1 /* 2 * mm/mmap.c 3 * 4 * Written by obz. 5 * 6 * Address space accounting code <alan@lxorguk.ukuu.org.uk> 7 */ 8 9 #include <linux/slab.h> 10 #include <linux/backing-dev.h> 11 #include <linux/mm.h> 12 #include <linux/shm.h> 13 #include <linux/mman.h> 14 #include <linux/pagemap.h> 15 #include <linux/swap.h> 16 #include <linux/syscalls.h> 17 #include <linux/capability.h> 18 #include <linux/init.h> 19 #include <linux/file.h> 20 #include <linux/fs.h> 21 #include <linux/personality.h> 22 #include <linux/security.h> 23 #include <linux/ima.h> 24 #include <linux/hugetlb.h> 25 #include <linux/profile.h> 26 #include <linux/module.h> 27 #include <linux/mount.h> 28 #include <linux/mempolicy.h> 29 #include <linux/rmap.h> 30 #include <linux/mmu_notifier.h> 31 32 #include <asm/uaccess.h> 33 #include <asm/cacheflush.h> 34 #include <asm/tlb.h> 35 #include <asm/mmu_context.h> 36 37 #include "internal.h" 38 39 #ifndef arch_mmap_check 40 #define arch_mmap_check(addr, len, flags) (0) 41 #endif 42 43 #ifndef arch_rebalance_pgtables 44 #define arch_rebalance_pgtables(addr, len) (addr) 45 #endif 46 47 static void unmap_region(struct mm_struct *mm, 48 struct vm_area_struct *vma, struct vm_area_struct *prev, 49 unsigned long start, unsigned long end); 50 51 /* 52 * WARNING: the debugging will use recursive algorithms so never enable this 53 * unless you know what you are doing. 54 */ 55 #undef DEBUG_MM_RB 56 57 /* description of effects of mapping type and prot in current implementation. 58 * this is due to the limited x86 page protection hardware. The expected 59 * behavior is in parens: 60 * 61 * map_type prot 62 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC 63 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes 64 * w: (no) no w: (no) no w: (yes) yes w: (no) no 65 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 66 * 67 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes 68 * w: (no) no w: (no) no w: (copy) copy w: (no) no 69 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 70 * 71 */ 72 pgprot_t protection_map[16] = { 73 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111, 74 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111 75 }; 76 77 pgprot_t vm_get_page_prot(unsigned long vm_flags) 78 { 79 return __pgprot(pgprot_val(protection_map[vm_flags & 80 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) | 81 pgprot_val(arch_vm_get_page_prot(vm_flags))); 82 } 83 EXPORT_SYMBOL(vm_get_page_prot); 84 85 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */ 86 int sysctl_overcommit_ratio = 50; /* default is 50% */ 87 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT; 88 atomic_long_t vm_committed_space = ATOMIC_LONG_INIT(0); 89 90 /* 91 * Check that a process has enough memory to allocate a new virtual 92 * mapping. 0 means there is enough memory for the allocation to 93 * succeed and -ENOMEM implies there is not. 94 * 95 * We currently support three overcommit policies, which are set via the 96 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting 97 * 98 * Strict overcommit modes added 2002 Feb 26 by Alan Cox. 99 * Additional code 2002 Jul 20 by Robert Love. 100 * 101 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise. 102 * 103 * Note this is a helper function intended to be used by LSMs which 104 * wish to use this logic. 105 */ 106 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin) 107 { 108 unsigned long free, allowed; 109 110 vm_acct_memory(pages); 111 112 /* 113 * Sometimes we want to use more memory than we have 114 */ 115 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS) 116 return 0; 117 118 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) { 119 unsigned long n; 120 121 free = global_page_state(NR_FILE_PAGES); 122 free += nr_swap_pages; 123 124 /* 125 * Any slabs which are created with the 126 * SLAB_RECLAIM_ACCOUNT flag claim to have contents 127 * which are reclaimable, under pressure. The dentry 128 * cache and most inode caches should fall into this 129 */ 130 free += global_page_state(NR_SLAB_RECLAIMABLE); 131 132 /* 133 * Leave the last 3% for root 134 */ 135 if (!cap_sys_admin) 136 free -= free / 32; 137 138 if (free > pages) 139 return 0; 140 141 /* 142 * nr_free_pages() is very expensive on large systems, 143 * only call if we're about to fail. 144 */ 145 n = nr_free_pages(); 146 147 /* 148 * Leave reserved pages. The pages are not for anonymous pages. 149 */ 150 if (n <= totalreserve_pages) 151 goto error; 152 else 153 n -= totalreserve_pages; 154 155 /* 156 * Leave the last 3% for root 157 */ 158 if (!cap_sys_admin) 159 n -= n / 32; 160 free += n; 161 162 if (free > pages) 163 return 0; 164 165 goto error; 166 } 167 168 allowed = (totalram_pages - hugetlb_total_pages()) 169 * sysctl_overcommit_ratio / 100; 170 /* 171 * Leave the last 3% for root 172 */ 173 if (!cap_sys_admin) 174 allowed -= allowed / 32; 175 allowed += total_swap_pages; 176 177 /* Don't let a single process grow too big: 178 leave 3% of the size of this process for other processes */ 179 if (mm) 180 allowed -= mm->total_vm / 32; 181 182 /* 183 * cast `allowed' as a signed long because vm_committed_space 184 * sometimes has a negative value 185 */ 186 if (atomic_long_read(&vm_committed_space) < (long)allowed) 187 return 0; 188 error: 189 vm_unacct_memory(pages); 190 191 return -ENOMEM; 192 } 193 194 /* 195 * Requires inode->i_mapping->i_mmap_lock 196 */ 197 static void __remove_shared_vm_struct(struct vm_area_struct *vma, 198 struct file *file, struct address_space *mapping) 199 { 200 if (vma->vm_flags & VM_DENYWRITE) 201 atomic_inc(&file->f_path.dentry->d_inode->i_writecount); 202 if (vma->vm_flags & VM_SHARED) 203 mapping->i_mmap_writable--; 204 205 flush_dcache_mmap_lock(mapping); 206 if (unlikely(vma->vm_flags & VM_NONLINEAR)) 207 list_del_init(&vma->shared.vm_set.list); 208 else 209 vma_prio_tree_remove(vma, &mapping->i_mmap); 210 flush_dcache_mmap_unlock(mapping); 211 } 212 213 /* 214 * Unlink a file-based vm structure from its prio_tree, to hide 215 * vma from rmap and vmtruncate before freeing its page tables. 216 */ 217 void unlink_file_vma(struct vm_area_struct *vma) 218 { 219 struct file *file = vma->vm_file; 220 221 if (file) { 222 struct address_space *mapping = file->f_mapping; 223 spin_lock(&mapping->i_mmap_lock); 224 __remove_shared_vm_struct(vma, file, mapping); 225 spin_unlock(&mapping->i_mmap_lock); 226 } 227 } 228 229 /* 230 * Close a vm structure and free it, returning the next. 231 */ 232 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma) 233 { 234 struct vm_area_struct *next = vma->vm_next; 235 236 might_sleep(); 237 if (vma->vm_ops && vma->vm_ops->close) 238 vma->vm_ops->close(vma); 239 if (vma->vm_file) { 240 fput(vma->vm_file); 241 if (vma->vm_flags & VM_EXECUTABLE) 242 removed_exe_file_vma(vma->vm_mm); 243 } 244 mpol_put(vma_policy(vma)); 245 kmem_cache_free(vm_area_cachep, vma); 246 return next; 247 } 248 249 SYSCALL_DEFINE1(brk, unsigned long, brk) 250 { 251 unsigned long rlim, retval; 252 unsigned long newbrk, oldbrk; 253 struct mm_struct *mm = current->mm; 254 unsigned long min_brk; 255 256 down_write(&mm->mmap_sem); 257 258 #ifdef CONFIG_COMPAT_BRK 259 min_brk = mm->end_code; 260 #else 261 min_brk = mm->start_brk; 262 #endif 263 if (brk < min_brk) 264 goto out; 265 266 /* 267 * Check against rlimit here. If this check is done later after the test 268 * of oldbrk with newbrk then it can escape the test and let the data 269 * segment grow beyond its set limit the in case where the limit is 270 * not page aligned -Ram Gupta 271 */ 272 rlim = current->signal->rlim[RLIMIT_DATA].rlim_cur; 273 if (rlim < RLIM_INFINITY && (brk - mm->start_brk) + 274 (mm->end_data - mm->start_data) > rlim) 275 goto out; 276 277 newbrk = PAGE_ALIGN(brk); 278 oldbrk = PAGE_ALIGN(mm->brk); 279 if (oldbrk == newbrk) 280 goto set_brk; 281 282 /* Always allow shrinking brk. */ 283 if (brk <= mm->brk) { 284 if (!do_munmap(mm, newbrk, oldbrk-newbrk)) 285 goto set_brk; 286 goto out; 287 } 288 289 /* Check against existing mmap mappings. */ 290 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE)) 291 goto out; 292 293 /* Ok, looks good - let it rip. */ 294 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk) 295 goto out; 296 set_brk: 297 mm->brk = brk; 298 out: 299 retval = mm->brk; 300 up_write(&mm->mmap_sem); 301 return retval; 302 } 303 304 #ifdef DEBUG_MM_RB 305 static int browse_rb(struct rb_root *root) 306 { 307 int i = 0, j; 308 struct rb_node *nd, *pn = NULL; 309 unsigned long prev = 0, pend = 0; 310 311 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 312 struct vm_area_struct *vma; 313 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 314 if (vma->vm_start < prev) 315 printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1; 316 if (vma->vm_start < pend) 317 printk("vm_start %lx pend %lx\n", vma->vm_start, pend); 318 if (vma->vm_start > vma->vm_end) 319 printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start); 320 i++; 321 pn = nd; 322 prev = vma->vm_start; 323 pend = vma->vm_end; 324 } 325 j = 0; 326 for (nd = pn; nd; nd = rb_prev(nd)) { 327 j++; 328 } 329 if (i != j) 330 printk("backwards %d, forwards %d\n", j, i), i = 0; 331 return i; 332 } 333 334 void validate_mm(struct mm_struct *mm) 335 { 336 int bug = 0; 337 int i = 0; 338 struct vm_area_struct *tmp = mm->mmap; 339 while (tmp) { 340 tmp = tmp->vm_next; 341 i++; 342 } 343 if (i != mm->map_count) 344 printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1; 345 i = browse_rb(&mm->mm_rb); 346 if (i != mm->map_count) 347 printk("map_count %d rb %d\n", mm->map_count, i), bug = 1; 348 BUG_ON(bug); 349 } 350 #else 351 #define validate_mm(mm) do { } while (0) 352 #endif 353 354 static struct vm_area_struct * 355 find_vma_prepare(struct mm_struct *mm, unsigned long addr, 356 struct vm_area_struct **pprev, struct rb_node ***rb_link, 357 struct rb_node ** rb_parent) 358 { 359 struct vm_area_struct * vma; 360 struct rb_node ** __rb_link, * __rb_parent, * rb_prev; 361 362 __rb_link = &mm->mm_rb.rb_node; 363 rb_prev = __rb_parent = NULL; 364 vma = NULL; 365 366 while (*__rb_link) { 367 struct vm_area_struct *vma_tmp; 368 369 __rb_parent = *__rb_link; 370 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb); 371 372 if (vma_tmp->vm_end > addr) { 373 vma = vma_tmp; 374 if (vma_tmp->vm_start <= addr) 375 break; 376 __rb_link = &__rb_parent->rb_left; 377 } else { 378 rb_prev = __rb_parent; 379 __rb_link = &__rb_parent->rb_right; 380 } 381 } 382 383 *pprev = NULL; 384 if (rb_prev) 385 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); 386 *rb_link = __rb_link; 387 *rb_parent = __rb_parent; 388 return vma; 389 } 390 391 static inline void 392 __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma, 393 struct vm_area_struct *prev, struct rb_node *rb_parent) 394 { 395 if (prev) { 396 vma->vm_next = prev->vm_next; 397 prev->vm_next = vma; 398 } else { 399 mm->mmap = vma; 400 if (rb_parent) 401 vma->vm_next = rb_entry(rb_parent, 402 struct vm_area_struct, vm_rb); 403 else 404 vma->vm_next = NULL; 405 } 406 } 407 408 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma, 409 struct rb_node **rb_link, struct rb_node *rb_parent) 410 { 411 rb_link_node(&vma->vm_rb, rb_parent, rb_link); 412 rb_insert_color(&vma->vm_rb, &mm->mm_rb); 413 } 414 415 static void __vma_link_file(struct vm_area_struct *vma) 416 { 417 struct file *file; 418 419 file = vma->vm_file; 420 if (file) { 421 struct address_space *mapping = file->f_mapping; 422 423 if (vma->vm_flags & VM_DENYWRITE) 424 atomic_dec(&file->f_path.dentry->d_inode->i_writecount); 425 if (vma->vm_flags & VM_SHARED) 426 mapping->i_mmap_writable++; 427 428 flush_dcache_mmap_lock(mapping); 429 if (unlikely(vma->vm_flags & VM_NONLINEAR)) 430 vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear); 431 else 432 vma_prio_tree_insert(vma, &mapping->i_mmap); 433 flush_dcache_mmap_unlock(mapping); 434 } 435 } 436 437 static void 438 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 439 struct vm_area_struct *prev, struct rb_node **rb_link, 440 struct rb_node *rb_parent) 441 { 442 __vma_link_list(mm, vma, prev, rb_parent); 443 __vma_link_rb(mm, vma, rb_link, rb_parent); 444 __anon_vma_link(vma); 445 } 446 447 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 448 struct vm_area_struct *prev, struct rb_node **rb_link, 449 struct rb_node *rb_parent) 450 { 451 struct address_space *mapping = NULL; 452 453 if (vma->vm_file) 454 mapping = vma->vm_file->f_mapping; 455 456 if (mapping) { 457 spin_lock(&mapping->i_mmap_lock); 458 vma->vm_truncate_count = mapping->truncate_count; 459 } 460 anon_vma_lock(vma); 461 462 __vma_link(mm, vma, prev, rb_link, rb_parent); 463 __vma_link_file(vma); 464 465 anon_vma_unlock(vma); 466 if (mapping) 467 spin_unlock(&mapping->i_mmap_lock); 468 469 mm->map_count++; 470 validate_mm(mm); 471 } 472 473 /* 474 * Helper for vma_adjust in the split_vma insert case: 475 * insert vm structure into list and rbtree and anon_vma, 476 * but it has already been inserted into prio_tree earlier. 477 */ 478 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 479 { 480 struct vm_area_struct *__vma, *prev; 481 struct rb_node **rb_link, *rb_parent; 482 483 __vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent); 484 BUG_ON(__vma && __vma->vm_start < vma->vm_end); 485 __vma_link(mm, vma, prev, rb_link, rb_parent); 486 mm->map_count++; 487 } 488 489 static inline void 490 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma, 491 struct vm_area_struct *prev) 492 { 493 prev->vm_next = vma->vm_next; 494 rb_erase(&vma->vm_rb, &mm->mm_rb); 495 if (mm->mmap_cache == vma) 496 mm->mmap_cache = prev; 497 } 498 499 /* 500 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that 501 * is already present in an i_mmap tree without adjusting the tree. 502 * The following helper function should be used when such adjustments 503 * are necessary. The "insert" vma (if any) is to be inserted 504 * before we drop the necessary locks. 505 */ 506 void vma_adjust(struct vm_area_struct *vma, unsigned long start, 507 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 508 { 509 struct mm_struct *mm = vma->vm_mm; 510 struct vm_area_struct *next = vma->vm_next; 511 struct vm_area_struct *importer = NULL; 512 struct address_space *mapping = NULL; 513 struct prio_tree_root *root = NULL; 514 struct file *file = vma->vm_file; 515 struct anon_vma *anon_vma = NULL; 516 long adjust_next = 0; 517 int remove_next = 0; 518 519 if (next && !insert) { 520 if (end >= next->vm_end) { 521 /* 522 * vma expands, overlapping all the next, and 523 * perhaps the one after too (mprotect case 6). 524 */ 525 again: remove_next = 1 + (end > next->vm_end); 526 end = next->vm_end; 527 anon_vma = next->anon_vma; 528 importer = vma; 529 } else if (end > next->vm_start) { 530 /* 531 * vma expands, overlapping part of the next: 532 * mprotect case 5 shifting the boundary up. 533 */ 534 adjust_next = (end - next->vm_start) >> PAGE_SHIFT; 535 anon_vma = next->anon_vma; 536 importer = vma; 537 } else if (end < vma->vm_end) { 538 /* 539 * vma shrinks, and !insert tells it's not 540 * split_vma inserting another: so it must be 541 * mprotect case 4 shifting the boundary down. 542 */ 543 adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT); 544 anon_vma = next->anon_vma; 545 importer = next; 546 } 547 } 548 549 if (file) { 550 mapping = file->f_mapping; 551 if (!(vma->vm_flags & VM_NONLINEAR)) 552 root = &mapping->i_mmap; 553 spin_lock(&mapping->i_mmap_lock); 554 if (importer && 555 vma->vm_truncate_count != next->vm_truncate_count) { 556 /* 557 * unmap_mapping_range might be in progress: 558 * ensure that the expanding vma is rescanned. 559 */ 560 importer->vm_truncate_count = 0; 561 } 562 if (insert) { 563 insert->vm_truncate_count = vma->vm_truncate_count; 564 /* 565 * Put into prio_tree now, so instantiated pages 566 * are visible to arm/parisc __flush_dcache_page 567 * throughout; but we cannot insert into address 568 * space until vma start or end is updated. 569 */ 570 __vma_link_file(insert); 571 } 572 } 573 574 /* 575 * When changing only vma->vm_end, we don't really need 576 * anon_vma lock: but is that case worth optimizing out? 577 */ 578 if (vma->anon_vma) 579 anon_vma = vma->anon_vma; 580 if (anon_vma) { 581 spin_lock(&anon_vma->lock); 582 /* 583 * Easily overlooked: when mprotect shifts the boundary, 584 * make sure the expanding vma has anon_vma set if the 585 * shrinking vma had, to cover any anon pages imported. 586 */ 587 if (importer && !importer->anon_vma) { 588 importer->anon_vma = anon_vma; 589 __anon_vma_link(importer); 590 } 591 } 592 593 if (root) { 594 flush_dcache_mmap_lock(mapping); 595 vma_prio_tree_remove(vma, root); 596 if (adjust_next) 597 vma_prio_tree_remove(next, root); 598 } 599 600 vma->vm_start = start; 601 vma->vm_end = end; 602 vma->vm_pgoff = pgoff; 603 if (adjust_next) { 604 next->vm_start += adjust_next << PAGE_SHIFT; 605 next->vm_pgoff += adjust_next; 606 } 607 608 if (root) { 609 if (adjust_next) 610 vma_prio_tree_insert(next, root); 611 vma_prio_tree_insert(vma, root); 612 flush_dcache_mmap_unlock(mapping); 613 } 614 615 if (remove_next) { 616 /* 617 * vma_merge has merged next into vma, and needs 618 * us to remove next before dropping the locks. 619 */ 620 __vma_unlink(mm, next, vma); 621 if (file) 622 __remove_shared_vm_struct(next, file, mapping); 623 if (next->anon_vma) 624 __anon_vma_merge(vma, next); 625 } else if (insert) { 626 /* 627 * split_vma has split insert from vma, and needs 628 * us to insert it before dropping the locks 629 * (it may either follow vma or precede it). 630 */ 631 __insert_vm_struct(mm, insert); 632 } 633 634 if (anon_vma) 635 spin_unlock(&anon_vma->lock); 636 if (mapping) 637 spin_unlock(&mapping->i_mmap_lock); 638 639 if (remove_next) { 640 if (file) { 641 fput(file); 642 if (next->vm_flags & VM_EXECUTABLE) 643 removed_exe_file_vma(mm); 644 } 645 mm->map_count--; 646 mpol_put(vma_policy(next)); 647 kmem_cache_free(vm_area_cachep, next); 648 /* 649 * In mprotect's case 6 (see comments on vma_merge), 650 * we must remove another next too. It would clutter 651 * up the code too much to do both in one go. 652 */ 653 if (remove_next == 2) { 654 next = vma->vm_next; 655 goto again; 656 } 657 } 658 659 validate_mm(mm); 660 } 661 662 /* Flags that can be inherited from an existing mapping when merging */ 663 #define VM_MERGEABLE_FLAGS (VM_CAN_NONLINEAR) 664 665 /* 666 * If the vma has a ->close operation then the driver probably needs to release 667 * per-vma resources, so we don't attempt to merge those. 668 */ 669 static inline int is_mergeable_vma(struct vm_area_struct *vma, 670 struct file *file, unsigned long vm_flags) 671 { 672 if ((vma->vm_flags ^ vm_flags) & ~VM_MERGEABLE_FLAGS) 673 return 0; 674 if (vma->vm_file != file) 675 return 0; 676 if (vma->vm_ops && vma->vm_ops->close) 677 return 0; 678 return 1; 679 } 680 681 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1, 682 struct anon_vma *anon_vma2) 683 { 684 return !anon_vma1 || !anon_vma2 || (anon_vma1 == anon_vma2); 685 } 686 687 /* 688 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 689 * in front of (at a lower virtual address and file offset than) the vma. 690 * 691 * We cannot merge two vmas if they have differently assigned (non-NULL) 692 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 693 * 694 * We don't check here for the merged mmap wrapping around the end of pagecache 695 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which 696 * wrap, nor mmaps which cover the final page at index -1UL. 697 */ 698 static int 699 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags, 700 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff) 701 { 702 if (is_mergeable_vma(vma, file, vm_flags) && 703 is_mergeable_anon_vma(anon_vma, vma->anon_vma)) { 704 if (vma->vm_pgoff == vm_pgoff) 705 return 1; 706 } 707 return 0; 708 } 709 710 /* 711 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 712 * beyond (at a higher virtual address and file offset than) the vma. 713 * 714 * We cannot merge two vmas if they have differently assigned (non-NULL) 715 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 716 */ 717 static int 718 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags, 719 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff) 720 { 721 if (is_mergeable_vma(vma, file, vm_flags) && 722 is_mergeable_anon_vma(anon_vma, vma->anon_vma)) { 723 pgoff_t vm_pglen; 724 vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 725 if (vma->vm_pgoff + vm_pglen == vm_pgoff) 726 return 1; 727 } 728 return 0; 729 } 730 731 /* 732 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out 733 * whether that can be merged with its predecessor or its successor. 734 * Or both (it neatly fills a hole). 735 * 736 * In most cases - when called for mmap, brk or mremap - [addr,end) is 737 * certain not to be mapped by the time vma_merge is called; but when 738 * called for mprotect, it is certain to be already mapped (either at 739 * an offset within prev, or at the start of next), and the flags of 740 * this area are about to be changed to vm_flags - and the no-change 741 * case has already been eliminated. 742 * 743 * The following mprotect cases have to be considered, where AAAA is 744 * the area passed down from mprotect_fixup, never extending beyond one 745 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after: 746 * 747 * AAAA AAAA AAAA AAAA 748 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX 749 * cannot merge might become might become might become 750 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or 751 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or 752 * mremap move: PPPPNNNNNNNN 8 753 * AAAA 754 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN 755 * might become case 1 below case 2 below case 3 below 756 * 757 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX: 758 * mprotect_fixup updates vm_flags & vm_page_prot on successful return. 759 */ 760 struct vm_area_struct *vma_merge(struct mm_struct *mm, 761 struct vm_area_struct *prev, unsigned long addr, 762 unsigned long end, unsigned long vm_flags, 763 struct anon_vma *anon_vma, struct file *file, 764 pgoff_t pgoff, struct mempolicy *policy) 765 { 766 pgoff_t pglen = (end - addr) >> PAGE_SHIFT; 767 struct vm_area_struct *area, *next; 768 769 /* 770 * We later require that vma->vm_flags == vm_flags, 771 * so this tests vma->vm_flags & VM_SPECIAL, too. 772 */ 773 if (vm_flags & VM_SPECIAL) 774 return NULL; 775 776 if (prev) 777 next = prev->vm_next; 778 else 779 next = mm->mmap; 780 area = next; 781 if (next && next->vm_end == end) /* cases 6, 7, 8 */ 782 next = next->vm_next; 783 784 /* 785 * Can it merge with the predecessor? 786 */ 787 if (prev && prev->vm_end == addr && 788 mpol_equal(vma_policy(prev), policy) && 789 can_vma_merge_after(prev, vm_flags, 790 anon_vma, file, pgoff)) { 791 /* 792 * OK, it can. Can we now merge in the successor as well? 793 */ 794 if (next && end == next->vm_start && 795 mpol_equal(policy, vma_policy(next)) && 796 can_vma_merge_before(next, vm_flags, 797 anon_vma, file, pgoff+pglen) && 798 is_mergeable_anon_vma(prev->anon_vma, 799 next->anon_vma)) { 800 /* cases 1, 6 */ 801 vma_adjust(prev, prev->vm_start, 802 next->vm_end, prev->vm_pgoff, NULL); 803 } else /* cases 2, 5, 7 */ 804 vma_adjust(prev, prev->vm_start, 805 end, prev->vm_pgoff, NULL); 806 return prev; 807 } 808 809 /* 810 * Can this new request be merged in front of next? 811 */ 812 if (next && end == next->vm_start && 813 mpol_equal(policy, vma_policy(next)) && 814 can_vma_merge_before(next, vm_flags, 815 anon_vma, file, pgoff+pglen)) { 816 if (prev && addr < prev->vm_end) /* case 4 */ 817 vma_adjust(prev, prev->vm_start, 818 addr, prev->vm_pgoff, NULL); 819 else /* cases 3, 8 */ 820 vma_adjust(area, addr, next->vm_end, 821 next->vm_pgoff - pglen, NULL); 822 return area; 823 } 824 825 return NULL; 826 } 827 828 /* 829 * find_mergeable_anon_vma is used by anon_vma_prepare, to check 830 * neighbouring vmas for a suitable anon_vma, before it goes off 831 * to allocate a new anon_vma. It checks because a repetitive 832 * sequence of mprotects and faults may otherwise lead to distinct 833 * anon_vmas being allocated, preventing vma merge in subsequent 834 * mprotect. 835 */ 836 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) 837 { 838 struct vm_area_struct *near; 839 unsigned long vm_flags; 840 841 near = vma->vm_next; 842 if (!near) 843 goto try_prev; 844 845 /* 846 * Since only mprotect tries to remerge vmas, match flags 847 * which might be mprotected into each other later on. 848 * Neither mlock nor madvise tries to remerge at present, 849 * so leave their flags as obstructing a merge. 850 */ 851 vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC); 852 vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC); 853 854 if (near->anon_vma && vma->vm_end == near->vm_start && 855 mpol_equal(vma_policy(vma), vma_policy(near)) && 856 can_vma_merge_before(near, vm_flags, 857 NULL, vma->vm_file, vma->vm_pgoff + 858 ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT))) 859 return near->anon_vma; 860 try_prev: 861 /* 862 * It is potentially slow to have to call find_vma_prev here. 863 * But it's only on the first write fault on the vma, not 864 * every time, and we could devise a way to avoid it later 865 * (e.g. stash info in next's anon_vma_node when assigning 866 * an anon_vma, or when trying vma_merge). Another time. 867 */ 868 BUG_ON(find_vma_prev(vma->vm_mm, vma->vm_start, &near) != vma); 869 if (!near) 870 goto none; 871 872 vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC); 873 vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC); 874 875 if (near->anon_vma && near->vm_end == vma->vm_start && 876 mpol_equal(vma_policy(near), vma_policy(vma)) && 877 can_vma_merge_after(near, vm_flags, 878 NULL, vma->vm_file, vma->vm_pgoff)) 879 return near->anon_vma; 880 none: 881 /* 882 * There's no absolute need to look only at touching neighbours: 883 * we could search further afield for "compatible" anon_vmas. 884 * But it would probably just be a waste of time searching, 885 * or lead to too many vmas hanging off the same anon_vma. 886 * We're trying to allow mprotect remerging later on, 887 * not trying to minimize memory used for anon_vmas. 888 */ 889 return NULL; 890 } 891 892 #ifdef CONFIG_PROC_FS 893 void vm_stat_account(struct mm_struct *mm, unsigned long flags, 894 struct file *file, long pages) 895 { 896 const unsigned long stack_flags 897 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN); 898 899 if (file) { 900 mm->shared_vm += pages; 901 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC) 902 mm->exec_vm += pages; 903 } else if (flags & stack_flags) 904 mm->stack_vm += pages; 905 if (flags & (VM_RESERVED|VM_IO)) 906 mm->reserved_vm += pages; 907 } 908 #endif /* CONFIG_PROC_FS */ 909 910 /* 911 * The caller must hold down_write(current->mm->mmap_sem). 912 */ 913 914 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, 915 unsigned long len, unsigned long prot, 916 unsigned long flags, unsigned long pgoff) 917 { 918 struct mm_struct * mm = current->mm; 919 struct inode *inode; 920 unsigned int vm_flags; 921 int error; 922 unsigned long reqprot = prot; 923 924 /* 925 * Does the application expect PROT_READ to imply PROT_EXEC? 926 * 927 * (the exception is when the underlying filesystem is noexec 928 * mounted, in which case we dont add PROT_EXEC.) 929 */ 930 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC)) 931 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC))) 932 prot |= PROT_EXEC; 933 934 if (!len) 935 return -EINVAL; 936 937 if (!(flags & MAP_FIXED)) 938 addr = round_hint_to_min(addr); 939 940 error = arch_mmap_check(addr, len, flags); 941 if (error) 942 return error; 943 944 /* Careful about overflows.. */ 945 len = PAGE_ALIGN(len); 946 if (!len || len > TASK_SIZE) 947 return -ENOMEM; 948 949 /* offset overflow? */ 950 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff) 951 return -EOVERFLOW; 952 953 /* Too many mappings? */ 954 if (mm->map_count > sysctl_max_map_count) 955 return -ENOMEM; 956 957 /* Obtain the address to map to. we verify (or select) it and ensure 958 * that it represents a valid section of the address space. 959 */ 960 addr = get_unmapped_area(file, addr, len, pgoff, flags); 961 if (addr & ~PAGE_MASK) 962 return addr; 963 964 /* Do simple checking here so the lower-level routines won't have 965 * to. we assume access permissions have been handled by the open 966 * of the memory object, so we don't do any here. 967 */ 968 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) | 969 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 970 971 if (flags & MAP_LOCKED) { 972 if (!can_do_mlock()) 973 return -EPERM; 974 vm_flags |= VM_LOCKED; 975 } 976 977 /* mlock MCL_FUTURE? */ 978 if (vm_flags & VM_LOCKED) { 979 unsigned long locked, lock_limit; 980 locked = len >> PAGE_SHIFT; 981 locked += mm->locked_vm; 982 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur; 983 lock_limit >>= PAGE_SHIFT; 984 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 985 return -EAGAIN; 986 } 987 988 inode = file ? file->f_path.dentry->d_inode : NULL; 989 990 if (file) { 991 switch (flags & MAP_TYPE) { 992 case MAP_SHARED: 993 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE)) 994 return -EACCES; 995 996 /* 997 * Make sure we don't allow writing to an append-only 998 * file.. 999 */ 1000 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE)) 1001 return -EACCES; 1002 1003 /* 1004 * Make sure there are no mandatory locks on the file. 1005 */ 1006 if (locks_verify_locked(inode)) 1007 return -EAGAIN; 1008 1009 vm_flags |= VM_SHARED | VM_MAYSHARE; 1010 if (!(file->f_mode & FMODE_WRITE)) 1011 vm_flags &= ~(VM_MAYWRITE | VM_SHARED); 1012 1013 /* fall through */ 1014 case MAP_PRIVATE: 1015 if (!(file->f_mode & FMODE_READ)) 1016 return -EACCES; 1017 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) { 1018 if (vm_flags & VM_EXEC) 1019 return -EPERM; 1020 vm_flags &= ~VM_MAYEXEC; 1021 } 1022 1023 if (!file->f_op || !file->f_op->mmap) 1024 return -ENODEV; 1025 break; 1026 1027 default: 1028 return -EINVAL; 1029 } 1030 } else { 1031 switch (flags & MAP_TYPE) { 1032 case MAP_SHARED: 1033 /* 1034 * Ignore pgoff. 1035 */ 1036 pgoff = 0; 1037 vm_flags |= VM_SHARED | VM_MAYSHARE; 1038 break; 1039 case MAP_PRIVATE: 1040 /* 1041 * Set pgoff according to addr for anon_vma. 1042 */ 1043 pgoff = addr >> PAGE_SHIFT; 1044 break; 1045 default: 1046 return -EINVAL; 1047 } 1048 } 1049 1050 error = security_file_mmap(file, reqprot, prot, flags, addr, 0); 1051 if (error) 1052 return error; 1053 error = ima_file_mmap(file, prot); 1054 if (error) 1055 return error; 1056 1057 return mmap_region(file, addr, len, flags, vm_flags, pgoff); 1058 } 1059 EXPORT_SYMBOL(do_mmap_pgoff); 1060 1061 /* 1062 * Some shared mappigns will want the pages marked read-only 1063 * to track write events. If so, we'll downgrade vm_page_prot 1064 * to the private version (using protection_map[] without the 1065 * VM_SHARED bit). 1066 */ 1067 int vma_wants_writenotify(struct vm_area_struct *vma) 1068 { 1069 unsigned int vm_flags = vma->vm_flags; 1070 1071 /* If it was private or non-writable, the write bit is already clear */ 1072 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED))) 1073 return 0; 1074 1075 /* The backer wishes to know when pages are first written to? */ 1076 if (vma->vm_ops && vma->vm_ops->page_mkwrite) 1077 return 1; 1078 1079 /* The open routine did something to the protections already? */ 1080 if (pgprot_val(vma->vm_page_prot) != 1081 pgprot_val(vm_get_page_prot(vm_flags))) 1082 return 0; 1083 1084 /* Specialty mapping? */ 1085 if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE)) 1086 return 0; 1087 1088 /* Can the mapping track the dirty pages? */ 1089 return vma->vm_file && vma->vm_file->f_mapping && 1090 mapping_cap_account_dirty(vma->vm_file->f_mapping); 1091 } 1092 1093 /* 1094 * We account for memory if it's a private writeable mapping, 1095 * not hugepages and VM_NORESERVE wasn't set. 1096 */ 1097 static inline int accountable_mapping(struct file *file, unsigned int vm_flags) 1098 { 1099 /* 1100 * hugetlb has its own accounting separate from the core VM 1101 * VM_HUGETLB may not be set yet so we cannot check for that flag. 1102 */ 1103 if (file && is_file_hugepages(file)) 1104 return 0; 1105 1106 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE; 1107 } 1108 1109 unsigned long mmap_region(struct file *file, unsigned long addr, 1110 unsigned long len, unsigned long flags, 1111 unsigned int vm_flags, unsigned long pgoff) 1112 { 1113 struct mm_struct *mm = current->mm; 1114 struct vm_area_struct *vma, *prev; 1115 int correct_wcount = 0; 1116 int error; 1117 struct rb_node **rb_link, *rb_parent; 1118 unsigned long charged = 0; 1119 struct inode *inode = file ? file->f_path.dentry->d_inode : NULL; 1120 1121 /* Clear old maps */ 1122 error = -ENOMEM; 1123 munmap_back: 1124 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent); 1125 if (vma && vma->vm_start < addr + len) { 1126 if (do_munmap(mm, addr, len)) 1127 return -ENOMEM; 1128 goto munmap_back; 1129 } 1130 1131 /* Check against address space limit. */ 1132 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) 1133 return -ENOMEM; 1134 1135 /* 1136 * Set 'VM_NORESERVE' if we should not account for the 1137 * memory use of this mapping. 1138 */ 1139 if ((flags & MAP_NORESERVE)) { 1140 /* We honor MAP_NORESERVE if allowed to overcommit */ 1141 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER) 1142 vm_flags |= VM_NORESERVE; 1143 1144 /* hugetlb applies strict overcommit unless MAP_NORESERVE */ 1145 if (file && is_file_hugepages(file)) 1146 vm_flags |= VM_NORESERVE; 1147 } 1148 1149 /* 1150 * Private writable mapping: check memory availability 1151 */ 1152 if (accountable_mapping(file, vm_flags)) { 1153 charged = len >> PAGE_SHIFT; 1154 if (security_vm_enough_memory(charged)) 1155 return -ENOMEM; 1156 vm_flags |= VM_ACCOUNT; 1157 } 1158 1159 /* 1160 * Can we just expand an old mapping? 1161 */ 1162 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL); 1163 if (vma) 1164 goto out; 1165 1166 /* 1167 * Determine the object being mapped and call the appropriate 1168 * specific mapper. the address has already been validated, but 1169 * not unmapped, but the maps are removed from the list. 1170 */ 1171 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 1172 if (!vma) { 1173 error = -ENOMEM; 1174 goto unacct_error; 1175 } 1176 1177 vma->vm_mm = mm; 1178 vma->vm_start = addr; 1179 vma->vm_end = addr + len; 1180 vma->vm_flags = vm_flags; 1181 vma->vm_page_prot = vm_get_page_prot(vm_flags); 1182 vma->vm_pgoff = pgoff; 1183 1184 if (file) { 1185 error = -EINVAL; 1186 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1187 goto free_vma; 1188 if (vm_flags & VM_DENYWRITE) { 1189 error = deny_write_access(file); 1190 if (error) 1191 goto free_vma; 1192 correct_wcount = 1; 1193 } 1194 vma->vm_file = file; 1195 get_file(file); 1196 error = file->f_op->mmap(file, vma); 1197 if (error) 1198 goto unmap_and_free_vma; 1199 if (vm_flags & VM_EXECUTABLE) 1200 added_exe_file_vma(mm); 1201 } else if (vm_flags & VM_SHARED) { 1202 error = shmem_zero_setup(vma); 1203 if (error) 1204 goto free_vma; 1205 } 1206 1207 /* Can addr have changed?? 1208 * 1209 * Answer: Yes, several device drivers can do it in their 1210 * f_op->mmap method. -DaveM 1211 */ 1212 addr = vma->vm_start; 1213 pgoff = vma->vm_pgoff; 1214 vm_flags = vma->vm_flags; 1215 1216 if (vma_wants_writenotify(vma)) 1217 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED); 1218 1219 vma_link(mm, vma, prev, rb_link, rb_parent); 1220 file = vma->vm_file; 1221 1222 /* Once vma denies write, undo our temporary denial count */ 1223 if (correct_wcount) 1224 atomic_inc(&inode->i_writecount); 1225 out: 1226 mm->total_vm += len >> PAGE_SHIFT; 1227 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT); 1228 if (vm_flags & VM_LOCKED) { 1229 /* 1230 * makes pages present; downgrades, drops, reacquires mmap_sem 1231 */ 1232 long nr_pages = mlock_vma_pages_range(vma, addr, addr + len); 1233 if (nr_pages < 0) 1234 return nr_pages; /* vma gone! */ 1235 mm->locked_vm += (len >> PAGE_SHIFT) - nr_pages; 1236 } else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK)) 1237 make_pages_present(addr, addr + len); 1238 return addr; 1239 1240 unmap_and_free_vma: 1241 if (correct_wcount) 1242 atomic_inc(&inode->i_writecount); 1243 vma->vm_file = NULL; 1244 fput(file); 1245 1246 /* Undo any partial mapping done by a device driver. */ 1247 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end); 1248 charged = 0; 1249 free_vma: 1250 kmem_cache_free(vm_area_cachep, vma); 1251 unacct_error: 1252 if (charged) 1253 vm_unacct_memory(charged); 1254 return error; 1255 } 1256 1257 /* Get an address range which is currently unmapped. 1258 * For shmat() with addr=0. 1259 * 1260 * Ugly calling convention alert: 1261 * Return value with the low bits set means error value, 1262 * ie 1263 * if (ret & ~PAGE_MASK) 1264 * error = ret; 1265 * 1266 * This function "knows" that -ENOMEM has the bits set. 1267 */ 1268 #ifndef HAVE_ARCH_UNMAPPED_AREA 1269 unsigned long 1270 arch_get_unmapped_area(struct file *filp, unsigned long addr, 1271 unsigned long len, unsigned long pgoff, unsigned long flags) 1272 { 1273 struct mm_struct *mm = current->mm; 1274 struct vm_area_struct *vma; 1275 unsigned long start_addr; 1276 1277 if (len > TASK_SIZE) 1278 return -ENOMEM; 1279 1280 if (flags & MAP_FIXED) 1281 return addr; 1282 1283 if (addr) { 1284 addr = PAGE_ALIGN(addr); 1285 vma = find_vma(mm, addr); 1286 if (TASK_SIZE - len >= addr && 1287 (!vma || addr + len <= vma->vm_start)) 1288 return addr; 1289 } 1290 if (len > mm->cached_hole_size) { 1291 start_addr = addr = mm->free_area_cache; 1292 } else { 1293 start_addr = addr = TASK_UNMAPPED_BASE; 1294 mm->cached_hole_size = 0; 1295 } 1296 1297 full_search: 1298 for (vma = find_vma(mm, addr); ; vma = vma->vm_next) { 1299 /* At this point: (!vma || addr < vma->vm_end). */ 1300 if (TASK_SIZE - len < addr) { 1301 /* 1302 * Start a new search - just in case we missed 1303 * some holes. 1304 */ 1305 if (start_addr != TASK_UNMAPPED_BASE) { 1306 addr = TASK_UNMAPPED_BASE; 1307 start_addr = addr; 1308 mm->cached_hole_size = 0; 1309 goto full_search; 1310 } 1311 return -ENOMEM; 1312 } 1313 if (!vma || addr + len <= vma->vm_start) { 1314 /* 1315 * Remember the place where we stopped the search: 1316 */ 1317 mm->free_area_cache = addr + len; 1318 return addr; 1319 } 1320 if (addr + mm->cached_hole_size < vma->vm_start) 1321 mm->cached_hole_size = vma->vm_start - addr; 1322 addr = vma->vm_end; 1323 } 1324 } 1325 #endif 1326 1327 void arch_unmap_area(struct mm_struct *mm, unsigned long addr) 1328 { 1329 /* 1330 * Is this a new hole at the lowest possible address? 1331 */ 1332 if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) { 1333 mm->free_area_cache = addr; 1334 mm->cached_hole_size = ~0UL; 1335 } 1336 } 1337 1338 /* 1339 * This mmap-allocator allocates new areas top-down from below the 1340 * stack's low limit (the base): 1341 */ 1342 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 1343 unsigned long 1344 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0, 1345 const unsigned long len, const unsigned long pgoff, 1346 const unsigned long flags) 1347 { 1348 struct vm_area_struct *vma; 1349 struct mm_struct *mm = current->mm; 1350 unsigned long addr = addr0; 1351 1352 /* requested length too big for entire address space */ 1353 if (len > TASK_SIZE) 1354 return -ENOMEM; 1355 1356 if (flags & MAP_FIXED) 1357 return addr; 1358 1359 /* requesting a specific address */ 1360 if (addr) { 1361 addr = PAGE_ALIGN(addr); 1362 vma = find_vma(mm, addr); 1363 if (TASK_SIZE - len >= addr && 1364 (!vma || addr + len <= vma->vm_start)) 1365 return addr; 1366 } 1367 1368 /* check if free_area_cache is useful for us */ 1369 if (len <= mm->cached_hole_size) { 1370 mm->cached_hole_size = 0; 1371 mm->free_area_cache = mm->mmap_base; 1372 } 1373 1374 /* either no address requested or can't fit in requested address hole */ 1375 addr = mm->free_area_cache; 1376 1377 /* make sure it can fit in the remaining address space */ 1378 if (addr > len) { 1379 vma = find_vma(mm, addr-len); 1380 if (!vma || addr <= vma->vm_start) 1381 /* remember the address as a hint for next time */ 1382 return (mm->free_area_cache = addr-len); 1383 } 1384 1385 if (mm->mmap_base < len) 1386 goto bottomup; 1387 1388 addr = mm->mmap_base-len; 1389 1390 do { 1391 /* 1392 * Lookup failure means no vma is above this address, 1393 * else if new region fits below vma->vm_start, 1394 * return with success: 1395 */ 1396 vma = find_vma(mm, addr); 1397 if (!vma || addr+len <= vma->vm_start) 1398 /* remember the address as a hint for next time */ 1399 return (mm->free_area_cache = addr); 1400 1401 /* remember the largest hole we saw so far */ 1402 if (addr + mm->cached_hole_size < vma->vm_start) 1403 mm->cached_hole_size = vma->vm_start - addr; 1404 1405 /* try just below the current vma->vm_start */ 1406 addr = vma->vm_start-len; 1407 } while (len < vma->vm_start); 1408 1409 bottomup: 1410 /* 1411 * A failed mmap() very likely causes application failure, 1412 * so fall back to the bottom-up function here. This scenario 1413 * can happen with large stack limits and large mmap() 1414 * allocations. 1415 */ 1416 mm->cached_hole_size = ~0UL; 1417 mm->free_area_cache = TASK_UNMAPPED_BASE; 1418 addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags); 1419 /* 1420 * Restore the topdown base: 1421 */ 1422 mm->free_area_cache = mm->mmap_base; 1423 mm->cached_hole_size = ~0UL; 1424 1425 return addr; 1426 } 1427 #endif 1428 1429 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr) 1430 { 1431 /* 1432 * Is this a new hole at the highest possible address? 1433 */ 1434 if (addr > mm->free_area_cache) 1435 mm->free_area_cache = addr; 1436 1437 /* dont allow allocations above current base */ 1438 if (mm->free_area_cache > mm->mmap_base) 1439 mm->free_area_cache = mm->mmap_base; 1440 } 1441 1442 unsigned long 1443 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 1444 unsigned long pgoff, unsigned long flags) 1445 { 1446 unsigned long (*get_area)(struct file *, unsigned long, 1447 unsigned long, unsigned long, unsigned long); 1448 1449 get_area = current->mm->get_unmapped_area; 1450 if (file && file->f_op && file->f_op->get_unmapped_area) 1451 get_area = file->f_op->get_unmapped_area; 1452 addr = get_area(file, addr, len, pgoff, flags); 1453 if (IS_ERR_VALUE(addr)) 1454 return addr; 1455 1456 if (addr > TASK_SIZE - len) 1457 return -ENOMEM; 1458 if (addr & ~PAGE_MASK) 1459 return -EINVAL; 1460 1461 return arch_rebalance_pgtables(addr, len); 1462 } 1463 1464 EXPORT_SYMBOL(get_unmapped_area); 1465 1466 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 1467 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 1468 { 1469 struct vm_area_struct *vma = NULL; 1470 1471 if (mm) { 1472 /* Check the cache first. */ 1473 /* (Cache hit rate is typically around 35%.) */ 1474 vma = mm->mmap_cache; 1475 if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) { 1476 struct rb_node * rb_node; 1477 1478 rb_node = mm->mm_rb.rb_node; 1479 vma = NULL; 1480 1481 while (rb_node) { 1482 struct vm_area_struct * vma_tmp; 1483 1484 vma_tmp = rb_entry(rb_node, 1485 struct vm_area_struct, vm_rb); 1486 1487 if (vma_tmp->vm_end > addr) { 1488 vma = vma_tmp; 1489 if (vma_tmp->vm_start <= addr) 1490 break; 1491 rb_node = rb_node->rb_left; 1492 } else 1493 rb_node = rb_node->rb_right; 1494 } 1495 if (vma) 1496 mm->mmap_cache = vma; 1497 } 1498 } 1499 return vma; 1500 } 1501 1502 EXPORT_SYMBOL(find_vma); 1503 1504 /* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */ 1505 struct vm_area_struct * 1506 find_vma_prev(struct mm_struct *mm, unsigned long addr, 1507 struct vm_area_struct **pprev) 1508 { 1509 struct vm_area_struct *vma = NULL, *prev = NULL; 1510 struct rb_node *rb_node; 1511 if (!mm) 1512 goto out; 1513 1514 /* Guard against addr being lower than the first VMA */ 1515 vma = mm->mmap; 1516 1517 /* Go through the RB tree quickly. */ 1518 rb_node = mm->mm_rb.rb_node; 1519 1520 while (rb_node) { 1521 struct vm_area_struct *vma_tmp; 1522 vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb); 1523 1524 if (addr < vma_tmp->vm_end) { 1525 rb_node = rb_node->rb_left; 1526 } else { 1527 prev = vma_tmp; 1528 if (!prev->vm_next || (addr < prev->vm_next->vm_end)) 1529 break; 1530 rb_node = rb_node->rb_right; 1531 } 1532 } 1533 1534 out: 1535 *pprev = prev; 1536 return prev ? prev->vm_next : vma; 1537 } 1538 1539 /* 1540 * Verify that the stack growth is acceptable and 1541 * update accounting. This is shared with both the 1542 * grow-up and grow-down cases. 1543 */ 1544 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow) 1545 { 1546 struct mm_struct *mm = vma->vm_mm; 1547 struct rlimit *rlim = current->signal->rlim; 1548 unsigned long new_start; 1549 1550 /* address space limit tests */ 1551 if (!may_expand_vm(mm, grow)) 1552 return -ENOMEM; 1553 1554 /* Stack limit test */ 1555 if (size > rlim[RLIMIT_STACK].rlim_cur) 1556 return -ENOMEM; 1557 1558 /* mlock limit tests */ 1559 if (vma->vm_flags & VM_LOCKED) { 1560 unsigned long locked; 1561 unsigned long limit; 1562 locked = mm->locked_vm + grow; 1563 limit = rlim[RLIMIT_MEMLOCK].rlim_cur >> PAGE_SHIFT; 1564 if (locked > limit && !capable(CAP_IPC_LOCK)) 1565 return -ENOMEM; 1566 } 1567 1568 /* Check to ensure the stack will not grow into a hugetlb-only region */ 1569 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : 1570 vma->vm_end - size; 1571 if (is_hugepage_only_range(vma->vm_mm, new_start, size)) 1572 return -EFAULT; 1573 1574 /* 1575 * Overcommit.. This must be the final test, as it will 1576 * update security statistics. 1577 */ 1578 if (security_vm_enough_memory_mm(mm, grow)) 1579 return -ENOMEM; 1580 1581 /* Ok, everything looks good - let it rip */ 1582 mm->total_vm += grow; 1583 if (vma->vm_flags & VM_LOCKED) 1584 mm->locked_vm += grow; 1585 vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow); 1586 return 0; 1587 } 1588 1589 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64) 1590 /* 1591 * PA-RISC uses this for its stack; IA64 for its Register Backing Store. 1592 * vma is the last one with address > vma->vm_end. Have to extend vma. 1593 */ 1594 #ifndef CONFIG_IA64 1595 static 1596 #endif 1597 int expand_upwards(struct vm_area_struct *vma, unsigned long address) 1598 { 1599 int error; 1600 1601 if (!(vma->vm_flags & VM_GROWSUP)) 1602 return -EFAULT; 1603 1604 /* 1605 * We must make sure the anon_vma is allocated 1606 * so that the anon_vma locking is not a noop. 1607 */ 1608 if (unlikely(anon_vma_prepare(vma))) 1609 return -ENOMEM; 1610 anon_vma_lock(vma); 1611 1612 /* 1613 * vma->vm_start/vm_end cannot change under us because the caller 1614 * is required to hold the mmap_sem in read mode. We need the 1615 * anon_vma lock to serialize against concurrent expand_stacks. 1616 * Also guard against wrapping around to address 0. 1617 */ 1618 if (address < PAGE_ALIGN(address+4)) 1619 address = PAGE_ALIGN(address+4); 1620 else { 1621 anon_vma_unlock(vma); 1622 return -ENOMEM; 1623 } 1624 error = 0; 1625 1626 /* Somebody else might have raced and expanded it already */ 1627 if (address > vma->vm_end) { 1628 unsigned long size, grow; 1629 1630 size = address - vma->vm_start; 1631 grow = (address - vma->vm_end) >> PAGE_SHIFT; 1632 1633 error = acct_stack_growth(vma, size, grow); 1634 if (!error) 1635 vma->vm_end = address; 1636 } 1637 anon_vma_unlock(vma); 1638 return error; 1639 } 1640 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */ 1641 1642 /* 1643 * vma is the first one with address < vma->vm_start. Have to extend vma. 1644 */ 1645 static int expand_downwards(struct vm_area_struct *vma, 1646 unsigned long address) 1647 { 1648 int error; 1649 1650 /* 1651 * We must make sure the anon_vma is allocated 1652 * so that the anon_vma locking is not a noop. 1653 */ 1654 if (unlikely(anon_vma_prepare(vma))) 1655 return -ENOMEM; 1656 1657 address &= PAGE_MASK; 1658 error = security_file_mmap(NULL, 0, 0, 0, address, 1); 1659 if (error) 1660 return error; 1661 1662 anon_vma_lock(vma); 1663 1664 /* 1665 * vma->vm_start/vm_end cannot change under us because the caller 1666 * is required to hold the mmap_sem in read mode. We need the 1667 * anon_vma lock to serialize against concurrent expand_stacks. 1668 */ 1669 1670 /* Somebody else might have raced and expanded it already */ 1671 if (address < vma->vm_start) { 1672 unsigned long size, grow; 1673 1674 size = vma->vm_end - address; 1675 grow = (vma->vm_start - address) >> PAGE_SHIFT; 1676 1677 error = acct_stack_growth(vma, size, grow); 1678 if (!error) { 1679 vma->vm_start = address; 1680 vma->vm_pgoff -= grow; 1681 } 1682 } 1683 anon_vma_unlock(vma); 1684 return error; 1685 } 1686 1687 int expand_stack_downwards(struct vm_area_struct *vma, unsigned long address) 1688 { 1689 return expand_downwards(vma, address); 1690 } 1691 1692 #ifdef CONFIG_STACK_GROWSUP 1693 int expand_stack(struct vm_area_struct *vma, unsigned long address) 1694 { 1695 return expand_upwards(vma, address); 1696 } 1697 1698 struct vm_area_struct * 1699 find_extend_vma(struct mm_struct *mm, unsigned long addr) 1700 { 1701 struct vm_area_struct *vma, *prev; 1702 1703 addr &= PAGE_MASK; 1704 vma = find_vma_prev(mm, addr, &prev); 1705 if (vma && (vma->vm_start <= addr)) 1706 return vma; 1707 if (!prev || expand_stack(prev, addr)) 1708 return NULL; 1709 if (prev->vm_flags & VM_LOCKED) { 1710 if (mlock_vma_pages_range(prev, addr, prev->vm_end) < 0) 1711 return NULL; /* vma gone! */ 1712 } 1713 return prev; 1714 } 1715 #else 1716 int expand_stack(struct vm_area_struct *vma, unsigned long address) 1717 { 1718 return expand_downwards(vma, address); 1719 } 1720 1721 struct vm_area_struct * 1722 find_extend_vma(struct mm_struct * mm, unsigned long addr) 1723 { 1724 struct vm_area_struct * vma; 1725 unsigned long start; 1726 1727 addr &= PAGE_MASK; 1728 vma = find_vma(mm,addr); 1729 if (!vma) 1730 return NULL; 1731 if (vma->vm_start <= addr) 1732 return vma; 1733 if (!(vma->vm_flags & VM_GROWSDOWN)) 1734 return NULL; 1735 start = vma->vm_start; 1736 if (expand_stack(vma, addr)) 1737 return NULL; 1738 if (vma->vm_flags & VM_LOCKED) { 1739 if (mlock_vma_pages_range(vma, addr, start) < 0) 1740 return NULL; /* vma gone! */ 1741 } 1742 return vma; 1743 } 1744 #endif 1745 1746 /* 1747 * Ok - we have the memory areas we should free on the vma list, 1748 * so release them, and do the vma updates. 1749 * 1750 * Called with the mm semaphore held. 1751 */ 1752 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma) 1753 { 1754 /* Update high watermark before we lower total_vm */ 1755 update_hiwater_vm(mm); 1756 do { 1757 long nrpages = vma_pages(vma); 1758 1759 mm->total_vm -= nrpages; 1760 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages); 1761 vma = remove_vma(vma); 1762 } while (vma); 1763 validate_mm(mm); 1764 } 1765 1766 /* 1767 * Get rid of page table information in the indicated region. 1768 * 1769 * Called with the mm semaphore held. 1770 */ 1771 static void unmap_region(struct mm_struct *mm, 1772 struct vm_area_struct *vma, struct vm_area_struct *prev, 1773 unsigned long start, unsigned long end) 1774 { 1775 struct vm_area_struct *next = prev? prev->vm_next: mm->mmap; 1776 struct mmu_gather *tlb; 1777 unsigned long nr_accounted = 0; 1778 1779 lru_add_drain(); 1780 tlb = tlb_gather_mmu(mm, 0); 1781 update_hiwater_rss(mm); 1782 unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL); 1783 vm_unacct_memory(nr_accounted); 1784 free_pgtables(tlb, vma, prev? prev->vm_end: FIRST_USER_ADDRESS, 1785 next? next->vm_start: 0); 1786 tlb_finish_mmu(tlb, start, end); 1787 } 1788 1789 /* 1790 * Create a list of vma's touched by the unmap, removing them from the mm's 1791 * vma list as we go.. 1792 */ 1793 static void 1794 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma, 1795 struct vm_area_struct *prev, unsigned long end) 1796 { 1797 struct vm_area_struct **insertion_point; 1798 struct vm_area_struct *tail_vma = NULL; 1799 unsigned long addr; 1800 1801 insertion_point = (prev ? &prev->vm_next : &mm->mmap); 1802 do { 1803 rb_erase(&vma->vm_rb, &mm->mm_rb); 1804 mm->map_count--; 1805 tail_vma = vma; 1806 vma = vma->vm_next; 1807 } while (vma && vma->vm_start < end); 1808 *insertion_point = vma; 1809 tail_vma->vm_next = NULL; 1810 if (mm->unmap_area == arch_unmap_area) 1811 addr = prev ? prev->vm_end : mm->mmap_base; 1812 else 1813 addr = vma ? vma->vm_start : mm->mmap_base; 1814 mm->unmap_area(mm, addr); 1815 mm->mmap_cache = NULL; /* Kill the cache. */ 1816 } 1817 1818 /* 1819 * Split a vma into two pieces at address 'addr', a new vma is allocated 1820 * either for the first part or the tail. 1821 */ 1822 int split_vma(struct mm_struct * mm, struct vm_area_struct * vma, 1823 unsigned long addr, int new_below) 1824 { 1825 struct mempolicy *pol; 1826 struct vm_area_struct *new; 1827 1828 if (is_vm_hugetlb_page(vma) && (addr & 1829 ~(huge_page_mask(hstate_vma(vma))))) 1830 return -EINVAL; 1831 1832 if (mm->map_count >= sysctl_max_map_count) 1833 return -ENOMEM; 1834 1835 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 1836 if (!new) 1837 return -ENOMEM; 1838 1839 /* most fields are the same, copy all, and then fixup */ 1840 *new = *vma; 1841 1842 if (new_below) 1843 new->vm_end = addr; 1844 else { 1845 new->vm_start = addr; 1846 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); 1847 } 1848 1849 pol = mpol_dup(vma_policy(vma)); 1850 if (IS_ERR(pol)) { 1851 kmem_cache_free(vm_area_cachep, new); 1852 return PTR_ERR(pol); 1853 } 1854 vma_set_policy(new, pol); 1855 1856 if (new->vm_file) { 1857 get_file(new->vm_file); 1858 if (vma->vm_flags & VM_EXECUTABLE) 1859 added_exe_file_vma(mm); 1860 } 1861 1862 if (new->vm_ops && new->vm_ops->open) 1863 new->vm_ops->open(new); 1864 1865 if (new_below) 1866 vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff + 1867 ((addr - new->vm_start) >> PAGE_SHIFT), new); 1868 else 1869 vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new); 1870 1871 return 0; 1872 } 1873 1874 /* Munmap is split into 2 main parts -- this part which finds 1875 * what needs doing, and the areas themselves, which do the 1876 * work. This now handles partial unmappings. 1877 * Jeremy Fitzhardinge <jeremy@goop.org> 1878 */ 1879 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len) 1880 { 1881 unsigned long end; 1882 struct vm_area_struct *vma, *prev, *last; 1883 1884 if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start) 1885 return -EINVAL; 1886 1887 if ((len = PAGE_ALIGN(len)) == 0) 1888 return -EINVAL; 1889 1890 /* Find the first overlapping VMA */ 1891 vma = find_vma_prev(mm, start, &prev); 1892 if (!vma) 1893 return 0; 1894 /* we have start < vma->vm_end */ 1895 1896 /* if it doesn't overlap, we have nothing.. */ 1897 end = start + len; 1898 if (vma->vm_start >= end) 1899 return 0; 1900 1901 /* 1902 * If we need to split any vma, do it now to save pain later. 1903 * 1904 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially 1905 * unmapped vm_area_struct will remain in use: so lower split_vma 1906 * places tmp vma above, and higher split_vma places tmp vma below. 1907 */ 1908 if (start > vma->vm_start) { 1909 int error = split_vma(mm, vma, start, 0); 1910 if (error) 1911 return error; 1912 prev = vma; 1913 } 1914 1915 /* Does it split the last one? */ 1916 last = find_vma(mm, end); 1917 if (last && end > last->vm_start) { 1918 int error = split_vma(mm, last, end, 1); 1919 if (error) 1920 return error; 1921 } 1922 vma = prev? prev->vm_next: mm->mmap; 1923 1924 /* 1925 * unlock any mlock()ed ranges before detaching vmas 1926 */ 1927 if (mm->locked_vm) { 1928 struct vm_area_struct *tmp = vma; 1929 while (tmp && tmp->vm_start < end) { 1930 if (tmp->vm_flags & VM_LOCKED) { 1931 mm->locked_vm -= vma_pages(tmp); 1932 munlock_vma_pages_all(tmp); 1933 } 1934 tmp = tmp->vm_next; 1935 } 1936 } 1937 1938 /* 1939 * Remove the vma's, and unmap the actual pages 1940 */ 1941 detach_vmas_to_be_unmapped(mm, vma, prev, end); 1942 unmap_region(mm, vma, prev, start, end); 1943 1944 /* Fix up all other VM information */ 1945 remove_vma_list(mm, vma); 1946 1947 return 0; 1948 } 1949 1950 EXPORT_SYMBOL(do_munmap); 1951 1952 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 1953 { 1954 int ret; 1955 struct mm_struct *mm = current->mm; 1956 1957 profile_munmap(addr); 1958 1959 down_write(&mm->mmap_sem); 1960 ret = do_munmap(mm, addr, len); 1961 up_write(&mm->mmap_sem); 1962 return ret; 1963 } 1964 1965 static inline void verify_mm_writelocked(struct mm_struct *mm) 1966 { 1967 #ifdef CONFIG_DEBUG_VM 1968 if (unlikely(down_read_trylock(&mm->mmap_sem))) { 1969 WARN_ON(1); 1970 up_read(&mm->mmap_sem); 1971 } 1972 #endif 1973 } 1974 1975 /* 1976 * this is really a simplified "do_mmap". it only handles 1977 * anonymous maps. eventually we may be able to do some 1978 * brk-specific accounting here. 1979 */ 1980 unsigned long do_brk(unsigned long addr, unsigned long len) 1981 { 1982 struct mm_struct * mm = current->mm; 1983 struct vm_area_struct * vma, * prev; 1984 unsigned long flags; 1985 struct rb_node ** rb_link, * rb_parent; 1986 pgoff_t pgoff = addr >> PAGE_SHIFT; 1987 int error; 1988 1989 len = PAGE_ALIGN(len); 1990 if (!len) 1991 return addr; 1992 1993 if ((addr + len) > TASK_SIZE || (addr + len) < addr) 1994 return -EINVAL; 1995 1996 if (is_hugepage_only_range(mm, addr, len)) 1997 return -EINVAL; 1998 1999 error = security_file_mmap(NULL, 0, 0, 0, addr, 1); 2000 if (error) 2001 return error; 2002 2003 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; 2004 2005 error = arch_mmap_check(addr, len, flags); 2006 if (error) 2007 return error; 2008 2009 /* 2010 * mlock MCL_FUTURE? 2011 */ 2012 if (mm->def_flags & VM_LOCKED) { 2013 unsigned long locked, lock_limit; 2014 locked = len >> PAGE_SHIFT; 2015 locked += mm->locked_vm; 2016 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur; 2017 lock_limit >>= PAGE_SHIFT; 2018 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 2019 return -EAGAIN; 2020 } 2021 2022 /* 2023 * mm->mmap_sem is required to protect against another thread 2024 * changing the mappings in case we sleep. 2025 */ 2026 verify_mm_writelocked(mm); 2027 2028 /* 2029 * Clear old maps. this also does some error checking for us 2030 */ 2031 munmap_back: 2032 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent); 2033 if (vma && vma->vm_start < addr + len) { 2034 if (do_munmap(mm, addr, len)) 2035 return -ENOMEM; 2036 goto munmap_back; 2037 } 2038 2039 /* Check against address space limits *after* clearing old maps... */ 2040 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) 2041 return -ENOMEM; 2042 2043 if (mm->map_count > sysctl_max_map_count) 2044 return -ENOMEM; 2045 2046 if (security_vm_enough_memory(len >> PAGE_SHIFT)) 2047 return -ENOMEM; 2048 2049 /* Can we just expand an old private anonymous mapping? */ 2050 vma = vma_merge(mm, prev, addr, addr + len, flags, 2051 NULL, NULL, pgoff, NULL); 2052 if (vma) 2053 goto out; 2054 2055 /* 2056 * create a vma struct for an anonymous mapping 2057 */ 2058 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 2059 if (!vma) { 2060 vm_unacct_memory(len >> PAGE_SHIFT); 2061 return -ENOMEM; 2062 } 2063 2064 vma->vm_mm = mm; 2065 vma->vm_start = addr; 2066 vma->vm_end = addr + len; 2067 vma->vm_pgoff = pgoff; 2068 vma->vm_flags = flags; 2069 vma->vm_page_prot = vm_get_page_prot(flags); 2070 vma_link(mm, vma, prev, rb_link, rb_parent); 2071 out: 2072 mm->total_vm += len >> PAGE_SHIFT; 2073 if (flags & VM_LOCKED) { 2074 if (!mlock_vma_pages_range(vma, addr, addr + len)) 2075 mm->locked_vm += (len >> PAGE_SHIFT); 2076 } 2077 return addr; 2078 } 2079 2080 EXPORT_SYMBOL(do_brk); 2081 2082 /* Release all mmaps. */ 2083 void exit_mmap(struct mm_struct *mm) 2084 { 2085 struct mmu_gather *tlb; 2086 struct vm_area_struct *vma; 2087 unsigned long nr_accounted = 0; 2088 unsigned long end; 2089 2090 /* mm's last user has gone, and its about to be pulled down */ 2091 mmu_notifier_release(mm); 2092 2093 if (mm->locked_vm) { 2094 vma = mm->mmap; 2095 while (vma) { 2096 if (vma->vm_flags & VM_LOCKED) 2097 munlock_vma_pages_all(vma); 2098 vma = vma->vm_next; 2099 } 2100 } 2101 2102 arch_exit_mmap(mm); 2103 2104 vma = mm->mmap; 2105 if (!vma) /* Can happen if dup_mmap() received an OOM */ 2106 return; 2107 2108 lru_add_drain(); 2109 flush_cache_mm(mm); 2110 tlb = tlb_gather_mmu(mm, 1); 2111 /* update_hiwater_rss(mm) here? but nobody should be looking */ 2112 /* Use -1 here to ensure all VMAs in the mm are unmapped */ 2113 end = unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL); 2114 vm_unacct_memory(nr_accounted); 2115 free_pgtables(tlb, vma, FIRST_USER_ADDRESS, 0); 2116 tlb_finish_mmu(tlb, 0, end); 2117 2118 /* 2119 * Walk the list again, actually closing and freeing it, 2120 * with preemption enabled, without holding any MM locks. 2121 */ 2122 while (vma) 2123 vma = remove_vma(vma); 2124 2125 BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT); 2126 } 2127 2128 /* Insert vm structure into process list sorted by address 2129 * and into the inode's i_mmap tree. If vm_file is non-NULL 2130 * then i_mmap_lock is taken here. 2131 */ 2132 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma) 2133 { 2134 struct vm_area_struct * __vma, * prev; 2135 struct rb_node ** rb_link, * rb_parent; 2136 2137 /* 2138 * The vm_pgoff of a purely anonymous vma should be irrelevant 2139 * until its first write fault, when page's anon_vma and index 2140 * are set. But now set the vm_pgoff it will almost certainly 2141 * end up with (unless mremap moves it elsewhere before that 2142 * first wfault), so /proc/pid/maps tells a consistent story. 2143 * 2144 * By setting it to reflect the virtual start address of the 2145 * vma, merges and splits can happen in a seamless way, just 2146 * using the existing file pgoff checks and manipulations. 2147 * Similarly in do_mmap_pgoff and in do_brk. 2148 */ 2149 if (!vma->vm_file) { 2150 BUG_ON(vma->anon_vma); 2151 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; 2152 } 2153 __vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent); 2154 if (__vma && __vma->vm_start < vma->vm_end) 2155 return -ENOMEM; 2156 if ((vma->vm_flags & VM_ACCOUNT) && 2157 security_vm_enough_memory_mm(mm, vma_pages(vma))) 2158 return -ENOMEM; 2159 vma_link(mm, vma, prev, rb_link, rb_parent); 2160 return 0; 2161 } 2162 2163 /* 2164 * Copy the vma structure to a new location in the same mm, 2165 * prior to moving page table entries, to effect an mremap move. 2166 */ 2167 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 2168 unsigned long addr, unsigned long len, pgoff_t pgoff) 2169 { 2170 struct vm_area_struct *vma = *vmap; 2171 unsigned long vma_start = vma->vm_start; 2172 struct mm_struct *mm = vma->vm_mm; 2173 struct vm_area_struct *new_vma, *prev; 2174 struct rb_node **rb_link, *rb_parent; 2175 struct mempolicy *pol; 2176 2177 /* 2178 * If anonymous vma has not yet been faulted, update new pgoff 2179 * to match new location, to increase its chance of merging. 2180 */ 2181 if (!vma->vm_file && !vma->anon_vma) 2182 pgoff = addr >> PAGE_SHIFT; 2183 2184 find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent); 2185 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags, 2186 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma)); 2187 if (new_vma) { 2188 /* 2189 * Source vma may have been merged into new_vma 2190 */ 2191 if (vma_start >= new_vma->vm_start && 2192 vma_start < new_vma->vm_end) 2193 *vmap = new_vma; 2194 } else { 2195 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 2196 if (new_vma) { 2197 *new_vma = *vma; 2198 pol = mpol_dup(vma_policy(vma)); 2199 if (IS_ERR(pol)) { 2200 kmem_cache_free(vm_area_cachep, new_vma); 2201 return NULL; 2202 } 2203 vma_set_policy(new_vma, pol); 2204 new_vma->vm_start = addr; 2205 new_vma->vm_end = addr + len; 2206 new_vma->vm_pgoff = pgoff; 2207 if (new_vma->vm_file) { 2208 get_file(new_vma->vm_file); 2209 if (vma->vm_flags & VM_EXECUTABLE) 2210 added_exe_file_vma(mm); 2211 } 2212 if (new_vma->vm_ops && new_vma->vm_ops->open) 2213 new_vma->vm_ops->open(new_vma); 2214 vma_link(mm, new_vma, prev, rb_link, rb_parent); 2215 } 2216 } 2217 return new_vma; 2218 } 2219 2220 /* 2221 * Return true if the calling process may expand its vm space by the passed 2222 * number of pages 2223 */ 2224 int may_expand_vm(struct mm_struct *mm, unsigned long npages) 2225 { 2226 unsigned long cur = mm->total_vm; /* pages */ 2227 unsigned long lim; 2228 2229 lim = current->signal->rlim[RLIMIT_AS].rlim_cur >> PAGE_SHIFT; 2230 2231 if (cur + npages > lim) 2232 return 0; 2233 return 1; 2234 } 2235 2236 2237 static int special_mapping_fault(struct vm_area_struct *vma, 2238 struct vm_fault *vmf) 2239 { 2240 pgoff_t pgoff; 2241 struct page **pages; 2242 2243 /* 2244 * special mappings have no vm_file, and in that case, the mm 2245 * uses vm_pgoff internally. So we have to subtract it from here. 2246 * We are allowed to do this because we are the mm; do not copy 2247 * this code into drivers! 2248 */ 2249 pgoff = vmf->pgoff - vma->vm_pgoff; 2250 2251 for (pages = vma->vm_private_data; pgoff && *pages; ++pages) 2252 pgoff--; 2253 2254 if (*pages) { 2255 struct page *page = *pages; 2256 get_page(page); 2257 vmf->page = page; 2258 return 0; 2259 } 2260 2261 return VM_FAULT_SIGBUS; 2262 } 2263 2264 /* 2265 * Having a close hook prevents vma merging regardless of flags. 2266 */ 2267 static void special_mapping_close(struct vm_area_struct *vma) 2268 { 2269 } 2270 2271 static struct vm_operations_struct special_mapping_vmops = { 2272 .close = special_mapping_close, 2273 .fault = special_mapping_fault, 2274 }; 2275 2276 /* 2277 * Called with mm->mmap_sem held for writing. 2278 * Insert a new vma covering the given region, with the given flags. 2279 * Its pages are supplied by the given array of struct page *. 2280 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated. 2281 * The region past the last page supplied will always produce SIGBUS. 2282 * The array pointer and the pages it points to are assumed to stay alive 2283 * for as long as this mapping might exist. 2284 */ 2285 int install_special_mapping(struct mm_struct *mm, 2286 unsigned long addr, unsigned long len, 2287 unsigned long vm_flags, struct page **pages) 2288 { 2289 struct vm_area_struct *vma; 2290 2291 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 2292 if (unlikely(vma == NULL)) 2293 return -ENOMEM; 2294 2295 vma->vm_mm = mm; 2296 vma->vm_start = addr; 2297 vma->vm_end = addr + len; 2298 2299 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND; 2300 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2301 2302 vma->vm_ops = &special_mapping_vmops; 2303 vma->vm_private_data = pages; 2304 2305 if (unlikely(insert_vm_struct(mm, vma))) { 2306 kmem_cache_free(vm_area_cachep, vma); 2307 return -ENOMEM; 2308 } 2309 2310 mm->total_vm += len >> PAGE_SHIFT; 2311 2312 return 0; 2313 } 2314 2315 static DEFINE_MUTEX(mm_all_locks_mutex); 2316 2317 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) 2318 { 2319 if (!test_bit(0, (unsigned long *) &anon_vma->head.next)) { 2320 /* 2321 * The LSB of head.next can't change from under us 2322 * because we hold the mm_all_locks_mutex. 2323 */ 2324 spin_lock_nest_lock(&anon_vma->lock, &mm->mmap_sem); 2325 /* 2326 * We can safely modify head.next after taking the 2327 * anon_vma->lock. If some other vma in this mm shares 2328 * the same anon_vma we won't take it again. 2329 * 2330 * No need of atomic instructions here, head.next 2331 * can't change from under us thanks to the 2332 * anon_vma->lock. 2333 */ 2334 if (__test_and_set_bit(0, (unsigned long *) 2335 &anon_vma->head.next)) 2336 BUG(); 2337 } 2338 } 2339 2340 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) 2341 { 2342 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 2343 /* 2344 * AS_MM_ALL_LOCKS can't change from under us because 2345 * we hold the mm_all_locks_mutex. 2346 * 2347 * Operations on ->flags have to be atomic because 2348 * even if AS_MM_ALL_LOCKS is stable thanks to the 2349 * mm_all_locks_mutex, there may be other cpus 2350 * changing other bitflags in parallel to us. 2351 */ 2352 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) 2353 BUG(); 2354 spin_lock_nest_lock(&mapping->i_mmap_lock, &mm->mmap_sem); 2355 } 2356 } 2357 2358 /* 2359 * This operation locks against the VM for all pte/vma/mm related 2360 * operations that could ever happen on a certain mm. This includes 2361 * vmtruncate, try_to_unmap, and all page faults. 2362 * 2363 * The caller must take the mmap_sem in write mode before calling 2364 * mm_take_all_locks(). The caller isn't allowed to release the 2365 * mmap_sem until mm_drop_all_locks() returns. 2366 * 2367 * mmap_sem in write mode is required in order to block all operations 2368 * that could modify pagetables and free pages without need of 2369 * altering the vma layout (for example populate_range() with 2370 * nonlinear vmas). It's also needed in write mode to avoid new 2371 * anon_vmas to be associated with existing vmas. 2372 * 2373 * A single task can't take more than one mm_take_all_locks() in a row 2374 * or it would deadlock. 2375 * 2376 * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in 2377 * mapping->flags avoid to take the same lock twice, if more than one 2378 * vma in this mm is backed by the same anon_vma or address_space. 2379 * 2380 * We can take all the locks in random order because the VM code 2381 * taking i_mmap_lock or anon_vma->lock outside the mmap_sem never 2382 * takes more than one of them in a row. Secondly we're protected 2383 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex. 2384 * 2385 * mm_take_all_locks() and mm_drop_all_locks are expensive operations 2386 * that may have to take thousand of locks. 2387 * 2388 * mm_take_all_locks() can fail if it's interrupted by signals. 2389 */ 2390 int mm_take_all_locks(struct mm_struct *mm) 2391 { 2392 struct vm_area_struct *vma; 2393 int ret = -EINTR; 2394 2395 BUG_ON(down_read_trylock(&mm->mmap_sem)); 2396 2397 mutex_lock(&mm_all_locks_mutex); 2398 2399 for (vma = mm->mmap; vma; vma = vma->vm_next) { 2400 if (signal_pending(current)) 2401 goto out_unlock; 2402 if (vma->vm_file && vma->vm_file->f_mapping) 2403 vm_lock_mapping(mm, vma->vm_file->f_mapping); 2404 } 2405 2406 for (vma = mm->mmap; vma; vma = vma->vm_next) { 2407 if (signal_pending(current)) 2408 goto out_unlock; 2409 if (vma->anon_vma) 2410 vm_lock_anon_vma(mm, vma->anon_vma); 2411 } 2412 2413 ret = 0; 2414 2415 out_unlock: 2416 if (ret) 2417 mm_drop_all_locks(mm); 2418 2419 return ret; 2420 } 2421 2422 static void vm_unlock_anon_vma(struct anon_vma *anon_vma) 2423 { 2424 if (test_bit(0, (unsigned long *) &anon_vma->head.next)) { 2425 /* 2426 * The LSB of head.next can't change to 0 from under 2427 * us because we hold the mm_all_locks_mutex. 2428 * 2429 * We must however clear the bitflag before unlocking 2430 * the vma so the users using the anon_vma->head will 2431 * never see our bitflag. 2432 * 2433 * No need of atomic instructions here, head.next 2434 * can't change from under us until we release the 2435 * anon_vma->lock. 2436 */ 2437 if (!__test_and_clear_bit(0, (unsigned long *) 2438 &anon_vma->head.next)) 2439 BUG(); 2440 spin_unlock(&anon_vma->lock); 2441 } 2442 } 2443 2444 static void vm_unlock_mapping(struct address_space *mapping) 2445 { 2446 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 2447 /* 2448 * AS_MM_ALL_LOCKS can't change to 0 from under us 2449 * because we hold the mm_all_locks_mutex. 2450 */ 2451 spin_unlock(&mapping->i_mmap_lock); 2452 if (!test_and_clear_bit(AS_MM_ALL_LOCKS, 2453 &mapping->flags)) 2454 BUG(); 2455 } 2456 } 2457 2458 /* 2459 * The mmap_sem cannot be released by the caller until 2460 * mm_drop_all_locks() returns. 2461 */ 2462 void mm_drop_all_locks(struct mm_struct *mm) 2463 { 2464 struct vm_area_struct *vma; 2465 2466 BUG_ON(down_read_trylock(&mm->mmap_sem)); 2467 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); 2468 2469 for (vma = mm->mmap; vma; vma = vma->vm_next) { 2470 if (vma->anon_vma) 2471 vm_unlock_anon_vma(vma->anon_vma); 2472 if (vma->vm_file && vma->vm_file->f_mapping) 2473 vm_unlock_mapping(vma->vm_file->f_mapping); 2474 } 2475 2476 mutex_unlock(&mm_all_locks_mutex); 2477 } 2478 2479 /* 2480 * initialise the VMA slab 2481 */ 2482 void __init mmap_init(void) 2483 { 2484 } 2485