xref: /linux/mm/mmap.c (revision dfc349402de8e95f6a42e8341e9ea193b718eee3)
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
7  */
8 
9 #include <linux/slab.h>
10 #include <linux/backing-dev.h>
11 #include <linux/mm.h>
12 #include <linux/shm.h>
13 #include <linux/mman.h>
14 #include <linux/pagemap.h>
15 #include <linux/swap.h>
16 #include <linux/syscalls.h>
17 #include <linux/capability.h>
18 #include <linux/init.h>
19 #include <linux/file.h>
20 #include <linux/fs.h>
21 #include <linux/personality.h>
22 #include <linux/security.h>
23 #include <linux/ima.h>
24 #include <linux/hugetlb.h>
25 #include <linux/profile.h>
26 #include <linux/module.h>
27 #include <linux/mount.h>
28 #include <linux/mempolicy.h>
29 #include <linux/rmap.h>
30 #include <linux/mmu_notifier.h>
31 #include <linux/perf_event.h>
32 
33 #include <asm/uaccess.h>
34 #include <asm/cacheflush.h>
35 #include <asm/tlb.h>
36 #include <asm/mmu_context.h>
37 
38 #include "internal.h"
39 
40 #ifndef arch_mmap_check
41 #define arch_mmap_check(addr, len, flags)	(0)
42 #endif
43 
44 #ifndef arch_rebalance_pgtables
45 #define arch_rebalance_pgtables(addr, len)		(addr)
46 #endif
47 
48 static void unmap_region(struct mm_struct *mm,
49 		struct vm_area_struct *vma, struct vm_area_struct *prev,
50 		unsigned long start, unsigned long end);
51 
52 /*
53  * WARNING: the debugging will use recursive algorithms so never enable this
54  * unless you know what you are doing.
55  */
56 #undef DEBUG_MM_RB
57 
58 /* description of effects of mapping type and prot in current implementation.
59  * this is due to the limited x86 page protection hardware.  The expected
60  * behavior is in parens:
61  *
62  * map_type	prot
63  *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
64  * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
65  *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
66  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
67  *
68  * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
69  *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
70  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
71  *
72  */
73 pgprot_t protection_map[16] = {
74 	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
75 	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
76 };
77 
78 pgprot_t vm_get_page_prot(unsigned long vm_flags)
79 {
80 	return __pgprot(pgprot_val(protection_map[vm_flags &
81 				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
82 			pgprot_val(arch_vm_get_page_prot(vm_flags)));
83 }
84 EXPORT_SYMBOL(vm_get_page_prot);
85 
86 int sysctl_overcommit_memory = OVERCOMMIT_GUESS;  /* heuristic overcommit */
87 int sysctl_overcommit_ratio = 50;	/* default is 50% */
88 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
89 struct percpu_counter vm_committed_as;
90 
91 /*
92  * Check that a process has enough memory to allocate a new virtual
93  * mapping. 0 means there is enough memory for the allocation to
94  * succeed and -ENOMEM implies there is not.
95  *
96  * We currently support three overcommit policies, which are set via the
97  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
98  *
99  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
100  * Additional code 2002 Jul 20 by Robert Love.
101  *
102  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
103  *
104  * Note this is a helper function intended to be used by LSMs which
105  * wish to use this logic.
106  */
107 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
108 {
109 	unsigned long free, allowed;
110 
111 	vm_acct_memory(pages);
112 
113 	/*
114 	 * Sometimes we want to use more memory than we have
115 	 */
116 	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
117 		return 0;
118 
119 	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
120 		unsigned long n;
121 
122 		free = global_page_state(NR_FILE_PAGES);
123 		free += nr_swap_pages;
124 
125 		/*
126 		 * Any slabs which are created with the
127 		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
128 		 * which are reclaimable, under pressure.  The dentry
129 		 * cache and most inode caches should fall into this
130 		 */
131 		free += global_page_state(NR_SLAB_RECLAIMABLE);
132 
133 		/*
134 		 * Leave the last 3% for root
135 		 */
136 		if (!cap_sys_admin)
137 			free -= free / 32;
138 
139 		if (free > pages)
140 			return 0;
141 
142 		/*
143 		 * nr_free_pages() is very expensive on large systems,
144 		 * only call if we're about to fail.
145 		 */
146 		n = nr_free_pages();
147 
148 		/*
149 		 * Leave reserved pages. The pages are not for anonymous pages.
150 		 */
151 		if (n <= totalreserve_pages)
152 			goto error;
153 		else
154 			n -= totalreserve_pages;
155 
156 		/*
157 		 * Leave the last 3% for root
158 		 */
159 		if (!cap_sys_admin)
160 			n -= n / 32;
161 		free += n;
162 
163 		if (free > pages)
164 			return 0;
165 
166 		goto error;
167 	}
168 
169 	allowed = (totalram_pages - hugetlb_total_pages())
170 	       	* sysctl_overcommit_ratio / 100;
171 	/*
172 	 * Leave the last 3% for root
173 	 */
174 	if (!cap_sys_admin)
175 		allowed -= allowed / 32;
176 	allowed += total_swap_pages;
177 
178 	/* Don't let a single process grow too big:
179 	   leave 3% of the size of this process for other processes */
180 	if (mm)
181 		allowed -= mm->total_vm / 32;
182 
183 	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
184 		return 0;
185 error:
186 	vm_unacct_memory(pages);
187 
188 	return -ENOMEM;
189 }
190 
191 /*
192  * Requires inode->i_mapping->i_mmap_lock
193  */
194 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
195 		struct file *file, struct address_space *mapping)
196 {
197 	if (vma->vm_flags & VM_DENYWRITE)
198 		atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
199 	if (vma->vm_flags & VM_SHARED)
200 		mapping->i_mmap_writable--;
201 
202 	flush_dcache_mmap_lock(mapping);
203 	if (unlikely(vma->vm_flags & VM_NONLINEAR))
204 		list_del_init(&vma->shared.vm_set.list);
205 	else
206 		vma_prio_tree_remove(vma, &mapping->i_mmap);
207 	flush_dcache_mmap_unlock(mapping);
208 }
209 
210 /*
211  * Unlink a file-based vm structure from its prio_tree, to hide
212  * vma from rmap and vmtruncate before freeing its page tables.
213  */
214 void unlink_file_vma(struct vm_area_struct *vma)
215 {
216 	struct file *file = vma->vm_file;
217 
218 	if (file) {
219 		struct address_space *mapping = file->f_mapping;
220 		spin_lock(&mapping->i_mmap_lock);
221 		__remove_shared_vm_struct(vma, file, mapping);
222 		spin_unlock(&mapping->i_mmap_lock);
223 	}
224 }
225 
226 /*
227  * Close a vm structure and free it, returning the next.
228  */
229 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
230 {
231 	struct vm_area_struct *next = vma->vm_next;
232 
233 	might_sleep();
234 	if (vma->vm_ops && vma->vm_ops->close)
235 		vma->vm_ops->close(vma);
236 	if (vma->vm_file) {
237 		fput(vma->vm_file);
238 		if (vma->vm_flags & VM_EXECUTABLE)
239 			removed_exe_file_vma(vma->vm_mm);
240 	}
241 	mpol_put(vma_policy(vma));
242 	kmem_cache_free(vm_area_cachep, vma);
243 	return next;
244 }
245 
246 SYSCALL_DEFINE1(brk, unsigned long, brk)
247 {
248 	unsigned long rlim, retval;
249 	unsigned long newbrk, oldbrk;
250 	struct mm_struct *mm = current->mm;
251 	unsigned long min_brk;
252 
253 	down_write(&mm->mmap_sem);
254 
255 #ifdef CONFIG_COMPAT_BRK
256 	min_brk = mm->end_code;
257 #else
258 	min_brk = mm->start_brk;
259 #endif
260 	if (brk < min_brk)
261 		goto out;
262 
263 	/*
264 	 * Check against rlimit here. If this check is done later after the test
265 	 * of oldbrk with newbrk then it can escape the test and let the data
266 	 * segment grow beyond its set limit the in case where the limit is
267 	 * not page aligned -Ram Gupta
268 	 */
269 	rlim = current->signal->rlim[RLIMIT_DATA].rlim_cur;
270 	if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
271 			(mm->end_data - mm->start_data) > rlim)
272 		goto out;
273 
274 	newbrk = PAGE_ALIGN(brk);
275 	oldbrk = PAGE_ALIGN(mm->brk);
276 	if (oldbrk == newbrk)
277 		goto set_brk;
278 
279 	/* Always allow shrinking brk. */
280 	if (brk <= mm->brk) {
281 		if (!do_munmap(mm, newbrk, oldbrk-newbrk))
282 			goto set_brk;
283 		goto out;
284 	}
285 
286 	/* Check against existing mmap mappings. */
287 	if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
288 		goto out;
289 
290 	/* Ok, looks good - let it rip. */
291 	if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
292 		goto out;
293 set_brk:
294 	mm->brk = brk;
295 out:
296 	retval = mm->brk;
297 	up_write(&mm->mmap_sem);
298 	return retval;
299 }
300 
301 #ifdef DEBUG_MM_RB
302 static int browse_rb(struct rb_root *root)
303 {
304 	int i = 0, j;
305 	struct rb_node *nd, *pn = NULL;
306 	unsigned long prev = 0, pend = 0;
307 
308 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
309 		struct vm_area_struct *vma;
310 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
311 		if (vma->vm_start < prev)
312 			printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
313 		if (vma->vm_start < pend)
314 			printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
315 		if (vma->vm_start > vma->vm_end)
316 			printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
317 		i++;
318 		pn = nd;
319 		prev = vma->vm_start;
320 		pend = vma->vm_end;
321 	}
322 	j = 0;
323 	for (nd = pn; nd; nd = rb_prev(nd)) {
324 		j++;
325 	}
326 	if (i != j)
327 		printk("backwards %d, forwards %d\n", j, i), i = 0;
328 	return i;
329 }
330 
331 void validate_mm(struct mm_struct *mm)
332 {
333 	int bug = 0;
334 	int i = 0;
335 	struct vm_area_struct *tmp = mm->mmap;
336 	while (tmp) {
337 		tmp = tmp->vm_next;
338 		i++;
339 	}
340 	if (i != mm->map_count)
341 		printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
342 	i = browse_rb(&mm->mm_rb);
343 	if (i != mm->map_count)
344 		printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
345 	BUG_ON(bug);
346 }
347 #else
348 #define validate_mm(mm) do { } while (0)
349 #endif
350 
351 static struct vm_area_struct *
352 find_vma_prepare(struct mm_struct *mm, unsigned long addr,
353 		struct vm_area_struct **pprev, struct rb_node ***rb_link,
354 		struct rb_node ** rb_parent)
355 {
356 	struct vm_area_struct * vma;
357 	struct rb_node ** __rb_link, * __rb_parent, * rb_prev;
358 
359 	__rb_link = &mm->mm_rb.rb_node;
360 	rb_prev = __rb_parent = NULL;
361 	vma = NULL;
362 
363 	while (*__rb_link) {
364 		struct vm_area_struct *vma_tmp;
365 
366 		__rb_parent = *__rb_link;
367 		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
368 
369 		if (vma_tmp->vm_end > addr) {
370 			vma = vma_tmp;
371 			if (vma_tmp->vm_start <= addr)
372 				break;
373 			__rb_link = &__rb_parent->rb_left;
374 		} else {
375 			rb_prev = __rb_parent;
376 			__rb_link = &__rb_parent->rb_right;
377 		}
378 	}
379 
380 	*pprev = NULL;
381 	if (rb_prev)
382 		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
383 	*rb_link = __rb_link;
384 	*rb_parent = __rb_parent;
385 	return vma;
386 }
387 
388 static inline void
389 __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
390 		struct vm_area_struct *prev, struct rb_node *rb_parent)
391 {
392 	if (prev) {
393 		vma->vm_next = prev->vm_next;
394 		prev->vm_next = vma;
395 	} else {
396 		mm->mmap = vma;
397 		if (rb_parent)
398 			vma->vm_next = rb_entry(rb_parent,
399 					struct vm_area_struct, vm_rb);
400 		else
401 			vma->vm_next = NULL;
402 	}
403 }
404 
405 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
406 		struct rb_node **rb_link, struct rb_node *rb_parent)
407 {
408 	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
409 	rb_insert_color(&vma->vm_rb, &mm->mm_rb);
410 }
411 
412 static void __vma_link_file(struct vm_area_struct *vma)
413 {
414 	struct file *file;
415 
416 	file = vma->vm_file;
417 	if (file) {
418 		struct address_space *mapping = file->f_mapping;
419 
420 		if (vma->vm_flags & VM_DENYWRITE)
421 			atomic_dec(&file->f_path.dentry->d_inode->i_writecount);
422 		if (vma->vm_flags & VM_SHARED)
423 			mapping->i_mmap_writable++;
424 
425 		flush_dcache_mmap_lock(mapping);
426 		if (unlikely(vma->vm_flags & VM_NONLINEAR))
427 			vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
428 		else
429 			vma_prio_tree_insert(vma, &mapping->i_mmap);
430 		flush_dcache_mmap_unlock(mapping);
431 	}
432 }
433 
434 static void
435 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
436 	struct vm_area_struct *prev, struct rb_node **rb_link,
437 	struct rb_node *rb_parent)
438 {
439 	__vma_link_list(mm, vma, prev, rb_parent);
440 	__vma_link_rb(mm, vma, rb_link, rb_parent);
441 	__anon_vma_link(vma);
442 }
443 
444 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
445 			struct vm_area_struct *prev, struct rb_node **rb_link,
446 			struct rb_node *rb_parent)
447 {
448 	struct address_space *mapping = NULL;
449 
450 	if (vma->vm_file)
451 		mapping = vma->vm_file->f_mapping;
452 
453 	if (mapping) {
454 		spin_lock(&mapping->i_mmap_lock);
455 		vma->vm_truncate_count = mapping->truncate_count;
456 	}
457 	anon_vma_lock(vma);
458 
459 	__vma_link(mm, vma, prev, rb_link, rb_parent);
460 	__vma_link_file(vma);
461 
462 	anon_vma_unlock(vma);
463 	if (mapping)
464 		spin_unlock(&mapping->i_mmap_lock);
465 
466 	mm->map_count++;
467 	validate_mm(mm);
468 }
469 
470 /*
471  * Helper for vma_adjust in the split_vma insert case:
472  * insert vm structure into list and rbtree and anon_vma,
473  * but it has already been inserted into prio_tree earlier.
474  */
475 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
476 {
477 	struct vm_area_struct *__vma, *prev;
478 	struct rb_node **rb_link, *rb_parent;
479 
480 	__vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent);
481 	BUG_ON(__vma && __vma->vm_start < vma->vm_end);
482 	__vma_link(mm, vma, prev, rb_link, rb_parent);
483 	mm->map_count++;
484 }
485 
486 static inline void
487 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
488 		struct vm_area_struct *prev)
489 {
490 	prev->vm_next = vma->vm_next;
491 	rb_erase(&vma->vm_rb, &mm->mm_rb);
492 	if (mm->mmap_cache == vma)
493 		mm->mmap_cache = prev;
494 }
495 
496 /*
497  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
498  * is already present in an i_mmap tree without adjusting the tree.
499  * The following helper function should be used when such adjustments
500  * are necessary.  The "insert" vma (if any) is to be inserted
501  * before we drop the necessary locks.
502  */
503 void vma_adjust(struct vm_area_struct *vma, unsigned long start,
504 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
505 {
506 	struct mm_struct *mm = vma->vm_mm;
507 	struct vm_area_struct *next = vma->vm_next;
508 	struct vm_area_struct *importer = NULL;
509 	struct address_space *mapping = NULL;
510 	struct prio_tree_root *root = NULL;
511 	struct file *file = vma->vm_file;
512 	struct anon_vma *anon_vma = NULL;
513 	long adjust_next = 0;
514 	int remove_next = 0;
515 
516 	if (next && !insert) {
517 		if (end >= next->vm_end) {
518 			/*
519 			 * vma expands, overlapping all the next, and
520 			 * perhaps the one after too (mprotect case 6).
521 			 */
522 again:			remove_next = 1 + (end > next->vm_end);
523 			end = next->vm_end;
524 			anon_vma = next->anon_vma;
525 			importer = vma;
526 		} else if (end > next->vm_start) {
527 			/*
528 			 * vma expands, overlapping part of the next:
529 			 * mprotect case 5 shifting the boundary up.
530 			 */
531 			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
532 			anon_vma = next->anon_vma;
533 			importer = vma;
534 		} else if (end < vma->vm_end) {
535 			/*
536 			 * vma shrinks, and !insert tells it's not
537 			 * split_vma inserting another: so it must be
538 			 * mprotect case 4 shifting the boundary down.
539 			 */
540 			adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
541 			anon_vma = next->anon_vma;
542 			importer = next;
543 		}
544 	}
545 
546 	if (file) {
547 		mapping = file->f_mapping;
548 		if (!(vma->vm_flags & VM_NONLINEAR))
549 			root = &mapping->i_mmap;
550 		spin_lock(&mapping->i_mmap_lock);
551 		if (importer &&
552 		    vma->vm_truncate_count != next->vm_truncate_count) {
553 			/*
554 			 * unmap_mapping_range might be in progress:
555 			 * ensure that the expanding vma is rescanned.
556 			 */
557 			importer->vm_truncate_count = 0;
558 		}
559 		if (insert) {
560 			insert->vm_truncate_count = vma->vm_truncate_count;
561 			/*
562 			 * Put into prio_tree now, so instantiated pages
563 			 * are visible to arm/parisc __flush_dcache_page
564 			 * throughout; but we cannot insert into address
565 			 * space until vma start or end is updated.
566 			 */
567 			__vma_link_file(insert);
568 		}
569 	}
570 
571 	/*
572 	 * When changing only vma->vm_end, we don't really need
573 	 * anon_vma lock.
574 	 */
575 	if (vma->anon_vma && (insert || importer || start != vma->vm_start))
576 		anon_vma = vma->anon_vma;
577 	if (anon_vma) {
578 		spin_lock(&anon_vma->lock);
579 		/*
580 		 * Easily overlooked: when mprotect shifts the boundary,
581 		 * make sure the expanding vma has anon_vma set if the
582 		 * shrinking vma had, to cover any anon pages imported.
583 		 */
584 		if (importer && !importer->anon_vma) {
585 			importer->anon_vma = anon_vma;
586 			__anon_vma_link(importer);
587 		}
588 	}
589 
590 	if (root) {
591 		flush_dcache_mmap_lock(mapping);
592 		vma_prio_tree_remove(vma, root);
593 		if (adjust_next)
594 			vma_prio_tree_remove(next, root);
595 	}
596 
597 	vma->vm_start = start;
598 	vma->vm_end = end;
599 	vma->vm_pgoff = pgoff;
600 	if (adjust_next) {
601 		next->vm_start += adjust_next << PAGE_SHIFT;
602 		next->vm_pgoff += adjust_next;
603 	}
604 
605 	if (root) {
606 		if (adjust_next)
607 			vma_prio_tree_insert(next, root);
608 		vma_prio_tree_insert(vma, root);
609 		flush_dcache_mmap_unlock(mapping);
610 	}
611 
612 	if (remove_next) {
613 		/*
614 		 * vma_merge has merged next into vma, and needs
615 		 * us to remove next before dropping the locks.
616 		 */
617 		__vma_unlink(mm, next, vma);
618 		if (file)
619 			__remove_shared_vm_struct(next, file, mapping);
620 		if (next->anon_vma)
621 			__anon_vma_merge(vma, next);
622 	} else if (insert) {
623 		/*
624 		 * split_vma has split insert from vma, and needs
625 		 * us to insert it before dropping the locks
626 		 * (it may either follow vma or precede it).
627 		 */
628 		__insert_vm_struct(mm, insert);
629 	}
630 
631 	if (anon_vma)
632 		spin_unlock(&anon_vma->lock);
633 	if (mapping)
634 		spin_unlock(&mapping->i_mmap_lock);
635 
636 	if (remove_next) {
637 		if (file) {
638 			fput(file);
639 			if (next->vm_flags & VM_EXECUTABLE)
640 				removed_exe_file_vma(mm);
641 		}
642 		mm->map_count--;
643 		mpol_put(vma_policy(next));
644 		kmem_cache_free(vm_area_cachep, next);
645 		/*
646 		 * In mprotect's case 6 (see comments on vma_merge),
647 		 * we must remove another next too. It would clutter
648 		 * up the code too much to do both in one go.
649 		 */
650 		if (remove_next == 2) {
651 			next = vma->vm_next;
652 			goto again;
653 		}
654 	}
655 
656 	validate_mm(mm);
657 }
658 
659 /*
660  * If the vma has a ->close operation then the driver probably needs to release
661  * per-vma resources, so we don't attempt to merge those.
662  */
663 static inline int is_mergeable_vma(struct vm_area_struct *vma,
664 			struct file *file, unsigned long vm_flags)
665 {
666 	/* VM_CAN_NONLINEAR may get set later by f_op->mmap() */
667 	if ((vma->vm_flags ^ vm_flags) & ~VM_CAN_NONLINEAR)
668 		return 0;
669 	if (vma->vm_file != file)
670 		return 0;
671 	if (vma->vm_ops && vma->vm_ops->close)
672 		return 0;
673 	return 1;
674 }
675 
676 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
677 					struct anon_vma *anon_vma2)
678 {
679 	return !anon_vma1 || !anon_vma2 || (anon_vma1 == anon_vma2);
680 }
681 
682 /*
683  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
684  * in front of (at a lower virtual address and file offset than) the vma.
685  *
686  * We cannot merge two vmas if they have differently assigned (non-NULL)
687  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
688  *
689  * We don't check here for the merged mmap wrapping around the end of pagecache
690  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
691  * wrap, nor mmaps which cover the final page at index -1UL.
692  */
693 static int
694 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
695 	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
696 {
697 	if (is_mergeable_vma(vma, file, vm_flags) &&
698 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
699 		if (vma->vm_pgoff == vm_pgoff)
700 			return 1;
701 	}
702 	return 0;
703 }
704 
705 /*
706  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
707  * beyond (at a higher virtual address and file offset than) the vma.
708  *
709  * We cannot merge two vmas if they have differently assigned (non-NULL)
710  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
711  */
712 static int
713 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
714 	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
715 {
716 	if (is_mergeable_vma(vma, file, vm_flags) &&
717 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
718 		pgoff_t vm_pglen;
719 		vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
720 		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
721 			return 1;
722 	}
723 	return 0;
724 }
725 
726 /*
727  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
728  * whether that can be merged with its predecessor or its successor.
729  * Or both (it neatly fills a hole).
730  *
731  * In most cases - when called for mmap, brk or mremap - [addr,end) is
732  * certain not to be mapped by the time vma_merge is called; but when
733  * called for mprotect, it is certain to be already mapped (either at
734  * an offset within prev, or at the start of next), and the flags of
735  * this area are about to be changed to vm_flags - and the no-change
736  * case has already been eliminated.
737  *
738  * The following mprotect cases have to be considered, where AAAA is
739  * the area passed down from mprotect_fixup, never extending beyond one
740  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
741  *
742  *     AAAA             AAAA                AAAA          AAAA
743  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
744  *    cannot merge    might become    might become    might become
745  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
746  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
747  *    mremap move:                                    PPPPNNNNNNNN 8
748  *        AAAA
749  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
750  *    might become    case 1 below    case 2 below    case 3 below
751  *
752  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
753  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
754  */
755 struct vm_area_struct *vma_merge(struct mm_struct *mm,
756 			struct vm_area_struct *prev, unsigned long addr,
757 			unsigned long end, unsigned long vm_flags,
758 		     	struct anon_vma *anon_vma, struct file *file,
759 			pgoff_t pgoff, struct mempolicy *policy)
760 {
761 	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
762 	struct vm_area_struct *area, *next;
763 
764 	/*
765 	 * We later require that vma->vm_flags == vm_flags,
766 	 * so this tests vma->vm_flags & VM_SPECIAL, too.
767 	 */
768 	if (vm_flags & VM_SPECIAL)
769 		return NULL;
770 
771 	if (prev)
772 		next = prev->vm_next;
773 	else
774 		next = mm->mmap;
775 	area = next;
776 	if (next && next->vm_end == end)		/* cases 6, 7, 8 */
777 		next = next->vm_next;
778 
779 	/*
780 	 * Can it merge with the predecessor?
781 	 */
782 	if (prev && prev->vm_end == addr &&
783   			mpol_equal(vma_policy(prev), policy) &&
784 			can_vma_merge_after(prev, vm_flags,
785 						anon_vma, file, pgoff)) {
786 		/*
787 		 * OK, it can.  Can we now merge in the successor as well?
788 		 */
789 		if (next && end == next->vm_start &&
790 				mpol_equal(policy, vma_policy(next)) &&
791 				can_vma_merge_before(next, vm_flags,
792 					anon_vma, file, pgoff+pglen) &&
793 				is_mergeable_anon_vma(prev->anon_vma,
794 						      next->anon_vma)) {
795 							/* cases 1, 6 */
796 			vma_adjust(prev, prev->vm_start,
797 				next->vm_end, prev->vm_pgoff, NULL);
798 		} else					/* cases 2, 5, 7 */
799 			vma_adjust(prev, prev->vm_start,
800 				end, prev->vm_pgoff, NULL);
801 		return prev;
802 	}
803 
804 	/*
805 	 * Can this new request be merged in front of next?
806 	 */
807 	if (next && end == next->vm_start &&
808  			mpol_equal(policy, vma_policy(next)) &&
809 			can_vma_merge_before(next, vm_flags,
810 					anon_vma, file, pgoff+pglen)) {
811 		if (prev && addr < prev->vm_end)	/* case 4 */
812 			vma_adjust(prev, prev->vm_start,
813 				addr, prev->vm_pgoff, NULL);
814 		else					/* cases 3, 8 */
815 			vma_adjust(area, addr, next->vm_end,
816 				next->vm_pgoff - pglen, NULL);
817 		return area;
818 	}
819 
820 	return NULL;
821 }
822 
823 /*
824  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
825  * neighbouring vmas for a suitable anon_vma, before it goes off
826  * to allocate a new anon_vma.  It checks because a repetitive
827  * sequence of mprotects and faults may otherwise lead to distinct
828  * anon_vmas being allocated, preventing vma merge in subsequent
829  * mprotect.
830  */
831 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
832 {
833 	struct vm_area_struct *near;
834 	unsigned long vm_flags;
835 
836 	near = vma->vm_next;
837 	if (!near)
838 		goto try_prev;
839 
840 	/*
841 	 * Since only mprotect tries to remerge vmas, match flags
842 	 * which might be mprotected into each other later on.
843 	 * Neither mlock nor madvise tries to remerge at present,
844 	 * so leave their flags as obstructing a merge.
845 	 */
846 	vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
847 	vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
848 
849 	if (near->anon_vma && vma->vm_end == near->vm_start &&
850  			mpol_equal(vma_policy(vma), vma_policy(near)) &&
851 			can_vma_merge_before(near, vm_flags,
852 				NULL, vma->vm_file, vma->vm_pgoff +
853 				((vma->vm_end - vma->vm_start) >> PAGE_SHIFT)))
854 		return near->anon_vma;
855 try_prev:
856 	/*
857 	 * It is potentially slow to have to call find_vma_prev here.
858 	 * But it's only on the first write fault on the vma, not
859 	 * every time, and we could devise a way to avoid it later
860 	 * (e.g. stash info in next's anon_vma_node when assigning
861 	 * an anon_vma, or when trying vma_merge).  Another time.
862 	 */
863 	BUG_ON(find_vma_prev(vma->vm_mm, vma->vm_start, &near) != vma);
864 	if (!near)
865 		goto none;
866 
867 	vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
868 	vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
869 
870 	if (near->anon_vma && near->vm_end == vma->vm_start &&
871   			mpol_equal(vma_policy(near), vma_policy(vma)) &&
872 			can_vma_merge_after(near, vm_flags,
873 				NULL, vma->vm_file, vma->vm_pgoff))
874 		return near->anon_vma;
875 none:
876 	/*
877 	 * There's no absolute need to look only at touching neighbours:
878 	 * we could search further afield for "compatible" anon_vmas.
879 	 * But it would probably just be a waste of time searching,
880 	 * or lead to too many vmas hanging off the same anon_vma.
881 	 * We're trying to allow mprotect remerging later on,
882 	 * not trying to minimize memory used for anon_vmas.
883 	 */
884 	return NULL;
885 }
886 
887 #ifdef CONFIG_PROC_FS
888 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
889 						struct file *file, long pages)
890 {
891 	const unsigned long stack_flags
892 		= VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
893 
894 	if (file) {
895 		mm->shared_vm += pages;
896 		if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
897 			mm->exec_vm += pages;
898 	} else if (flags & stack_flags)
899 		mm->stack_vm += pages;
900 	if (flags & (VM_RESERVED|VM_IO))
901 		mm->reserved_vm += pages;
902 }
903 #endif /* CONFIG_PROC_FS */
904 
905 /*
906  * The caller must hold down_write(&current->mm->mmap_sem).
907  */
908 
909 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
910 			unsigned long len, unsigned long prot,
911 			unsigned long flags, unsigned long pgoff)
912 {
913 	struct mm_struct * mm = current->mm;
914 	struct inode *inode;
915 	unsigned int vm_flags;
916 	int error;
917 	unsigned long reqprot = prot;
918 
919 	/*
920 	 * Does the application expect PROT_READ to imply PROT_EXEC?
921 	 *
922 	 * (the exception is when the underlying filesystem is noexec
923 	 *  mounted, in which case we dont add PROT_EXEC.)
924 	 */
925 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
926 		if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
927 			prot |= PROT_EXEC;
928 
929 	if (!len)
930 		return -EINVAL;
931 
932 	if (!(flags & MAP_FIXED))
933 		addr = round_hint_to_min(addr);
934 
935 	error = arch_mmap_check(addr, len, flags);
936 	if (error)
937 		return error;
938 
939 	/* Careful about overflows.. */
940 	len = PAGE_ALIGN(len);
941 	if (!len || len > TASK_SIZE)
942 		return -ENOMEM;
943 
944 	/* offset overflow? */
945 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
946                return -EOVERFLOW;
947 
948 	/* Too many mappings? */
949 	if (mm->map_count > sysctl_max_map_count)
950 		return -ENOMEM;
951 
952 	if (flags & MAP_HUGETLB) {
953 		struct user_struct *user = NULL;
954 		if (file)
955 			return -EINVAL;
956 
957 		/*
958 		 * VM_NORESERVE is used because the reservations will be
959 		 * taken when vm_ops->mmap() is called
960 		 * A dummy user value is used because we are not locking
961 		 * memory so no accounting is necessary
962 		 */
963 		len = ALIGN(len, huge_page_size(&default_hstate));
964 		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, VM_NORESERVE,
965 						&user, HUGETLB_ANONHUGE_INODE);
966 		if (IS_ERR(file))
967 			return PTR_ERR(file);
968 	}
969 
970 	/* Obtain the address to map to. we verify (or select) it and ensure
971 	 * that it represents a valid section of the address space.
972 	 */
973 	addr = get_unmapped_area(file, addr, len, pgoff, flags);
974 	if (addr & ~PAGE_MASK)
975 		return addr;
976 
977 	/* Do simple checking here so the lower-level routines won't have
978 	 * to. we assume access permissions have been handled by the open
979 	 * of the memory object, so we don't do any here.
980 	 */
981 	vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
982 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
983 
984 	if (flags & MAP_LOCKED)
985 		if (!can_do_mlock())
986 			return -EPERM;
987 
988 	/* mlock MCL_FUTURE? */
989 	if (vm_flags & VM_LOCKED) {
990 		unsigned long locked, lock_limit;
991 		locked = len >> PAGE_SHIFT;
992 		locked += mm->locked_vm;
993 		lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
994 		lock_limit >>= PAGE_SHIFT;
995 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
996 			return -EAGAIN;
997 	}
998 
999 	inode = file ? file->f_path.dentry->d_inode : NULL;
1000 
1001 	if (file) {
1002 		switch (flags & MAP_TYPE) {
1003 		case MAP_SHARED:
1004 			if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1005 				return -EACCES;
1006 
1007 			/*
1008 			 * Make sure we don't allow writing to an append-only
1009 			 * file..
1010 			 */
1011 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1012 				return -EACCES;
1013 
1014 			/*
1015 			 * Make sure there are no mandatory locks on the file.
1016 			 */
1017 			if (locks_verify_locked(inode))
1018 				return -EAGAIN;
1019 
1020 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1021 			if (!(file->f_mode & FMODE_WRITE))
1022 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1023 
1024 			/* fall through */
1025 		case MAP_PRIVATE:
1026 			if (!(file->f_mode & FMODE_READ))
1027 				return -EACCES;
1028 			if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1029 				if (vm_flags & VM_EXEC)
1030 					return -EPERM;
1031 				vm_flags &= ~VM_MAYEXEC;
1032 			}
1033 
1034 			if (!file->f_op || !file->f_op->mmap)
1035 				return -ENODEV;
1036 			break;
1037 
1038 		default:
1039 			return -EINVAL;
1040 		}
1041 	} else {
1042 		switch (flags & MAP_TYPE) {
1043 		case MAP_SHARED:
1044 			/*
1045 			 * Ignore pgoff.
1046 			 */
1047 			pgoff = 0;
1048 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1049 			break;
1050 		case MAP_PRIVATE:
1051 			/*
1052 			 * Set pgoff according to addr for anon_vma.
1053 			 */
1054 			pgoff = addr >> PAGE_SHIFT;
1055 			break;
1056 		default:
1057 			return -EINVAL;
1058 		}
1059 	}
1060 
1061 	error = security_file_mmap(file, reqprot, prot, flags, addr, 0);
1062 	if (error)
1063 		return error;
1064 	error = ima_file_mmap(file, prot);
1065 	if (error)
1066 		return error;
1067 
1068 	return mmap_region(file, addr, len, flags, vm_flags, pgoff);
1069 }
1070 EXPORT_SYMBOL(do_mmap_pgoff);
1071 
1072 /*
1073  * Some shared mappigns will want the pages marked read-only
1074  * to track write events. If so, we'll downgrade vm_page_prot
1075  * to the private version (using protection_map[] without the
1076  * VM_SHARED bit).
1077  */
1078 int vma_wants_writenotify(struct vm_area_struct *vma)
1079 {
1080 	unsigned int vm_flags = vma->vm_flags;
1081 
1082 	/* If it was private or non-writable, the write bit is already clear */
1083 	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1084 		return 0;
1085 
1086 	/* The backer wishes to know when pages are first written to? */
1087 	if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1088 		return 1;
1089 
1090 	/* The open routine did something to the protections already? */
1091 	if (pgprot_val(vma->vm_page_prot) !=
1092 	    pgprot_val(vm_get_page_prot(vm_flags)))
1093 		return 0;
1094 
1095 	/* Specialty mapping? */
1096 	if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE))
1097 		return 0;
1098 
1099 	/* Can the mapping track the dirty pages? */
1100 	return vma->vm_file && vma->vm_file->f_mapping &&
1101 		mapping_cap_account_dirty(vma->vm_file->f_mapping);
1102 }
1103 
1104 /*
1105  * We account for memory if it's a private writeable mapping,
1106  * not hugepages and VM_NORESERVE wasn't set.
1107  */
1108 static inline int accountable_mapping(struct file *file, unsigned int vm_flags)
1109 {
1110 	/*
1111 	 * hugetlb has its own accounting separate from the core VM
1112 	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1113 	 */
1114 	if (file && is_file_hugepages(file))
1115 		return 0;
1116 
1117 	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1118 }
1119 
1120 unsigned long mmap_region(struct file *file, unsigned long addr,
1121 			  unsigned long len, unsigned long flags,
1122 			  unsigned int vm_flags, unsigned long pgoff)
1123 {
1124 	struct mm_struct *mm = current->mm;
1125 	struct vm_area_struct *vma, *prev;
1126 	int correct_wcount = 0;
1127 	int error;
1128 	struct rb_node **rb_link, *rb_parent;
1129 	unsigned long charged = 0;
1130 	struct inode *inode =  file ? file->f_path.dentry->d_inode : NULL;
1131 
1132 	/* Clear old maps */
1133 	error = -ENOMEM;
1134 munmap_back:
1135 	vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1136 	if (vma && vma->vm_start < addr + len) {
1137 		if (do_munmap(mm, addr, len))
1138 			return -ENOMEM;
1139 		goto munmap_back;
1140 	}
1141 
1142 	/* Check against address space limit. */
1143 	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1144 		return -ENOMEM;
1145 
1146 	/*
1147 	 * Set 'VM_NORESERVE' if we should not account for the
1148 	 * memory use of this mapping.
1149 	 */
1150 	if ((flags & MAP_NORESERVE)) {
1151 		/* We honor MAP_NORESERVE if allowed to overcommit */
1152 		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1153 			vm_flags |= VM_NORESERVE;
1154 
1155 		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1156 		if (file && is_file_hugepages(file))
1157 			vm_flags |= VM_NORESERVE;
1158 	}
1159 
1160 	/*
1161 	 * Private writable mapping: check memory availability
1162 	 */
1163 	if (accountable_mapping(file, vm_flags)) {
1164 		charged = len >> PAGE_SHIFT;
1165 		if (security_vm_enough_memory(charged))
1166 			return -ENOMEM;
1167 		vm_flags |= VM_ACCOUNT;
1168 	}
1169 
1170 	/*
1171 	 * Can we just expand an old mapping?
1172 	 */
1173 	vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1174 	if (vma)
1175 		goto out;
1176 
1177 	/*
1178 	 * Determine the object being mapped and call the appropriate
1179 	 * specific mapper. the address has already been validated, but
1180 	 * not unmapped, but the maps are removed from the list.
1181 	 */
1182 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1183 	if (!vma) {
1184 		error = -ENOMEM;
1185 		goto unacct_error;
1186 	}
1187 
1188 	vma->vm_mm = mm;
1189 	vma->vm_start = addr;
1190 	vma->vm_end = addr + len;
1191 	vma->vm_flags = vm_flags;
1192 	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1193 	vma->vm_pgoff = pgoff;
1194 
1195 	if (file) {
1196 		error = -EINVAL;
1197 		if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1198 			goto free_vma;
1199 		if (vm_flags & VM_DENYWRITE) {
1200 			error = deny_write_access(file);
1201 			if (error)
1202 				goto free_vma;
1203 			correct_wcount = 1;
1204 		}
1205 		vma->vm_file = file;
1206 		get_file(file);
1207 		error = file->f_op->mmap(file, vma);
1208 		if (error)
1209 			goto unmap_and_free_vma;
1210 		if (vm_flags & VM_EXECUTABLE)
1211 			added_exe_file_vma(mm);
1212 
1213 		/* Can addr have changed??
1214 		 *
1215 		 * Answer: Yes, several device drivers can do it in their
1216 		 *         f_op->mmap method. -DaveM
1217 		 */
1218 		addr = vma->vm_start;
1219 		pgoff = vma->vm_pgoff;
1220 		vm_flags = vma->vm_flags;
1221 	} else if (vm_flags & VM_SHARED) {
1222 		error = shmem_zero_setup(vma);
1223 		if (error)
1224 			goto free_vma;
1225 	}
1226 
1227 	if (vma_wants_writenotify(vma))
1228 		vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1229 
1230 	vma_link(mm, vma, prev, rb_link, rb_parent);
1231 	file = vma->vm_file;
1232 
1233 	/* Once vma denies write, undo our temporary denial count */
1234 	if (correct_wcount)
1235 		atomic_inc(&inode->i_writecount);
1236 out:
1237 	perf_event_mmap(vma);
1238 
1239 	mm->total_vm += len >> PAGE_SHIFT;
1240 	vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1241 	if (vm_flags & VM_LOCKED) {
1242 		/*
1243 		 * makes pages present; downgrades, drops, reacquires mmap_sem
1244 		 */
1245 		long nr_pages = mlock_vma_pages_range(vma, addr, addr + len);
1246 		if (nr_pages < 0)
1247 			return nr_pages;	/* vma gone! */
1248 		mm->locked_vm += (len >> PAGE_SHIFT) - nr_pages;
1249 	} else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK))
1250 		make_pages_present(addr, addr + len);
1251 	return addr;
1252 
1253 unmap_and_free_vma:
1254 	if (correct_wcount)
1255 		atomic_inc(&inode->i_writecount);
1256 	vma->vm_file = NULL;
1257 	fput(file);
1258 
1259 	/* Undo any partial mapping done by a device driver. */
1260 	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1261 	charged = 0;
1262 free_vma:
1263 	kmem_cache_free(vm_area_cachep, vma);
1264 unacct_error:
1265 	if (charged)
1266 		vm_unacct_memory(charged);
1267 	return error;
1268 }
1269 
1270 /* Get an address range which is currently unmapped.
1271  * For shmat() with addr=0.
1272  *
1273  * Ugly calling convention alert:
1274  * Return value with the low bits set means error value,
1275  * ie
1276  *	if (ret & ~PAGE_MASK)
1277  *		error = ret;
1278  *
1279  * This function "knows" that -ENOMEM has the bits set.
1280  */
1281 #ifndef HAVE_ARCH_UNMAPPED_AREA
1282 unsigned long
1283 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1284 		unsigned long len, unsigned long pgoff, unsigned long flags)
1285 {
1286 	struct mm_struct *mm = current->mm;
1287 	struct vm_area_struct *vma;
1288 	unsigned long start_addr;
1289 
1290 	if (len > TASK_SIZE)
1291 		return -ENOMEM;
1292 
1293 	if (flags & MAP_FIXED)
1294 		return addr;
1295 
1296 	if (addr) {
1297 		addr = PAGE_ALIGN(addr);
1298 		vma = find_vma(mm, addr);
1299 		if (TASK_SIZE - len >= addr &&
1300 		    (!vma || addr + len <= vma->vm_start))
1301 			return addr;
1302 	}
1303 	if (len > mm->cached_hole_size) {
1304 	        start_addr = addr = mm->free_area_cache;
1305 	} else {
1306 	        start_addr = addr = TASK_UNMAPPED_BASE;
1307 	        mm->cached_hole_size = 0;
1308 	}
1309 
1310 full_search:
1311 	for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1312 		/* At this point:  (!vma || addr < vma->vm_end). */
1313 		if (TASK_SIZE - len < addr) {
1314 			/*
1315 			 * Start a new search - just in case we missed
1316 			 * some holes.
1317 			 */
1318 			if (start_addr != TASK_UNMAPPED_BASE) {
1319 				addr = TASK_UNMAPPED_BASE;
1320 			        start_addr = addr;
1321 				mm->cached_hole_size = 0;
1322 				goto full_search;
1323 			}
1324 			return -ENOMEM;
1325 		}
1326 		if (!vma || addr + len <= vma->vm_start) {
1327 			/*
1328 			 * Remember the place where we stopped the search:
1329 			 */
1330 			mm->free_area_cache = addr + len;
1331 			return addr;
1332 		}
1333 		if (addr + mm->cached_hole_size < vma->vm_start)
1334 		        mm->cached_hole_size = vma->vm_start - addr;
1335 		addr = vma->vm_end;
1336 	}
1337 }
1338 #endif
1339 
1340 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1341 {
1342 	/*
1343 	 * Is this a new hole at the lowest possible address?
1344 	 */
1345 	if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) {
1346 		mm->free_area_cache = addr;
1347 		mm->cached_hole_size = ~0UL;
1348 	}
1349 }
1350 
1351 /*
1352  * This mmap-allocator allocates new areas top-down from below the
1353  * stack's low limit (the base):
1354  */
1355 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1356 unsigned long
1357 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1358 			  const unsigned long len, const unsigned long pgoff,
1359 			  const unsigned long flags)
1360 {
1361 	struct vm_area_struct *vma;
1362 	struct mm_struct *mm = current->mm;
1363 	unsigned long addr = addr0;
1364 
1365 	/* requested length too big for entire address space */
1366 	if (len > TASK_SIZE)
1367 		return -ENOMEM;
1368 
1369 	if (flags & MAP_FIXED)
1370 		return addr;
1371 
1372 	/* requesting a specific address */
1373 	if (addr) {
1374 		addr = PAGE_ALIGN(addr);
1375 		vma = find_vma(mm, addr);
1376 		if (TASK_SIZE - len >= addr &&
1377 				(!vma || addr + len <= vma->vm_start))
1378 			return addr;
1379 	}
1380 
1381 	/* check if free_area_cache is useful for us */
1382 	if (len <= mm->cached_hole_size) {
1383  	        mm->cached_hole_size = 0;
1384  		mm->free_area_cache = mm->mmap_base;
1385  	}
1386 
1387 	/* either no address requested or can't fit in requested address hole */
1388 	addr = mm->free_area_cache;
1389 
1390 	/* make sure it can fit in the remaining address space */
1391 	if (addr > len) {
1392 		vma = find_vma(mm, addr-len);
1393 		if (!vma || addr <= vma->vm_start)
1394 			/* remember the address as a hint for next time */
1395 			return (mm->free_area_cache = addr-len);
1396 	}
1397 
1398 	if (mm->mmap_base < len)
1399 		goto bottomup;
1400 
1401 	addr = mm->mmap_base-len;
1402 
1403 	do {
1404 		/*
1405 		 * Lookup failure means no vma is above this address,
1406 		 * else if new region fits below vma->vm_start,
1407 		 * return with success:
1408 		 */
1409 		vma = find_vma(mm, addr);
1410 		if (!vma || addr+len <= vma->vm_start)
1411 			/* remember the address as a hint for next time */
1412 			return (mm->free_area_cache = addr);
1413 
1414  		/* remember the largest hole we saw so far */
1415  		if (addr + mm->cached_hole_size < vma->vm_start)
1416  		        mm->cached_hole_size = vma->vm_start - addr;
1417 
1418 		/* try just below the current vma->vm_start */
1419 		addr = vma->vm_start-len;
1420 	} while (len < vma->vm_start);
1421 
1422 bottomup:
1423 	/*
1424 	 * A failed mmap() very likely causes application failure,
1425 	 * so fall back to the bottom-up function here. This scenario
1426 	 * can happen with large stack limits and large mmap()
1427 	 * allocations.
1428 	 */
1429 	mm->cached_hole_size = ~0UL;
1430   	mm->free_area_cache = TASK_UNMAPPED_BASE;
1431 	addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1432 	/*
1433 	 * Restore the topdown base:
1434 	 */
1435 	mm->free_area_cache = mm->mmap_base;
1436 	mm->cached_hole_size = ~0UL;
1437 
1438 	return addr;
1439 }
1440 #endif
1441 
1442 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1443 {
1444 	/*
1445 	 * Is this a new hole at the highest possible address?
1446 	 */
1447 	if (addr > mm->free_area_cache)
1448 		mm->free_area_cache = addr;
1449 
1450 	/* dont allow allocations above current base */
1451 	if (mm->free_area_cache > mm->mmap_base)
1452 		mm->free_area_cache = mm->mmap_base;
1453 }
1454 
1455 unsigned long
1456 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1457 		unsigned long pgoff, unsigned long flags)
1458 {
1459 	unsigned long (*get_area)(struct file *, unsigned long,
1460 				  unsigned long, unsigned long, unsigned long);
1461 
1462 	get_area = current->mm->get_unmapped_area;
1463 	if (file && file->f_op && file->f_op->get_unmapped_area)
1464 		get_area = file->f_op->get_unmapped_area;
1465 	addr = get_area(file, addr, len, pgoff, flags);
1466 	if (IS_ERR_VALUE(addr))
1467 		return addr;
1468 
1469 	if (addr > TASK_SIZE - len)
1470 		return -ENOMEM;
1471 	if (addr & ~PAGE_MASK)
1472 		return -EINVAL;
1473 
1474 	return arch_rebalance_pgtables(addr, len);
1475 }
1476 
1477 EXPORT_SYMBOL(get_unmapped_area);
1478 
1479 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1480 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1481 {
1482 	struct vm_area_struct *vma = NULL;
1483 
1484 	if (mm) {
1485 		/* Check the cache first. */
1486 		/* (Cache hit rate is typically around 35%.) */
1487 		vma = mm->mmap_cache;
1488 		if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1489 			struct rb_node * rb_node;
1490 
1491 			rb_node = mm->mm_rb.rb_node;
1492 			vma = NULL;
1493 
1494 			while (rb_node) {
1495 				struct vm_area_struct * vma_tmp;
1496 
1497 				vma_tmp = rb_entry(rb_node,
1498 						struct vm_area_struct, vm_rb);
1499 
1500 				if (vma_tmp->vm_end > addr) {
1501 					vma = vma_tmp;
1502 					if (vma_tmp->vm_start <= addr)
1503 						break;
1504 					rb_node = rb_node->rb_left;
1505 				} else
1506 					rb_node = rb_node->rb_right;
1507 			}
1508 			if (vma)
1509 				mm->mmap_cache = vma;
1510 		}
1511 	}
1512 	return vma;
1513 }
1514 
1515 EXPORT_SYMBOL(find_vma);
1516 
1517 /* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */
1518 struct vm_area_struct *
1519 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1520 			struct vm_area_struct **pprev)
1521 {
1522 	struct vm_area_struct *vma = NULL, *prev = NULL;
1523 	struct rb_node *rb_node;
1524 	if (!mm)
1525 		goto out;
1526 
1527 	/* Guard against addr being lower than the first VMA */
1528 	vma = mm->mmap;
1529 
1530 	/* Go through the RB tree quickly. */
1531 	rb_node = mm->mm_rb.rb_node;
1532 
1533 	while (rb_node) {
1534 		struct vm_area_struct *vma_tmp;
1535 		vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1536 
1537 		if (addr < vma_tmp->vm_end) {
1538 			rb_node = rb_node->rb_left;
1539 		} else {
1540 			prev = vma_tmp;
1541 			if (!prev->vm_next || (addr < prev->vm_next->vm_end))
1542 				break;
1543 			rb_node = rb_node->rb_right;
1544 		}
1545 	}
1546 
1547 out:
1548 	*pprev = prev;
1549 	return prev ? prev->vm_next : vma;
1550 }
1551 
1552 /*
1553  * Verify that the stack growth is acceptable and
1554  * update accounting. This is shared with both the
1555  * grow-up and grow-down cases.
1556  */
1557 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
1558 {
1559 	struct mm_struct *mm = vma->vm_mm;
1560 	struct rlimit *rlim = current->signal->rlim;
1561 	unsigned long new_start;
1562 
1563 	/* address space limit tests */
1564 	if (!may_expand_vm(mm, grow))
1565 		return -ENOMEM;
1566 
1567 	/* Stack limit test */
1568 	if (size > rlim[RLIMIT_STACK].rlim_cur)
1569 		return -ENOMEM;
1570 
1571 	/* mlock limit tests */
1572 	if (vma->vm_flags & VM_LOCKED) {
1573 		unsigned long locked;
1574 		unsigned long limit;
1575 		locked = mm->locked_vm + grow;
1576 		limit = rlim[RLIMIT_MEMLOCK].rlim_cur >> PAGE_SHIFT;
1577 		if (locked > limit && !capable(CAP_IPC_LOCK))
1578 			return -ENOMEM;
1579 	}
1580 
1581 	/* Check to ensure the stack will not grow into a hugetlb-only region */
1582 	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1583 			vma->vm_end - size;
1584 	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1585 		return -EFAULT;
1586 
1587 	/*
1588 	 * Overcommit..  This must be the final test, as it will
1589 	 * update security statistics.
1590 	 */
1591 	if (security_vm_enough_memory_mm(mm, grow))
1592 		return -ENOMEM;
1593 
1594 	/* Ok, everything looks good - let it rip */
1595 	mm->total_vm += grow;
1596 	if (vma->vm_flags & VM_LOCKED)
1597 		mm->locked_vm += grow;
1598 	vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1599 	return 0;
1600 }
1601 
1602 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1603 /*
1604  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1605  * vma is the last one with address > vma->vm_end.  Have to extend vma.
1606  */
1607 #ifndef CONFIG_IA64
1608 static
1609 #endif
1610 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1611 {
1612 	int error;
1613 
1614 	if (!(vma->vm_flags & VM_GROWSUP))
1615 		return -EFAULT;
1616 
1617 	/*
1618 	 * We must make sure the anon_vma is allocated
1619 	 * so that the anon_vma locking is not a noop.
1620 	 */
1621 	if (unlikely(anon_vma_prepare(vma)))
1622 		return -ENOMEM;
1623 	anon_vma_lock(vma);
1624 
1625 	/*
1626 	 * vma->vm_start/vm_end cannot change under us because the caller
1627 	 * is required to hold the mmap_sem in read mode.  We need the
1628 	 * anon_vma lock to serialize against concurrent expand_stacks.
1629 	 * Also guard against wrapping around to address 0.
1630 	 */
1631 	if (address < PAGE_ALIGN(address+4))
1632 		address = PAGE_ALIGN(address+4);
1633 	else {
1634 		anon_vma_unlock(vma);
1635 		return -ENOMEM;
1636 	}
1637 	error = 0;
1638 
1639 	/* Somebody else might have raced and expanded it already */
1640 	if (address > vma->vm_end) {
1641 		unsigned long size, grow;
1642 
1643 		size = address - vma->vm_start;
1644 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
1645 
1646 		error = acct_stack_growth(vma, size, grow);
1647 		if (!error)
1648 			vma->vm_end = address;
1649 	}
1650 	anon_vma_unlock(vma);
1651 	return error;
1652 }
1653 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1654 
1655 /*
1656  * vma is the first one with address < vma->vm_start.  Have to extend vma.
1657  */
1658 static int expand_downwards(struct vm_area_struct *vma,
1659 				   unsigned long address)
1660 {
1661 	int error;
1662 
1663 	/*
1664 	 * We must make sure the anon_vma is allocated
1665 	 * so that the anon_vma locking is not a noop.
1666 	 */
1667 	if (unlikely(anon_vma_prepare(vma)))
1668 		return -ENOMEM;
1669 
1670 	address &= PAGE_MASK;
1671 	error = security_file_mmap(NULL, 0, 0, 0, address, 1);
1672 	if (error)
1673 		return error;
1674 
1675 	anon_vma_lock(vma);
1676 
1677 	/*
1678 	 * vma->vm_start/vm_end cannot change under us because the caller
1679 	 * is required to hold the mmap_sem in read mode.  We need the
1680 	 * anon_vma lock to serialize against concurrent expand_stacks.
1681 	 */
1682 
1683 	/* Somebody else might have raced and expanded it already */
1684 	if (address < vma->vm_start) {
1685 		unsigned long size, grow;
1686 
1687 		size = vma->vm_end - address;
1688 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
1689 
1690 		error = acct_stack_growth(vma, size, grow);
1691 		if (!error) {
1692 			vma->vm_start = address;
1693 			vma->vm_pgoff -= grow;
1694 		}
1695 	}
1696 	anon_vma_unlock(vma);
1697 	return error;
1698 }
1699 
1700 int expand_stack_downwards(struct vm_area_struct *vma, unsigned long address)
1701 {
1702 	return expand_downwards(vma, address);
1703 }
1704 
1705 #ifdef CONFIG_STACK_GROWSUP
1706 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1707 {
1708 	return expand_upwards(vma, address);
1709 }
1710 
1711 struct vm_area_struct *
1712 find_extend_vma(struct mm_struct *mm, unsigned long addr)
1713 {
1714 	struct vm_area_struct *vma, *prev;
1715 
1716 	addr &= PAGE_MASK;
1717 	vma = find_vma_prev(mm, addr, &prev);
1718 	if (vma && (vma->vm_start <= addr))
1719 		return vma;
1720 	if (!prev || expand_stack(prev, addr))
1721 		return NULL;
1722 	if (prev->vm_flags & VM_LOCKED) {
1723 		if (mlock_vma_pages_range(prev, addr, prev->vm_end) < 0)
1724 			return NULL;	/* vma gone! */
1725 	}
1726 	return prev;
1727 }
1728 #else
1729 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1730 {
1731 	return expand_downwards(vma, address);
1732 }
1733 
1734 struct vm_area_struct *
1735 find_extend_vma(struct mm_struct * mm, unsigned long addr)
1736 {
1737 	struct vm_area_struct * vma;
1738 	unsigned long start;
1739 
1740 	addr &= PAGE_MASK;
1741 	vma = find_vma(mm,addr);
1742 	if (!vma)
1743 		return NULL;
1744 	if (vma->vm_start <= addr)
1745 		return vma;
1746 	if (!(vma->vm_flags & VM_GROWSDOWN))
1747 		return NULL;
1748 	start = vma->vm_start;
1749 	if (expand_stack(vma, addr))
1750 		return NULL;
1751 	if (vma->vm_flags & VM_LOCKED) {
1752 		if (mlock_vma_pages_range(vma, addr, start) < 0)
1753 			return NULL;	/* vma gone! */
1754 	}
1755 	return vma;
1756 }
1757 #endif
1758 
1759 /*
1760  * Ok - we have the memory areas we should free on the vma list,
1761  * so release them, and do the vma updates.
1762  *
1763  * Called with the mm semaphore held.
1764  */
1765 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1766 {
1767 	/* Update high watermark before we lower total_vm */
1768 	update_hiwater_vm(mm);
1769 	do {
1770 		long nrpages = vma_pages(vma);
1771 
1772 		mm->total_vm -= nrpages;
1773 		vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
1774 		vma = remove_vma(vma);
1775 	} while (vma);
1776 	validate_mm(mm);
1777 }
1778 
1779 /*
1780  * Get rid of page table information in the indicated region.
1781  *
1782  * Called with the mm semaphore held.
1783  */
1784 static void unmap_region(struct mm_struct *mm,
1785 		struct vm_area_struct *vma, struct vm_area_struct *prev,
1786 		unsigned long start, unsigned long end)
1787 {
1788 	struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1789 	struct mmu_gather *tlb;
1790 	unsigned long nr_accounted = 0;
1791 
1792 	lru_add_drain();
1793 	tlb = tlb_gather_mmu(mm, 0);
1794 	update_hiwater_rss(mm);
1795 	unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL);
1796 	vm_unacct_memory(nr_accounted);
1797 	free_pgtables(tlb, vma, prev? prev->vm_end: FIRST_USER_ADDRESS,
1798 				 next? next->vm_start: 0);
1799 	tlb_finish_mmu(tlb, start, end);
1800 }
1801 
1802 /*
1803  * Create a list of vma's touched by the unmap, removing them from the mm's
1804  * vma list as we go..
1805  */
1806 static void
1807 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1808 	struct vm_area_struct *prev, unsigned long end)
1809 {
1810 	struct vm_area_struct **insertion_point;
1811 	struct vm_area_struct *tail_vma = NULL;
1812 	unsigned long addr;
1813 
1814 	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1815 	do {
1816 		rb_erase(&vma->vm_rb, &mm->mm_rb);
1817 		mm->map_count--;
1818 		tail_vma = vma;
1819 		vma = vma->vm_next;
1820 	} while (vma && vma->vm_start < end);
1821 	*insertion_point = vma;
1822 	tail_vma->vm_next = NULL;
1823 	if (mm->unmap_area == arch_unmap_area)
1824 		addr = prev ? prev->vm_end : mm->mmap_base;
1825 	else
1826 		addr = vma ?  vma->vm_start : mm->mmap_base;
1827 	mm->unmap_area(mm, addr);
1828 	mm->mmap_cache = NULL;		/* Kill the cache. */
1829 }
1830 
1831 /*
1832  * Split a vma into two pieces at address 'addr', a new vma is allocated
1833  * either for the first part or the tail.
1834  */
1835 int split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1836 	      unsigned long addr, int new_below)
1837 {
1838 	struct mempolicy *pol;
1839 	struct vm_area_struct *new;
1840 
1841 	if (is_vm_hugetlb_page(vma) && (addr &
1842 					~(huge_page_mask(hstate_vma(vma)))))
1843 		return -EINVAL;
1844 
1845 	if (mm->map_count >= sysctl_max_map_count)
1846 		return -ENOMEM;
1847 
1848 	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1849 	if (!new)
1850 		return -ENOMEM;
1851 
1852 	/* most fields are the same, copy all, and then fixup */
1853 	*new = *vma;
1854 
1855 	if (new_below)
1856 		new->vm_end = addr;
1857 	else {
1858 		new->vm_start = addr;
1859 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
1860 	}
1861 
1862 	pol = mpol_dup(vma_policy(vma));
1863 	if (IS_ERR(pol)) {
1864 		kmem_cache_free(vm_area_cachep, new);
1865 		return PTR_ERR(pol);
1866 	}
1867 	vma_set_policy(new, pol);
1868 
1869 	if (new->vm_file) {
1870 		get_file(new->vm_file);
1871 		if (vma->vm_flags & VM_EXECUTABLE)
1872 			added_exe_file_vma(mm);
1873 	}
1874 
1875 	if (new->vm_ops && new->vm_ops->open)
1876 		new->vm_ops->open(new);
1877 
1878 	if (new_below)
1879 		vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
1880 			((addr - new->vm_start) >> PAGE_SHIFT), new);
1881 	else
1882 		vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
1883 
1884 	return 0;
1885 }
1886 
1887 /* Munmap is split into 2 main parts -- this part which finds
1888  * what needs doing, and the areas themselves, which do the
1889  * work.  This now handles partial unmappings.
1890  * Jeremy Fitzhardinge <jeremy@goop.org>
1891  */
1892 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1893 {
1894 	unsigned long end;
1895 	struct vm_area_struct *vma, *prev, *last;
1896 
1897 	if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
1898 		return -EINVAL;
1899 
1900 	if ((len = PAGE_ALIGN(len)) == 0)
1901 		return -EINVAL;
1902 
1903 	/* Find the first overlapping VMA */
1904 	vma = find_vma_prev(mm, start, &prev);
1905 	if (!vma)
1906 		return 0;
1907 	/* we have  start < vma->vm_end  */
1908 
1909 	/* if it doesn't overlap, we have nothing.. */
1910 	end = start + len;
1911 	if (vma->vm_start >= end)
1912 		return 0;
1913 
1914 	/*
1915 	 * If we need to split any vma, do it now to save pain later.
1916 	 *
1917 	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
1918 	 * unmapped vm_area_struct will remain in use: so lower split_vma
1919 	 * places tmp vma above, and higher split_vma places tmp vma below.
1920 	 */
1921 	if (start > vma->vm_start) {
1922 		int error = split_vma(mm, vma, start, 0);
1923 		if (error)
1924 			return error;
1925 		prev = vma;
1926 	}
1927 
1928 	/* Does it split the last one? */
1929 	last = find_vma(mm, end);
1930 	if (last && end > last->vm_start) {
1931 		int error = split_vma(mm, last, end, 1);
1932 		if (error)
1933 			return error;
1934 	}
1935 	vma = prev? prev->vm_next: mm->mmap;
1936 
1937 	/*
1938 	 * unlock any mlock()ed ranges before detaching vmas
1939 	 */
1940 	if (mm->locked_vm) {
1941 		struct vm_area_struct *tmp = vma;
1942 		while (tmp && tmp->vm_start < end) {
1943 			if (tmp->vm_flags & VM_LOCKED) {
1944 				mm->locked_vm -= vma_pages(tmp);
1945 				munlock_vma_pages_all(tmp);
1946 			}
1947 			tmp = tmp->vm_next;
1948 		}
1949 	}
1950 
1951 	/*
1952 	 * Remove the vma's, and unmap the actual pages
1953 	 */
1954 	detach_vmas_to_be_unmapped(mm, vma, prev, end);
1955 	unmap_region(mm, vma, prev, start, end);
1956 
1957 	/* Fix up all other VM information */
1958 	remove_vma_list(mm, vma);
1959 
1960 	return 0;
1961 }
1962 
1963 EXPORT_SYMBOL(do_munmap);
1964 
1965 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1966 {
1967 	int ret;
1968 	struct mm_struct *mm = current->mm;
1969 
1970 	profile_munmap(addr);
1971 
1972 	down_write(&mm->mmap_sem);
1973 	ret = do_munmap(mm, addr, len);
1974 	up_write(&mm->mmap_sem);
1975 	return ret;
1976 }
1977 
1978 static inline void verify_mm_writelocked(struct mm_struct *mm)
1979 {
1980 #ifdef CONFIG_DEBUG_VM
1981 	if (unlikely(down_read_trylock(&mm->mmap_sem))) {
1982 		WARN_ON(1);
1983 		up_read(&mm->mmap_sem);
1984 	}
1985 #endif
1986 }
1987 
1988 /*
1989  *  this is really a simplified "do_mmap".  it only handles
1990  *  anonymous maps.  eventually we may be able to do some
1991  *  brk-specific accounting here.
1992  */
1993 unsigned long do_brk(unsigned long addr, unsigned long len)
1994 {
1995 	struct mm_struct * mm = current->mm;
1996 	struct vm_area_struct * vma, * prev;
1997 	unsigned long flags;
1998 	struct rb_node ** rb_link, * rb_parent;
1999 	pgoff_t pgoff = addr >> PAGE_SHIFT;
2000 	int error;
2001 
2002 	len = PAGE_ALIGN(len);
2003 	if (!len)
2004 		return addr;
2005 
2006 	if ((addr + len) > TASK_SIZE || (addr + len) < addr)
2007 		return -EINVAL;
2008 
2009 	if (is_hugepage_only_range(mm, addr, len))
2010 		return -EINVAL;
2011 
2012 	error = security_file_mmap(NULL, 0, 0, 0, addr, 1);
2013 	if (error)
2014 		return error;
2015 
2016 	flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2017 
2018 	error = arch_mmap_check(addr, len, flags);
2019 	if (error)
2020 		return error;
2021 
2022 	/*
2023 	 * mlock MCL_FUTURE?
2024 	 */
2025 	if (mm->def_flags & VM_LOCKED) {
2026 		unsigned long locked, lock_limit;
2027 		locked = len >> PAGE_SHIFT;
2028 		locked += mm->locked_vm;
2029 		lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
2030 		lock_limit >>= PAGE_SHIFT;
2031 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2032 			return -EAGAIN;
2033 	}
2034 
2035 	/*
2036 	 * mm->mmap_sem is required to protect against another thread
2037 	 * changing the mappings in case we sleep.
2038 	 */
2039 	verify_mm_writelocked(mm);
2040 
2041 	/*
2042 	 * Clear old maps.  this also does some error checking for us
2043 	 */
2044  munmap_back:
2045 	vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2046 	if (vma && vma->vm_start < addr + len) {
2047 		if (do_munmap(mm, addr, len))
2048 			return -ENOMEM;
2049 		goto munmap_back;
2050 	}
2051 
2052 	/* Check against address space limits *after* clearing old maps... */
2053 	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2054 		return -ENOMEM;
2055 
2056 	if (mm->map_count > sysctl_max_map_count)
2057 		return -ENOMEM;
2058 
2059 	if (security_vm_enough_memory(len >> PAGE_SHIFT))
2060 		return -ENOMEM;
2061 
2062 	/* Can we just expand an old private anonymous mapping? */
2063 	vma = vma_merge(mm, prev, addr, addr + len, flags,
2064 					NULL, NULL, pgoff, NULL);
2065 	if (vma)
2066 		goto out;
2067 
2068 	/*
2069 	 * create a vma struct for an anonymous mapping
2070 	 */
2071 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2072 	if (!vma) {
2073 		vm_unacct_memory(len >> PAGE_SHIFT);
2074 		return -ENOMEM;
2075 	}
2076 
2077 	vma->vm_mm = mm;
2078 	vma->vm_start = addr;
2079 	vma->vm_end = addr + len;
2080 	vma->vm_pgoff = pgoff;
2081 	vma->vm_flags = flags;
2082 	vma->vm_page_prot = vm_get_page_prot(flags);
2083 	vma_link(mm, vma, prev, rb_link, rb_parent);
2084 out:
2085 	mm->total_vm += len >> PAGE_SHIFT;
2086 	if (flags & VM_LOCKED) {
2087 		if (!mlock_vma_pages_range(vma, addr, addr + len))
2088 			mm->locked_vm += (len >> PAGE_SHIFT);
2089 	}
2090 	return addr;
2091 }
2092 
2093 EXPORT_SYMBOL(do_brk);
2094 
2095 /* Release all mmaps. */
2096 void exit_mmap(struct mm_struct *mm)
2097 {
2098 	struct mmu_gather *tlb;
2099 	struct vm_area_struct *vma;
2100 	unsigned long nr_accounted = 0;
2101 	unsigned long end;
2102 
2103 	/* mm's last user has gone, and its about to be pulled down */
2104 	mmu_notifier_release(mm);
2105 
2106 	if (mm->locked_vm) {
2107 		vma = mm->mmap;
2108 		while (vma) {
2109 			if (vma->vm_flags & VM_LOCKED)
2110 				munlock_vma_pages_all(vma);
2111 			vma = vma->vm_next;
2112 		}
2113 	}
2114 
2115 	arch_exit_mmap(mm);
2116 
2117 	vma = mm->mmap;
2118 	if (!vma)	/* Can happen if dup_mmap() received an OOM */
2119 		return;
2120 
2121 	lru_add_drain();
2122 	flush_cache_mm(mm);
2123 	tlb = tlb_gather_mmu(mm, 1);
2124 	/* update_hiwater_rss(mm) here? but nobody should be looking */
2125 	/* Use -1 here to ensure all VMAs in the mm are unmapped */
2126 	end = unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL);
2127 	vm_unacct_memory(nr_accounted);
2128 
2129 	free_pgtables(tlb, vma, FIRST_USER_ADDRESS, 0);
2130 	tlb_finish_mmu(tlb, 0, end);
2131 
2132 	/*
2133 	 * Walk the list again, actually closing and freeing it,
2134 	 * with preemption enabled, without holding any MM locks.
2135 	 */
2136 	while (vma)
2137 		vma = remove_vma(vma);
2138 
2139 	BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2140 }
2141 
2142 /* Insert vm structure into process list sorted by address
2143  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2144  * then i_mmap_lock is taken here.
2145  */
2146 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
2147 {
2148 	struct vm_area_struct * __vma, * prev;
2149 	struct rb_node ** rb_link, * rb_parent;
2150 
2151 	/*
2152 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
2153 	 * until its first write fault, when page's anon_vma and index
2154 	 * are set.  But now set the vm_pgoff it will almost certainly
2155 	 * end up with (unless mremap moves it elsewhere before that
2156 	 * first wfault), so /proc/pid/maps tells a consistent story.
2157 	 *
2158 	 * By setting it to reflect the virtual start address of the
2159 	 * vma, merges and splits can happen in a seamless way, just
2160 	 * using the existing file pgoff checks and manipulations.
2161 	 * Similarly in do_mmap_pgoff and in do_brk.
2162 	 */
2163 	if (!vma->vm_file) {
2164 		BUG_ON(vma->anon_vma);
2165 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2166 	}
2167 	__vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent);
2168 	if (__vma && __vma->vm_start < vma->vm_end)
2169 		return -ENOMEM;
2170 	if ((vma->vm_flags & VM_ACCOUNT) &&
2171 	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
2172 		return -ENOMEM;
2173 	vma_link(mm, vma, prev, rb_link, rb_parent);
2174 	return 0;
2175 }
2176 
2177 /*
2178  * Copy the vma structure to a new location in the same mm,
2179  * prior to moving page table entries, to effect an mremap move.
2180  */
2181 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2182 	unsigned long addr, unsigned long len, pgoff_t pgoff)
2183 {
2184 	struct vm_area_struct *vma = *vmap;
2185 	unsigned long vma_start = vma->vm_start;
2186 	struct mm_struct *mm = vma->vm_mm;
2187 	struct vm_area_struct *new_vma, *prev;
2188 	struct rb_node **rb_link, *rb_parent;
2189 	struct mempolicy *pol;
2190 
2191 	/*
2192 	 * If anonymous vma has not yet been faulted, update new pgoff
2193 	 * to match new location, to increase its chance of merging.
2194 	 */
2195 	if (!vma->vm_file && !vma->anon_vma)
2196 		pgoff = addr >> PAGE_SHIFT;
2197 
2198 	find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2199 	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2200 			vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2201 	if (new_vma) {
2202 		/*
2203 		 * Source vma may have been merged into new_vma
2204 		 */
2205 		if (vma_start >= new_vma->vm_start &&
2206 		    vma_start < new_vma->vm_end)
2207 			*vmap = new_vma;
2208 	} else {
2209 		new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2210 		if (new_vma) {
2211 			*new_vma = *vma;
2212 			pol = mpol_dup(vma_policy(vma));
2213 			if (IS_ERR(pol)) {
2214 				kmem_cache_free(vm_area_cachep, new_vma);
2215 				return NULL;
2216 			}
2217 			vma_set_policy(new_vma, pol);
2218 			new_vma->vm_start = addr;
2219 			new_vma->vm_end = addr + len;
2220 			new_vma->vm_pgoff = pgoff;
2221 			if (new_vma->vm_file) {
2222 				get_file(new_vma->vm_file);
2223 				if (vma->vm_flags & VM_EXECUTABLE)
2224 					added_exe_file_vma(mm);
2225 			}
2226 			if (new_vma->vm_ops && new_vma->vm_ops->open)
2227 				new_vma->vm_ops->open(new_vma);
2228 			vma_link(mm, new_vma, prev, rb_link, rb_parent);
2229 		}
2230 	}
2231 	return new_vma;
2232 }
2233 
2234 /*
2235  * Return true if the calling process may expand its vm space by the passed
2236  * number of pages
2237  */
2238 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2239 {
2240 	unsigned long cur = mm->total_vm;	/* pages */
2241 	unsigned long lim;
2242 
2243 	lim = current->signal->rlim[RLIMIT_AS].rlim_cur >> PAGE_SHIFT;
2244 
2245 	if (cur + npages > lim)
2246 		return 0;
2247 	return 1;
2248 }
2249 
2250 
2251 static int special_mapping_fault(struct vm_area_struct *vma,
2252 				struct vm_fault *vmf)
2253 {
2254 	pgoff_t pgoff;
2255 	struct page **pages;
2256 
2257 	/*
2258 	 * special mappings have no vm_file, and in that case, the mm
2259 	 * uses vm_pgoff internally. So we have to subtract it from here.
2260 	 * We are allowed to do this because we are the mm; do not copy
2261 	 * this code into drivers!
2262 	 */
2263 	pgoff = vmf->pgoff - vma->vm_pgoff;
2264 
2265 	for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2266 		pgoff--;
2267 
2268 	if (*pages) {
2269 		struct page *page = *pages;
2270 		get_page(page);
2271 		vmf->page = page;
2272 		return 0;
2273 	}
2274 
2275 	return VM_FAULT_SIGBUS;
2276 }
2277 
2278 /*
2279  * Having a close hook prevents vma merging regardless of flags.
2280  */
2281 static void special_mapping_close(struct vm_area_struct *vma)
2282 {
2283 }
2284 
2285 static const struct vm_operations_struct special_mapping_vmops = {
2286 	.close = special_mapping_close,
2287 	.fault = special_mapping_fault,
2288 };
2289 
2290 /*
2291  * Called with mm->mmap_sem held for writing.
2292  * Insert a new vma covering the given region, with the given flags.
2293  * Its pages are supplied by the given array of struct page *.
2294  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2295  * The region past the last page supplied will always produce SIGBUS.
2296  * The array pointer and the pages it points to are assumed to stay alive
2297  * for as long as this mapping might exist.
2298  */
2299 int install_special_mapping(struct mm_struct *mm,
2300 			    unsigned long addr, unsigned long len,
2301 			    unsigned long vm_flags, struct page **pages)
2302 {
2303 	struct vm_area_struct *vma;
2304 
2305 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2306 	if (unlikely(vma == NULL))
2307 		return -ENOMEM;
2308 
2309 	vma->vm_mm = mm;
2310 	vma->vm_start = addr;
2311 	vma->vm_end = addr + len;
2312 
2313 	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
2314 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2315 
2316 	vma->vm_ops = &special_mapping_vmops;
2317 	vma->vm_private_data = pages;
2318 
2319 	if (unlikely(insert_vm_struct(mm, vma))) {
2320 		kmem_cache_free(vm_area_cachep, vma);
2321 		return -ENOMEM;
2322 	}
2323 
2324 	mm->total_vm += len >> PAGE_SHIFT;
2325 
2326 	perf_event_mmap(vma);
2327 
2328 	return 0;
2329 }
2330 
2331 static DEFINE_MUTEX(mm_all_locks_mutex);
2332 
2333 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2334 {
2335 	if (!test_bit(0, (unsigned long *) &anon_vma->head.next)) {
2336 		/*
2337 		 * The LSB of head.next can't change from under us
2338 		 * because we hold the mm_all_locks_mutex.
2339 		 */
2340 		spin_lock_nest_lock(&anon_vma->lock, &mm->mmap_sem);
2341 		/*
2342 		 * We can safely modify head.next after taking the
2343 		 * anon_vma->lock. If some other vma in this mm shares
2344 		 * the same anon_vma we won't take it again.
2345 		 *
2346 		 * No need of atomic instructions here, head.next
2347 		 * can't change from under us thanks to the
2348 		 * anon_vma->lock.
2349 		 */
2350 		if (__test_and_set_bit(0, (unsigned long *)
2351 				       &anon_vma->head.next))
2352 			BUG();
2353 	}
2354 }
2355 
2356 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2357 {
2358 	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2359 		/*
2360 		 * AS_MM_ALL_LOCKS can't change from under us because
2361 		 * we hold the mm_all_locks_mutex.
2362 		 *
2363 		 * Operations on ->flags have to be atomic because
2364 		 * even if AS_MM_ALL_LOCKS is stable thanks to the
2365 		 * mm_all_locks_mutex, there may be other cpus
2366 		 * changing other bitflags in parallel to us.
2367 		 */
2368 		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2369 			BUG();
2370 		spin_lock_nest_lock(&mapping->i_mmap_lock, &mm->mmap_sem);
2371 	}
2372 }
2373 
2374 /*
2375  * This operation locks against the VM for all pte/vma/mm related
2376  * operations that could ever happen on a certain mm. This includes
2377  * vmtruncate, try_to_unmap, and all page faults.
2378  *
2379  * The caller must take the mmap_sem in write mode before calling
2380  * mm_take_all_locks(). The caller isn't allowed to release the
2381  * mmap_sem until mm_drop_all_locks() returns.
2382  *
2383  * mmap_sem in write mode is required in order to block all operations
2384  * that could modify pagetables and free pages without need of
2385  * altering the vma layout (for example populate_range() with
2386  * nonlinear vmas). It's also needed in write mode to avoid new
2387  * anon_vmas to be associated with existing vmas.
2388  *
2389  * A single task can't take more than one mm_take_all_locks() in a row
2390  * or it would deadlock.
2391  *
2392  * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in
2393  * mapping->flags avoid to take the same lock twice, if more than one
2394  * vma in this mm is backed by the same anon_vma or address_space.
2395  *
2396  * We can take all the locks in random order because the VM code
2397  * taking i_mmap_lock or anon_vma->lock outside the mmap_sem never
2398  * takes more than one of them in a row. Secondly we're protected
2399  * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
2400  *
2401  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2402  * that may have to take thousand of locks.
2403  *
2404  * mm_take_all_locks() can fail if it's interrupted by signals.
2405  */
2406 int mm_take_all_locks(struct mm_struct *mm)
2407 {
2408 	struct vm_area_struct *vma;
2409 	int ret = -EINTR;
2410 
2411 	BUG_ON(down_read_trylock(&mm->mmap_sem));
2412 
2413 	mutex_lock(&mm_all_locks_mutex);
2414 
2415 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2416 		if (signal_pending(current))
2417 			goto out_unlock;
2418 		if (vma->vm_file && vma->vm_file->f_mapping)
2419 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
2420 	}
2421 
2422 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2423 		if (signal_pending(current))
2424 			goto out_unlock;
2425 		if (vma->anon_vma)
2426 			vm_lock_anon_vma(mm, vma->anon_vma);
2427 	}
2428 
2429 	ret = 0;
2430 
2431 out_unlock:
2432 	if (ret)
2433 		mm_drop_all_locks(mm);
2434 
2435 	return ret;
2436 }
2437 
2438 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2439 {
2440 	if (test_bit(0, (unsigned long *) &anon_vma->head.next)) {
2441 		/*
2442 		 * The LSB of head.next can't change to 0 from under
2443 		 * us because we hold the mm_all_locks_mutex.
2444 		 *
2445 		 * We must however clear the bitflag before unlocking
2446 		 * the vma so the users using the anon_vma->head will
2447 		 * never see our bitflag.
2448 		 *
2449 		 * No need of atomic instructions here, head.next
2450 		 * can't change from under us until we release the
2451 		 * anon_vma->lock.
2452 		 */
2453 		if (!__test_and_clear_bit(0, (unsigned long *)
2454 					  &anon_vma->head.next))
2455 			BUG();
2456 		spin_unlock(&anon_vma->lock);
2457 	}
2458 }
2459 
2460 static void vm_unlock_mapping(struct address_space *mapping)
2461 {
2462 	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2463 		/*
2464 		 * AS_MM_ALL_LOCKS can't change to 0 from under us
2465 		 * because we hold the mm_all_locks_mutex.
2466 		 */
2467 		spin_unlock(&mapping->i_mmap_lock);
2468 		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
2469 					&mapping->flags))
2470 			BUG();
2471 	}
2472 }
2473 
2474 /*
2475  * The mmap_sem cannot be released by the caller until
2476  * mm_drop_all_locks() returns.
2477  */
2478 void mm_drop_all_locks(struct mm_struct *mm)
2479 {
2480 	struct vm_area_struct *vma;
2481 
2482 	BUG_ON(down_read_trylock(&mm->mmap_sem));
2483 	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
2484 
2485 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2486 		if (vma->anon_vma)
2487 			vm_unlock_anon_vma(vma->anon_vma);
2488 		if (vma->vm_file && vma->vm_file->f_mapping)
2489 			vm_unlock_mapping(vma->vm_file->f_mapping);
2490 	}
2491 
2492 	mutex_unlock(&mm_all_locks_mutex);
2493 }
2494 
2495 /*
2496  * initialise the VMA slab
2497  */
2498 void __init mmap_init(void)
2499 {
2500 	int ret;
2501 
2502 	ret = percpu_counter_init(&vm_committed_as, 0);
2503 	VM_BUG_ON(ret);
2504 }
2505