xref: /linux/mm/mmap.c (revision db7193a5c9db4babbfc99798f2e636b12419c12b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/mmap.c
4  *
5  * Written by obz.
6  *
7  * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/mm_inline.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
47 #include <linux/oom.h>
48 #include <linux/sched/mm.h>
49 #include <linux/ksm.h>
50 
51 #include <linux/uaccess.h>
52 #include <asm/cacheflush.h>
53 #include <asm/tlb.h>
54 #include <asm/mmu_context.h>
55 
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/mmap.h>
58 
59 #include "internal.h"
60 
61 #ifndef arch_mmap_check
62 #define arch_mmap_check(addr, len, flags)	(0)
63 #endif
64 
65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
66 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
67 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
68 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
69 #endif
70 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
71 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
72 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
73 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
74 #endif
75 
76 static bool ignore_rlimit_data;
77 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
78 
79 static void unmap_region(struct mm_struct *mm, struct maple_tree *mt,
80 		struct vm_area_struct *vma, struct vm_area_struct *prev,
81 		struct vm_area_struct *next, unsigned long start,
82 		unsigned long end, bool mm_wr_locked);
83 
84 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
85 {
86 	return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
87 }
88 
89 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
90 void vma_set_page_prot(struct vm_area_struct *vma)
91 {
92 	unsigned long vm_flags = vma->vm_flags;
93 	pgprot_t vm_page_prot;
94 
95 	vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
96 	if (vma_wants_writenotify(vma, vm_page_prot)) {
97 		vm_flags &= ~VM_SHARED;
98 		vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
99 	}
100 	/* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
101 	WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
102 }
103 
104 /*
105  * Requires inode->i_mapping->i_mmap_rwsem
106  */
107 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
108 		struct file *file, struct address_space *mapping)
109 {
110 	if (vma->vm_flags & VM_SHARED)
111 		mapping_unmap_writable(mapping);
112 
113 	flush_dcache_mmap_lock(mapping);
114 	vma_interval_tree_remove(vma, &mapping->i_mmap);
115 	flush_dcache_mmap_unlock(mapping);
116 }
117 
118 /*
119  * Unlink a file-based vm structure from its interval tree, to hide
120  * vma from rmap and vmtruncate before freeing its page tables.
121  */
122 void unlink_file_vma(struct vm_area_struct *vma)
123 {
124 	struct file *file = vma->vm_file;
125 
126 	if (file) {
127 		struct address_space *mapping = file->f_mapping;
128 		i_mmap_lock_write(mapping);
129 		__remove_shared_vm_struct(vma, file, mapping);
130 		i_mmap_unlock_write(mapping);
131 	}
132 }
133 
134 /*
135  * Close a vm structure and free it.
136  */
137 static void remove_vma(struct vm_area_struct *vma, bool unreachable)
138 {
139 	might_sleep();
140 	if (vma->vm_ops && vma->vm_ops->close)
141 		vma->vm_ops->close(vma);
142 	if (vma->vm_file)
143 		fput(vma->vm_file);
144 	mpol_put(vma_policy(vma));
145 	if (unreachable)
146 		__vm_area_free(vma);
147 	else
148 		vm_area_free(vma);
149 }
150 
151 static inline struct vm_area_struct *vma_prev_limit(struct vma_iterator *vmi,
152 						    unsigned long min)
153 {
154 	return mas_prev(&vmi->mas, min);
155 }
156 
157 static inline int vma_iter_clear_gfp(struct vma_iterator *vmi,
158 			unsigned long start, unsigned long end, gfp_t gfp)
159 {
160 	vmi->mas.index = start;
161 	vmi->mas.last = end - 1;
162 	mas_store_gfp(&vmi->mas, NULL, gfp);
163 	if (unlikely(mas_is_err(&vmi->mas)))
164 		return -ENOMEM;
165 
166 	return 0;
167 }
168 
169 /*
170  * check_brk_limits() - Use platform specific check of range & verify mlock
171  * limits.
172  * @addr: The address to check
173  * @len: The size of increase.
174  *
175  * Return: 0 on success.
176  */
177 static int check_brk_limits(unsigned long addr, unsigned long len)
178 {
179 	unsigned long mapped_addr;
180 
181 	mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
182 	if (IS_ERR_VALUE(mapped_addr))
183 		return mapped_addr;
184 
185 	return mlock_future_ok(current->mm, current->mm->def_flags, len)
186 		? 0 : -EAGAIN;
187 }
188 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *brkvma,
189 		unsigned long addr, unsigned long request, unsigned long flags);
190 SYSCALL_DEFINE1(brk, unsigned long, brk)
191 {
192 	unsigned long newbrk, oldbrk, origbrk;
193 	struct mm_struct *mm = current->mm;
194 	struct vm_area_struct *brkvma, *next = NULL;
195 	unsigned long min_brk;
196 	bool populate = false;
197 	LIST_HEAD(uf);
198 	struct vma_iterator vmi;
199 
200 	if (mmap_write_lock_killable(mm))
201 		return -EINTR;
202 
203 	origbrk = mm->brk;
204 
205 #ifdef CONFIG_COMPAT_BRK
206 	/*
207 	 * CONFIG_COMPAT_BRK can still be overridden by setting
208 	 * randomize_va_space to 2, which will still cause mm->start_brk
209 	 * to be arbitrarily shifted
210 	 */
211 	if (current->brk_randomized)
212 		min_brk = mm->start_brk;
213 	else
214 		min_brk = mm->end_data;
215 #else
216 	min_brk = mm->start_brk;
217 #endif
218 	if (brk < min_brk)
219 		goto out;
220 
221 	/*
222 	 * Check against rlimit here. If this check is done later after the test
223 	 * of oldbrk with newbrk then it can escape the test and let the data
224 	 * segment grow beyond its set limit the in case where the limit is
225 	 * not page aligned -Ram Gupta
226 	 */
227 	if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
228 			      mm->end_data, mm->start_data))
229 		goto out;
230 
231 	newbrk = PAGE_ALIGN(brk);
232 	oldbrk = PAGE_ALIGN(mm->brk);
233 	if (oldbrk == newbrk) {
234 		mm->brk = brk;
235 		goto success;
236 	}
237 
238 	/* Always allow shrinking brk. */
239 	if (brk <= mm->brk) {
240 		/* Search one past newbrk */
241 		vma_iter_init(&vmi, mm, newbrk);
242 		brkvma = vma_find(&vmi, oldbrk);
243 		if (!brkvma || brkvma->vm_start >= oldbrk)
244 			goto out; /* mapping intersects with an existing non-brk vma. */
245 		/*
246 		 * mm->brk must be protected by write mmap_lock.
247 		 * do_vma_munmap() will drop the lock on success,  so update it
248 		 * before calling do_vma_munmap().
249 		 */
250 		mm->brk = brk;
251 		if (do_vma_munmap(&vmi, brkvma, newbrk, oldbrk, &uf, true))
252 			goto out;
253 
254 		goto success_unlocked;
255 	}
256 
257 	if (check_brk_limits(oldbrk, newbrk - oldbrk))
258 		goto out;
259 
260 	/*
261 	 * Only check if the next VMA is within the stack_guard_gap of the
262 	 * expansion area
263 	 */
264 	vma_iter_init(&vmi, mm, oldbrk);
265 	next = vma_find(&vmi, newbrk + PAGE_SIZE + stack_guard_gap);
266 	if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
267 		goto out;
268 
269 	brkvma = vma_prev_limit(&vmi, mm->start_brk);
270 	/* Ok, looks good - let it rip. */
271 	if (do_brk_flags(&vmi, brkvma, oldbrk, newbrk - oldbrk, 0) < 0)
272 		goto out;
273 
274 	mm->brk = brk;
275 	if (mm->def_flags & VM_LOCKED)
276 		populate = true;
277 
278 success:
279 	mmap_write_unlock(mm);
280 success_unlocked:
281 	userfaultfd_unmap_complete(mm, &uf);
282 	if (populate)
283 		mm_populate(oldbrk, newbrk - oldbrk);
284 	return brk;
285 
286 out:
287 	mm->brk = origbrk;
288 	mmap_write_unlock(mm);
289 	return origbrk;
290 }
291 
292 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
293 static void validate_mm(struct mm_struct *mm)
294 {
295 	int bug = 0;
296 	int i = 0;
297 	struct vm_area_struct *vma;
298 	VMA_ITERATOR(vmi, mm, 0);
299 
300 	mt_validate(&mm->mm_mt);
301 	for_each_vma(vmi, vma) {
302 #ifdef CONFIG_DEBUG_VM_RB
303 		struct anon_vma *anon_vma = vma->anon_vma;
304 		struct anon_vma_chain *avc;
305 #endif
306 		unsigned long vmi_start, vmi_end;
307 		bool warn = 0;
308 
309 		vmi_start = vma_iter_addr(&vmi);
310 		vmi_end = vma_iter_end(&vmi);
311 		if (VM_WARN_ON_ONCE_MM(vma->vm_end != vmi_end, mm))
312 			warn = 1;
313 
314 		if (VM_WARN_ON_ONCE_MM(vma->vm_start != vmi_start, mm))
315 			warn = 1;
316 
317 		if (warn) {
318 			pr_emerg("issue in %s\n", current->comm);
319 			dump_stack();
320 			dump_vma(vma);
321 			pr_emerg("tree range: %px start %lx end %lx\n", vma,
322 				 vmi_start, vmi_end - 1);
323 			vma_iter_dump_tree(&vmi);
324 		}
325 
326 #ifdef CONFIG_DEBUG_VM_RB
327 		if (anon_vma) {
328 			anon_vma_lock_read(anon_vma);
329 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
330 				anon_vma_interval_tree_verify(avc);
331 			anon_vma_unlock_read(anon_vma);
332 		}
333 #endif
334 		i++;
335 	}
336 	if (i != mm->map_count) {
337 		pr_emerg("map_count %d vma iterator %d\n", mm->map_count, i);
338 		bug = 1;
339 	}
340 	VM_BUG_ON_MM(bug, mm);
341 }
342 
343 #else /* !CONFIG_DEBUG_VM_MAPLE_TREE */
344 #define validate_mm(mm) do { } while (0)
345 #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */
346 
347 /*
348  * vma has some anon_vma assigned, and is already inserted on that
349  * anon_vma's interval trees.
350  *
351  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
352  * vma must be removed from the anon_vma's interval trees using
353  * anon_vma_interval_tree_pre_update_vma().
354  *
355  * After the update, the vma will be reinserted using
356  * anon_vma_interval_tree_post_update_vma().
357  *
358  * The entire update must be protected by exclusive mmap_lock and by
359  * the root anon_vma's mutex.
360  */
361 static inline void
362 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
363 {
364 	struct anon_vma_chain *avc;
365 
366 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
367 		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
368 }
369 
370 static inline void
371 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
372 {
373 	struct anon_vma_chain *avc;
374 
375 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
376 		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
377 }
378 
379 static unsigned long count_vma_pages_range(struct mm_struct *mm,
380 		unsigned long addr, unsigned long end)
381 {
382 	VMA_ITERATOR(vmi, mm, addr);
383 	struct vm_area_struct *vma;
384 	unsigned long nr_pages = 0;
385 
386 	for_each_vma_range(vmi, vma, end) {
387 		unsigned long vm_start = max(addr, vma->vm_start);
388 		unsigned long vm_end = min(end, vma->vm_end);
389 
390 		nr_pages += PHYS_PFN(vm_end - vm_start);
391 	}
392 
393 	return nr_pages;
394 }
395 
396 static void __vma_link_file(struct vm_area_struct *vma,
397 			    struct address_space *mapping)
398 {
399 	if (vma->vm_flags & VM_SHARED)
400 		mapping_allow_writable(mapping);
401 
402 	flush_dcache_mmap_lock(mapping);
403 	vma_interval_tree_insert(vma, &mapping->i_mmap);
404 	flush_dcache_mmap_unlock(mapping);
405 }
406 
407 static int vma_link(struct mm_struct *mm, struct vm_area_struct *vma)
408 {
409 	VMA_ITERATOR(vmi, mm, 0);
410 	struct address_space *mapping = NULL;
411 
412 	if (vma_iter_prealloc(&vmi))
413 		return -ENOMEM;
414 
415 	if (vma->vm_file) {
416 		mapping = vma->vm_file->f_mapping;
417 		i_mmap_lock_write(mapping);
418 	}
419 
420 	vma_iter_store(&vmi, vma);
421 
422 	if (mapping) {
423 		__vma_link_file(vma, mapping);
424 		i_mmap_unlock_write(mapping);
425 	}
426 
427 	mm->map_count++;
428 	validate_mm(mm);
429 	return 0;
430 }
431 
432 /*
433  * init_multi_vma_prep() - Initializer for struct vma_prepare
434  * @vp: The vma_prepare struct
435  * @vma: The vma that will be altered once locked
436  * @next: The next vma if it is to be adjusted
437  * @remove: The first vma to be removed
438  * @remove2: The second vma to be removed
439  */
440 static inline void init_multi_vma_prep(struct vma_prepare *vp,
441 		struct vm_area_struct *vma, struct vm_area_struct *next,
442 		struct vm_area_struct *remove, struct vm_area_struct *remove2)
443 {
444 	memset(vp, 0, sizeof(struct vma_prepare));
445 	vp->vma = vma;
446 	vp->anon_vma = vma->anon_vma;
447 	vp->remove = remove;
448 	vp->remove2 = remove2;
449 	vp->adj_next = next;
450 	if (!vp->anon_vma && next)
451 		vp->anon_vma = next->anon_vma;
452 
453 	vp->file = vma->vm_file;
454 	if (vp->file)
455 		vp->mapping = vma->vm_file->f_mapping;
456 
457 }
458 
459 /*
460  * init_vma_prep() - Initializer wrapper for vma_prepare struct
461  * @vp: The vma_prepare struct
462  * @vma: The vma that will be altered once locked
463  */
464 static inline void init_vma_prep(struct vma_prepare *vp,
465 				 struct vm_area_struct *vma)
466 {
467 	init_multi_vma_prep(vp, vma, NULL, NULL, NULL);
468 }
469 
470 
471 /*
472  * vma_prepare() - Helper function for handling locking VMAs prior to altering
473  * @vp: The initialized vma_prepare struct
474  */
475 static inline void vma_prepare(struct vma_prepare *vp)
476 {
477 	vma_start_write(vp->vma);
478 	if (vp->adj_next)
479 		vma_start_write(vp->adj_next);
480 	/* vp->insert is always a newly created VMA, no need for locking */
481 	if (vp->remove)
482 		vma_start_write(vp->remove);
483 	if (vp->remove2)
484 		vma_start_write(vp->remove2);
485 
486 	if (vp->file) {
487 		uprobe_munmap(vp->vma, vp->vma->vm_start, vp->vma->vm_end);
488 
489 		if (vp->adj_next)
490 			uprobe_munmap(vp->adj_next, vp->adj_next->vm_start,
491 				      vp->adj_next->vm_end);
492 
493 		i_mmap_lock_write(vp->mapping);
494 		if (vp->insert && vp->insert->vm_file) {
495 			/*
496 			 * Put into interval tree now, so instantiated pages
497 			 * are visible to arm/parisc __flush_dcache_page
498 			 * throughout; but we cannot insert into address
499 			 * space until vma start or end is updated.
500 			 */
501 			__vma_link_file(vp->insert,
502 					vp->insert->vm_file->f_mapping);
503 		}
504 	}
505 
506 	if (vp->anon_vma) {
507 		anon_vma_lock_write(vp->anon_vma);
508 		anon_vma_interval_tree_pre_update_vma(vp->vma);
509 		if (vp->adj_next)
510 			anon_vma_interval_tree_pre_update_vma(vp->adj_next);
511 	}
512 
513 	if (vp->file) {
514 		flush_dcache_mmap_lock(vp->mapping);
515 		vma_interval_tree_remove(vp->vma, &vp->mapping->i_mmap);
516 		if (vp->adj_next)
517 			vma_interval_tree_remove(vp->adj_next,
518 						 &vp->mapping->i_mmap);
519 	}
520 
521 }
522 
523 /*
524  * vma_complete- Helper function for handling the unlocking after altering VMAs,
525  * or for inserting a VMA.
526  *
527  * @vp: The vma_prepare struct
528  * @vmi: The vma iterator
529  * @mm: The mm_struct
530  */
531 static inline void vma_complete(struct vma_prepare *vp,
532 				struct vma_iterator *vmi, struct mm_struct *mm)
533 {
534 	if (vp->file) {
535 		if (vp->adj_next)
536 			vma_interval_tree_insert(vp->adj_next,
537 						 &vp->mapping->i_mmap);
538 		vma_interval_tree_insert(vp->vma, &vp->mapping->i_mmap);
539 		flush_dcache_mmap_unlock(vp->mapping);
540 	}
541 
542 	if (vp->remove && vp->file) {
543 		__remove_shared_vm_struct(vp->remove, vp->file, vp->mapping);
544 		if (vp->remove2)
545 			__remove_shared_vm_struct(vp->remove2, vp->file,
546 						  vp->mapping);
547 	} else if (vp->insert) {
548 		/*
549 		 * split_vma has split insert from vma, and needs
550 		 * us to insert it before dropping the locks
551 		 * (it may either follow vma or precede it).
552 		 */
553 		vma_iter_store(vmi, vp->insert);
554 		mm->map_count++;
555 	}
556 
557 	if (vp->anon_vma) {
558 		anon_vma_interval_tree_post_update_vma(vp->vma);
559 		if (vp->adj_next)
560 			anon_vma_interval_tree_post_update_vma(vp->adj_next);
561 		anon_vma_unlock_write(vp->anon_vma);
562 	}
563 
564 	if (vp->file) {
565 		i_mmap_unlock_write(vp->mapping);
566 		uprobe_mmap(vp->vma);
567 
568 		if (vp->adj_next)
569 			uprobe_mmap(vp->adj_next);
570 	}
571 
572 	if (vp->remove) {
573 again:
574 		vma_mark_detached(vp->remove, true);
575 		if (vp->file) {
576 			uprobe_munmap(vp->remove, vp->remove->vm_start,
577 				      vp->remove->vm_end);
578 			fput(vp->file);
579 		}
580 		if (vp->remove->anon_vma)
581 			anon_vma_merge(vp->vma, vp->remove);
582 		mm->map_count--;
583 		mpol_put(vma_policy(vp->remove));
584 		if (!vp->remove2)
585 			WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end);
586 		vm_area_free(vp->remove);
587 
588 		/*
589 		 * In mprotect's case 6 (see comments on vma_merge),
590 		 * we are removing both mid and next vmas
591 		 */
592 		if (vp->remove2) {
593 			vp->remove = vp->remove2;
594 			vp->remove2 = NULL;
595 			goto again;
596 		}
597 	}
598 	if (vp->insert && vp->file)
599 		uprobe_mmap(vp->insert);
600 }
601 
602 /*
603  * dup_anon_vma() - Helper function to duplicate anon_vma
604  * @dst: The destination VMA
605  * @src: The source VMA
606  *
607  * Returns: 0 on success.
608  */
609 static inline int dup_anon_vma(struct vm_area_struct *dst,
610 			       struct vm_area_struct *src)
611 {
612 	/*
613 	 * Easily overlooked: when mprotect shifts the boundary, make sure the
614 	 * expanding vma has anon_vma set if the shrinking vma had, to cover any
615 	 * anon pages imported.
616 	 */
617 	if (src->anon_vma && !dst->anon_vma) {
618 		vma_start_write(dst);
619 		dst->anon_vma = src->anon_vma;
620 		return anon_vma_clone(dst, src);
621 	}
622 
623 	return 0;
624 }
625 
626 /*
627  * vma_expand - Expand an existing VMA
628  *
629  * @vmi: The vma iterator
630  * @vma: The vma to expand
631  * @start: The start of the vma
632  * @end: The exclusive end of the vma
633  * @pgoff: The page offset of vma
634  * @next: The current of next vma.
635  *
636  * Expand @vma to @start and @end.  Can expand off the start and end.  Will
637  * expand over @next if it's different from @vma and @end == @next->vm_end.
638  * Checking if the @vma can expand and merge with @next needs to be handled by
639  * the caller.
640  *
641  * Returns: 0 on success
642  */
643 int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
644 	       unsigned long start, unsigned long end, pgoff_t pgoff,
645 	       struct vm_area_struct *next)
646 {
647 	bool remove_next = false;
648 	struct vma_prepare vp;
649 
650 	if (next && (vma != next) && (end == next->vm_end)) {
651 		int ret;
652 
653 		remove_next = true;
654 		ret = dup_anon_vma(vma, next);
655 		if (ret)
656 			return ret;
657 	}
658 
659 	init_multi_vma_prep(&vp, vma, NULL, remove_next ? next : NULL, NULL);
660 	/* Not merging but overwriting any part of next is not handled. */
661 	VM_WARN_ON(next && !vp.remove &&
662 		  next != vma && end > next->vm_start);
663 	/* Only handles expanding */
664 	VM_WARN_ON(vma->vm_start < start || vma->vm_end > end);
665 
666 	if (vma_iter_prealloc(vmi))
667 		goto nomem;
668 
669 	vma_prepare(&vp);
670 	vma_adjust_trans_huge(vma, start, end, 0);
671 	/* VMA iterator points to previous, so set to start if necessary */
672 	if (vma_iter_addr(vmi) != start)
673 		vma_iter_set(vmi, start);
674 
675 	vma->vm_start = start;
676 	vma->vm_end = end;
677 	vma->vm_pgoff = pgoff;
678 	/* Note: mas must be pointing to the expanding VMA */
679 	vma_iter_store(vmi, vma);
680 
681 	vma_complete(&vp, vmi, vma->vm_mm);
682 	validate_mm(vma->vm_mm);
683 	return 0;
684 
685 nomem:
686 	return -ENOMEM;
687 }
688 
689 /*
690  * vma_shrink() - Reduce an existing VMAs memory area
691  * @vmi: The vma iterator
692  * @vma: The VMA to modify
693  * @start: The new start
694  * @end: The new end
695  *
696  * Returns: 0 on success, -ENOMEM otherwise
697  */
698 int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
699 	       unsigned long start, unsigned long end, pgoff_t pgoff)
700 {
701 	struct vma_prepare vp;
702 
703 	WARN_ON((vma->vm_start != start) && (vma->vm_end != end));
704 
705 	if (vma_iter_prealloc(vmi))
706 		return -ENOMEM;
707 
708 	init_vma_prep(&vp, vma);
709 	vma_prepare(&vp);
710 	vma_adjust_trans_huge(vma, start, end, 0);
711 
712 	if (vma->vm_start < start)
713 		vma_iter_clear(vmi, vma->vm_start, start);
714 
715 	if (vma->vm_end > end)
716 		vma_iter_clear(vmi, end, vma->vm_end);
717 
718 	vma->vm_start = start;
719 	vma->vm_end = end;
720 	vma->vm_pgoff = pgoff;
721 	vma_complete(&vp, vmi, vma->vm_mm);
722 	validate_mm(vma->vm_mm);
723 	return 0;
724 }
725 
726 /*
727  * If the vma has a ->close operation then the driver probably needs to release
728  * per-vma resources, so we don't attempt to merge those if the caller indicates
729  * the current vma may be removed as part of the merge.
730  */
731 static inline bool is_mergeable_vma(struct vm_area_struct *vma,
732 		struct file *file, unsigned long vm_flags,
733 		struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
734 		struct anon_vma_name *anon_name, bool may_remove_vma)
735 {
736 	/*
737 	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
738 	 * match the flags but dirty bit -- the caller should mark
739 	 * merged VMA as dirty. If dirty bit won't be excluded from
740 	 * comparison, we increase pressure on the memory system forcing
741 	 * the kernel to generate new VMAs when old one could be
742 	 * extended instead.
743 	 */
744 	if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
745 		return false;
746 	if (vma->vm_file != file)
747 		return false;
748 	if (may_remove_vma && vma->vm_ops && vma->vm_ops->close)
749 		return false;
750 	if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
751 		return false;
752 	if (!anon_vma_name_eq(anon_vma_name(vma), anon_name))
753 		return false;
754 	return true;
755 }
756 
757 static inline bool is_mergeable_anon_vma(struct anon_vma *anon_vma1,
758 		 struct anon_vma *anon_vma2, struct vm_area_struct *vma)
759 {
760 	/*
761 	 * The list_is_singular() test is to avoid merging VMA cloned from
762 	 * parents. This can improve scalability caused by anon_vma lock.
763 	 */
764 	if ((!anon_vma1 || !anon_vma2) && (!vma ||
765 		list_is_singular(&vma->anon_vma_chain)))
766 		return true;
767 	return anon_vma1 == anon_vma2;
768 }
769 
770 /*
771  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
772  * in front of (at a lower virtual address and file offset than) the vma.
773  *
774  * We cannot merge two vmas if they have differently assigned (non-NULL)
775  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
776  *
777  * We don't check here for the merged mmap wrapping around the end of pagecache
778  * indices (16TB on ia32) because do_mmap() does not permit mmap's which
779  * wrap, nor mmaps which cover the final page at index -1UL.
780  *
781  * We assume the vma may be removed as part of the merge.
782  */
783 static bool
784 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
785 		struct anon_vma *anon_vma, struct file *file,
786 		pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
787 		struct anon_vma_name *anon_name)
788 {
789 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, true) &&
790 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
791 		if (vma->vm_pgoff == vm_pgoff)
792 			return true;
793 	}
794 	return false;
795 }
796 
797 /*
798  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
799  * beyond (at a higher virtual address and file offset than) the vma.
800  *
801  * We cannot merge two vmas if they have differently assigned (non-NULL)
802  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
803  *
804  * We assume that vma is not removed as part of the merge.
805  */
806 static bool
807 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
808 		struct anon_vma *anon_vma, struct file *file,
809 		pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
810 		struct anon_vma_name *anon_name)
811 {
812 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, false) &&
813 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
814 		pgoff_t vm_pglen;
815 		vm_pglen = vma_pages(vma);
816 		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
817 			return true;
818 	}
819 	return false;
820 }
821 
822 /*
823  * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name),
824  * figure out whether that can be merged with its predecessor or its
825  * successor.  Or both (it neatly fills a hole).
826  *
827  * In most cases - when called for mmap, brk or mremap - [addr,end) is
828  * certain not to be mapped by the time vma_merge is called; but when
829  * called for mprotect, it is certain to be already mapped (either at
830  * an offset within prev, or at the start of next), and the flags of
831  * this area are about to be changed to vm_flags - and the no-change
832  * case has already been eliminated.
833  *
834  * The following mprotect cases have to be considered, where **** is
835  * the area passed down from mprotect_fixup, never extending beyond one
836  * vma, PPPP is the previous vma, CCCC is a concurrent vma that starts
837  * at the same address as **** and is of the same or larger span, and
838  * NNNN the next vma after ****:
839  *
840  *     ****             ****                   ****
841  *    PPPPPPNNNNNN    PPPPPPNNNNNN       PPPPPPCCCCCC
842  *    cannot merge    might become       might become
843  *                    PPNNNNNNNNNN       PPPPPPPPPPCC
844  *    mmap, brk or    case 4 below       case 5 below
845  *    mremap move:
846  *                        ****               ****
847  *                    PPPP    NNNN       PPPPCCCCNNNN
848  *                    might become       might become
849  *                    PPPPPPPPPPPP 1 or  PPPPPPPPPPPP 6 or
850  *                    PPPPPPPPNNNN 2 or  PPPPPPPPNNNN 7 or
851  *                    PPPPNNNNNNNN 3     PPPPNNNNNNNN 8
852  *
853  * It is important for case 8 that the vma CCCC overlapping the
854  * region **** is never going to extended over NNNN. Instead NNNN must
855  * be extended in region **** and CCCC must be removed. This way in
856  * all cases where vma_merge succeeds, the moment vma_merge drops the
857  * rmap_locks, the properties of the merged vma will be already
858  * correct for the whole merged range. Some of those properties like
859  * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
860  * be correct for the whole merged range immediately after the
861  * rmap_locks are released. Otherwise if NNNN would be removed and
862  * CCCC would be extended over the NNNN range, remove_migration_ptes
863  * or other rmap walkers (if working on addresses beyond the "end"
864  * parameter) may establish ptes with the wrong permissions of CCCC
865  * instead of the right permissions of NNNN.
866  *
867  * In the code below:
868  * PPPP is represented by *prev
869  * CCCC is represented by *curr or not represented at all (NULL)
870  * NNNN is represented by *next or not represented at all (NULL)
871  * **** is not represented - it will be merged and the vma containing the
872  *      area is returned, or the function will return NULL
873  */
874 struct vm_area_struct *vma_merge(struct vma_iterator *vmi, struct mm_struct *mm,
875 			struct vm_area_struct *prev, unsigned long addr,
876 			unsigned long end, unsigned long vm_flags,
877 			struct anon_vma *anon_vma, struct file *file,
878 			pgoff_t pgoff, struct mempolicy *policy,
879 			struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
880 			struct anon_vma_name *anon_name)
881 {
882 	struct vm_area_struct *curr, *next, *res;
883 	struct vm_area_struct *vma, *adjust, *remove, *remove2;
884 	struct vma_prepare vp;
885 	pgoff_t vma_pgoff;
886 	int err = 0;
887 	bool merge_prev = false;
888 	bool merge_next = false;
889 	bool vma_expanded = false;
890 	unsigned long vma_start = addr;
891 	unsigned long vma_end = end;
892 	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
893 	long adj_start = 0;
894 
895 	validate_mm(mm);
896 	/*
897 	 * We later require that vma->vm_flags == vm_flags,
898 	 * so this tests vma->vm_flags & VM_SPECIAL, too.
899 	 */
900 	if (vm_flags & VM_SPECIAL)
901 		return NULL;
902 
903 	/* Does the input range span an existing VMA? (cases 5 - 8) */
904 	curr = find_vma_intersection(mm, prev ? prev->vm_end : 0, end);
905 
906 	if (!curr ||			/* cases 1 - 4 */
907 	    end == curr->vm_end)	/* cases 6 - 8, adjacent VMA */
908 		next = vma_lookup(mm, end);
909 	else
910 		next = NULL;		/* case 5 */
911 
912 	if (prev) {
913 		vma_start = prev->vm_start;
914 		vma_pgoff = prev->vm_pgoff;
915 
916 		/* Can we merge the predecessor? */
917 		if (addr == prev->vm_end && mpol_equal(vma_policy(prev), policy)
918 		    && can_vma_merge_after(prev, vm_flags, anon_vma, file,
919 					   pgoff, vm_userfaultfd_ctx, anon_name)) {
920 			merge_prev = true;
921 			vma_prev(vmi);
922 		}
923 	}
924 
925 	/* Can we merge the successor? */
926 	if (next && mpol_equal(policy, vma_policy(next)) &&
927 	    can_vma_merge_before(next, vm_flags, anon_vma, file, pgoff+pglen,
928 				 vm_userfaultfd_ctx, anon_name)) {
929 		merge_next = true;
930 	}
931 
932 	/* Verify some invariant that must be enforced by the caller. */
933 	VM_WARN_ON(prev && addr <= prev->vm_start);
934 	VM_WARN_ON(curr && (addr != curr->vm_start || end > curr->vm_end));
935 	VM_WARN_ON(addr >= end);
936 
937 	if (!merge_prev && !merge_next)
938 		return NULL; /* Not mergeable. */
939 
940 	res = vma = prev;
941 	remove = remove2 = adjust = NULL;
942 
943 	/* Can we merge both the predecessor and the successor? */
944 	if (merge_prev && merge_next &&
945 	    is_mergeable_anon_vma(prev->anon_vma, next->anon_vma, NULL)) {
946 		remove = next;				/* case 1 */
947 		vma_end = next->vm_end;
948 		err = dup_anon_vma(prev, next);
949 		if (curr) {				/* case 6 */
950 			remove = curr;
951 			remove2 = next;
952 			if (!next->anon_vma)
953 				err = dup_anon_vma(prev, curr);
954 		}
955 	} else if (merge_prev) {			/* case 2 */
956 		if (curr) {
957 			err = dup_anon_vma(prev, curr);
958 			if (end == curr->vm_end) {	/* case 7 */
959 				remove = curr;
960 			} else {			/* case 5 */
961 				adjust = curr;
962 				adj_start = (end - curr->vm_start);
963 			}
964 		}
965 	} else { /* merge_next */
966 		res = next;
967 		if (prev && addr < prev->vm_end) {	/* case 4 */
968 			vma_end = addr;
969 			adjust = next;
970 			adj_start = -(prev->vm_end - addr);
971 			err = dup_anon_vma(next, prev);
972 		} else {
973 			/*
974 			 * Note that cases 3 and 8 are the ONLY ones where prev
975 			 * is permitted to be (but is not necessarily) NULL.
976 			 */
977 			vma = next;			/* case 3 */
978 			vma_start = addr;
979 			vma_end = next->vm_end;
980 			vma_pgoff = next->vm_pgoff - pglen;
981 			if (curr) {			/* case 8 */
982 				vma_pgoff = curr->vm_pgoff;
983 				remove = curr;
984 				err = dup_anon_vma(next, curr);
985 			}
986 		}
987 	}
988 
989 	/* Error in anon_vma clone. */
990 	if (err)
991 		return NULL;
992 
993 	if (vma_iter_prealloc(vmi))
994 		return NULL;
995 
996 	init_multi_vma_prep(&vp, vma, adjust, remove, remove2);
997 	VM_WARN_ON(vp.anon_vma && adjust && adjust->anon_vma &&
998 		   vp.anon_vma != adjust->anon_vma);
999 
1000 	vma_prepare(&vp);
1001 	vma_adjust_trans_huge(vma, vma_start, vma_end, adj_start);
1002 	if (vma_start < vma->vm_start || vma_end > vma->vm_end)
1003 		vma_expanded = true;
1004 
1005 	vma->vm_start = vma_start;
1006 	vma->vm_end = vma_end;
1007 	vma->vm_pgoff = vma_pgoff;
1008 
1009 	if (vma_expanded)
1010 		vma_iter_store(vmi, vma);
1011 
1012 	if (adj_start) {
1013 		adjust->vm_start += adj_start;
1014 		adjust->vm_pgoff += adj_start >> PAGE_SHIFT;
1015 		if (adj_start < 0) {
1016 			WARN_ON(vma_expanded);
1017 			vma_iter_store(vmi, next);
1018 		}
1019 	}
1020 
1021 	vma_complete(&vp, vmi, mm);
1022 	vma_iter_free(vmi);
1023 	validate_mm(mm);
1024 	khugepaged_enter_vma(res, vm_flags);
1025 
1026 	return res;
1027 }
1028 
1029 /*
1030  * Rough compatibility check to quickly see if it's even worth looking
1031  * at sharing an anon_vma.
1032  *
1033  * They need to have the same vm_file, and the flags can only differ
1034  * in things that mprotect may change.
1035  *
1036  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1037  * we can merge the two vma's. For example, we refuse to merge a vma if
1038  * there is a vm_ops->close() function, because that indicates that the
1039  * driver is doing some kind of reference counting. But that doesn't
1040  * really matter for the anon_vma sharing case.
1041  */
1042 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1043 {
1044 	return a->vm_end == b->vm_start &&
1045 		mpol_equal(vma_policy(a), vma_policy(b)) &&
1046 		a->vm_file == b->vm_file &&
1047 		!((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1048 		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1049 }
1050 
1051 /*
1052  * Do some basic sanity checking to see if we can re-use the anon_vma
1053  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1054  * the same as 'old', the other will be the new one that is trying
1055  * to share the anon_vma.
1056  *
1057  * NOTE! This runs with mmap_lock held for reading, so it is possible that
1058  * the anon_vma of 'old' is concurrently in the process of being set up
1059  * by another page fault trying to merge _that_. But that's ok: if it
1060  * is being set up, that automatically means that it will be a singleton
1061  * acceptable for merging, so we can do all of this optimistically. But
1062  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1063  *
1064  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1065  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1066  * is to return an anon_vma that is "complex" due to having gone through
1067  * a fork).
1068  *
1069  * We also make sure that the two vma's are compatible (adjacent,
1070  * and with the same memory policies). That's all stable, even with just
1071  * a read lock on the mmap_lock.
1072  */
1073 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1074 {
1075 	if (anon_vma_compatible(a, b)) {
1076 		struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1077 
1078 		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1079 			return anon_vma;
1080 	}
1081 	return NULL;
1082 }
1083 
1084 /*
1085  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1086  * neighbouring vmas for a suitable anon_vma, before it goes off
1087  * to allocate a new anon_vma.  It checks because a repetitive
1088  * sequence of mprotects and faults may otherwise lead to distinct
1089  * anon_vmas being allocated, preventing vma merge in subsequent
1090  * mprotect.
1091  */
1092 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1093 {
1094 	MA_STATE(mas, &vma->vm_mm->mm_mt, vma->vm_end, vma->vm_end);
1095 	struct anon_vma *anon_vma = NULL;
1096 	struct vm_area_struct *prev, *next;
1097 
1098 	/* Try next first. */
1099 	next = mas_walk(&mas);
1100 	if (next) {
1101 		anon_vma = reusable_anon_vma(next, vma, next);
1102 		if (anon_vma)
1103 			return anon_vma;
1104 	}
1105 
1106 	prev = mas_prev(&mas, 0);
1107 	VM_BUG_ON_VMA(prev != vma, vma);
1108 	prev = mas_prev(&mas, 0);
1109 	/* Try prev next. */
1110 	if (prev)
1111 		anon_vma = reusable_anon_vma(prev, prev, vma);
1112 
1113 	/*
1114 	 * We might reach here with anon_vma == NULL if we can't find
1115 	 * any reusable anon_vma.
1116 	 * There's no absolute need to look only at touching neighbours:
1117 	 * we could search further afield for "compatible" anon_vmas.
1118 	 * But it would probably just be a waste of time searching,
1119 	 * or lead to too many vmas hanging off the same anon_vma.
1120 	 * We're trying to allow mprotect remerging later on,
1121 	 * not trying to minimize memory used for anon_vmas.
1122 	 */
1123 	return anon_vma;
1124 }
1125 
1126 /*
1127  * If a hint addr is less than mmap_min_addr change hint to be as
1128  * low as possible but still greater than mmap_min_addr
1129  */
1130 static inline unsigned long round_hint_to_min(unsigned long hint)
1131 {
1132 	hint &= PAGE_MASK;
1133 	if (((void *)hint != NULL) &&
1134 	    (hint < mmap_min_addr))
1135 		return PAGE_ALIGN(mmap_min_addr);
1136 	return hint;
1137 }
1138 
1139 bool mlock_future_ok(struct mm_struct *mm, unsigned long flags,
1140 			unsigned long bytes)
1141 {
1142 	unsigned long locked_pages, limit_pages;
1143 
1144 	if (!(flags & VM_LOCKED) || capable(CAP_IPC_LOCK))
1145 		return true;
1146 
1147 	locked_pages = bytes >> PAGE_SHIFT;
1148 	locked_pages += mm->locked_vm;
1149 
1150 	limit_pages = rlimit(RLIMIT_MEMLOCK);
1151 	limit_pages >>= PAGE_SHIFT;
1152 
1153 	return locked_pages <= limit_pages;
1154 }
1155 
1156 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1157 {
1158 	if (S_ISREG(inode->i_mode))
1159 		return MAX_LFS_FILESIZE;
1160 
1161 	if (S_ISBLK(inode->i_mode))
1162 		return MAX_LFS_FILESIZE;
1163 
1164 	if (S_ISSOCK(inode->i_mode))
1165 		return MAX_LFS_FILESIZE;
1166 
1167 	/* Special "we do even unsigned file positions" case */
1168 	if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1169 		return 0;
1170 
1171 	/* Yes, random drivers might want more. But I'm tired of buggy drivers */
1172 	return ULONG_MAX;
1173 }
1174 
1175 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1176 				unsigned long pgoff, unsigned long len)
1177 {
1178 	u64 maxsize = file_mmap_size_max(file, inode);
1179 
1180 	if (maxsize && len > maxsize)
1181 		return false;
1182 	maxsize -= len;
1183 	if (pgoff > maxsize >> PAGE_SHIFT)
1184 		return false;
1185 	return true;
1186 }
1187 
1188 /*
1189  * The caller must write-lock current->mm->mmap_lock.
1190  */
1191 unsigned long do_mmap(struct file *file, unsigned long addr,
1192 			unsigned long len, unsigned long prot,
1193 			unsigned long flags, unsigned long pgoff,
1194 			unsigned long *populate, struct list_head *uf)
1195 {
1196 	struct mm_struct *mm = current->mm;
1197 	vm_flags_t vm_flags;
1198 	int pkey = 0;
1199 
1200 	validate_mm(mm);
1201 	*populate = 0;
1202 
1203 	if (!len)
1204 		return -EINVAL;
1205 
1206 	/*
1207 	 * Does the application expect PROT_READ to imply PROT_EXEC?
1208 	 *
1209 	 * (the exception is when the underlying filesystem is noexec
1210 	 *  mounted, in which case we dont add PROT_EXEC.)
1211 	 */
1212 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1213 		if (!(file && path_noexec(&file->f_path)))
1214 			prot |= PROT_EXEC;
1215 
1216 	/* force arch specific MAP_FIXED handling in get_unmapped_area */
1217 	if (flags & MAP_FIXED_NOREPLACE)
1218 		flags |= MAP_FIXED;
1219 
1220 	if (!(flags & MAP_FIXED))
1221 		addr = round_hint_to_min(addr);
1222 
1223 	/* Careful about overflows.. */
1224 	len = PAGE_ALIGN(len);
1225 	if (!len)
1226 		return -ENOMEM;
1227 
1228 	/* offset overflow? */
1229 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1230 		return -EOVERFLOW;
1231 
1232 	/* Too many mappings? */
1233 	if (mm->map_count > sysctl_max_map_count)
1234 		return -ENOMEM;
1235 
1236 	/* Obtain the address to map to. we verify (or select) it and ensure
1237 	 * that it represents a valid section of the address space.
1238 	 */
1239 	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1240 	if (IS_ERR_VALUE(addr))
1241 		return addr;
1242 
1243 	if (flags & MAP_FIXED_NOREPLACE) {
1244 		if (find_vma_intersection(mm, addr, addr + len))
1245 			return -EEXIST;
1246 	}
1247 
1248 	if (prot == PROT_EXEC) {
1249 		pkey = execute_only_pkey(mm);
1250 		if (pkey < 0)
1251 			pkey = 0;
1252 	}
1253 
1254 	/* Do simple checking here so the lower-level routines won't have
1255 	 * to. we assume access permissions have been handled by the open
1256 	 * of the memory object, so we don't do any here.
1257 	 */
1258 	vm_flags = calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1259 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1260 
1261 	if (flags & MAP_LOCKED)
1262 		if (!can_do_mlock())
1263 			return -EPERM;
1264 
1265 	if (!mlock_future_ok(mm, vm_flags, len))
1266 		return -EAGAIN;
1267 
1268 	if (file) {
1269 		struct inode *inode = file_inode(file);
1270 		unsigned long flags_mask;
1271 
1272 		if (!file_mmap_ok(file, inode, pgoff, len))
1273 			return -EOVERFLOW;
1274 
1275 		flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1276 
1277 		switch (flags & MAP_TYPE) {
1278 		case MAP_SHARED:
1279 			/*
1280 			 * Force use of MAP_SHARED_VALIDATE with non-legacy
1281 			 * flags. E.g. MAP_SYNC is dangerous to use with
1282 			 * MAP_SHARED as you don't know which consistency model
1283 			 * you will get. We silently ignore unsupported flags
1284 			 * with MAP_SHARED to preserve backward compatibility.
1285 			 */
1286 			flags &= LEGACY_MAP_MASK;
1287 			fallthrough;
1288 		case MAP_SHARED_VALIDATE:
1289 			if (flags & ~flags_mask)
1290 				return -EOPNOTSUPP;
1291 			if (prot & PROT_WRITE) {
1292 				if (!(file->f_mode & FMODE_WRITE))
1293 					return -EACCES;
1294 				if (IS_SWAPFILE(file->f_mapping->host))
1295 					return -ETXTBSY;
1296 			}
1297 
1298 			/*
1299 			 * Make sure we don't allow writing to an append-only
1300 			 * file..
1301 			 */
1302 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1303 				return -EACCES;
1304 
1305 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1306 			if (!(file->f_mode & FMODE_WRITE))
1307 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1308 			fallthrough;
1309 		case MAP_PRIVATE:
1310 			if (!(file->f_mode & FMODE_READ))
1311 				return -EACCES;
1312 			if (path_noexec(&file->f_path)) {
1313 				if (vm_flags & VM_EXEC)
1314 					return -EPERM;
1315 				vm_flags &= ~VM_MAYEXEC;
1316 			}
1317 
1318 			if (!file->f_op->mmap)
1319 				return -ENODEV;
1320 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1321 				return -EINVAL;
1322 			break;
1323 
1324 		default:
1325 			return -EINVAL;
1326 		}
1327 	} else {
1328 		switch (flags & MAP_TYPE) {
1329 		case MAP_SHARED:
1330 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1331 				return -EINVAL;
1332 			/*
1333 			 * Ignore pgoff.
1334 			 */
1335 			pgoff = 0;
1336 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1337 			break;
1338 		case MAP_PRIVATE:
1339 			/*
1340 			 * Set pgoff according to addr for anon_vma.
1341 			 */
1342 			pgoff = addr >> PAGE_SHIFT;
1343 			break;
1344 		default:
1345 			return -EINVAL;
1346 		}
1347 	}
1348 
1349 	/*
1350 	 * Set 'VM_NORESERVE' if we should not account for the
1351 	 * memory use of this mapping.
1352 	 */
1353 	if (flags & MAP_NORESERVE) {
1354 		/* We honor MAP_NORESERVE if allowed to overcommit */
1355 		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1356 			vm_flags |= VM_NORESERVE;
1357 
1358 		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1359 		if (file && is_file_hugepages(file))
1360 			vm_flags |= VM_NORESERVE;
1361 	}
1362 
1363 	addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1364 	if (!IS_ERR_VALUE(addr) &&
1365 	    ((vm_flags & VM_LOCKED) ||
1366 	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1367 		*populate = len;
1368 	return addr;
1369 }
1370 
1371 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1372 			      unsigned long prot, unsigned long flags,
1373 			      unsigned long fd, unsigned long pgoff)
1374 {
1375 	struct file *file = NULL;
1376 	unsigned long retval;
1377 
1378 	if (!(flags & MAP_ANONYMOUS)) {
1379 		audit_mmap_fd(fd, flags);
1380 		file = fget(fd);
1381 		if (!file)
1382 			return -EBADF;
1383 		if (is_file_hugepages(file)) {
1384 			len = ALIGN(len, huge_page_size(hstate_file(file)));
1385 		} else if (unlikely(flags & MAP_HUGETLB)) {
1386 			retval = -EINVAL;
1387 			goto out_fput;
1388 		}
1389 	} else if (flags & MAP_HUGETLB) {
1390 		struct hstate *hs;
1391 
1392 		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1393 		if (!hs)
1394 			return -EINVAL;
1395 
1396 		len = ALIGN(len, huge_page_size(hs));
1397 		/*
1398 		 * VM_NORESERVE is used because the reservations will be
1399 		 * taken when vm_ops->mmap() is called
1400 		 */
1401 		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1402 				VM_NORESERVE,
1403 				HUGETLB_ANONHUGE_INODE,
1404 				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1405 		if (IS_ERR(file))
1406 			return PTR_ERR(file);
1407 	}
1408 
1409 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1410 out_fput:
1411 	if (file)
1412 		fput(file);
1413 	return retval;
1414 }
1415 
1416 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1417 		unsigned long, prot, unsigned long, flags,
1418 		unsigned long, fd, unsigned long, pgoff)
1419 {
1420 	return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1421 }
1422 
1423 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1424 struct mmap_arg_struct {
1425 	unsigned long addr;
1426 	unsigned long len;
1427 	unsigned long prot;
1428 	unsigned long flags;
1429 	unsigned long fd;
1430 	unsigned long offset;
1431 };
1432 
1433 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1434 {
1435 	struct mmap_arg_struct a;
1436 
1437 	if (copy_from_user(&a, arg, sizeof(a)))
1438 		return -EFAULT;
1439 	if (offset_in_page(a.offset))
1440 		return -EINVAL;
1441 
1442 	return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1443 			       a.offset >> PAGE_SHIFT);
1444 }
1445 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1446 
1447 static bool vm_ops_needs_writenotify(const struct vm_operations_struct *vm_ops)
1448 {
1449 	return vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite);
1450 }
1451 
1452 static bool vma_is_shared_writable(struct vm_area_struct *vma)
1453 {
1454 	return (vma->vm_flags & (VM_WRITE | VM_SHARED)) ==
1455 		(VM_WRITE | VM_SHARED);
1456 }
1457 
1458 static bool vma_fs_can_writeback(struct vm_area_struct *vma)
1459 {
1460 	/* No managed pages to writeback. */
1461 	if (vma->vm_flags & VM_PFNMAP)
1462 		return false;
1463 
1464 	return vma->vm_file && vma->vm_file->f_mapping &&
1465 		mapping_can_writeback(vma->vm_file->f_mapping);
1466 }
1467 
1468 /*
1469  * Does this VMA require the underlying folios to have their dirty state
1470  * tracked?
1471  */
1472 bool vma_needs_dirty_tracking(struct vm_area_struct *vma)
1473 {
1474 	/* Only shared, writable VMAs require dirty tracking. */
1475 	if (!vma_is_shared_writable(vma))
1476 		return false;
1477 
1478 	/* Does the filesystem need to be notified? */
1479 	if (vm_ops_needs_writenotify(vma->vm_ops))
1480 		return true;
1481 
1482 	/*
1483 	 * Even if the filesystem doesn't indicate a need for writenotify, if it
1484 	 * can writeback, dirty tracking is still required.
1485 	 */
1486 	return vma_fs_can_writeback(vma);
1487 }
1488 
1489 /*
1490  * Some shared mappings will want the pages marked read-only
1491  * to track write events. If so, we'll downgrade vm_page_prot
1492  * to the private version (using protection_map[] without the
1493  * VM_SHARED bit).
1494  */
1495 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1496 {
1497 	/* If it was private or non-writable, the write bit is already clear */
1498 	if (!vma_is_shared_writable(vma))
1499 		return 0;
1500 
1501 	/* The backer wishes to know when pages are first written to? */
1502 	if (vm_ops_needs_writenotify(vma->vm_ops))
1503 		return 1;
1504 
1505 	/* The open routine did something to the protections that pgprot_modify
1506 	 * won't preserve? */
1507 	if (pgprot_val(vm_page_prot) !=
1508 	    pgprot_val(vm_pgprot_modify(vm_page_prot, vma->vm_flags)))
1509 		return 0;
1510 
1511 	/*
1512 	 * Do we need to track softdirty? hugetlb does not support softdirty
1513 	 * tracking yet.
1514 	 */
1515 	if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma))
1516 		return 1;
1517 
1518 	/* Do we need write faults for uffd-wp tracking? */
1519 	if (userfaultfd_wp(vma))
1520 		return 1;
1521 
1522 	/* Can the mapping track the dirty pages? */
1523 	return vma_fs_can_writeback(vma);
1524 }
1525 
1526 /*
1527  * We account for memory if it's a private writeable mapping,
1528  * not hugepages and VM_NORESERVE wasn't set.
1529  */
1530 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1531 {
1532 	/*
1533 	 * hugetlb has its own accounting separate from the core VM
1534 	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1535 	 */
1536 	if (file && is_file_hugepages(file))
1537 		return 0;
1538 
1539 	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1540 }
1541 
1542 /**
1543  * unmapped_area() - Find an area between the low_limit and the high_limit with
1544  * the correct alignment and offset, all from @info. Note: current->mm is used
1545  * for the search.
1546  *
1547  * @info: The unmapped area information including the range [low_limit -
1548  * high_limit), the alignment offset and mask.
1549  *
1550  * Return: A memory address or -ENOMEM.
1551  */
1552 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1553 {
1554 	unsigned long length, gap;
1555 	unsigned long low_limit, high_limit;
1556 	struct vm_area_struct *tmp;
1557 
1558 	MA_STATE(mas, &current->mm->mm_mt, 0, 0);
1559 
1560 	/* Adjust search length to account for worst case alignment overhead */
1561 	length = info->length + info->align_mask;
1562 	if (length < info->length)
1563 		return -ENOMEM;
1564 
1565 	low_limit = info->low_limit;
1566 	if (low_limit < mmap_min_addr)
1567 		low_limit = mmap_min_addr;
1568 	high_limit = info->high_limit;
1569 retry:
1570 	if (mas_empty_area(&mas, low_limit, high_limit - 1, length))
1571 		return -ENOMEM;
1572 
1573 	gap = mas.index;
1574 	gap += (info->align_offset - gap) & info->align_mask;
1575 	tmp = mas_next(&mas, ULONG_MAX);
1576 	if (tmp && (tmp->vm_flags & VM_GROWSDOWN)) { /* Avoid prev check if possible */
1577 		if (vm_start_gap(tmp) < gap + length - 1) {
1578 			low_limit = tmp->vm_end;
1579 			mas_reset(&mas);
1580 			goto retry;
1581 		}
1582 	} else {
1583 		tmp = mas_prev(&mas, 0);
1584 		if (tmp && vm_end_gap(tmp) > gap) {
1585 			low_limit = vm_end_gap(tmp);
1586 			mas_reset(&mas);
1587 			goto retry;
1588 		}
1589 	}
1590 
1591 	return gap;
1592 }
1593 
1594 /**
1595  * unmapped_area_topdown() - Find an area between the low_limit and the
1596  * high_limit with the correct alignment and offset at the highest available
1597  * address, all from @info. Note: current->mm is used for the search.
1598  *
1599  * @info: The unmapped area information including the range [low_limit -
1600  * high_limit), the alignment offset and mask.
1601  *
1602  * Return: A memory address or -ENOMEM.
1603  */
1604 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1605 {
1606 	unsigned long length, gap, gap_end;
1607 	unsigned long low_limit, high_limit;
1608 	struct vm_area_struct *tmp;
1609 
1610 	MA_STATE(mas, &current->mm->mm_mt, 0, 0);
1611 	/* Adjust search length to account for worst case alignment overhead */
1612 	length = info->length + info->align_mask;
1613 	if (length < info->length)
1614 		return -ENOMEM;
1615 
1616 	low_limit = info->low_limit;
1617 	if (low_limit < mmap_min_addr)
1618 		low_limit = mmap_min_addr;
1619 	high_limit = info->high_limit;
1620 retry:
1621 	if (mas_empty_area_rev(&mas, low_limit, high_limit - 1, length))
1622 		return -ENOMEM;
1623 
1624 	gap = mas.last + 1 - info->length;
1625 	gap -= (gap - info->align_offset) & info->align_mask;
1626 	gap_end = mas.last;
1627 	tmp = mas_next(&mas, ULONG_MAX);
1628 	if (tmp && (tmp->vm_flags & VM_GROWSDOWN)) { /* Avoid prev check if possible */
1629 		if (vm_start_gap(tmp) <= gap_end) {
1630 			high_limit = vm_start_gap(tmp);
1631 			mas_reset(&mas);
1632 			goto retry;
1633 		}
1634 	} else {
1635 		tmp = mas_prev(&mas, 0);
1636 		if (tmp && vm_end_gap(tmp) > gap) {
1637 			high_limit = tmp->vm_start;
1638 			mas_reset(&mas);
1639 			goto retry;
1640 		}
1641 	}
1642 
1643 	return gap;
1644 }
1645 
1646 /*
1647  * Search for an unmapped address range.
1648  *
1649  * We are looking for a range that:
1650  * - does not intersect with any VMA;
1651  * - is contained within the [low_limit, high_limit) interval;
1652  * - is at least the desired size.
1653  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1654  */
1655 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
1656 {
1657 	unsigned long addr;
1658 
1659 	if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
1660 		addr = unmapped_area_topdown(info);
1661 	else
1662 		addr = unmapped_area(info);
1663 
1664 	trace_vm_unmapped_area(addr, info);
1665 	return addr;
1666 }
1667 
1668 /* Get an address range which is currently unmapped.
1669  * For shmat() with addr=0.
1670  *
1671  * Ugly calling convention alert:
1672  * Return value with the low bits set means error value,
1673  * ie
1674  *	if (ret & ~PAGE_MASK)
1675  *		error = ret;
1676  *
1677  * This function "knows" that -ENOMEM has the bits set.
1678  */
1679 unsigned long
1680 generic_get_unmapped_area(struct file *filp, unsigned long addr,
1681 			  unsigned long len, unsigned long pgoff,
1682 			  unsigned long flags)
1683 {
1684 	struct mm_struct *mm = current->mm;
1685 	struct vm_area_struct *vma, *prev;
1686 	struct vm_unmapped_area_info info;
1687 	const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1688 
1689 	if (len > mmap_end - mmap_min_addr)
1690 		return -ENOMEM;
1691 
1692 	if (flags & MAP_FIXED)
1693 		return addr;
1694 
1695 	if (addr) {
1696 		addr = PAGE_ALIGN(addr);
1697 		vma = find_vma_prev(mm, addr, &prev);
1698 		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1699 		    (!vma || addr + len <= vm_start_gap(vma)) &&
1700 		    (!prev || addr >= vm_end_gap(prev)))
1701 			return addr;
1702 	}
1703 
1704 	info.flags = 0;
1705 	info.length = len;
1706 	info.low_limit = mm->mmap_base;
1707 	info.high_limit = mmap_end;
1708 	info.align_mask = 0;
1709 	info.align_offset = 0;
1710 	return vm_unmapped_area(&info);
1711 }
1712 
1713 #ifndef HAVE_ARCH_UNMAPPED_AREA
1714 unsigned long
1715 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1716 		       unsigned long len, unsigned long pgoff,
1717 		       unsigned long flags)
1718 {
1719 	return generic_get_unmapped_area(filp, addr, len, pgoff, flags);
1720 }
1721 #endif
1722 
1723 /*
1724  * This mmap-allocator allocates new areas top-down from below the
1725  * stack's low limit (the base):
1726  */
1727 unsigned long
1728 generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1729 				  unsigned long len, unsigned long pgoff,
1730 				  unsigned long flags)
1731 {
1732 	struct vm_area_struct *vma, *prev;
1733 	struct mm_struct *mm = current->mm;
1734 	struct vm_unmapped_area_info info;
1735 	const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1736 
1737 	/* requested length too big for entire address space */
1738 	if (len > mmap_end - mmap_min_addr)
1739 		return -ENOMEM;
1740 
1741 	if (flags & MAP_FIXED)
1742 		return addr;
1743 
1744 	/* requesting a specific address */
1745 	if (addr) {
1746 		addr = PAGE_ALIGN(addr);
1747 		vma = find_vma_prev(mm, addr, &prev);
1748 		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1749 				(!vma || addr + len <= vm_start_gap(vma)) &&
1750 				(!prev || addr >= vm_end_gap(prev)))
1751 			return addr;
1752 	}
1753 
1754 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1755 	info.length = len;
1756 	info.low_limit = PAGE_SIZE;
1757 	info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
1758 	info.align_mask = 0;
1759 	info.align_offset = 0;
1760 	addr = vm_unmapped_area(&info);
1761 
1762 	/*
1763 	 * A failed mmap() very likely causes application failure,
1764 	 * so fall back to the bottom-up function here. This scenario
1765 	 * can happen with large stack limits and large mmap()
1766 	 * allocations.
1767 	 */
1768 	if (offset_in_page(addr)) {
1769 		VM_BUG_ON(addr != -ENOMEM);
1770 		info.flags = 0;
1771 		info.low_limit = TASK_UNMAPPED_BASE;
1772 		info.high_limit = mmap_end;
1773 		addr = vm_unmapped_area(&info);
1774 	}
1775 
1776 	return addr;
1777 }
1778 
1779 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1780 unsigned long
1781 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1782 			       unsigned long len, unsigned long pgoff,
1783 			       unsigned long flags)
1784 {
1785 	return generic_get_unmapped_area_topdown(filp, addr, len, pgoff, flags);
1786 }
1787 #endif
1788 
1789 unsigned long
1790 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1791 		unsigned long pgoff, unsigned long flags)
1792 {
1793 	unsigned long (*get_area)(struct file *, unsigned long,
1794 				  unsigned long, unsigned long, unsigned long);
1795 
1796 	unsigned long error = arch_mmap_check(addr, len, flags);
1797 	if (error)
1798 		return error;
1799 
1800 	/* Careful about overflows.. */
1801 	if (len > TASK_SIZE)
1802 		return -ENOMEM;
1803 
1804 	get_area = current->mm->get_unmapped_area;
1805 	if (file) {
1806 		if (file->f_op->get_unmapped_area)
1807 			get_area = file->f_op->get_unmapped_area;
1808 	} else if (flags & MAP_SHARED) {
1809 		/*
1810 		 * mmap_region() will call shmem_zero_setup() to create a file,
1811 		 * so use shmem's get_unmapped_area in case it can be huge.
1812 		 * do_mmap() will clear pgoff, so match alignment.
1813 		 */
1814 		pgoff = 0;
1815 		get_area = shmem_get_unmapped_area;
1816 	}
1817 
1818 	addr = get_area(file, addr, len, pgoff, flags);
1819 	if (IS_ERR_VALUE(addr))
1820 		return addr;
1821 
1822 	if (addr > TASK_SIZE - len)
1823 		return -ENOMEM;
1824 	if (offset_in_page(addr))
1825 		return -EINVAL;
1826 
1827 	error = security_mmap_addr(addr);
1828 	return error ? error : addr;
1829 }
1830 
1831 EXPORT_SYMBOL(get_unmapped_area);
1832 
1833 /**
1834  * find_vma_intersection() - Look up the first VMA which intersects the interval
1835  * @mm: The process address space.
1836  * @start_addr: The inclusive start user address.
1837  * @end_addr: The exclusive end user address.
1838  *
1839  * Returns: The first VMA within the provided range, %NULL otherwise.  Assumes
1840  * start_addr < end_addr.
1841  */
1842 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
1843 					     unsigned long start_addr,
1844 					     unsigned long end_addr)
1845 {
1846 	unsigned long index = start_addr;
1847 
1848 	mmap_assert_locked(mm);
1849 	return mt_find(&mm->mm_mt, &index, end_addr - 1);
1850 }
1851 EXPORT_SYMBOL(find_vma_intersection);
1852 
1853 /**
1854  * find_vma() - Find the VMA for a given address, or the next VMA.
1855  * @mm: The mm_struct to check
1856  * @addr: The address
1857  *
1858  * Returns: The VMA associated with addr, or the next VMA.
1859  * May return %NULL in the case of no VMA at addr or above.
1860  */
1861 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1862 {
1863 	unsigned long index = addr;
1864 
1865 	mmap_assert_locked(mm);
1866 	return mt_find(&mm->mm_mt, &index, ULONG_MAX);
1867 }
1868 EXPORT_SYMBOL(find_vma);
1869 
1870 /**
1871  * find_vma_prev() - Find the VMA for a given address, or the next vma and
1872  * set %pprev to the previous VMA, if any.
1873  * @mm: The mm_struct to check
1874  * @addr: The address
1875  * @pprev: The pointer to set to the previous VMA
1876  *
1877  * Note that RCU lock is missing here since the external mmap_lock() is used
1878  * instead.
1879  *
1880  * Returns: The VMA associated with @addr, or the next vma.
1881  * May return %NULL in the case of no vma at addr or above.
1882  */
1883 struct vm_area_struct *
1884 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1885 			struct vm_area_struct **pprev)
1886 {
1887 	struct vm_area_struct *vma;
1888 	MA_STATE(mas, &mm->mm_mt, addr, addr);
1889 
1890 	vma = mas_walk(&mas);
1891 	*pprev = mas_prev(&mas, 0);
1892 	if (!vma)
1893 		vma = mas_next(&mas, ULONG_MAX);
1894 	return vma;
1895 }
1896 
1897 /*
1898  * Verify that the stack growth is acceptable and
1899  * update accounting. This is shared with both the
1900  * grow-up and grow-down cases.
1901  */
1902 static int acct_stack_growth(struct vm_area_struct *vma,
1903 			     unsigned long size, unsigned long grow)
1904 {
1905 	struct mm_struct *mm = vma->vm_mm;
1906 	unsigned long new_start;
1907 
1908 	/* address space limit tests */
1909 	if (!may_expand_vm(mm, vma->vm_flags, grow))
1910 		return -ENOMEM;
1911 
1912 	/* Stack limit test */
1913 	if (size > rlimit(RLIMIT_STACK))
1914 		return -ENOMEM;
1915 
1916 	/* mlock limit tests */
1917 	if (!mlock_future_ok(mm, vma->vm_flags, grow << PAGE_SHIFT))
1918 		return -ENOMEM;
1919 
1920 	/* Check to ensure the stack will not grow into a hugetlb-only region */
1921 	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1922 			vma->vm_end - size;
1923 	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1924 		return -EFAULT;
1925 
1926 	/*
1927 	 * Overcommit..  This must be the final test, as it will
1928 	 * update security statistics.
1929 	 */
1930 	if (security_vm_enough_memory_mm(mm, grow))
1931 		return -ENOMEM;
1932 
1933 	return 0;
1934 }
1935 
1936 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1937 /*
1938  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1939  * vma is the last one with address > vma->vm_end.  Have to extend vma.
1940  */
1941 static int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1942 {
1943 	struct mm_struct *mm = vma->vm_mm;
1944 	struct vm_area_struct *next;
1945 	unsigned long gap_addr;
1946 	int error = 0;
1947 	MA_STATE(mas, &mm->mm_mt, 0, 0);
1948 
1949 	if (!(vma->vm_flags & VM_GROWSUP))
1950 		return -EFAULT;
1951 
1952 	/* Guard against exceeding limits of the address space. */
1953 	address &= PAGE_MASK;
1954 	if (address >= (TASK_SIZE & PAGE_MASK))
1955 		return -ENOMEM;
1956 	address += PAGE_SIZE;
1957 
1958 	/* Enforce stack_guard_gap */
1959 	gap_addr = address + stack_guard_gap;
1960 
1961 	/* Guard against overflow */
1962 	if (gap_addr < address || gap_addr > TASK_SIZE)
1963 		gap_addr = TASK_SIZE;
1964 
1965 	next = find_vma_intersection(mm, vma->vm_end, gap_addr);
1966 	if (next && vma_is_accessible(next)) {
1967 		if (!(next->vm_flags & VM_GROWSUP))
1968 			return -ENOMEM;
1969 		/* Check that both stack segments have the same anon_vma? */
1970 	}
1971 
1972 	if (mas_preallocate(&mas, GFP_KERNEL))
1973 		return -ENOMEM;
1974 
1975 	/* We must make sure the anon_vma is allocated. */
1976 	if (unlikely(anon_vma_prepare(vma))) {
1977 		mas_destroy(&mas);
1978 		return -ENOMEM;
1979 	}
1980 
1981 	/* Lock the VMA before expanding to prevent concurrent page faults */
1982 	vma_start_write(vma);
1983 	/*
1984 	 * vma->vm_start/vm_end cannot change under us because the caller
1985 	 * is required to hold the mmap_lock in read mode.  We need the
1986 	 * anon_vma lock to serialize against concurrent expand_stacks.
1987 	 */
1988 	anon_vma_lock_write(vma->anon_vma);
1989 
1990 	/* Somebody else might have raced and expanded it already */
1991 	if (address > vma->vm_end) {
1992 		unsigned long size, grow;
1993 
1994 		size = address - vma->vm_start;
1995 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
1996 
1997 		error = -ENOMEM;
1998 		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
1999 			error = acct_stack_growth(vma, size, grow);
2000 			if (!error) {
2001 				/*
2002 				 * We only hold a shared mmap_lock lock here, so
2003 				 * we need to protect against concurrent vma
2004 				 * expansions.  anon_vma_lock_write() doesn't
2005 				 * help here, as we don't guarantee that all
2006 				 * growable vmas in a mm share the same root
2007 				 * anon vma.  So, we reuse mm->page_table_lock
2008 				 * to guard against concurrent vma expansions.
2009 				 */
2010 				spin_lock(&mm->page_table_lock);
2011 				if (vma->vm_flags & VM_LOCKED)
2012 					mm->locked_vm += grow;
2013 				vm_stat_account(mm, vma->vm_flags, grow);
2014 				anon_vma_interval_tree_pre_update_vma(vma);
2015 				vma->vm_end = address;
2016 				/* Overwrite old entry in mtree. */
2017 				mas_set_range(&mas, vma->vm_start, address - 1);
2018 				mas_store_prealloc(&mas, vma);
2019 				anon_vma_interval_tree_post_update_vma(vma);
2020 				spin_unlock(&mm->page_table_lock);
2021 
2022 				perf_event_mmap(vma);
2023 			}
2024 		}
2025 	}
2026 	anon_vma_unlock_write(vma->anon_vma);
2027 	khugepaged_enter_vma(vma, vma->vm_flags);
2028 	mas_destroy(&mas);
2029 	return error;
2030 }
2031 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2032 
2033 /*
2034  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2035  * mmap_lock held for writing.
2036  */
2037 int expand_downwards(struct vm_area_struct *vma, unsigned long address)
2038 {
2039 	struct mm_struct *mm = vma->vm_mm;
2040 	MA_STATE(mas, &mm->mm_mt, vma->vm_start, vma->vm_start);
2041 	struct vm_area_struct *prev;
2042 	int error = 0;
2043 
2044 	if (!(vma->vm_flags & VM_GROWSDOWN))
2045 		return -EFAULT;
2046 
2047 	address &= PAGE_MASK;
2048 	if (address < mmap_min_addr || address < FIRST_USER_ADDRESS)
2049 		return -EPERM;
2050 
2051 	/* Enforce stack_guard_gap */
2052 	prev = mas_prev(&mas, 0);
2053 	/* Check that both stack segments have the same anon_vma? */
2054 	if (prev) {
2055 		if (!(prev->vm_flags & VM_GROWSDOWN) &&
2056 		    vma_is_accessible(prev) &&
2057 		    (address - prev->vm_end < stack_guard_gap))
2058 			return -ENOMEM;
2059 	}
2060 
2061 	if (mas_preallocate(&mas, GFP_KERNEL))
2062 		return -ENOMEM;
2063 
2064 	/* We must make sure the anon_vma is allocated. */
2065 	if (unlikely(anon_vma_prepare(vma))) {
2066 		mas_destroy(&mas);
2067 		return -ENOMEM;
2068 	}
2069 
2070 	/* Lock the VMA before expanding to prevent concurrent page faults */
2071 	vma_start_write(vma);
2072 	/*
2073 	 * vma->vm_start/vm_end cannot change under us because the caller
2074 	 * is required to hold the mmap_lock in read mode.  We need the
2075 	 * anon_vma lock to serialize against concurrent expand_stacks.
2076 	 */
2077 	anon_vma_lock_write(vma->anon_vma);
2078 
2079 	/* Somebody else might have raced and expanded it already */
2080 	if (address < vma->vm_start) {
2081 		unsigned long size, grow;
2082 
2083 		size = vma->vm_end - address;
2084 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
2085 
2086 		error = -ENOMEM;
2087 		if (grow <= vma->vm_pgoff) {
2088 			error = acct_stack_growth(vma, size, grow);
2089 			if (!error) {
2090 				/*
2091 				 * We only hold a shared mmap_lock lock here, so
2092 				 * we need to protect against concurrent vma
2093 				 * expansions.  anon_vma_lock_write() doesn't
2094 				 * help here, as we don't guarantee that all
2095 				 * growable vmas in a mm share the same root
2096 				 * anon vma.  So, we reuse mm->page_table_lock
2097 				 * to guard against concurrent vma expansions.
2098 				 */
2099 				spin_lock(&mm->page_table_lock);
2100 				if (vma->vm_flags & VM_LOCKED)
2101 					mm->locked_vm += grow;
2102 				vm_stat_account(mm, vma->vm_flags, grow);
2103 				anon_vma_interval_tree_pre_update_vma(vma);
2104 				vma->vm_start = address;
2105 				vma->vm_pgoff -= grow;
2106 				/* Overwrite old entry in mtree. */
2107 				mas_set_range(&mas, address, vma->vm_end - 1);
2108 				mas_store_prealloc(&mas, vma);
2109 				anon_vma_interval_tree_post_update_vma(vma);
2110 				spin_unlock(&mm->page_table_lock);
2111 
2112 				perf_event_mmap(vma);
2113 			}
2114 		}
2115 	}
2116 	anon_vma_unlock_write(vma->anon_vma);
2117 	khugepaged_enter_vma(vma, vma->vm_flags);
2118 	mas_destroy(&mas);
2119 	return error;
2120 }
2121 
2122 /* enforced gap between the expanding stack and other mappings. */
2123 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2124 
2125 static int __init cmdline_parse_stack_guard_gap(char *p)
2126 {
2127 	unsigned long val;
2128 	char *endptr;
2129 
2130 	val = simple_strtoul(p, &endptr, 10);
2131 	if (!*endptr)
2132 		stack_guard_gap = val << PAGE_SHIFT;
2133 
2134 	return 1;
2135 }
2136 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2137 
2138 #ifdef CONFIG_STACK_GROWSUP
2139 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
2140 {
2141 	return expand_upwards(vma, address);
2142 }
2143 
2144 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
2145 {
2146 	struct vm_area_struct *vma, *prev;
2147 
2148 	addr &= PAGE_MASK;
2149 	vma = find_vma_prev(mm, addr, &prev);
2150 	if (vma && (vma->vm_start <= addr))
2151 		return vma;
2152 	if (!prev)
2153 		return NULL;
2154 	if (expand_stack_locked(prev, addr))
2155 		return NULL;
2156 	if (prev->vm_flags & VM_LOCKED)
2157 		populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2158 	return prev;
2159 }
2160 #else
2161 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
2162 {
2163 	if (unlikely(!(vma->vm_flags & VM_GROWSDOWN)))
2164 		return -EINVAL;
2165 	return expand_downwards(vma, address);
2166 }
2167 
2168 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
2169 {
2170 	struct vm_area_struct *vma;
2171 	unsigned long start;
2172 
2173 	addr &= PAGE_MASK;
2174 	vma = find_vma(mm, addr);
2175 	if (!vma)
2176 		return NULL;
2177 	if (vma->vm_start <= addr)
2178 		return vma;
2179 	start = vma->vm_start;
2180 	if (expand_stack_locked(vma, addr))
2181 		return NULL;
2182 	if (vma->vm_flags & VM_LOCKED)
2183 		populate_vma_page_range(vma, addr, start, NULL);
2184 	return vma;
2185 }
2186 #endif
2187 
2188 /*
2189  * IA64 has some horrid mapping rules: it can expand both up and down,
2190  * but with various special rules.
2191  *
2192  * We'll get rid of this architecture eventually, so the ugliness is
2193  * temporary.
2194  */
2195 #ifdef CONFIG_IA64
2196 static inline bool vma_expand_ok(struct vm_area_struct *vma, unsigned long addr)
2197 {
2198 	return REGION_NUMBER(addr) == REGION_NUMBER(vma->vm_start) &&
2199 		REGION_OFFSET(addr) < RGN_MAP_LIMIT;
2200 }
2201 
2202 /*
2203  * IA64 stacks grow down, but there's a special register backing store
2204  * that can grow up. Only sequentially, though, so the new address must
2205  * match vm_end.
2206  */
2207 static inline int vma_expand_up(struct vm_area_struct *vma, unsigned long addr)
2208 {
2209 	if (!vma_expand_ok(vma, addr))
2210 		return -EFAULT;
2211 	if (vma->vm_end != (addr & PAGE_MASK))
2212 		return -EFAULT;
2213 	return expand_upwards(vma, addr);
2214 }
2215 
2216 static inline bool vma_expand_down(struct vm_area_struct *vma, unsigned long addr)
2217 {
2218 	if (!vma_expand_ok(vma, addr))
2219 		return -EFAULT;
2220 	return expand_downwards(vma, addr);
2221 }
2222 
2223 #elif defined(CONFIG_STACK_GROWSUP)
2224 
2225 #define vma_expand_up(vma,addr) expand_upwards(vma, addr)
2226 #define vma_expand_down(vma, addr) (-EFAULT)
2227 
2228 #else
2229 
2230 #define vma_expand_up(vma,addr) (-EFAULT)
2231 #define vma_expand_down(vma, addr) expand_downwards(vma, addr)
2232 
2233 #endif
2234 
2235 /*
2236  * expand_stack(): legacy interface for page faulting. Don't use unless
2237  * you have to.
2238  *
2239  * This is called with the mm locked for reading, drops the lock, takes
2240  * the lock for writing, tries to look up a vma again, expands it if
2241  * necessary, and downgrades the lock to reading again.
2242  *
2243  * If no vma is found or it can't be expanded, it returns NULL and has
2244  * dropped the lock.
2245  */
2246 struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr)
2247 {
2248 	struct vm_area_struct *vma, *prev;
2249 
2250 	mmap_read_unlock(mm);
2251 	if (mmap_write_lock_killable(mm))
2252 		return NULL;
2253 
2254 	vma = find_vma_prev(mm, addr, &prev);
2255 	if (vma && vma->vm_start <= addr)
2256 		goto success;
2257 
2258 	if (prev && !vma_expand_up(prev, addr)) {
2259 		vma = prev;
2260 		goto success;
2261 	}
2262 
2263 	if (vma && !vma_expand_down(vma, addr))
2264 		goto success;
2265 
2266 	mmap_write_unlock(mm);
2267 	return NULL;
2268 
2269 success:
2270 	mmap_write_downgrade(mm);
2271 	return vma;
2272 }
2273 
2274 /*
2275  * Ok - we have the memory areas we should free on a maple tree so release them,
2276  * and do the vma updates.
2277  *
2278  * Called with the mm semaphore held.
2279  */
2280 static inline void remove_mt(struct mm_struct *mm, struct ma_state *mas)
2281 {
2282 	unsigned long nr_accounted = 0;
2283 	struct vm_area_struct *vma;
2284 
2285 	/* Update high watermark before we lower total_vm */
2286 	update_hiwater_vm(mm);
2287 	mas_for_each(mas, vma, ULONG_MAX) {
2288 		long nrpages = vma_pages(vma);
2289 
2290 		if (vma->vm_flags & VM_ACCOUNT)
2291 			nr_accounted += nrpages;
2292 		vm_stat_account(mm, vma->vm_flags, -nrpages);
2293 		remove_vma(vma, false);
2294 	}
2295 	vm_unacct_memory(nr_accounted);
2296 	validate_mm(mm);
2297 }
2298 
2299 /*
2300  * Get rid of page table information in the indicated region.
2301  *
2302  * Called with the mm semaphore held.
2303  */
2304 static void unmap_region(struct mm_struct *mm, struct maple_tree *mt,
2305 		struct vm_area_struct *vma, struct vm_area_struct *prev,
2306 		struct vm_area_struct *next,
2307 		unsigned long start, unsigned long end, bool mm_wr_locked)
2308 {
2309 	struct mmu_gather tlb;
2310 
2311 	lru_add_drain();
2312 	tlb_gather_mmu(&tlb, mm);
2313 	update_hiwater_rss(mm);
2314 	unmap_vmas(&tlb, mt, vma, start, end, mm_wr_locked);
2315 	free_pgtables(&tlb, mt, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2316 				 next ? next->vm_start : USER_PGTABLES_CEILING,
2317 				 mm_wr_locked);
2318 	tlb_finish_mmu(&tlb);
2319 }
2320 
2321 /*
2322  * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2323  * has already been checked or doesn't make sense to fail.
2324  * VMA Iterator will point to the end VMA.
2325  */
2326 int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
2327 		unsigned long addr, int new_below)
2328 {
2329 	struct vma_prepare vp;
2330 	struct vm_area_struct *new;
2331 	int err;
2332 
2333 	validate_mm(vma->vm_mm);
2334 
2335 	WARN_ON(vma->vm_start >= addr);
2336 	WARN_ON(vma->vm_end <= addr);
2337 
2338 	if (vma->vm_ops && vma->vm_ops->may_split) {
2339 		err = vma->vm_ops->may_split(vma, addr);
2340 		if (err)
2341 			return err;
2342 	}
2343 
2344 	new = vm_area_dup(vma);
2345 	if (!new)
2346 		return -ENOMEM;
2347 
2348 	err = -ENOMEM;
2349 	if (vma_iter_prealloc(vmi))
2350 		goto out_free_vma;
2351 
2352 	if (new_below) {
2353 		new->vm_end = addr;
2354 	} else {
2355 		new->vm_start = addr;
2356 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2357 	}
2358 
2359 	err = vma_dup_policy(vma, new);
2360 	if (err)
2361 		goto out_free_vmi;
2362 
2363 	err = anon_vma_clone(new, vma);
2364 	if (err)
2365 		goto out_free_mpol;
2366 
2367 	if (new->vm_file)
2368 		get_file(new->vm_file);
2369 
2370 	if (new->vm_ops && new->vm_ops->open)
2371 		new->vm_ops->open(new);
2372 
2373 	init_vma_prep(&vp, vma);
2374 	vp.insert = new;
2375 	vma_prepare(&vp);
2376 	vma_adjust_trans_huge(vma, vma->vm_start, addr, 0);
2377 
2378 	if (new_below) {
2379 		vma->vm_start = addr;
2380 		vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT;
2381 	} else {
2382 		vma->vm_end = addr;
2383 	}
2384 
2385 	/* vma_complete stores the new vma */
2386 	vma_complete(&vp, vmi, vma->vm_mm);
2387 
2388 	/* Success. */
2389 	if (new_below)
2390 		vma_next(vmi);
2391 	validate_mm(vma->vm_mm);
2392 	return 0;
2393 
2394 out_free_mpol:
2395 	mpol_put(vma_policy(new));
2396 out_free_vmi:
2397 	vma_iter_free(vmi);
2398 out_free_vma:
2399 	vm_area_free(new);
2400 	validate_mm(vma->vm_mm);
2401 	return err;
2402 }
2403 
2404 /*
2405  * Split a vma into two pieces at address 'addr', a new vma is allocated
2406  * either for the first part or the tail.
2407  */
2408 int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
2409 	      unsigned long addr, int new_below)
2410 {
2411 	if (vma->vm_mm->map_count >= sysctl_max_map_count)
2412 		return -ENOMEM;
2413 
2414 	return __split_vma(vmi, vma, addr, new_below);
2415 }
2416 
2417 /*
2418  * do_vmi_align_munmap() - munmap the aligned region from @start to @end.
2419  * @vmi: The vma iterator
2420  * @vma: The starting vm_area_struct
2421  * @mm: The mm_struct
2422  * @start: The aligned start address to munmap.
2423  * @end: The aligned end address to munmap.
2424  * @uf: The userfaultfd list_head
2425  * @unlock: Set to true to drop the mmap_lock.  unlocking only happens on
2426  * success.
2427  *
2428  * Return: 0 on success and drops the lock if so directed, error and leaves the
2429  * lock held otherwise.
2430  */
2431 static int
2432 do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
2433 		    struct mm_struct *mm, unsigned long start,
2434 		    unsigned long end, struct list_head *uf, bool unlock)
2435 {
2436 	struct vm_area_struct *prev, *next = NULL;
2437 	struct maple_tree mt_detach;
2438 	int count = 0;
2439 	int error = -ENOMEM;
2440 	unsigned long locked_vm = 0;
2441 	MA_STATE(mas_detach, &mt_detach, 0, 0);
2442 	mt_init_flags(&mt_detach, vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK);
2443 	mt_set_external_lock(&mt_detach, &mm->mmap_lock);
2444 
2445 	/*
2446 	 * If we need to split any vma, do it now to save pain later.
2447 	 *
2448 	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2449 	 * unmapped vm_area_struct will remain in use: so lower split_vma
2450 	 * places tmp vma above, and higher split_vma places tmp vma below.
2451 	 */
2452 
2453 	/* Does it split the first one? */
2454 	if (start > vma->vm_start) {
2455 
2456 		/*
2457 		 * Make sure that map_count on return from munmap() will
2458 		 * not exceed its limit; but let map_count go just above
2459 		 * its limit temporarily, to help free resources as expected.
2460 		 */
2461 		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2462 			goto map_count_exceeded;
2463 
2464 		error = __split_vma(vmi, vma, start, 0);
2465 		if (error)
2466 			goto start_split_failed;
2467 
2468 		vma = vma_iter_load(vmi);
2469 	}
2470 
2471 	prev = vma_prev(vmi);
2472 	if (unlikely((!prev)))
2473 		vma_iter_set(vmi, start);
2474 
2475 	/*
2476 	 * Detach a range of VMAs from the mm. Using next as a temp variable as
2477 	 * it is always overwritten.
2478 	 */
2479 	for_each_vma_range(*vmi, next, end) {
2480 		/* Does it split the end? */
2481 		if (next->vm_end > end) {
2482 			error = __split_vma(vmi, next, end, 0);
2483 			if (error)
2484 				goto end_split_failed;
2485 		}
2486 		vma_start_write(next);
2487 		mas_set_range(&mas_detach, next->vm_start, next->vm_end - 1);
2488 		error = mas_store_gfp(&mas_detach, next, GFP_KERNEL);
2489 		if (error)
2490 			goto munmap_gather_failed;
2491 		vma_mark_detached(next, true);
2492 		if (next->vm_flags & VM_LOCKED)
2493 			locked_vm += vma_pages(next);
2494 
2495 		count++;
2496 		if (unlikely(uf)) {
2497 			/*
2498 			 * If userfaultfd_unmap_prep returns an error the vmas
2499 			 * will remain split, but userland will get a
2500 			 * highly unexpected error anyway. This is no
2501 			 * different than the case where the first of the two
2502 			 * __split_vma fails, but we don't undo the first
2503 			 * split, despite we could. This is unlikely enough
2504 			 * failure that it's not worth optimizing it for.
2505 			 */
2506 			error = userfaultfd_unmap_prep(next, start, end, uf);
2507 
2508 			if (error)
2509 				goto userfaultfd_error;
2510 		}
2511 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE
2512 		BUG_ON(next->vm_start < start);
2513 		BUG_ON(next->vm_start > end);
2514 #endif
2515 	}
2516 
2517 	if (vma_iter_end(vmi) > end)
2518 		next = vma_iter_load(vmi);
2519 
2520 	if (!next)
2521 		next = vma_next(vmi);
2522 
2523 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
2524 	/* Make sure no VMAs are about to be lost. */
2525 	{
2526 		MA_STATE(test, &mt_detach, start, end - 1);
2527 		struct vm_area_struct *vma_mas, *vma_test;
2528 		int test_count = 0;
2529 
2530 		vma_iter_set(vmi, start);
2531 		rcu_read_lock();
2532 		vma_test = mas_find(&test, end - 1);
2533 		for_each_vma_range(*vmi, vma_mas, end) {
2534 			BUG_ON(vma_mas != vma_test);
2535 			test_count++;
2536 			vma_test = mas_next(&test, end - 1);
2537 		}
2538 		rcu_read_unlock();
2539 		BUG_ON(count != test_count);
2540 	}
2541 #endif
2542 	vma_iter_set(vmi, start);
2543 	error = vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL);
2544 	if (error)
2545 		goto clear_tree_failed;
2546 
2547 	/* Point of no return */
2548 	mm->locked_vm -= locked_vm;
2549 	mm->map_count -= count;
2550 	if (unlock)
2551 		mmap_write_downgrade(mm);
2552 
2553 	/*
2554 	 * We can free page tables without write-locking mmap_lock because VMAs
2555 	 * were isolated before we downgraded mmap_lock.
2556 	 */
2557 	unmap_region(mm, &mt_detach, vma, prev, next, start, end, !unlock);
2558 	/* Statistics and freeing VMAs */
2559 	mas_set(&mas_detach, start);
2560 	remove_mt(mm, &mas_detach);
2561 	__mt_destroy(&mt_detach);
2562 	validate_mm(mm);
2563 	if (unlock)
2564 		mmap_read_unlock(mm);
2565 
2566 	return 0;
2567 
2568 clear_tree_failed:
2569 userfaultfd_error:
2570 munmap_gather_failed:
2571 end_split_failed:
2572 	mas_set(&mas_detach, 0);
2573 	mas_for_each(&mas_detach, next, end)
2574 		vma_mark_detached(next, false);
2575 
2576 	__mt_destroy(&mt_detach);
2577 start_split_failed:
2578 map_count_exceeded:
2579 	validate_mm(mm);
2580 	return error;
2581 }
2582 
2583 /*
2584  * do_vmi_munmap() - munmap a given range.
2585  * @vmi: The vma iterator
2586  * @mm: The mm_struct
2587  * @start: The start address to munmap
2588  * @len: The length of the range to munmap
2589  * @uf: The userfaultfd list_head
2590  * @unlock: set to true if the user wants to drop the mmap_lock on success
2591  *
2592  * This function takes a @mas that is either pointing to the previous VMA or set
2593  * to MA_START and sets it up to remove the mapping(s).  The @len will be
2594  * aligned and any arch_unmap work will be preformed.
2595  *
2596  * Return: 0 on success and drops the lock if so directed, error and leaves the
2597  * lock held otherwise.
2598  */
2599 int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
2600 		  unsigned long start, size_t len, struct list_head *uf,
2601 		  bool unlock)
2602 {
2603 	unsigned long end;
2604 	struct vm_area_struct *vma;
2605 
2606 	if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2607 		return -EINVAL;
2608 
2609 	end = start + PAGE_ALIGN(len);
2610 	if (end == start)
2611 		return -EINVAL;
2612 
2613 	 /* arch_unmap() might do unmaps itself.  */
2614 	arch_unmap(mm, start, end);
2615 
2616 	/* Find the first overlapping VMA */
2617 	vma = vma_find(vmi, end);
2618 	if (!vma) {
2619 		if (unlock)
2620 			mmap_write_unlock(mm);
2621 		return 0;
2622 	}
2623 
2624 	return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock);
2625 }
2626 
2627 /* do_munmap() - Wrapper function for non-maple tree aware do_munmap() calls.
2628  * @mm: The mm_struct
2629  * @start: The start address to munmap
2630  * @len: The length to be munmapped.
2631  * @uf: The userfaultfd list_head
2632  *
2633  * Return: 0 on success, error otherwise.
2634  */
2635 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2636 	      struct list_head *uf)
2637 {
2638 	VMA_ITERATOR(vmi, mm, start);
2639 
2640 	return do_vmi_munmap(&vmi, mm, start, len, uf, false);
2641 }
2642 
2643 unsigned long mmap_region(struct file *file, unsigned long addr,
2644 		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2645 		struct list_head *uf)
2646 {
2647 	struct mm_struct *mm = current->mm;
2648 	struct vm_area_struct *vma = NULL;
2649 	struct vm_area_struct *next, *prev, *merge;
2650 	pgoff_t pglen = len >> PAGE_SHIFT;
2651 	unsigned long charged = 0;
2652 	unsigned long end = addr + len;
2653 	unsigned long merge_start = addr, merge_end = end;
2654 	pgoff_t vm_pgoff;
2655 	int error;
2656 	VMA_ITERATOR(vmi, mm, addr);
2657 
2658 	/* Check against address space limit. */
2659 	if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
2660 		unsigned long nr_pages;
2661 
2662 		/*
2663 		 * MAP_FIXED may remove pages of mappings that intersects with
2664 		 * requested mapping. Account for the pages it would unmap.
2665 		 */
2666 		nr_pages = count_vma_pages_range(mm, addr, end);
2667 
2668 		if (!may_expand_vm(mm, vm_flags,
2669 					(len >> PAGE_SHIFT) - nr_pages))
2670 			return -ENOMEM;
2671 	}
2672 
2673 	/* Unmap any existing mapping in the area */
2674 	if (do_vmi_munmap(&vmi, mm, addr, len, uf, false))
2675 		return -ENOMEM;
2676 
2677 	/*
2678 	 * Private writable mapping: check memory availability
2679 	 */
2680 	if (accountable_mapping(file, vm_flags)) {
2681 		charged = len >> PAGE_SHIFT;
2682 		if (security_vm_enough_memory_mm(mm, charged))
2683 			return -ENOMEM;
2684 		vm_flags |= VM_ACCOUNT;
2685 	}
2686 
2687 	next = vma_next(&vmi);
2688 	prev = vma_prev(&vmi);
2689 	if (vm_flags & VM_SPECIAL)
2690 		goto cannot_expand;
2691 
2692 	/* Attempt to expand an old mapping */
2693 	/* Check next */
2694 	if (next && next->vm_start == end && !vma_policy(next) &&
2695 	    can_vma_merge_before(next, vm_flags, NULL, file, pgoff+pglen,
2696 				 NULL_VM_UFFD_CTX, NULL)) {
2697 		merge_end = next->vm_end;
2698 		vma = next;
2699 		vm_pgoff = next->vm_pgoff - pglen;
2700 	}
2701 
2702 	/* Check prev */
2703 	if (prev && prev->vm_end == addr && !vma_policy(prev) &&
2704 	    (vma ? can_vma_merge_after(prev, vm_flags, vma->anon_vma, file,
2705 				       pgoff, vma->vm_userfaultfd_ctx, NULL) :
2706 		   can_vma_merge_after(prev, vm_flags, NULL, file, pgoff,
2707 				       NULL_VM_UFFD_CTX, NULL))) {
2708 		merge_start = prev->vm_start;
2709 		vma = prev;
2710 		vm_pgoff = prev->vm_pgoff;
2711 	}
2712 
2713 
2714 	/* Actually expand, if possible */
2715 	if (vma &&
2716 	    !vma_expand(&vmi, vma, merge_start, merge_end, vm_pgoff, next)) {
2717 		khugepaged_enter_vma(vma, vm_flags);
2718 		goto expanded;
2719 	}
2720 
2721 cannot_expand:
2722 	if (prev)
2723 		vma_iter_next_range(&vmi);
2724 
2725 	/*
2726 	 * Determine the object being mapped and call the appropriate
2727 	 * specific mapper. the address has already been validated, but
2728 	 * not unmapped, but the maps are removed from the list.
2729 	 */
2730 	vma = vm_area_alloc(mm);
2731 	if (!vma) {
2732 		error = -ENOMEM;
2733 		goto unacct_error;
2734 	}
2735 
2736 	vma_iter_set(&vmi, addr);
2737 	vma->vm_start = addr;
2738 	vma->vm_end = end;
2739 	vm_flags_init(vma, vm_flags);
2740 	vma->vm_page_prot = vm_get_page_prot(vm_flags);
2741 	vma->vm_pgoff = pgoff;
2742 
2743 	if (file) {
2744 		if (vm_flags & VM_SHARED) {
2745 			error = mapping_map_writable(file->f_mapping);
2746 			if (error)
2747 				goto free_vma;
2748 		}
2749 
2750 		vma->vm_file = get_file(file);
2751 		error = call_mmap(file, vma);
2752 		if (error)
2753 			goto unmap_and_free_vma;
2754 
2755 		/*
2756 		 * Expansion is handled above, merging is handled below.
2757 		 * Drivers should not alter the address of the VMA.
2758 		 */
2759 		error = -EINVAL;
2760 		if (WARN_ON((addr != vma->vm_start)))
2761 			goto close_and_free_vma;
2762 
2763 		vma_iter_set(&vmi, addr);
2764 		/*
2765 		 * If vm_flags changed after call_mmap(), we should try merge
2766 		 * vma again as we may succeed this time.
2767 		 */
2768 		if (unlikely(vm_flags != vma->vm_flags && prev)) {
2769 			merge = vma_merge(&vmi, mm, prev, vma->vm_start,
2770 				    vma->vm_end, vma->vm_flags, NULL,
2771 				    vma->vm_file, vma->vm_pgoff, NULL,
2772 				    NULL_VM_UFFD_CTX, NULL);
2773 			if (merge) {
2774 				/*
2775 				 * ->mmap() can change vma->vm_file and fput
2776 				 * the original file. So fput the vma->vm_file
2777 				 * here or we would add an extra fput for file
2778 				 * and cause general protection fault
2779 				 * ultimately.
2780 				 */
2781 				fput(vma->vm_file);
2782 				vm_area_free(vma);
2783 				vma = merge;
2784 				/* Update vm_flags to pick up the change. */
2785 				vm_flags = vma->vm_flags;
2786 				goto unmap_writable;
2787 			}
2788 		}
2789 
2790 		vm_flags = vma->vm_flags;
2791 	} else if (vm_flags & VM_SHARED) {
2792 		error = shmem_zero_setup(vma);
2793 		if (error)
2794 			goto free_vma;
2795 	} else {
2796 		vma_set_anonymous(vma);
2797 	}
2798 
2799 	if (map_deny_write_exec(vma, vma->vm_flags)) {
2800 		error = -EACCES;
2801 		goto close_and_free_vma;
2802 	}
2803 
2804 	/* Allow architectures to sanity-check the vm_flags */
2805 	error = -EINVAL;
2806 	if (!arch_validate_flags(vma->vm_flags))
2807 		goto close_and_free_vma;
2808 
2809 	error = -ENOMEM;
2810 	if (vma_iter_prealloc(&vmi))
2811 		goto close_and_free_vma;
2812 
2813 	/* Lock the VMA since it is modified after insertion into VMA tree */
2814 	vma_start_write(vma);
2815 	if (vma->vm_file)
2816 		i_mmap_lock_write(vma->vm_file->f_mapping);
2817 
2818 	vma_iter_store(&vmi, vma);
2819 	mm->map_count++;
2820 	if (vma->vm_file) {
2821 		if (vma->vm_flags & VM_SHARED)
2822 			mapping_allow_writable(vma->vm_file->f_mapping);
2823 
2824 		flush_dcache_mmap_lock(vma->vm_file->f_mapping);
2825 		vma_interval_tree_insert(vma, &vma->vm_file->f_mapping->i_mmap);
2826 		flush_dcache_mmap_unlock(vma->vm_file->f_mapping);
2827 		i_mmap_unlock_write(vma->vm_file->f_mapping);
2828 	}
2829 
2830 	/*
2831 	 * vma_merge() calls khugepaged_enter_vma() either, the below
2832 	 * call covers the non-merge case.
2833 	 */
2834 	khugepaged_enter_vma(vma, vma->vm_flags);
2835 
2836 	/* Once vma denies write, undo our temporary denial count */
2837 unmap_writable:
2838 	if (file && vm_flags & VM_SHARED)
2839 		mapping_unmap_writable(file->f_mapping);
2840 	file = vma->vm_file;
2841 	ksm_add_vma(vma);
2842 expanded:
2843 	perf_event_mmap(vma);
2844 
2845 	vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
2846 	if (vm_flags & VM_LOCKED) {
2847 		if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
2848 					is_vm_hugetlb_page(vma) ||
2849 					vma == get_gate_vma(current->mm))
2850 			vm_flags_clear(vma, VM_LOCKED_MASK);
2851 		else
2852 			mm->locked_vm += (len >> PAGE_SHIFT);
2853 	}
2854 
2855 	if (file)
2856 		uprobe_mmap(vma);
2857 
2858 	/*
2859 	 * New (or expanded) vma always get soft dirty status.
2860 	 * Otherwise user-space soft-dirty page tracker won't
2861 	 * be able to distinguish situation when vma area unmapped,
2862 	 * then new mapped in-place (which must be aimed as
2863 	 * a completely new data area).
2864 	 */
2865 	vm_flags_set(vma, VM_SOFTDIRTY);
2866 
2867 	vma_set_page_prot(vma);
2868 
2869 	validate_mm(mm);
2870 	return addr;
2871 
2872 close_and_free_vma:
2873 	if (file && vma->vm_ops && vma->vm_ops->close)
2874 		vma->vm_ops->close(vma);
2875 
2876 	if (file || vma->vm_file) {
2877 unmap_and_free_vma:
2878 		fput(vma->vm_file);
2879 		vma->vm_file = NULL;
2880 
2881 		/* Undo any partial mapping done by a device driver. */
2882 		unmap_region(mm, &mm->mm_mt, vma, prev, next, vma->vm_start,
2883 			     vma->vm_end, true);
2884 	}
2885 	if (file && (vm_flags & VM_SHARED))
2886 		mapping_unmap_writable(file->f_mapping);
2887 free_vma:
2888 	vm_area_free(vma);
2889 unacct_error:
2890 	if (charged)
2891 		vm_unacct_memory(charged);
2892 	validate_mm(mm);
2893 	return error;
2894 }
2895 
2896 static int __vm_munmap(unsigned long start, size_t len, bool unlock)
2897 {
2898 	int ret;
2899 	struct mm_struct *mm = current->mm;
2900 	LIST_HEAD(uf);
2901 	VMA_ITERATOR(vmi, mm, start);
2902 
2903 	if (mmap_write_lock_killable(mm))
2904 		return -EINTR;
2905 
2906 	ret = do_vmi_munmap(&vmi, mm, start, len, &uf, unlock);
2907 	if (ret || !unlock)
2908 		mmap_write_unlock(mm);
2909 
2910 	userfaultfd_unmap_complete(mm, &uf);
2911 	return ret;
2912 }
2913 
2914 int vm_munmap(unsigned long start, size_t len)
2915 {
2916 	return __vm_munmap(start, len, false);
2917 }
2918 EXPORT_SYMBOL(vm_munmap);
2919 
2920 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2921 {
2922 	addr = untagged_addr(addr);
2923 	return __vm_munmap(addr, len, true);
2924 }
2925 
2926 
2927 /*
2928  * Emulation of deprecated remap_file_pages() syscall.
2929  */
2930 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2931 		unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2932 {
2933 
2934 	struct mm_struct *mm = current->mm;
2935 	struct vm_area_struct *vma;
2936 	unsigned long populate = 0;
2937 	unsigned long ret = -EINVAL;
2938 	struct file *file;
2939 
2940 	pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/mm/remap_file_pages.rst.\n",
2941 		     current->comm, current->pid);
2942 
2943 	if (prot)
2944 		return ret;
2945 	start = start & PAGE_MASK;
2946 	size = size & PAGE_MASK;
2947 
2948 	if (start + size <= start)
2949 		return ret;
2950 
2951 	/* Does pgoff wrap? */
2952 	if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2953 		return ret;
2954 
2955 	if (mmap_write_lock_killable(mm))
2956 		return -EINTR;
2957 
2958 	vma = vma_lookup(mm, start);
2959 
2960 	if (!vma || !(vma->vm_flags & VM_SHARED))
2961 		goto out;
2962 
2963 	if (start + size > vma->vm_end) {
2964 		VMA_ITERATOR(vmi, mm, vma->vm_end);
2965 		struct vm_area_struct *next, *prev = vma;
2966 
2967 		for_each_vma_range(vmi, next, start + size) {
2968 			/* hole between vmas ? */
2969 			if (next->vm_start != prev->vm_end)
2970 				goto out;
2971 
2972 			if (next->vm_file != vma->vm_file)
2973 				goto out;
2974 
2975 			if (next->vm_flags != vma->vm_flags)
2976 				goto out;
2977 
2978 			if (start + size <= next->vm_end)
2979 				break;
2980 
2981 			prev = next;
2982 		}
2983 
2984 		if (!next)
2985 			goto out;
2986 	}
2987 
2988 	prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2989 	prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2990 	prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2991 
2992 	flags &= MAP_NONBLOCK;
2993 	flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2994 	if (vma->vm_flags & VM_LOCKED)
2995 		flags |= MAP_LOCKED;
2996 
2997 	file = get_file(vma->vm_file);
2998 	ret = do_mmap(vma->vm_file, start, size,
2999 			prot, flags, pgoff, &populate, NULL);
3000 	fput(file);
3001 out:
3002 	mmap_write_unlock(mm);
3003 	if (populate)
3004 		mm_populate(ret, populate);
3005 	if (!IS_ERR_VALUE(ret))
3006 		ret = 0;
3007 	return ret;
3008 }
3009 
3010 /*
3011  * do_vma_munmap() - Unmap a full or partial vma.
3012  * @vmi: The vma iterator pointing at the vma
3013  * @vma: The first vma to be munmapped
3014  * @start: the start of the address to unmap
3015  * @end: The end of the address to unmap
3016  * @uf: The userfaultfd list_head
3017  * @unlock: Drop the lock on success
3018  *
3019  * unmaps a VMA mapping when the vma iterator is already in position.
3020  * Does not handle alignment.
3021  *
3022  * Return: 0 on success drops the lock of so directed, error on failure and will
3023  * still hold the lock.
3024  */
3025 int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3026 		unsigned long start, unsigned long end, struct list_head *uf,
3027 		bool unlock)
3028 {
3029 	struct mm_struct *mm = vma->vm_mm;
3030 
3031 	arch_unmap(mm, start, end);
3032 	return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock);
3033 }
3034 
3035 /*
3036  * do_brk_flags() - Increase the brk vma if the flags match.
3037  * @vmi: The vma iterator
3038  * @addr: The start address
3039  * @len: The length of the increase
3040  * @vma: The vma,
3041  * @flags: The VMA Flags
3042  *
3043  * Extend the brk VMA from addr to addr + len.  If the VMA is NULL or the flags
3044  * do not match then create a new anonymous VMA.  Eventually we may be able to
3045  * do some brk-specific accounting here.
3046  */
3047 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma,
3048 		unsigned long addr, unsigned long len, unsigned long flags)
3049 {
3050 	struct mm_struct *mm = current->mm;
3051 	struct vma_prepare vp;
3052 
3053 	validate_mm(mm);
3054 	/*
3055 	 * Check against address space limits by the changed size
3056 	 * Note: This happens *after* clearing old mappings in some code paths.
3057 	 */
3058 	flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
3059 	if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3060 		return -ENOMEM;
3061 
3062 	if (mm->map_count > sysctl_max_map_count)
3063 		return -ENOMEM;
3064 
3065 	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3066 		return -ENOMEM;
3067 
3068 	/*
3069 	 * Expand the existing vma if possible; Note that singular lists do not
3070 	 * occur after forking, so the expand will only happen on new VMAs.
3071 	 */
3072 	if (vma && vma->vm_end == addr && !vma_policy(vma) &&
3073 	    can_vma_merge_after(vma, flags, NULL, NULL,
3074 				addr >> PAGE_SHIFT, NULL_VM_UFFD_CTX, NULL)) {
3075 		if (vma_iter_prealloc(vmi))
3076 			goto unacct_fail;
3077 
3078 		init_vma_prep(&vp, vma);
3079 		vma_prepare(&vp);
3080 		vma_adjust_trans_huge(vma, vma->vm_start, addr + len, 0);
3081 		vma->vm_end = addr + len;
3082 		vm_flags_set(vma, VM_SOFTDIRTY);
3083 		vma_iter_store(vmi, vma);
3084 
3085 		vma_complete(&vp, vmi, mm);
3086 		khugepaged_enter_vma(vma, flags);
3087 		goto out;
3088 	}
3089 
3090 	/* create a vma struct for an anonymous mapping */
3091 	vma = vm_area_alloc(mm);
3092 	if (!vma)
3093 		goto unacct_fail;
3094 
3095 	vma_set_anonymous(vma);
3096 	vma->vm_start = addr;
3097 	vma->vm_end = addr + len;
3098 	vma->vm_pgoff = addr >> PAGE_SHIFT;
3099 	vm_flags_init(vma, flags);
3100 	vma->vm_page_prot = vm_get_page_prot(flags);
3101 	if (vma_iter_store_gfp(vmi, vma, GFP_KERNEL))
3102 		goto mas_store_fail;
3103 
3104 	mm->map_count++;
3105 	ksm_add_vma(vma);
3106 out:
3107 	perf_event_mmap(vma);
3108 	mm->total_vm += len >> PAGE_SHIFT;
3109 	mm->data_vm += len >> PAGE_SHIFT;
3110 	if (flags & VM_LOCKED)
3111 		mm->locked_vm += (len >> PAGE_SHIFT);
3112 	vm_flags_set(vma, VM_SOFTDIRTY);
3113 	validate_mm(mm);
3114 	return 0;
3115 
3116 mas_store_fail:
3117 	vm_area_free(vma);
3118 unacct_fail:
3119 	vm_unacct_memory(len >> PAGE_SHIFT);
3120 	return -ENOMEM;
3121 }
3122 
3123 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3124 {
3125 	struct mm_struct *mm = current->mm;
3126 	struct vm_area_struct *vma = NULL;
3127 	unsigned long len;
3128 	int ret;
3129 	bool populate;
3130 	LIST_HEAD(uf);
3131 	VMA_ITERATOR(vmi, mm, addr);
3132 
3133 	len = PAGE_ALIGN(request);
3134 	if (len < request)
3135 		return -ENOMEM;
3136 	if (!len)
3137 		return 0;
3138 
3139 	if (mmap_write_lock_killable(mm))
3140 		return -EINTR;
3141 
3142 	/* Until we need other flags, refuse anything except VM_EXEC. */
3143 	if ((flags & (~VM_EXEC)) != 0)
3144 		return -EINVAL;
3145 
3146 	ret = check_brk_limits(addr, len);
3147 	if (ret)
3148 		goto limits_failed;
3149 
3150 	ret = do_vmi_munmap(&vmi, mm, addr, len, &uf, 0);
3151 	if (ret)
3152 		goto munmap_failed;
3153 
3154 	vma = vma_prev(&vmi);
3155 	ret = do_brk_flags(&vmi, vma, addr, len, flags);
3156 	populate = ((mm->def_flags & VM_LOCKED) != 0);
3157 	mmap_write_unlock(mm);
3158 	userfaultfd_unmap_complete(mm, &uf);
3159 	if (populate && !ret)
3160 		mm_populate(addr, len);
3161 	return ret;
3162 
3163 munmap_failed:
3164 limits_failed:
3165 	mmap_write_unlock(mm);
3166 	return ret;
3167 }
3168 EXPORT_SYMBOL(vm_brk_flags);
3169 
3170 int vm_brk(unsigned long addr, unsigned long len)
3171 {
3172 	return vm_brk_flags(addr, len, 0);
3173 }
3174 EXPORT_SYMBOL(vm_brk);
3175 
3176 /* Release all mmaps. */
3177 void exit_mmap(struct mm_struct *mm)
3178 {
3179 	struct mmu_gather tlb;
3180 	struct vm_area_struct *vma;
3181 	unsigned long nr_accounted = 0;
3182 	MA_STATE(mas, &mm->mm_mt, 0, 0);
3183 	int count = 0;
3184 
3185 	/* mm's last user has gone, and its about to be pulled down */
3186 	mmu_notifier_release(mm);
3187 
3188 	mmap_read_lock(mm);
3189 	arch_exit_mmap(mm);
3190 
3191 	vma = mas_find(&mas, ULONG_MAX);
3192 	if (!vma) {
3193 		/* Can happen if dup_mmap() received an OOM */
3194 		mmap_read_unlock(mm);
3195 		return;
3196 	}
3197 
3198 	lru_add_drain();
3199 	flush_cache_mm(mm);
3200 	tlb_gather_mmu_fullmm(&tlb, mm);
3201 	/* update_hiwater_rss(mm) here? but nobody should be looking */
3202 	/* Use ULONG_MAX here to ensure all VMAs in the mm are unmapped */
3203 	unmap_vmas(&tlb, &mm->mm_mt, vma, 0, ULONG_MAX, false);
3204 	mmap_read_unlock(mm);
3205 
3206 	/*
3207 	 * Set MMF_OOM_SKIP to hide this task from the oom killer/reaper
3208 	 * because the memory has been already freed.
3209 	 */
3210 	set_bit(MMF_OOM_SKIP, &mm->flags);
3211 	mmap_write_lock(mm);
3212 	mt_clear_in_rcu(&mm->mm_mt);
3213 	free_pgtables(&tlb, &mm->mm_mt, vma, FIRST_USER_ADDRESS,
3214 		      USER_PGTABLES_CEILING, true);
3215 	tlb_finish_mmu(&tlb);
3216 
3217 	/*
3218 	 * Walk the list again, actually closing and freeing it, with preemption
3219 	 * enabled, without holding any MM locks besides the unreachable
3220 	 * mmap_write_lock.
3221 	 */
3222 	do {
3223 		if (vma->vm_flags & VM_ACCOUNT)
3224 			nr_accounted += vma_pages(vma);
3225 		remove_vma(vma, true);
3226 		count++;
3227 		cond_resched();
3228 	} while ((vma = mas_find(&mas, ULONG_MAX)) != NULL);
3229 
3230 	BUG_ON(count != mm->map_count);
3231 
3232 	trace_exit_mmap(mm);
3233 	__mt_destroy(&mm->mm_mt);
3234 	mmap_write_unlock(mm);
3235 	vm_unacct_memory(nr_accounted);
3236 }
3237 
3238 /* Insert vm structure into process list sorted by address
3239  * and into the inode's i_mmap tree.  If vm_file is non-NULL
3240  * then i_mmap_rwsem is taken here.
3241  */
3242 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3243 {
3244 	unsigned long charged = vma_pages(vma);
3245 
3246 
3247 	if (find_vma_intersection(mm, vma->vm_start, vma->vm_end))
3248 		return -ENOMEM;
3249 
3250 	if ((vma->vm_flags & VM_ACCOUNT) &&
3251 	     security_vm_enough_memory_mm(mm, charged))
3252 		return -ENOMEM;
3253 
3254 	/*
3255 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
3256 	 * until its first write fault, when page's anon_vma and index
3257 	 * are set.  But now set the vm_pgoff it will almost certainly
3258 	 * end up with (unless mremap moves it elsewhere before that
3259 	 * first wfault), so /proc/pid/maps tells a consistent story.
3260 	 *
3261 	 * By setting it to reflect the virtual start address of the
3262 	 * vma, merges and splits can happen in a seamless way, just
3263 	 * using the existing file pgoff checks and manipulations.
3264 	 * Similarly in do_mmap and in do_brk_flags.
3265 	 */
3266 	if (vma_is_anonymous(vma)) {
3267 		BUG_ON(vma->anon_vma);
3268 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3269 	}
3270 
3271 	if (vma_link(mm, vma)) {
3272 		vm_unacct_memory(charged);
3273 		return -ENOMEM;
3274 	}
3275 
3276 	return 0;
3277 }
3278 
3279 /*
3280  * Copy the vma structure to a new location in the same mm,
3281  * prior to moving page table entries, to effect an mremap move.
3282  */
3283 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3284 	unsigned long addr, unsigned long len, pgoff_t pgoff,
3285 	bool *need_rmap_locks)
3286 {
3287 	struct vm_area_struct *vma = *vmap;
3288 	unsigned long vma_start = vma->vm_start;
3289 	struct mm_struct *mm = vma->vm_mm;
3290 	struct vm_area_struct *new_vma, *prev;
3291 	bool faulted_in_anon_vma = true;
3292 	VMA_ITERATOR(vmi, mm, addr);
3293 
3294 	validate_mm(mm);
3295 	/*
3296 	 * If anonymous vma has not yet been faulted, update new pgoff
3297 	 * to match new location, to increase its chance of merging.
3298 	 */
3299 	if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3300 		pgoff = addr >> PAGE_SHIFT;
3301 		faulted_in_anon_vma = false;
3302 	}
3303 
3304 	new_vma = find_vma_prev(mm, addr, &prev);
3305 	if (new_vma && new_vma->vm_start < addr + len)
3306 		return NULL;	/* should never get here */
3307 
3308 	new_vma = vma_merge(&vmi, mm, prev, addr, addr + len, vma->vm_flags,
3309 			    vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3310 			    vma->vm_userfaultfd_ctx, anon_vma_name(vma));
3311 	if (new_vma) {
3312 		/*
3313 		 * Source vma may have been merged into new_vma
3314 		 */
3315 		if (unlikely(vma_start >= new_vma->vm_start &&
3316 			     vma_start < new_vma->vm_end)) {
3317 			/*
3318 			 * The only way we can get a vma_merge with
3319 			 * self during an mremap is if the vma hasn't
3320 			 * been faulted in yet and we were allowed to
3321 			 * reset the dst vma->vm_pgoff to the
3322 			 * destination address of the mremap to allow
3323 			 * the merge to happen. mremap must change the
3324 			 * vm_pgoff linearity between src and dst vmas
3325 			 * (in turn preventing a vma_merge) to be
3326 			 * safe. It is only safe to keep the vm_pgoff
3327 			 * linear if there are no pages mapped yet.
3328 			 */
3329 			VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3330 			*vmap = vma = new_vma;
3331 		}
3332 		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3333 	} else {
3334 		new_vma = vm_area_dup(vma);
3335 		if (!new_vma)
3336 			goto out;
3337 		new_vma->vm_start = addr;
3338 		new_vma->vm_end = addr + len;
3339 		new_vma->vm_pgoff = pgoff;
3340 		if (vma_dup_policy(vma, new_vma))
3341 			goto out_free_vma;
3342 		if (anon_vma_clone(new_vma, vma))
3343 			goto out_free_mempol;
3344 		if (new_vma->vm_file)
3345 			get_file(new_vma->vm_file);
3346 		if (new_vma->vm_ops && new_vma->vm_ops->open)
3347 			new_vma->vm_ops->open(new_vma);
3348 		vma_start_write(new_vma);
3349 		if (vma_link(mm, new_vma))
3350 			goto out_vma_link;
3351 		*need_rmap_locks = false;
3352 	}
3353 	validate_mm(mm);
3354 	return new_vma;
3355 
3356 out_vma_link:
3357 	if (new_vma->vm_ops && new_vma->vm_ops->close)
3358 		new_vma->vm_ops->close(new_vma);
3359 
3360 	if (new_vma->vm_file)
3361 		fput(new_vma->vm_file);
3362 
3363 	unlink_anon_vmas(new_vma);
3364 out_free_mempol:
3365 	mpol_put(vma_policy(new_vma));
3366 out_free_vma:
3367 	vm_area_free(new_vma);
3368 out:
3369 	validate_mm(mm);
3370 	return NULL;
3371 }
3372 
3373 /*
3374  * Return true if the calling process may expand its vm space by the passed
3375  * number of pages
3376  */
3377 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3378 {
3379 	if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3380 		return false;
3381 
3382 	if (is_data_mapping(flags) &&
3383 	    mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3384 		/* Workaround for Valgrind */
3385 		if (rlimit(RLIMIT_DATA) == 0 &&
3386 		    mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3387 			return true;
3388 
3389 		pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3390 			     current->comm, current->pid,
3391 			     (mm->data_vm + npages) << PAGE_SHIFT,
3392 			     rlimit(RLIMIT_DATA),
3393 			     ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3394 
3395 		if (!ignore_rlimit_data)
3396 			return false;
3397 	}
3398 
3399 	return true;
3400 }
3401 
3402 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3403 {
3404 	WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages);
3405 
3406 	if (is_exec_mapping(flags))
3407 		mm->exec_vm += npages;
3408 	else if (is_stack_mapping(flags))
3409 		mm->stack_vm += npages;
3410 	else if (is_data_mapping(flags))
3411 		mm->data_vm += npages;
3412 }
3413 
3414 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3415 
3416 /*
3417  * Having a close hook prevents vma merging regardless of flags.
3418  */
3419 static void special_mapping_close(struct vm_area_struct *vma)
3420 {
3421 }
3422 
3423 static const char *special_mapping_name(struct vm_area_struct *vma)
3424 {
3425 	return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3426 }
3427 
3428 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3429 {
3430 	struct vm_special_mapping *sm = new_vma->vm_private_data;
3431 
3432 	if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3433 		return -EFAULT;
3434 
3435 	if (sm->mremap)
3436 		return sm->mremap(sm, new_vma);
3437 
3438 	return 0;
3439 }
3440 
3441 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
3442 {
3443 	/*
3444 	 * Forbid splitting special mappings - kernel has expectations over
3445 	 * the number of pages in mapping. Together with VM_DONTEXPAND
3446 	 * the size of vma should stay the same over the special mapping's
3447 	 * lifetime.
3448 	 */
3449 	return -EINVAL;
3450 }
3451 
3452 static const struct vm_operations_struct special_mapping_vmops = {
3453 	.close = special_mapping_close,
3454 	.fault = special_mapping_fault,
3455 	.mremap = special_mapping_mremap,
3456 	.name = special_mapping_name,
3457 	/* vDSO code relies that VVAR can't be accessed remotely */
3458 	.access = NULL,
3459 	.may_split = special_mapping_split,
3460 };
3461 
3462 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3463 	.close = special_mapping_close,
3464 	.fault = special_mapping_fault,
3465 };
3466 
3467 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3468 {
3469 	struct vm_area_struct *vma = vmf->vma;
3470 	pgoff_t pgoff;
3471 	struct page **pages;
3472 
3473 	if (vma->vm_ops == &legacy_special_mapping_vmops) {
3474 		pages = vma->vm_private_data;
3475 	} else {
3476 		struct vm_special_mapping *sm = vma->vm_private_data;
3477 
3478 		if (sm->fault)
3479 			return sm->fault(sm, vmf->vma, vmf);
3480 
3481 		pages = sm->pages;
3482 	}
3483 
3484 	for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3485 		pgoff--;
3486 
3487 	if (*pages) {
3488 		struct page *page = *pages;
3489 		get_page(page);
3490 		vmf->page = page;
3491 		return 0;
3492 	}
3493 
3494 	return VM_FAULT_SIGBUS;
3495 }
3496 
3497 static struct vm_area_struct *__install_special_mapping(
3498 	struct mm_struct *mm,
3499 	unsigned long addr, unsigned long len,
3500 	unsigned long vm_flags, void *priv,
3501 	const struct vm_operations_struct *ops)
3502 {
3503 	int ret;
3504 	struct vm_area_struct *vma;
3505 
3506 	validate_mm(mm);
3507 	vma = vm_area_alloc(mm);
3508 	if (unlikely(vma == NULL))
3509 		return ERR_PTR(-ENOMEM);
3510 
3511 	vma->vm_start = addr;
3512 	vma->vm_end = addr + len;
3513 
3514 	vm_flags_init(vma, (vm_flags | mm->def_flags |
3515 		      VM_DONTEXPAND | VM_SOFTDIRTY) & ~VM_LOCKED_MASK);
3516 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3517 
3518 	vma->vm_ops = ops;
3519 	vma->vm_private_data = priv;
3520 
3521 	ret = insert_vm_struct(mm, vma);
3522 	if (ret)
3523 		goto out;
3524 
3525 	vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3526 
3527 	perf_event_mmap(vma);
3528 
3529 	validate_mm(mm);
3530 	return vma;
3531 
3532 out:
3533 	vm_area_free(vma);
3534 	validate_mm(mm);
3535 	return ERR_PTR(ret);
3536 }
3537 
3538 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3539 	const struct vm_special_mapping *sm)
3540 {
3541 	return vma->vm_private_data == sm &&
3542 		(vma->vm_ops == &special_mapping_vmops ||
3543 		 vma->vm_ops == &legacy_special_mapping_vmops);
3544 }
3545 
3546 /*
3547  * Called with mm->mmap_lock held for writing.
3548  * Insert a new vma covering the given region, with the given flags.
3549  * Its pages are supplied by the given array of struct page *.
3550  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3551  * The region past the last page supplied will always produce SIGBUS.
3552  * The array pointer and the pages it points to are assumed to stay alive
3553  * for as long as this mapping might exist.
3554  */
3555 struct vm_area_struct *_install_special_mapping(
3556 	struct mm_struct *mm,
3557 	unsigned long addr, unsigned long len,
3558 	unsigned long vm_flags, const struct vm_special_mapping *spec)
3559 {
3560 	return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3561 					&special_mapping_vmops);
3562 }
3563 
3564 int install_special_mapping(struct mm_struct *mm,
3565 			    unsigned long addr, unsigned long len,
3566 			    unsigned long vm_flags, struct page **pages)
3567 {
3568 	struct vm_area_struct *vma = __install_special_mapping(
3569 		mm, addr, len, vm_flags, (void *)pages,
3570 		&legacy_special_mapping_vmops);
3571 
3572 	return PTR_ERR_OR_ZERO(vma);
3573 }
3574 
3575 static DEFINE_MUTEX(mm_all_locks_mutex);
3576 
3577 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3578 {
3579 	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3580 		/*
3581 		 * The LSB of head.next can't change from under us
3582 		 * because we hold the mm_all_locks_mutex.
3583 		 */
3584 		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3585 		/*
3586 		 * We can safely modify head.next after taking the
3587 		 * anon_vma->root->rwsem. If some other vma in this mm shares
3588 		 * the same anon_vma we won't take it again.
3589 		 *
3590 		 * No need of atomic instructions here, head.next
3591 		 * can't change from under us thanks to the
3592 		 * anon_vma->root->rwsem.
3593 		 */
3594 		if (__test_and_set_bit(0, (unsigned long *)
3595 				       &anon_vma->root->rb_root.rb_root.rb_node))
3596 			BUG();
3597 	}
3598 }
3599 
3600 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3601 {
3602 	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3603 		/*
3604 		 * AS_MM_ALL_LOCKS can't change from under us because
3605 		 * we hold the mm_all_locks_mutex.
3606 		 *
3607 		 * Operations on ->flags have to be atomic because
3608 		 * even if AS_MM_ALL_LOCKS is stable thanks to the
3609 		 * mm_all_locks_mutex, there may be other cpus
3610 		 * changing other bitflags in parallel to us.
3611 		 */
3612 		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3613 			BUG();
3614 		down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3615 	}
3616 }
3617 
3618 /*
3619  * This operation locks against the VM for all pte/vma/mm related
3620  * operations that could ever happen on a certain mm. This includes
3621  * vmtruncate, try_to_unmap, and all page faults.
3622  *
3623  * The caller must take the mmap_lock in write mode before calling
3624  * mm_take_all_locks(). The caller isn't allowed to release the
3625  * mmap_lock until mm_drop_all_locks() returns.
3626  *
3627  * mmap_lock in write mode is required in order to block all operations
3628  * that could modify pagetables and free pages without need of
3629  * altering the vma layout. It's also needed in write mode to avoid new
3630  * anon_vmas to be associated with existing vmas.
3631  *
3632  * A single task can't take more than one mm_take_all_locks() in a row
3633  * or it would deadlock.
3634  *
3635  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3636  * mapping->flags avoid to take the same lock twice, if more than one
3637  * vma in this mm is backed by the same anon_vma or address_space.
3638  *
3639  * We take locks in following order, accordingly to comment at beginning
3640  * of mm/rmap.c:
3641  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3642  *     hugetlb mapping);
3643  *   - all vmas marked locked
3644  *   - all i_mmap_rwsem locks;
3645  *   - all anon_vma->rwseml
3646  *
3647  * We can take all locks within these types randomly because the VM code
3648  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3649  * mm_all_locks_mutex.
3650  *
3651  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3652  * that may have to take thousand of locks.
3653  *
3654  * mm_take_all_locks() can fail if it's interrupted by signals.
3655  */
3656 int mm_take_all_locks(struct mm_struct *mm)
3657 {
3658 	struct vm_area_struct *vma;
3659 	struct anon_vma_chain *avc;
3660 	MA_STATE(mas, &mm->mm_mt, 0, 0);
3661 
3662 	mmap_assert_write_locked(mm);
3663 
3664 	mutex_lock(&mm_all_locks_mutex);
3665 
3666 	mas_for_each(&mas, vma, ULONG_MAX) {
3667 		if (signal_pending(current))
3668 			goto out_unlock;
3669 		vma_start_write(vma);
3670 	}
3671 
3672 	mas_set(&mas, 0);
3673 	mas_for_each(&mas, vma, ULONG_MAX) {
3674 		if (signal_pending(current))
3675 			goto out_unlock;
3676 		if (vma->vm_file && vma->vm_file->f_mapping &&
3677 				is_vm_hugetlb_page(vma))
3678 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3679 	}
3680 
3681 	mas_set(&mas, 0);
3682 	mas_for_each(&mas, vma, ULONG_MAX) {
3683 		if (signal_pending(current))
3684 			goto out_unlock;
3685 		if (vma->vm_file && vma->vm_file->f_mapping &&
3686 				!is_vm_hugetlb_page(vma))
3687 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3688 	}
3689 
3690 	mas_set(&mas, 0);
3691 	mas_for_each(&mas, vma, ULONG_MAX) {
3692 		if (signal_pending(current))
3693 			goto out_unlock;
3694 		if (vma->anon_vma)
3695 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3696 				vm_lock_anon_vma(mm, avc->anon_vma);
3697 	}
3698 
3699 	return 0;
3700 
3701 out_unlock:
3702 	mm_drop_all_locks(mm);
3703 	return -EINTR;
3704 }
3705 
3706 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3707 {
3708 	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3709 		/*
3710 		 * The LSB of head.next can't change to 0 from under
3711 		 * us because we hold the mm_all_locks_mutex.
3712 		 *
3713 		 * We must however clear the bitflag before unlocking
3714 		 * the vma so the users using the anon_vma->rb_root will
3715 		 * never see our bitflag.
3716 		 *
3717 		 * No need of atomic instructions here, head.next
3718 		 * can't change from under us until we release the
3719 		 * anon_vma->root->rwsem.
3720 		 */
3721 		if (!__test_and_clear_bit(0, (unsigned long *)
3722 					  &anon_vma->root->rb_root.rb_root.rb_node))
3723 			BUG();
3724 		anon_vma_unlock_write(anon_vma);
3725 	}
3726 }
3727 
3728 static void vm_unlock_mapping(struct address_space *mapping)
3729 {
3730 	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3731 		/*
3732 		 * AS_MM_ALL_LOCKS can't change to 0 from under us
3733 		 * because we hold the mm_all_locks_mutex.
3734 		 */
3735 		i_mmap_unlock_write(mapping);
3736 		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3737 					&mapping->flags))
3738 			BUG();
3739 	}
3740 }
3741 
3742 /*
3743  * The mmap_lock cannot be released by the caller until
3744  * mm_drop_all_locks() returns.
3745  */
3746 void mm_drop_all_locks(struct mm_struct *mm)
3747 {
3748 	struct vm_area_struct *vma;
3749 	struct anon_vma_chain *avc;
3750 	MA_STATE(mas, &mm->mm_mt, 0, 0);
3751 
3752 	mmap_assert_write_locked(mm);
3753 	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3754 
3755 	mas_for_each(&mas, vma, ULONG_MAX) {
3756 		if (vma->anon_vma)
3757 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3758 				vm_unlock_anon_vma(avc->anon_vma);
3759 		if (vma->vm_file && vma->vm_file->f_mapping)
3760 			vm_unlock_mapping(vma->vm_file->f_mapping);
3761 	}
3762 	vma_end_write_all(mm);
3763 
3764 	mutex_unlock(&mm_all_locks_mutex);
3765 }
3766 
3767 /*
3768  * initialise the percpu counter for VM
3769  */
3770 void __init mmap_init(void)
3771 {
3772 	int ret;
3773 
3774 	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3775 	VM_BUG_ON(ret);
3776 }
3777 
3778 /*
3779  * Initialise sysctl_user_reserve_kbytes.
3780  *
3781  * This is intended to prevent a user from starting a single memory hogging
3782  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3783  * mode.
3784  *
3785  * The default value is min(3% of free memory, 128MB)
3786  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3787  */
3788 static int init_user_reserve(void)
3789 {
3790 	unsigned long free_kbytes;
3791 
3792 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3793 
3794 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3795 	return 0;
3796 }
3797 subsys_initcall(init_user_reserve);
3798 
3799 /*
3800  * Initialise sysctl_admin_reserve_kbytes.
3801  *
3802  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3803  * to log in and kill a memory hogging process.
3804  *
3805  * Systems with more than 256MB will reserve 8MB, enough to recover
3806  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3807  * only reserve 3% of free pages by default.
3808  */
3809 static int init_admin_reserve(void)
3810 {
3811 	unsigned long free_kbytes;
3812 
3813 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3814 
3815 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3816 	return 0;
3817 }
3818 subsys_initcall(init_admin_reserve);
3819 
3820 /*
3821  * Reinititalise user and admin reserves if memory is added or removed.
3822  *
3823  * The default user reserve max is 128MB, and the default max for the
3824  * admin reserve is 8MB. These are usually, but not always, enough to
3825  * enable recovery from a memory hogging process using login/sshd, a shell,
3826  * and tools like top. It may make sense to increase or even disable the
3827  * reserve depending on the existence of swap or variations in the recovery
3828  * tools. So, the admin may have changed them.
3829  *
3830  * If memory is added and the reserves have been eliminated or increased above
3831  * the default max, then we'll trust the admin.
3832  *
3833  * If memory is removed and there isn't enough free memory, then we
3834  * need to reset the reserves.
3835  *
3836  * Otherwise keep the reserve set by the admin.
3837  */
3838 static int reserve_mem_notifier(struct notifier_block *nb,
3839 			     unsigned long action, void *data)
3840 {
3841 	unsigned long tmp, free_kbytes;
3842 
3843 	switch (action) {
3844 	case MEM_ONLINE:
3845 		/* Default max is 128MB. Leave alone if modified by operator. */
3846 		tmp = sysctl_user_reserve_kbytes;
3847 		if (0 < tmp && tmp < (1UL << 17))
3848 			init_user_reserve();
3849 
3850 		/* Default max is 8MB.  Leave alone if modified by operator. */
3851 		tmp = sysctl_admin_reserve_kbytes;
3852 		if (0 < tmp && tmp < (1UL << 13))
3853 			init_admin_reserve();
3854 
3855 		break;
3856 	case MEM_OFFLINE:
3857 		free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3858 
3859 		if (sysctl_user_reserve_kbytes > free_kbytes) {
3860 			init_user_reserve();
3861 			pr_info("vm.user_reserve_kbytes reset to %lu\n",
3862 				sysctl_user_reserve_kbytes);
3863 		}
3864 
3865 		if (sysctl_admin_reserve_kbytes > free_kbytes) {
3866 			init_admin_reserve();
3867 			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3868 				sysctl_admin_reserve_kbytes);
3869 		}
3870 		break;
3871 	default:
3872 		break;
3873 	}
3874 	return NOTIFY_OK;
3875 }
3876 
3877 static int __meminit init_reserve_notifier(void)
3878 {
3879 	if (hotplug_memory_notifier(reserve_mem_notifier, DEFAULT_CALLBACK_PRI))
3880 		pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3881 
3882 	return 0;
3883 }
3884 subsys_initcall(init_reserve_notifier);
3885