xref: /linux/mm/mmap.c (revision de2fe5e07d58424bc286fff3fd3c1b0bf933cd58)
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code	<alan@redhat.com>
7  */
8 
9 #include <linux/slab.h>
10 #include <linux/mm.h>
11 #include <linux/shm.h>
12 #include <linux/mman.h>
13 #include <linux/pagemap.h>
14 #include <linux/swap.h>
15 #include <linux/syscalls.h>
16 #include <linux/capability.h>
17 #include <linux/init.h>
18 #include <linux/file.h>
19 #include <linux/fs.h>
20 #include <linux/personality.h>
21 #include <linux/security.h>
22 #include <linux/hugetlb.h>
23 #include <linux/profile.h>
24 #include <linux/module.h>
25 #include <linux/mount.h>
26 #include <linux/mempolicy.h>
27 #include <linux/rmap.h>
28 
29 #include <asm/uaccess.h>
30 #include <asm/cacheflush.h>
31 #include <asm/tlb.h>
32 
33 static void unmap_region(struct mm_struct *mm,
34 		struct vm_area_struct *vma, struct vm_area_struct *prev,
35 		unsigned long start, unsigned long end);
36 
37 /*
38  * WARNING: the debugging will use recursive algorithms so never enable this
39  * unless you know what you are doing.
40  */
41 #undef DEBUG_MM_RB
42 
43 /* description of effects of mapping type and prot in current implementation.
44  * this is due to the limited x86 page protection hardware.  The expected
45  * behavior is in parens:
46  *
47  * map_type	prot
48  *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
49  * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
50  *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
51  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
52  *
53  * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
54  *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
55  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
56  *
57  */
58 pgprot_t protection_map[16] = {
59 	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
60 	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
61 };
62 
63 int sysctl_overcommit_memory = OVERCOMMIT_GUESS;  /* heuristic overcommit */
64 int sysctl_overcommit_ratio = 50;	/* default is 50% */
65 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
66 atomic_t vm_committed_space = ATOMIC_INIT(0);
67 
68 /*
69  * Check that a process has enough memory to allocate a new virtual
70  * mapping. 0 means there is enough memory for the allocation to
71  * succeed and -ENOMEM implies there is not.
72  *
73  * We currently support three overcommit policies, which are set via the
74  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
75  *
76  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
77  * Additional code 2002 Jul 20 by Robert Love.
78  *
79  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
80  *
81  * Note this is a helper function intended to be used by LSMs which
82  * wish to use this logic.
83  */
84 int __vm_enough_memory(long pages, int cap_sys_admin)
85 {
86 	unsigned long free, allowed;
87 
88 	vm_acct_memory(pages);
89 
90 	/*
91 	 * Sometimes we want to use more memory than we have
92 	 */
93 	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
94 		return 0;
95 
96 	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
97 		unsigned long n;
98 
99 		free = get_page_cache_size();
100 		free += nr_swap_pages;
101 
102 		/*
103 		 * Any slabs which are created with the
104 		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
105 		 * which are reclaimable, under pressure.  The dentry
106 		 * cache and most inode caches should fall into this
107 		 */
108 		free += atomic_read(&slab_reclaim_pages);
109 
110 		/*
111 		 * Leave the last 3% for root
112 		 */
113 		if (!cap_sys_admin)
114 			free -= free / 32;
115 
116 		if (free > pages)
117 			return 0;
118 
119 		/*
120 		 * nr_free_pages() is very expensive on large systems,
121 		 * only call if we're about to fail.
122 		 */
123 		n = nr_free_pages();
124 		if (!cap_sys_admin)
125 			n -= n / 32;
126 		free += n;
127 
128 		if (free > pages)
129 			return 0;
130 		vm_unacct_memory(pages);
131 		return -ENOMEM;
132 	}
133 
134 	allowed = (totalram_pages - hugetlb_total_pages())
135 	       	* sysctl_overcommit_ratio / 100;
136 	/*
137 	 * Leave the last 3% for root
138 	 */
139 	if (!cap_sys_admin)
140 		allowed -= allowed / 32;
141 	allowed += total_swap_pages;
142 
143 	/* Don't let a single process grow too big:
144 	   leave 3% of the size of this process for other processes */
145 	allowed -= current->mm->total_vm / 32;
146 
147 	/*
148 	 * cast `allowed' as a signed long because vm_committed_space
149 	 * sometimes has a negative value
150 	 */
151 	if (atomic_read(&vm_committed_space) < (long)allowed)
152 		return 0;
153 
154 	vm_unacct_memory(pages);
155 
156 	return -ENOMEM;
157 }
158 
159 EXPORT_SYMBOL(__vm_enough_memory);
160 
161 /*
162  * Requires inode->i_mapping->i_mmap_lock
163  */
164 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
165 		struct file *file, struct address_space *mapping)
166 {
167 	if (vma->vm_flags & VM_DENYWRITE)
168 		atomic_inc(&file->f_dentry->d_inode->i_writecount);
169 	if (vma->vm_flags & VM_SHARED)
170 		mapping->i_mmap_writable--;
171 
172 	flush_dcache_mmap_lock(mapping);
173 	if (unlikely(vma->vm_flags & VM_NONLINEAR))
174 		list_del_init(&vma->shared.vm_set.list);
175 	else
176 		vma_prio_tree_remove(vma, &mapping->i_mmap);
177 	flush_dcache_mmap_unlock(mapping);
178 }
179 
180 /*
181  * Unlink a file-based vm structure from its prio_tree, to hide
182  * vma from rmap and vmtruncate before freeing its page tables.
183  */
184 void unlink_file_vma(struct vm_area_struct *vma)
185 {
186 	struct file *file = vma->vm_file;
187 
188 	if (file) {
189 		struct address_space *mapping = file->f_mapping;
190 		spin_lock(&mapping->i_mmap_lock);
191 		__remove_shared_vm_struct(vma, file, mapping);
192 		spin_unlock(&mapping->i_mmap_lock);
193 	}
194 }
195 
196 /*
197  * Close a vm structure and free it, returning the next.
198  */
199 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
200 {
201 	struct vm_area_struct *next = vma->vm_next;
202 
203 	might_sleep();
204 	if (vma->vm_ops && vma->vm_ops->close)
205 		vma->vm_ops->close(vma);
206 	if (vma->vm_file)
207 		fput(vma->vm_file);
208 	mpol_free(vma_policy(vma));
209 	kmem_cache_free(vm_area_cachep, vma);
210 	return next;
211 }
212 
213 asmlinkage unsigned long sys_brk(unsigned long brk)
214 {
215 	unsigned long rlim, retval;
216 	unsigned long newbrk, oldbrk;
217 	struct mm_struct *mm = current->mm;
218 
219 	down_write(&mm->mmap_sem);
220 
221 	if (brk < mm->end_code)
222 		goto out;
223 	newbrk = PAGE_ALIGN(brk);
224 	oldbrk = PAGE_ALIGN(mm->brk);
225 	if (oldbrk == newbrk)
226 		goto set_brk;
227 
228 	/* Always allow shrinking brk. */
229 	if (brk <= mm->brk) {
230 		if (!do_munmap(mm, newbrk, oldbrk-newbrk))
231 			goto set_brk;
232 		goto out;
233 	}
234 
235 	/* Check against rlimit.. */
236 	rlim = current->signal->rlim[RLIMIT_DATA].rlim_cur;
237 	if (rlim < RLIM_INFINITY && brk - mm->start_data > rlim)
238 		goto out;
239 
240 	/* Check against existing mmap mappings. */
241 	if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
242 		goto out;
243 
244 	/* Ok, looks good - let it rip. */
245 	if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
246 		goto out;
247 set_brk:
248 	mm->brk = brk;
249 out:
250 	retval = mm->brk;
251 	up_write(&mm->mmap_sem);
252 	return retval;
253 }
254 
255 #ifdef DEBUG_MM_RB
256 static int browse_rb(struct rb_root *root)
257 {
258 	int i = 0, j;
259 	struct rb_node *nd, *pn = NULL;
260 	unsigned long prev = 0, pend = 0;
261 
262 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
263 		struct vm_area_struct *vma;
264 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
265 		if (vma->vm_start < prev)
266 			printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
267 		if (vma->vm_start < pend)
268 			printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
269 		if (vma->vm_start > vma->vm_end)
270 			printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
271 		i++;
272 		pn = nd;
273 	}
274 	j = 0;
275 	for (nd = pn; nd; nd = rb_prev(nd)) {
276 		j++;
277 	}
278 	if (i != j)
279 		printk("backwards %d, forwards %d\n", j, i), i = 0;
280 	return i;
281 }
282 
283 void validate_mm(struct mm_struct *mm)
284 {
285 	int bug = 0;
286 	int i = 0;
287 	struct vm_area_struct *tmp = mm->mmap;
288 	while (tmp) {
289 		tmp = tmp->vm_next;
290 		i++;
291 	}
292 	if (i != mm->map_count)
293 		printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
294 	i = browse_rb(&mm->mm_rb);
295 	if (i != mm->map_count)
296 		printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
297 	if (bug)
298 		BUG();
299 }
300 #else
301 #define validate_mm(mm) do { } while (0)
302 #endif
303 
304 static struct vm_area_struct *
305 find_vma_prepare(struct mm_struct *mm, unsigned long addr,
306 		struct vm_area_struct **pprev, struct rb_node ***rb_link,
307 		struct rb_node ** rb_parent)
308 {
309 	struct vm_area_struct * vma;
310 	struct rb_node ** __rb_link, * __rb_parent, * rb_prev;
311 
312 	__rb_link = &mm->mm_rb.rb_node;
313 	rb_prev = __rb_parent = NULL;
314 	vma = NULL;
315 
316 	while (*__rb_link) {
317 		struct vm_area_struct *vma_tmp;
318 
319 		__rb_parent = *__rb_link;
320 		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
321 
322 		if (vma_tmp->vm_end > addr) {
323 			vma = vma_tmp;
324 			if (vma_tmp->vm_start <= addr)
325 				return vma;
326 			__rb_link = &__rb_parent->rb_left;
327 		} else {
328 			rb_prev = __rb_parent;
329 			__rb_link = &__rb_parent->rb_right;
330 		}
331 	}
332 
333 	*pprev = NULL;
334 	if (rb_prev)
335 		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
336 	*rb_link = __rb_link;
337 	*rb_parent = __rb_parent;
338 	return vma;
339 }
340 
341 static inline void
342 __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
343 		struct vm_area_struct *prev, struct rb_node *rb_parent)
344 {
345 	if (prev) {
346 		vma->vm_next = prev->vm_next;
347 		prev->vm_next = vma;
348 	} else {
349 		mm->mmap = vma;
350 		if (rb_parent)
351 			vma->vm_next = rb_entry(rb_parent,
352 					struct vm_area_struct, vm_rb);
353 		else
354 			vma->vm_next = NULL;
355 	}
356 }
357 
358 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
359 		struct rb_node **rb_link, struct rb_node *rb_parent)
360 {
361 	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
362 	rb_insert_color(&vma->vm_rb, &mm->mm_rb);
363 }
364 
365 static inline void __vma_link_file(struct vm_area_struct *vma)
366 {
367 	struct file * file;
368 
369 	file = vma->vm_file;
370 	if (file) {
371 		struct address_space *mapping = file->f_mapping;
372 
373 		if (vma->vm_flags & VM_DENYWRITE)
374 			atomic_dec(&file->f_dentry->d_inode->i_writecount);
375 		if (vma->vm_flags & VM_SHARED)
376 			mapping->i_mmap_writable++;
377 
378 		flush_dcache_mmap_lock(mapping);
379 		if (unlikely(vma->vm_flags & VM_NONLINEAR))
380 			vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
381 		else
382 			vma_prio_tree_insert(vma, &mapping->i_mmap);
383 		flush_dcache_mmap_unlock(mapping);
384 	}
385 }
386 
387 static void
388 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
389 	struct vm_area_struct *prev, struct rb_node **rb_link,
390 	struct rb_node *rb_parent)
391 {
392 	__vma_link_list(mm, vma, prev, rb_parent);
393 	__vma_link_rb(mm, vma, rb_link, rb_parent);
394 	__anon_vma_link(vma);
395 }
396 
397 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
398 			struct vm_area_struct *prev, struct rb_node **rb_link,
399 			struct rb_node *rb_parent)
400 {
401 	struct address_space *mapping = NULL;
402 
403 	if (vma->vm_file)
404 		mapping = vma->vm_file->f_mapping;
405 
406 	if (mapping) {
407 		spin_lock(&mapping->i_mmap_lock);
408 		vma->vm_truncate_count = mapping->truncate_count;
409 	}
410 	anon_vma_lock(vma);
411 
412 	__vma_link(mm, vma, prev, rb_link, rb_parent);
413 	__vma_link_file(vma);
414 
415 	anon_vma_unlock(vma);
416 	if (mapping)
417 		spin_unlock(&mapping->i_mmap_lock);
418 
419 	mm->map_count++;
420 	validate_mm(mm);
421 }
422 
423 /*
424  * Helper for vma_adjust in the split_vma insert case:
425  * insert vm structure into list and rbtree and anon_vma,
426  * but it has already been inserted into prio_tree earlier.
427  */
428 static void
429 __insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
430 {
431 	struct vm_area_struct * __vma, * prev;
432 	struct rb_node ** rb_link, * rb_parent;
433 
434 	__vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent);
435 	if (__vma && __vma->vm_start < vma->vm_end)
436 		BUG();
437 	__vma_link(mm, vma, prev, rb_link, rb_parent);
438 	mm->map_count++;
439 }
440 
441 static inline void
442 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
443 		struct vm_area_struct *prev)
444 {
445 	prev->vm_next = vma->vm_next;
446 	rb_erase(&vma->vm_rb, &mm->mm_rb);
447 	if (mm->mmap_cache == vma)
448 		mm->mmap_cache = prev;
449 }
450 
451 /*
452  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
453  * is already present in an i_mmap tree without adjusting the tree.
454  * The following helper function should be used when such adjustments
455  * are necessary.  The "insert" vma (if any) is to be inserted
456  * before we drop the necessary locks.
457  */
458 void vma_adjust(struct vm_area_struct *vma, unsigned long start,
459 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
460 {
461 	struct mm_struct *mm = vma->vm_mm;
462 	struct vm_area_struct *next = vma->vm_next;
463 	struct vm_area_struct *importer = NULL;
464 	struct address_space *mapping = NULL;
465 	struct prio_tree_root *root = NULL;
466 	struct file *file = vma->vm_file;
467 	struct anon_vma *anon_vma = NULL;
468 	long adjust_next = 0;
469 	int remove_next = 0;
470 
471 	if (next && !insert) {
472 		if (end >= next->vm_end) {
473 			/*
474 			 * vma expands, overlapping all the next, and
475 			 * perhaps the one after too (mprotect case 6).
476 			 */
477 again:			remove_next = 1 + (end > next->vm_end);
478 			end = next->vm_end;
479 			anon_vma = next->anon_vma;
480 			importer = vma;
481 		} else if (end > next->vm_start) {
482 			/*
483 			 * vma expands, overlapping part of the next:
484 			 * mprotect case 5 shifting the boundary up.
485 			 */
486 			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
487 			anon_vma = next->anon_vma;
488 			importer = vma;
489 		} else if (end < vma->vm_end) {
490 			/*
491 			 * vma shrinks, and !insert tells it's not
492 			 * split_vma inserting another: so it must be
493 			 * mprotect case 4 shifting the boundary down.
494 			 */
495 			adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
496 			anon_vma = next->anon_vma;
497 			importer = next;
498 		}
499 	}
500 
501 	if (file) {
502 		mapping = file->f_mapping;
503 		if (!(vma->vm_flags & VM_NONLINEAR))
504 			root = &mapping->i_mmap;
505 		spin_lock(&mapping->i_mmap_lock);
506 		if (importer &&
507 		    vma->vm_truncate_count != next->vm_truncate_count) {
508 			/*
509 			 * unmap_mapping_range might be in progress:
510 			 * ensure that the expanding vma is rescanned.
511 			 */
512 			importer->vm_truncate_count = 0;
513 		}
514 		if (insert) {
515 			insert->vm_truncate_count = vma->vm_truncate_count;
516 			/*
517 			 * Put into prio_tree now, so instantiated pages
518 			 * are visible to arm/parisc __flush_dcache_page
519 			 * throughout; but we cannot insert into address
520 			 * space until vma start or end is updated.
521 			 */
522 			__vma_link_file(insert);
523 		}
524 	}
525 
526 	/*
527 	 * When changing only vma->vm_end, we don't really need
528 	 * anon_vma lock: but is that case worth optimizing out?
529 	 */
530 	if (vma->anon_vma)
531 		anon_vma = vma->anon_vma;
532 	if (anon_vma) {
533 		spin_lock(&anon_vma->lock);
534 		/*
535 		 * Easily overlooked: when mprotect shifts the boundary,
536 		 * make sure the expanding vma has anon_vma set if the
537 		 * shrinking vma had, to cover any anon pages imported.
538 		 */
539 		if (importer && !importer->anon_vma) {
540 			importer->anon_vma = anon_vma;
541 			__anon_vma_link(importer);
542 		}
543 	}
544 
545 	if (root) {
546 		flush_dcache_mmap_lock(mapping);
547 		vma_prio_tree_remove(vma, root);
548 		if (adjust_next)
549 			vma_prio_tree_remove(next, root);
550 	}
551 
552 	vma->vm_start = start;
553 	vma->vm_end = end;
554 	vma->vm_pgoff = pgoff;
555 	if (adjust_next) {
556 		next->vm_start += adjust_next << PAGE_SHIFT;
557 		next->vm_pgoff += adjust_next;
558 	}
559 
560 	if (root) {
561 		if (adjust_next)
562 			vma_prio_tree_insert(next, root);
563 		vma_prio_tree_insert(vma, root);
564 		flush_dcache_mmap_unlock(mapping);
565 	}
566 
567 	if (remove_next) {
568 		/*
569 		 * vma_merge has merged next into vma, and needs
570 		 * us to remove next before dropping the locks.
571 		 */
572 		__vma_unlink(mm, next, vma);
573 		if (file)
574 			__remove_shared_vm_struct(next, file, mapping);
575 		if (next->anon_vma)
576 			__anon_vma_merge(vma, next);
577 	} else if (insert) {
578 		/*
579 		 * split_vma has split insert from vma, and needs
580 		 * us to insert it before dropping the locks
581 		 * (it may either follow vma or precede it).
582 		 */
583 		__insert_vm_struct(mm, insert);
584 	}
585 
586 	if (anon_vma)
587 		spin_unlock(&anon_vma->lock);
588 	if (mapping)
589 		spin_unlock(&mapping->i_mmap_lock);
590 
591 	if (remove_next) {
592 		if (file)
593 			fput(file);
594 		mm->map_count--;
595 		mpol_free(vma_policy(next));
596 		kmem_cache_free(vm_area_cachep, next);
597 		/*
598 		 * In mprotect's case 6 (see comments on vma_merge),
599 		 * we must remove another next too. It would clutter
600 		 * up the code too much to do both in one go.
601 		 */
602 		if (remove_next == 2) {
603 			next = vma->vm_next;
604 			goto again;
605 		}
606 	}
607 
608 	validate_mm(mm);
609 }
610 
611 /*
612  * If the vma has a ->close operation then the driver probably needs to release
613  * per-vma resources, so we don't attempt to merge those.
614  */
615 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP)
616 
617 static inline int is_mergeable_vma(struct vm_area_struct *vma,
618 			struct file *file, unsigned long vm_flags)
619 {
620 	if (vma->vm_flags != vm_flags)
621 		return 0;
622 	if (vma->vm_file != file)
623 		return 0;
624 	if (vma->vm_ops && vma->vm_ops->close)
625 		return 0;
626 	return 1;
627 }
628 
629 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
630 					struct anon_vma *anon_vma2)
631 {
632 	return !anon_vma1 || !anon_vma2 || (anon_vma1 == anon_vma2);
633 }
634 
635 /*
636  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
637  * in front of (at a lower virtual address and file offset than) the vma.
638  *
639  * We cannot merge two vmas if they have differently assigned (non-NULL)
640  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
641  *
642  * We don't check here for the merged mmap wrapping around the end of pagecache
643  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
644  * wrap, nor mmaps which cover the final page at index -1UL.
645  */
646 static int
647 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
648 	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
649 {
650 	if (is_mergeable_vma(vma, file, vm_flags) &&
651 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
652 		if (vma->vm_pgoff == vm_pgoff)
653 			return 1;
654 	}
655 	return 0;
656 }
657 
658 /*
659  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
660  * beyond (at a higher virtual address and file offset than) the vma.
661  *
662  * We cannot merge two vmas if they have differently assigned (non-NULL)
663  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
664  */
665 static int
666 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
667 	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
668 {
669 	if (is_mergeable_vma(vma, file, vm_flags) &&
670 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
671 		pgoff_t vm_pglen;
672 		vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
673 		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
674 			return 1;
675 	}
676 	return 0;
677 }
678 
679 /*
680  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
681  * whether that can be merged with its predecessor or its successor.
682  * Or both (it neatly fills a hole).
683  *
684  * In most cases - when called for mmap, brk or mremap - [addr,end) is
685  * certain not to be mapped by the time vma_merge is called; but when
686  * called for mprotect, it is certain to be already mapped (either at
687  * an offset within prev, or at the start of next), and the flags of
688  * this area are about to be changed to vm_flags - and the no-change
689  * case has already been eliminated.
690  *
691  * The following mprotect cases have to be considered, where AAAA is
692  * the area passed down from mprotect_fixup, never extending beyond one
693  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
694  *
695  *     AAAA             AAAA                AAAA          AAAA
696  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
697  *    cannot merge    might become    might become    might become
698  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
699  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
700  *    mremap move:                                    PPPPNNNNNNNN 8
701  *        AAAA
702  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
703  *    might become    case 1 below    case 2 below    case 3 below
704  *
705  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
706  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
707  */
708 struct vm_area_struct *vma_merge(struct mm_struct *mm,
709 			struct vm_area_struct *prev, unsigned long addr,
710 			unsigned long end, unsigned long vm_flags,
711 		     	struct anon_vma *anon_vma, struct file *file,
712 			pgoff_t pgoff, struct mempolicy *policy)
713 {
714 	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
715 	struct vm_area_struct *area, *next;
716 
717 	/*
718 	 * We later require that vma->vm_flags == vm_flags,
719 	 * so this tests vma->vm_flags & VM_SPECIAL, too.
720 	 */
721 	if (vm_flags & VM_SPECIAL)
722 		return NULL;
723 
724 	if (prev)
725 		next = prev->vm_next;
726 	else
727 		next = mm->mmap;
728 	area = next;
729 	if (next && next->vm_end == end)		/* cases 6, 7, 8 */
730 		next = next->vm_next;
731 
732 	/*
733 	 * Can it merge with the predecessor?
734 	 */
735 	if (prev && prev->vm_end == addr &&
736   			mpol_equal(vma_policy(prev), policy) &&
737 			can_vma_merge_after(prev, vm_flags,
738 						anon_vma, file, pgoff)) {
739 		/*
740 		 * OK, it can.  Can we now merge in the successor as well?
741 		 */
742 		if (next && end == next->vm_start &&
743 				mpol_equal(policy, vma_policy(next)) &&
744 				can_vma_merge_before(next, vm_flags,
745 					anon_vma, file, pgoff+pglen) &&
746 				is_mergeable_anon_vma(prev->anon_vma,
747 						      next->anon_vma)) {
748 							/* cases 1, 6 */
749 			vma_adjust(prev, prev->vm_start,
750 				next->vm_end, prev->vm_pgoff, NULL);
751 		} else					/* cases 2, 5, 7 */
752 			vma_adjust(prev, prev->vm_start,
753 				end, prev->vm_pgoff, NULL);
754 		return prev;
755 	}
756 
757 	/*
758 	 * Can this new request be merged in front of next?
759 	 */
760 	if (next && end == next->vm_start &&
761  			mpol_equal(policy, vma_policy(next)) &&
762 			can_vma_merge_before(next, vm_flags,
763 					anon_vma, file, pgoff+pglen)) {
764 		if (prev && addr < prev->vm_end)	/* case 4 */
765 			vma_adjust(prev, prev->vm_start,
766 				addr, prev->vm_pgoff, NULL);
767 		else					/* cases 3, 8 */
768 			vma_adjust(area, addr, next->vm_end,
769 				next->vm_pgoff - pglen, NULL);
770 		return area;
771 	}
772 
773 	return NULL;
774 }
775 
776 /*
777  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
778  * neighbouring vmas for a suitable anon_vma, before it goes off
779  * to allocate a new anon_vma.  It checks because a repetitive
780  * sequence of mprotects and faults may otherwise lead to distinct
781  * anon_vmas being allocated, preventing vma merge in subsequent
782  * mprotect.
783  */
784 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
785 {
786 	struct vm_area_struct *near;
787 	unsigned long vm_flags;
788 
789 	near = vma->vm_next;
790 	if (!near)
791 		goto try_prev;
792 
793 	/*
794 	 * Since only mprotect tries to remerge vmas, match flags
795 	 * which might be mprotected into each other later on.
796 	 * Neither mlock nor madvise tries to remerge at present,
797 	 * so leave their flags as obstructing a merge.
798 	 */
799 	vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
800 	vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
801 
802 	if (near->anon_vma && vma->vm_end == near->vm_start &&
803  			mpol_equal(vma_policy(vma), vma_policy(near)) &&
804 			can_vma_merge_before(near, vm_flags,
805 				NULL, vma->vm_file, vma->vm_pgoff +
806 				((vma->vm_end - vma->vm_start) >> PAGE_SHIFT)))
807 		return near->anon_vma;
808 try_prev:
809 	/*
810 	 * It is potentially slow to have to call find_vma_prev here.
811 	 * But it's only on the first write fault on the vma, not
812 	 * every time, and we could devise a way to avoid it later
813 	 * (e.g. stash info in next's anon_vma_node when assigning
814 	 * an anon_vma, or when trying vma_merge).  Another time.
815 	 */
816 	if (find_vma_prev(vma->vm_mm, vma->vm_start, &near) != vma)
817 		BUG();
818 	if (!near)
819 		goto none;
820 
821 	vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
822 	vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
823 
824 	if (near->anon_vma && near->vm_end == vma->vm_start &&
825   			mpol_equal(vma_policy(near), vma_policy(vma)) &&
826 			can_vma_merge_after(near, vm_flags,
827 				NULL, vma->vm_file, vma->vm_pgoff))
828 		return near->anon_vma;
829 none:
830 	/*
831 	 * There's no absolute need to look only at touching neighbours:
832 	 * we could search further afield for "compatible" anon_vmas.
833 	 * But it would probably just be a waste of time searching,
834 	 * or lead to too many vmas hanging off the same anon_vma.
835 	 * We're trying to allow mprotect remerging later on,
836 	 * not trying to minimize memory used for anon_vmas.
837 	 */
838 	return NULL;
839 }
840 
841 #ifdef CONFIG_PROC_FS
842 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
843 						struct file *file, long pages)
844 {
845 	const unsigned long stack_flags
846 		= VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
847 
848 	if (file) {
849 		mm->shared_vm += pages;
850 		if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
851 			mm->exec_vm += pages;
852 	} else if (flags & stack_flags)
853 		mm->stack_vm += pages;
854 	if (flags & (VM_RESERVED|VM_IO))
855 		mm->reserved_vm += pages;
856 }
857 #endif /* CONFIG_PROC_FS */
858 
859 /*
860  * The caller must hold down_write(current->mm->mmap_sem).
861  */
862 
863 unsigned long do_mmap_pgoff(struct file * file, unsigned long addr,
864 			unsigned long len, unsigned long prot,
865 			unsigned long flags, unsigned long pgoff)
866 {
867 	struct mm_struct * mm = current->mm;
868 	struct vm_area_struct * vma, * prev;
869 	struct inode *inode;
870 	unsigned int vm_flags;
871 	int correct_wcount = 0;
872 	int error;
873 	struct rb_node ** rb_link, * rb_parent;
874 	int accountable = 1;
875 	unsigned long charged = 0, reqprot = prot;
876 
877 	if (file) {
878 		if (is_file_hugepages(file))
879 			accountable = 0;
880 
881 		if (!file->f_op || !file->f_op->mmap)
882 			return -ENODEV;
883 
884 		if ((prot & PROT_EXEC) &&
885 		    (file->f_vfsmnt->mnt_flags & MNT_NOEXEC))
886 			return -EPERM;
887 	}
888 	/*
889 	 * Does the application expect PROT_READ to imply PROT_EXEC?
890 	 *
891 	 * (the exception is when the underlying filesystem is noexec
892 	 *  mounted, in which case we dont add PROT_EXEC.)
893 	 */
894 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
895 		if (!(file && (file->f_vfsmnt->mnt_flags & MNT_NOEXEC)))
896 			prot |= PROT_EXEC;
897 
898 	if (!len)
899 		return -EINVAL;
900 
901 	/* Careful about overflows.. */
902 	len = PAGE_ALIGN(len);
903 	if (!len || len > TASK_SIZE)
904 		return -ENOMEM;
905 
906 	/* offset overflow? */
907 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
908                return -EOVERFLOW;
909 
910 	/* Too many mappings? */
911 	if (mm->map_count > sysctl_max_map_count)
912 		return -ENOMEM;
913 
914 	/* Obtain the address to map to. we verify (or select) it and ensure
915 	 * that it represents a valid section of the address space.
916 	 */
917 	addr = get_unmapped_area(file, addr, len, pgoff, flags);
918 	if (addr & ~PAGE_MASK)
919 		return addr;
920 
921 	/* Do simple checking here so the lower-level routines won't have
922 	 * to. we assume access permissions have been handled by the open
923 	 * of the memory object, so we don't do any here.
924 	 */
925 	vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
926 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
927 
928 	if (flags & MAP_LOCKED) {
929 		if (!can_do_mlock())
930 			return -EPERM;
931 		vm_flags |= VM_LOCKED;
932 	}
933 	/* mlock MCL_FUTURE? */
934 	if (vm_flags & VM_LOCKED) {
935 		unsigned long locked, lock_limit;
936 		locked = len >> PAGE_SHIFT;
937 		locked += mm->locked_vm;
938 		lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
939 		lock_limit >>= PAGE_SHIFT;
940 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
941 			return -EAGAIN;
942 	}
943 
944 	inode = file ? file->f_dentry->d_inode : NULL;
945 
946 	if (file) {
947 		switch (flags & MAP_TYPE) {
948 		case MAP_SHARED:
949 			if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
950 				return -EACCES;
951 
952 			/*
953 			 * Make sure we don't allow writing to an append-only
954 			 * file..
955 			 */
956 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
957 				return -EACCES;
958 
959 			/*
960 			 * Make sure there are no mandatory locks on the file.
961 			 */
962 			if (locks_verify_locked(inode))
963 				return -EAGAIN;
964 
965 			vm_flags |= VM_SHARED | VM_MAYSHARE;
966 			if (!(file->f_mode & FMODE_WRITE))
967 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
968 
969 			/* fall through */
970 		case MAP_PRIVATE:
971 			if (!(file->f_mode & FMODE_READ))
972 				return -EACCES;
973 			break;
974 
975 		default:
976 			return -EINVAL;
977 		}
978 	} else {
979 		switch (flags & MAP_TYPE) {
980 		case MAP_SHARED:
981 			vm_flags |= VM_SHARED | VM_MAYSHARE;
982 			break;
983 		case MAP_PRIVATE:
984 			/*
985 			 * Set pgoff according to addr for anon_vma.
986 			 */
987 			pgoff = addr >> PAGE_SHIFT;
988 			break;
989 		default:
990 			return -EINVAL;
991 		}
992 	}
993 
994 	error = security_file_mmap(file, reqprot, prot, flags);
995 	if (error)
996 		return error;
997 
998 	/* Clear old maps */
999 	error = -ENOMEM;
1000 munmap_back:
1001 	vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1002 	if (vma && vma->vm_start < addr + len) {
1003 		if (do_munmap(mm, addr, len))
1004 			return -ENOMEM;
1005 		goto munmap_back;
1006 	}
1007 
1008 	/* Check against address space limit. */
1009 	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1010 		return -ENOMEM;
1011 
1012 	if (accountable && (!(flags & MAP_NORESERVE) ||
1013 			    sysctl_overcommit_memory == OVERCOMMIT_NEVER)) {
1014 		if (vm_flags & VM_SHARED) {
1015 			/* Check memory availability in shmem_file_setup? */
1016 			vm_flags |= VM_ACCOUNT;
1017 		} else if (vm_flags & VM_WRITE) {
1018 			/*
1019 			 * Private writable mapping: check memory availability
1020 			 */
1021 			charged = len >> PAGE_SHIFT;
1022 			if (security_vm_enough_memory(charged))
1023 				return -ENOMEM;
1024 			vm_flags |= VM_ACCOUNT;
1025 		}
1026 	}
1027 
1028 	/*
1029 	 * Can we just expand an old private anonymous mapping?
1030 	 * The VM_SHARED test is necessary because shmem_zero_setup
1031 	 * will create the file object for a shared anonymous map below.
1032 	 */
1033 	if (!file && !(vm_flags & VM_SHARED) &&
1034 	    vma_merge(mm, prev, addr, addr + len, vm_flags,
1035 					NULL, NULL, pgoff, NULL))
1036 		goto out;
1037 
1038 	/*
1039 	 * Determine the object being mapped and call the appropriate
1040 	 * specific mapper. the address has already been validated, but
1041 	 * not unmapped, but the maps are removed from the list.
1042 	 */
1043 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1044 	if (!vma) {
1045 		error = -ENOMEM;
1046 		goto unacct_error;
1047 	}
1048 
1049 	vma->vm_mm = mm;
1050 	vma->vm_start = addr;
1051 	vma->vm_end = addr + len;
1052 	vma->vm_flags = vm_flags;
1053 	vma->vm_page_prot = protection_map[vm_flags & 0x0f];
1054 	vma->vm_pgoff = pgoff;
1055 
1056 	if (file) {
1057 		error = -EINVAL;
1058 		if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1059 			goto free_vma;
1060 		if (vm_flags & VM_DENYWRITE) {
1061 			error = deny_write_access(file);
1062 			if (error)
1063 				goto free_vma;
1064 			correct_wcount = 1;
1065 		}
1066 		vma->vm_file = file;
1067 		get_file(file);
1068 		error = file->f_op->mmap(file, vma);
1069 		if (error)
1070 			goto unmap_and_free_vma;
1071 	} else if (vm_flags & VM_SHARED) {
1072 		error = shmem_zero_setup(vma);
1073 		if (error)
1074 			goto free_vma;
1075 	}
1076 
1077 	/* We set VM_ACCOUNT in a shared mapping's vm_flags, to inform
1078 	 * shmem_zero_setup (perhaps called through /dev/zero's ->mmap)
1079 	 * that memory reservation must be checked; but that reservation
1080 	 * belongs to shared memory object, not to vma: so now clear it.
1081 	 */
1082 	if ((vm_flags & (VM_SHARED|VM_ACCOUNT)) == (VM_SHARED|VM_ACCOUNT))
1083 		vma->vm_flags &= ~VM_ACCOUNT;
1084 
1085 	/* Can addr have changed??
1086 	 *
1087 	 * Answer: Yes, several device drivers can do it in their
1088 	 *         f_op->mmap method. -DaveM
1089 	 */
1090 	addr = vma->vm_start;
1091 	pgoff = vma->vm_pgoff;
1092 	vm_flags = vma->vm_flags;
1093 
1094 	if (!file || !vma_merge(mm, prev, addr, vma->vm_end,
1095 			vma->vm_flags, NULL, file, pgoff, vma_policy(vma))) {
1096 		file = vma->vm_file;
1097 		vma_link(mm, vma, prev, rb_link, rb_parent);
1098 		if (correct_wcount)
1099 			atomic_inc(&inode->i_writecount);
1100 	} else {
1101 		if (file) {
1102 			if (correct_wcount)
1103 				atomic_inc(&inode->i_writecount);
1104 			fput(file);
1105 		}
1106 		mpol_free(vma_policy(vma));
1107 		kmem_cache_free(vm_area_cachep, vma);
1108 	}
1109 out:
1110 	mm->total_vm += len >> PAGE_SHIFT;
1111 	vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1112 	if (vm_flags & VM_LOCKED) {
1113 		mm->locked_vm += len >> PAGE_SHIFT;
1114 		make_pages_present(addr, addr + len);
1115 	}
1116 	if (flags & MAP_POPULATE) {
1117 		up_write(&mm->mmap_sem);
1118 		sys_remap_file_pages(addr, len, 0,
1119 					pgoff, flags & MAP_NONBLOCK);
1120 		down_write(&mm->mmap_sem);
1121 	}
1122 	return addr;
1123 
1124 unmap_and_free_vma:
1125 	if (correct_wcount)
1126 		atomic_inc(&inode->i_writecount);
1127 	vma->vm_file = NULL;
1128 	fput(file);
1129 
1130 	/* Undo any partial mapping done by a device driver. */
1131 	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1132 	charged = 0;
1133 free_vma:
1134 	kmem_cache_free(vm_area_cachep, vma);
1135 unacct_error:
1136 	if (charged)
1137 		vm_unacct_memory(charged);
1138 	return error;
1139 }
1140 
1141 EXPORT_SYMBOL(do_mmap_pgoff);
1142 
1143 /* Get an address range which is currently unmapped.
1144  * For shmat() with addr=0.
1145  *
1146  * Ugly calling convention alert:
1147  * Return value with the low bits set means error value,
1148  * ie
1149  *	if (ret & ~PAGE_MASK)
1150  *		error = ret;
1151  *
1152  * This function "knows" that -ENOMEM has the bits set.
1153  */
1154 #ifndef HAVE_ARCH_UNMAPPED_AREA
1155 unsigned long
1156 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1157 		unsigned long len, unsigned long pgoff, unsigned long flags)
1158 {
1159 	struct mm_struct *mm = current->mm;
1160 	struct vm_area_struct *vma;
1161 	unsigned long start_addr;
1162 
1163 	if (len > TASK_SIZE)
1164 		return -ENOMEM;
1165 
1166 	if (addr) {
1167 		addr = PAGE_ALIGN(addr);
1168 		vma = find_vma(mm, addr);
1169 		if (TASK_SIZE - len >= addr &&
1170 		    (!vma || addr + len <= vma->vm_start))
1171 			return addr;
1172 	}
1173 	if (len > mm->cached_hole_size) {
1174 	        start_addr = addr = mm->free_area_cache;
1175 	} else {
1176 	        start_addr = addr = TASK_UNMAPPED_BASE;
1177 	        mm->cached_hole_size = 0;
1178 	}
1179 
1180 full_search:
1181 	for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1182 		/* At this point:  (!vma || addr < vma->vm_end). */
1183 		if (TASK_SIZE - len < addr) {
1184 			/*
1185 			 * Start a new search - just in case we missed
1186 			 * some holes.
1187 			 */
1188 			if (start_addr != TASK_UNMAPPED_BASE) {
1189 				addr = TASK_UNMAPPED_BASE;
1190 			        start_addr = addr;
1191 				mm->cached_hole_size = 0;
1192 				goto full_search;
1193 			}
1194 			return -ENOMEM;
1195 		}
1196 		if (!vma || addr + len <= vma->vm_start) {
1197 			/*
1198 			 * Remember the place where we stopped the search:
1199 			 */
1200 			mm->free_area_cache = addr + len;
1201 			return addr;
1202 		}
1203 		if (addr + mm->cached_hole_size < vma->vm_start)
1204 		        mm->cached_hole_size = vma->vm_start - addr;
1205 		addr = vma->vm_end;
1206 	}
1207 }
1208 #endif
1209 
1210 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1211 {
1212 	/*
1213 	 * Is this a new hole at the lowest possible address?
1214 	 */
1215 	if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) {
1216 		mm->free_area_cache = addr;
1217 		mm->cached_hole_size = ~0UL;
1218 	}
1219 }
1220 
1221 /*
1222  * This mmap-allocator allocates new areas top-down from below the
1223  * stack's low limit (the base):
1224  */
1225 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1226 unsigned long
1227 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1228 			  const unsigned long len, const unsigned long pgoff,
1229 			  const unsigned long flags)
1230 {
1231 	struct vm_area_struct *vma;
1232 	struct mm_struct *mm = current->mm;
1233 	unsigned long addr = addr0;
1234 
1235 	/* requested length too big for entire address space */
1236 	if (len > TASK_SIZE)
1237 		return -ENOMEM;
1238 
1239 	/* requesting a specific address */
1240 	if (addr) {
1241 		addr = PAGE_ALIGN(addr);
1242 		vma = find_vma(mm, addr);
1243 		if (TASK_SIZE - len >= addr &&
1244 				(!vma || addr + len <= vma->vm_start))
1245 			return addr;
1246 	}
1247 
1248 	/* check if free_area_cache is useful for us */
1249 	if (len <= mm->cached_hole_size) {
1250  	        mm->cached_hole_size = 0;
1251  		mm->free_area_cache = mm->mmap_base;
1252  	}
1253 
1254 	/* either no address requested or can't fit in requested address hole */
1255 	addr = mm->free_area_cache;
1256 
1257 	/* make sure it can fit in the remaining address space */
1258 	if (addr > len) {
1259 		vma = find_vma(mm, addr-len);
1260 		if (!vma || addr <= vma->vm_start)
1261 			/* remember the address as a hint for next time */
1262 			return (mm->free_area_cache = addr-len);
1263 	}
1264 
1265 	if (mm->mmap_base < len)
1266 		goto bottomup;
1267 
1268 	addr = mm->mmap_base-len;
1269 
1270 	do {
1271 		/*
1272 		 * Lookup failure means no vma is above this address,
1273 		 * else if new region fits below vma->vm_start,
1274 		 * return with success:
1275 		 */
1276 		vma = find_vma(mm, addr);
1277 		if (!vma || addr+len <= vma->vm_start)
1278 			/* remember the address as a hint for next time */
1279 			return (mm->free_area_cache = addr);
1280 
1281  		/* remember the largest hole we saw so far */
1282  		if (addr + mm->cached_hole_size < vma->vm_start)
1283  		        mm->cached_hole_size = vma->vm_start - addr;
1284 
1285 		/* try just below the current vma->vm_start */
1286 		addr = vma->vm_start-len;
1287 	} while (len < vma->vm_start);
1288 
1289 bottomup:
1290 	/*
1291 	 * A failed mmap() very likely causes application failure,
1292 	 * so fall back to the bottom-up function here. This scenario
1293 	 * can happen with large stack limits and large mmap()
1294 	 * allocations.
1295 	 */
1296 	mm->cached_hole_size = ~0UL;
1297   	mm->free_area_cache = TASK_UNMAPPED_BASE;
1298 	addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1299 	/*
1300 	 * Restore the topdown base:
1301 	 */
1302 	mm->free_area_cache = mm->mmap_base;
1303 	mm->cached_hole_size = ~0UL;
1304 
1305 	return addr;
1306 }
1307 #endif
1308 
1309 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1310 {
1311 	/*
1312 	 * Is this a new hole at the highest possible address?
1313 	 */
1314 	if (addr > mm->free_area_cache)
1315 		mm->free_area_cache = addr;
1316 
1317 	/* dont allow allocations above current base */
1318 	if (mm->free_area_cache > mm->mmap_base)
1319 		mm->free_area_cache = mm->mmap_base;
1320 }
1321 
1322 unsigned long
1323 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1324 		unsigned long pgoff, unsigned long flags)
1325 {
1326 	unsigned long ret;
1327 
1328 	if (!(flags & MAP_FIXED)) {
1329 		unsigned long (*get_area)(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1330 
1331 		get_area = current->mm->get_unmapped_area;
1332 		if (file && file->f_op && file->f_op->get_unmapped_area)
1333 			get_area = file->f_op->get_unmapped_area;
1334 		addr = get_area(file, addr, len, pgoff, flags);
1335 		if (IS_ERR_VALUE(addr))
1336 			return addr;
1337 	}
1338 
1339 	if (addr > TASK_SIZE - len)
1340 		return -ENOMEM;
1341 	if (addr & ~PAGE_MASK)
1342 		return -EINVAL;
1343 	if (file && is_file_hugepages(file))  {
1344 		/*
1345 		 * Check if the given range is hugepage aligned, and
1346 		 * can be made suitable for hugepages.
1347 		 */
1348 		ret = prepare_hugepage_range(addr, len);
1349 	} else {
1350 		/*
1351 		 * Ensure that a normal request is not falling in a
1352 		 * reserved hugepage range.  For some archs like IA-64,
1353 		 * there is a separate region for hugepages.
1354 		 */
1355 		ret = is_hugepage_only_range(current->mm, addr, len);
1356 	}
1357 	if (ret)
1358 		return -EINVAL;
1359 	return addr;
1360 }
1361 
1362 EXPORT_SYMBOL(get_unmapped_area);
1363 
1364 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1365 struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr)
1366 {
1367 	struct vm_area_struct *vma = NULL;
1368 
1369 	if (mm) {
1370 		/* Check the cache first. */
1371 		/* (Cache hit rate is typically around 35%.) */
1372 		vma = mm->mmap_cache;
1373 		if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1374 			struct rb_node * rb_node;
1375 
1376 			rb_node = mm->mm_rb.rb_node;
1377 			vma = NULL;
1378 
1379 			while (rb_node) {
1380 				struct vm_area_struct * vma_tmp;
1381 
1382 				vma_tmp = rb_entry(rb_node,
1383 						struct vm_area_struct, vm_rb);
1384 
1385 				if (vma_tmp->vm_end > addr) {
1386 					vma = vma_tmp;
1387 					if (vma_tmp->vm_start <= addr)
1388 						break;
1389 					rb_node = rb_node->rb_left;
1390 				} else
1391 					rb_node = rb_node->rb_right;
1392 			}
1393 			if (vma)
1394 				mm->mmap_cache = vma;
1395 		}
1396 	}
1397 	return vma;
1398 }
1399 
1400 EXPORT_SYMBOL(find_vma);
1401 
1402 /* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */
1403 struct vm_area_struct *
1404 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1405 			struct vm_area_struct **pprev)
1406 {
1407 	struct vm_area_struct *vma = NULL, *prev = NULL;
1408 	struct rb_node * rb_node;
1409 	if (!mm)
1410 		goto out;
1411 
1412 	/* Guard against addr being lower than the first VMA */
1413 	vma = mm->mmap;
1414 
1415 	/* Go through the RB tree quickly. */
1416 	rb_node = mm->mm_rb.rb_node;
1417 
1418 	while (rb_node) {
1419 		struct vm_area_struct *vma_tmp;
1420 		vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1421 
1422 		if (addr < vma_tmp->vm_end) {
1423 			rb_node = rb_node->rb_left;
1424 		} else {
1425 			prev = vma_tmp;
1426 			if (!prev->vm_next || (addr < prev->vm_next->vm_end))
1427 				break;
1428 			rb_node = rb_node->rb_right;
1429 		}
1430 	}
1431 
1432 out:
1433 	*pprev = prev;
1434 	return prev ? prev->vm_next : vma;
1435 }
1436 
1437 /*
1438  * Verify that the stack growth is acceptable and
1439  * update accounting. This is shared with both the
1440  * grow-up and grow-down cases.
1441  */
1442 static int acct_stack_growth(struct vm_area_struct * vma, unsigned long size, unsigned long grow)
1443 {
1444 	struct mm_struct *mm = vma->vm_mm;
1445 	struct rlimit *rlim = current->signal->rlim;
1446 
1447 	/* address space limit tests */
1448 	if (!may_expand_vm(mm, grow))
1449 		return -ENOMEM;
1450 
1451 	/* Stack limit test */
1452 	if (size > rlim[RLIMIT_STACK].rlim_cur)
1453 		return -ENOMEM;
1454 
1455 	/* mlock limit tests */
1456 	if (vma->vm_flags & VM_LOCKED) {
1457 		unsigned long locked;
1458 		unsigned long limit;
1459 		locked = mm->locked_vm + grow;
1460 		limit = rlim[RLIMIT_MEMLOCK].rlim_cur >> PAGE_SHIFT;
1461 		if (locked > limit && !capable(CAP_IPC_LOCK))
1462 			return -ENOMEM;
1463 	}
1464 
1465 	/*
1466 	 * Overcommit..  This must be the final test, as it will
1467 	 * update security statistics.
1468 	 */
1469 	if (security_vm_enough_memory(grow))
1470 		return -ENOMEM;
1471 
1472 	/* Ok, everything looks good - let it rip */
1473 	mm->total_vm += grow;
1474 	if (vma->vm_flags & VM_LOCKED)
1475 		mm->locked_vm += grow;
1476 	vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1477 	return 0;
1478 }
1479 
1480 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1481 /*
1482  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1483  * vma is the last one with address > vma->vm_end.  Have to extend vma.
1484  */
1485 #ifndef CONFIG_IA64
1486 static inline
1487 #endif
1488 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1489 {
1490 	int error;
1491 
1492 	if (!(vma->vm_flags & VM_GROWSUP))
1493 		return -EFAULT;
1494 
1495 	/*
1496 	 * We must make sure the anon_vma is allocated
1497 	 * so that the anon_vma locking is not a noop.
1498 	 */
1499 	if (unlikely(anon_vma_prepare(vma)))
1500 		return -ENOMEM;
1501 	anon_vma_lock(vma);
1502 
1503 	/*
1504 	 * vma->vm_start/vm_end cannot change under us because the caller
1505 	 * is required to hold the mmap_sem in read mode.  We need the
1506 	 * anon_vma lock to serialize against concurrent expand_stacks.
1507 	 */
1508 	address += 4 + PAGE_SIZE - 1;
1509 	address &= PAGE_MASK;
1510 	error = 0;
1511 
1512 	/* Somebody else might have raced and expanded it already */
1513 	if (address > vma->vm_end) {
1514 		unsigned long size, grow;
1515 
1516 		size = address - vma->vm_start;
1517 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
1518 
1519 		error = acct_stack_growth(vma, size, grow);
1520 		if (!error)
1521 			vma->vm_end = address;
1522 	}
1523 	anon_vma_unlock(vma);
1524 	return error;
1525 }
1526 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1527 
1528 #ifdef CONFIG_STACK_GROWSUP
1529 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1530 {
1531 	return expand_upwards(vma, address);
1532 }
1533 
1534 struct vm_area_struct *
1535 find_extend_vma(struct mm_struct *mm, unsigned long addr)
1536 {
1537 	struct vm_area_struct *vma, *prev;
1538 
1539 	addr &= PAGE_MASK;
1540 	vma = find_vma_prev(mm, addr, &prev);
1541 	if (vma && (vma->vm_start <= addr))
1542 		return vma;
1543 	if (!prev || expand_stack(prev, addr))
1544 		return NULL;
1545 	if (prev->vm_flags & VM_LOCKED) {
1546 		make_pages_present(addr, prev->vm_end);
1547 	}
1548 	return prev;
1549 }
1550 #else
1551 /*
1552  * vma is the first one with address < vma->vm_start.  Have to extend vma.
1553  */
1554 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1555 {
1556 	int error;
1557 
1558 	/*
1559 	 * We must make sure the anon_vma is allocated
1560 	 * so that the anon_vma locking is not a noop.
1561 	 */
1562 	if (unlikely(anon_vma_prepare(vma)))
1563 		return -ENOMEM;
1564 	anon_vma_lock(vma);
1565 
1566 	/*
1567 	 * vma->vm_start/vm_end cannot change under us because the caller
1568 	 * is required to hold the mmap_sem in read mode.  We need the
1569 	 * anon_vma lock to serialize against concurrent expand_stacks.
1570 	 */
1571 	address &= PAGE_MASK;
1572 	error = 0;
1573 
1574 	/* Somebody else might have raced and expanded it already */
1575 	if (address < vma->vm_start) {
1576 		unsigned long size, grow;
1577 
1578 		size = vma->vm_end - address;
1579 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
1580 
1581 		error = acct_stack_growth(vma, size, grow);
1582 		if (!error) {
1583 			vma->vm_start = address;
1584 			vma->vm_pgoff -= grow;
1585 		}
1586 	}
1587 	anon_vma_unlock(vma);
1588 	return error;
1589 }
1590 
1591 struct vm_area_struct *
1592 find_extend_vma(struct mm_struct * mm, unsigned long addr)
1593 {
1594 	struct vm_area_struct * vma;
1595 	unsigned long start;
1596 
1597 	addr &= PAGE_MASK;
1598 	vma = find_vma(mm,addr);
1599 	if (!vma)
1600 		return NULL;
1601 	if (vma->vm_start <= addr)
1602 		return vma;
1603 	if (!(vma->vm_flags & VM_GROWSDOWN))
1604 		return NULL;
1605 	start = vma->vm_start;
1606 	if (expand_stack(vma, addr))
1607 		return NULL;
1608 	if (vma->vm_flags & VM_LOCKED) {
1609 		make_pages_present(addr, start);
1610 	}
1611 	return vma;
1612 }
1613 #endif
1614 
1615 /*
1616  * Ok - we have the memory areas we should free on the vma list,
1617  * so release them, and do the vma updates.
1618  *
1619  * Called with the mm semaphore held.
1620  */
1621 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1622 {
1623 	/* Update high watermark before we lower total_vm */
1624 	update_hiwater_vm(mm);
1625 	do {
1626 		long nrpages = vma_pages(vma);
1627 
1628 		mm->total_vm -= nrpages;
1629 		if (vma->vm_flags & VM_LOCKED)
1630 			mm->locked_vm -= nrpages;
1631 		vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
1632 		vma = remove_vma(vma);
1633 	} while (vma);
1634 	validate_mm(mm);
1635 }
1636 
1637 /*
1638  * Get rid of page table information in the indicated region.
1639  *
1640  * Called with the mm semaphore held.
1641  */
1642 static void unmap_region(struct mm_struct *mm,
1643 		struct vm_area_struct *vma, struct vm_area_struct *prev,
1644 		unsigned long start, unsigned long end)
1645 {
1646 	struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1647 	struct mmu_gather *tlb;
1648 	unsigned long nr_accounted = 0;
1649 
1650 	lru_add_drain();
1651 	tlb = tlb_gather_mmu(mm, 0);
1652 	update_hiwater_rss(mm);
1653 	unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL);
1654 	vm_unacct_memory(nr_accounted);
1655 	free_pgtables(&tlb, vma, prev? prev->vm_end: FIRST_USER_ADDRESS,
1656 				 next? next->vm_start: 0);
1657 	tlb_finish_mmu(tlb, start, end);
1658 }
1659 
1660 /*
1661  * Create a list of vma's touched by the unmap, removing them from the mm's
1662  * vma list as we go..
1663  */
1664 static void
1665 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1666 	struct vm_area_struct *prev, unsigned long end)
1667 {
1668 	struct vm_area_struct **insertion_point;
1669 	struct vm_area_struct *tail_vma = NULL;
1670 	unsigned long addr;
1671 
1672 	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1673 	do {
1674 		rb_erase(&vma->vm_rb, &mm->mm_rb);
1675 		mm->map_count--;
1676 		tail_vma = vma;
1677 		vma = vma->vm_next;
1678 	} while (vma && vma->vm_start < end);
1679 	*insertion_point = vma;
1680 	tail_vma->vm_next = NULL;
1681 	if (mm->unmap_area == arch_unmap_area)
1682 		addr = prev ? prev->vm_end : mm->mmap_base;
1683 	else
1684 		addr = vma ?  vma->vm_start : mm->mmap_base;
1685 	mm->unmap_area(mm, addr);
1686 	mm->mmap_cache = NULL;		/* Kill the cache. */
1687 }
1688 
1689 /*
1690  * Split a vma into two pieces at address 'addr', a new vma is allocated
1691  * either for the first part or the the tail.
1692  */
1693 int split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1694 	      unsigned long addr, int new_below)
1695 {
1696 	struct mempolicy *pol;
1697 	struct vm_area_struct *new;
1698 
1699 	if (is_vm_hugetlb_page(vma) && (addr & ~HPAGE_MASK))
1700 		return -EINVAL;
1701 
1702 	if (mm->map_count >= sysctl_max_map_count)
1703 		return -ENOMEM;
1704 
1705 	new = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
1706 	if (!new)
1707 		return -ENOMEM;
1708 
1709 	/* most fields are the same, copy all, and then fixup */
1710 	*new = *vma;
1711 
1712 	if (new_below)
1713 		new->vm_end = addr;
1714 	else {
1715 		new->vm_start = addr;
1716 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
1717 	}
1718 
1719 	pol = mpol_copy(vma_policy(vma));
1720 	if (IS_ERR(pol)) {
1721 		kmem_cache_free(vm_area_cachep, new);
1722 		return PTR_ERR(pol);
1723 	}
1724 	vma_set_policy(new, pol);
1725 
1726 	if (new->vm_file)
1727 		get_file(new->vm_file);
1728 
1729 	if (new->vm_ops && new->vm_ops->open)
1730 		new->vm_ops->open(new);
1731 
1732 	if (new_below)
1733 		vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
1734 			((addr - new->vm_start) >> PAGE_SHIFT), new);
1735 	else
1736 		vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
1737 
1738 	return 0;
1739 }
1740 
1741 /* Munmap is split into 2 main parts -- this part which finds
1742  * what needs doing, and the areas themselves, which do the
1743  * work.  This now handles partial unmappings.
1744  * Jeremy Fitzhardinge <jeremy@goop.org>
1745  */
1746 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1747 {
1748 	unsigned long end;
1749 	struct vm_area_struct *vma, *prev, *last;
1750 
1751 	if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
1752 		return -EINVAL;
1753 
1754 	if ((len = PAGE_ALIGN(len)) == 0)
1755 		return -EINVAL;
1756 
1757 	/* Find the first overlapping VMA */
1758 	vma = find_vma_prev(mm, start, &prev);
1759 	if (!vma)
1760 		return 0;
1761 	/* we have  start < vma->vm_end  */
1762 
1763 	/* if it doesn't overlap, we have nothing.. */
1764 	end = start + len;
1765 	if (vma->vm_start >= end)
1766 		return 0;
1767 
1768 	/*
1769 	 * If we need to split any vma, do it now to save pain later.
1770 	 *
1771 	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
1772 	 * unmapped vm_area_struct will remain in use: so lower split_vma
1773 	 * places tmp vma above, and higher split_vma places tmp vma below.
1774 	 */
1775 	if (start > vma->vm_start) {
1776 		int error = split_vma(mm, vma, start, 0);
1777 		if (error)
1778 			return error;
1779 		prev = vma;
1780 	}
1781 
1782 	/* Does it split the last one? */
1783 	last = find_vma(mm, end);
1784 	if (last && end > last->vm_start) {
1785 		int error = split_vma(mm, last, end, 1);
1786 		if (error)
1787 			return error;
1788 	}
1789 	vma = prev? prev->vm_next: mm->mmap;
1790 
1791 	/*
1792 	 * Remove the vma's, and unmap the actual pages
1793 	 */
1794 	detach_vmas_to_be_unmapped(mm, vma, prev, end);
1795 	unmap_region(mm, vma, prev, start, end);
1796 
1797 	/* Fix up all other VM information */
1798 	remove_vma_list(mm, vma);
1799 
1800 	return 0;
1801 }
1802 
1803 EXPORT_SYMBOL(do_munmap);
1804 
1805 asmlinkage long sys_munmap(unsigned long addr, size_t len)
1806 {
1807 	int ret;
1808 	struct mm_struct *mm = current->mm;
1809 
1810 	profile_munmap(addr);
1811 
1812 	down_write(&mm->mmap_sem);
1813 	ret = do_munmap(mm, addr, len);
1814 	up_write(&mm->mmap_sem);
1815 	return ret;
1816 }
1817 
1818 static inline void verify_mm_writelocked(struct mm_struct *mm)
1819 {
1820 #ifdef CONFIG_DEBUG_VM
1821 	if (unlikely(down_read_trylock(&mm->mmap_sem))) {
1822 		WARN_ON(1);
1823 		up_read(&mm->mmap_sem);
1824 	}
1825 #endif
1826 }
1827 
1828 /*
1829  *  this is really a simplified "do_mmap".  it only handles
1830  *  anonymous maps.  eventually we may be able to do some
1831  *  brk-specific accounting here.
1832  */
1833 unsigned long do_brk(unsigned long addr, unsigned long len)
1834 {
1835 	struct mm_struct * mm = current->mm;
1836 	struct vm_area_struct * vma, * prev;
1837 	unsigned long flags;
1838 	struct rb_node ** rb_link, * rb_parent;
1839 	pgoff_t pgoff = addr >> PAGE_SHIFT;
1840 
1841 	len = PAGE_ALIGN(len);
1842 	if (!len)
1843 		return addr;
1844 
1845 	if ((addr + len) > TASK_SIZE || (addr + len) < addr)
1846 		return -EINVAL;
1847 
1848 	/*
1849 	 * mlock MCL_FUTURE?
1850 	 */
1851 	if (mm->def_flags & VM_LOCKED) {
1852 		unsigned long locked, lock_limit;
1853 		locked = len >> PAGE_SHIFT;
1854 		locked += mm->locked_vm;
1855 		lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
1856 		lock_limit >>= PAGE_SHIFT;
1857 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1858 			return -EAGAIN;
1859 	}
1860 
1861 	/*
1862 	 * mm->mmap_sem is required to protect against another thread
1863 	 * changing the mappings in case we sleep.
1864 	 */
1865 	verify_mm_writelocked(mm);
1866 
1867 	/*
1868 	 * Clear old maps.  this also does some error checking for us
1869 	 */
1870  munmap_back:
1871 	vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1872 	if (vma && vma->vm_start < addr + len) {
1873 		if (do_munmap(mm, addr, len))
1874 			return -ENOMEM;
1875 		goto munmap_back;
1876 	}
1877 
1878 	/* Check against address space limits *after* clearing old maps... */
1879 	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1880 		return -ENOMEM;
1881 
1882 	if (mm->map_count > sysctl_max_map_count)
1883 		return -ENOMEM;
1884 
1885 	if (security_vm_enough_memory(len >> PAGE_SHIFT))
1886 		return -ENOMEM;
1887 
1888 	flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
1889 
1890 	/* Can we just expand an old private anonymous mapping? */
1891 	if (vma_merge(mm, prev, addr, addr + len, flags,
1892 					NULL, NULL, pgoff, NULL))
1893 		goto out;
1894 
1895 	/*
1896 	 * create a vma struct for an anonymous mapping
1897 	 */
1898 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1899 	if (!vma) {
1900 		vm_unacct_memory(len >> PAGE_SHIFT);
1901 		return -ENOMEM;
1902 	}
1903 
1904 	vma->vm_mm = mm;
1905 	vma->vm_start = addr;
1906 	vma->vm_end = addr + len;
1907 	vma->vm_pgoff = pgoff;
1908 	vma->vm_flags = flags;
1909 	vma->vm_page_prot = protection_map[flags & 0x0f];
1910 	vma_link(mm, vma, prev, rb_link, rb_parent);
1911 out:
1912 	mm->total_vm += len >> PAGE_SHIFT;
1913 	if (flags & VM_LOCKED) {
1914 		mm->locked_vm += len >> PAGE_SHIFT;
1915 		make_pages_present(addr, addr + len);
1916 	}
1917 	return addr;
1918 }
1919 
1920 EXPORT_SYMBOL(do_brk);
1921 
1922 /* Release all mmaps. */
1923 void exit_mmap(struct mm_struct *mm)
1924 {
1925 	struct mmu_gather *tlb;
1926 	struct vm_area_struct *vma = mm->mmap;
1927 	unsigned long nr_accounted = 0;
1928 	unsigned long end;
1929 
1930 	lru_add_drain();
1931 	flush_cache_mm(mm);
1932 	tlb = tlb_gather_mmu(mm, 1);
1933 	/* Don't update_hiwater_rss(mm) here, do_exit already did */
1934 	/* Use -1 here to ensure all VMAs in the mm are unmapped */
1935 	end = unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL);
1936 	vm_unacct_memory(nr_accounted);
1937 	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, 0);
1938 	tlb_finish_mmu(tlb, 0, end);
1939 
1940 	/*
1941 	 * Walk the list again, actually closing and freeing it,
1942 	 * with preemption enabled, without holding any MM locks.
1943 	 */
1944 	while (vma)
1945 		vma = remove_vma(vma);
1946 
1947 	BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
1948 }
1949 
1950 /* Insert vm structure into process list sorted by address
1951  * and into the inode's i_mmap tree.  If vm_file is non-NULL
1952  * then i_mmap_lock is taken here.
1953  */
1954 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
1955 {
1956 	struct vm_area_struct * __vma, * prev;
1957 	struct rb_node ** rb_link, * rb_parent;
1958 
1959 	/*
1960 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
1961 	 * until its first write fault, when page's anon_vma and index
1962 	 * are set.  But now set the vm_pgoff it will almost certainly
1963 	 * end up with (unless mremap moves it elsewhere before that
1964 	 * first wfault), so /proc/pid/maps tells a consistent story.
1965 	 *
1966 	 * By setting it to reflect the virtual start address of the
1967 	 * vma, merges and splits can happen in a seamless way, just
1968 	 * using the existing file pgoff checks and manipulations.
1969 	 * Similarly in do_mmap_pgoff and in do_brk.
1970 	 */
1971 	if (!vma->vm_file) {
1972 		BUG_ON(vma->anon_vma);
1973 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
1974 	}
1975 	__vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent);
1976 	if (__vma && __vma->vm_start < vma->vm_end)
1977 		return -ENOMEM;
1978 	if ((vma->vm_flags & VM_ACCOUNT) &&
1979 	     security_vm_enough_memory(vma_pages(vma)))
1980 		return -ENOMEM;
1981 	vma_link(mm, vma, prev, rb_link, rb_parent);
1982 	return 0;
1983 }
1984 
1985 /*
1986  * Copy the vma structure to a new location in the same mm,
1987  * prior to moving page table entries, to effect an mremap move.
1988  */
1989 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
1990 	unsigned long addr, unsigned long len, pgoff_t pgoff)
1991 {
1992 	struct vm_area_struct *vma = *vmap;
1993 	unsigned long vma_start = vma->vm_start;
1994 	struct mm_struct *mm = vma->vm_mm;
1995 	struct vm_area_struct *new_vma, *prev;
1996 	struct rb_node **rb_link, *rb_parent;
1997 	struct mempolicy *pol;
1998 
1999 	/*
2000 	 * If anonymous vma has not yet been faulted, update new pgoff
2001 	 * to match new location, to increase its chance of merging.
2002 	 */
2003 	if (!vma->vm_file && !vma->anon_vma)
2004 		pgoff = addr >> PAGE_SHIFT;
2005 
2006 	find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2007 	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2008 			vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2009 	if (new_vma) {
2010 		/*
2011 		 * Source vma may have been merged into new_vma
2012 		 */
2013 		if (vma_start >= new_vma->vm_start &&
2014 		    vma_start < new_vma->vm_end)
2015 			*vmap = new_vma;
2016 	} else {
2017 		new_vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
2018 		if (new_vma) {
2019 			*new_vma = *vma;
2020 			pol = mpol_copy(vma_policy(vma));
2021 			if (IS_ERR(pol)) {
2022 				kmem_cache_free(vm_area_cachep, new_vma);
2023 				return NULL;
2024 			}
2025 			vma_set_policy(new_vma, pol);
2026 			new_vma->vm_start = addr;
2027 			new_vma->vm_end = addr + len;
2028 			new_vma->vm_pgoff = pgoff;
2029 			if (new_vma->vm_file)
2030 				get_file(new_vma->vm_file);
2031 			if (new_vma->vm_ops && new_vma->vm_ops->open)
2032 				new_vma->vm_ops->open(new_vma);
2033 			vma_link(mm, new_vma, prev, rb_link, rb_parent);
2034 		}
2035 	}
2036 	return new_vma;
2037 }
2038 
2039 /*
2040  * Return true if the calling process may expand its vm space by the passed
2041  * number of pages
2042  */
2043 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2044 {
2045 	unsigned long cur = mm->total_vm;	/* pages */
2046 	unsigned long lim;
2047 
2048 	lim = current->signal->rlim[RLIMIT_AS].rlim_cur >> PAGE_SHIFT;
2049 
2050 	if (cur + npages > lim)
2051 		return 0;
2052 	return 1;
2053 }
2054