1 /* 2 * mm/mmap.c 3 * 4 * Written by obz. 5 * 6 * Address space accounting code <alan@redhat.com> 7 */ 8 9 #include <linux/slab.h> 10 #include <linux/mm.h> 11 #include <linux/shm.h> 12 #include <linux/mman.h> 13 #include <linux/pagemap.h> 14 #include <linux/swap.h> 15 #include <linux/syscalls.h> 16 #include <linux/capability.h> 17 #include <linux/init.h> 18 #include <linux/file.h> 19 #include <linux/fs.h> 20 #include <linux/personality.h> 21 #include <linux/security.h> 22 #include <linux/hugetlb.h> 23 #include <linux/profile.h> 24 #include <linux/module.h> 25 #include <linux/mount.h> 26 #include <linux/mempolicy.h> 27 #include <linux/rmap.h> 28 29 #include <asm/uaccess.h> 30 #include <asm/cacheflush.h> 31 #include <asm/tlb.h> 32 33 static void unmap_region(struct mm_struct *mm, 34 struct vm_area_struct *vma, struct vm_area_struct *prev, 35 unsigned long start, unsigned long end); 36 37 /* 38 * WARNING: the debugging will use recursive algorithms so never enable this 39 * unless you know what you are doing. 40 */ 41 #undef DEBUG_MM_RB 42 43 /* description of effects of mapping type and prot in current implementation. 44 * this is due to the limited x86 page protection hardware. The expected 45 * behavior is in parens: 46 * 47 * map_type prot 48 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC 49 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes 50 * w: (no) no w: (no) no w: (yes) yes w: (no) no 51 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 52 * 53 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes 54 * w: (no) no w: (no) no w: (copy) copy w: (no) no 55 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 56 * 57 */ 58 pgprot_t protection_map[16] = { 59 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111, 60 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111 61 }; 62 63 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */ 64 int sysctl_overcommit_ratio = 50; /* default is 50% */ 65 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT; 66 atomic_t vm_committed_space = ATOMIC_INIT(0); 67 68 /* 69 * Check that a process has enough memory to allocate a new virtual 70 * mapping. 0 means there is enough memory for the allocation to 71 * succeed and -ENOMEM implies there is not. 72 * 73 * We currently support three overcommit policies, which are set via the 74 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting 75 * 76 * Strict overcommit modes added 2002 Feb 26 by Alan Cox. 77 * Additional code 2002 Jul 20 by Robert Love. 78 * 79 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise. 80 * 81 * Note this is a helper function intended to be used by LSMs which 82 * wish to use this logic. 83 */ 84 int __vm_enough_memory(long pages, int cap_sys_admin) 85 { 86 unsigned long free, allowed; 87 88 vm_acct_memory(pages); 89 90 /* 91 * Sometimes we want to use more memory than we have 92 */ 93 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS) 94 return 0; 95 96 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) { 97 unsigned long n; 98 99 free = get_page_cache_size(); 100 free += nr_swap_pages; 101 102 /* 103 * Any slabs which are created with the 104 * SLAB_RECLAIM_ACCOUNT flag claim to have contents 105 * which are reclaimable, under pressure. The dentry 106 * cache and most inode caches should fall into this 107 */ 108 free += atomic_read(&slab_reclaim_pages); 109 110 /* 111 * Leave the last 3% for root 112 */ 113 if (!cap_sys_admin) 114 free -= free / 32; 115 116 if (free > pages) 117 return 0; 118 119 /* 120 * nr_free_pages() is very expensive on large systems, 121 * only call if we're about to fail. 122 */ 123 n = nr_free_pages(); 124 if (!cap_sys_admin) 125 n -= n / 32; 126 free += n; 127 128 if (free > pages) 129 return 0; 130 vm_unacct_memory(pages); 131 return -ENOMEM; 132 } 133 134 allowed = (totalram_pages - hugetlb_total_pages()) 135 * sysctl_overcommit_ratio / 100; 136 /* 137 * Leave the last 3% for root 138 */ 139 if (!cap_sys_admin) 140 allowed -= allowed / 32; 141 allowed += total_swap_pages; 142 143 /* Don't let a single process grow too big: 144 leave 3% of the size of this process for other processes */ 145 allowed -= current->mm->total_vm / 32; 146 147 /* 148 * cast `allowed' as a signed long because vm_committed_space 149 * sometimes has a negative value 150 */ 151 if (atomic_read(&vm_committed_space) < (long)allowed) 152 return 0; 153 154 vm_unacct_memory(pages); 155 156 return -ENOMEM; 157 } 158 159 EXPORT_SYMBOL(__vm_enough_memory); 160 161 /* 162 * Requires inode->i_mapping->i_mmap_lock 163 */ 164 static void __remove_shared_vm_struct(struct vm_area_struct *vma, 165 struct file *file, struct address_space *mapping) 166 { 167 if (vma->vm_flags & VM_DENYWRITE) 168 atomic_inc(&file->f_dentry->d_inode->i_writecount); 169 if (vma->vm_flags & VM_SHARED) 170 mapping->i_mmap_writable--; 171 172 flush_dcache_mmap_lock(mapping); 173 if (unlikely(vma->vm_flags & VM_NONLINEAR)) 174 list_del_init(&vma->shared.vm_set.list); 175 else 176 vma_prio_tree_remove(vma, &mapping->i_mmap); 177 flush_dcache_mmap_unlock(mapping); 178 } 179 180 /* 181 * Unlink a file-based vm structure from its prio_tree, to hide 182 * vma from rmap and vmtruncate before freeing its page tables. 183 */ 184 void unlink_file_vma(struct vm_area_struct *vma) 185 { 186 struct file *file = vma->vm_file; 187 188 if (file) { 189 struct address_space *mapping = file->f_mapping; 190 spin_lock(&mapping->i_mmap_lock); 191 __remove_shared_vm_struct(vma, file, mapping); 192 spin_unlock(&mapping->i_mmap_lock); 193 } 194 } 195 196 /* 197 * Close a vm structure and free it, returning the next. 198 */ 199 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma) 200 { 201 struct vm_area_struct *next = vma->vm_next; 202 203 might_sleep(); 204 if (vma->vm_ops && vma->vm_ops->close) 205 vma->vm_ops->close(vma); 206 if (vma->vm_file) 207 fput(vma->vm_file); 208 mpol_free(vma_policy(vma)); 209 kmem_cache_free(vm_area_cachep, vma); 210 return next; 211 } 212 213 asmlinkage unsigned long sys_brk(unsigned long brk) 214 { 215 unsigned long rlim, retval; 216 unsigned long newbrk, oldbrk; 217 struct mm_struct *mm = current->mm; 218 219 down_write(&mm->mmap_sem); 220 221 if (brk < mm->end_code) 222 goto out; 223 newbrk = PAGE_ALIGN(brk); 224 oldbrk = PAGE_ALIGN(mm->brk); 225 if (oldbrk == newbrk) 226 goto set_brk; 227 228 /* Always allow shrinking brk. */ 229 if (brk <= mm->brk) { 230 if (!do_munmap(mm, newbrk, oldbrk-newbrk)) 231 goto set_brk; 232 goto out; 233 } 234 235 /* Check against rlimit.. */ 236 rlim = current->signal->rlim[RLIMIT_DATA].rlim_cur; 237 if (rlim < RLIM_INFINITY && brk - mm->start_data > rlim) 238 goto out; 239 240 /* Check against existing mmap mappings. */ 241 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE)) 242 goto out; 243 244 /* Ok, looks good - let it rip. */ 245 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk) 246 goto out; 247 set_brk: 248 mm->brk = brk; 249 out: 250 retval = mm->brk; 251 up_write(&mm->mmap_sem); 252 return retval; 253 } 254 255 #ifdef DEBUG_MM_RB 256 static int browse_rb(struct rb_root *root) 257 { 258 int i = 0, j; 259 struct rb_node *nd, *pn = NULL; 260 unsigned long prev = 0, pend = 0; 261 262 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 263 struct vm_area_struct *vma; 264 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 265 if (vma->vm_start < prev) 266 printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1; 267 if (vma->vm_start < pend) 268 printk("vm_start %lx pend %lx\n", vma->vm_start, pend); 269 if (vma->vm_start > vma->vm_end) 270 printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start); 271 i++; 272 pn = nd; 273 } 274 j = 0; 275 for (nd = pn; nd; nd = rb_prev(nd)) { 276 j++; 277 } 278 if (i != j) 279 printk("backwards %d, forwards %d\n", j, i), i = 0; 280 return i; 281 } 282 283 void validate_mm(struct mm_struct *mm) 284 { 285 int bug = 0; 286 int i = 0; 287 struct vm_area_struct *tmp = mm->mmap; 288 while (tmp) { 289 tmp = tmp->vm_next; 290 i++; 291 } 292 if (i != mm->map_count) 293 printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1; 294 i = browse_rb(&mm->mm_rb); 295 if (i != mm->map_count) 296 printk("map_count %d rb %d\n", mm->map_count, i), bug = 1; 297 if (bug) 298 BUG(); 299 } 300 #else 301 #define validate_mm(mm) do { } while (0) 302 #endif 303 304 static struct vm_area_struct * 305 find_vma_prepare(struct mm_struct *mm, unsigned long addr, 306 struct vm_area_struct **pprev, struct rb_node ***rb_link, 307 struct rb_node ** rb_parent) 308 { 309 struct vm_area_struct * vma; 310 struct rb_node ** __rb_link, * __rb_parent, * rb_prev; 311 312 __rb_link = &mm->mm_rb.rb_node; 313 rb_prev = __rb_parent = NULL; 314 vma = NULL; 315 316 while (*__rb_link) { 317 struct vm_area_struct *vma_tmp; 318 319 __rb_parent = *__rb_link; 320 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb); 321 322 if (vma_tmp->vm_end > addr) { 323 vma = vma_tmp; 324 if (vma_tmp->vm_start <= addr) 325 return vma; 326 __rb_link = &__rb_parent->rb_left; 327 } else { 328 rb_prev = __rb_parent; 329 __rb_link = &__rb_parent->rb_right; 330 } 331 } 332 333 *pprev = NULL; 334 if (rb_prev) 335 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); 336 *rb_link = __rb_link; 337 *rb_parent = __rb_parent; 338 return vma; 339 } 340 341 static inline void 342 __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma, 343 struct vm_area_struct *prev, struct rb_node *rb_parent) 344 { 345 if (prev) { 346 vma->vm_next = prev->vm_next; 347 prev->vm_next = vma; 348 } else { 349 mm->mmap = vma; 350 if (rb_parent) 351 vma->vm_next = rb_entry(rb_parent, 352 struct vm_area_struct, vm_rb); 353 else 354 vma->vm_next = NULL; 355 } 356 } 357 358 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma, 359 struct rb_node **rb_link, struct rb_node *rb_parent) 360 { 361 rb_link_node(&vma->vm_rb, rb_parent, rb_link); 362 rb_insert_color(&vma->vm_rb, &mm->mm_rb); 363 } 364 365 static inline void __vma_link_file(struct vm_area_struct *vma) 366 { 367 struct file * file; 368 369 file = vma->vm_file; 370 if (file) { 371 struct address_space *mapping = file->f_mapping; 372 373 if (vma->vm_flags & VM_DENYWRITE) 374 atomic_dec(&file->f_dentry->d_inode->i_writecount); 375 if (vma->vm_flags & VM_SHARED) 376 mapping->i_mmap_writable++; 377 378 flush_dcache_mmap_lock(mapping); 379 if (unlikely(vma->vm_flags & VM_NONLINEAR)) 380 vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear); 381 else 382 vma_prio_tree_insert(vma, &mapping->i_mmap); 383 flush_dcache_mmap_unlock(mapping); 384 } 385 } 386 387 static void 388 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 389 struct vm_area_struct *prev, struct rb_node **rb_link, 390 struct rb_node *rb_parent) 391 { 392 __vma_link_list(mm, vma, prev, rb_parent); 393 __vma_link_rb(mm, vma, rb_link, rb_parent); 394 __anon_vma_link(vma); 395 } 396 397 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 398 struct vm_area_struct *prev, struct rb_node **rb_link, 399 struct rb_node *rb_parent) 400 { 401 struct address_space *mapping = NULL; 402 403 if (vma->vm_file) 404 mapping = vma->vm_file->f_mapping; 405 406 if (mapping) { 407 spin_lock(&mapping->i_mmap_lock); 408 vma->vm_truncate_count = mapping->truncate_count; 409 } 410 anon_vma_lock(vma); 411 412 __vma_link(mm, vma, prev, rb_link, rb_parent); 413 __vma_link_file(vma); 414 415 anon_vma_unlock(vma); 416 if (mapping) 417 spin_unlock(&mapping->i_mmap_lock); 418 419 mm->map_count++; 420 validate_mm(mm); 421 } 422 423 /* 424 * Helper for vma_adjust in the split_vma insert case: 425 * insert vm structure into list and rbtree and anon_vma, 426 * but it has already been inserted into prio_tree earlier. 427 */ 428 static void 429 __insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma) 430 { 431 struct vm_area_struct * __vma, * prev; 432 struct rb_node ** rb_link, * rb_parent; 433 434 __vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent); 435 if (__vma && __vma->vm_start < vma->vm_end) 436 BUG(); 437 __vma_link(mm, vma, prev, rb_link, rb_parent); 438 mm->map_count++; 439 } 440 441 static inline void 442 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma, 443 struct vm_area_struct *prev) 444 { 445 prev->vm_next = vma->vm_next; 446 rb_erase(&vma->vm_rb, &mm->mm_rb); 447 if (mm->mmap_cache == vma) 448 mm->mmap_cache = prev; 449 } 450 451 /* 452 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that 453 * is already present in an i_mmap tree without adjusting the tree. 454 * The following helper function should be used when such adjustments 455 * are necessary. The "insert" vma (if any) is to be inserted 456 * before we drop the necessary locks. 457 */ 458 void vma_adjust(struct vm_area_struct *vma, unsigned long start, 459 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 460 { 461 struct mm_struct *mm = vma->vm_mm; 462 struct vm_area_struct *next = vma->vm_next; 463 struct vm_area_struct *importer = NULL; 464 struct address_space *mapping = NULL; 465 struct prio_tree_root *root = NULL; 466 struct file *file = vma->vm_file; 467 struct anon_vma *anon_vma = NULL; 468 long adjust_next = 0; 469 int remove_next = 0; 470 471 if (next && !insert) { 472 if (end >= next->vm_end) { 473 /* 474 * vma expands, overlapping all the next, and 475 * perhaps the one after too (mprotect case 6). 476 */ 477 again: remove_next = 1 + (end > next->vm_end); 478 end = next->vm_end; 479 anon_vma = next->anon_vma; 480 importer = vma; 481 } else if (end > next->vm_start) { 482 /* 483 * vma expands, overlapping part of the next: 484 * mprotect case 5 shifting the boundary up. 485 */ 486 adjust_next = (end - next->vm_start) >> PAGE_SHIFT; 487 anon_vma = next->anon_vma; 488 importer = vma; 489 } else if (end < vma->vm_end) { 490 /* 491 * vma shrinks, and !insert tells it's not 492 * split_vma inserting another: so it must be 493 * mprotect case 4 shifting the boundary down. 494 */ 495 adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT); 496 anon_vma = next->anon_vma; 497 importer = next; 498 } 499 } 500 501 if (file) { 502 mapping = file->f_mapping; 503 if (!(vma->vm_flags & VM_NONLINEAR)) 504 root = &mapping->i_mmap; 505 spin_lock(&mapping->i_mmap_lock); 506 if (importer && 507 vma->vm_truncate_count != next->vm_truncate_count) { 508 /* 509 * unmap_mapping_range might be in progress: 510 * ensure that the expanding vma is rescanned. 511 */ 512 importer->vm_truncate_count = 0; 513 } 514 if (insert) { 515 insert->vm_truncate_count = vma->vm_truncate_count; 516 /* 517 * Put into prio_tree now, so instantiated pages 518 * are visible to arm/parisc __flush_dcache_page 519 * throughout; but we cannot insert into address 520 * space until vma start or end is updated. 521 */ 522 __vma_link_file(insert); 523 } 524 } 525 526 /* 527 * When changing only vma->vm_end, we don't really need 528 * anon_vma lock: but is that case worth optimizing out? 529 */ 530 if (vma->anon_vma) 531 anon_vma = vma->anon_vma; 532 if (anon_vma) { 533 spin_lock(&anon_vma->lock); 534 /* 535 * Easily overlooked: when mprotect shifts the boundary, 536 * make sure the expanding vma has anon_vma set if the 537 * shrinking vma had, to cover any anon pages imported. 538 */ 539 if (importer && !importer->anon_vma) { 540 importer->anon_vma = anon_vma; 541 __anon_vma_link(importer); 542 } 543 } 544 545 if (root) { 546 flush_dcache_mmap_lock(mapping); 547 vma_prio_tree_remove(vma, root); 548 if (adjust_next) 549 vma_prio_tree_remove(next, root); 550 } 551 552 vma->vm_start = start; 553 vma->vm_end = end; 554 vma->vm_pgoff = pgoff; 555 if (adjust_next) { 556 next->vm_start += adjust_next << PAGE_SHIFT; 557 next->vm_pgoff += adjust_next; 558 } 559 560 if (root) { 561 if (adjust_next) 562 vma_prio_tree_insert(next, root); 563 vma_prio_tree_insert(vma, root); 564 flush_dcache_mmap_unlock(mapping); 565 } 566 567 if (remove_next) { 568 /* 569 * vma_merge has merged next into vma, and needs 570 * us to remove next before dropping the locks. 571 */ 572 __vma_unlink(mm, next, vma); 573 if (file) 574 __remove_shared_vm_struct(next, file, mapping); 575 if (next->anon_vma) 576 __anon_vma_merge(vma, next); 577 } else if (insert) { 578 /* 579 * split_vma has split insert from vma, and needs 580 * us to insert it before dropping the locks 581 * (it may either follow vma or precede it). 582 */ 583 __insert_vm_struct(mm, insert); 584 } 585 586 if (anon_vma) 587 spin_unlock(&anon_vma->lock); 588 if (mapping) 589 spin_unlock(&mapping->i_mmap_lock); 590 591 if (remove_next) { 592 if (file) 593 fput(file); 594 mm->map_count--; 595 mpol_free(vma_policy(next)); 596 kmem_cache_free(vm_area_cachep, next); 597 /* 598 * In mprotect's case 6 (see comments on vma_merge), 599 * we must remove another next too. It would clutter 600 * up the code too much to do both in one go. 601 */ 602 if (remove_next == 2) { 603 next = vma->vm_next; 604 goto again; 605 } 606 } 607 608 validate_mm(mm); 609 } 610 611 /* 612 * If the vma has a ->close operation then the driver probably needs to release 613 * per-vma resources, so we don't attempt to merge those. 614 */ 615 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP) 616 617 static inline int is_mergeable_vma(struct vm_area_struct *vma, 618 struct file *file, unsigned long vm_flags) 619 { 620 if (vma->vm_flags != vm_flags) 621 return 0; 622 if (vma->vm_file != file) 623 return 0; 624 if (vma->vm_ops && vma->vm_ops->close) 625 return 0; 626 return 1; 627 } 628 629 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1, 630 struct anon_vma *anon_vma2) 631 { 632 return !anon_vma1 || !anon_vma2 || (anon_vma1 == anon_vma2); 633 } 634 635 /* 636 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 637 * in front of (at a lower virtual address and file offset than) the vma. 638 * 639 * We cannot merge two vmas if they have differently assigned (non-NULL) 640 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 641 * 642 * We don't check here for the merged mmap wrapping around the end of pagecache 643 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which 644 * wrap, nor mmaps which cover the final page at index -1UL. 645 */ 646 static int 647 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags, 648 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff) 649 { 650 if (is_mergeable_vma(vma, file, vm_flags) && 651 is_mergeable_anon_vma(anon_vma, vma->anon_vma)) { 652 if (vma->vm_pgoff == vm_pgoff) 653 return 1; 654 } 655 return 0; 656 } 657 658 /* 659 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 660 * beyond (at a higher virtual address and file offset than) the vma. 661 * 662 * We cannot merge two vmas if they have differently assigned (non-NULL) 663 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 664 */ 665 static int 666 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags, 667 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff) 668 { 669 if (is_mergeable_vma(vma, file, vm_flags) && 670 is_mergeable_anon_vma(anon_vma, vma->anon_vma)) { 671 pgoff_t vm_pglen; 672 vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 673 if (vma->vm_pgoff + vm_pglen == vm_pgoff) 674 return 1; 675 } 676 return 0; 677 } 678 679 /* 680 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out 681 * whether that can be merged with its predecessor or its successor. 682 * Or both (it neatly fills a hole). 683 * 684 * In most cases - when called for mmap, brk or mremap - [addr,end) is 685 * certain not to be mapped by the time vma_merge is called; but when 686 * called for mprotect, it is certain to be already mapped (either at 687 * an offset within prev, or at the start of next), and the flags of 688 * this area are about to be changed to vm_flags - and the no-change 689 * case has already been eliminated. 690 * 691 * The following mprotect cases have to be considered, where AAAA is 692 * the area passed down from mprotect_fixup, never extending beyond one 693 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after: 694 * 695 * AAAA AAAA AAAA AAAA 696 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX 697 * cannot merge might become might become might become 698 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or 699 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or 700 * mremap move: PPPPNNNNNNNN 8 701 * AAAA 702 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN 703 * might become case 1 below case 2 below case 3 below 704 * 705 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX: 706 * mprotect_fixup updates vm_flags & vm_page_prot on successful return. 707 */ 708 struct vm_area_struct *vma_merge(struct mm_struct *mm, 709 struct vm_area_struct *prev, unsigned long addr, 710 unsigned long end, unsigned long vm_flags, 711 struct anon_vma *anon_vma, struct file *file, 712 pgoff_t pgoff, struct mempolicy *policy) 713 { 714 pgoff_t pglen = (end - addr) >> PAGE_SHIFT; 715 struct vm_area_struct *area, *next; 716 717 /* 718 * We later require that vma->vm_flags == vm_flags, 719 * so this tests vma->vm_flags & VM_SPECIAL, too. 720 */ 721 if (vm_flags & VM_SPECIAL) 722 return NULL; 723 724 if (prev) 725 next = prev->vm_next; 726 else 727 next = mm->mmap; 728 area = next; 729 if (next && next->vm_end == end) /* cases 6, 7, 8 */ 730 next = next->vm_next; 731 732 /* 733 * Can it merge with the predecessor? 734 */ 735 if (prev && prev->vm_end == addr && 736 mpol_equal(vma_policy(prev), policy) && 737 can_vma_merge_after(prev, vm_flags, 738 anon_vma, file, pgoff)) { 739 /* 740 * OK, it can. Can we now merge in the successor as well? 741 */ 742 if (next && end == next->vm_start && 743 mpol_equal(policy, vma_policy(next)) && 744 can_vma_merge_before(next, vm_flags, 745 anon_vma, file, pgoff+pglen) && 746 is_mergeable_anon_vma(prev->anon_vma, 747 next->anon_vma)) { 748 /* cases 1, 6 */ 749 vma_adjust(prev, prev->vm_start, 750 next->vm_end, prev->vm_pgoff, NULL); 751 } else /* cases 2, 5, 7 */ 752 vma_adjust(prev, prev->vm_start, 753 end, prev->vm_pgoff, NULL); 754 return prev; 755 } 756 757 /* 758 * Can this new request be merged in front of next? 759 */ 760 if (next && end == next->vm_start && 761 mpol_equal(policy, vma_policy(next)) && 762 can_vma_merge_before(next, vm_flags, 763 anon_vma, file, pgoff+pglen)) { 764 if (prev && addr < prev->vm_end) /* case 4 */ 765 vma_adjust(prev, prev->vm_start, 766 addr, prev->vm_pgoff, NULL); 767 else /* cases 3, 8 */ 768 vma_adjust(area, addr, next->vm_end, 769 next->vm_pgoff - pglen, NULL); 770 return area; 771 } 772 773 return NULL; 774 } 775 776 /* 777 * find_mergeable_anon_vma is used by anon_vma_prepare, to check 778 * neighbouring vmas for a suitable anon_vma, before it goes off 779 * to allocate a new anon_vma. It checks because a repetitive 780 * sequence of mprotects and faults may otherwise lead to distinct 781 * anon_vmas being allocated, preventing vma merge in subsequent 782 * mprotect. 783 */ 784 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) 785 { 786 struct vm_area_struct *near; 787 unsigned long vm_flags; 788 789 near = vma->vm_next; 790 if (!near) 791 goto try_prev; 792 793 /* 794 * Since only mprotect tries to remerge vmas, match flags 795 * which might be mprotected into each other later on. 796 * Neither mlock nor madvise tries to remerge at present, 797 * so leave their flags as obstructing a merge. 798 */ 799 vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC); 800 vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC); 801 802 if (near->anon_vma && vma->vm_end == near->vm_start && 803 mpol_equal(vma_policy(vma), vma_policy(near)) && 804 can_vma_merge_before(near, vm_flags, 805 NULL, vma->vm_file, vma->vm_pgoff + 806 ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT))) 807 return near->anon_vma; 808 try_prev: 809 /* 810 * It is potentially slow to have to call find_vma_prev here. 811 * But it's only on the first write fault on the vma, not 812 * every time, and we could devise a way to avoid it later 813 * (e.g. stash info in next's anon_vma_node when assigning 814 * an anon_vma, or when trying vma_merge). Another time. 815 */ 816 if (find_vma_prev(vma->vm_mm, vma->vm_start, &near) != vma) 817 BUG(); 818 if (!near) 819 goto none; 820 821 vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC); 822 vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC); 823 824 if (near->anon_vma && near->vm_end == vma->vm_start && 825 mpol_equal(vma_policy(near), vma_policy(vma)) && 826 can_vma_merge_after(near, vm_flags, 827 NULL, vma->vm_file, vma->vm_pgoff)) 828 return near->anon_vma; 829 none: 830 /* 831 * There's no absolute need to look only at touching neighbours: 832 * we could search further afield for "compatible" anon_vmas. 833 * But it would probably just be a waste of time searching, 834 * or lead to too many vmas hanging off the same anon_vma. 835 * We're trying to allow mprotect remerging later on, 836 * not trying to minimize memory used for anon_vmas. 837 */ 838 return NULL; 839 } 840 841 #ifdef CONFIG_PROC_FS 842 void vm_stat_account(struct mm_struct *mm, unsigned long flags, 843 struct file *file, long pages) 844 { 845 const unsigned long stack_flags 846 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN); 847 848 if (file) { 849 mm->shared_vm += pages; 850 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC) 851 mm->exec_vm += pages; 852 } else if (flags & stack_flags) 853 mm->stack_vm += pages; 854 if (flags & (VM_RESERVED|VM_IO)) 855 mm->reserved_vm += pages; 856 } 857 #endif /* CONFIG_PROC_FS */ 858 859 /* 860 * The caller must hold down_write(current->mm->mmap_sem). 861 */ 862 863 unsigned long do_mmap_pgoff(struct file * file, unsigned long addr, 864 unsigned long len, unsigned long prot, 865 unsigned long flags, unsigned long pgoff) 866 { 867 struct mm_struct * mm = current->mm; 868 struct vm_area_struct * vma, * prev; 869 struct inode *inode; 870 unsigned int vm_flags; 871 int correct_wcount = 0; 872 int error; 873 struct rb_node ** rb_link, * rb_parent; 874 int accountable = 1; 875 unsigned long charged = 0, reqprot = prot; 876 877 if (file) { 878 if (is_file_hugepages(file)) 879 accountable = 0; 880 881 if (!file->f_op || !file->f_op->mmap) 882 return -ENODEV; 883 884 if ((prot & PROT_EXEC) && 885 (file->f_vfsmnt->mnt_flags & MNT_NOEXEC)) 886 return -EPERM; 887 } 888 /* 889 * Does the application expect PROT_READ to imply PROT_EXEC? 890 * 891 * (the exception is when the underlying filesystem is noexec 892 * mounted, in which case we dont add PROT_EXEC.) 893 */ 894 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC)) 895 if (!(file && (file->f_vfsmnt->mnt_flags & MNT_NOEXEC))) 896 prot |= PROT_EXEC; 897 898 if (!len) 899 return -EINVAL; 900 901 /* Careful about overflows.. */ 902 len = PAGE_ALIGN(len); 903 if (!len || len > TASK_SIZE) 904 return -ENOMEM; 905 906 /* offset overflow? */ 907 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff) 908 return -EOVERFLOW; 909 910 /* Too many mappings? */ 911 if (mm->map_count > sysctl_max_map_count) 912 return -ENOMEM; 913 914 /* Obtain the address to map to. we verify (or select) it and ensure 915 * that it represents a valid section of the address space. 916 */ 917 addr = get_unmapped_area(file, addr, len, pgoff, flags); 918 if (addr & ~PAGE_MASK) 919 return addr; 920 921 /* Do simple checking here so the lower-level routines won't have 922 * to. we assume access permissions have been handled by the open 923 * of the memory object, so we don't do any here. 924 */ 925 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) | 926 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 927 928 if (flags & MAP_LOCKED) { 929 if (!can_do_mlock()) 930 return -EPERM; 931 vm_flags |= VM_LOCKED; 932 } 933 /* mlock MCL_FUTURE? */ 934 if (vm_flags & VM_LOCKED) { 935 unsigned long locked, lock_limit; 936 locked = len >> PAGE_SHIFT; 937 locked += mm->locked_vm; 938 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur; 939 lock_limit >>= PAGE_SHIFT; 940 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 941 return -EAGAIN; 942 } 943 944 inode = file ? file->f_dentry->d_inode : NULL; 945 946 if (file) { 947 switch (flags & MAP_TYPE) { 948 case MAP_SHARED: 949 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE)) 950 return -EACCES; 951 952 /* 953 * Make sure we don't allow writing to an append-only 954 * file.. 955 */ 956 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE)) 957 return -EACCES; 958 959 /* 960 * Make sure there are no mandatory locks on the file. 961 */ 962 if (locks_verify_locked(inode)) 963 return -EAGAIN; 964 965 vm_flags |= VM_SHARED | VM_MAYSHARE; 966 if (!(file->f_mode & FMODE_WRITE)) 967 vm_flags &= ~(VM_MAYWRITE | VM_SHARED); 968 969 /* fall through */ 970 case MAP_PRIVATE: 971 if (!(file->f_mode & FMODE_READ)) 972 return -EACCES; 973 break; 974 975 default: 976 return -EINVAL; 977 } 978 } else { 979 switch (flags & MAP_TYPE) { 980 case MAP_SHARED: 981 vm_flags |= VM_SHARED | VM_MAYSHARE; 982 break; 983 case MAP_PRIVATE: 984 /* 985 * Set pgoff according to addr for anon_vma. 986 */ 987 pgoff = addr >> PAGE_SHIFT; 988 break; 989 default: 990 return -EINVAL; 991 } 992 } 993 994 error = security_file_mmap(file, reqprot, prot, flags); 995 if (error) 996 return error; 997 998 /* Clear old maps */ 999 error = -ENOMEM; 1000 munmap_back: 1001 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent); 1002 if (vma && vma->vm_start < addr + len) { 1003 if (do_munmap(mm, addr, len)) 1004 return -ENOMEM; 1005 goto munmap_back; 1006 } 1007 1008 /* Check against address space limit. */ 1009 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) 1010 return -ENOMEM; 1011 1012 if (accountable && (!(flags & MAP_NORESERVE) || 1013 sysctl_overcommit_memory == OVERCOMMIT_NEVER)) { 1014 if (vm_flags & VM_SHARED) { 1015 /* Check memory availability in shmem_file_setup? */ 1016 vm_flags |= VM_ACCOUNT; 1017 } else if (vm_flags & VM_WRITE) { 1018 /* 1019 * Private writable mapping: check memory availability 1020 */ 1021 charged = len >> PAGE_SHIFT; 1022 if (security_vm_enough_memory(charged)) 1023 return -ENOMEM; 1024 vm_flags |= VM_ACCOUNT; 1025 } 1026 } 1027 1028 /* 1029 * Can we just expand an old private anonymous mapping? 1030 * The VM_SHARED test is necessary because shmem_zero_setup 1031 * will create the file object for a shared anonymous map below. 1032 */ 1033 if (!file && !(vm_flags & VM_SHARED) && 1034 vma_merge(mm, prev, addr, addr + len, vm_flags, 1035 NULL, NULL, pgoff, NULL)) 1036 goto out; 1037 1038 /* 1039 * Determine the object being mapped and call the appropriate 1040 * specific mapper. the address has already been validated, but 1041 * not unmapped, but the maps are removed from the list. 1042 */ 1043 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 1044 if (!vma) { 1045 error = -ENOMEM; 1046 goto unacct_error; 1047 } 1048 1049 vma->vm_mm = mm; 1050 vma->vm_start = addr; 1051 vma->vm_end = addr + len; 1052 vma->vm_flags = vm_flags; 1053 vma->vm_page_prot = protection_map[vm_flags & 0x0f]; 1054 vma->vm_pgoff = pgoff; 1055 1056 if (file) { 1057 error = -EINVAL; 1058 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1059 goto free_vma; 1060 if (vm_flags & VM_DENYWRITE) { 1061 error = deny_write_access(file); 1062 if (error) 1063 goto free_vma; 1064 correct_wcount = 1; 1065 } 1066 vma->vm_file = file; 1067 get_file(file); 1068 error = file->f_op->mmap(file, vma); 1069 if (error) 1070 goto unmap_and_free_vma; 1071 } else if (vm_flags & VM_SHARED) { 1072 error = shmem_zero_setup(vma); 1073 if (error) 1074 goto free_vma; 1075 } 1076 1077 /* We set VM_ACCOUNT in a shared mapping's vm_flags, to inform 1078 * shmem_zero_setup (perhaps called through /dev/zero's ->mmap) 1079 * that memory reservation must be checked; but that reservation 1080 * belongs to shared memory object, not to vma: so now clear it. 1081 */ 1082 if ((vm_flags & (VM_SHARED|VM_ACCOUNT)) == (VM_SHARED|VM_ACCOUNT)) 1083 vma->vm_flags &= ~VM_ACCOUNT; 1084 1085 /* Can addr have changed?? 1086 * 1087 * Answer: Yes, several device drivers can do it in their 1088 * f_op->mmap method. -DaveM 1089 */ 1090 addr = vma->vm_start; 1091 pgoff = vma->vm_pgoff; 1092 vm_flags = vma->vm_flags; 1093 1094 if (!file || !vma_merge(mm, prev, addr, vma->vm_end, 1095 vma->vm_flags, NULL, file, pgoff, vma_policy(vma))) { 1096 file = vma->vm_file; 1097 vma_link(mm, vma, prev, rb_link, rb_parent); 1098 if (correct_wcount) 1099 atomic_inc(&inode->i_writecount); 1100 } else { 1101 if (file) { 1102 if (correct_wcount) 1103 atomic_inc(&inode->i_writecount); 1104 fput(file); 1105 } 1106 mpol_free(vma_policy(vma)); 1107 kmem_cache_free(vm_area_cachep, vma); 1108 } 1109 out: 1110 mm->total_vm += len >> PAGE_SHIFT; 1111 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT); 1112 if (vm_flags & VM_LOCKED) { 1113 mm->locked_vm += len >> PAGE_SHIFT; 1114 make_pages_present(addr, addr + len); 1115 } 1116 if (flags & MAP_POPULATE) { 1117 up_write(&mm->mmap_sem); 1118 sys_remap_file_pages(addr, len, 0, 1119 pgoff, flags & MAP_NONBLOCK); 1120 down_write(&mm->mmap_sem); 1121 } 1122 return addr; 1123 1124 unmap_and_free_vma: 1125 if (correct_wcount) 1126 atomic_inc(&inode->i_writecount); 1127 vma->vm_file = NULL; 1128 fput(file); 1129 1130 /* Undo any partial mapping done by a device driver. */ 1131 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end); 1132 charged = 0; 1133 free_vma: 1134 kmem_cache_free(vm_area_cachep, vma); 1135 unacct_error: 1136 if (charged) 1137 vm_unacct_memory(charged); 1138 return error; 1139 } 1140 1141 EXPORT_SYMBOL(do_mmap_pgoff); 1142 1143 /* Get an address range which is currently unmapped. 1144 * For shmat() with addr=0. 1145 * 1146 * Ugly calling convention alert: 1147 * Return value with the low bits set means error value, 1148 * ie 1149 * if (ret & ~PAGE_MASK) 1150 * error = ret; 1151 * 1152 * This function "knows" that -ENOMEM has the bits set. 1153 */ 1154 #ifndef HAVE_ARCH_UNMAPPED_AREA 1155 unsigned long 1156 arch_get_unmapped_area(struct file *filp, unsigned long addr, 1157 unsigned long len, unsigned long pgoff, unsigned long flags) 1158 { 1159 struct mm_struct *mm = current->mm; 1160 struct vm_area_struct *vma; 1161 unsigned long start_addr; 1162 1163 if (len > TASK_SIZE) 1164 return -ENOMEM; 1165 1166 if (addr) { 1167 addr = PAGE_ALIGN(addr); 1168 vma = find_vma(mm, addr); 1169 if (TASK_SIZE - len >= addr && 1170 (!vma || addr + len <= vma->vm_start)) 1171 return addr; 1172 } 1173 if (len > mm->cached_hole_size) { 1174 start_addr = addr = mm->free_area_cache; 1175 } else { 1176 start_addr = addr = TASK_UNMAPPED_BASE; 1177 mm->cached_hole_size = 0; 1178 } 1179 1180 full_search: 1181 for (vma = find_vma(mm, addr); ; vma = vma->vm_next) { 1182 /* At this point: (!vma || addr < vma->vm_end). */ 1183 if (TASK_SIZE - len < addr) { 1184 /* 1185 * Start a new search - just in case we missed 1186 * some holes. 1187 */ 1188 if (start_addr != TASK_UNMAPPED_BASE) { 1189 addr = TASK_UNMAPPED_BASE; 1190 start_addr = addr; 1191 mm->cached_hole_size = 0; 1192 goto full_search; 1193 } 1194 return -ENOMEM; 1195 } 1196 if (!vma || addr + len <= vma->vm_start) { 1197 /* 1198 * Remember the place where we stopped the search: 1199 */ 1200 mm->free_area_cache = addr + len; 1201 return addr; 1202 } 1203 if (addr + mm->cached_hole_size < vma->vm_start) 1204 mm->cached_hole_size = vma->vm_start - addr; 1205 addr = vma->vm_end; 1206 } 1207 } 1208 #endif 1209 1210 void arch_unmap_area(struct mm_struct *mm, unsigned long addr) 1211 { 1212 /* 1213 * Is this a new hole at the lowest possible address? 1214 */ 1215 if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) { 1216 mm->free_area_cache = addr; 1217 mm->cached_hole_size = ~0UL; 1218 } 1219 } 1220 1221 /* 1222 * This mmap-allocator allocates new areas top-down from below the 1223 * stack's low limit (the base): 1224 */ 1225 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 1226 unsigned long 1227 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0, 1228 const unsigned long len, const unsigned long pgoff, 1229 const unsigned long flags) 1230 { 1231 struct vm_area_struct *vma; 1232 struct mm_struct *mm = current->mm; 1233 unsigned long addr = addr0; 1234 1235 /* requested length too big for entire address space */ 1236 if (len > TASK_SIZE) 1237 return -ENOMEM; 1238 1239 /* requesting a specific address */ 1240 if (addr) { 1241 addr = PAGE_ALIGN(addr); 1242 vma = find_vma(mm, addr); 1243 if (TASK_SIZE - len >= addr && 1244 (!vma || addr + len <= vma->vm_start)) 1245 return addr; 1246 } 1247 1248 /* check if free_area_cache is useful for us */ 1249 if (len <= mm->cached_hole_size) { 1250 mm->cached_hole_size = 0; 1251 mm->free_area_cache = mm->mmap_base; 1252 } 1253 1254 /* either no address requested or can't fit in requested address hole */ 1255 addr = mm->free_area_cache; 1256 1257 /* make sure it can fit in the remaining address space */ 1258 if (addr > len) { 1259 vma = find_vma(mm, addr-len); 1260 if (!vma || addr <= vma->vm_start) 1261 /* remember the address as a hint for next time */ 1262 return (mm->free_area_cache = addr-len); 1263 } 1264 1265 if (mm->mmap_base < len) 1266 goto bottomup; 1267 1268 addr = mm->mmap_base-len; 1269 1270 do { 1271 /* 1272 * Lookup failure means no vma is above this address, 1273 * else if new region fits below vma->vm_start, 1274 * return with success: 1275 */ 1276 vma = find_vma(mm, addr); 1277 if (!vma || addr+len <= vma->vm_start) 1278 /* remember the address as a hint for next time */ 1279 return (mm->free_area_cache = addr); 1280 1281 /* remember the largest hole we saw so far */ 1282 if (addr + mm->cached_hole_size < vma->vm_start) 1283 mm->cached_hole_size = vma->vm_start - addr; 1284 1285 /* try just below the current vma->vm_start */ 1286 addr = vma->vm_start-len; 1287 } while (len < vma->vm_start); 1288 1289 bottomup: 1290 /* 1291 * A failed mmap() very likely causes application failure, 1292 * so fall back to the bottom-up function here. This scenario 1293 * can happen with large stack limits and large mmap() 1294 * allocations. 1295 */ 1296 mm->cached_hole_size = ~0UL; 1297 mm->free_area_cache = TASK_UNMAPPED_BASE; 1298 addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags); 1299 /* 1300 * Restore the topdown base: 1301 */ 1302 mm->free_area_cache = mm->mmap_base; 1303 mm->cached_hole_size = ~0UL; 1304 1305 return addr; 1306 } 1307 #endif 1308 1309 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr) 1310 { 1311 /* 1312 * Is this a new hole at the highest possible address? 1313 */ 1314 if (addr > mm->free_area_cache) 1315 mm->free_area_cache = addr; 1316 1317 /* dont allow allocations above current base */ 1318 if (mm->free_area_cache > mm->mmap_base) 1319 mm->free_area_cache = mm->mmap_base; 1320 } 1321 1322 unsigned long 1323 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 1324 unsigned long pgoff, unsigned long flags) 1325 { 1326 unsigned long ret; 1327 1328 if (!(flags & MAP_FIXED)) { 1329 unsigned long (*get_area)(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 1330 1331 get_area = current->mm->get_unmapped_area; 1332 if (file && file->f_op && file->f_op->get_unmapped_area) 1333 get_area = file->f_op->get_unmapped_area; 1334 addr = get_area(file, addr, len, pgoff, flags); 1335 if (IS_ERR_VALUE(addr)) 1336 return addr; 1337 } 1338 1339 if (addr > TASK_SIZE - len) 1340 return -ENOMEM; 1341 if (addr & ~PAGE_MASK) 1342 return -EINVAL; 1343 if (file && is_file_hugepages(file)) { 1344 /* 1345 * Check if the given range is hugepage aligned, and 1346 * can be made suitable for hugepages. 1347 */ 1348 ret = prepare_hugepage_range(addr, len); 1349 } else { 1350 /* 1351 * Ensure that a normal request is not falling in a 1352 * reserved hugepage range. For some archs like IA-64, 1353 * there is a separate region for hugepages. 1354 */ 1355 ret = is_hugepage_only_range(current->mm, addr, len); 1356 } 1357 if (ret) 1358 return -EINVAL; 1359 return addr; 1360 } 1361 1362 EXPORT_SYMBOL(get_unmapped_area); 1363 1364 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 1365 struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr) 1366 { 1367 struct vm_area_struct *vma = NULL; 1368 1369 if (mm) { 1370 /* Check the cache first. */ 1371 /* (Cache hit rate is typically around 35%.) */ 1372 vma = mm->mmap_cache; 1373 if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) { 1374 struct rb_node * rb_node; 1375 1376 rb_node = mm->mm_rb.rb_node; 1377 vma = NULL; 1378 1379 while (rb_node) { 1380 struct vm_area_struct * vma_tmp; 1381 1382 vma_tmp = rb_entry(rb_node, 1383 struct vm_area_struct, vm_rb); 1384 1385 if (vma_tmp->vm_end > addr) { 1386 vma = vma_tmp; 1387 if (vma_tmp->vm_start <= addr) 1388 break; 1389 rb_node = rb_node->rb_left; 1390 } else 1391 rb_node = rb_node->rb_right; 1392 } 1393 if (vma) 1394 mm->mmap_cache = vma; 1395 } 1396 } 1397 return vma; 1398 } 1399 1400 EXPORT_SYMBOL(find_vma); 1401 1402 /* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */ 1403 struct vm_area_struct * 1404 find_vma_prev(struct mm_struct *mm, unsigned long addr, 1405 struct vm_area_struct **pprev) 1406 { 1407 struct vm_area_struct *vma = NULL, *prev = NULL; 1408 struct rb_node * rb_node; 1409 if (!mm) 1410 goto out; 1411 1412 /* Guard against addr being lower than the first VMA */ 1413 vma = mm->mmap; 1414 1415 /* Go through the RB tree quickly. */ 1416 rb_node = mm->mm_rb.rb_node; 1417 1418 while (rb_node) { 1419 struct vm_area_struct *vma_tmp; 1420 vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb); 1421 1422 if (addr < vma_tmp->vm_end) { 1423 rb_node = rb_node->rb_left; 1424 } else { 1425 prev = vma_tmp; 1426 if (!prev->vm_next || (addr < prev->vm_next->vm_end)) 1427 break; 1428 rb_node = rb_node->rb_right; 1429 } 1430 } 1431 1432 out: 1433 *pprev = prev; 1434 return prev ? prev->vm_next : vma; 1435 } 1436 1437 /* 1438 * Verify that the stack growth is acceptable and 1439 * update accounting. This is shared with both the 1440 * grow-up and grow-down cases. 1441 */ 1442 static int acct_stack_growth(struct vm_area_struct * vma, unsigned long size, unsigned long grow) 1443 { 1444 struct mm_struct *mm = vma->vm_mm; 1445 struct rlimit *rlim = current->signal->rlim; 1446 1447 /* address space limit tests */ 1448 if (!may_expand_vm(mm, grow)) 1449 return -ENOMEM; 1450 1451 /* Stack limit test */ 1452 if (size > rlim[RLIMIT_STACK].rlim_cur) 1453 return -ENOMEM; 1454 1455 /* mlock limit tests */ 1456 if (vma->vm_flags & VM_LOCKED) { 1457 unsigned long locked; 1458 unsigned long limit; 1459 locked = mm->locked_vm + grow; 1460 limit = rlim[RLIMIT_MEMLOCK].rlim_cur >> PAGE_SHIFT; 1461 if (locked > limit && !capable(CAP_IPC_LOCK)) 1462 return -ENOMEM; 1463 } 1464 1465 /* 1466 * Overcommit.. This must be the final test, as it will 1467 * update security statistics. 1468 */ 1469 if (security_vm_enough_memory(grow)) 1470 return -ENOMEM; 1471 1472 /* Ok, everything looks good - let it rip */ 1473 mm->total_vm += grow; 1474 if (vma->vm_flags & VM_LOCKED) 1475 mm->locked_vm += grow; 1476 vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow); 1477 return 0; 1478 } 1479 1480 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64) 1481 /* 1482 * PA-RISC uses this for its stack; IA64 for its Register Backing Store. 1483 * vma is the last one with address > vma->vm_end. Have to extend vma. 1484 */ 1485 #ifndef CONFIG_IA64 1486 static inline 1487 #endif 1488 int expand_upwards(struct vm_area_struct *vma, unsigned long address) 1489 { 1490 int error; 1491 1492 if (!(vma->vm_flags & VM_GROWSUP)) 1493 return -EFAULT; 1494 1495 /* 1496 * We must make sure the anon_vma is allocated 1497 * so that the anon_vma locking is not a noop. 1498 */ 1499 if (unlikely(anon_vma_prepare(vma))) 1500 return -ENOMEM; 1501 anon_vma_lock(vma); 1502 1503 /* 1504 * vma->vm_start/vm_end cannot change under us because the caller 1505 * is required to hold the mmap_sem in read mode. We need the 1506 * anon_vma lock to serialize against concurrent expand_stacks. 1507 */ 1508 address += 4 + PAGE_SIZE - 1; 1509 address &= PAGE_MASK; 1510 error = 0; 1511 1512 /* Somebody else might have raced and expanded it already */ 1513 if (address > vma->vm_end) { 1514 unsigned long size, grow; 1515 1516 size = address - vma->vm_start; 1517 grow = (address - vma->vm_end) >> PAGE_SHIFT; 1518 1519 error = acct_stack_growth(vma, size, grow); 1520 if (!error) 1521 vma->vm_end = address; 1522 } 1523 anon_vma_unlock(vma); 1524 return error; 1525 } 1526 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */ 1527 1528 #ifdef CONFIG_STACK_GROWSUP 1529 int expand_stack(struct vm_area_struct *vma, unsigned long address) 1530 { 1531 return expand_upwards(vma, address); 1532 } 1533 1534 struct vm_area_struct * 1535 find_extend_vma(struct mm_struct *mm, unsigned long addr) 1536 { 1537 struct vm_area_struct *vma, *prev; 1538 1539 addr &= PAGE_MASK; 1540 vma = find_vma_prev(mm, addr, &prev); 1541 if (vma && (vma->vm_start <= addr)) 1542 return vma; 1543 if (!prev || expand_stack(prev, addr)) 1544 return NULL; 1545 if (prev->vm_flags & VM_LOCKED) { 1546 make_pages_present(addr, prev->vm_end); 1547 } 1548 return prev; 1549 } 1550 #else 1551 /* 1552 * vma is the first one with address < vma->vm_start. Have to extend vma. 1553 */ 1554 int expand_stack(struct vm_area_struct *vma, unsigned long address) 1555 { 1556 int error; 1557 1558 /* 1559 * We must make sure the anon_vma is allocated 1560 * so that the anon_vma locking is not a noop. 1561 */ 1562 if (unlikely(anon_vma_prepare(vma))) 1563 return -ENOMEM; 1564 anon_vma_lock(vma); 1565 1566 /* 1567 * vma->vm_start/vm_end cannot change under us because the caller 1568 * is required to hold the mmap_sem in read mode. We need the 1569 * anon_vma lock to serialize against concurrent expand_stacks. 1570 */ 1571 address &= PAGE_MASK; 1572 error = 0; 1573 1574 /* Somebody else might have raced and expanded it already */ 1575 if (address < vma->vm_start) { 1576 unsigned long size, grow; 1577 1578 size = vma->vm_end - address; 1579 grow = (vma->vm_start - address) >> PAGE_SHIFT; 1580 1581 error = acct_stack_growth(vma, size, grow); 1582 if (!error) { 1583 vma->vm_start = address; 1584 vma->vm_pgoff -= grow; 1585 } 1586 } 1587 anon_vma_unlock(vma); 1588 return error; 1589 } 1590 1591 struct vm_area_struct * 1592 find_extend_vma(struct mm_struct * mm, unsigned long addr) 1593 { 1594 struct vm_area_struct * vma; 1595 unsigned long start; 1596 1597 addr &= PAGE_MASK; 1598 vma = find_vma(mm,addr); 1599 if (!vma) 1600 return NULL; 1601 if (vma->vm_start <= addr) 1602 return vma; 1603 if (!(vma->vm_flags & VM_GROWSDOWN)) 1604 return NULL; 1605 start = vma->vm_start; 1606 if (expand_stack(vma, addr)) 1607 return NULL; 1608 if (vma->vm_flags & VM_LOCKED) { 1609 make_pages_present(addr, start); 1610 } 1611 return vma; 1612 } 1613 #endif 1614 1615 /* 1616 * Ok - we have the memory areas we should free on the vma list, 1617 * so release them, and do the vma updates. 1618 * 1619 * Called with the mm semaphore held. 1620 */ 1621 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma) 1622 { 1623 /* Update high watermark before we lower total_vm */ 1624 update_hiwater_vm(mm); 1625 do { 1626 long nrpages = vma_pages(vma); 1627 1628 mm->total_vm -= nrpages; 1629 if (vma->vm_flags & VM_LOCKED) 1630 mm->locked_vm -= nrpages; 1631 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages); 1632 vma = remove_vma(vma); 1633 } while (vma); 1634 validate_mm(mm); 1635 } 1636 1637 /* 1638 * Get rid of page table information in the indicated region. 1639 * 1640 * Called with the mm semaphore held. 1641 */ 1642 static void unmap_region(struct mm_struct *mm, 1643 struct vm_area_struct *vma, struct vm_area_struct *prev, 1644 unsigned long start, unsigned long end) 1645 { 1646 struct vm_area_struct *next = prev? prev->vm_next: mm->mmap; 1647 struct mmu_gather *tlb; 1648 unsigned long nr_accounted = 0; 1649 1650 lru_add_drain(); 1651 tlb = tlb_gather_mmu(mm, 0); 1652 update_hiwater_rss(mm); 1653 unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL); 1654 vm_unacct_memory(nr_accounted); 1655 free_pgtables(&tlb, vma, prev? prev->vm_end: FIRST_USER_ADDRESS, 1656 next? next->vm_start: 0); 1657 tlb_finish_mmu(tlb, start, end); 1658 } 1659 1660 /* 1661 * Create a list of vma's touched by the unmap, removing them from the mm's 1662 * vma list as we go.. 1663 */ 1664 static void 1665 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma, 1666 struct vm_area_struct *prev, unsigned long end) 1667 { 1668 struct vm_area_struct **insertion_point; 1669 struct vm_area_struct *tail_vma = NULL; 1670 unsigned long addr; 1671 1672 insertion_point = (prev ? &prev->vm_next : &mm->mmap); 1673 do { 1674 rb_erase(&vma->vm_rb, &mm->mm_rb); 1675 mm->map_count--; 1676 tail_vma = vma; 1677 vma = vma->vm_next; 1678 } while (vma && vma->vm_start < end); 1679 *insertion_point = vma; 1680 tail_vma->vm_next = NULL; 1681 if (mm->unmap_area == arch_unmap_area) 1682 addr = prev ? prev->vm_end : mm->mmap_base; 1683 else 1684 addr = vma ? vma->vm_start : mm->mmap_base; 1685 mm->unmap_area(mm, addr); 1686 mm->mmap_cache = NULL; /* Kill the cache. */ 1687 } 1688 1689 /* 1690 * Split a vma into two pieces at address 'addr', a new vma is allocated 1691 * either for the first part or the the tail. 1692 */ 1693 int split_vma(struct mm_struct * mm, struct vm_area_struct * vma, 1694 unsigned long addr, int new_below) 1695 { 1696 struct mempolicy *pol; 1697 struct vm_area_struct *new; 1698 1699 if (is_vm_hugetlb_page(vma) && (addr & ~HPAGE_MASK)) 1700 return -EINVAL; 1701 1702 if (mm->map_count >= sysctl_max_map_count) 1703 return -ENOMEM; 1704 1705 new = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL); 1706 if (!new) 1707 return -ENOMEM; 1708 1709 /* most fields are the same, copy all, and then fixup */ 1710 *new = *vma; 1711 1712 if (new_below) 1713 new->vm_end = addr; 1714 else { 1715 new->vm_start = addr; 1716 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); 1717 } 1718 1719 pol = mpol_copy(vma_policy(vma)); 1720 if (IS_ERR(pol)) { 1721 kmem_cache_free(vm_area_cachep, new); 1722 return PTR_ERR(pol); 1723 } 1724 vma_set_policy(new, pol); 1725 1726 if (new->vm_file) 1727 get_file(new->vm_file); 1728 1729 if (new->vm_ops && new->vm_ops->open) 1730 new->vm_ops->open(new); 1731 1732 if (new_below) 1733 vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff + 1734 ((addr - new->vm_start) >> PAGE_SHIFT), new); 1735 else 1736 vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new); 1737 1738 return 0; 1739 } 1740 1741 /* Munmap is split into 2 main parts -- this part which finds 1742 * what needs doing, and the areas themselves, which do the 1743 * work. This now handles partial unmappings. 1744 * Jeremy Fitzhardinge <jeremy@goop.org> 1745 */ 1746 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len) 1747 { 1748 unsigned long end; 1749 struct vm_area_struct *vma, *prev, *last; 1750 1751 if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start) 1752 return -EINVAL; 1753 1754 if ((len = PAGE_ALIGN(len)) == 0) 1755 return -EINVAL; 1756 1757 /* Find the first overlapping VMA */ 1758 vma = find_vma_prev(mm, start, &prev); 1759 if (!vma) 1760 return 0; 1761 /* we have start < vma->vm_end */ 1762 1763 /* if it doesn't overlap, we have nothing.. */ 1764 end = start + len; 1765 if (vma->vm_start >= end) 1766 return 0; 1767 1768 /* 1769 * If we need to split any vma, do it now to save pain later. 1770 * 1771 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially 1772 * unmapped vm_area_struct will remain in use: so lower split_vma 1773 * places tmp vma above, and higher split_vma places tmp vma below. 1774 */ 1775 if (start > vma->vm_start) { 1776 int error = split_vma(mm, vma, start, 0); 1777 if (error) 1778 return error; 1779 prev = vma; 1780 } 1781 1782 /* Does it split the last one? */ 1783 last = find_vma(mm, end); 1784 if (last && end > last->vm_start) { 1785 int error = split_vma(mm, last, end, 1); 1786 if (error) 1787 return error; 1788 } 1789 vma = prev? prev->vm_next: mm->mmap; 1790 1791 /* 1792 * Remove the vma's, and unmap the actual pages 1793 */ 1794 detach_vmas_to_be_unmapped(mm, vma, prev, end); 1795 unmap_region(mm, vma, prev, start, end); 1796 1797 /* Fix up all other VM information */ 1798 remove_vma_list(mm, vma); 1799 1800 return 0; 1801 } 1802 1803 EXPORT_SYMBOL(do_munmap); 1804 1805 asmlinkage long sys_munmap(unsigned long addr, size_t len) 1806 { 1807 int ret; 1808 struct mm_struct *mm = current->mm; 1809 1810 profile_munmap(addr); 1811 1812 down_write(&mm->mmap_sem); 1813 ret = do_munmap(mm, addr, len); 1814 up_write(&mm->mmap_sem); 1815 return ret; 1816 } 1817 1818 static inline void verify_mm_writelocked(struct mm_struct *mm) 1819 { 1820 #ifdef CONFIG_DEBUG_VM 1821 if (unlikely(down_read_trylock(&mm->mmap_sem))) { 1822 WARN_ON(1); 1823 up_read(&mm->mmap_sem); 1824 } 1825 #endif 1826 } 1827 1828 /* 1829 * this is really a simplified "do_mmap". it only handles 1830 * anonymous maps. eventually we may be able to do some 1831 * brk-specific accounting here. 1832 */ 1833 unsigned long do_brk(unsigned long addr, unsigned long len) 1834 { 1835 struct mm_struct * mm = current->mm; 1836 struct vm_area_struct * vma, * prev; 1837 unsigned long flags; 1838 struct rb_node ** rb_link, * rb_parent; 1839 pgoff_t pgoff = addr >> PAGE_SHIFT; 1840 1841 len = PAGE_ALIGN(len); 1842 if (!len) 1843 return addr; 1844 1845 if ((addr + len) > TASK_SIZE || (addr + len) < addr) 1846 return -EINVAL; 1847 1848 /* 1849 * mlock MCL_FUTURE? 1850 */ 1851 if (mm->def_flags & VM_LOCKED) { 1852 unsigned long locked, lock_limit; 1853 locked = len >> PAGE_SHIFT; 1854 locked += mm->locked_vm; 1855 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur; 1856 lock_limit >>= PAGE_SHIFT; 1857 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 1858 return -EAGAIN; 1859 } 1860 1861 /* 1862 * mm->mmap_sem is required to protect against another thread 1863 * changing the mappings in case we sleep. 1864 */ 1865 verify_mm_writelocked(mm); 1866 1867 /* 1868 * Clear old maps. this also does some error checking for us 1869 */ 1870 munmap_back: 1871 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent); 1872 if (vma && vma->vm_start < addr + len) { 1873 if (do_munmap(mm, addr, len)) 1874 return -ENOMEM; 1875 goto munmap_back; 1876 } 1877 1878 /* Check against address space limits *after* clearing old maps... */ 1879 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) 1880 return -ENOMEM; 1881 1882 if (mm->map_count > sysctl_max_map_count) 1883 return -ENOMEM; 1884 1885 if (security_vm_enough_memory(len >> PAGE_SHIFT)) 1886 return -ENOMEM; 1887 1888 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; 1889 1890 /* Can we just expand an old private anonymous mapping? */ 1891 if (vma_merge(mm, prev, addr, addr + len, flags, 1892 NULL, NULL, pgoff, NULL)) 1893 goto out; 1894 1895 /* 1896 * create a vma struct for an anonymous mapping 1897 */ 1898 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 1899 if (!vma) { 1900 vm_unacct_memory(len >> PAGE_SHIFT); 1901 return -ENOMEM; 1902 } 1903 1904 vma->vm_mm = mm; 1905 vma->vm_start = addr; 1906 vma->vm_end = addr + len; 1907 vma->vm_pgoff = pgoff; 1908 vma->vm_flags = flags; 1909 vma->vm_page_prot = protection_map[flags & 0x0f]; 1910 vma_link(mm, vma, prev, rb_link, rb_parent); 1911 out: 1912 mm->total_vm += len >> PAGE_SHIFT; 1913 if (flags & VM_LOCKED) { 1914 mm->locked_vm += len >> PAGE_SHIFT; 1915 make_pages_present(addr, addr + len); 1916 } 1917 return addr; 1918 } 1919 1920 EXPORT_SYMBOL(do_brk); 1921 1922 /* Release all mmaps. */ 1923 void exit_mmap(struct mm_struct *mm) 1924 { 1925 struct mmu_gather *tlb; 1926 struct vm_area_struct *vma = mm->mmap; 1927 unsigned long nr_accounted = 0; 1928 unsigned long end; 1929 1930 lru_add_drain(); 1931 flush_cache_mm(mm); 1932 tlb = tlb_gather_mmu(mm, 1); 1933 /* Don't update_hiwater_rss(mm) here, do_exit already did */ 1934 /* Use -1 here to ensure all VMAs in the mm are unmapped */ 1935 end = unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL); 1936 vm_unacct_memory(nr_accounted); 1937 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, 0); 1938 tlb_finish_mmu(tlb, 0, end); 1939 1940 /* 1941 * Walk the list again, actually closing and freeing it, 1942 * with preemption enabled, without holding any MM locks. 1943 */ 1944 while (vma) 1945 vma = remove_vma(vma); 1946 1947 BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT); 1948 } 1949 1950 /* Insert vm structure into process list sorted by address 1951 * and into the inode's i_mmap tree. If vm_file is non-NULL 1952 * then i_mmap_lock is taken here. 1953 */ 1954 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma) 1955 { 1956 struct vm_area_struct * __vma, * prev; 1957 struct rb_node ** rb_link, * rb_parent; 1958 1959 /* 1960 * The vm_pgoff of a purely anonymous vma should be irrelevant 1961 * until its first write fault, when page's anon_vma and index 1962 * are set. But now set the vm_pgoff it will almost certainly 1963 * end up with (unless mremap moves it elsewhere before that 1964 * first wfault), so /proc/pid/maps tells a consistent story. 1965 * 1966 * By setting it to reflect the virtual start address of the 1967 * vma, merges and splits can happen in a seamless way, just 1968 * using the existing file pgoff checks and manipulations. 1969 * Similarly in do_mmap_pgoff and in do_brk. 1970 */ 1971 if (!vma->vm_file) { 1972 BUG_ON(vma->anon_vma); 1973 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; 1974 } 1975 __vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent); 1976 if (__vma && __vma->vm_start < vma->vm_end) 1977 return -ENOMEM; 1978 if ((vma->vm_flags & VM_ACCOUNT) && 1979 security_vm_enough_memory(vma_pages(vma))) 1980 return -ENOMEM; 1981 vma_link(mm, vma, prev, rb_link, rb_parent); 1982 return 0; 1983 } 1984 1985 /* 1986 * Copy the vma structure to a new location in the same mm, 1987 * prior to moving page table entries, to effect an mremap move. 1988 */ 1989 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 1990 unsigned long addr, unsigned long len, pgoff_t pgoff) 1991 { 1992 struct vm_area_struct *vma = *vmap; 1993 unsigned long vma_start = vma->vm_start; 1994 struct mm_struct *mm = vma->vm_mm; 1995 struct vm_area_struct *new_vma, *prev; 1996 struct rb_node **rb_link, *rb_parent; 1997 struct mempolicy *pol; 1998 1999 /* 2000 * If anonymous vma has not yet been faulted, update new pgoff 2001 * to match new location, to increase its chance of merging. 2002 */ 2003 if (!vma->vm_file && !vma->anon_vma) 2004 pgoff = addr >> PAGE_SHIFT; 2005 2006 find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent); 2007 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags, 2008 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma)); 2009 if (new_vma) { 2010 /* 2011 * Source vma may have been merged into new_vma 2012 */ 2013 if (vma_start >= new_vma->vm_start && 2014 vma_start < new_vma->vm_end) 2015 *vmap = new_vma; 2016 } else { 2017 new_vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL); 2018 if (new_vma) { 2019 *new_vma = *vma; 2020 pol = mpol_copy(vma_policy(vma)); 2021 if (IS_ERR(pol)) { 2022 kmem_cache_free(vm_area_cachep, new_vma); 2023 return NULL; 2024 } 2025 vma_set_policy(new_vma, pol); 2026 new_vma->vm_start = addr; 2027 new_vma->vm_end = addr + len; 2028 new_vma->vm_pgoff = pgoff; 2029 if (new_vma->vm_file) 2030 get_file(new_vma->vm_file); 2031 if (new_vma->vm_ops && new_vma->vm_ops->open) 2032 new_vma->vm_ops->open(new_vma); 2033 vma_link(mm, new_vma, prev, rb_link, rb_parent); 2034 } 2035 } 2036 return new_vma; 2037 } 2038 2039 /* 2040 * Return true if the calling process may expand its vm space by the passed 2041 * number of pages 2042 */ 2043 int may_expand_vm(struct mm_struct *mm, unsigned long npages) 2044 { 2045 unsigned long cur = mm->total_vm; /* pages */ 2046 unsigned long lim; 2047 2048 lim = current->signal->rlim[RLIMIT_AS].rlim_cur >> PAGE_SHIFT; 2049 2050 if (cur + npages > lim) 2051 return 0; 2052 return 1; 2053 } 2054