1 /* 2 * mm/mmap.c 3 * 4 * Written by obz. 5 * 6 * Address space accounting code <alan@lxorguk.ukuu.org.uk> 7 */ 8 9 #include <linux/slab.h> 10 #include <linux/backing-dev.h> 11 #include <linux/mm.h> 12 #include <linux/shm.h> 13 #include <linux/mman.h> 14 #include <linux/pagemap.h> 15 #include <linux/swap.h> 16 #include <linux/syscalls.h> 17 #include <linux/capability.h> 18 #include <linux/init.h> 19 #include <linux/file.h> 20 #include <linux/fs.h> 21 #include <linux/personality.h> 22 #include <linux/security.h> 23 #include <linux/ima.h> 24 #include <linux/hugetlb.h> 25 #include <linux/profile.h> 26 #include <linux/module.h> 27 #include <linux/mount.h> 28 #include <linux/mempolicy.h> 29 #include <linux/rmap.h> 30 #include <linux/mmu_notifier.h> 31 #include <linux/perf_counter.h> 32 33 #include <asm/uaccess.h> 34 #include <asm/cacheflush.h> 35 #include <asm/tlb.h> 36 #include <asm/mmu_context.h> 37 38 #include "internal.h" 39 40 #ifndef arch_mmap_check 41 #define arch_mmap_check(addr, len, flags) (0) 42 #endif 43 44 #ifndef arch_rebalance_pgtables 45 #define arch_rebalance_pgtables(addr, len) (addr) 46 #endif 47 48 static void unmap_region(struct mm_struct *mm, 49 struct vm_area_struct *vma, struct vm_area_struct *prev, 50 unsigned long start, unsigned long end); 51 52 /* 53 * WARNING: the debugging will use recursive algorithms so never enable this 54 * unless you know what you are doing. 55 */ 56 #undef DEBUG_MM_RB 57 58 /* description of effects of mapping type and prot in current implementation. 59 * this is due to the limited x86 page protection hardware. The expected 60 * behavior is in parens: 61 * 62 * map_type prot 63 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC 64 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes 65 * w: (no) no w: (no) no w: (yes) yes w: (no) no 66 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 67 * 68 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes 69 * w: (no) no w: (no) no w: (copy) copy w: (no) no 70 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 71 * 72 */ 73 pgprot_t protection_map[16] = { 74 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111, 75 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111 76 }; 77 78 pgprot_t vm_get_page_prot(unsigned long vm_flags) 79 { 80 return __pgprot(pgprot_val(protection_map[vm_flags & 81 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) | 82 pgprot_val(arch_vm_get_page_prot(vm_flags))); 83 } 84 EXPORT_SYMBOL(vm_get_page_prot); 85 86 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */ 87 int sysctl_overcommit_ratio = 50; /* default is 50% */ 88 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT; 89 struct percpu_counter vm_committed_as; 90 91 /* amount of vm to protect from userspace access */ 92 unsigned long mmap_min_addr = CONFIG_DEFAULT_MMAP_MIN_ADDR; 93 94 /* 95 * Check that a process has enough memory to allocate a new virtual 96 * mapping. 0 means there is enough memory for the allocation to 97 * succeed and -ENOMEM implies there is not. 98 * 99 * We currently support three overcommit policies, which are set via the 100 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting 101 * 102 * Strict overcommit modes added 2002 Feb 26 by Alan Cox. 103 * Additional code 2002 Jul 20 by Robert Love. 104 * 105 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise. 106 * 107 * Note this is a helper function intended to be used by LSMs which 108 * wish to use this logic. 109 */ 110 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin) 111 { 112 unsigned long free, allowed; 113 114 vm_acct_memory(pages); 115 116 /* 117 * Sometimes we want to use more memory than we have 118 */ 119 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS) 120 return 0; 121 122 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) { 123 unsigned long n; 124 125 free = global_page_state(NR_FILE_PAGES); 126 free += nr_swap_pages; 127 128 /* 129 * Any slabs which are created with the 130 * SLAB_RECLAIM_ACCOUNT flag claim to have contents 131 * which are reclaimable, under pressure. The dentry 132 * cache and most inode caches should fall into this 133 */ 134 free += global_page_state(NR_SLAB_RECLAIMABLE); 135 136 /* 137 * Leave the last 3% for root 138 */ 139 if (!cap_sys_admin) 140 free -= free / 32; 141 142 if (free > pages) 143 return 0; 144 145 /* 146 * nr_free_pages() is very expensive on large systems, 147 * only call if we're about to fail. 148 */ 149 n = nr_free_pages(); 150 151 /* 152 * Leave reserved pages. The pages are not for anonymous pages. 153 */ 154 if (n <= totalreserve_pages) 155 goto error; 156 else 157 n -= totalreserve_pages; 158 159 /* 160 * Leave the last 3% for root 161 */ 162 if (!cap_sys_admin) 163 n -= n / 32; 164 free += n; 165 166 if (free > pages) 167 return 0; 168 169 goto error; 170 } 171 172 allowed = (totalram_pages - hugetlb_total_pages()) 173 * sysctl_overcommit_ratio / 100; 174 /* 175 * Leave the last 3% for root 176 */ 177 if (!cap_sys_admin) 178 allowed -= allowed / 32; 179 allowed += total_swap_pages; 180 181 /* Don't let a single process grow too big: 182 leave 3% of the size of this process for other processes */ 183 if (mm) 184 allowed -= mm->total_vm / 32; 185 186 if (percpu_counter_read_positive(&vm_committed_as) < allowed) 187 return 0; 188 error: 189 vm_unacct_memory(pages); 190 191 return -ENOMEM; 192 } 193 194 /* 195 * Requires inode->i_mapping->i_mmap_lock 196 */ 197 static void __remove_shared_vm_struct(struct vm_area_struct *vma, 198 struct file *file, struct address_space *mapping) 199 { 200 if (vma->vm_flags & VM_DENYWRITE) 201 atomic_inc(&file->f_path.dentry->d_inode->i_writecount); 202 if (vma->vm_flags & VM_SHARED) 203 mapping->i_mmap_writable--; 204 205 flush_dcache_mmap_lock(mapping); 206 if (unlikely(vma->vm_flags & VM_NONLINEAR)) 207 list_del_init(&vma->shared.vm_set.list); 208 else 209 vma_prio_tree_remove(vma, &mapping->i_mmap); 210 flush_dcache_mmap_unlock(mapping); 211 } 212 213 /* 214 * Unlink a file-based vm structure from its prio_tree, to hide 215 * vma from rmap and vmtruncate before freeing its page tables. 216 */ 217 void unlink_file_vma(struct vm_area_struct *vma) 218 { 219 struct file *file = vma->vm_file; 220 221 if (file) { 222 struct address_space *mapping = file->f_mapping; 223 spin_lock(&mapping->i_mmap_lock); 224 __remove_shared_vm_struct(vma, file, mapping); 225 spin_unlock(&mapping->i_mmap_lock); 226 } 227 } 228 229 /* 230 * Close a vm structure and free it, returning the next. 231 */ 232 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma) 233 { 234 struct vm_area_struct *next = vma->vm_next; 235 236 might_sleep(); 237 if (vma->vm_ops && vma->vm_ops->close) 238 vma->vm_ops->close(vma); 239 if (vma->vm_file) { 240 fput(vma->vm_file); 241 if (vma->vm_flags & VM_EXECUTABLE) 242 removed_exe_file_vma(vma->vm_mm); 243 } 244 mpol_put(vma_policy(vma)); 245 kmem_cache_free(vm_area_cachep, vma); 246 return next; 247 } 248 249 SYSCALL_DEFINE1(brk, unsigned long, brk) 250 { 251 unsigned long rlim, retval; 252 unsigned long newbrk, oldbrk; 253 struct mm_struct *mm = current->mm; 254 unsigned long min_brk; 255 256 down_write(&mm->mmap_sem); 257 258 #ifdef CONFIG_COMPAT_BRK 259 min_brk = mm->end_code; 260 #else 261 min_brk = mm->start_brk; 262 #endif 263 if (brk < min_brk) 264 goto out; 265 266 /* 267 * Check against rlimit here. If this check is done later after the test 268 * of oldbrk with newbrk then it can escape the test and let the data 269 * segment grow beyond its set limit the in case where the limit is 270 * not page aligned -Ram Gupta 271 */ 272 rlim = current->signal->rlim[RLIMIT_DATA].rlim_cur; 273 if (rlim < RLIM_INFINITY && (brk - mm->start_brk) + 274 (mm->end_data - mm->start_data) > rlim) 275 goto out; 276 277 newbrk = PAGE_ALIGN(brk); 278 oldbrk = PAGE_ALIGN(mm->brk); 279 if (oldbrk == newbrk) 280 goto set_brk; 281 282 /* Always allow shrinking brk. */ 283 if (brk <= mm->brk) { 284 if (!do_munmap(mm, newbrk, oldbrk-newbrk)) 285 goto set_brk; 286 goto out; 287 } 288 289 /* Check against existing mmap mappings. */ 290 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE)) 291 goto out; 292 293 /* Ok, looks good - let it rip. */ 294 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk) 295 goto out; 296 set_brk: 297 mm->brk = brk; 298 out: 299 retval = mm->brk; 300 up_write(&mm->mmap_sem); 301 return retval; 302 } 303 304 #ifdef DEBUG_MM_RB 305 static int browse_rb(struct rb_root *root) 306 { 307 int i = 0, j; 308 struct rb_node *nd, *pn = NULL; 309 unsigned long prev = 0, pend = 0; 310 311 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 312 struct vm_area_struct *vma; 313 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 314 if (vma->vm_start < prev) 315 printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1; 316 if (vma->vm_start < pend) 317 printk("vm_start %lx pend %lx\n", vma->vm_start, pend); 318 if (vma->vm_start > vma->vm_end) 319 printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start); 320 i++; 321 pn = nd; 322 prev = vma->vm_start; 323 pend = vma->vm_end; 324 } 325 j = 0; 326 for (nd = pn; nd; nd = rb_prev(nd)) { 327 j++; 328 } 329 if (i != j) 330 printk("backwards %d, forwards %d\n", j, i), i = 0; 331 return i; 332 } 333 334 void validate_mm(struct mm_struct *mm) 335 { 336 int bug = 0; 337 int i = 0; 338 struct vm_area_struct *tmp = mm->mmap; 339 while (tmp) { 340 tmp = tmp->vm_next; 341 i++; 342 } 343 if (i != mm->map_count) 344 printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1; 345 i = browse_rb(&mm->mm_rb); 346 if (i != mm->map_count) 347 printk("map_count %d rb %d\n", mm->map_count, i), bug = 1; 348 BUG_ON(bug); 349 } 350 #else 351 #define validate_mm(mm) do { } while (0) 352 #endif 353 354 static struct vm_area_struct * 355 find_vma_prepare(struct mm_struct *mm, unsigned long addr, 356 struct vm_area_struct **pprev, struct rb_node ***rb_link, 357 struct rb_node ** rb_parent) 358 { 359 struct vm_area_struct * vma; 360 struct rb_node ** __rb_link, * __rb_parent, * rb_prev; 361 362 __rb_link = &mm->mm_rb.rb_node; 363 rb_prev = __rb_parent = NULL; 364 vma = NULL; 365 366 while (*__rb_link) { 367 struct vm_area_struct *vma_tmp; 368 369 __rb_parent = *__rb_link; 370 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb); 371 372 if (vma_tmp->vm_end > addr) { 373 vma = vma_tmp; 374 if (vma_tmp->vm_start <= addr) 375 break; 376 __rb_link = &__rb_parent->rb_left; 377 } else { 378 rb_prev = __rb_parent; 379 __rb_link = &__rb_parent->rb_right; 380 } 381 } 382 383 *pprev = NULL; 384 if (rb_prev) 385 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); 386 *rb_link = __rb_link; 387 *rb_parent = __rb_parent; 388 return vma; 389 } 390 391 static inline void 392 __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma, 393 struct vm_area_struct *prev, struct rb_node *rb_parent) 394 { 395 if (prev) { 396 vma->vm_next = prev->vm_next; 397 prev->vm_next = vma; 398 } else { 399 mm->mmap = vma; 400 if (rb_parent) 401 vma->vm_next = rb_entry(rb_parent, 402 struct vm_area_struct, vm_rb); 403 else 404 vma->vm_next = NULL; 405 } 406 } 407 408 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma, 409 struct rb_node **rb_link, struct rb_node *rb_parent) 410 { 411 rb_link_node(&vma->vm_rb, rb_parent, rb_link); 412 rb_insert_color(&vma->vm_rb, &mm->mm_rb); 413 } 414 415 static void __vma_link_file(struct vm_area_struct *vma) 416 { 417 struct file *file; 418 419 file = vma->vm_file; 420 if (file) { 421 struct address_space *mapping = file->f_mapping; 422 423 if (vma->vm_flags & VM_DENYWRITE) 424 atomic_dec(&file->f_path.dentry->d_inode->i_writecount); 425 if (vma->vm_flags & VM_SHARED) 426 mapping->i_mmap_writable++; 427 428 flush_dcache_mmap_lock(mapping); 429 if (unlikely(vma->vm_flags & VM_NONLINEAR)) 430 vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear); 431 else 432 vma_prio_tree_insert(vma, &mapping->i_mmap); 433 flush_dcache_mmap_unlock(mapping); 434 } 435 } 436 437 static void 438 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 439 struct vm_area_struct *prev, struct rb_node **rb_link, 440 struct rb_node *rb_parent) 441 { 442 __vma_link_list(mm, vma, prev, rb_parent); 443 __vma_link_rb(mm, vma, rb_link, rb_parent); 444 __anon_vma_link(vma); 445 } 446 447 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 448 struct vm_area_struct *prev, struct rb_node **rb_link, 449 struct rb_node *rb_parent) 450 { 451 struct address_space *mapping = NULL; 452 453 if (vma->vm_file) 454 mapping = vma->vm_file->f_mapping; 455 456 if (mapping) { 457 spin_lock(&mapping->i_mmap_lock); 458 vma->vm_truncate_count = mapping->truncate_count; 459 } 460 anon_vma_lock(vma); 461 462 __vma_link(mm, vma, prev, rb_link, rb_parent); 463 __vma_link_file(vma); 464 465 anon_vma_unlock(vma); 466 if (mapping) 467 spin_unlock(&mapping->i_mmap_lock); 468 469 mm->map_count++; 470 validate_mm(mm); 471 } 472 473 /* 474 * Helper for vma_adjust in the split_vma insert case: 475 * insert vm structure into list and rbtree and anon_vma, 476 * but it has already been inserted into prio_tree earlier. 477 */ 478 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 479 { 480 struct vm_area_struct *__vma, *prev; 481 struct rb_node **rb_link, *rb_parent; 482 483 __vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent); 484 BUG_ON(__vma && __vma->vm_start < vma->vm_end); 485 __vma_link(mm, vma, prev, rb_link, rb_parent); 486 mm->map_count++; 487 } 488 489 static inline void 490 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma, 491 struct vm_area_struct *prev) 492 { 493 prev->vm_next = vma->vm_next; 494 rb_erase(&vma->vm_rb, &mm->mm_rb); 495 if (mm->mmap_cache == vma) 496 mm->mmap_cache = prev; 497 } 498 499 /* 500 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that 501 * is already present in an i_mmap tree without adjusting the tree. 502 * The following helper function should be used when such adjustments 503 * are necessary. The "insert" vma (if any) is to be inserted 504 * before we drop the necessary locks. 505 */ 506 void vma_adjust(struct vm_area_struct *vma, unsigned long start, 507 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 508 { 509 struct mm_struct *mm = vma->vm_mm; 510 struct vm_area_struct *next = vma->vm_next; 511 struct vm_area_struct *importer = NULL; 512 struct address_space *mapping = NULL; 513 struct prio_tree_root *root = NULL; 514 struct file *file = vma->vm_file; 515 struct anon_vma *anon_vma = NULL; 516 long adjust_next = 0; 517 int remove_next = 0; 518 519 if (next && !insert) { 520 if (end >= next->vm_end) { 521 /* 522 * vma expands, overlapping all the next, and 523 * perhaps the one after too (mprotect case 6). 524 */ 525 again: remove_next = 1 + (end > next->vm_end); 526 end = next->vm_end; 527 anon_vma = next->anon_vma; 528 importer = vma; 529 } else if (end > next->vm_start) { 530 /* 531 * vma expands, overlapping part of the next: 532 * mprotect case 5 shifting the boundary up. 533 */ 534 adjust_next = (end - next->vm_start) >> PAGE_SHIFT; 535 anon_vma = next->anon_vma; 536 importer = vma; 537 } else if (end < vma->vm_end) { 538 /* 539 * vma shrinks, and !insert tells it's not 540 * split_vma inserting another: so it must be 541 * mprotect case 4 shifting the boundary down. 542 */ 543 adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT); 544 anon_vma = next->anon_vma; 545 importer = next; 546 } 547 } 548 549 if (file) { 550 mapping = file->f_mapping; 551 if (!(vma->vm_flags & VM_NONLINEAR)) 552 root = &mapping->i_mmap; 553 spin_lock(&mapping->i_mmap_lock); 554 if (importer && 555 vma->vm_truncate_count != next->vm_truncate_count) { 556 /* 557 * unmap_mapping_range might be in progress: 558 * ensure that the expanding vma is rescanned. 559 */ 560 importer->vm_truncate_count = 0; 561 } 562 if (insert) { 563 insert->vm_truncate_count = vma->vm_truncate_count; 564 /* 565 * Put into prio_tree now, so instantiated pages 566 * are visible to arm/parisc __flush_dcache_page 567 * throughout; but we cannot insert into address 568 * space until vma start or end is updated. 569 */ 570 __vma_link_file(insert); 571 } 572 } 573 574 /* 575 * When changing only vma->vm_end, we don't really need 576 * anon_vma lock: but is that case worth optimizing out? 577 */ 578 if (vma->anon_vma) 579 anon_vma = vma->anon_vma; 580 if (anon_vma) { 581 spin_lock(&anon_vma->lock); 582 /* 583 * Easily overlooked: when mprotect shifts the boundary, 584 * make sure the expanding vma has anon_vma set if the 585 * shrinking vma had, to cover any anon pages imported. 586 */ 587 if (importer && !importer->anon_vma) { 588 importer->anon_vma = anon_vma; 589 __anon_vma_link(importer); 590 } 591 } 592 593 if (root) { 594 flush_dcache_mmap_lock(mapping); 595 vma_prio_tree_remove(vma, root); 596 if (adjust_next) 597 vma_prio_tree_remove(next, root); 598 } 599 600 vma->vm_start = start; 601 vma->vm_end = end; 602 vma->vm_pgoff = pgoff; 603 if (adjust_next) { 604 next->vm_start += adjust_next << PAGE_SHIFT; 605 next->vm_pgoff += adjust_next; 606 } 607 608 if (root) { 609 if (adjust_next) 610 vma_prio_tree_insert(next, root); 611 vma_prio_tree_insert(vma, root); 612 flush_dcache_mmap_unlock(mapping); 613 } 614 615 if (remove_next) { 616 /* 617 * vma_merge has merged next into vma, and needs 618 * us to remove next before dropping the locks. 619 */ 620 __vma_unlink(mm, next, vma); 621 if (file) 622 __remove_shared_vm_struct(next, file, mapping); 623 if (next->anon_vma) 624 __anon_vma_merge(vma, next); 625 } else if (insert) { 626 /* 627 * split_vma has split insert from vma, and needs 628 * us to insert it before dropping the locks 629 * (it may either follow vma or precede it). 630 */ 631 __insert_vm_struct(mm, insert); 632 } 633 634 if (anon_vma) 635 spin_unlock(&anon_vma->lock); 636 if (mapping) 637 spin_unlock(&mapping->i_mmap_lock); 638 639 if (remove_next) { 640 if (file) { 641 fput(file); 642 if (next->vm_flags & VM_EXECUTABLE) 643 removed_exe_file_vma(mm); 644 } 645 mm->map_count--; 646 mpol_put(vma_policy(next)); 647 kmem_cache_free(vm_area_cachep, next); 648 /* 649 * In mprotect's case 6 (see comments on vma_merge), 650 * we must remove another next too. It would clutter 651 * up the code too much to do both in one go. 652 */ 653 if (remove_next == 2) { 654 next = vma->vm_next; 655 goto again; 656 } 657 } 658 659 validate_mm(mm); 660 } 661 662 /* Flags that can be inherited from an existing mapping when merging */ 663 #define VM_MERGEABLE_FLAGS (VM_CAN_NONLINEAR) 664 665 /* 666 * If the vma has a ->close operation then the driver probably needs to release 667 * per-vma resources, so we don't attempt to merge those. 668 */ 669 static inline int is_mergeable_vma(struct vm_area_struct *vma, 670 struct file *file, unsigned long vm_flags) 671 { 672 if ((vma->vm_flags ^ vm_flags) & ~VM_MERGEABLE_FLAGS) 673 return 0; 674 if (vma->vm_file != file) 675 return 0; 676 if (vma->vm_ops && vma->vm_ops->close) 677 return 0; 678 return 1; 679 } 680 681 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1, 682 struct anon_vma *anon_vma2) 683 { 684 return !anon_vma1 || !anon_vma2 || (anon_vma1 == anon_vma2); 685 } 686 687 /* 688 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 689 * in front of (at a lower virtual address and file offset than) the vma. 690 * 691 * We cannot merge two vmas if they have differently assigned (non-NULL) 692 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 693 * 694 * We don't check here for the merged mmap wrapping around the end of pagecache 695 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which 696 * wrap, nor mmaps which cover the final page at index -1UL. 697 */ 698 static int 699 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags, 700 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff) 701 { 702 if (is_mergeable_vma(vma, file, vm_flags) && 703 is_mergeable_anon_vma(anon_vma, vma->anon_vma)) { 704 if (vma->vm_pgoff == vm_pgoff) 705 return 1; 706 } 707 return 0; 708 } 709 710 /* 711 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 712 * beyond (at a higher virtual address and file offset than) the vma. 713 * 714 * We cannot merge two vmas if they have differently assigned (non-NULL) 715 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 716 */ 717 static int 718 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags, 719 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff) 720 { 721 if (is_mergeable_vma(vma, file, vm_flags) && 722 is_mergeable_anon_vma(anon_vma, vma->anon_vma)) { 723 pgoff_t vm_pglen; 724 vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 725 if (vma->vm_pgoff + vm_pglen == vm_pgoff) 726 return 1; 727 } 728 return 0; 729 } 730 731 /* 732 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out 733 * whether that can be merged with its predecessor or its successor. 734 * Or both (it neatly fills a hole). 735 * 736 * In most cases - when called for mmap, brk or mremap - [addr,end) is 737 * certain not to be mapped by the time vma_merge is called; but when 738 * called for mprotect, it is certain to be already mapped (either at 739 * an offset within prev, or at the start of next), and the flags of 740 * this area are about to be changed to vm_flags - and the no-change 741 * case has already been eliminated. 742 * 743 * The following mprotect cases have to be considered, where AAAA is 744 * the area passed down from mprotect_fixup, never extending beyond one 745 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after: 746 * 747 * AAAA AAAA AAAA AAAA 748 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX 749 * cannot merge might become might become might become 750 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or 751 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or 752 * mremap move: PPPPNNNNNNNN 8 753 * AAAA 754 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN 755 * might become case 1 below case 2 below case 3 below 756 * 757 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX: 758 * mprotect_fixup updates vm_flags & vm_page_prot on successful return. 759 */ 760 struct vm_area_struct *vma_merge(struct mm_struct *mm, 761 struct vm_area_struct *prev, unsigned long addr, 762 unsigned long end, unsigned long vm_flags, 763 struct anon_vma *anon_vma, struct file *file, 764 pgoff_t pgoff, struct mempolicy *policy) 765 { 766 pgoff_t pglen = (end - addr) >> PAGE_SHIFT; 767 struct vm_area_struct *area, *next; 768 769 /* 770 * We later require that vma->vm_flags == vm_flags, 771 * so this tests vma->vm_flags & VM_SPECIAL, too. 772 */ 773 if (vm_flags & VM_SPECIAL) 774 return NULL; 775 776 if (prev) 777 next = prev->vm_next; 778 else 779 next = mm->mmap; 780 area = next; 781 if (next && next->vm_end == end) /* cases 6, 7, 8 */ 782 next = next->vm_next; 783 784 /* 785 * Can it merge with the predecessor? 786 */ 787 if (prev && prev->vm_end == addr && 788 mpol_equal(vma_policy(prev), policy) && 789 can_vma_merge_after(prev, vm_flags, 790 anon_vma, file, pgoff)) { 791 /* 792 * OK, it can. Can we now merge in the successor as well? 793 */ 794 if (next && end == next->vm_start && 795 mpol_equal(policy, vma_policy(next)) && 796 can_vma_merge_before(next, vm_flags, 797 anon_vma, file, pgoff+pglen) && 798 is_mergeable_anon_vma(prev->anon_vma, 799 next->anon_vma)) { 800 /* cases 1, 6 */ 801 vma_adjust(prev, prev->vm_start, 802 next->vm_end, prev->vm_pgoff, NULL); 803 } else /* cases 2, 5, 7 */ 804 vma_adjust(prev, prev->vm_start, 805 end, prev->vm_pgoff, NULL); 806 return prev; 807 } 808 809 /* 810 * Can this new request be merged in front of next? 811 */ 812 if (next && end == next->vm_start && 813 mpol_equal(policy, vma_policy(next)) && 814 can_vma_merge_before(next, vm_flags, 815 anon_vma, file, pgoff+pglen)) { 816 if (prev && addr < prev->vm_end) /* case 4 */ 817 vma_adjust(prev, prev->vm_start, 818 addr, prev->vm_pgoff, NULL); 819 else /* cases 3, 8 */ 820 vma_adjust(area, addr, next->vm_end, 821 next->vm_pgoff - pglen, NULL); 822 return area; 823 } 824 825 return NULL; 826 } 827 828 /* 829 * find_mergeable_anon_vma is used by anon_vma_prepare, to check 830 * neighbouring vmas for a suitable anon_vma, before it goes off 831 * to allocate a new anon_vma. It checks because a repetitive 832 * sequence of mprotects and faults may otherwise lead to distinct 833 * anon_vmas being allocated, preventing vma merge in subsequent 834 * mprotect. 835 */ 836 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) 837 { 838 struct vm_area_struct *near; 839 unsigned long vm_flags; 840 841 near = vma->vm_next; 842 if (!near) 843 goto try_prev; 844 845 /* 846 * Since only mprotect tries to remerge vmas, match flags 847 * which might be mprotected into each other later on. 848 * Neither mlock nor madvise tries to remerge at present, 849 * so leave their flags as obstructing a merge. 850 */ 851 vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC); 852 vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC); 853 854 if (near->anon_vma && vma->vm_end == near->vm_start && 855 mpol_equal(vma_policy(vma), vma_policy(near)) && 856 can_vma_merge_before(near, vm_flags, 857 NULL, vma->vm_file, vma->vm_pgoff + 858 ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT))) 859 return near->anon_vma; 860 try_prev: 861 /* 862 * It is potentially slow to have to call find_vma_prev here. 863 * But it's only on the first write fault on the vma, not 864 * every time, and we could devise a way to avoid it later 865 * (e.g. stash info in next's anon_vma_node when assigning 866 * an anon_vma, or when trying vma_merge). Another time. 867 */ 868 BUG_ON(find_vma_prev(vma->vm_mm, vma->vm_start, &near) != vma); 869 if (!near) 870 goto none; 871 872 vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC); 873 vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC); 874 875 if (near->anon_vma && near->vm_end == vma->vm_start && 876 mpol_equal(vma_policy(near), vma_policy(vma)) && 877 can_vma_merge_after(near, vm_flags, 878 NULL, vma->vm_file, vma->vm_pgoff)) 879 return near->anon_vma; 880 none: 881 /* 882 * There's no absolute need to look only at touching neighbours: 883 * we could search further afield for "compatible" anon_vmas. 884 * But it would probably just be a waste of time searching, 885 * or lead to too many vmas hanging off the same anon_vma. 886 * We're trying to allow mprotect remerging later on, 887 * not trying to minimize memory used for anon_vmas. 888 */ 889 return NULL; 890 } 891 892 #ifdef CONFIG_PROC_FS 893 void vm_stat_account(struct mm_struct *mm, unsigned long flags, 894 struct file *file, long pages) 895 { 896 const unsigned long stack_flags 897 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN); 898 899 if (file) { 900 mm->shared_vm += pages; 901 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC) 902 mm->exec_vm += pages; 903 } else if (flags & stack_flags) 904 mm->stack_vm += pages; 905 if (flags & (VM_RESERVED|VM_IO)) 906 mm->reserved_vm += pages; 907 } 908 #endif /* CONFIG_PROC_FS */ 909 910 /* 911 * The caller must hold down_write(current->mm->mmap_sem). 912 */ 913 914 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, 915 unsigned long len, unsigned long prot, 916 unsigned long flags, unsigned long pgoff) 917 { 918 struct mm_struct * mm = current->mm; 919 struct inode *inode; 920 unsigned int vm_flags; 921 int error; 922 unsigned long reqprot = prot; 923 924 /* 925 * Does the application expect PROT_READ to imply PROT_EXEC? 926 * 927 * (the exception is when the underlying filesystem is noexec 928 * mounted, in which case we dont add PROT_EXEC.) 929 */ 930 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC)) 931 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC))) 932 prot |= PROT_EXEC; 933 934 if (!len) 935 return -EINVAL; 936 937 if (!(flags & MAP_FIXED)) 938 addr = round_hint_to_min(addr); 939 940 error = arch_mmap_check(addr, len, flags); 941 if (error) 942 return error; 943 944 /* Careful about overflows.. */ 945 len = PAGE_ALIGN(len); 946 if (!len || len > TASK_SIZE) 947 return -ENOMEM; 948 949 /* offset overflow? */ 950 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff) 951 return -EOVERFLOW; 952 953 /* Too many mappings? */ 954 if (mm->map_count > sysctl_max_map_count) 955 return -ENOMEM; 956 957 /* Obtain the address to map to. we verify (or select) it and ensure 958 * that it represents a valid section of the address space. 959 */ 960 addr = get_unmapped_area(file, addr, len, pgoff, flags); 961 if (addr & ~PAGE_MASK) 962 return addr; 963 964 /* Do simple checking here so the lower-level routines won't have 965 * to. we assume access permissions have been handled by the open 966 * of the memory object, so we don't do any here. 967 */ 968 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) | 969 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 970 971 if (flags & MAP_LOCKED) { 972 if (!can_do_mlock()) 973 return -EPERM; 974 vm_flags |= VM_LOCKED; 975 } 976 977 /* mlock MCL_FUTURE? */ 978 if (vm_flags & VM_LOCKED) { 979 unsigned long locked, lock_limit; 980 locked = len >> PAGE_SHIFT; 981 locked += mm->locked_vm; 982 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur; 983 lock_limit >>= PAGE_SHIFT; 984 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 985 return -EAGAIN; 986 } 987 988 inode = file ? file->f_path.dentry->d_inode : NULL; 989 990 if (file) { 991 switch (flags & MAP_TYPE) { 992 case MAP_SHARED: 993 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE)) 994 return -EACCES; 995 996 /* 997 * Make sure we don't allow writing to an append-only 998 * file.. 999 */ 1000 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE)) 1001 return -EACCES; 1002 1003 /* 1004 * Make sure there are no mandatory locks on the file. 1005 */ 1006 if (locks_verify_locked(inode)) 1007 return -EAGAIN; 1008 1009 vm_flags |= VM_SHARED | VM_MAYSHARE; 1010 if (!(file->f_mode & FMODE_WRITE)) 1011 vm_flags &= ~(VM_MAYWRITE | VM_SHARED); 1012 1013 /* fall through */ 1014 case MAP_PRIVATE: 1015 if (!(file->f_mode & FMODE_READ)) 1016 return -EACCES; 1017 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) { 1018 if (vm_flags & VM_EXEC) 1019 return -EPERM; 1020 vm_flags &= ~VM_MAYEXEC; 1021 } 1022 1023 if (!file->f_op || !file->f_op->mmap) 1024 return -ENODEV; 1025 break; 1026 1027 default: 1028 return -EINVAL; 1029 } 1030 } else { 1031 switch (flags & MAP_TYPE) { 1032 case MAP_SHARED: 1033 /* 1034 * Ignore pgoff. 1035 */ 1036 pgoff = 0; 1037 vm_flags |= VM_SHARED | VM_MAYSHARE; 1038 break; 1039 case MAP_PRIVATE: 1040 /* 1041 * Set pgoff according to addr for anon_vma. 1042 */ 1043 pgoff = addr >> PAGE_SHIFT; 1044 break; 1045 default: 1046 return -EINVAL; 1047 } 1048 } 1049 1050 error = security_file_mmap(file, reqprot, prot, flags, addr, 0); 1051 if (error) 1052 return error; 1053 error = ima_file_mmap(file, prot); 1054 if (error) 1055 return error; 1056 1057 return mmap_region(file, addr, len, flags, vm_flags, pgoff); 1058 } 1059 EXPORT_SYMBOL(do_mmap_pgoff); 1060 1061 /* 1062 * Some shared mappigns will want the pages marked read-only 1063 * to track write events. If so, we'll downgrade vm_page_prot 1064 * to the private version (using protection_map[] without the 1065 * VM_SHARED bit). 1066 */ 1067 int vma_wants_writenotify(struct vm_area_struct *vma) 1068 { 1069 unsigned int vm_flags = vma->vm_flags; 1070 1071 /* If it was private or non-writable, the write bit is already clear */ 1072 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED))) 1073 return 0; 1074 1075 /* The backer wishes to know when pages are first written to? */ 1076 if (vma->vm_ops && vma->vm_ops->page_mkwrite) 1077 return 1; 1078 1079 /* The open routine did something to the protections already? */ 1080 if (pgprot_val(vma->vm_page_prot) != 1081 pgprot_val(vm_get_page_prot(vm_flags))) 1082 return 0; 1083 1084 /* Specialty mapping? */ 1085 if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE)) 1086 return 0; 1087 1088 /* Can the mapping track the dirty pages? */ 1089 return vma->vm_file && vma->vm_file->f_mapping && 1090 mapping_cap_account_dirty(vma->vm_file->f_mapping); 1091 } 1092 1093 /* 1094 * We account for memory if it's a private writeable mapping, 1095 * not hugepages and VM_NORESERVE wasn't set. 1096 */ 1097 static inline int accountable_mapping(struct file *file, unsigned int vm_flags) 1098 { 1099 /* 1100 * hugetlb has its own accounting separate from the core VM 1101 * VM_HUGETLB may not be set yet so we cannot check for that flag. 1102 */ 1103 if (file && is_file_hugepages(file)) 1104 return 0; 1105 1106 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE; 1107 } 1108 1109 unsigned long mmap_region(struct file *file, unsigned long addr, 1110 unsigned long len, unsigned long flags, 1111 unsigned int vm_flags, unsigned long pgoff) 1112 { 1113 struct mm_struct *mm = current->mm; 1114 struct vm_area_struct *vma, *prev; 1115 int correct_wcount = 0; 1116 int error; 1117 struct rb_node **rb_link, *rb_parent; 1118 unsigned long charged = 0; 1119 struct inode *inode = file ? file->f_path.dentry->d_inode : NULL; 1120 1121 /* Clear old maps */ 1122 error = -ENOMEM; 1123 munmap_back: 1124 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent); 1125 if (vma && vma->vm_start < addr + len) { 1126 if (do_munmap(mm, addr, len)) 1127 return -ENOMEM; 1128 goto munmap_back; 1129 } 1130 1131 /* Check against address space limit. */ 1132 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) 1133 return -ENOMEM; 1134 1135 /* 1136 * Set 'VM_NORESERVE' if we should not account for the 1137 * memory use of this mapping. 1138 */ 1139 if ((flags & MAP_NORESERVE)) { 1140 /* We honor MAP_NORESERVE if allowed to overcommit */ 1141 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER) 1142 vm_flags |= VM_NORESERVE; 1143 1144 /* hugetlb applies strict overcommit unless MAP_NORESERVE */ 1145 if (file && is_file_hugepages(file)) 1146 vm_flags |= VM_NORESERVE; 1147 } 1148 1149 /* 1150 * Private writable mapping: check memory availability 1151 */ 1152 if (accountable_mapping(file, vm_flags)) { 1153 charged = len >> PAGE_SHIFT; 1154 if (security_vm_enough_memory(charged)) 1155 return -ENOMEM; 1156 vm_flags |= VM_ACCOUNT; 1157 } 1158 1159 /* 1160 * Can we just expand an old mapping? 1161 */ 1162 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL); 1163 if (vma) 1164 goto out; 1165 1166 /* 1167 * Determine the object being mapped and call the appropriate 1168 * specific mapper. the address has already been validated, but 1169 * not unmapped, but the maps are removed from the list. 1170 */ 1171 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 1172 if (!vma) { 1173 error = -ENOMEM; 1174 goto unacct_error; 1175 } 1176 1177 vma->vm_mm = mm; 1178 vma->vm_start = addr; 1179 vma->vm_end = addr + len; 1180 vma->vm_flags = vm_flags; 1181 vma->vm_page_prot = vm_get_page_prot(vm_flags); 1182 vma->vm_pgoff = pgoff; 1183 1184 if (file) { 1185 error = -EINVAL; 1186 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1187 goto free_vma; 1188 if (vm_flags & VM_DENYWRITE) { 1189 error = deny_write_access(file); 1190 if (error) 1191 goto free_vma; 1192 correct_wcount = 1; 1193 } 1194 vma->vm_file = file; 1195 get_file(file); 1196 error = file->f_op->mmap(file, vma); 1197 if (error) 1198 goto unmap_and_free_vma; 1199 if (vm_flags & VM_EXECUTABLE) 1200 added_exe_file_vma(mm); 1201 } else if (vm_flags & VM_SHARED) { 1202 error = shmem_zero_setup(vma); 1203 if (error) 1204 goto free_vma; 1205 } 1206 1207 /* Can addr have changed?? 1208 * 1209 * Answer: Yes, several device drivers can do it in their 1210 * f_op->mmap method. -DaveM 1211 */ 1212 addr = vma->vm_start; 1213 pgoff = vma->vm_pgoff; 1214 vm_flags = vma->vm_flags; 1215 1216 if (vma_wants_writenotify(vma)) 1217 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED); 1218 1219 vma_link(mm, vma, prev, rb_link, rb_parent); 1220 file = vma->vm_file; 1221 1222 /* Once vma denies write, undo our temporary denial count */ 1223 if (correct_wcount) 1224 atomic_inc(&inode->i_writecount); 1225 out: 1226 perf_counter_mmap(vma); 1227 1228 mm->total_vm += len >> PAGE_SHIFT; 1229 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT); 1230 if (vm_flags & VM_LOCKED) { 1231 /* 1232 * makes pages present; downgrades, drops, reacquires mmap_sem 1233 */ 1234 long nr_pages = mlock_vma_pages_range(vma, addr, addr + len); 1235 if (nr_pages < 0) 1236 return nr_pages; /* vma gone! */ 1237 mm->locked_vm += (len >> PAGE_SHIFT) - nr_pages; 1238 } else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK)) 1239 make_pages_present(addr, addr + len); 1240 return addr; 1241 1242 unmap_and_free_vma: 1243 if (correct_wcount) 1244 atomic_inc(&inode->i_writecount); 1245 vma->vm_file = NULL; 1246 fput(file); 1247 1248 /* Undo any partial mapping done by a device driver. */ 1249 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end); 1250 charged = 0; 1251 free_vma: 1252 kmem_cache_free(vm_area_cachep, vma); 1253 unacct_error: 1254 if (charged) 1255 vm_unacct_memory(charged); 1256 return error; 1257 } 1258 1259 /* Get an address range which is currently unmapped. 1260 * For shmat() with addr=0. 1261 * 1262 * Ugly calling convention alert: 1263 * Return value with the low bits set means error value, 1264 * ie 1265 * if (ret & ~PAGE_MASK) 1266 * error = ret; 1267 * 1268 * This function "knows" that -ENOMEM has the bits set. 1269 */ 1270 #ifndef HAVE_ARCH_UNMAPPED_AREA 1271 unsigned long 1272 arch_get_unmapped_area(struct file *filp, unsigned long addr, 1273 unsigned long len, unsigned long pgoff, unsigned long flags) 1274 { 1275 struct mm_struct *mm = current->mm; 1276 struct vm_area_struct *vma; 1277 unsigned long start_addr; 1278 1279 if (len > TASK_SIZE) 1280 return -ENOMEM; 1281 1282 if (flags & MAP_FIXED) 1283 return addr; 1284 1285 if (addr) { 1286 addr = PAGE_ALIGN(addr); 1287 vma = find_vma(mm, addr); 1288 if (TASK_SIZE - len >= addr && 1289 (!vma || addr + len <= vma->vm_start)) 1290 return addr; 1291 } 1292 if (len > mm->cached_hole_size) { 1293 start_addr = addr = mm->free_area_cache; 1294 } else { 1295 start_addr = addr = TASK_UNMAPPED_BASE; 1296 mm->cached_hole_size = 0; 1297 } 1298 1299 full_search: 1300 for (vma = find_vma(mm, addr); ; vma = vma->vm_next) { 1301 /* At this point: (!vma || addr < vma->vm_end). */ 1302 if (TASK_SIZE - len < addr) { 1303 /* 1304 * Start a new search - just in case we missed 1305 * some holes. 1306 */ 1307 if (start_addr != TASK_UNMAPPED_BASE) { 1308 addr = TASK_UNMAPPED_BASE; 1309 start_addr = addr; 1310 mm->cached_hole_size = 0; 1311 goto full_search; 1312 } 1313 return -ENOMEM; 1314 } 1315 if (!vma || addr + len <= vma->vm_start) { 1316 /* 1317 * Remember the place where we stopped the search: 1318 */ 1319 mm->free_area_cache = addr + len; 1320 return addr; 1321 } 1322 if (addr + mm->cached_hole_size < vma->vm_start) 1323 mm->cached_hole_size = vma->vm_start - addr; 1324 addr = vma->vm_end; 1325 } 1326 } 1327 #endif 1328 1329 void arch_unmap_area(struct mm_struct *mm, unsigned long addr) 1330 { 1331 /* 1332 * Is this a new hole at the lowest possible address? 1333 */ 1334 if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) { 1335 mm->free_area_cache = addr; 1336 mm->cached_hole_size = ~0UL; 1337 } 1338 } 1339 1340 /* 1341 * This mmap-allocator allocates new areas top-down from below the 1342 * stack's low limit (the base): 1343 */ 1344 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 1345 unsigned long 1346 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0, 1347 const unsigned long len, const unsigned long pgoff, 1348 const unsigned long flags) 1349 { 1350 struct vm_area_struct *vma; 1351 struct mm_struct *mm = current->mm; 1352 unsigned long addr = addr0; 1353 1354 /* requested length too big for entire address space */ 1355 if (len > TASK_SIZE) 1356 return -ENOMEM; 1357 1358 if (flags & MAP_FIXED) 1359 return addr; 1360 1361 /* requesting a specific address */ 1362 if (addr) { 1363 addr = PAGE_ALIGN(addr); 1364 vma = find_vma(mm, addr); 1365 if (TASK_SIZE - len >= addr && 1366 (!vma || addr + len <= vma->vm_start)) 1367 return addr; 1368 } 1369 1370 /* check if free_area_cache is useful for us */ 1371 if (len <= mm->cached_hole_size) { 1372 mm->cached_hole_size = 0; 1373 mm->free_area_cache = mm->mmap_base; 1374 } 1375 1376 /* either no address requested or can't fit in requested address hole */ 1377 addr = mm->free_area_cache; 1378 1379 /* make sure it can fit in the remaining address space */ 1380 if (addr > len) { 1381 vma = find_vma(mm, addr-len); 1382 if (!vma || addr <= vma->vm_start) 1383 /* remember the address as a hint for next time */ 1384 return (mm->free_area_cache = addr-len); 1385 } 1386 1387 if (mm->mmap_base < len) 1388 goto bottomup; 1389 1390 addr = mm->mmap_base-len; 1391 1392 do { 1393 /* 1394 * Lookup failure means no vma is above this address, 1395 * else if new region fits below vma->vm_start, 1396 * return with success: 1397 */ 1398 vma = find_vma(mm, addr); 1399 if (!vma || addr+len <= vma->vm_start) 1400 /* remember the address as a hint for next time */ 1401 return (mm->free_area_cache = addr); 1402 1403 /* remember the largest hole we saw so far */ 1404 if (addr + mm->cached_hole_size < vma->vm_start) 1405 mm->cached_hole_size = vma->vm_start - addr; 1406 1407 /* try just below the current vma->vm_start */ 1408 addr = vma->vm_start-len; 1409 } while (len < vma->vm_start); 1410 1411 bottomup: 1412 /* 1413 * A failed mmap() very likely causes application failure, 1414 * so fall back to the bottom-up function here. This scenario 1415 * can happen with large stack limits and large mmap() 1416 * allocations. 1417 */ 1418 mm->cached_hole_size = ~0UL; 1419 mm->free_area_cache = TASK_UNMAPPED_BASE; 1420 addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags); 1421 /* 1422 * Restore the topdown base: 1423 */ 1424 mm->free_area_cache = mm->mmap_base; 1425 mm->cached_hole_size = ~0UL; 1426 1427 return addr; 1428 } 1429 #endif 1430 1431 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr) 1432 { 1433 /* 1434 * Is this a new hole at the highest possible address? 1435 */ 1436 if (addr > mm->free_area_cache) 1437 mm->free_area_cache = addr; 1438 1439 /* dont allow allocations above current base */ 1440 if (mm->free_area_cache > mm->mmap_base) 1441 mm->free_area_cache = mm->mmap_base; 1442 } 1443 1444 unsigned long 1445 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 1446 unsigned long pgoff, unsigned long flags) 1447 { 1448 unsigned long (*get_area)(struct file *, unsigned long, 1449 unsigned long, unsigned long, unsigned long); 1450 1451 get_area = current->mm->get_unmapped_area; 1452 if (file && file->f_op && file->f_op->get_unmapped_area) 1453 get_area = file->f_op->get_unmapped_area; 1454 addr = get_area(file, addr, len, pgoff, flags); 1455 if (IS_ERR_VALUE(addr)) 1456 return addr; 1457 1458 if (addr > TASK_SIZE - len) 1459 return -ENOMEM; 1460 if (addr & ~PAGE_MASK) 1461 return -EINVAL; 1462 1463 return arch_rebalance_pgtables(addr, len); 1464 } 1465 1466 EXPORT_SYMBOL(get_unmapped_area); 1467 1468 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 1469 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 1470 { 1471 struct vm_area_struct *vma = NULL; 1472 1473 if (mm) { 1474 /* Check the cache first. */ 1475 /* (Cache hit rate is typically around 35%.) */ 1476 vma = mm->mmap_cache; 1477 if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) { 1478 struct rb_node * rb_node; 1479 1480 rb_node = mm->mm_rb.rb_node; 1481 vma = NULL; 1482 1483 while (rb_node) { 1484 struct vm_area_struct * vma_tmp; 1485 1486 vma_tmp = rb_entry(rb_node, 1487 struct vm_area_struct, vm_rb); 1488 1489 if (vma_tmp->vm_end > addr) { 1490 vma = vma_tmp; 1491 if (vma_tmp->vm_start <= addr) 1492 break; 1493 rb_node = rb_node->rb_left; 1494 } else 1495 rb_node = rb_node->rb_right; 1496 } 1497 if (vma) 1498 mm->mmap_cache = vma; 1499 } 1500 } 1501 return vma; 1502 } 1503 1504 EXPORT_SYMBOL(find_vma); 1505 1506 /* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */ 1507 struct vm_area_struct * 1508 find_vma_prev(struct mm_struct *mm, unsigned long addr, 1509 struct vm_area_struct **pprev) 1510 { 1511 struct vm_area_struct *vma = NULL, *prev = NULL; 1512 struct rb_node *rb_node; 1513 if (!mm) 1514 goto out; 1515 1516 /* Guard against addr being lower than the first VMA */ 1517 vma = mm->mmap; 1518 1519 /* Go through the RB tree quickly. */ 1520 rb_node = mm->mm_rb.rb_node; 1521 1522 while (rb_node) { 1523 struct vm_area_struct *vma_tmp; 1524 vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb); 1525 1526 if (addr < vma_tmp->vm_end) { 1527 rb_node = rb_node->rb_left; 1528 } else { 1529 prev = vma_tmp; 1530 if (!prev->vm_next || (addr < prev->vm_next->vm_end)) 1531 break; 1532 rb_node = rb_node->rb_right; 1533 } 1534 } 1535 1536 out: 1537 *pprev = prev; 1538 return prev ? prev->vm_next : vma; 1539 } 1540 1541 /* 1542 * Verify that the stack growth is acceptable and 1543 * update accounting. This is shared with both the 1544 * grow-up and grow-down cases. 1545 */ 1546 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow) 1547 { 1548 struct mm_struct *mm = vma->vm_mm; 1549 struct rlimit *rlim = current->signal->rlim; 1550 unsigned long new_start; 1551 1552 /* address space limit tests */ 1553 if (!may_expand_vm(mm, grow)) 1554 return -ENOMEM; 1555 1556 /* Stack limit test */ 1557 if (size > rlim[RLIMIT_STACK].rlim_cur) 1558 return -ENOMEM; 1559 1560 /* mlock limit tests */ 1561 if (vma->vm_flags & VM_LOCKED) { 1562 unsigned long locked; 1563 unsigned long limit; 1564 locked = mm->locked_vm + grow; 1565 limit = rlim[RLIMIT_MEMLOCK].rlim_cur >> PAGE_SHIFT; 1566 if (locked > limit && !capable(CAP_IPC_LOCK)) 1567 return -ENOMEM; 1568 } 1569 1570 /* Check to ensure the stack will not grow into a hugetlb-only region */ 1571 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : 1572 vma->vm_end - size; 1573 if (is_hugepage_only_range(vma->vm_mm, new_start, size)) 1574 return -EFAULT; 1575 1576 /* 1577 * Overcommit.. This must be the final test, as it will 1578 * update security statistics. 1579 */ 1580 if (security_vm_enough_memory_mm(mm, grow)) 1581 return -ENOMEM; 1582 1583 /* Ok, everything looks good - let it rip */ 1584 mm->total_vm += grow; 1585 if (vma->vm_flags & VM_LOCKED) 1586 mm->locked_vm += grow; 1587 vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow); 1588 return 0; 1589 } 1590 1591 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64) 1592 /* 1593 * PA-RISC uses this for its stack; IA64 for its Register Backing Store. 1594 * vma is the last one with address > vma->vm_end. Have to extend vma. 1595 */ 1596 #ifndef CONFIG_IA64 1597 static 1598 #endif 1599 int expand_upwards(struct vm_area_struct *vma, unsigned long address) 1600 { 1601 int error; 1602 1603 if (!(vma->vm_flags & VM_GROWSUP)) 1604 return -EFAULT; 1605 1606 /* 1607 * We must make sure the anon_vma is allocated 1608 * so that the anon_vma locking is not a noop. 1609 */ 1610 if (unlikely(anon_vma_prepare(vma))) 1611 return -ENOMEM; 1612 anon_vma_lock(vma); 1613 1614 /* 1615 * vma->vm_start/vm_end cannot change under us because the caller 1616 * is required to hold the mmap_sem in read mode. We need the 1617 * anon_vma lock to serialize against concurrent expand_stacks. 1618 * Also guard against wrapping around to address 0. 1619 */ 1620 if (address < PAGE_ALIGN(address+4)) 1621 address = PAGE_ALIGN(address+4); 1622 else { 1623 anon_vma_unlock(vma); 1624 return -ENOMEM; 1625 } 1626 error = 0; 1627 1628 /* Somebody else might have raced and expanded it already */ 1629 if (address > vma->vm_end) { 1630 unsigned long size, grow; 1631 1632 size = address - vma->vm_start; 1633 grow = (address - vma->vm_end) >> PAGE_SHIFT; 1634 1635 error = acct_stack_growth(vma, size, grow); 1636 if (!error) 1637 vma->vm_end = address; 1638 } 1639 anon_vma_unlock(vma); 1640 return error; 1641 } 1642 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */ 1643 1644 /* 1645 * vma is the first one with address < vma->vm_start. Have to extend vma. 1646 */ 1647 static int expand_downwards(struct vm_area_struct *vma, 1648 unsigned long address) 1649 { 1650 int error; 1651 1652 /* 1653 * We must make sure the anon_vma is allocated 1654 * so that the anon_vma locking is not a noop. 1655 */ 1656 if (unlikely(anon_vma_prepare(vma))) 1657 return -ENOMEM; 1658 1659 address &= PAGE_MASK; 1660 error = security_file_mmap(NULL, 0, 0, 0, address, 1); 1661 if (error) 1662 return error; 1663 1664 anon_vma_lock(vma); 1665 1666 /* 1667 * vma->vm_start/vm_end cannot change under us because the caller 1668 * is required to hold the mmap_sem in read mode. We need the 1669 * anon_vma lock to serialize against concurrent expand_stacks. 1670 */ 1671 1672 /* Somebody else might have raced and expanded it already */ 1673 if (address < vma->vm_start) { 1674 unsigned long size, grow; 1675 1676 size = vma->vm_end - address; 1677 grow = (vma->vm_start - address) >> PAGE_SHIFT; 1678 1679 error = acct_stack_growth(vma, size, grow); 1680 if (!error) { 1681 vma->vm_start = address; 1682 vma->vm_pgoff -= grow; 1683 } 1684 } 1685 anon_vma_unlock(vma); 1686 return error; 1687 } 1688 1689 int expand_stack_downwards(struct vm_area_struct *vma, unsigned long address) 1690 { 1691 return expand_downwards(vma, address); 1692 } 1693 1694 #ifdef CONFIG_STACK_GROWSUP 1695 int expand_stack(struct vm_area_struct *vma, unsigned long address) 1696 { 1697 return expand_upwards(vma, address); 1698 } 1699 1700 struct vm_area_struct * 1701 find_extend_vma(struct mm_struct *mm, unsigned long addr) 1702 { 1703 struct vm_area_struct *vma, *prev; 1704 1705 addr &= PAGE_MASK; 1706 vma = find_vma_prev(mm, addr, &prev); 1707 if (vma && (vma->vm_start <= addr)) 1708 return vma; 1709 if (!prev || expand_stack(prev, addr)) 1710 return NULL; 1711 if (prev->vm_flags & VM_LOCKED) { 1712 if (mlock_vma_pages_range(prev, addr, prev->vm_end) < 0) 1713 return NULL; /* vma gone! */ 1714 } 1715 return prev; 1716 } 1717 #else 1718 int expand_stack(struct vm_area_struct *vma, unsigned long address) 1719 { 1720 return expand_downwards(vma, address); 1721 } 1722 1723 struct vm_area_struct * 1724 find_extend_vma(struct mm_struct * mm, unsigned long addr) 1725 { 1726 struct vm_area_struct * vma; 1727 unsigned long start; 1728 1729 addr &= PAGE_MASK; 1730 vma = find_vma(mm,addr); 1731 if (!vma) 1732 return NULL; 1733 if (vma->vm_start <= addr) 1734 return vma; 1735 if (!(vma->vm_flags & VM_GROWSDOWN)) 1736 return NULL; 1737 start = vma->vm_start; 1738 if (expand_stack(vma, addr)) 1739 return NULL; 1740 if (vma->vm_flags & VM_LOCKED) { 1741 if (mlock_vma_pages_range(vma, addr, start) < 0) 1742 return NULL; /* vma gone! */ 1743 } 1744 return vma; 1745 } 1746 #endif 1747 1748 /* 1749 * Ok - we have the memory areas we should free on the vma list, 1750 * so release them, and do the vma updates. 1751 * 1752 * Called with the mm semaphore held. 1753 */ 1754 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma) 1755 { 1756 /* Update high watermark before we lower total_vm */ 1757 update_hiwater_vm(mm); 1758 do { 1759 long nrpages = vma_pages(vma); 1760 1761 mm->total_vm -= nrpages; 1762 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages); 1763 vma = remove_vma(vma); 1764 } while (vma); 1765 validate_mm(mm); 1766 } 1767 1768 /* 1769 * Get rid of page table information in the indicated region. 1770 * 1771 * Called with the mm semaphore held. 1772 */ 1773 static void unmap_region(struct mm_struct *mm, 1774 struct vm_area_struct *vma, struct vm_area_struct *prev, 1775 unsigned long start, unsigned long end) 1776 { 1777 struct vm_area_struct *next = prev? prev->vm_next: mm->mmap; 1778 struct mmu_gather *tlb; 1779 unsigned long nr_accounted = 0; 1780 1781 lru_add_drain(); 1782 tlb = tlb_gather_mmu(mm, 0); 1783 update_hiwater_rss(mm); 1784 unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL); 1785 vm_unacct_memory(nr_accounted); 1786 free_pgtables(tlb, vma, prev? prev->vm_end: FIRST_USER_ADDRESS, 1787 next? next->vm_start: 0); 1788 tlb_finish_mmu(tlb, start, end); 1789 } 1790 1791 /* 1792 * Create a list of vma's touched by the unmap, removing them from the mm's 1793 * vma list as we go.. 1794 */ 1795 static void 1796 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma, 1797 struct vm_area_struct *prev, unsigned long end) 1798 { 1799 struct vm_area_struct **insertion_point; 1800 struct vm_area_struct *tail_vma = NULL; 1801 unsigned long addr; 1802 1803 insertion_point = (prev ? &prev->vm_next : &mm->mmap); 1804 do { 1805 rb_erase(&vma->vm_rb, &mm->mm_rb); 1806 mm->map_count--; 1807 tail_vma = vma; 1808 vma = vma->vm_next; 1809 } while (vma && vma->vm_start < end); 1810 *insertion_point = vma; 1811 tail_vma->vm_next = NULL; 1812 if (mm->unmap_area == arch_unmap_area) 1813 addr = prev ? prev->vm_end : mm->mmap_base; 1814 else 1815 addr = vma ? vma->vm_start : mm->mmap_base; 1816 mm->unmap_area(mm, addr); 1817 mm->mmap_cache = NULL; /* Kill the cache. */ 1818 } 1819 1820 /* 1821 * Split a vma into two pieces at address 'addr', a new vma is allocated 1822 * either for the first part or the tail. 1823 */ 1824 int split_vma(struct mm_struct * mm, struct vm_area_struct * vma, 1825 unsigned long addr, int new_below) 1826 { 1827 struct mempolicy *pol; 1828 struct vm_area_struct *new; 1829 1830 if (is_vm_hugetlb_page(vma) && (addr & 1831 ~(huge_page_mask(hstate_vma(vma))))) 1832 return -EINVAL; 1833 1834 if (mm->map_count >= sysctl_max_map_count) 1835 return -ENOMEM; 1836 1837 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 1838 if (!new) 1839 return -ENOMEM; 1840 1841 /* most fields are the same, copy all, and then fixup */ 1842 *new = *vma; 1843 1844 if (new_below) 1845 new->vm_end = addr; 1846 else { 1847 new->vm_start = addr; 1848 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); 1849 } 1850 1851 pol = mpol_dup(vma_policy(vma)); 1852 if (IS_ERR(pol)) { 1853 kmem_cache_free(vm_area_cachep, new); 1854 return PTR_ERR(pol); 1855 } 1856 vma_set_policy(new, pol); 1857 1858 if (new->vm_file) { 1859 get_file(new->vm_file); 1860 if (vma->vm_flags & VM_EXECUTABLE) 1861 added_exe_file_vma(mm); 1862 } 1863 1864 if (new->vm_ops && new->vm_ops->open) 1865 new->vm_ops->open(new); 1866 1867 if (new_below) 1868 vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff + 1869 ((addr - new->vm_start) >> PAGE_SHIFT), new); 1870 else 1871 vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new); 1872 1873 return 0; 1874 } 1875 1876 /* Munmap is split into 2 main parts -- this part which finds 1877 * what needs doing, and the areas themselves, which do the 1878 * work. This now handles partial unmappings. 1879 * Jeremy Fitzhardinge <jeremy@goop.org> 1880 */ 1881 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len) 1882 { 1883 unsigned long end; 1884 struct vm_area_struct *vma, *prev, *last; 1885 1886 if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start) 1887 return -EINVAL; 1888 1889 if ((len = PAGE_ALIGN(len)) == 0) 1890 return -EINVAL; 1891 1892 /* Find the first overlapping VMA */ 1893 vma = find_vma_prev(mm, start, &prev); 1894 if (!vma) 1895 return 0; 1896 /* we have start < vma->vm_end */ 1897 1898 /* if it doesn't overlap, we have nothing.. */ 1899 end = start + len; 1900 if (vma->vm_start >= end) 1901 return 0; 1902 1903 /* 1904 * If we need to split any vma, do it now to save pain later. 1905 * 1906 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially 1907 * unmapped vm_area_struct will remain in use: so lower split_vma 1908 * places tmp vma above, and higher split_vma places tmp vma below. 1909 */ 1910 if (start > vma->vm_start) { 1911 int error = split_vma(mm, vma, start, 0); 1912 if (error) 1913 return error; 1914 prev = vma; 1915 } 1916 1917 /* Does it split the last one? */ 1918 last = find_vma(mm, end); 1919 if (last && end > last->vm_start) { 1920 int error = split_vma(mm, last, end, 1); 1921 if (error) 1922 return error; 1923 } 1924 vma = prev? prev->vm_next: mm->mmap; 1925 1926 /* 1927 * unlock any mlock()ed ranges before detaching vmas 1928 */ 1929 if (mm->locked_vm) { 1930 struct vm_area_struct *tmp = vma; 1931 while (tmp && tmp->vm_start < end) { 1932 if (tmp->vm_flags & VM_LOCKED) { 1933 mm->locked_vm -= vma_pages(tmp); 1934 munlock_vma_pages_all(tmp); 1935 } 1936 tmp = tmp->vm_next; 1937 } 1938 } 1939 1940 /* 1941 * Remove the vma's, and unmap the actual pages 1942 */ 1943 detach_vmas_to_be_unmapped(mm, vma, prev, end); 1944 unmap_region(mm, vma, prev, start, end); 1945 1946 /* Fix up all other VM information */ 1947 remove_vma_list(mm, vma); 1948 1949 return 0; 1950 } 1951 1952 EXPORT_SYMBOL(do_munmap); 1953 1954 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 1955 { 1956 int ret; 1957 struct mm_struct *mm = current->mm; 1958 1959 profile_munmap(addr); 1960 1961 down_write(&mm->mmap_sem); 1962 ret = do_munmap(mm, addr, len); 1963 up_write(&mm->mmap_sem); 1964 return ret; 1965 } 1966 1967 static inline void verify_mm_writelocked(struct mm_struct *mm) 1968 { 1969 #ifdef CONFIG_DEBUG_VM 1970 if (unlikely(down_read_trylock(&mm->mmap_sem))) { 1971 WARN_ON(1); 1972 up_read(&mm->mmap_sem); 1973 } 1974 #endif 1975 } 1976 1977 /* 1978 * this is really a simplified "do_mmap". it only handles 1979 * anonymous maps. eventually we may be able to do some 1980 * brk-specific accounting here. 1981 */ 1982 unsigned long do_brk(unsigned long addr, unsigned long len) 1983 { 1984 struct mm_struct * mm = current->mm; 1985 struct vm_area_struct * vma, * prev; 1986 unsigned long flags; 1987 struct rb_node ** rb_link, * rb_parent; 1988 pgoff_t pgoff = addr >> PAGE_SHIFT; 1989 int error; 1990 1991 len = PAGE_ALIGN(len); 1992 if (!len) 1993 return addr; 1994 1995 if ((addr + len) > TASK_SIZE || (addr + len) < addr) 1996 return -EINVAL; 1997 1998 if (is_hugepage_only_range(mm, addr, len)) 1999 return -EINVAL; 2000 2001 error = security_file_mmap(NULL, 0, 0, 0, addr, 1); 2002 if (error) 2003 return error; 2004 2005 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; 2006 2007 error = arch_mmap_check(addr, len, flags); 2008 if (error) 2009 return error; 2010 2011 /* 2012 * mlock MCL_FUTURE? 2013 */ 2014 if (mm->def_flags & VM_LOCKED) { 2015 unsigned long locked, lock_limit; 2016 locked = len >> PAGE_SHIFT; 2017 locked += mm->locked_vm; 2018 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur; 2019 lock_limit >>= PAGE_SHIFT; 2020 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 2021 return -EAGAIN; 2022 } 2023 2024 /* 2025 * mm->mmap_sem is required to protect against another thread 2026 * changing the mappings in case we sleep. 2027 */ 2028 verify_mm_writelocked(mm); 2029 2030 /* 2031 * Clear old maps. this also does some error checking for us 2032 */ 2033 munmap_back: 2034 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent); 2035 if (vma && vma->vm_start < addr + len) { 2036 if (do_munmap(mm, addr, len)) 2037 return -ENOMEM; 2038 goto munmap_back; 2039 } 2040 2041 /* Check against address space limits *after* clearing old maps... */ 2042 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) 2043 return -ENOMEM; 2044 2045 if (mm->map_count > sysctl_max_map_count) 2046 return -ENOMEM; 2047 2048 if (security_vm_enough_memory(len >> PAGE_SHIFT)) 2049 return -ENOMEM; 2050 2051 /* Can we just expand an old private anonymous mapping? */ 2052 vma = vma_merge(mm, prev, addr, addr + len, flags, 2053 NULL, NULL, pgoff, NULL); 2054 if (vma) 2055 goto out; 2056 2057 /* 2058 * create a vma struct for an anonymous mapping 2059 */ 2060 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 2061 if (!vma) { 2062 vm_unacct_memory(len >> PAGE_SHIFT); 2063 return -ENOMEM; 2064 } 2065 2066 vma->vm_mm = mm; 2067 vma->vm_start = addr; 2068 vma->vm_end = addr + len; 2069 vma->vm_pgoff = pgoff; 2070 vma->vm_flags = flags; 2071 vma->vm_page_prot = vm_get_page_prot(flags); 2072 vma_link(mm, vma, prev, rb_link, rb_parent); 2073 out: 2074 mm->total_vm += len >> PAGE_SHIFT; 2075 if (flags & VM_LOCKED) { 2076 if (!mlock_vma_pages_range(vma, addr, addr + len)) 2077 mm->locked_vm += (len >> PAGE_SHIFT); 2078 } 2079 return addr; 2080 } 2081 2082 EXPORT_SYMBOL(do_brk); 2083 2084 /* Release all mmaps. */ 2085 void exit_mmap(struct mm_struct *mm) 2086 { 2087 struct mmu_gather *tlb; 2088 struct vm_area_struct *vma; 2089 unsigned long nr_accounted = 0; 2090 unsigned long end; 2091 2092 /* mm's last user has gone, and its about to be pulled down */ 2093 mmu_notifier_release(mm); 2094 2095 if (mm->locked_vm) { 2096 vma = mm->mmap; 2097 while (vma) { 2098 if (vma->vm_flags & VM_LOCKED) 2099 munlock_vma_pages_all(vma); 2100 vma = vma->vm_next; 2101 } 2102 } 2103 2104 arch_exit_mmap(mm); 2105 2106 vma = mm->mmap; 2107 if (!vma) /* Can happen if dup_mmap() received an OOM */ 2108 return; 2109 2110 lru_add_drain(); 2111 flush_cache_mm(mm); 2112 tlb = tlb_gather_mmu(mm, 1); 2113 /* update_hiwater_rss(mm) here? but nobody should be looking */ 2114 /* Use -1 here to ensure all VMAs in the mm are unmapped */ 2115 end = unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL); 2116 vm_unacct_memory(nr_accounted); 2117 free_pgtables(tlb, vma, FIRST_USER_ADDRESS, 0); 2118 tlb_finish_mmu(tlb, 0, end); 2119 2120 /* 2121 * Walk the list again, actually closing and freeing it, 2122 * with preemption enabled, without holding any MM locks. 2123 */ 2124 while (vma) 2125 vma = remove_vma(vma); 2126 2127 BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT); 2128 } 2129 2130 /* Insert vm structure into process list sorted by address 2131 * and into the inode's i_mmap tree. If vm_file is non-NULL 2132 * then i_mmap_lock is taken here. 2133 */ 2134 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma) 2135 { 2136 struct vm_area_struct * __vma, * prev; 2137 struct rb_node ** rb_link, * rb_parent; 2138 2139 /* 2140 * The vm_pgoff of a purely anonymous vma should be irrelevant 2141 * until its first write fault, when page's anon_vma and index 2142 * are set. But now set the vm_pgoff it will almost certainly 2143 * end up with (unless mremap moves it elsewhere before that 2144 * first wfault), so /proc/pid/maps tells a consistent story. 2145 * 2146 * By setting it to reflect the virtual start address of the 2147 * vma, merges and splits can happen in a seamless way, just 2148 * using the existing file pgoff checks and manipulations. 2149 * Similarly in do_mmap_pgoff and in do_brk. 2150 */ 2151 if (!vma->vm_file) { 2152 BUG_ON(vma->anon_vma); 2153 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; 2154 } 2155 __vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent); 2156 if (__vma && __vma->vm_start < vma->vm_end) 2157 return -ENOMEM; 2158 if ((vma->vm_flags & VM_ACCOUNT) && 2159 security_vm_enough_memory_mm(mm, vma_pages(vma))) 2160 return -ENOMEM; 2161 vma_link(mm, vma, prev, rb_link, rb_parent); 2162 return 0; 2163 } 2164 2165 /* 2166 * Copy the vma structure to a new location in the same mm, 2167 * prior to moving page table entries, to effect an mremap move. 2168 */ 2169 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 2170 unsigned long addr, unsigned long len, pgoff_t pgoff) 2171 { 2172 struct vm_area_struct *vma = *vmap; 2173 unsigned long vma_start = vma->vm_start; 2174 struct mm_struct *mm = vma->vm_mm; 2175 struct vm_area_struct *new_vma, *prev; 2176 struct rb_node **rb_link, *rb_parent; 2177 struct mempolicy *pol; 2178 2179 /* 2180 * If anonymous vma has not yet been faulted, update new pgoff 2181 * to match new location, to increase its chance of merging. 2182 */ 2183 if (!vma->vm_file && !vma->anon_vma) 2184 pgoff = addr >> PAGE_SHIFT; 2185 2186 find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent); 2187 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags, 2188 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma)); 2189 if (new_vma) { 2190 /* 2191 * Source vma may have been merged into new_vma 2192 */ 2193 if (vma_start >= new_vma->vm_start && 2194 vma_start < new_vma->vm_end) 2195 *vmap = new_vma; 2196 } else { 2197 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 2198 if (new_vma) { 2199 *new_vma = *vma; 2200 pol = mpol_dup(vma_policy(vma)); 2201 if (IS_ERR(pol)) { 2202 kmem_cache_free(vm_area_cachep, new_vma); 2203 return NULL; 2204 } 2205 vma_set_policy(new_vma, pol); 2206 new_vma->vm_start = addr; 2207 new_vma->vm_end = addr + len; 2208 new_vma->vm_pgoff = pgoff; 2209 if (new_vma->vm_file) { 2210 get_file(new_vma->vm_file); 2211 if (vma->vm_flags & VM_EXECUTABLE) 2212 added_exe_file_vma(mm); 2213 } 2214 if (new_vma->vm_ops && new_vma->vm_ops->open) 2215 new_vma->vm_ops->open(new_vma); 2216 vma_link(mm, new_vma, prev, rb_link, rb_parent); 2217 } 2218 } 2219 return new_vma; 2220 } 2221 2222 /* 2223 * Return true if the calling process may expand its vm space by the passed 2224 * number of pages 2225 */ 2226 int may_expand_vm(struct mm_struct *mm, unsigned long npages) 2227 { 2228 unsigned long cur = mm->total_vm; /* pages */ 2229 unsigned long lim; 2230 2231 lim = current->signal->rlim[RLIMIT_AS].rlim_cur >> PAGE_SHIFT; 2232 2233 if (cur + npages > lim) 2234 return 0; 2235 return 1; 2236 } 2237 2238 2239 static int special_mapping_fault(struct vm_area_struct *vma, 2240 struct vm_fault *vmf) 2241 { 2242 pgoff_t pgoff; 2243 struct page **pages; 2244 2245 /* 2246 * special mappings have no vm_file, and in that case, the mm 2247 * uses vm_pgoff internally. So we have to subtract it from here. 2248 * We are allowed to do this because we are the mm; do not copy 2249 * this code into drivers! 2250 */ 2251 pgoff = vmf->pgoff - vma->vm_pgoff; 2252 2253 for (pages = vma->vm_private_data; pgoff && *pages; ++pages) 2254 pgoff--; 2255 2256 if (*pages) { 2257 struct page *page = *pages; 2258 get_page(page); 2259 vmf->page = page; 2260 return 0; 2261 } 2262 2263 return VM_FAULT_SIGBUS; 2264 } 2265 2266 /* 2267 * Having a close hook prevents vma merging regardless of flags. 2268 */ 2269 static void special_mapping_close(struct vm_area_struct *vma) 2270 { 2271 } 2272 2273 static struct vm_operations_struct special_mapping_vmops = { 2274 .close = special_mapping_close, 2275 .fault = special_mapping_fault, 2276 }; 2277 2278 /* 2279 * Called with mm->mmap_sem held for writing. 2280 * Insert a new vma covering the given region, with the given flags. 2281 * Its pages are supplied by the given array of struct page *. 2282 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated. 2283 * The region past the last page supplied will always produce SIGBUS. 2284 * The array pointer and the pages it points to are assumed to stay alive 2285 * for as long as this mapping might exist. 2286 */ 2287 int install_special_mapping(struct mm_struct *mm, 2288 unsigned long addr, unsigned long len, 2289 unsigned long vm_flags, struct page **pages) 2290 { 2291 struct vm_area_struct *vma; 2292 2293 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 2294 if (unlikely(vma == NULL)) 2295 return -ENOMEM; 2296 2297 vma->vm_mm = mm; 2298 vma->vm_start = addr; 2299 vma->vm_end = addr + len; 2300 2301 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND; 2302 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2303 2304 vma->vm_ops = &special_mapping_vmops; 2305 vma->vm_private_data = pages; 2306 2307 if (unlikely(insert_vm_struct(mm, vma))) { 2308 kmem_cache_free(vm_area_cachep, vma); 2309 return -ENOMEM; 2310 } 2311 2312 mm->total_vm += len >> PAGE_SHIFT; 2313 2314 perf_counter_mmap(vma); 2315 2316 return 0; 2317 } 2318 2319 static DEFINE_MUTEX(mm_all_locks_mutex); 2320 2321 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) 2322 { 2323 if (!test_bit(0, (unsigned long *) &anon_vma->head.next)) { 2324 /* 2325 * The LSB of head.next can't change from under us 2326 * because we hold the mm_all_locks_mutex. 2327 */ 2328 spin_lock_nest_lock(&anon_vma->lock, &mm->mmap_sem); 2329 /* 2330 * We can safely modify head.next after taking the 2331 * anon_vma->lock. If some other vma in this mm shares 2332 * the same anon_vma we won't take it again. 2333 * 2334 * No need of atomic instructions here, head.next 2335 * can't change from under us thanks to the 2336 * anon_vma->lock. 2337 */ 2338 if (__test_and_set_bit(0, (unsigned long *) 2339 &anon_vma->head.next)) 2340 BUG(); 2341 } 2342 } 2343 2344 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) 2345 { 2346 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 2347 /* 2348 * AS_MM_ALL_LOCKS can't change from under us because 2349 * we hold the mm_all_locks_mutex. 2350 * 2351 * Operations on ->flags have to be atomic because 2352 * even if AS_MM_ALL_LOCKS is stable thanks to the 2353 * mm_all_locks_mutex, there may be other cpus 2354 * changing other bitflags in parallel to us. 2355 */ 2356 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) 2357 BUG(); 2358 spin_lock_nest_lock(&mapping->i_mmap_lock, &mm->mmap_sem); 2359 } 2360 } 2361 2362 /* 2363 * This operation locks against the VM for all pte/vma/mm related 2364 * operations that could ever happen on a certain mm. This includes 2365 * vmtruncate, try_to_unmap, and all page faults. 2366 * 2367 * The caller must take the mmap_sem in write mode before calling 2368 * mm_take_all_locks(). The caller isn't allowed to release the 2369 * mmap_sem until mm_drop_all_locks() returns. 2370 * 2371 * mmap_sem in write mode is required in order to block all operations 2372 * that could modify pagetables and free pages without need of 2373 * altering the vma layout (for example populate_range() with 2374 * nonlinear vmas). It's also needed in write mode to avoid new 2375 * anon_vmas to be associated with existing vmas. 2376 * 2377 * A single task can't take more than one mm_take_all_locks() in a row 2378 * or it would deadlock. 2379 * 2380 * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in 2381 * mapping->flags avoid to take the same lock twice, if more than one 2382 * vma in this mm is backed by the same anon_vma or address_space. 2383 * 2384 * We can take all the locks in random order because the VM code 2385 * taking i_mmap_lock or anon_vma->lock outside the mmap_sem never 2386 * takes more than one of them in a row. Secondly we're protected 2387 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex. 2388 * 2389 * mm_take_all_locks() and mm_drop_all_locks are expensive operations 2390 * that may have to take thousand of locks. 2391 * 2392 * mm_take_all_locks() can fail if it's interrupted by signals. 2393 */ 2394 int mm_take_all_locks(struct mm_struct *mm) 2395 { 2396 struct vm_area_struct *vma; 2397 int ret = -EINTR; 2398 2399 BUG_ON(down_read_trylock(&mm->mmap_sem)); 2400 2401 mutex_lock(&mm_all_locks_mutex); 2402 2403 for (vma = mm->mmap; vma; vma = vma->vm_next) { 2404 if (signal_pending(current)) 2405 goto out_unlock; 2406 if (vma->vm_file && vma->vm_file->f_mapping) 2407 vm_lock_mapping(mm, vma->vm_file->f_mapping); 2408 } 2409 2410 for (vma = mm->mmap; vma; vma = vma->vm_next) { 2411 if (signal_pending(current)) 2412 goto out_unlock; 2413 if (vma->anon_vma) 2414 vm_lock_anon_vma(mm, vma->anon_vma); 2415 } 2416 2417 ret = 0; 2418 2419 out_unlock: 2420 if (ret) 2421 mm_drop_all_locks(mm); 2422 2423 return ret; 2424 } 2425 2426 static void vm_unlock_anon_vma(struct anon_vma *anon_vma) 2427 { 2428 if (test_bit(0, (unsigned long *) &anon_vma->head.next)) { 2429 /* 2430 * The LSB of head.next can't change to 0 from under 2431 * us because we hold the mm_all_locks_mutex. 2432 * 2433 * We must however clear the bitflag before unlocking 2434 * the vma so the users using the anon_vma->head will 2435 * never see our bitflag. 2436 * 2437 * No need of atomic instructions here, head.next 2438 * can't change from under us until we release the 2439 * anon_vma->lock. 2440 */ 2441 if (!__test_and_clear_bit(0, (unsigned long *) 2442 &anon_vma->head.next)) 2443 BUG(); 2444 spin_unlock(&anon_vma->lock); 2445 } 2446 } 2447 2448 static void vm_unlock_mapping(struct address_space *mapping) 2449 { 2450 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 2451 /* 2452 * AS_MM_ALL_LOCKS can't change to 0 from under us 2453 * because we hold the mm_all_locks_mutex. 2454 */ 2455 spin_unlock(&mapping->i_mmap_lock); 2456 if (!test_and_clear_bit(AS_MM_ALL_LOCKS, 2457 &mapping->flags)) 2458 BUG(); 2459 } 2460 } 2461 2462 /* 2463 * The mmap_sem cannot be released by the caller until 2464 * mm_drop_all_locks() returns. 2465 */ 2466 void mm_drop_all_locks(struct mm_struct *mm) 2467 { 2468 struct vm_area_struct *vma; 2469 2470 BUG_ON(down_read_trylock(&mm->mmap_sem)); 2471 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); 2472 2473 for (vma = mm->mmap; vma; vma = vma->vm_next) { 2474 if (vma->anon_vma) 2475 vm_unlock_anon_vma(vma->anon_vma); 2476 if (vma->vm_file && vma->vm_file->f_mapping) 2477 vm_unlock_mapping(vma->vm_file->f_mapping); 2478 } 2479 2480 mutex_unlock(&mm_all_locks_mutex); 2481 } 2482 2483 /* 2484 * initialise the VMA slab 2485 */ 2486 void __init mmap_init(void) 2487 { 2488 int ret; 2489 2490 ret = percpu_counter_init(&vm_committed_as, 0); 2491 VM_BUG_ON(ret); 2492 } 2493