1 /* 2 * mm/mmap.c 3 * 4 * Written by obz. 5 * 6 * Address space accounting code <alan@lxorguk.ukuu.org.uk> 7 */ 8 9 #include <linux/slab.h> 10 #include <linux/backing-dev.h> 11 #include <linux/mm.h> 12 #include <linux/shm.h> 13 #include <linux/mman.h> 14 #include <linux/pagemap.h> 15 #include <linux/swap.h> 16 #include <linux/syscalls.h> 17 #include <linux/capability.h> 18 #include <linux/init.h> 19 #include <linux/file.h> 20 #include <linux/fs.h> 21 #include <linux/personality.h> 22 #include <linux/security.h> 23 #include <linux/ima.h> 24 #include <linux/hugetlb.h> 25 #include <linux/profile.h> 26 #include <linux/module.h> 27 #include <linux/mount.h> 28 #include <linux/mempolicy.h> 29 #include <linux/rmap.h> 30 #include <linux/mmu_notifier.h> 31 #include <linux/perf_event.h> 32 33 #include <asm/uaccess.h> 34 #include <asm/cacheflush.h> 35 #include <asm/tlb.h> 36 #include <asm/mmu_context.h> 37 38 #include "internal.h" 39 40 #ifndef arch_mmap_check 41 #define arch_mmap_check(addr, len, flags) (0) 42 #endif 43 44 #ifndef arch_rebalance_pgtables 45 #define arch_rebalance_pgtables(addr, len) (addr) 46 #endif 47 48 static void unmap_region(struct mm_struct *mm, 49 struct vm_area_struct *vma, struct vm_area_struct *prev, 50 unsigned long start, unsigned long end); 51 52 /* 53 * WARNING: the debugging will use recursive algorithms so never enable this 54 * unless you know what you are doing. 55 */ 56 #undef DEBUG_MM_RB 57 58 /* description of effects of mapping type and prot in current implementation. 59 * this is due to the limited x86 page protection hardware. The expected 60 * behavior is in parens: 61 * 62 * map_type prot 63 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC 64 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes 65 * w: (no) no w: (no) no w: (yes) yes w: (no) no 66 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 67 * 68 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes 69 * w: (no) no w: (no) no w: (copy) copy w: (no) no 70 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 71 * 72 */ 73 pgprot_t protection_map[16] = { 74 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111, 75 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111 76 }; 77 78 pgprot_t vm_get_page_prot(unsigned long vm_flags) 79 { 80 return __pgprot(pgprot_val(protection_map[vm_flags & 81 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) | 82 pgprot_val(arch_vm_get_page_prot(vm_flags))); 83 } 84 EXPORT_SYMBOL(vm_get_page_prot); 85 86 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */ 87 int sysctl_overcommit_ratio = 50; /* default is 50% */ 88 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT; 89 struct percpu_counter vm_committed_as; 90 91 /* 92 * Check that a process has enough memory to allocate a new virtual 93 * mapping. 0 means there is enough memory for the allocation to 94 * succeed and -ENOMEM implies there is not. 95 * 96 * We currently support three overcommit policies, which are set via the 97 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting 98 * 99 * Strict overcommit modes added 2002 Feb 26 by Alan Cox. 100 * Additional code 2002 Jul 20 by Robert Love. 101 * 102 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise. 103 * 104 * Note this is a helper function intended to be used by LSMs which 105 * wish to use this logic. 106 */ 107 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin) 108 { 109 unsigned long free, allowed; 110 111 vm_acct_memory(pages); 112 113 /* 114 * Sometimes we want to use more memory than we have 115 */ 116 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS) 117 return 0; 118 119 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) { 120 unsigned long n; 121 122 free = global_page_state(NR_FILE_PAGES); 123 free += nr_swap_pages; 124 125 /* 126 * Any slabs which are created with the 127 * SLAB_RECLAIM_ACCOUNT flag claim to have contents 128 * which are reclaimable, under pressure. The dentry 129 * cache and most inode caches should fall into this 130 */ 131 free += global_page_state(NR_SLAB_RECLAIMABLE); 132 133 /* 134 * Leave the last 3% for root 135 */ 136 if (!cap_sys_admin) 137 free -= free / 32; 138 139 if (free > pages) 140 return 0; 141 142 /* 143 * nr_free_pages() is very expensive on large systems, 144 * only call if we're about to fail. 145 */ 146 n = nr_free_pages(); 147 148 /* 149 * Leave reserved pages. The pages are not for anonymous pages. 150 */ 151 if (n <= totalreserve_pages) 152 goto error; 153 else 154 n -= totalreserve_pages; 155 156 /* 157 * Leave the last 3% for root 158 */ 159 if (!cap_sys_admin) 160 n -= n / 32; 161 free += n; 162 163 if (free > pages) 164 return 0; 165 166 goto error; 167 } 168 169 allowed = (totalram_pages - hugetlb_total_pages()) 170 * sysctl_overcommit_ratio / 100; 171 /* 172 * Leave the last 3% for root 173 */ 174 if (!cap_sys_admin) 175 allowed -= allowed / 32; 176 allowed += total_swap_pages; 177 178 /* Don't let a single process grow too big: 179 leave 3% of the size of this process for other processes */ 180 if (mm) 181 allowed -= mm->total_vm / 32; 182 183 if (percpu_counter_read_positive(&vm_committed_as) < allowed) 184 return 0; 185 error: 186 vm_unacct_memory(pages); 187 188 return -ENOMEM; 189 } 190 191 /* 192 * Requires inode->i_mapping->i_mmap_lock 193 */ 194 static void __remove_shared_vm_struct(struct vm_area_struct *vma, 195 struct file *file, struct address_space *mapping) 196 { 197 if (vma->vm_flags & VM_DENYWRITE) 198 atomic_inc(&file->f_path.dentry->d_inode->i_writecount); 199 if (vma->vm_flags & VM_SHARED) 200 mapping->i_mmap_writable--; 201 202 flush_dcache_mmap_lock(mapping); 203 if (unlikely(vma->vm_flags & VM_NONLINEAR)) 204 list_del_init(&vma->shared.vm_set.list); 205 else 206 vma_prio_tree_remove(vma, &mapping->i_mmap); 207 flush_dcache_mmap_unlock(mapping); 208 } 209 210 /* 211 * Unlink a file-based vm structure from its prio_tree, to hide 212 * vma from rmap and vmtruncate before freeing its page tables. 213 */ 214 void unlink_file_vma(struct vm_area_struct *vma) 215 { 216 struct file *file = vma->vm_file; 217 218 if (file) { 219 struct address_space *mapping = file->f_mapping; 220 spin_lock(&mapping->i_mmap_lock); 221 __remove_shared_vm_struct(vma, file, mapping); 222 spin_unlock(&mapping->i_mmap_lock); 223 } 224 } 225 226 /* 227 * Close a vm structure and free it, returning the next. 228 */ 229 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma) 230 { 231 struct vm_area_struct *next = vma->vm_next; 232 233 might_sleep(); 234 if (vma->vm_ops && vma->vm_ops->close) 235 vma->vm_ops->close(vma); 236 if (vma->vm_file) { 237 fput(vma->vm_file); 238 if (vma->vm_flags & VM_EXECUTABLE) 239 removed_exe_file_vma(vma->vm_mm); 240 } 241 mpol_put(vma_policy(vma)); 242 kmem_cache_free(vm_area_cachep, vma); 243 return next; 244 } 245 246 SYSCALL_DEFINE1(brk, unsigned long, brk) 247 { 248 unsigned long rlim, retval; 249 unsigned long newbrk, oldbrk; 250 struct mm_struct *mm = current->mm; 251 unsigned long min_brk; 252 253 down_write(&mm->mmap_sem); 254 255 #ifdef CONFIG_COMPAT_BRK 256 min_brk = mm->end_code; 257 #else 258 min_brk = mm->start_brk; 259 #endif 260 if (brk < min_brk) 261 goto out; 262 263 /* 264 * Check against rlimit here. If this check is done later after the test 265 * of oldbrk with newbrk then it can escape the test and let the data 266 * segment grow beyond its set limit the in case where the limit is 267 * not page aligned -Ram Gupta 268 */ 269 rlim = current->signal->rlim[RLIMIT_DATA].rlim_cur; 270 if (rlim < RLIM_INFINITY && (brk - mm->start_brk) + 271 (mm->end_data - mm->start_data) > rlim) 272 goto out; 273 274 newbrk = PAGE_ALIGN(brk); 275 oldbrk = PAGE_ALIGN(mm->brk); 276 if (oldbrk == newbrk) 277 goto set_brk; 278 279 /* Always allow shrinking brk. */ 280 if (brk <= mm->brk) { 281 if (!do_munmap(mm, newbrk, oldbrk-newbrk)) 282 goto set_brk; 283 goto out; 284 } 285 286 /* Check against existing mmap mappings. */ 287 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE)) 288 goto out; 289 290 /* Ok, looks good - let it rip. */ 291 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk) 292 goto out; 293 set_brk: 294 mm->brk = brk; 295 out: 296 retval = mm->brk; 297 up_write(&mm->mmap_sem); 298 return retval; 299 } 300 301 #ifdef DEBUG_MM_RB 302 static int browse_rb(struct rb_root *root) 303 { 304 int i = 0, j; 305 struct rb_node *nd, *pn = NULL; 306 unsigned long prev = 0, pend = 0; 307 308 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 309 struct vm_area_struct *vma; 310 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 311 if (vma->vm_start < prev) 312 printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1; 313 if (vma->vm_start < pend) 314 printk("vm_start %lx pend %lx\n", vma->vm_start, pend); 315 if (vma->vm_start > vma->vm_end) 316 printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start); 317 i++; 318 pn = nd; 319 prev = vma->vm_start; 320 pend = vma->vm_end; 321 } 322 j = 0; 323 for (nd = pn; nd; nd = rb_prev(nd)) { 324 j++; 325 } 326 if (i != j) 327 printk("backwards %d, forwards %d\n", j, i), i = 0; 328 return i; 329 } 330 331 void validate_mm(struct mm_struct *mm) 332 { 333 int bug = 0; 334 int i = 0; 335 struct vm_area_struct *tmp = mm->mmap; 336 while (tmp) { 337 tmp = tmp->vm_next; 338 i++; 339 } 340 if (i != mm->map_count) 341 printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1; 342 i = browse_rb(&mm->mm_rb); 343 if (i != mm->map_count) 344 printk("map_count %d rb %d\n", mm->map_count, i), bug = 1; 345 BUG_ON(bug); 346 } 347 #else 348 #define validate_mm(mm) do { } while (0) 349 #endif 350 351 static struct vm_area_struct * 352 find_vma_prepare(struct mm_struct *mm, unsigned long addr, 353 struct vm_area_struct **pprev, struct rb_node ***rb_link, 354 struct rb_node ** rb_parent) 355 { 356 struct vm_area_struct * vma; 357 struct rb_node ** __rb_link, * __rb_parent, * rb_prev; 358 359 __rb_link = &mm->mm_rb.rb_node; 360 rb_prev = __rb_parent = NULL; 361 vma = NULL; 362 363 while (*__rb_link) { 364 struct vm_area_struct *vma_tmp; 365 366 __rb_parent = *__rb_link; 367 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb); 368 369 if (vma_tmp->vm_end > addr) { 370 vma = vma_tmp; 371 if (vma_tmp->vm_start <= addr) 372 break; 373 __rb_link = &__rb_parent->rb_left; 374 } else { 375 rb_prev = __rb_parent; 376 __rb_link = &__rb_parent->rb_right; 377 } 378 } 379 380 *pprev = NULL; 381 if (rb_prev) 382 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); 383 *rb_link = __rb_link; 384 *rb_parent = __rb_parent; 385 return vma; 386 } 387 388 static inline void 389 __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma, 390 struct vm_area_struct *prev, struct rb_node *rb_parent) 391 { 392 if (prev) { 393 vma->vm_next = prev->vm_next; 394 prev->vm_next = vma; 395 } else { 396 mm->mmap = vma; 397 if (rb_parent) 398 vma->vm_next = rb_entry(rb_parent, 399 struct vm_area_struct, vm_rb); 400 else 401 vma->vm_next = NULL; 402 } 403 } 404 405 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma, 406 struct rb_node **rb_link, struct rb_node *rb_parent) 407 { 408 rb_link_node(&vma->vm_rb, rb_parent, rb_link); 409 rb_insert_color(&vma->vm_rb, &mm->mm_rb); 410 } 411 412 static void __vma_link_file(struct vm_area_struct *vma) 413 { 414 struct file *file; 415 416 file = vma->vm_file; 417 if (file) { 418 struct address_space *mapping = file->f_mapping; 419 420 if (vma->vm_flags & VM_DENYWRITE) 421 atomic_dec(&file->f_path.dentry->d_inode->i_writecount); 422 if (vma->vm_flags & VM_SHARED) 423 mapping->i_mmap_writable++; 424 425 flush_dcache_mmap_lock(mapping); 426 if (unlikely(vma->vm_flags & VM_NONLINEAR)) 427 vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear); 428 else 429 vma_prio_tree_insert(vma, &mapping->i_mmap); 430 flush_dcache_mmap_unlock(mapping); 431 } 432 } 433 434 static void 435 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 436 struct vm_area_struct *prev, struct rb_node **rb_link, 437 struct rb_node *rb_parent) 438 { 439 __vma_link_list(mm, vma, prev, rb_parent); 440 __vma_link_rb(mm, vma, rb_link, rb_parent); 441 __anon_vma_link(vma); 442 } 443 444 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 445 struct vm_area_struct *prev, struct rb_node **rb_link, 446 struct rb_node *rb_parent) 447 { 448 struct address_space *mapping = NULL; 449 450 if (vma->vm_file) 451 mapping = vma->vm_file->f_mapping; 452 453 if (mapping) { 454 spin_lock(&mapping->i_mmap_lock); 455 vma->vm_truncate_count = mapping->truncate_count; 456 } 457 anon_vma_lock(vma); 458 459 __vma_link(mm, vma, prev, rb_link, rb_parent); 460 __vma_link_file(vma); 461 462 anon_vma_unlock(vma); 463 if (mapping) 464 spin_unlock(&mapping->i_mmap_lock); 465 466 mm->map_count++; 467 validate_mm(mm); 468 } 469 470 /* 471 * Helper for vma_adjust in the split_vma insert case: 472 * insert vm structure into list and rbtree and anon_vma, 473 * but it has already been inserted into prio_tree earlier. 474 */ 475 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 476 { 477 struct vm_area_struct *__vma, *prev; 478 struct rb_node **rb_link, *rb_parent; 479 480 __vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent); 481 BUG_ON(__vma && __vma->vm_start < vma->vm_end); 482 __vma_link(mm, vma, prev, rb_link, rb_parent); 483 mm->map_count++; 484 } 485 486 static inline void 487 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma, 488 struct vm_area_struct *prev) 489 { 490 prev->vm_next = vma->vm_next; 491 rb_erase(&vma->vm_rb, &mm->mm_rb); 492 if (mm->mmap_cache == vma) 493 mm->mmap_cache = prev; 494 } 495 496 /* 497 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that 498 * is already present in an i_mmap tree without adjusting the tree. 499 * The following helper function should be used when such adjustments 500 * are necessary. The "insert" vma (if any) is to be inserted 501 * before we drop the necessary locks. 502 */ 503 void vma_adjust(struct vm_area_struct *vma, unsigned long start, 504 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 505 { 506 struct mm_struct *mm = vma->vm_mm; 507 struct vm_area_struct *next = vma->vm_next; 508 struct vm_area_struct *importer = NULL; 509 struct address_space *mapping = NULL; 510 struct prio_tree_root *root = NULL; 511 struct file *file = vma->vm_file; 512 struct anon_vma *anon_vma = NULL; 513 long adjust_next = 0; 514 int remove_next = 0; 515 516 if (next && !insert) { 517 if (end >= next->vm_end) { 518 /* 519 * vma expands, overlapping all the next, and 520 * perhaps the one after too (mprotect case 6). 521 */ 522 again: remove_next = 1 + (end > next->vm_end); 523 end = next->vm_end; 524 anon_vma = next->anon_vma; 525 importer = vma; 526 } else if (end > next->vm_start) { 527 /* 528 * vma expands, overlapping part of the next: 529 * mprotect case 5 shifting the boundary up. 530 */ 531 adjust_next = (end - next->vm_start) >> PAGE_SHIFT; 532 anon_vma = next->anon_vma; 533 importer = vma; 534 } else if (end < vma->vm_end) { 535 /* 536 * vma shrinks, and !insert tells it's not 537 * split_vma inserting another: so it must be 538 * mprotect case 4 shifting the boundary down. 539 */ 540 adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT); 541 anon_vma = next->anon_vma; 542 importer = next; 543 } 544 } 545 546 if (file) { 547 mapping = file->f_mapping; 548 if (!(vma->vm_flags & VM_NONLINEAR)) 549 root = &mapping->i_mmap; 550 spin_lock(&mapping->i_mmap_lock); 551 if (importer && 552 vma->vm_truncate_count != next->vm_truncate_count) { 553 /* 554 * unmap_mapping_range might be in progress: 555 * ensure that the expanding vma is rescanned. 556 */ 557 importer->vm_truncate_count = 0; 558 } 559 if (insert) { 560 insert->vm_truncate_count = vma->vm_truncate_count; 561 /* 562 * Put into prio_tree now, so instantiated pages 563 * are visible to arm/parisc __flush_dcache_page 564 * throughout; but we cannot insert into address 565 * space until vma start or end is updated. 566 */ 567 __vma_link_file(insert); 568 } 569 } 570 571 /* 572 * When changing only vma->vm_end, we don't really need 573 * anon_vma lock. 574 */ 575 if (vma->anon_vma && (insert || importer || start != vma->vm_start)) 576 anon_vma = vma->anon_vma; 577 if (anon_vma) { 578 spin_lock(&anon_vma->lock); 579 /* 580 * Easily overlooked: when mprotect shifts the boundary, 581 * make sure the expanding vma has anon_vma set if the 582 * shrinking vma had, to cover any anon pages imported. 583 */ 584 if (importer && !importer->anon_vma) { 585 importer->anon_vma = anon_vma; 586 __anon_vma_link(importer); 587 } 588 } 589 590 if (root) { 591 flush_dcache_mmap_lock(mapping); 592 vma_prio_tree_remove(vma, root); 593 if (adjust_next) 594 vma_prio_tree_remove(next, root); 595 } 596 597 vma->vm_start = start; 598 vma->vm_end = end; 599 vma->vm_pgoff = pgoff; 600 if (adjust_next) { 601 next->vm_start += adjust_next << PAGE_SHIFT; 602 next->vm_pgoff += adjust_next; 603 } 604 605 if (root) { 606 if (adjust_next) 607 vma_prio_tree_insert(next, root); 608 vma_prio_tree_insert(vma, root); 609 flush_dcache_mmap_unlock(mapping); 610 } 611 612 if (remove_next) { 613 /* 614 * vma_merge has merged next into vma, and needs 615 * us to remove next before dropping the locks. 616 */ 617 __vma_unlink(mm, next, vma); 618 if (file) 619 __remove_shared_vm_struct(next, file, mapping); 620 if (next->anon_vma) 621 __anon_vma_merge(vma, next); 622 } else if (insert) { 623 /* 624 * split_vma has split insert from vma, and needs 625 * us to insert it before dropping the locks 626 * (it may either follow vma or precede it). 627 */ 628 __insert_vm_struct(mm, insert); 629 } 630 631 if (anon_vma) 632 spin_unlock(&anon_vma->lock); 633 if (mapping) 634 spin_unlock(&mapping->i_mmap_lock); 635 636 if (remove_next) { 637 if (file) { 638 fput(file); 639 if (next->vm_flags & VM_EXECUTABLE) 640 removed_exe_file_vma(mm); 641 } 642 mm->map_count--; 643 mpol_put(vma_policy(next)); 644 kmem_cache_free(vm_area_cachep, next); 645 /* 646 * In mprotect's case 6 (see comments on vma_merge), 647 * we must remove another next too. It would clutter 648 * up the code too much to do both in one go. 649 */ 650 if (remove_next == 2) { 651 next = vma->vm_next; 652 goto again; 653 } 654 } 655 656 validate_mm(mm); 657 } 658 659 /* 660 * If the vma has a ->close operation then the driver probably needs to release 661 * per-vma resources, so we don't attempt to merge those. 662 */ 663 static inline int is_mergeable_vma(struct vm_area_struct *vma, 664 struct file *file, unsigned long vm_flags) 665 { 666 /* VM_CAN_NONLINEAR may get set later by f_op->mmap() */ 667 if ((vma->vm_flags ^ vm_flags) & ~VM_CAN_NONLINEAR) 668 return 0; 669 if (vma->vm_file != file) 670 return 0; 671 if (vma->vm_ops && vma->vm_ops->close) 672 return 0; 673 return 1; 674 } 675 676 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1, 677 struct anon_vma *anon_vma2) 678 { 679 return !anon_vma1 || !anon_vma2 || (anon_vma1 == anon_vma2); 680 } 681 682 /* 683 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 684 * in front of (at a lower virtual address and file offset than) the vma. 685 * 686 * We cannot merge two vmas if they have differently assigned (non-NULL) 687 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 688 * 689 * We don't check here for the merged mmap wrapping around the end of pagecache 690 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which 691 * wrap, nor mmaps which cover the final page at index -1UL. 692 */ 693 static int 694 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags, 695 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff) 696 { 697 if (is_mergeable_vma(vma, file, vm_flags) && 698 is_mergeable_anon_vma(anon_vma, vma->anon_vma)) { 699 if (vma->vm_pgoff == vm_pgoff) 700 return 1; 701 } 702 return 0; 703 } 704 705 /* 706 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 707 * beyond (at a higher virtual address and file offset than) the vma. 708 * 709 * We cannot merge two vmas if they have differently assigned (non-NULL) 710 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 711 */ 712 static int 713 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags, 714 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff) 715 { 716 if (is_mergeable_vma(vma, file, vm_flags) && 717 is_mergeable_anon_vma(anon_vma, vma->anon_vma)) { 718 pgoff_t vm_pglen; 719 vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 720 if (vma->vm_pgoff + vm_pglen == vm_pgoff) 721 return 1; 722 } 723 return 0; 724 } 725 726 /* 727 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out 728 * whether that can be merged with its predecessor or its successor. 729 * Or both (it neatly fills a hole). 730 * 731 * In most cases - when called for mmap, brk or mremap - [addr,end) is 732 * certain not to be mapped by the time vma_merge is called; but when 733 * called for mprotect, it is certain to be already mapped (either at 734 * an offset within prev, or at the start of next), and the flags of 735 * this area are about to be changed to vm_flags - and the no-change 736 * case has already been eliminated. 737 * 738 * The following mprotect cases have to be considered, where AAAA is 739 * the area passed down from mprotect_fixup, never extending beyond one 740 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after: 741 * 742 * AAAA AAAA AAAA AAAA 743 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX 744 * cannot merge might become might become might become 745 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or 746 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or 747 * mremap move: PPPPNNNNNNNN 8 748 * AAAA 749 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN 750 * might become case 1 below case 2 below case 3 below 751 * 752 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX: 753 * mprotect_fixup updates vm_flags & vm_page_prot on successful return. 754 */ 755 struct vm_area_struct *vma_merge(struct mm_struct *mm, 756 struct vm_area_struct *prev, unsigned long addr, 757 unsigned long end, unsigned long vm_flags, 758 struct anon_vma *anon_vma, struct file *file, 759 pgoff_t pgoff, struct mempolicy *policy) 760 { 761 pgoff_t pglen = (end - addr) >> PAGE_SHIFT; 762 struct vm_area_struct *area, *next; 763 764 /* 765 * We later require that vma->vm_flags == vm_flags, 766 * so this tests vma->vm_flags & VM_SPECIAL, too. 767 */ 768 if (vm_flags & VM_SPECIAL) 769 return NULL; 770 771 if (prev) 772 next = prev->vm_next; 773 else 774 next = mm->mmap; 775 area = next; 776 if (next && next->vm_end == end) /* cases 6, 7, 8 */ 777 next = next->vm_next; 778 779 /* 780 * Can it merge with the predecessor? 781 */ 782 if (prev && prev->vm_end == addr && 783 mpol_equal(vma_policy(prev), policy) && 784 can_vma_merge_after(prev, vm_flags, 785 anon_vma, file, pgoff)) { 786 /* 787 * OK, it can. Can we now merge in the successor as well? 788 */ 789 if (next && end == next->vm_start && 790 mpol_equal(policy, vma_policy(next)) && 791 can_vma_merge_before(next, vm_flags, 792 anon_vma, file, pgoff+pglen) && 793 is_mergeable_anon_vma(prev->anon_vma, 794 next->anon_vma)) { 795 /* cases 1, 6 */ 796 vma_adjust(prev, prev->vm_start, 797 next->vm_end, prev->vm_pgoff, NULL); 798 } else /* cases 2, 5, 7 */ 799 vma_adjust(prev, prev->vm_start, 800 end, prev->vm_pgoff, NULL); 801 return prev; 802 } 803 804 /* 805 * Can this new request be merged in front of next? 806 */ 807 if (next && end == next->vm_start && 808 mpol_equal(policy, vma_policy(next)) && 809 can_vma_merge_before(next, vm_flags, 810 anon_vma, file, pgoff+pglen)) { 811 if (prev && addr < prev->vm_end) /* case 4 */ 812 vma_adjust(prev, prev->vm_start, 813 addr, prev->vm_pgoff, NULL); 814 else /* cases 3, 8 */ 815 vma_adjust(area, addr, next->vm_end, 816 next->vm_pgoff - pglen, NULL); 817 return area; 818 } 819 820 return NULL; 821 } 822 823 /* 824 * find_mergeable_anon_vma is used by anon_vma_prepare, to check 825 * neighbouring vmas for a suitable anon_vma, before it goes off 826 * to allocate a new anon_vma. It checks because a repetitive 827 * sequence of mprotects and faults may otherwise lead to distinct 828 * anon_vmas being allocated, preventing vma merge in subsequent 829 * mprotect. 830 */ 831 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) 832 { 833 struct vm_area_struct *near; 834 unsigned long vm_flags; 835 836 near = vma->vm_next; 837 if (!near) 838 goto try_prev; 839 840 /* 841 * Since only mprotect tries to remerge vmas, match flags 842 * which might be mprotected into each other later on. 843 * Neither mlock nor madvise tries to remerge at present, 844 * so leave their flags as obstructing a merge. 845 */ 846 vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC); 847 vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC); 848 849 if (near->anon_vma && vma->vm_end == near->vm_start && 850 mpol_equal(vma_policy(vma), vma_policy(near)) && 851 can_vma_merge_before(near, vm_flags, 852 NULL, vma->vm_file, vma->vm_pgoff + 853 ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT))) 854 return near->anon_vma; 855 try_prev: 856 /* 857 * It is potentially slow to have to call find_vma_prev here. 858 * But it's only on the first write fault on the vma, not 859 * every time, and we could devise a way to avoid it later 860 * (e.g. stash info in next's anon_vma_node when assigning 861 * an anon_vma, or when trying vma_merge). Another time. 862 */ 863 BUG_ON(find_vma_prev(vma->vm_mm, vma->vm_start, &near) != vma); 864 if (!near) 865 goto none; 866 867 vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC); 868 vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC); 869 870 if (near->anon_vma && near->vm_end == vma->vm_start && 871 mpol_equal(vma_policy(near), vma_policy(vma)) && 872 can_vma_merge_after(near, vm_flags, 873 NULL, vma->vm_file, vma->vm_pgoff)) 874 return near->anon_vma; 875 none: 876 /* 877 * There's no absolute need to look only at touching neighbours: 878 * we could search further afield for "compatible" anon_vmas. 879 * But it would probably just be a waste of time searching, 880 * or lead to too many vmas hanging off the same anon_vma. 881 * We're trying to allow mprotect remerging later on, 882 * not trying to minimize memory used for anon_vmas. 883 */ 884 return NULL; 885 } 886 887 #ifdef CONFIG_PROC_FS 888 void vm_stat_account(struct mm_struct *mm, unsigned long flags, 889 struct file *file, long pages) 890 { 891 const unsigned long stack_flags 892 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN); 893 894 if (file) { 895 mm->shared_vm += pages; 896 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC) 897 mm->exec_vm += pages; 898 } else if (flags & stack_flags) 899 mm->stack_vm += pages; 900 if (flags & (VM_RESERVED|VM_IO)) 901 mm->reserved_vm += pages; 902 } 903 #endif /* CONFIG_PROC_FS */ 904 905 /* 906 * The caller must hold down_write(¤t->mm->mmap_sem). 907 */ 908 909 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, 910 unsigned long len, unsigned long prot, 911 unsigned long flags, unsigned long pgoff) 912 { 913 struct mm_struct * mm = current->mm; 914 struct inode *inode; 915 unsigned int vm_flags; 916 int error; 917 unsigned long reqprot = prot; 918 919 /* 920 * Does the application expect PROT_READ to imply PROT_EXEC? 921 * 922 * (the exception is when the underlying filesystem is noexec 923 * mounted, in which case we dont add PROT_EXEC.) 924 */ 925 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC)) 926 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC))) 927 prot |= PROT_EXEC; 928 929 if (!len) 930 return -EINVAL; 931 932 if (!(flags & MAP_FIXED)) 933 addr = round_hint_to_min(addr); 934 935 error = arch_mmap_check(addr, len, flags); 936 if (error) 937 return error; 938 939 /* Careful about overflows.. */ 940 len = PAGE_ALIGN(len); 941 if (!len || len > TASK_SIZE) 942 return -ENOMEM; 943 944 /* offset overflow? */ 945 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff) 946 return -EOVERFLOW; 947 948 /* Too many mappings? */ 949 if (mm->map_count > sysctl_max_map_count) 950 return -ENOMEM; 951 952 if (flags & MAP_HUGETLB) { 953 struct user_struct *user = NULL; 954 if (file) 955 return -EINVAL; 956 957 /* 958 * VM_NORESERVE is used because the reservations will be 959 * taken when vm_ops->mmap() is called 960 * A dummy user value is used because we are not locking 961 * memory so no accounting is necessary 962 */ 963 len = ALIGN(len, huge_page_size(&default_hstate)); 964 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, VM_NORESERVE, 965 &user, HUGETLB_ANONHUGE_INODE); 966 if (IS_ERR(file)) 967 return PTR_ERR(file); 968 } 969 970 /* Obtain the address to map to. we verify (or select) it and ensure 971 * that it represents a valid section of the address space. 972 */ 973 addr = get_unmapped_area(file, addr, len, pgoff, flags); 974 if (addr & ~PAGE_MASK) 975 return addr; 976 977 /* Do simple checking here so the lower-level routines won't have 978 * to. we assume access permissions have been handled by the open 979 * of the memory object, so we don't do any here. 980 */ 981 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) | 982 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 983 984 if (flags & MAP_LOCKED) 985 if (!can_do_mlock()) 986 return -EPERM; 987 988 /* mlock MCL_FUTURE? */ 989 if (vm_flags & VM_LOCKED) { 990 unsigned long locked, lock_limit; 991 locked = len >> PAGE_SHIFT; 992 locked += mm->locked_vm; 993 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur; 994 lock_limit >>= PAGE_SHIFT; 995 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 996 return -EAGAIN; 997 } 998 999 inode = file ? file->f_path.dentry->d_inode : NULL; 1000 1001 if (file) { 1002 switch (flags & MAP_TYPE) { 1003 case MAP_SHARED: 1004 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE)) 1005 return -EACCES; 1006 1007 /* 1008 * Make sure we don't allow writing to an append-only 1009 * file.. 1010 */ 1011 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE)) 1012 return -EACCES; 1013 1014 /* 1015 * Make sure there are no mandatory locks on the file. 1016 */ 1017 if (locks_verify_locked(inode)) 1018 return -EAGAIN; 1019 1020 vm_flags |= VM_SHARED | VM_MAYSHARE; 1021 if (!(file->f_mode & FMODE_WRITE)) 1022 vm_flags &= ~(VM_MAYWRITE | VM_SHARED); 1023 1024 /* fall through */ 1025 case MAP_PRIVATE: 1026 if (!(file->f_mode & FMODE_READ)) 1027 return -EACCES; 1028 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) { 1029 if (vm_flags & VM_EXEC) 1030 return -EPERM; 1031 vm_flags &= ~VM_MAYEXEC; 1032 } 1033 1034 if (!file->f_op || !file->f_op->mmap) 1035 return -ENODEV; 1036 break; 1037 1038 default: 1039 return -EINVAL; 1040 } 1041 } else { 1042 switch (flags & MAP_TYPE) { 1043 case MAP_SHARED: 1044 /* 1045 * Ignore pgoff. 1046 */ 1047 pgoff = 0; 1048 vm_flags |= VM_SHARED | VM_MAYSHARE; 1049 break; 1050 case MAP_PRIVATE: 1051 /* 1052 * Set pgoff according to addr for anon_vma. 1053 */ 1054 pgoff = addr >> PAGE_SHIFT; 1055 break; 1056 default: 1057 return -EINVAL; 1058 } 1059 } 1060 1061 error = security_file_mmap(file, reqprot, prot, flags, addr, 0); 1062 if (error) 1063 return error; 1064 error = ima_file_mmap(file, prot); 1065 if (error) 1066 return error; 1067 1068 return mmap_region(file, addr, len, flags, vm_flags, pgoff); 1069 } 1070 EXPORT_SYMBOL(do_mmap_pgoff); 1071 1072 /* 1073 * Some shared mappigns will want the pages marked read-only 1074 * to track write events. If so, we'll downgrade vm_page_prot 1075 * to the private version (using protection_map[] without the 1076 * VM_SHARED bit). 1077 */ 1078 int vma_wants_writenotify(struct vm_area_struct *vma) 1079 { 1080 unsigned int vm_flags = vma->vm_flags; 1081 1082 /* If it was private or non-writable, the write bit is already clear */ 1083 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED))) 1084 return 0; 1085 1086 /* The backer wishes to know when pages are first written to? */ 1087 if (vma->vm_ops && vma->vm_ops->page_mkwrite) 1088 return 1; 1089 1090 /* The open routine did something to the protections already? */ 1091 if (pgprot_val(vma->vm_page_prot) != 1092 pgprot_val(vm_get_page_prot(vm_flags))) 1093 return 0; 1094 1095 /* Specialty mapping? */ 1096 if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE)) 1097 return 0; 1098 1099 /* Can the mapping track the dirty pages? */ 1100 return vma->vm_file && vma->vm_file->f_mapping && 1101 mapping_cap_account_dirty(vma->vm_file->f_mapping); 1102 } 1103 1104 /* 1105 * We account for memory if it's a private writeable mapping, 1106 * not hugepages and VM_NORESERVE wasn't set. 1107 */ 1108 static inline int accountable_mapping(struct file *file, unsigned int vm_flags) 1109 { 1110 /* 1111 * hugetlb has its own accounting separate from the core VM 1112 * VM_HUGETLB may not be set yet so we cannot check for that flag. 1113 */ 1114 if (file && is_file_hugepages(file)) 1115 return 0; 1116 1117 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE; 1118 } 1119 1120 unsigned long mmap_region(struct file *file, unsigned long addr, 1121 unsigned long len, unsigned long flags, 1122 unsigned int vm_flags, unsigned long pgoff) 1123 { 1124 struct mm_struct *mm = current->mm; 1125 struct vm_area_struct *vma, *prev; 1126 int correct_wcount = 0; 1127 int error; 1128 struct rb_node **rb_link, *rb_parent; 1129 unsigned long charged = 0; 1130 struct inode *inode = file ? file->f_path.dentry->d_inode : NULL; 1131 1132 /* Clear old maps */ 1133 error = -ENOMEM; 1134 munmap_back: 1135 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent); 1136 if (vma && vma->vm_start < addr + len) { 1137 if (do_munmap(mm, addr, len)) 1138 return -ENOMEM; 1139 goto munmap_back; 1140 } 1141 1142 /* Check against address space limit. */ 1143 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) 1144 return -ENOMEM; 1145 1146 /* 1147 * Set 'VM_NORESERVE' if we should not account for the 1148 * memory use of this mapping. 1149 */ 1150 if ((flags & MAP_NORESERVE)) { 1151 /* We honor MAP_NORESERVE if allowed to overcommit */ 1152 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER) 1153 vm_flags |= VM_NORESERVE; 1154 1155 /* hugetlb applies strict overcommit unless MAP_NORESERVE */ 1156 if (file && is_file_hugepages(file)) 1157 vm_flags |= VM_NORESERVE; 1158 } 1159 1160 /* 1161 * Private writable mapping: check memory availability 1162 */ 1163 if (accountable_mapping(file, vm_flags)) { 1164 charged = len >> PAGE_SHIFT; 1165 if (security_vm_enough_memory(charged)) 1166 return -ENOMEM; 1167 vm_flags |= VM_ACCOUNT; 1168 } 1169 1170 /* 1171 * Can we just expand an old mapping? 1172 */ 1173 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL); 1174 if (vma) 1175 goto out; 1176 1177 /* 1178 * Determine the object being mapped and call the appropriate 1179 * specific mapper. the address has already been validated, but 1180 * not unmapped, but the maps are removed from the list. 1181 */ 1182 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 1183 if (!vma) { 1184 error = -ENOMEM; 1185 goto unacct_error; 1186 } 1187 1188 vma->vm_mm = mm; 1189 vma->vm_start = addr; 1190 vma->vm_end = addr + len; 1191 vma->vm_flags = vm_flags; 1192 vma->vm_page_prot = vm_get_page_prot(vm_flags); 1193 vma->vm_pgoff = pgoff; 1194 1195 if (file) { 1196 error = -EINVAL; 1197 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1198 goto free_vma; 1199 if (vm_flags & VM_DENYWRITE) { 1200 error = deny_write_access(file); 1201 if (error) 1202 goto free_vma; 1203 correct_wcount = 1; 1204 } 1205 vma->vm_file = file; 1206 get_file(file); 1207 error = file->f_op->mmap(file, vma); 1208 if (error) 1209 goto unmap_and_free_vma; 1210 if (vm_flags & VM_EXECUTABLE) 1211 added_exe_file_vma(mm); 1212 1213 /* Can addr have changed?? 1214 * 1215 * Answer: Yes, several device drivers can do it in their 1216 * f_op->mmap method. -DaveM 1217 */ 1218 addr = vma->vm_start; 1219 pgoff = vma->vm_pgoff; 1220 vm_flags = vma->vm_flags; 1221 } else if (vm_flags & VM_SHARED) { 1222 error = shmem_zero_setup(vma); 1223 if (error) 1224 goto free_vma; 1225 } 1226 1227 if (vma_wants_writenotify(vma)) 1228 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED); 1229 1230 vma_link(mm, vma, prev, rb_link, rb_parent); 1231 file = vma->vm_file; 1232 1233 /* Once vma denies write, undo our temporary denial count */ 1234 if (correct_wcount) 1235 atomic_inc(&inode->i_writecount); 1236 out: 1237 perf_event_mmap(vma); 1238 1239 mm->total_vm += len >> PAGE_SHIFT; 1240 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT); 1241 if (vm_flags & VM_LOCKED) { 1242 /* 1243 * makes pages present; downgrades, drops, reacquires mmap_sem 1244 */ 1245 long nr_pages = mlock_vma_pages_range(vma, addr, addr + len); 1246 if (nr_pages < 0) 1247 return nr_pages; /* vma gone! */ 1248 mm->locked_vm += (len >> PAGE_SHIFT) - nr_pages; 1249 } else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK)) 1250 make_pages_present(addr, addr + len); 1251 return addr; 1252 1253 unmap_and_free_vma: 1254 if (correct_wcount) 1255 atomic_inc(&inode->i_writecount); 1256 vma->vm_file = NULL; 1257 fput(file); 1258 1259 /* Undo any partial mapping done by a device driver. */ 1260 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end); 1261 charged = 0; 1262 free_vma: 1263 kmem_cache_free(vm_area_cachep, vma); 1264 unacct_error: 1265 if (charged) 1266 vm_unacct_memory(charged); 1267 return error; 1268 } 1269 1270 /* Get an address range which is currently unmapped. 1271 * For shmat() with addr=0. 1272 * 1273 * Ugly calling convention alert: 1274 * Return value with the low bits set means error value, 1275 * ie 1276 * if (ret & ~PAGE_MASK) 1277 * error = ret; 1278 * 1279 * This function "knows" that -ENOMEM has the bits set. 1280 */ 1281 #ifndef HAVE_ARCH_UNMAPPED_AREA 1282 unsigned long 1283 arch_get_unmapped_area(struct file *filp, unsigned long addr, 1284 unsigned long len, unsigned long pgoff, unsigned long flags) 1285 { 1286 struct mm_struct *mm = current->mm; 1287 struct vm_area_struct *vma; 1288 unsigned long start_addr; 1289 1290 if (len > TASK_SIZE) 1291 return -ENOMEM; 1292 1293 if (flags & MAP_FIXED) 1294 return addr; 1295 1296 if (addr) { 1297 addr = PAGE_ALIGN(addr); 1298 vma = find_vma(mm, addr); 1299 if (TASK_SIZE - len >= addr && 1300 (!vma || addr + len <= vma->vm_start)) 1301 return addr; 1302 } 1303 if (len > mm->cached_hole_size) { 1304 start_addr = addr = mm->free_area_cache; 1305 } else { 1306 start_addr = addr = TASK_UNMAPPED_BASE; 1307 mm->cached_hole_size = 0; 1308 } 1309 1310 full_search: 1311 for (vma = find_vma(mm, addr); ; vma = vma->vm_next) { 1312 /* At this point: (!vma || addr < vma->vm_end). */ 1313 if (TASK_SIZE - len < addr) { 1314 /* 1315 * Start a new search - just in case we missed 1316 * some holes. 1317 */ 1318 if (start_addr != TASK_UNMAPPED_BASE) { 1319 addr = TASK_UNMAPPED_BASE; 1320 start_addr = addr; 1321 mm->cached_hole_size = 0; 1322 goto full_search; 1323 } 1324 return -ENOMEM; 1325 } 1326 if (!vma || addr + len <= vma->vm_start) { 1327 /* 1328 * Remember the place where we stopped the search: 1329 */ 1330 mm->free_area_cache = addr + len; 1331 return addr; 1332 } 1333 if (addr + mm->cached_hole_size < vma->vm_start) 1334 mm->cached_hole_size = vma->vm_start - addr; 1335 addr = vma->vm_end; 1336 } 1337 } 1338 #endif 1339 1340 void arch_unmap_area(struct mm_struct *mm, unsigned long addr) 1341 { 1342 /* 1343 * Is this a new hole at the lowest possible address? 1344 */ 1345 if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) { 1346 mm->free_area_cache = addr; 1347 mm->cached_hole_size = ~0UL; 1348 } 1349 } 1350 1351 /* 1352 * This mmap-allocator allocates new areas top-down from below the 1353 * stack's low limit (the base): 1354 */ 1355 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 1356 unsigned long 1357 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0, 1358 const unsigned long len, const unsigned long pgoff, 1359 const unsigned long flags) 1360 { 1361 struct vm_area_struct *vma; 1362 struct mm_struct *mm = current->mm; 1363 unsigned long addr = addr0; 1364 1365 /* requested length too big for entire address space */ 1366 if (len > TASK_SIZE) 1367 return -ENOMEM; 1368 1369 if (flags & MAP_FIXED) 1370 return addr; 1371 1372 /* requesting a specific address */ 1373 if (addr) { 1374 addr = PAGE_ALIGN(addr); 1375 vma = find_vma(mm, addr); 1376 if (TASK_SIZE - len >= addr && 1377 (!vma || addr + len <= vma->vm_start)) 1378 return addr; 1379 } 1380 1381 /* check if free_area_cache is useful for us */ 1382 if (len <= mm->cached_hole_size) { 1383 mm->cached_hole_size = 0; 1384 mm->free_area_cache = mm->mmap_base; 1385 } 1386 1387 /* either no address requested or can't fit in requested address hole */ 1388 addr = mm->free_area_cache; 1389 1390 /* make sure it can fit in the remaining address space */ 1391 if (addr > len) { 1392 vma = find_vma(mm, addr-len); 1393 if (!vma || addr <= vma->vm_start) 1394 /* remember the address as a hint for next time */ 1395 return (mm->free_area_cache = addr-len); 1396 } 1397 1398 if (mm->mmap_base < len) 1399 goto bottomup; 1400 1401 addr = mm->mmap_base-len; 1402 1403 do { 1404 /* 1405 * Lookup failure means no vma is above this address, 1406 * else if new region fits below vma->vm_start, 1407 * return with success: 1408 */ 1409 vma = find_vma(mm, addr); 1410 if (!vma || addr+len <= vma->vm_start) 1411 /* remember the address as a hint for next time */ 1412 return (mm->free_area_cache = addr); 1413 1414 /* remember the largest hole we saw so far */ 1415 if (addr + mm->cached_hole_size < vma->vm_start) 1416 mm->cached_hole_size = vma->vm_start - addr; 1417 1418 /* try just below the current vma->vm_start */ 1419 addr = vma->vm_start-len; 1420 } while (len < vma->vm_start); 1421 1422 bottomup: 1423 /* 1424 * A failed mmap() very likely causes application failure, 1425 * so fall back to the bottom-up function here. This scenario 1426 * can happen with large stack limits and large mmap() 1427 * allocations. 1428 */ 1429 mm->cached_hole_size = ~0UL; 1430 mm->free_area_cache = TASK_UNMAPPED_BASE; 1431 addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags); 1432 /* 1433 * Restore the topdown base: 1434 */ 1435 mm->free_area_cache = mm->mmap_base; 1436 mm->cached_hole_size = ~0UL; 1437 1438 return addr; 1439 } 1440 #endif 1441 1442 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr) 1443 { 1444 /* 1445 * Is this a new hole at the highest possible address? 1446 */ 1447 if (addr > mm->free_area_cache) 1448 mm->free_area_cache = addr; 1449 1450 /* dont allow allocations above current base */ 1451 if (mm->free_area_cache > mm->mmap_base) 1452 mm->free_area_cache = mm->mmap_base; 1453 } 1454 1455 unsigned long 1456 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 1457 unsigned long pgoff, unsigned long flags) 1458 { 1459 unsigned long (*get_area)(struct file *, unsigned long, 1460 unsigned long, unsigned long, unsigned long); 1461 1462 get_area = current->mm->get_unmapped_area; 1463 if (file && file->f_op && file->f_op->get_unmapped_area) 1464 get_area = file->f_op->get_unmapped_area; 1465 addr = get_area(file, addr, len, pgoff, flags); 1466 if (IS_ERR_VALUE(addr)) 1467 return addr; 1468 1469 if (addr > TASK_SIZE - len) 1470 return -ENOMEM; 1471 if (addr & ~PAGE_MASK) 1472 return -EINVAL; 1473 1474 return arch_rebalance_pgtables(addr, len); 1475 } 1476 1477 EXPORT_SYMBOL(get_unmapped_area); 1478 1479 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 1480 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 1481 { 1482 struct vm_area_struct *vma = NULL; 1483 1484 if (mm) { 1485 /* Check the cache first. */ 1486 /* (Cache hit rate is typically around 35%.) */ 1487 vma = mm->mmap_cache; 1488 if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) { 1489 struct rb_node * rb_node; 1490 1491 rb_node = mm->mm_rb.rb_node; 1492 vma = NULL; 1493 1494 while (rb_node) { 1495 struct vm_area_struct * vma_tmp; 1496 1497 vma_tmp = rb_entry(rb_node, 1498 struct vm_area_struct, vm_rb); 1499 1500 if (vma_tmp->vm_end > addr) { 1501 vma = vma_tmp; 1502 if (vma_tmp->vm_start <= addr) 1503 break; 1504 rb_node = rb_node->rb_left; 1505 } else 1506 rb_node = rb_node->rb_right; 1507 } 1508 if (vma) 1509 mm->mmap_cache = vma; 1510 } 1511 } 1512 return vma; 1513 } 1514 1515 EXPORT_SYMBOL(find_vma); 1516 1517 /* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */ 1518 struct vm_area_struct * 1519 find_vma_prev(struct mm_struct *mm, unsigned long addr, 1520 struct vm_area_struct **pprev) 1521 { 1522 struct vm_area_struct *vma = NULL, *prev = NULL; 1523 struct rb_node *rb_node; 1524 if (!mm) 1525 goto out; 1526 1527 /* Guard against addr being lower than the first VMA */ 1528 vma = mm->mmap; 1529 1530 /* Go through the RB tree quickly. */ 1531 rb_node = mm->mm_rb.rb_node; 1532 1533 while (rb_node) { 1534 struct vm_area_struct *vma_tmp; 1535 vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb); 1536 1537 if (addr < vma_tmp->vm_end) { 1538 rb_node = rb_node->rb_left; 1539 } else { 1540 prev = vma_tmp; 1541 if (!prev->vm_next || (addr < prev->vm_next->vm_end)) 1542 break; 1543 rb_node = rb_node->rb_right; 1544 } 1545 } 1546 1547 out: 1548 *pprev = prev; 1549 return prev ? prev->vm_next : vma; 1550 } 1551 1552 /* 1553 * Verify that the stack growth is acceptable and 1554 * update accounting. This is shared with both the 1555 * grow-up and grow-down cases. 1556 */ 1557 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow) 1558 { 1559 struct mm_struct *mm = vma->vm_mm; 1560 struct rlimit *rlim = current->signal->rlim; 1561 unsigned long new_start; 1562 1563 /* address space limit tests */ 1564 if (!may_expand_vm(mm, grow)) 1565 return -ENOMEM; 1566 1567 /* Stack limit test */ 1568 if (size > rlim[RLIMIT_STACK].rlim_cur) 1569 return -ENOMEM; 1570 1571 /* mlock limit tests */ 1572 if (vma->vm_flags & VM_LOCKED) { 1573 unsigned long locked; 1574 unsigned long limit; 1575 locked = mm->locked_vm + grow; 1576 limit = rlim[RLIMIT_MEMLOCK].rlim_cur >> PAGE_SHIFT; 1577 if (locked > limit && !capable(CAP_IPC_LOCK)) 1578 return -ENOMEM; 1579 } 1580 1581 /* Check to ensure the stack will not grow into a hugetlb-only region */ 1582 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : 1583 vma->vm_end - size; 1584 if (is_hugepage_only_range(vma->vm_mm, new_start, size)) 1585 return -EFAULT; 1586 1587 /* 1588 * Overcommit.. This must be the final test, as it will 1589 * update security statistics. 1590 */ 1591 if (security_vm_enough_memory_mm(mm, grow)) 1592 return -ENOMEM; 1593 1594 /* Ok, everything looks good - let it rip */ 1595 mm->total_vm += grow; 1596 if (vma->vm_flags & VM_LOCKED) 1597 mm->locked_vm += grow; 1598 vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow); 1599 return 0; 1600 } 1601 1602 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64) 1603 /* 1604 * PA-RISC uses this for its stack; IA64 for its Register Backing Store. 1605 * vma is the last one with address > vma->vm_end. Have to extend vma. 1606 */ 1607 #ifndef CONFIG_IA64 1608 static 1609 #endif 1610 int expand_upwards(struct vm_area_struct *vma, unsigned long address) 1611 { 1612 int error; 1613 1614 if (!(vma->vm_flags & VM_GROWSUP)) 1615 return -EFAULT; 1616 1617 /* 1618 * We must make sure the anon_vma is allocated 1619 * so that the anon_vma locking is not a noop. 1620 */ 1621 if (unlikely(anon_vma_prepare(vma))) 1622 return -ENOMEM; 1623 anon_vma_lock(vma); 1624 1625 /* 1626 * vma->vm_start/vm_end cannot change under us because the caller 1627 * is required to hold the mmap_sem in read mode. We need the 1628 * anon_vma lock to serialize against concurrent expand_stacks. 1629 * Also guard against wrapping around to address 0. 1630 */ 1631 if (address < PAGE_ALIGN(address+4)) 1632 address = PAGE_ALIGN(address+4); 1633 else { 1634 anon_vma_unlock(vma); 1635 return -ENOMEM; 1636 } 1637 error = 0; 1638 1639 /* Somebody else might have raced and expanded it already */ 1640 if (address > vma->vm_end) { 1641 unsigned long size, grow; 1642 1643 size = address - vma->vm_start; 1644 grow = (address - vma->vm_end) >> PAGE_SHIFT; 1645 1646 error = acct_stack_growth(vma, size, grow); 1647 if (!error) 1648 vma->vm_end = address; 1649 } 1650 anon_vma_unlock(vma); 1651 return error; 1652 } 1653 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */ 1654 1655 /* 1656 * vma is the first one with address < vma->vm_start. Have to extend vma. 1657 */ 1658 static int expand_downwards(struct vm_area_struct *vma, 1659 unsigned long address) 1660 { 1661 int error; 1662 1663 /* 1664 * We must make sure the anon_vma is allocated 1665 * so that the anon_vma locking is not a noop. 1666 */ 1667 if (unlikely(anon_vma_prepare(vma))) 1668 return -ENOMEM; 1669 1670 address &= PAGE_MASK; 1671 error = security_file_mmap(NULL, 0, 0, 0, address, 1); 1672 if (error) 1673 return error; 1674 1675 anon_vma_lock(vma); 1676 1677 /* 1678 * vma->vm_start/vm_end cannot change under us because the caller 1679 * is required to hold the mmap_sem in read mode. We need the 1680 * anon_vma lock to serialize against concurrent expand_stacks. 1681 */ 1682 1683 /* Somebody else might have raced and expanded it already */ 1684 if (address < vma->vm_start) { 1685 unsigned long size, grow; 1686 1687 size = vma->vm_end - address; 1688 grow = (vma->vm_start - address) >> PAGE_SHIFT; 1689 1690 error = acct_stack_growth(vma, size, grow); 1691 if (!error) { 1692 vma->vm_start = address; 1693 vma->vm_pgoff -= grow; 1694 } 1695 } 1696 anon_vma_unlock(vma); 1697 return error; 1698 } 1699 1700 int expand_stack_downwards(struct vm_area_struct *vma, unsigned long address) 1701 { 1702 return expand_downwards(vma, address); 1703 } 1704 1705 #ifdef CONFIG_STACK_GROWSUP 1706 int expand_stack(struct vm_area_struct *vma, unsigned long address) 1707 { 1708 return expand_upwards(vma, address); 1709 } 1710 1711 struct vm_area_struct * 1712 find_extend_vma(struct mm_struct *mm, unsigned long addr) 1713 { 1714 struct vm_area_struct *vma, *prev; 1715 1716 addr &= PAGE_MASK; 1717 vma = find_vma_prev(mm, addr, &prev); 1718 if (vma && (vma->vm_start <= addr)) 1719 return vma; 1720 if (!prev || expand_stack(prev, addr)) 1721 return NULL; 1722 if (prev->vm_flags & VM_LOCKED) { 1723 if (mlock_vma_pages_range(prev, addr, prev->vm_end) < 0) 1724 return NULL; /* vma gone! */ 1725 } 1726 return prev; 1727 } 1728 #else 1729 int expand_stack(struct vm_area_struct *vma, unsigned long address) 1730 { 1731 return expand_downwards(vma, address); 1732 } 1733 1734 struct vm_area_struct * 1735 find_extend_vma(struct mm_struct * mm, unsigned long addr) 1736 { 1737 struct vm_area_struct * vma; 1738 unsigned long start; 1739 1740 addr &= PAGE_MASK; 1741 vma = find_vma(mm,addr); 1742 if (!vma) 1743 return NULL; 1744 if (vma->vm_start <= addr) 1745 return vma; 1746 if (!(vma->vm_flags & VM_GROWSDOWN)) 1747 return NULL; 1748 start = vma->vm_start; 1749 if (expand_stack(vma, addr)) 1750 return NULL; 1751 if (vma->vm_flags & VM_LOCKED) { 1752 if (mlock_vma_pages_range(vma, addr, start) < 0) 1753 return NULL; /* vma gone! */ 1754 } 1755 return vma; 1756 } 1757 #endif 1758 1759 /* 1760 * Ok - we have the memory areas we should free on the vma list, 1761 * so release them, and do the vma updates. 1762 * 1763 * Called with the mm semaphore held. 1764 */ 1765 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma) 1766 { 1767 /* Update high watermark before we lower total_vm */ 1768 update_hiwater_vm(mm); 1769 do { 1770 long nrpages = vma_pages(vma); 1771 1772 mm->total_vm -= nrpages; 1773 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages); 1774 vma = remove_vma(vma); 1775 } while (vma); 1776 validate_mm(mm); 1777 } 1778 1779 /* 1780 * Get rid of page table information in the indicated region. 1781 * 1782 * Called with the mm semaphore held. 1783 */ 1784 static void unmap_region(struct mm_struct *mm, 1785 struct vm_area_struct *vma, struct vm_area_struct *prev, 1786 unsigned long start, unsigned long end) 1787 { 1788 struct vm_area_struct *next = prev? prev->vm_next: mm->mmap; 1789 struct mmu_gather *tlb; 1790 unsigned long nr_accounted = 0; 1791 1792 lru_add_drain(); 1793 tlb = tlb_gather_mmu(mm, 0); 1794 update_hiwater_rss(mm); 1795 unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL); 1796 vm_unacct_memory(nr_accounted); 1797 free_pgtables(tlb, vma, prev? prev->vm_end: FIRST_USER_ADDRESS, 1798 next? next->vm_start: 0); 1799 tlb_finish_mmu(tlb, start, end); 1800 } 1801 1802 /* 1803 * Create a list of vma's touched by the unmap, removing them from the mm's 1804 * vma list as we go.. 1805 */ 1806 static void 1807 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma, 1808 struct vm_area_struct *prev, unsigned long end) 1809 { 1810 struct vm_area_struct **insertion_point; 1811 struct vm_area_struct *tail_vma = NULL; 1812 unsigned long addr; 1813 1814 insertion_point = (prev ? &prev->vm_next : &mm->mmap); 1815 do { 1816 rb_erase(&vma->vm_rb, &mm->mm_rb); 1817 mm->map_count--; 1818 tail_vma = vma; 1819 vma = vma->vm_next; 1820 } while (vma && vma->vm_start < end); 1821 *insertion_point = vma; 1822 tail_vma->vm_next = NULL; 1823 if (mm->unmap_area == arch_unmap_area) 1824 addr = prev ? prev->vm_end : mm->mmap_base; 1825 else 1826 addr = vma ? vma->vm_start : mm->mmap_base; 1827 mm->unmap_area(mm, addr); 1828 mm->mmap_cache = NULL; /* Kill the cache. */ 1829 } 1830 1831 /* 1832 * Split a vma into two pieces at address 'addr', a new vma is allocated 1833 * either for the first part or the tail. 1834 */ 1835 int split_vma(struct mm_struct * mm, struct vm_area_struct * vma, 1836 unsigned long addr, int new_below) 1837 { 1838 struct mempolicy *pol; 1839 struct vm_area_struct *new; 1840 1841 if (is_vm_hugetlb_page(vma) && (addr & 1842 ~(huge_page_mask(hstate_vma(vma))))) 1843 return -EINVAL; 1844 1845 if (mm->map_count >= sysctl_max_map_count) 1846 return -ENOMEM; 1847 1848 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 1849 if (!new) 1850 return -ENOMEM; 1851 1852 /* most fields are the same, copy all, and then fixup */ 1853 *new = *vma; 1854 1855 if (new_below) 1856 new->vm_end = addr; 1857 else { 1858 new->vm_start = addr; 1859 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); 1860 } 1861 1862 pol = mpol_dup(vma_policy(vma)); 1863 if (IS_ERR(pol)) { 1864 kmem_cache_free(vm_area_cachep, new); 1865 return PTR_ERR(pol); 1866 } 1867 vma_set_policy(new, pol); 1868 1869 if (new->vm_file) { 1870 get_file(new->vm_file); 1871 if (vma->vm_flags & VM_EXECUTABLE) 1872 added_exe_file_vma(mm); 1873 } 1874 1875 if (new->vm_ops && new->vm_ops->open) 1876 new->vm_ops->open(new); 1877 1878 if (new_below) 1879 vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff + 1880 ((addr - new->vm_start) >> PAGE_SHIFT), new); 1881 else 1882 vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new); 1883 1884 return 0; 1885 } 1886 1887 /* Munmap is split into 2 main parts -- this part which finds 1888 * what needs doing, and the areas themselves, which do the 1889 * work. This now handles partial unmappings. 1890 * Jeremy Fitzhardinge <jeremy@goop.org> 1891 */ 1892 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len) 1893 { 1894 unsigned long end; 1895 struct vm_area_struct *vma, *prev, *last; 1896 1897 if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start) 1898 return -EINVAL; 1899 1900 if ((len = PAGE_ALIGN(len)) == 0) 1901 return -EINVAL; 1902 1903 /* Find the first overlapping VMA */ 1904 vma = find_vma_prev(mm, start, &prev); 1905 if (!vma) 1906 return 0; 1907 /* we have start < vma->vm_end */ 1908 1909 /* if it doesn't overlap, we have nothing.. */ 1910 end = start + len; 1911 if (vma->vm_start >= end) 1912 return 0; 1913 1914 /* 1915 * If we need to split any vma, do it now to save pain later. 1916 * 1917 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially 1918 * unmapped vm_area_struct will remain in use: so lower split_vma 1919 * places tmp vma above, and higher split_vma places tmp vma below. 1920 */ 1921 if (start > vma->vm_start) { 1922 int error = split_vma(mm, vma, start, 0); 1923 if (error) 1924 return error; 1925 prev = vma; 1926 } 1927 1928 /* Does it split the last one? */ 1929 last = find_vma(mm, end); 1930 if (last && end > last->vm_start) { 1931 int error = split_vma(mm, last, end, 1); 1932 if (error) 1933 return error; 1934 } 1935 vma = prev? prev->vm_next: mm->mmap; 1936 1937 /* 1938 * unlock any mlock()ed ranges before detaching vmas 1939 */ 1940 if (mm->locked_vm) { 1941 struct vm_area_struct *tmp = vma; 1942 while (tmp && tmp->vm_start < end) { 1943 if (tmp->vm_flags & VM_LOCKED) { 1944 mm->locked_vm -= vma_pages(tmp); 1945 munlock_vma_pages_all(tmp); 1946 } 1947 tmp = tmp->vm_next; 1948 } 1949 } 1950 1951 /* 1952 * Remove the vma's, and unmap the actual pages 1953 */ 1954 detach_vmas_to_be_unmapped(mm, vma, prev, end); 1955 unmap_region(mm, vma, prev, start, end); 1956 1957 /* Fix up all other VM information */ 1958 remove_vma_list(mm, vma); 1959 1960 return 0; 1961 } 1962 1963 EXPORT_SYMBOL(do_munmap); 1964 1965 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 1966 { 1967 int ret; 1968 struct mm_struct *mm = current->mm; 1969 1970 profile_munmap(addr); 1971 1972 down_write(&mm->mmap_sem); 1973 ret = do_munmap(mm, addr, len); 1974 up_write(&mm->mmap_sem); 1975 return ret; 1976 } 1977 1978 static inline void verify_mm_writelocked(struct mm_struct *mm) 1979 { 1980 #ifdef CONFIG_DEBUG_VM 1981 if (unlikely(down_read_trylock(&mm->mmap_sem))) { 1982 WARN_ON(1); 1983 up_read(&mm->mmap_sem); 1984 } 1985 #endif 1986 } 1987 1988 /* 1989 * this is really a simplified "do_mmap". it only handles 1990 * anonymous maps. eventually we may be able to do some 1991 * brk-specific accounting here. 1992 */ 1993 unsigned long do_brk(unsigned long addr, unsigned long len) 1994 { 1995 struct mm_struct * mm = current->mm; 1996 struct vm_area_struct * vma, * prev; 1997 unsigned long flags; 1998 struct rb_node ** rb_link, * rb_parent; 1999 pgoff_t pgoff = addr >> PAGE_SHIFT; 2000 int error; 2001 2002 len = PAGE_ALIGN(len); 2003 if (!len) 2004 return addr; 2005 2006 if ((addr + len) > TASK_SIZE || (addr + len) < addr) 2007 return -EINVAL; 2008 2009 if (is_hugepage_only_range(mm, addr, len)) 2010 return -EINVAL; 2011 2012 error = security_file_mmap(NULL, 0, 0, 0, addr, 1); 2013 if (error) 2014 return error; 2015 2016 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; 2017 2018 error = arch_mmap_check(addr, len, flags); 2019 if (error) 2020 return error; 2021 2022 /* 2023 * mlock MCL_FUTURE? 2024 */ 2025 if (mm->def_flags & VM_LOCKED) { 2026 unsigned long locked, lock_limit; 2027 locked = len >> PAGE_SHIFT; 2028 locked += mm->locked_vm; 2029 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur; 2030 lock_limit >>= PAGE_SHIFT; 2031 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 2032 return -EAGAIN; 2033 } 2034 2035 /* 2036 * mm->mmap_sem is required to protect against another thread 2037 * changing the mappings in case we sleep. 2038 */ 2039 verify_mm_writelocked(mm); 2040 2041 /* 2042 * Clear old maps. this also does some error checking for us 2043 */ 2044 munmap_back: 2045 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent); 2046 if (vma && vma->vm_start < addr + len) { 2047 if (do_munmap(mm, addr, len)) 2048 return -ENOMEM; 2049 goto munmap_back; 2050 } 2051 2052 /* Check against address space limits *after* clearing old maps... */ 2053 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) 2054 return -ENOMEM; 2055 2056 if (mm->map_count > sysctl_max_map_count) 2057 return -ENOMEM; 2058 2059 if (security_vm_enough_memory(len >> PAGE_SHIFT)) 2060 return -ENOMEM; 2061 2062 /* Can we just expand an old private anonymous mapping? */ 2063 vma = vma_merge(mm, prev, addr, addr + len, flags, 2064 NULL, NULL, pgoff, NULL); 2065 if (vma) 2066 goto out; 2067 2068 /* 2069 * create a vma struct for an anonymous mapping 2070 */ 2071 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 2072 if (!vma) { 2073 vm_unacct_memory(len >> PAGE_SHIFT); 2074 return -ENOMEM; 2075 } 2076 2077 vma->vm_mm = mm; 2078 vma->vm_start = addr; 2079 vma->vm_end = addr + len; 2080 vma->vm_pgoff = pgoff; 2081 vma->vm_flags = flags; 2082 vma->vm_page_prot = vm_get_page_prot(flags); 2083 vma_link(mm, vma, prev, rb_link, rb_parent); 2084 out: 2085 mm->total_vm += len >> PAGE_SHIFT; 2086 if (flags & VM_LOCKED) { 2087 if (!mlock_vma_pages_range(vma, addr, addr + len)) 2088 mm->locked_vm += (len >> PAGE_SHIFT); 2089 } 2090 return addr; 2091 } 2092 2093 EXPORT_SYMBOL(do_brk); 2094 2095 /* Release all mmaps. */ 2096 void exit_mmap(struct mm_struct *mm) 2097 { 2098 struct mmu_gather *tlb; 2099 struct vm_area_struct *vma; 2100 unsigned long nr_accounted = 0; 2101 unsigned long end; 2102 2103 /* mm's last user has gone, and its about to be pulled down */ 2104 mmu_notifier_release(mm); 2105 2106 if (mm->locked_vm) { 2107 vma = mm->mmap; 2108 while (vma) { 2109 if (vma->vm_flags & VM_LOCKED) 2110 munlock_vma_pages_all(vma); 2111 vma = vma->vm_next; 2112 } 2113 } 2114 2115 arch_exit_mmap(mm); 2116 2117 vma = mm->mmap; 2118 if (!vma) /* Can happen if dup_mmap() received an OOM */ 2119 return; 2120 2121 lru_add_drain(); 2122 flush_cache_mm(mm); 2123 tlb = tlb_gather_mmu(mm, 1); 2124 /* update_hiwater_rss(mm) here? but nobody should be looking */ 2125 /* Use -1 here to ensure all VMAs in the mm are unmapped */ 2126 end = unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL); 2127 vm_unacct_memory(nr_accounted); 2128 2129 free_pgtables(tlb, vma, FIRST_USER_ADDRESS, 0); 2130 tlb_finish_mmu(tlb, 0, end); 2131 2132 /* 2133 * Walk the list again, actually closing and freeing it, 2134 * with preemption enabled, without holding any MM locks. 2135 */ 2136 while (vma) 2137 vma = remove_vma(vma); 2138 2139 BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT); 2140 } 2141 2142 /* Insert vm structure into process list sorted by address 2143 * and into the inode's i_mmap tree. If vm_file is non-NULL 2144 * then i_mmap_lock is taken here. 2145 */ 2146 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma) 2147 { 2148 struct vm_area_struct * __vma, * prev; 2149 struct rb_node ** rb_link, * rb_parent; 2150 2151 /* 2152 * The vm_pgoff of a purely anonymous vma should be irrelevant 2153 * until its first write fault, when page's anon_vma and index 2154 * are set. But now set the vm_pgoff it will almost certainly 2155 * end up with (unless mremap moves it elsewhere before that 2156 * first wfault), so /proc/pid/maps tells a consistent story. 2157 * 2158 * By setting it to reflect the virtual start address of the 2159 * vma, merges and splits can happen in a seamless way, just 2160 * using the existing file pgoff checks and manipulations. 2161 * Similarly in do_mmap_pgoff and in do_brk. 2162 */ 2163 if (!vma->vm_file) { 2164 BUG_ON(vma->anon_vma); 2165 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; 2166 } 2167 __vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent); 2168 if (__vma && __vma->vm_start < vma->vm_end) 2169 return -ENOMEM; 2170 if ((vma->vm_flags & VM_ACCOUNT) && 2171 security_vm_enough_memory_mm(mm, vma_pages(vma))) 2172 return -ENOMEM; 2173 vma_link(mm, vma, prev, rb_link, rb_parent); 2174 return 0; 2175 } 2176 2177 /* 2178 * Copy the vma structure to a new location in the same mm, 2179 * prior to moving page table entries, to effect an mremap move. 2180 */ 2181 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 2182 unsigned long addr, unsigned long len, pgoff_t pgoff) 2183 { 2184 struct vm_area_struct *vma = *vmap; 2185 unsigned long vma_start = vma->vm_start; 2186 struct mm_struct *mm = vma->vm_mm; 2187 struct vm_area_struct *new_vma, *prev; 2188 struct rb_node **rb_link, *rb_parent; 2189 struct mempolicy *pol; 2190 2191 /* 2192 * If anonymous vma has not yet been faulted, update new pgoff 2193 * to match new location, to increase its chance of merging. 2194 */ 2195 if (!vma->vm_file && !vma->anon_vma) 2196 pgoff = addr >> PAGE_SHIFT; 2197 2198 find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent); 2199 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags, 2200 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma)); 2201 if (new_vma) { 2202 /* 2203 * Source vma may have been merged into new_vma 2204 */ 2205 if (vma_start >= new_vma->vm_start && 2206 vma_start < new_vma->vm_end) 2207 *vmap = new_vma; 2208 } else { 2209 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 2210 if (new_vma) { 2211 *new_vma = *vma; 2212 pol = mpol_dup(vma_policy(vma)); 2213 if (IS_ERR(pol)) { 2214 kmem_cache_free(vm_area_cachep, new_vma); 2215 return NULL; 2216 } 2217 vma_set_policy(new_vma, pol); 2218 new_vma->vm_start = addr; 2219 new_vma->vm_end = addr + len; 2220 new_vma->vm_pgoff = pgoff; 2221 if (new_vma->vm_file) { 2222 get_file(new_vma->vm_file); 2223 if (vma->vm_flags & VM_EXECUTABLE) 2224 added_exe_file_vma(mm); 2225 } 2226 if (new_vma->vm_ops && new_vma->vm_ops->open) 2227 new_vma->vm_ops->open(new_vma); 2228 vma_link(mm, new_vma, prev, rb_link, rb_parent); 2229 } 2230 } 2231 return new_vma; 2232 } 2233 2234 /* 2235 * Return true if the calling process may expand its vm space by the passed 2236 * number of pages 2237 */ 2238 int may_expand_vm(struct mm_struct *mm, unsigned long npages) 2239 { 2240 unsigned long cur = mm->total_vm; /* pages */ 2241 unsigned long lim; 2242 2243 lim = current->signal->rlim[RLIMIT_AS].rlim_cur >> PAGE_SHIFT; 2244 2245 if (cur + npages > lim) 2246 return 0; 2247 return 1; 2248 } 2249 2250 2251 static int special_mapping_fault(struct vm_area_struct *vma, 2252 struct vm_fault *vmf) 2253 { 2254 pgoff_t pgoff; 2255 struct page **pages; 2256 2257 /* 2258 * special mappings have no vm_file, and in that case, the mm 2259 * uses vm_pgoff internally. So we have to subtract it from here. 2260 * We are allowed to do this because we are the mm; do not copy 2261 * this code into drivers! 2262 */ 2263 pgoff = vmf->pgoff - vma->vm_pgoff; 2264 2265 for (pages = vma->vm_private_data; pgoff && *pages; ++pages) 2266 pgoff--; 2267 2268 if (*pages) { 2269 struct page *page = *pages; 2270 get_page(page); 2271 vmf->page = page; 2272 return 0; 2273 } 2274 2275 return VM_FAULT_SIGBUS; 2276 } 2277 2278 /* 2279 * Having a close hook prevents vma merging regardless of flags. 2280 */ 2281 static void special_mapping_close(struct vm_area_struct *vma) 2282 { 2283 } 2284 2285 static const struct vm_operations_struct special_mapping_vmops = { 2286 .close = special_mapping_close, 2287 .fault = special_mapping_fault, 2288 }; 2289 2290 /* 2291 * Called with mm->mmap_sem held for writing. 2292 * Insert a new vma covering the given region, with the given flags. 2293 * Its pages are supplied by the given array of struct page *. 2294 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated. 2295 * The region past the last page supplied will always produce SIGBUS. 2296 * The array pointer and the pages it points to are assumed to stay alive 2297 * for as long as this mapping might exist. 2298 */ 2299 int install_special_mapping(struct mm_struct *mm, 2300 unsigned long addr, unsigned long len, 2301 unsigned long vm_flags, struct page **pages) 2302 { 2303 struct vm_area_struct *vma; 2304 2305 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 2306 if (unlikely(vma == NULL)) 2307 return -ENOMEM; 2308 2309 vma->vm_mm = mm; 2310 vma->vm_start = addr; 2311 vma->vm_end = addr + len; 2312 2313 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND; 2314 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2315 2316 vma->vm_ops = &special_mapping_vmops; 2317 vma->vm_private_data = pages; 2318 2319 if (unlikely(insert_vm_struct(mm, vma))) { 2320 kmem_cache_free(vm_area_cachep, vma); 2321 return -ENOMEM; 2322 } 2323 2324 mm->total_vm += len >> PAGE_SHIFT; 2325 2326 perf_event_mmap(vma); 2327 2328 return 0; 2329 } 2330 2331 static DEFINE_MUTEX(mm_all_locks_mutex); 2332 2333 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) 2334 { 2335 if (!test_bit(0, (unsigned long *) &anon_vma->head.next)) { 2336 /* 2337 * The LSB of head.next can't change from under us 2338 * because we hold the mm_all_locks_mutex. 2339 */ 2340 spin_lock_nest_lock(&anon_vma->lock, &mm->mmap_sem); 2341 /* 2342 * We can safely modify head.next after taking the 2343 * anon_vma->lock. If some other vma in this mm shares 2344 * the same anon_vma we won't take it again. 2345 * 2346 * No need of atomic instructions here, head.next 2347 * can't change from under us thanks to the 2348 * anon_vma->lock. 2349 */ 2350 if (__test_and_set_bit(0, (unsigned long *) 2351 &anon_vma->head.next)) 2352 BUG(); 2353 } 2354 } 2355 2356 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) 2357 { 2358 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 2359 /* 2360 * AS_MM_ALL_LOCKS can't change from under us because 2361 * we hold the mm_all_locks_mutex. 2362 * 2363 * Operations on ->flags have to be atomic because 2364 * even if AS_MM_ALL_LOCKS is stable thanks to the 2365 * mm_all_locks_mutex, there may be other cpus 2366 * changing other bitflags in parallel to us. 2367 */ 2368 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) 2369 BUG(); 2370 spin_lock_nest_lock(&mapping->i_mmap_lock, &mm->mmap_sem); 2371 } 2372 } 2373 2374 /* 2375 * This operation locks against the VM for all pte/vma/mm related 2376 * operations that could ever happen on a certain mm. This includes 2377 * vmtruncate, try_to_unmap, and all page faults. 2378 * 2379 * The caller must take the mmap_sem in write mode before calling 2380 * mm_take_all_locks(). The caller isn't allowed to release the 2381 * mmap_sem until mm_drop_all_locks() returns. 2382 * 2383 * mmap_sem in write mode is required in order to block all operations 2384 * that could modify pagetables and free pages without need of 2385 * altering the vma layout (for example populate_range() with 2386 * nonlinear vmas). It's also needed in write mode to avoid new 2387 * anon_vmas to be associated with existing vmas. 2388 * 2389 * A single task can't take more than one mm_take_all_locks() in a row 2390 * or it would deadlock. 2391 * 2392 * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in 2393 * mapping->flags avoid to take the same lock twice, if more than one 2394 * vma in this mm is backed by the same anon_vma or address_space. 2395 * 2396 * We can take all the locks in random order because the VM code 2397 * taking i_mmap_lock or anon_vma->lock outside the mmap_sem never 2398 * takes more than one of them in a row. Secondly we're protected 2399 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex. 2400 * 2401 * mm_take_all_locks() and mm_drop_all_locks are expensive operations 2402 * that may have to take thousand of locks. 2403 * 2404 * mm_take_all_locks() can fail if it's interrupted by signals. 2405 */ 2406 int mm_take_all_locks(struct mm_struct *mm) 2407 { 2408 struct vm_area_struct *vma; 2409 int ret = -EINTR; 2410 2411 BUG_ON(down_read_trylock(&mm->mmap_sem)); 2412 2413 mutex_lock(&mm_all_locks_mutex); 2414 2415 for (vma = mm->mmap; vma; vma = vma->vm_next) { 2416 if (signal_pending(current)) 2417 goto out_unlock; 2418 if (vma->vm_file && vma->vm_file->f_mapping) 2419 vm_lock_mapping(mm, vma->vm_file->f_mapping); 2420 } 2421 2422 for (vma = mm->mmap; vma; vma = vma->vm_next) { 2423 if (signal_pending(current)) 2424 goto out_unlock; 2425 if (vma->anon_vma) 2426 vm_lock_anon_vma(mm, vma->anon_vma); 2427 } 2428 2429 ret = 0; 2430 2431 out_unlock: 2432 if (ret) 2433 mm_drop_all_locks(mm); 2434 2435 return ret; 2436 } 2437 2438 static void vm_unlock_anon_vma(struct anon_vma *anon_vma) 2439 { 2440 if (test_bit(0, (unsigned long *) &anon_vma->head.next)) { 2441 /* 2442 * The LSB of head.next can't change to 0 from under 2443 * us because we hold the mm_all_locks_mutex. 2444 * 2445 * We must however clear the bitflag before unlocking 2446 * the vma so the users using the anon_vma->head will 2447 * never see our bitflag. 2448 * 2449 * No need of atomic instructions here, head.next 2450 * can't change from under us until we release the 2451 * anon_vma->lock. 2452 */ 2453 if (!__test_and_clear_bit(0, (unsigned long *) 2454 &anon_vma->head.next)) 2455 BUG(); 2456 spin_unlock(&anon_vma->lock); 2457 } 2458 } 2459 2460 static void vm_unlock_mapping(struct address_space *mapping) 2461 { 2462 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 2463 /* 2464 * AS_MM_ALL_LOCKS can't change to 0 from under us 2465 * because we hold the mm_all_locks_mutex. 2466 */ 2467 spin_unlock(&mapping->i_mmap_lock); 2468 if (!test_and_clear_bit(AS_MM_ALL_LOCKS, 2469 &mapping->flags)) 2470 BUG(); 2471 } 2472 } 2473 2474 /* 2475 * The mmap_sem cannot be released by the caller until 2476 * mm_drop_all_locks() returns. 2477 */ 2478 void mm_drop_all_locks(struct mm_struct *mm) 2479 { 2480 struct vm_area_struct *vma; 2481 2482 BUG_ON(down_read_trylock(&mm->mmap_sem)); 2483 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); 2484 2485 for (vma = mm->mmap; vma; vma = vma->vm_next) { 2486 if (vma->anon_vma) 2487 vm_unlock_anon_vma(vma->anon_vma); 2488 if (vma->vm_file && vma->vm_file->f_mapping) 2489 vm_unlock_mapping(vma->vm_file->f_mapping); 2490 } 2491 2492 mutex_unlock(&mm_all_locks_mutex); 2493 } 2494 2495 /* 2496 * initialise the VMA slab 2497 */ 2498 void __init mmap_init(void) 2499 { 2500 int ret; 2501 2502 ret = percpu_counter_init(&vm_committed_as, 0); 2503 VM_BUG_ON(ret); 2504 } 2505