - we have the memory areas we should free on a maple tree so release them,
2180  * and do the vma updates.
2181  *
2182  * Called with the mm semaphore held.
2183  */
2184 static inline void remove_mt(struct mm_struct *mm, struct ma_state *mas)
2185 {
2186 	unsigned long nr_accounted = 0;
2187 	struct vm_area_struct *vma;
2188 
2189 	/* Update high watermark before we lower total_vm */
2190 	update_hiwater_vm(mm);
2191 	mas_for_each(mas, vma, ULONG_MAX) {
2192 		long nrpages = vma_pages(vma);
2193 
2194 		if (vma->vm_flags & VM_ACCOUNT)
2195 			nr_accounted += nrpages;
2196 		vm_stat_account(mm, vma->vm_flags, -nrpages);
2197 		remove_vma(vma, false);
2198 	}
2199 	vm_unacct_memory(nr_accounted);
2200 	validate_mm(mm);
2201 }
2202 
2203 /*
2204  * Get rid of page table information in the indicated region.
2205  *
2206  * Called with the mm semaphore held.
2207  */
2208 static void unmap_region(struct mm_struct *mm, struct maple_tree *mt,
2209 		struct vm_area_struct *vma, struct vm_area_struct *prev,
2210 		struct vm_area_struct *next,
2211 		unsigned long start, unsigned long end, bool mm_wr_locked)
2212 {
2213 	struct mmu_gather tlb;
2214 
2215 	lru_add_drain();
2216 	tlb_gather_mmu(&tlb, mm);
2217 	update_hiwater_rss(mm);
2218 	unmap_vmas(&tlb, mt, vma, start, end, mm_wr_locked);
2219 	free_pgtables(&tlb, mt, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2220 				 next ? next->vm_start : USER_PGTABLES_CEILING,
2221 				 mm_wr_locked);
2222 	tlb_finish_mmu(&tlb);
2223 }
2224 
2225 /*
2226  * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2227  * has already been checked or doesn't make sense to fail.
2228  * VMA Iterator will point to the end VMA.
2229  */
2230 int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
2231 		unsigned long addr, int new_below)
2232 {
2233 	struct vma_prepare vp;
2234 	struct vm_area_struct *new;
2235 	int err;
2236 
2237 	validate_mm_mt(vma->vm_mm);
2238 
2239 	WARN_ON(vma->vm_start >= addr);
2240 	WARN_ON(vma->vm_end <= addr);
2241 
2242 	if (vma->vm_ops && vma->vm_ops->may_split) {
2243 		err = vma->vm_ops->may_split(vma, addr);
2244 		if (err)
2245 			return err;
2246 	}
2247 
2248 	new = vm_area_dup(vma);
2249 	if (!new)
2250 		return -ENOMEM;
2251 
2252 	err = -ENOMEM;
2253 	if (vma_iter_prealloc(vmi))
2254 		goto out_free_vma;
2255 
2256 	if (new_below) {
2257 		new->vm_end = addr;
2258 	} else {
2259 		new->vm_start = addr;
2260 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2261 	}
2262 
2263 	err = vma_dup_policy(vma, new);
2264 	if (err)
2265 		goto out_free_vmi;
2266 
2267 	err = anon_vma_clone(new, vma);
2268 	if (err)
2269 		goto out_free_mpol;
2270 
2271 	if (new->vm_file)
2272 		get_file(new->vm_file);
2273 
2274 	if (new->vm_ops && new->vm_ops->open)
2275 		new->vm_ops->open(new);
2276 
2277 	init_vma_prep(&vp, vma);
2278 	vp.insert = new;
2279 	vma_prepare(&vp);
2280 	vma_adjust_trans_huge(vma, vma->vm_start, addr, 0);
2281 
2282 	if (new_below) {
2283 		vma->vm_start = addr;
2284 		vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT;
2285 	} else {
2286 		vma->vm_end = addr;
2287 	}
2288 
2289 	/* vma_complete stores the new vma */
2290 	vma_complete(&vp, vmi, vma->vm_mm);
2291 
2292 	/* Success. */
2293 	if (new_below)
2294 		vma_next(vmi);
2295 	validate_mm_mt(vma->vm_mm);
2296 	return 0;
2297 
2298 out_free_mpol:
2299 	mpol_put(vma_policy(new));
2300 out_free_vmi:
2301 	vma_iter_free(vmi);
2302 out_free_vma:
2303 	vm_area_free(new);
2304 	validate_mm_mt(vma->vm_mm);
2305 	return err;
2306 }
2307 
2308 /*
2309  * Split a vma into two pieces at address 'addr', a new vma is allocated
2310  * either for the first part or the tail.
2311  */
2312 int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
2313 	      unsigned long addr, int new_below)
2314 {
2315 	if (vma->vm_mm->map_count >= sysctl_max_map_count)
2316 		return -ENOMEM;
2317 
2318 	return __split_vma(vmi, vma, addr, new_below);
2319 }
2320 
2321 static inline int munmap_sidetree(struct vm_area_struct *vma,
2322 				   struct ma_state *mas_detach)
2323 {
2324 	vma_start_write(vma);
2325 	mas_set_range(mas_detach, vma->vm_start, vma->vm_end - 1);
2326 	if (mas_store_gfp(mas_detach, vma, GFP_KERNEL))
2327 		return -ENOMEM;
2328 
2329 	vma_mark_detached(vma, true);
2330 	if (vma->vm_flags & VM_LOCKED)
2331 		vma->vm_mm->locked_vm -= vma_pages(vma);
2332 
2333 	return 0;
2334 }
2335 
2336 /*
2337  * do_vmi_align_munmap() - munmap the aligned region from @start to @end.
2338  * @vmi: The vma iterator
2339  * @vma: The starting vm_area_struct
2340  * @mm: The mm_struct
2341  * @start: The aligned start address to munmap.
2342  * @end: The aligned end address to munmap.
2343  * @uf: The userfaultfd list_head
2344  * @downgrade: Set to true to attempt a write downgrade of the mmap_lock
2345  *
2346  * If @downgrade is true, check return code for potential release of the lock.
2347  */
2348 static int
2349 do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
2350 		    struct mm_struct *mm, unsigned long start,
2351 		    unsigned long end, struct list_head *uf, bool downgrade)
2352 {
2353 	struct vm_area_struct *prev, *next = NULL;
2354 	struct maple_tree mt_detach;
2355 	int count = 0;
2356 	int error = -ENOMEM;
2357 	MA_STATE(mas_detach, &mt_detach, 0, 0);
2358 	mt_init_flags(&mt_detach, vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK);
2359 	mt_set_external_lock(&mt_detach, &mm->mmap_lock);
2360 
2361 	/*
2362 	 * If we need to split any vma, do it now to save pain later.
2363 	 *
2364 	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2365 	 * unmapped vm_area_struct will remain in use: so lower split_vma
2366 	 * places tmp vma above, and higher split_vma places tmp vma below.
2367 	 */
2368 
2369 	/* Does it split the first one? */
2370 	if (start > vma->vm_start) {
2371 
2372 		/*
2373 		 * Make sure that map_count on return from munmap() will
2374 		 * not exceed its limit; but let map_count go just above
2375 		 * its limit temporarily, to help free resources as expected.
2376 		 */
2377 		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2378 			goto map_count_exceeded;
2379 
2380 		error = __split_vma(vmi, vma, start, 0);
2381 		if (error)
2382 			goto start_split_failed;
2383 
2384 		vma = vma_iter_load(vmi);
2385 	}
2386 
2387 	prev = vma_prev(vmi);
2388 	if (unlikely((!prev)))
2389 		vma_iter_set(vmi, start);
2390 
2391 	/*
2392 	 * Detach a range of VMAs from the mm. Using next as a temp variable as
2393 	 * it is always overwritten.
2394 	 */
2395 	for_each_vma_range(*vmi, next, end) {
2396 		/* Does it split the end? */
2397 		if (next->vm_end > end) {
2398 			error = __split_vma(vmi, next, end, 0);
2399 			if (error)
2400 				goto end_split_failed;
2401 		}
2402 		error = munmap_sidetree(next, &mas_detach);
2403 		if (error)
2404 			goto munmap_sidetree_failed;
2405 
2406 		count++;
2407 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE
2408 		BUG_ON(next->vm_start < start);
2409 		BUG_ON(next->vm_start > end);
2410 #endif
2411 	}
2412 
2413 	next = vma_next(vmi);
2414 	if (unlikely(uf)) {
2415 		/*
2416 		 * If userfaultfd_unmap_prep returns an error the vmas
2417 		 * will remain split, but userland will get a
2418 		 * highly unexpected error anyway. This is no
2419 		 * different than the case where the first of the two
2420 		 * __split_vma fails, but we don't undo the first
2421 		 * split, despite we could. This is unlikely enough
2422 		 * failure that it's not worth optimizing it for.
2423 		 */
2424 		error = userfaultfd_unmap_prep(mm, start, end, uf);
2425 
2426 		if (error)
2427 			goto userfaultfd_error;
2428 	}
2429 
2430 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
2431 	/* Make sure no VMAs are about to be lost. */
2432 	{
2433 		MA_STATE(test, &mt_detach, start, end - 1);
2434 		struct vm_area_struct *vma_mas, *vma_test;
2435 		int test_count = 0;
2436 
2437 		vma_iter_set(vmi, start);
2438 		rcu_read_lock();
2439 		vma_test = mas_find(&test, end - 1);
2440 		for_each_vma_range(*vmi, vma_mas, end) {
2441 			BUG_ON(vma_mas != vma_test);
2442 			test_count++;
2443 			vma_test = mas_next(&test, end - 1);
2444 		}
2445 		rcu_read_unlock();
2446 		BUG_ON(count != test_count);
2447 	}
2448 #endif
2449 	/* Point of no return */
2450 	vma_iter_set(vmi, start);
2451 	if (vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL))
2452 		return -ENOMEM;
2453 
2454 	mm->map_count -= count;
2455 	/*
2456 	 * Do not downgrade mmap_lock if we are next to VM_GROWSDOWN or
2457 	 * VM_GROWSUP VMA. Such VMAs can change their size under
2458 	 * down_read(mmap_lock) and collide with the VMA we are about to unmap.
2459 	 */
2460 	if (downgrade) {
2461 		if (next && (next->vm_flags & VM_GROWSDOWN))
2462 			downgrade = false;
2463 		else if (prev && (prev->vm_flags & VM_GROWSUP))
2464 			downgrade = false;
2465 		else
2466 			mmap_write_downgrade(mm);
2467 	}
2468 
2469 	/*
2470 	 * We can free page tables without write-locking mmap_lock because VMAs
2471 	 * were isolated before we downgraded mmap_lock.
2472 	 */
2473 	unmap_region(mm, &mt_detach, vma, prev, next, start, end, !downgrade);
2474 	/* Statistics and freeing VMAs */
2475 	mas_set(&mas_detach, start);
2476 	remove_mt(mm, &mas_detach);
2477 	__mt_destroy(&mt_detach);
2478 
2479 
2480 	validate_mm(mm);
2481 	return downgrade ? 1 : 0;
2482 
2483 userfaultfd_error:
2484 munmap_sidetree_failed:
2485 end_split_failed:
2486 	__mt_destroy(&mt_detach);
2487 start_split_failed:
2488 map_count_exceeded:
2489 	return error;
2490 }
2491 
2492 /*
2493  * do_vmi_munmap() - munmap a given range.
2494  * @vmi: The vma iterator
2495  * @mm: The mm_struct
2496  * @start: The start address to munmap
2497  * @len: The length of the range to munmap
2498  * @uf: The userfaultfd list_head
2499  * @downgrade: set to true if the user wants to attempt to write_downgrade the
2500  * mmap_lock
2501  *
2502  * This function takes a @mas that is either pointing to the previous VMA or set
2503  * to MA_START and sets it up to remove the mapping(s).  The @len will be
2504  * aligned and any arch_unmap work will be preformed.
2505  *
2506  * Returns: -EINVAL on failure, 1 on success and unlock, 0 otherwise.
2507  */
2508 int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
2509 		  unsigned long start, size_t len, struct list_head *uf,
2510 		  bool downgrade)
2511 {
2512 	unsigned long end;
2513 	struct vm_area_struct *vma;
2514 
2515 	if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2516 		return -EINVAL;
2517 
2518 	end = start + PAGE_ALIGN(len);
2519 	if (end == start)
2520 		return -EINVAL;
2521 
2522 	 /* arch_unmap() might do unmaps itself.  */
2523 	arch_unmap(mm, start, end);
2524 
2525 	/* Find the first overlapping VMA */
2526 	vma = vma_find(vmi, end);
2527 	if (!vma)
2528 		return 0;
2529 
2530 	return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, downgrade);
2531 }
2532 
2533 /* do_munmap() - Wrapper function for non-maple tree aware do_munmap() calls.
2534  * @mm: The mm_struct
2535  * @start: The start address to munmap
2536  * @len: The length to be munmapped.
2537  * @uf: The userfaultfd list_head
2538  */
2539 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2540 	      struct list_head *uf)
2541 {
2542 	VMA_ITERATOR(vmi, mm, start);
2543 
2544 	return do_vmi_munmap(&vmi, mm, start, len, uf, false);
2545 }
2546 
2547 unsigned long mmap_region(struct file *file, unsigned long addr,
2548 		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2549 		struct list_head *uf)
2550 {
2551 	struct mm_struct *mm = current->mm;
2552 	struct vm_area_struct *vma = NULL;
2553 	struct vm_area_struct *next, *prev, *merge;
2554 	pgoff_t pglen = len >> PAGE_SHIFT;
2555 	unsigned long charged = 0;
2556 	unsigned long end = addr + len;
2557 	unsigned long merge_start = addr, merge_end = end;
2558 	pgoff_t vm_pgoff;
2559 	int error;
2560 	VMA_ITERATOR(vmi, mm, addr);
2561 
2562 	/* Check against address space limit. */
2563 	if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
2564 		unsigned long nr_pages;
2565 
2566 		/*
2567 		 * MAP_FIXED may remove pages of mappings that intersects with
2568 		 * requested mapping. Account for the pages it would unmap.
2569 		 */
2570 		nr_pages = count_vma_pages_range(mm, addr, end);
2571 
2572 		if (!may_expand_vm(mm, vm_flags,
2573 					(len >> PAGE_SHIFT) - nr_pages))
2574 			return -ENOMEM;
2575 	}
2576 
2577 	/* Unmap any existing mapping in the area */
2578 	if (do_vmi_munmap(&vmi, mm, addr, len, uf, false))
2579 		return -ENOMEM;
2580 
2581 	/*
2582 	 * Private writable mapping: check memory availability
2583 	 */
2584 	if (accountable_mapping(file, vm_flags)) {
2585 		charged = len >> PAGE_SHIFT;
2586 		if (security_vm_enough_memory_mm(mm, charged))
2587 			return -ENOMEM;
2588 		vm_flags |= VM_ACCOUNT;
2589 	}
2590 
2591 	next = vma_next(&vmi);
2592 	prev = vma_prev(&vmi);
2593 	if (vm_flags & VM_SPECIAL)
2594 		goto cannot_expand;
2595 
2596 	/* Attempt to expand an old mapping */
2597 	/* Check next */
2598 	if (next && next->vm_start == end && !vma_policy(next) &&
2599 	    can_vma_merge_before(next, vm_flags, NULL, file, pgoff+pglen,
2600 				 NULL_VM_UFFD_CTX, NULL)) {
2601 		merge_end = next->vm_end;
2602 		vma = next;
2603 		vm_pgoff = next->vm_pgoff - pglen;
2604 	}
2605 
2606 	/* Check prev */
2607 	if (prev && prev->vm_end == addr && !vma_policy(prev) &&
2608 	    (vma ? can_vma_merge_after(prev, vm_flags, vma->anon_vma, file,
2609 				       pgoff, vma->vm_userfaultfd_ctx, NULL) :
2610 		   can_vma_merge_after(prev, vm_flags, NULL, file, pgoff,
2611 				       NULL_VM_UFFD_CTX, NULL))) {
2612 		merge_start = prev->vm_start;
2613 		vma = prev;
2614 		vm_pgoff = prev->vm_pgoff;
2615 	}
2616 
2617 
2618 	/* Actually expand, if possible */
2619 	if (vma &&
2620 	    !vma_expand(&vmi, vma, merge_start, merge_end, vm_pgoff, next)) {
2621 		khugepaged_enter_vma(vma, vm_flags);
2622 		goto expanded;
2623 	}
2624 
2625 cannot_expand:
2626 	/*
2627 	 * Determine the object being mapped and call the appropriate
2628 	 * specific mapper. the address has already been validated, but
2629 	 * not unmapped, but the maps are removed from the list.
2630 	 */
2631 	vma = vm_area_alloc(mm);
2632 	if (!vma) {
2633 		error = -ENOMEM;
2634 		goto unacct_error;
2635 	}
2636 
2637 	vma_iter_set(&vmi, addr);
2638 	vma->vm_start = addr;
2639 	vma->vm_end = end;
2640 	vm_flags_init(vma, vm_flags);
2641 	vma->vm_page_prot = vm_get_page_prot(vm_flags);
2642 	vma->vm_pgoff = pgoff;
2643 
2644 	if (file) {
2645 		if (vm_flags & VM_SHARED) {
2646 			error = mapping_map_writable(file->f_mapping);
2647 			if (error)
2648 				goto free_vma;
2649 		}
2650 
2651 		vma->vm_file = get_file(file);
2652 		error = call_mmap(file, vma);
2653 		if (error)
2654 			goto unmap_and_free_vma;
2655 
2656 		/*
2657 		 * Expansion is handled above, merging is handled below.
2658 		 * Drivers should not alter the address of the VMA.
2659 		 */
2660 		error = -EINVAL;
2661 		if (WARN_ON((addr != vma->vm_start)))
2662 			goto close_and_free_vma;
2663 
2664 		vma_iter_set(&vmi, addr);
2665 		/*
2666 		 * If vm_flags changed after call_mmap(), we should try merge
2667 		 * vma again as we may succeed this time.
2668 		 */
2669 		if (unlikely(vm_flags != vma->vm_flags && prev)) {
2670 			merge = vma_merge(&vmi, mm, prev, vma->vm_start,
2671 				    vma->vm_end, vma->vm_flags, NULL,
2672 				    vma->vm_file, vma->vm_pgoff, NULL,
2673 				    NULL_VM_UFFD_CTX, NULL);
2674 			if (merge) {
2675 				/*
2676 				 * ->mmap() can change vma->vm_file and fput
2677 				 * the original file. So fput the vma->vm_file
2678 				 * here or we would add an extra fput for file
2679 				 * and cause general protection fault
2680 				 * ultimately.
2681 				 */
2682 				fput(vma->vm_file);
2683 				vm_area_free(vma);
2684 				vma = merge;
2685 				/* Update vm_flags to pick up the change. */
2686 				vm_flags = vma->vm_flags;
2687 				goto unmap_writable;
2688 			}
2689 		}
2690 
2691 		vm_flags = vma->vm_flags;
2692 	} else if (vm_flags & VM_SHARED) {
2693 		error = shmem_zero_setup(vma);
2694 		if (error)
2695 			goto free_vma;
2696 	} else {
2697 		vma_set_anonymous(vma);
2698 	}
2699 
2700 	if (map_deny_write_exec(vma, vma->vm_flags)) {
2701 		error = -EACCES;
2702 		goto close_and_free_vma;
2703 	}
2704 
2705 	/* Allow architectures to sanity-check the vm_flags */
2706 	error = -EINVAL;
2707 	if (!arch_validate_flags(vma->vm_flags))
2708 		goto close_and_free_vma;
2709 
2710 	error = -ENOMEM;
2711 	if (vma_iter_prealloc(&vmi))
2712 		goto close_and_free_vma;
2713 
2714 	if (vma->vm_file)
2715 		i_mmap_lock_write(vma->vm_file->f_mapping);
2716 
2717 	vma_iter_store(&vmi, vma);
2718 	mm->map_count++;
2719 	if (vma->vm_file) {
2720 		if (vma->vm_flags & VM_SHARED)
2721 			mapping_allow_writable(vma->vm_file->f_mapping);
2722 
2723 		flush_dcache_mmap_lock(vma->vm_file->f_mapping);
2724 		vma_interval_tree_insert(vma, &vma->vm_file->f_mapping->i_mmap);
2725 		flush_dcache_mmap_unlock(vma->vm_file->f_mapping);
2726 		i_mmap_unlock_write(vma->vm_file->f_mapping);
2727 	}
2728 
2729 	/*
2730 	 * vma_merge() calls khugepaged_enter_vma() either, the below
2731 	 * call covers the non-merge case.
2732 	 */
2733 	khugepaged_enter_vma(vma, vma->vm_flags);
2734 
2735 	/* Once vma denies write, undo our temporary denial count */
2736 unmap_writable:
2737 	if (file && vm_flags & VM_SHARED)
2738 		mapping_unmap_writable(file->f_mapping);
2739 	file = vma->vm_file;
2740 	ksm_add_vma(vma);
2741 expanded:
2742 	perf_event_mmap(vma);
2743 
2744 	vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
2745 	if (vm_flags & VM_LOCKED) {
2746 		if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
2747 					is_vm_hugetlb_page(vma) ||
2748 					vma == get_gate_vma(current->mm))
2749 			vm_flags_clear(vma, VM_LOCKED_MASK);
2750 		else
2751 			mm->locked_vm += (len >> PAGE_SHIFT);
2752 	}
2753 
2754 	if (file)
2755 		uprobe_mmap(vma);
2756 
2757 	/*
2758 	 * New (or expanded) vma always get soft dirty status.
2759 	 * Otherwise user-space soft-dirty page tracker won't
2760 	 * be able to distinguish situation when vma area unmapped,
2761 	 * then new mapped in-place (which must be aimed as
2762 	 * a completely new data area).
2763 	 */
2764 	vm_flags_set(vma, VM_SOFTDIRTY);
2765 
2766 	vma_set_page_prot(vma);
2767 
2768 	validate_mm(mm);
2769 	return addr;
2770 
2771 close_and_free_vma:
2772 	if (file && vma->vm_ops && vma->vm_ops->close)
2773 		vma->vm_ops->close(vma);
2774 
2775 	if (file || vma->vm_file) {
2776 unmap_and_free_vma:
2777 		fput(vma->vm_file);
2778 		vma->vm_file = NULL;
2779 
2780 		/* Undo any partial mapping done by a device driver. */
2781 		unmap_region(mm, &mm->mm_mt, vma, prev, next, vma->vm_start,
2782 			     vma->vm_end, true);
2783 	}
2784 	if (file && (vm_flags & VM_SHARED))
2785 		mapping_unmap_writable(file->f_mapping);
2786 free_vma:
2787 	vm_area_free(vma);
2788 unacct_error:
2789 	if (charged)
2790 		vm_unacct_memory(charged);
2791 	validate_mm(mm);
2792 	return error;
2793 }
2794 
2795 static int __vm_munmap(unsigned long start, size_t len, bool downgrade)
2796 {
2797 	int ret;
2798 	struct mm_struct *mm = current->mm;
2799 	LIST_HEAD(uf);
2800 	VMA_ITERATOR(vmi, mm, start);
2801 
2802 	if (mmap_write_lock_killable(mm))
2803 		return -EINTR;
2804 
2805 	ret = do_vmi_munmap(&vmi, mm, start, len, &uf, downgrade);
2806 	/*
2807 	 * Returning 1 indicates mmap_lock is downgraded.
2808 	 * But 1 is not legal return value of vm_munmap() and munmap(), reset
2809 	 * it to 0 before return.
2810 	 */
2811 	if (ret == 1) {
2812 		mmap_read_unlock(mm);
2813 		ret = 0;
2814 	} else
2815 		mmap_write_unlock(mm);
2816 
2817 	userfaultfd_unmap_complete(mm, &uf);
2818 	return ret;
2819 }
2820 
2821 int vm_munmap(unsigned long start, size_t len)
2822 {
2823 	return __vm_munmap(start, len, false);
2824 }
2825 EXPORT_SYMBOL(vm_munmap);
2826 
2827 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2828 {
2829 	addr = untagged_addr(addr);
2830 	return __vm_munmap(addr, len, true);
2831 }
2832 
2833 
2834 /*
2835  * Emulation of deprecated remap_file_pages() syscall.
2836  */
2837 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2838 		unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2839 {
2840 
2841 	struct mm_struct *mm = current->mm;
2842 	struct vm_area_struct *vma;
2843 	unsigned long populate = 0;
2844 	unsigned long ret = -EINVAL;
2845 	struct file *file;
2846 
2847 	pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/mm/remap_file_pages.rst.\n",
2848 		     current->comm, current->pid);
2849 
2850 	if (prot)
2851 		return ret;
2852 	start = start & PAGE_MASK;
2853 	size = size & PAGE_MASK;
2854 
2855 	if (start + size <= start)
2856 		return ret;
2857 
2858 	/* Does pgoff wrap? */
2859 	if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2860 		return ret;
2861 
2862 	if (mmap_write_lock_killable(mm))
2863 		return -EINTR;
2864 
2865 	vma = vma_lookup(mm, start);
2866 
2867 	if (!vma || !(vma->vm_flags & VM_SHARED))
2868 		goto out;
2869 
2870 	if (start + size > vma->vm_end) {
2871 		VMA_ITERATOR(vmi, mm, vma->vm_end);
2872 		struct vm_area_struct *next, *prev = vma;
2873 
2874 		for_each_vma_range(vmi, next, start + size) {
2875 			/* hole between vmas ? */
2876 			if (next->vm_start != prev->vm_end)
2877 				goto out;
2878 
2879 			if (next->vm_file != vma->vm_file)
2880 				goto out;
2881 
2882 			if (next->vm_flags != vma->vm_flags)
2883 				goto out;
2884 
2885 			if (start + size <= next->vm_end)
2886 				break;
2887 
2888 			prev = next;
2889 		}
2890 
2891 		if (!next)
2892 			goto out;
2893 	}
2894 
2895 	prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2896 	prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2897 	prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2898 
2899 	flags &= MAP_NONBLOCK;
2900 	flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2901 	if (vma->vm_flags & VM_LOCKED)
2902 		flags |= MAP_LOCKED;
2903 
2904 	file = get_file(vma->vm_file);
2905 	ret = do_mmap(vma->vm_file, start, size,
2906 			prot, flags, pgoff, &populate, NULL);
2907 	fput(file);
2908 out:
2909 	mmap_write_unlock(mm);
2910 	if (populate)
2911 		mm_populate(ret, populate);
2912 	if (!IS_ERR_VALUE(ret))
2913 		ret = 0;
2914 	return ret;
2915 }
2916 
2917 /*
2918  * do_vma_munmap() - Unmap a full or partial vma.
2919  * @vmi: The vma iterator pointing at the vma
2920  * @vma: The first vma to be munmapped
2921  * @start: the start of the address to unmap
2922  * @end: The end of the address to unmap
2923  * @uf: The userfaultfd list_head
2924  * @downgrade: Attempt to downgrade or not
2925  *
2926  * Returns: 0 on success and not downgraded, 1 on success and downgraded.
2927  * unmaps a VMA mapping when the vma iterator is already in position.
2928  * Does not handle alignment.
2929  */
2930 int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
2931 		  unsigned long start, unsigned long end,
2932 		  struct list_head *uf, bool downgrade)
2933 {
2934 	struct mm_struct *mm = vma->vm_mm;
2935 	int ret;
2936 
2937 	arch_unmap(mm, start, end);
2938 	ret = do_vmi_align_munmap(vmi, vma, mm, start, end, uf, downgrade);
2939 	validate_mm_mt(mm);
2940 	return ret;
2941 }
2942 
2943 /*
2944  * do_brk_flags() - Increase the brk vma if the flags match.
2945  * @vmi: The vma iterator
2946  * @addr: The start address
2947  * @len: The length of the increase
2948  * @vma: The vma,
2949  * @flags: The VMA Flags
2950  *
2951  * Extend the brk VMA from addr to addr + len.  If the VMA is NULL or the flags
2952  * do not match then create a new anonymous VMA.  Eventually we may be able to
2953  * do some brk-specific accounting here.
2954  */
2955 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma,
2956 		unsigned long addr, unsigned long len, unsigned long flags)
2957 {
2958 	struct mm_struct *mm = current->mm;
2959 	struct vma_prepare vp;
2960 
2961 	validate_mm_mt(mm);
2962 	/*
2963 	 * Check against address space limits by the changed size
2964 	 * Note: This happens *after* clearing old mappings in some code paths.
2965 	 */
2966 	flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2967 	if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
2968 		return -ENOMEM;
2969 
2970 	if (mm->map_count > sysctl_max_map_count)
2971 		return -ENOMEM;
2972 
2973 	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2974 		return -ENOMEM;
2975 
2976 	/*
2977 	 * Expand the existing vma if possible; Note that singular lists do not
2978 	 * occur after forking, so the expand will only happen on new VMAs.
2979 	 */
2980 	if (vma && vma->vm_end == addr && !vma_policy(vma) &&
2981 	    can_vma_merge_after(vma, flags, NULL, NULL,
2982 				addr >> PAGE_SHIFT, NULL_VM_UFFD_CTX, NULL)) {
2983 		if (vma_iter_prealloc(vmi))
2984 			goto unacct_fail;
2985 
2986 		init_vma_prep(&vp, vma);
2987 		vma_prepare(&vp);
2988 		vma_adjust_trans_huge(vma, vma->vm_start, addr + len, 0);
2989 		vma->vm_end = addr + len;
2990 		vm_flags_set(vma, VM_SOFTDIRTY);
2991 		vma_iter_store(vmi, vma);
2992 
2993 		vma_complete(&vp, vmi, mm);
2994 		khugepaged_enter_vma(vma, flags);
2995 		goto out;
2996 	}
2997 
2998 	/* create a vma struct for an anonymous mapping */
2999 	vma = vm_area_alloc(mm);
3000 	if (!vma)
3001 		goto unacct_fail;
3002 
3003 	vma_set_anonymous(vma);
3004 	vma->vm_start = addr;
3005 	vma->vm_end = addr + len;
3006 	vma->vm_pgoff = addr >> PAGE_SHIFT;
3007 	vm_flags_init(vma, flags);
3008 	vma->vm_page_prot = vm_get_page_prot(flags);
3009 	if (vma_iter_store_gfp(vmi, vma, GFP_KERNEL))
3010 		goto mas_store_fail;
3011 
3012 	mm->map_count++;
3013 	ksm_add_vma(vma);
3014 out:
3015 	perf_event_mmap(vma);
3016 	mm->total_vm += len >> PAGE_SHIFT;
3017 	mm->data_vm += len >> PAGE_SHIFT;
3018 	if (flags & VM_LOCKED)
3019 		mm->locked_vm += (len >> PAGE_SHIFT);
3020 	vm_flags_set(vma, VM_SOFTDIRTY);
3021 	validate_mm(mm);
3022 	return 0;
3023 
3024 mas_store_fail:
3025 	vm_area_free(vma);
3026 unacct_fail:
3027 	vm_unacct_memory(len >> PAGE_SHIFT);
3028 	return -ENOMEM;
3029 }
3030 
3031 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3032 {
3033 	struct mm_struct *mm = current->mm;
3034 	struct vm_area_struct *vma = NULL;
3035 	unsigned long len;
3036 	int ret;
3037 	bool populate;
3038 	LIST_HEAD(uf);
3039 	VMA_ITERATOR(vmi, mm, addr);
3040 
3041 	len = PAGE_ALIGN(request);
3042 	if (len < request)
3043 		return -ENOMEM;
3044 	if (!len)
3045 		return 0;
3046 
3047 	if (mmap_write_lock_killable(mm))
3048 		return -EINTR;
3049 
3050 	/* Until we need other flags, refuse anything except VM_EXEC. */
3051 	if ((flags & (~VM_EXEC)) != 0)
3052 		return -EINVAL;
3053 
3054 	ret = check_brk_limits(addr, len);
3055 	if (ret)
3056 		goto limits_failed;
3057 
3058 	ret = do_vmi_munmap(&vmi, mm, addr, len, &uf, 0);
3059 	if (ret)
3060 		goto munmap_failed;
3061 
3062 	vma = vma_prev(&vmi);
3063 	ret = do_brk_flags(&vmi, vma, addr, len, flags);
3064 	populate = ((mm->def_flags & VM_LOCKED) != 0);
3065 	mmap_write_unlock(mm);
3066 	userfaultfd_unmap_complete(mm, &uf);
3067 	if (populate && !ret)
3068 		mm_populate(addr, len);
3069 	return ret;
3070 
3071 munmap_failed:
3072 limits_failed:
3073 	mmap_write_unlock(mm);
3074 	return ret;
3075 }
3076 EXPORT_SYMBOL(vm_brk_flags);
3077 
3078 int vm_brk(unsigned long addr, unsigned long len)
3079 {
3080 	return vm_brk_flags(addr, len, 0);
3081 }
3082 EXPORT_SYMBOL(vm_brk);
3083 
3084 /* Release all mmaps. */
3085 void exit_mmap(struct mm_struct *mm)
3086 {
3087 	struct mmu_gather tlb;
3088 	struct vm_area_struct *vma;
3089 	unsigned long nr_accounted = 0;
3090 	MA_STATE(mas, &mm->mm_mt, 0, 0);
3091 	int count = 0;
3092 
3093 	/* mm's last user has gone, and its about to be pulled down */
3094 	mmu_notifier_release(mm);
3095 
3096 	mmap_read_lock(mm);
3097 	arch_exit_mmap(mm);
3098 
3099 	vma = mas_find(&mas, ULONG_MAX);
3100 	if (!vma) {
3101 		/* Can happen if dup_mmap() received an OOM */
3102 		mmap_read_unlock(mm);
3103 		return;
3104 	}
3105 
3106 	lru_add_drain();
3107 	flush_cache_mm(mm);
3108 	tlb_gather_mmu_fullmm(&tlb, mm);
3109 	/* update_hiwater_rss(mm) here? but nobody should be looking */
3110 	/* Use ULONG_MAX here to ensure all VMAs in the mm are unmapped */
3111 	unmap_vmas(&tlb, &mm->mm_mt, vma, 0, ULONG_MAX, false);
3112 	mmap_read_unlock(mm);
3113 
3114 	/*
3115 	 * Set MMF_OOM_SKIP to hide this task from the oom killer/reaper
3116 	 * because the memory has been already freed.
3117 	 */
3118 	set_bit(MMF_OOM_SKIP, &mm->flags);
3119 	mmap_write_lock(mm);
3120 	mt_clear_in_rcu(&mm->mm_mt);
3121 	free_pgtables(&tlb, &mm->mm_mt, vma, FIRST_USER_ADDRESS,
3122 		      USER_PGTABLES_CEILING, true);
3123 	tlb_finish_mmu(&tlb);
3124 
3125 	/*
3126 	 * Walk the list again, actually closing and freeing it, with preemption
3127 	 * enabled, without holding any MM locks besides the unreachable
3128 	 * mmap_write_lock.
3129 	 */
3130 	do {
3131 		if (vma->vm_flags & VM_ACCOUNT)
3132 			nr_accounted += vma_pages(vma);
3133 		remove_vma(vma, true);
3134 		count++;
3135 		cond_resched();
3136 	} while ((vma = mas_find(&mas, ULONG_MAX)) != NULL);
3137 
3138 	BUG_ON(count != mm->map_count);
3139 
3140 	trace_exit_mmap(mm);
3141 	__mt_destroy(&mm->mm_mt);
3142 	mmap_write_unlock(mm);
3143 	vm_unacct_memory(nr_accounted);
3144 }
3145 
3146 /* Insert vm structure into process list sorted by address
3147  * and into the inode's i_mmap tree.  If vm_file is non-NULL
3148  * then i_mmap_rwsem is taken here.
3149  */
3150 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3151 {
3152 	unsigned long charged = vma_pages(vma);
3153 
3154 
3155 	if (find_vma_intersection(mm, vma->vm_start, vma->vm_end))
3156 		return -ENOMEM;
3157 
3158 	if ((vma->vm_flags & VM_ACCOUNT) &&
3159 	     security_vm_enough_memory_mm(mm, charged))
3160 		return -ENOMEM;
3161 
3162 	/*
3163 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
3164 	 * until its first write fault, when page's anon_vma and index
3165 	 * are set.  But now set the vm_pgoff it will almost certainly
3166 	 * end up with (unless mremap moves it elsewhere before that
3167 	 * first wfault), so /proc/pid/maps tells a consistent story.
3168 	 *
3169 	 * By setting it to reflect the virtual start address of the
3170 	 * vma, merges and splits can happen in a seamless way, just
3171 	 * using the existing file pgoff checks and manipulations.
3172 	 * Similarly in do_mmap and in do_brk_flags.
3173 	 */
3174 	if (vma_is_anonymous(vma)) {
3175 		BUG_ON(vma->anon_vma);
3176 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3177 	}
3178 
3179 	if (vma_link(mm, vma)) {
3180 		vm_unacct_memory(charged);
3181 		return -ENOMEM;
3182 	}
3183 
3184 	return 0;
3185 }
3186 
3187 /*
3188  * Copy the vma structure to a new location in the same mm,
3189  * prior to moving page table entries, to effect an mremap move.
3190  */
3191 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3192 	unsigned long addr, unsigned long len, pgoff_t pgoff,
3193 	bool *need_rmap_locks)
3194 {
3195 	struct vm_area_struct *vma = *vmap;
3196 	unsigned long vma_start = vma->vm_start;
3197 	struct mm_struct *mm = vma->vm_mm;
3198 	struct vm_area_struct *new_vma, *prev;
3199 	bool faulted_in_anon_vma = true;
3200 	VMA_ITERATOR(vmi, mm, addr);
3201 
3202 	validate_mm_mt(mm);
3203 	/*
3204 	 * If anonymous vma has not yet been faulted, update new pgoff
3205 	 * to match new location, to increase its chance of merging.
3206 	 */
3207 	if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3208 		pgoff = addr >> PAGE_SHIFT;
3209 		faulted_in_anon_vma = false;
3210 	}
3211 
3212 	new_vma = find_vma_prev(mm, addr, &prev);
3213 	if (new_vma && new_vma->vm_start < addr + len)
3214 		return NULL;	/* should never get here */
3215 
3216 	new_vma = vma_merge(&vmi, mm, prev, addr, addr + len, vma->vm_flags,
3217 			    vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3218 			    vma->vm_userfaultfd_ctx, anon_vma_name(vma));
3219 	if (new_vma) {
3220 		/*
3221 		 * Source vma may have been merged into new_vma
3222 		 */
3223 		if (unlikely(vma_start >= new_vma->vm_start &&
3224 			     vma_start < new_vma->vm_end)) {
3225 			/*
3226 			 * The only way we can get a vma_merge with
3227 			 * self during an mremap is if the vma hasn't
3228 			 * been faulted in yet and we were allowed to
3229 			 * reset the dst vma->vm_pgoff to the
3230 			 * destination address of the mremap to allow
3231 			 * the merge to happen. mremap must change the
3232 			 * vm_pgoff linearity between src and dst vmas
3233 			 * (in turn preventing a vma_merge) to be
3234 			 * safe. It is only safe to keep the vm_pgoff
3235 			 * linear if there are no pages mapped yet.
3236 			 */
3237 			VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3238 			*vmap = vma = new_vma;
3239 		}
3240 		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3241 	} else {
3242 		new_vma = vm_area_dup(vma);
3243 		if (!new_vma)
3244 			goto out;
3245 		new_vma->vm_start = addr;
3246 		new_vma->vm_end = addr + len;
3247 		new_vma->vm_pgoff = pgoff;
3248 		if (vma_dup_policy(vma, new_vma))
3249 			goto out_free_vma;
3250 		if (anon_vma_clone(new_vma, vma))
3251 			goto out_free_mempol;
3252 		if (new_vma->vm_file)
3253 			get_file(new_vma->vm_file);
3254 		if (new_vma->vm_ops && new_vma->vm_ops->open)
3255 			new_vma->vm_ops->open(new_vma);
3256 		vma_start_write(new_vma);
3257 		if (vma_link(mm, new_vma))
3258 			goto out_vma_link;
3259 		*need_rmap_locks = false;
3260 	}
3261 	validate_mm_mt(mm);
3262 	return new_vma;
3263 
3264 out_vma_link:
3265 	if (new_vma->vm_ops && new_vma->vm_ops->close)
3266 		new_vma->vm_ops->close(new_vma);
3267 
3268 	if (new_vma->vm_file)
3269 		fput(new_vma->vm_file);
3270 
3271 	unlink_anon_vmas(new_vma);
3272 out_free_mempol:
3273 	mpol_put(vma_policy(new_vma));
3274 out_free_vma:
3275 	vm_area_free(new_vma);
3276 out:
3277 	validate_mm_mt(mm);
3278 	return NULL;
3279 }
3280 
3281 /*
3282  * Return true if the calling process may expand its vm space by the passed
3283  * number of pages
3284  */
3285 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3286 {
3287 	if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3288 		return false;
3289 
3290 	if (is_data_mapping(flags) &&
3291 	    mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3292 		/* Workaround for Valgrind */
3293 		if (rlimit(RLIMIT_DATA) == 0 &&
3294 		    mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3295 			return true;
3296 
3297 		pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3298 			     current->comm, current->pid,
3299 			     (mm->data_vm + npages) << PAGE_SHIFT,
3300 			     rlimit(RLIMIT_DATA),
3301 			     ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3302 
3303 		if (!ignore_rlimit_data)
3304 			return false;
3305 	}
3306 
3307 	return true;
3308 }
3309 
3310 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3311 {
3312 	WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages);
3313 
3314 	if (is_exec_mapping(flags))
3315 		mm->exec_vm += npages;
3316 	else if (is_stack_mapping(flags))
3317 		mm->stack_vm += npages;
3318 	else if (is_data_mapping(flags))
3319 		mm->data_vm += npages;
3320 }
3321 
3322 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3323 
3324 /*
3325  * Having a close hook prevents vma merging regardless of flags.
3326  */
3327 static void special_mapping_close(struct vm_area_struct *vma)
3328 {
3329 }
3330 
3331 static const char *special_mapping_name(struct vm_area_struct *vma)
3332 {
3333 	return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3334 }
3335 
3336 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3337 {
3338 	struct vm_special_mapping *sm = new_vma->vm_private_data;
3339 
3340 	if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3341 		return -EFAULT;
3342 
3343 	if (sm->mremap)
3344 		return sm->mremap(sm, new_vma);
3345 
3346 	return 0;
3347 }
3348 
3349 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
3350 {
3351 	/*
3352 	 * Forbid splitting special mappings - kernel has expectations over
3353 	 * the number of pages in mapping. Together with VM_DONTEXPAND
3354 	 * the size of vma should stay the same over the special mapping's
3355 	 * lifetime.
3356 	 */
3357 	return -EINVAL;
3358 }
3359 
3360 static const struct vm_operations_struct special_mapping_vmops = {
3361 	.close = special_mapping_close,
3362 	.fault = special_mapping_fault,
3363 	.mremap = special_mapping_mremap,
3364 	.name = special_mapping_name,
3365 	/* vDSO code relies that VVAR can't be accessed remotely */
3366 	.access = NULL,
3367 	.may_split = special_mapping_split,
3368 };
3369 
3370 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3371 	.close = special_mapping_close,
3372 	.fault = special_mapping_fault,
3373 };
3374 
3375 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3376 {
3377 	struct vm_area_struct *vma = vmf->vma;
3378 	pgoff_t pgoff;
3379 	struct page **pages;
3380 
3381 	if (vma->vm_ops == &legacy_special_mapping_vmops) {
3382 		pages = vma->vm_private_data;
3383 	} else {
3384 		struct vm_special_mapping *sm = vma->vm_private_data;
3385 
3386 		if (sm->fault)
3387 			return sm->fault(sm, vmf->vma, vmf);
3388 
3389 		pages = sm->pages;
3390 	}
3391 
3392 	for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3393 		pgoff--;
3394 
3395 	if (*pages) {
3396 		struct page *page = *pages;
3397 		get_page(page);
3398 		vmf->page = page;
3399 		return 0;
3400 	}
3401 
3402 	return VM_FAULT_SIGBUS;
3403 }
3404 
3405 static struct vm_area_struct *__install_special_mapping(
3406 	struct mm_struct *mm,
3407 	unsigned long addr, unsigned long len,
3408 	unsigned long vm_flags, void *priv,
3409 	const struct vm_operations_struct *ops)
3410 {
3411 	int ret;
3412 	struct vm_area_struct *vma;
3413 
3414 	validate_mm_mt(mm);
3415 	vma = vm_area_alloc(mm);
3416 	if (unlikely(vma == NULL))
3417 		return ERR_PTR(-ENOMEM);
3418 
3419 	vma->vm_start = addr;
3420 	vma->vm_end = addr + len;
3421 
3422 	vm_flags_init(vma, (vm_flags | mm->def_flags |
3423 		      VM_DONTEXPAND | VM_SOFTDIRTY) & ~VM_LOCKED_MASK);
3424 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3425 
3426 	vma->vm_ops = ops;
3427 	vma->vm_private_data = priv;
3428 
3429 	ret = insert_vm_struct(mm, vma);
3430 	if (ret)
3431 		goto out;
3432 
3433 	vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3434 
3435 	perf_event_mmap(vma);
3436 
3437 	validate_mm_mt(mm);
3438 	return vma;
3439 
3440 out:
3441 	vm_area_free(vma);
3442 	validate_mm_mt(mm);
3443 	return ERR_PTR(ret);
3444 }
3445 
3446 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3447 	const struct vm_special_mapping *sm)
3448 {
3449 	return vma->vm_private_data == sm &&
3450 		(vma->vm_ops == &special_mapping_vmops ||
3451 		 vma->vm_ops == &legacy_special_mapping_vmops);
3452 }
3453 
3454 /*
3455  * Called with mm->mmap_lock held for writing.
3456  * Insert a new vma covering the given region, with the given flags.
3457  * Its pages are supplied by the given array of struct page *.
3458  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3459  * The region past the last page supplied will always produce SIGBUS.
3460  * The array pointer and the pages it points to are assumed to stay alive
3461  * for as long as this mapping might exist.
3462  */
3463 struct vm_area_struct *_install_special_mapping(
3464 	struct mm_struct *mm,
3465 	unsigned long addr, unsigned long len,
3466 	unsigned long vm_flags, const struct vm_special_mapping *spec)
3467 {
3468 	return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3469 					&special_mapping_vmops);
3470 }
3471 
3472 int install_special_mapping(struct mm_struct *mm,
3473 			    unsigned long addr, unsigned long len,
3474 			    unsigned long vm_flags, struct page **pages)
3475 {
3476 	struct vm_area_struct *vma = __install_special_mapping(
3477 		mm, addr, len, vm_flags, (void *)pages,
3478 		&legacy_special_mapping_vmops);
3479 
3480 	return PTR_ERR_OR_ZERO(vma);
3481 }
3482 
3483 static DEFINE_MUTEX(mm_all_locks_mutex);
3484 
3485 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3486 {
3487 	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3488 		/*
3489 		 * The LSB of head.next can't change from under us
3490 		 * because we hold the mm_all_locks_mutex.
3491 		 */
3492 		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3493 		/*
3494 		 * We can safely modify head.next after taking the
3495 		 * anon_vma->root->rwsem. If some other vma in this mm shares
3496 		 * the same anon_vma we won't take it again.
3497 		 *
3498 		 * No need of atomic instructions here, head.next
3499 		 * can't change from under us thanks to the
3500 		 * anon_vma->root->rwsem.
3501 		 */
3502 		if (__test_and_set_bit(0, (unsigned long *)
3503 				       &anon_vma->root->rb_root.rb_root.rb_node))
3504 			BUG();
3505 	}
3506 }
3507 
3508 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3509 {
3510 	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3511 		/*
3512 		 * AS_MM_ALL_LOCKS can't change from under us because
3513 		 * we hold the mm_all_locks_mutex.
3514 		 *
3515 		 * Operations on ->flags have to be atomic because
3516 		 * even if AS_MM_ALL_LOCKS is stable thanks to the
3517 		 * mm_all_locks_mutex, there may be other cpus
3518 		 * changing other bitflags in parallel to us.
3519 		 */
3520 		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3521 			BUG();
3522 		down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3523 	}
3524 }
3525 
3526 /*
3527  * This operation locks against the VM for all pte/vma/mm related
3528  * operations that could ever happen on a certain mm. This includes
3529  * vmtruncate, try_to_unmap, and all page faults.
3530  *
3531  * The caller must take the mmap_lock in write mode before calling
3532  * mm_take_all_locks(). The caller isn't allowed to release the
3533  * mmap_lock until mm_drop_all_locks() returns.
3534  *
3535  * mmap_lock in write mode is required in order to block all operations
3536  * that could modify pagetables and free pages without need of
3537  * altering the vma layout. It's also needed in write mode to avoid new
3538  * anon_vmas to be associated with existing vmas.
3539  *
3540  * A single task can't take more than one mm_take_all_locks() in a row
3541  * or it would deadlock.
3542  *
3543  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3544  * mapping->flags avoid to take the same lock twice, if more than one
3545  * vma in this mm is backed by the same anon_vma or address_space.
3546  *
3547  * We take locks in following order, accordingly to comment at beginning
3548  * of mm/rmap.c:
3549  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3550  *     hugetlb mapping);
3551  *   - all vmas marked locked
3552  *   - all i_mmap_rwsem locks;
3553  *   - all anon_vma->rwseml
3554  *
3555  * We can take all locks within these types randomly because the VM code
3556  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3557  * mm_all_locks_mutex.
3558  *
3559  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3560  * that may have to take thousand of locks.
3561  *
3562  * mm_take_all_locks() can fail if it's interrupted by signals.
3563  */
3564 int mm_take_all_locks(struct mm_struct *mm)
3565 {
3566 	struct vm_area_struct *vma;
3567 	struct anon_vma_chain *avc;
3568 	MA_STATE(mas, &mm->mm_mt, 0, 0);
3569 
3570 	mmap_assert_write_locked(mm);
3571 
3572 	mutex_lock(&mm_all_locks_mutex);
3573 
3574 	mas_for_each(&mas, vma, ULONG_MAX) {
3575 		if (signal_pending(current))
3576 			goto out_unlock;
3577 		vma_start_write(vma);
3578 	}
3579 
3580 	mas_set(&mas, 0);
3581 	mas_for_each(&mas, vma, ULONG_MAX) {
3582 		if (signal_pending(current))
3583 			goto out_unlock;
3584 		if (vma->vm_file && vma->vm_file->f_mapping &&
3585 				is_vm_hugetlb_page(vma))
3586 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3587 	}
3588 
3589 	mas_set(&mas, 0);
3590 	mas_for_each(&mas, vma, ULONG_MAX) {
3591 		if (signal_pending(current))
3592 			goto out_unlock;
3593 		if (vma->vm_file && vma->vm_file->f_mapping &&
3594 				!is_vm_hugetlb_page(vma))
3595 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3596 	}
3597 
3598 	mas_set(&mas, 0);
3599 	mas_for_each(&mas, vma, ULONG_MAX) {
3600 		if (signal_pending(current))
3601 			goto out_unlock;
3602 		if (vma->anon_vma)
3603 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3604 				vm_lock_anon_vma(mm, avc->anon_vma);
3605 	}
3606 
3607 	return 0;
3608 
3609 out_unlock:
3610 	mm_drop_all_locks(mm);
3611 	return -EINTR;
3612 }
3613 
3614 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3615 {
3616 	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3617 		/*
3618 		 * The LSB of head.next can't change to 0 from under
3619 		 * us because we hold the mm_all_locks_mutex.
3620 		 *
3621 		 * We must however clear the bitflag before unlocking
3622 		 * the vma so the users using the anon_vma->rb_root will
3623 		 * never see our bitflag.
3624 		 *
3625 		 * No need of atomic instructions here, head.next
3626 		 * can't change from under us until we release the
3627 		 * anon_vma->root->rwsem.
3628 		 */
3629 		if (!__test_and_clear_bit(0, (unsigned long *)
3630 					  &anon_vma->root->rb_root.rb_root.rb_node))
3631 			BUG();
3632 		anon_vma_unlock_write(anon_vma);
3633 	}
3634 }
3635 
3636 static void vm_unlock_mapping(struct address_space *mapping)
3637 {
3638 	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3639 		/*
3640 		 * AS_MM_ALL_LOCKS can't change to 0 from under us
3641 		 * because we hold the mm_all_locks_mutex.
3642 		 */
3643 		i_mmap_unlock_write(mapping);
3644 		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3645 					&mapping->flags))
3646 			BUG();
3647 	}
3648 }
3649 
3650 /*
3651  * The mmap_lock cannot be released by the caller until
3652  * mm_drop_all_locks() returns.
3653  */
3654 void mm_drop_all_locks(struct mm_struct *mm)
3655 {
3656 	struct vm_area_struct *vma;
3657 	struct anon_vma_chain *avc;
3658 	MA_STATE(mas, &mm->mm_mt, 0, 0);
3659 
3660 	mmap_assert_write_locked(mm);
3661 	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3662 
3663 	mas_for_each(&mas, vma, ULONG_MAX) {
3664 		if (vma->anon_vma)
3665 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3666 				vm_unlock_anon_vma(avc->anon_vma);
3667 		if (vma->vm_file && vma->vm_file->f_mapping)
3668 			vm_unlock_mapping(vma->vm_file->f_mapping);
3669 	}
3670 	vma_end_write_all(mm);
3671 
3672 	mutex_unlock(&mm_all_locks_mutex);
3673 }
3674 
3675 /*
3676  * initialise the percpu counter for VM
3677  */
3678 void __init mmap_init(void)
3679 {
3680 	int ret;
3681 
3682 	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3683 	VM_BUG_ON(ret);
3684 }
3685 
3686 /*
3687  * Initialise sysctl_user_reserve_kbytes.
3688  *
3689  * This is intended to prevent a user from starting a single memory hogging
3690  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3691  * mode.
3692  *
3693  * The default value is min(3% of free memory, 128MB)
3694  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3695  */
3696 static int init_user_reserve(void)
3697 {
3698 	unsigned long free_kbytes;
3699 
3700 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3701 
3702 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3703 	return 0;
3704 }
3705 subsys_initcall(init_user_reserve);
3706 
3707 /*
3708  * Initialise sysctl_admin_reserve_kbytes.
3709  *
3710  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3711  * to log in and kill a memory hogging process.
3712  *
3713  * Systems with more than 256MB will reserve 8MB, enough to recover
3714  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3715  * only reserve 3% of free pages by default.
3716  */
3717 static int init_admin_reserve(void)
3718 {
3719 	unsigned long free_kbytes;
3720 
3721 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3722 
3723 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3724 	return 0;
3725 }
3726 subsys_initcall(init_admin_reserve);
3727 
3728 /*
3729  * Reinititalise user and admin reserves if memory is added or removed.
3730  *
3731  * The default user reserve max is 128MB, and the default max for the
3732  * admin reserve is 8MB. These are usually, but not always, enough to
3733  * enable recovery from a memory hogging process using login/sshd, a shell,
3734  * and tools like top. It may make sense to increase or even disable the
3735  * reserve depending on the existence of swap or variations in the recovery
3736  * tools. So, the admin may have changed them.
3737  *
3738  * If memory is added and the reserves have been eliminated or increased above
3739  * the default max, then we'll trust the admin.
3740  *
3741  * If memory is removed and there isn't enough free memory, then we
3742  * need to reset the reserves.
3743  *
3744  * Otherwise keep the reserve set by the admin.
3745  */
3746 static int reserve_mem_notifier(struct notifier_block *nb,
3747 			     unsigned long action, void *data)
3748 {
3749 	unsigned long tmp, free_kbytes;
3750 
3751 	switch (action) {
3752 	case MEM_ONLINE:
3753 		/* Default max is 128MB. Leave alone if modified by operator. */
3754 		tmp = sysctl_user_reserve_kbytes;
3755 		if (0 < tmp && tmp < (1UL << 17))
3756 			init_user_reserve();
3757 
3758 		/* Default max is 8MB.  Leave alone if modified by operator. */
3759 		tmp = sysctl_admin_reserve_kbytes;
3760 		if (0 < tmp && tmp < (1UL << 13))
3761 			init_admin_reserve();
3762 
3763 		break;
3764 	case MEM_OFFLINE:
3765 		free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3766 
3767 		if (sysctl_user_reserve_kbytes > free_kbytes) {
3768 			init_user_reserve();
3769 			pr_info("vm.user_reserve_kbytes reset to %lu\n",
3770 				sysctl_user_reserve_kbytes);
3771 		}
3772 
3773 		if (sysctl_admin_reserve_kbytes > free_kbytes) {
3774 			init_admin_reserve();
3775 			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3776 				sysctl_admin_reserve_kbytes);
3777 		}
3778 		break;
3779 	default:
3780 		break;
3781 	}
3782 	return NOTIFY_OK;
3783 }
3784 
3785 static int __meminit init_reserve_notifier(void)
3786 {
3787 	if (hotplug_memory_notifier(reserve_mem_notifier, DEFAULT_CALLBACK_PRI))
3788 		pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3789 
3790 	return 0;
3791 }
3792 subsys_initcall(init_reserve_notifier);
3793