1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/mmap.c 4 * 5 * Written by obz. 6 * 7 * Address space accounting code <alan@lxorguk.ukuu.org.uk> 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/kernel.h> 13 #include <linux/slab.h> 14 #include <linux/backing-dev.h> 15 #include <linux/mm.h> 16 #include <linux/vmacache.h> 17 #include <linux/shm.h> 18 #include <linux/mman.h> 19 #include <linux/pagemap.h> 20 #include <linux/swap.h> 21 #include <linux/syscalls.h> 22 #include <linux/capability.h> 23 #include <linux/init.h> 24 #include <linux/file.h> 25 #include <linux/fs.h> 26 #include <linux/personality.h> 27 #include <linux/security.h> 28 #include <linux/hugetlb.h> 29 #include <linux/shmem_fs.h> 30 #include <linux/profile.h> 31 #include <linux/export.h> 32 #include <linux/mount.h> 33 #include <linux/mempolicy.h> 34 #include <linux/rmap.h> 35 #include <linux/mmu_notifier.h> 36 #include <linux/mmdebug.h> 37 #include <linux/perf_event.h> 38 #include <linux/audit.h> 39 #include <linux/khugepaged.h> 40 #include <linux/uprobes.h> 41 #include <linux/rbtree_augmented.h> 42 #include <linux/notifier.h> 43 #include <linux/memory.h> 44 #include <linux/printk.h> 45 #include <linux/userfaultfd_k.h> 46 #include <linux/moduleparam.h> 47 #include <linux/pkeys.h> 48 #include <linux/oom.h> 49 #include <linux/sched/mm.h> 50 51 #include <linux/uaccess.h> 52 #include <asm/cacheflush.h> 53 #include <asm/tlb.h> 54 #include <asm/mmu_context.h> 55 56 #include "internal.h" 57 58 #ifndef arch_mmap_check 59 #define arch_mmap_check(addr, len, flags) (0) 60 #endif 61 62 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 63 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN; 64 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX; 65 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS; 66 #endif 67 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 68 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN; 69 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX; 70 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS; 71 #endif 72 73 static bool ignore_rlimit_data; 74 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644); 75 76 static void unmap_region(struct mm_struct *mm, 77 struct vm_area_struct *vma, struct vm_area_struct *prev, 78 unsigned long start, unsigned long end); 79 80 /* description of effects of mapping type and prot in current implementation. 81 * this is due to the limited x86 page protection hardware. The expected 82 * behavior is in parens: 83 * 84 * map_type prot 85 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC 86 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes 87 * w: (no) no w: (no) no w: (yes) yes w: (no) no 88 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 89 * 90 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes 91 * w: (no) no w: (no) no w: (copy) copy w: (no) no 92 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 93 * 94 * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and 95 * MAP_PRIVATE: 96 * r: (no) no 97 * w: (no) no 98 * x: (yes) yes 99 */ 100 pgprot_t protection_map[16] __ro_after_init = { 101 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111, 102 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111 103 }; 104 105 #ifndef CONFIG_ARCH_HAS_FILTER_PGPROT 106 static inline pgprot_t arch_filter_pgprot(pgprot_t prot) 107 { 108 return prot; 109 } 110 #endif 111 112 pgprot_t vm_get_page_prot(unsigned long vm_flags) 113 { 114 pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags & 115 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) | 116 pgprot_val(arch_vm_get_page_prot(vm_flags))); 117 118 return arch_filter_pgprot(ret); 119 } 120 EXPORT_SYMBOL(vm_get_page_prot); 121 122 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags) 123 { 124 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags)); 125 } 126 127 /* Update vma->vm_page_prot to reflect vma->vm_flags. */ 128 void vma_set_page_prot(struct vm_area_struct *vma) 129 { 130 unsigned long vm_flags = vma->vm_flags; 131 pgprot_t vm_page_prot; 132 133 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags); 134 if (vma_wants_writenotify(vma, vm_page_prot)) { 135 vm_flags &= ~VM_SHARED; 136 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags); 137 } 138 /* remove_protection_ptes reads vma->vm_page_prot without mmap_sem */ 139 WRITE_ONCE(vma->vm_page_prot, vm_page_prot); 140 } 141 142 /* 143 * Requires inode->i_mapping->i_mmap_rwsem 144 */ 145 static void __remove_shared_vm_struct(struct vm_area_struct *vma, 146 struct file *file, struct address_space *mapping) 147 { 148 if (vma->vm_flags & VM_DENYWRITE) 149 atomic_inc(&file_inode(file)->i_writecount); 150 if (vma->vm_flags & VM_SHARED) 151 mapping_unmap_writable(mapping); 152 153 flush_dcache_mmap_lock(mapping); 154 vma_interval_tree_remove(vma, &mapping->i_mmap); 155 flush_dcache_mmap_unlock(mapping); 156 } 157 158 /* 159 * Unlink a file-based vm structure from its interval tree, to hide 160 * vma from rmap and vmtruncate before freeing its page tables. 161 */ 162 void unlink_file_vma(struct vm_area_struct *vma) 163 { 164 struct file *file = vma->vm_file; 165 166 if (file) { 167 struct address_space *mapping = file->f_mapping; 168 i_mmap_lock_write(mapping); 169 __remove_shared_vm_struct(vma, file, mapping); 170 i_mmap_unlock_write(mapping); 171 } 172 } 173 174 /* 175 * Close a vm structure and free it, returning the next. 176 */ 177 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma) 178 { 179 struct vm_area_struct *next = vma->vm_next; 180 181 might_sleep(); 182 if (vma->vm_ops && vma->vm_ops->close) 183 vma->vm_ops->close(vma); 184 if (vma->vm_file) 185 fput(vma->vm_file); 186 mpol_put(vma_policy(vma)); 187 vm_area_free(vma); 188 return next; 189 } 190 191 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags, 192 struct list_head *uf); 193 SYSCALL_DEFINE1(brk, unsigned long, brk) 194 { 195 unsigned long retval; 196 unsigned long newbrk, oldbrk, origbrk; 197 struct mm_struct *mm = current->mm; 198 struct vm_area_struct *next; 199 unsigned long min_brk; 200 bool populate; 201 bool downgraded = false; 202 LIST_HEAD(uf); 203 204 if (down_write_killable(&mm->mmap_sem)) 205 return -EINTR; 206 207 origbrk = mm->brk; 208 209 #ifdef CONFIG_COMPAT_BRK 210 /* 211 * CONFIG_COMPAT_BRK can still be overridden by setting 212 * randomize_va_space to 2, which will still cause mm->start_brk 213 * to be arbitrarily shifted 214 */ 215 if (current->brk_randomized) 216 min_brk = mm->start_brk; 217 else 218 min_brk = mm->end_data; 219 #else 220 min_brk = mm->start_brk; 221 #endif 222 if (brk < min_brk) 223 goto out; 224 225 /* 226 * Check against rlimit here. If this check is done later after the test 227 * of oldbrk with newbrk then it can escape the test and let the data 228 * segment grow beyond its set limit the in case where the limit is 229 * not page aligned -Ram Gupta 230 */ 231 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk, 232 mm->end_data, mm->start_data)) 233 goto out; 234 235 newbrk = PAGE_ALIGN(brk); 236 oldbrk = PAGE_ALIGN(mm->brk); 237 if (oldbrk == newbrk) { 238 mm->brk = brk; 239 goto success; 240 } 241 242 /* 243 * Always allow shrinking brk. 244 * __do_munmap() may downgrade mmap_sem to read. 245 */ 246 if (brk <= mm->brk) { 247 int ret; 248 249 /* 250 * mm->brk must to be protected by write mmap_sem so update it 251 * before downgrading mmap_sem. When __do_munmap() fails, 252 * mm->brk will be restored from origbrk. 253 */ 254 mm->brk = brk; 255 ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true); 256 if (ret < 0) { 257 mm->brk = origbrk; 258 goto out; 259 } else if (ret == 1) { 260 downgraded = true; 261 } 262 goto success; 263 } 264 265 /* Check against existing mmap mappings. */ 266 next = find_vma(mm, oldbrk); 267 if (next && newbrk + PAGE_SIZE > vm_start_gap(next)) 268 goto out; 269 270 /* Ok, looks good - let it rip. */ 271 if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0) 272 goto out; 273 mm->brk = brk; 274 275 success: 276 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0; 277 if (downgraded) 278 up_read(&mm->mmap_sem); 279 else 280 up_write(&mm->mmap_sem); 281 userfaultfd_unmap_complete(mm, &uf); 282 if (populate) 283 mm_populate(oldbrk, newbrk - oldbrk); 284 return brk; 285 286 out: 287 retval = origbrk; 288 up_write(&mm->mmap_sem); 289 return retval; 290 } 291 292 static long vma_compute_subtree_gap(struct vm_area_struct *vma) 293 { 294 unsigned long max, prev_end, subtree_gap; 295 296 /* 297 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we 298 * allow two stack_guard_gaps between them here, and when choosing 299 * an unmapped area; whereas when expanding we only require one. 300 * That's a little inconsistent, but keeps the code here simpler. 301 */ 302 max = vm_start_gap(vma); 303 if (vma->vm_prev) { 304 prev_end = vm_end_gap(vma->vm_prev); 305 if (max > prev_end) 306 max -= prev_end; 307 else 308 max = 0; 309 } 310 if (vma->vm_rb.rb_left) { 311 subtree_gap = rb_entry(vma->vm_rb.rb_left, 312 struct vm_area_struct, vm_rb)->rb_subtree_gap; 313 if (subtree_gap > max) 314 max = subtree_gap; 315 } 316 if (vma->vm_rb.rb_right) { 317 subtree_gap = rb_entry(vma->vm_rb.rb_right, 318 struct vm_area_struct, vm_rb)->rb_subtree_gap; 319 if (subtree_gap > max) 320 max = subtree_gap; 321 } 322 return max; 323 } 324 325 #ifdef CONFIG_DEBUG_VM_RB 326 static int browse_rb(struct mm_struct *mm) 327 { 328 struct rb_root *root = &mm->mm_rb; 329 int i = 0, j, bug = 0; 330 struct rb_node *nd, *pn = NULL; 331 unsigned long prev = 0, pend = 0; 332 333 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 334 struct vm_area_struct *vma; 335 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 336 if (vma->vm_start < prev) { 337 pr_emerg("vm_start %lx < prev %lx\n", 338 vma->vm_start, prev); 339 bug = 1; 340 } 341 if (vma->vm_start < pend) { 342 pr_emerg("vm_start %lx < pend %lx\n", 343 vma->vm_start, pend); 344 bug = 1; 345 } 346 if (vma->vm_start > vma->vm_end) { 347 pr_emerg("vm_start %lx > vm_end %lx\n", 348 vma->vm_start, vma->vm_end); 349 bug = 1; 350 } 351 spin_lock(&mm->page_table_lock); 352 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) { 353 pr_emerg("free gap %lx, correct %lx\n", 354 vma->rb_subtree_gap, 355 vma_compute_subtree_gap(vma)); 356 bug = 1; 357 } 358 spin_unlock(&mm->page_table_lock); 359 i++; 360 pn = nd; 361 prev = vma->vm_start; 362 pend = vma->vm_end; 363 } 364 j = 0; 365 for (nd = pn; nd; nd = rb_prev(nd)) 366 j++; 367 if (i != j) { 368 pr_emerg("backwards %d, forwards %d\n", j, i); 369 bug = 1; 370 } 371 return bug ? -1 : i; 372 } 373 374 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore) 375 { 376 struct rb_node *nd; 377 378 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 379 struct vm_area_struct *vma; 380 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 381 VM_BUG_ON_VMA(vma != ignore && 382 vma->rb_subtree_gap != vma_compute_subtree_gap(vma), 383 vma); 384 } 385 } 386 387 static void validate_mm(struct mm_struct *mm) 388 { 389 int bug = 0; 390 int i = 0; 391 unsigned long highest_address = 0; 392 struct vm_area_struct *vma = mm->mmap; 393 394 while (vma) { 395 struct anon_vma *anon_vma = vma->anon_vma; 396 struct anon_vma_chain *avc; 397 398 if (anon_vma) { 399 anon_vma_lock_read(anon_vma); 400 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 401 anon_vma_interval_tree_verify(avc); 402 anon_vma_unlock_read(anon_vma); 403 } 404 405 highest_address = vm_end_gap(vma); 406 vma = vma->vm_next; 407 i++; 408 } 409 if (i != mm->map_count) { 410 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i); 411 bug = 1; 412 } 413 if (highest_address != mm->highest_vm_end) { 414 pr_emerg("mm->highest_vm_end %lx, found %lx\n", 415 mm->highest_vm_end, highest_address); 416 bug = 1; 417 } 418 i = browse_rb(mm); 419 if (i != mm->map_count) { 420 if (i != -1) 421 pr_emerg("map_count %d rb %d\n", mm->map_count, i); 422 bug = 1; 423 } 424 VM_BUG_ON_MM(bug, mm); 425 } 426 #else 427 #define validate_mm_rb(root, ignore) do { } while (0) 428 #define validate_mm(mm) do { } while (0) 429 #endif 430 431 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb, 432 unsigned long, rb_subtree_gap, vma_compute_subtree_gap) 433 434 /* 435 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or 436 * vma->vm_prev->vm_end values changed, without modifying the vma's position 437 * in the rbtree. 438 */ 439 static void vma_gap_update(struct vm_area_struct *vma) 440 { 441 /* 442 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback 443 * function that does exactly what we want. 444 */ 445 vma_gap_callbacks_propagate(&vma->vm_rb, NULL); 446 } 447 448 static inline void vma_rb_insert(struct vm_area_struct *vma, 449 struct rb_root *root) 450 { 451 /* All rb_subtree_gap values must be consistent prior to insertion */ 452 validate_mm_rb(root, NULL); 453 454 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks); 455 } 456 457 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root) 458 { 459 /* 460 * Note rb_erase_augmented is a fairly large inline function, 461 * so make sure we instantiate it only once with our desired 462 * augmented rbtree callbacks. 463 */ 464 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks); 465 } 466 467 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma, 468 struct rb_root *root, 469 struct vm_area_struct *ignore) 470 { 471 /* 472 * All rb_subtree_gap values must be consistent prior to erase, 473 * with the possible exception of the "next" vma being erased if 474 * next->vm_start was reduced. 475 */ 476 validate_mm_rb(root, ignore); 477 478 __vma_rb_erase(vma, root); 479 } 480 481 static __always_inline void vma_rb_erase(struct vm_area_struct *vma, 482 struct rb_root *root) 483 { 484 /* 485 * All rb_subtree_gap values must be consistent prior to erase, 486 * with the possible exception of the vma being erased. 487 */ 488 validate_mm_rb(root, vma); 489 490 __vma_rb_erase(vma, root); 491 } 492 493 /* 494 * vma has some anon_vma assigned, and is already inserted on that 495 * anon_vma's interval trees. 496 * 497 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the 498 * vma must be removed from the anon_vma's interval trees using 499 * anon_vma_interval_tree_pre_update_vma(). 500 * 501 * After the update, the vma will be reinserted using 502 * anon_vma_interval_tree_post_update_vma(). 503 * 504 * The entire update must be protected by exclusive mmap_sem and by 505 * the root anon_vma's mutex. 506 */ 507 static inline void 508 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma) 509 { 510 struct anon_vma_chain *avc; 511 512 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 513 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root); 514 } 515 516 static inline void 517 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma) 518 { 519 struct anon_vma_chain *avc; 520 521 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 522 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root); 523 } 524 525 static int find_vma_links(struct mm_struct *mm, unsigned long addr, 526 unsigned long end, struct vm_area_struct **pprev, 527 struct rb_node ***rb_link, struct rb_node **rb_parent) 528 { 529 struct rb_node **__rb_link, *__rb_parent, *rb_prev; 530 531 __rb_link = &mm->mm_rb.rb_node; 532 rb_prev = __rb_parent = NULL; 533 534 while (*__rb_link) { 535 struct vm_area_struct *vma_tmp; 536 537 __rb_parent = *__rb_link; 538 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb); 539 540 if (vma_tmp->vm_end > addr) { 541 /* Fail if an existing vma overlaps the area */ 542 if (vma_tmp->vm_start < end) 543 return -ENOMEM; 544 __rb_link = &__rb_parent->rb_left; 545 } else { 546 rb_prev = __rb_parent; 547 __rb_link = &__rb_parent->rb_right; 548 } 549 } 550 551 *pprev = NULL; 552 if (rb_prev) 553 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); 554 *rb_link = __rb_link; 555 *rb_parent = __rb_parent; 556 return 0; 557 } 558 559 static unsigned long count_vma_pages_range(struct mm_struct *mm, 560 unsigned long addr, unsigned long end) 561 { 562 unsigned long nr_pages = 0; 563 struct vm_area_struct *vma; 564 565 /* Find first overlaping mapping */ 566 vma = find_vma_intersection(mm, addr, end); 567 if (!vma) 568 return 0; 569 570 nr_pages = (min(end, vma->vm_end) - 571 max(addr, vma->vm_start)) >> PAGE_SHIFT; 572 573 /* Iterate over the rest of the overlaps */ 574 for (vma = vma->vm_next; vma; vma = vma->vm_next) { 575 unsigned long overlap_len; 576 577 if (vma->vm_start > end) 578 break; 579 580 overlap_len = min(end, vma->vm_end) - vma->vm_start; 581 nr_pages += overlap_len >> PAGE_SHIFT; 582 } 583 584 return nr_pages; 585 } 586 587 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma, 588 struct rb_node **rb_link, struct rb_node *rb_parent) 589 { 590 /* Update tracking information for the gap following the new vma. */ 591 if (vma->vm_next) 592 vma_gap_update(vma->vm_next); 593 else 594 mm->highest_vm_end = vm_end_gap(vma); 595 596 /* 597 * vma->vm_prev wasn't known when we followed the rbtree to find the 598 * correct insertion point for that vma. As a result, we could not 599 * update the vma vm_rb parents rb_subtree_gap values on the way down. 600 * So, we first insert the vma with a zero rb_subtree_gap value 601 * (to be consistent with what we did on the way down), and then 602 * immediately update the gap to the correct value. Finally we 603 * rebalance the rbtree after all augmented values have been set. 604 */ 605 rb_link_node(&vma->vm_rb, rb_parent, rb_link); 606 vma->rb_subtree_gap = 0; 607 vma_gap_update(vma); 608 vma_rb_insert(vma, &mm->mm_rb); 609 } 610 611 static void __vma_link_file(struct vm_area_struct *vma) 612 { 613 struct file *file; 614 615 file = vma->vm_file; 616 if (file) { 617 struct address_space *mapping = file->f_mapping; 618 619 if (vma->vm_flags & VM_DENYWRITE) 620 atomic_dec(&file_inode(file)->i_writecount); 621 if (vma->vm_flags & VM_SHARED) 622 atomic_inc(&mapping->i_mmap_writable); 623 624 flush_dcache_mmap_lock(mapping); 625 vma_interval_tree_insert(vma, &mapping->i_mmap); 626 flush_dcache_mmap_unlock(mapping); 627 } 628 } 629 630 static void 631 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 632 struct vm_area_struct *prev, struct rb_node **rb_link, 633 struct rb_node *rb_parent) 634 { 635 __vma_link_list(mm, vma, prev, rb_parent); 636 __vma_link_rb(mm, vma, rb_link, rb_parent); 637 } 638 639 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 640 struct vm_area_struct *prev, struct rb_node **rb_link, 641 struct rb_node *rb_parent) 642 { 643 struct address_space *mapping = NULL; 644 645 if (vma->vm_file) { 646 mapping = vma->vm_file->f_mapping; 647 i_mmap_lock_write(mapping); 648 } 649 650 __vma_link(mm, vma, prev, rb_link, rb_parent); 651 __vma_link_file(vma); 652 653 if (mapping) 654 i_mmap_unlock_write(mapping); 655 656 mm->map_count++; 657 validate_mm(mm); 658 } 659 660 /* 661 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the 662 * mm's list and rbtree. It has already been inserted into the interval tree. 663 */ 664 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 665 { 666 struct vm_area_struct *prev; 667 struct rb_node **rb_link, *rb_parent; 668 669 if (find_vma_links(mm, vma->vm_start, vma->vm_end, 670 &prev, &rb_link, &rb_parent)) 671 BUG(); 672 __vma_link(mm, vma, prev, rb_link, rb_parent); 673 mm->map_count++; 674 } 675 676 static __always_inline void __vma_unlink_common(struct mm_struct *mm, 677 struct vm_area_struct *vma, 678 struct vm_area_struct *prev, 679 bool has_prev, 680 struct vm_area_struct *ignore) 681 { 682 struct vm_area_struct *next; 683 684 vma_rb_erase_ignore(vma, &mm->mm_rb, ignore); 685 next = vma->vm_next; 686 if (has_prev) 687 prev->vm_next = next; 688 else { 689 prev = vma->vm_prev; 690 if (prev) 691 prev->vm_next = next; 692 else 693 mm->mmap = next; 694 } 695 if (next) 696 next->vm_prev = prev; 697 698 /* Kill the cache */ 699 vmacache_invalidate(mm); 700 } 701 702 static inline void __vma_unlink_prev(struct mm_struct *mm, 703 struct vm_area_struct *vma, 704 struct vm_area_struct *prev) 705 { 706 __vma_unlink_common(mm, vma, prev, true, vma); 707 } 708 709 /* 710 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that 711 * is already present in an i_mmap tree without adjusting the tree. 712 * The following helper function should be used when such adjustments 713 * are necessary. The "insert" vma (if any) is to be inserted 714 * before we drop the necessary locks. 715 */ 716 int __vma_adjust(struct vm_area_struct *vma, unsigned long start, 717 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, 718 struct vm_area_struct *expand) 719 { 720 struct mm_struct *mm = vma->vm_mm; 721 struct vm_area_struct *next = vma->vm_next, *orig_vma = vma; 722 struct address_space *mapping = NULL; 723 struct rb_root_cached *root = NULL; 724 struct anon_vma *anon_vma = NULL; 725 struct file *file = vma->vm_file; 726 bool start_changed = false, end_changed = false; 727 long adjust_next = 0; 728 int remove_next = 0; 729 730 if (next && !insert) { 731 struct vm_area_struct *exporter = NULL, *importer = NULL; 732 733 if (end >= next->vm_end) { 734 /* 735 * vma expands, overlapping all the next, and 736 * perhaps the one after too (mprotect case 6). 737 * The only other cases that gets here are 738 * case 1, case 7 and case 8. 739 */ 740 if (next == expand) { 741 /* 742 * The only case where we don't expand "vma" 743 * and we expand "next" instead is case 8. 744 */ 745 VM_WARN_ON(end != next->vm_end); 746 /* 747 * remove_next == 3 means we're 748 * removing "vma" and that to do so we 749 * swapped "vma" and "next". 750 */ 751 remove_next = 3; 752 VM_WARN_ON(file != next->vm_file); 753 swap(vma, next); 754 } else { 755 VM_WARN_ON(expand != vma); 756 /* 757 * case 1, 6, 7, remove_next == 2 is case 6, 758 * remove_next == 1 is case 1 or 7. 759 */ 760 remove_next = 1 + (end > next->vm_end); 761 VM_WARN_ON(remove_next == 2 && 762 end != next->vm_next->vm_end); 763 VM_WARN_ON(remove_next == 1 && 764 end != next->vm_end); 765 /* trim end to next, for case 6 first pass */ 766 end = next->vm_end; 767 } 768 769 exporter = next; 770 importer = vma; 771 772 /* 773 * If next doesn't have anon_vma, import from vma after 774 * next, if the vma overlaps with it. 775 */ 776 if (remove_next == 2 && !next->anon_vma) 777 exporter = next->vm_next; 778 779 } else if (end > next->vm_start) { 780 /* 781 * vma expands, overlapping part of the next: 782 * mprotect case 5 shifting the boundary up. 783 */ 784 adjust_next = (end - next->vm_start) >> PAGE_SHIFT; 785 exporter = next; 786 importer = vma; 787 VM_WARN_ON(expand != importer); 788 } else if (end < vma->vm_end) { 789 /* 790 * vma shrinks, and !insert tells it's not 791 * split_vma inserting another: so it must be 792 * mprotect case 4 shifting the boundary down. 793 */ 794 adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT); 795 exporter = vma; 796 importer = next; 797 VM_WARN_ON(expand != importer); 798 } 799 800 /* 801 * Easily overlooked: when mprotect shifts the boundary, 802 * make sure the expanding vma has anon_vma set if the 803 * shrinking vma had, to cover any anon pages imported. 804 */ 805 if (exporter && exporter->anon_vma && !importer->anon_vma) { 806 int error; 807 808 importer->anon_vma = exporter->anon_vma; 809 error = anon_vma_clone(importer, exporter); 810 if (error) 811 return error; 812 } 813 } 814 again: 815 vma_adjust_trans_huge(orig_vma, start, end, adjust_next); 816 817 if (file) { 818 mapping = file->f_mapping; 819 root = &mapping->i_mmap; 820 uprobe_munmap(vma, vma->vm_start, vma->vm_end); 821 822 if (adjust_next) 823 uprobe_munmap(next, next->vm_start, next->vm_end); 824 825 i_mmap_lock_write(mapping); 826 if (insert) { 827 /* 828 * Put into interval tree now, so instantiated pages 829 * are visible to arm/parisc __flush_dcache_page 830 * throughout; but we cannot insert into address 831 * space until vma start or end is updated. 832 */ 833 __vma_link_file(insert); 834 } 835 } 836 837 anon_vma = vma->anon_vma; 838 if (!anon_vma && adjust_next) 839 anon_vma = next->anon_vma; 840 if (anon_vma) { 841 VM_WARN_ON(adjust_next && next->anon_vma && 842 anon_vma != next->anon_vma); 843 anon_vma_lock_write(anon_vma); 844 anon_vma_interval_tree_pre_update_vma(vma); 845 if (adjust_next) 846 anon_vma_interval_tree_pre_update_vma(next); 847 } 848 849 if (root) { 850 flush_dcache_mmap_lock(mapping); 851 vma_interval_tree_remove(vma, root); 852 if (adjust_next) 853 vma_interval_tree_remove(next, root); 854 } 855 856 if (start != vma->vm_start) { 857 vma->vm_start = start; 858 start_changed = true; 859 } 860 if (end != vma->vm_end) { 861 vma->vm_end = end; 862 end_changed = true; 863 } 864 vma->vm_pgoff = pgoff; 865 if (adjust_next) { 866 next->vm_start += adjust_next << PAGE_SHIFT; 867 next->vm_pgoff += adjust_next; 868 } 869 870 if (root) { 871 if (adjust_next) 872 vma_interval_tree_insert(next, root); 873 vma_interval_tree_insert(vma, root); 874 flush_dcache_mmap_unlock(mapping); 875 } 876 877 if (remove_next) { 878 /* 879 * vma_merge has merged next into vma, and needs 880 * us to remove next before dropping the locks. 881 */ 882 if (remove_next != 3) 883 __vma_unlink_prev(mm, next, vma); 884 else 885 /* 886 * vma is not before next if they've been 887 * swapped. 888 * 889 * pre-swap() next->vm_start was reduced so 890 * tell validate_mm_rb to ignore pre-swap() 891 * "next" (which is stored in post-swap() 892 * "vma"). 893 */ 894 __vma_unlink_common(mm, next, NULL, false, vma); 895 if (file) 896 __remove_shared_vm_struct(next, file, mapping); 897 } else if (insert) { 898 /* 899 * split_vma has split insert from vma, and needs 900 * us to insert it before dropping the locks 901 * (it may either follow vma or precede it). 902 */ 903 __insert_vm_struct(mm, insert); 904 } else { 905 if (start_changed) 906 vma_gap_update(vma); 907 if (end_changed) { 908 if (!next) 909 mm->highest_vm_end = vm_end_gap(vma); 910 else if (!adjust_next) 911 vma_gap_update(next); 912 } 913 } 914 915 if (anon_vma) { 916 anon_vma_interval_tree_post_update_vma(vma); 917 if (adjust_next) 918 anon_vma_interval_tree_post_update_vma(next); 919 anon_vma_unlock_write(anon_vma); 920 } 921 if (mapping) 922 i_mmap_unlock_write(mapping); 923 924 if (root) { 925 uprobe_mmap(vma); 926 927 if (adjust_next) 928 uprobe_mmap(next); 929 } 930 931 if (remove_next) { 932 if (file) { 933 uprobe_munmap(next, next->vm_start, next->vm_end); 934 fput(file); 935 } 936 if (next->anon_vma) 937 anon_vma_merge(vma, next); 938 mm->map_count--; 939 mpol_put(vma_policy(next)); 940 vm_area_free(next); 941 /* 942 * In mprotect's case 6 (see comments on vma_merge), 943 * we must remove another next too. It would clutter 944 * up the code too much to do both in one go. 945 */ 946 if (remove_next != 3) { 947 /* 948 * If "next" was removed and vma->vm_end was 949 * expanded (up) over it, in turn 950 * "next->vm_prev->vm_end" changed and the 951 * "vma->vm_next" gap must be updated. 952 */ 953 next = vma->vm_next; 954 } else { 955 /* 956 * For the scope of the comment "next" and 957 * "vma" considered pre-swap(): if "vma" was 958 * removed, next->vm_start was expanded (down) 959 * over it and the "next" gap must be updated. 960 * Because of the swap() the post-swap() "vma" 961 * actually points to pre-swap() "next" 962 * (post-swap() "next" as opposed is now a 963 * dangling pointer). 964 */ 965 next = vma; 966 } 967 if (remove_next == 2) { 968 remove_next = 1; 969 end = next->vm_end; 970 goto again; 971 } 972 else if (next) 973 vma_gap_update(next); 974 else { 975 /* 976 * If remove_next == 2 we obviously can't 977 * reach this path. 978 * 979 * If remove_next == 3 we can't reach this 980 * path because pre-swap() next is always not 981 * NULL. pre-swap() "next" is not being 982 * removed and its next->vm_end is not altered 983 * (and furthermore "end" already matches 984 * next->vm_end in remove_next == 3). 985 * 986 * We reach this only in the remove_next == 1 987 * case if the "next" vma that was removed was 988 * the highest vma of the mm. However in such 989 * case next->vm_end == "end" and the extended 990 * "vma" has vma->vm_end == next->vm_end so 991 * mm->highest_vm_end doesn't need any update 992 * in remove_next == 1 case. 993 */ 994 VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma)); 995 } 996 } 997 if (insert && file) 998 uprobe_mmap(insert); 999 1000 validate_mm(mm); 1001 1002 return 0; 1003 } 1004 1005 /* 1006 * If the vma has a ->close operation then the driver probably needs to release 1007 * per-vma resources, so we don't attempt to merge those. 1008 */ 1009 static inline int is_mergeable_vma(struct vm_area_struct *vma, 1010 struct file *file, unsigned long vm_flags, 1011 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 1012 { 1013 /* 1014 * VM_SOFTDIRTY should not prevent from VMA merging, if we 1015 * match the flags but dirty bit -- the caller should mark 1016 * merged VMA as dirty. If dirty bit won't be excluded from 1017 * comparison, we increase pressure on the memory system forcing 1018 * the kernel to generate new VMAs when old one could be 1019 * extended instead. 1020 */ 1021 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY) 1022 return 0; 1023 if (vma->vm_file != file) 1024 return 0; 1025 if (vma->vm_ops && vma->vm_ops->close) 1026 return 0; 1027 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx)) 1028 return 0; 1029 return 1; 1030 } 1031 1032 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1, 1033 struct anon_vma *anon_vma2, 1034 struct vm_area_struct *vma) 1035 { 1036 /* 1037 * The list_is_singular() test is to avoid merging VMA cloned from 1038 * parents. This can improve scalability caused by anon_vma lock. 1039 */ 1040 if ((!anon_vma1 || !anon_vma2) && (!vma || 1041 list_is_singular(&vma->anon_vma_chain))) 1042 return 1; 1043 return anon_vma1 == anon_vma2; 1044 } 1045 1046 /* 1047 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 1048 * in front of (at a lower virtual address and file offset than) the vma. 1049 * 1050 * We cannot merge two vmas if they have differently assigned (non-NULL) 1051 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 1052 * 1053 * We don't check here for the merged mmap wrapping around the end of pagecache 1054 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which 1055 * wrap, nor mmaps which cover the final page at index -1UL. 1056 */ 1057 static int 1058 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags, 1059 struct anon_vma *anon_vma, struct file *file, 1060 pgoff_t vm_pgoff, 1061 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 1062 { 1063 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) && 1064 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 1065 if (vma->vm_pgoff == vm_pgoff) 1066 return 1; 1067 } 1068 return 0; 1069 } 1070 1071 /* 1072 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 1073 * beyond (at a higher virtual address and file offset than) the vma. 1074 * 1075 * We cannot merge two vmas if they have differently assigned (non-NULL) 1076 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 1077 */ 1078 static int 1079 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags, 1080 struct anon_vma *anon_vma, struct file *file, 1081 pgoff_t vm_pgoff, 1082 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 1083 { 1084 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) && 1085 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 1086 pgoff_t vm_pglen; 1087 vm_pglen = vma_pages(vma); 1088 if (vma->vm_pgoff + vm_pglen == vm_pgoff) 1089 return 1; 1090 } 1091 return 0; 1092 } 1093 1094 /* 1095 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out 1096 * whether that can be merged with its predecessor or its successor. 1097 * Or both (it neatly fills a hole). 1098 * 1099 * In most cases - when called for mmap, brk or mremap - [addr,end) is 1100 * certain not to be mapped by the time vma_merge is called; but when 1101 * called for mprotect, it is certain to be already mapped (either at 1102 * an offset within prev, or at the start of next), and the flags of 1103 * this area are about to be changed to vm_flags - and the no-change 1104 * case has already been eliminated. 1105 * 1106 * The following mprotect cases have to be considered, where AAAA is 1107 * the area passed down from mprotect_fixup, never extending beyond one 1108 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after: 1109 * 1110 * AAAA AAAA AAAA AAAA 1111 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX 1112 * cannot merge might become might become might become 1113 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or 1114 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or 1115 * mremap move: PPPPXXXXXXXX 8 1116 * AAAA 1117 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN 1118 * might become case 1 below case 2 below case 3 below 1119 * 1120 * It is important for case 8 that the vma NNNN overlapping the 1121 * region AAAA is never going to extended over XXXX. Instead XXXX must 1122 * be extended in region AAAA and NNNN must be removed. This way in 1123 * all cases where vma_merge succeeds, the moment vma_adjust drops the 1124 * rmap_locks, the properties of the merged vma will be already 1125 * correct for the whole merged range. Some of those properties like 1126 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must 1127 * be correct for the whole merged range immediately after the 1128 * rmap_locks are released. Otherwise if XXXX would be removed and 1129 * NNNN would be extended over the XXXX range, remove_migration_ptes 1130 * or other rmap walkers (if working on addresses beyond the "end" 1131 * parameter) may establish ptes with the wrong permissions of NNNN 1132 * instead of the right permissions of XXXX. 1133 */ 1134 struct vm_area_struct *vma_merge(struct mm_struct *mm, 1135 struct vm_area_struct *prev, unsigned long addr, 1136 unsigned long end, unsigned long vm_flags, 1137 struct anon_vma *anon_vma, struct file *file, 1138 pgoff_t pgoff, struct mempolicy *policy, 1139 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 1140 { 1141 pgoff_t pglen = (end - addr) >> PAGE_SHIFT; 1142 struct vm_area_struct *area, *next; 1143 int err; 1144 1145 /* 1146 * We later require that vma->vm_flags == vm_flags, 1147 * so this tests vma->vm_flags & VM_SPECIAL, too. 1148 */ 1149 if (vm_flags & VM_SPECIAL) 1150 return NULL; 1151 1152 if (prev) 1153 next = prev->vm_next; 1154 else 1155 next = mm->mmap; 1156 area = next; 1157 if (area && area->vm_end == end) /* cases 6, 7, 8 */ 1158 next = next->vm_next; 1159 1160 /* verify some invariant that must be enforced by the caller */ 1161 VM_WARN_ON(prev && addr <= prev->vm_start); 1162 VM_WARN_ON(area && end > area->vm_end); 1163 VM_WARN_ON(addr >= end); 1164 1165 /* 1166 * Can it merge with the predecessor? 1167 */ 1168 if (prev && prev->vm_end == addr && 1169 mpol_equal(vma_policy(prev), policy) && 1170 can_vma_merge_after(prev, vm_flags, 1171 anon_vma, file, pgoff, 1172 vm_userfaultfd_ctx)) { 1173 /* 1174 * OK, it can. Can we now merge in the successor as well? 1175 */ 1176 if (next && end == next->vm_start && 1177 mpol_equal(policy, vma_policy(next)) && 1178 can_vma_merge_before(next, vm_flags, 1179 anon_vma, file, 1180 pgoff+pglen, 1181 vm_userfaultfd_ctx) && 1182 is_mergeable_anon_vma(prev->anon_vma, 1183 next->anon_vma, NULL)) { 1184 /* cases 1, 6 */ 1185 err = __vma_adjust(prev, prev->vm_start, 1186 next->vm_end, prev->vm_pgoff, NULL, 1187 prev); 1188 } else /* cases 2, 5, 7 */ 1189 err = __vma_adjust(prev, prev->vm_start, 1190 end, prev->vm_pgoff, NULL, prev); 1191 if (err) 1192 return NULL; 1193 khugepaged_enter_vma_merge(prev, vm_flags); 1194 return prev; 1195 } 1196 1197 /* 1198 * Can this new request be merged in front of next? 1199 */ 1200 if (next && end == next->vm_start && 1201 mpol_equal(policy, vma_policy(next)) && 1202 can_vma_merge_before(next, vm_flags, 1203 anon_vma, file, pgoff+pglen, 1204 vm_userfaultfd_ctx)) { 1205 if (prev && addr < prev->vm_end) /* case 4 */ 1206 err = __vma_adjust(prev, prev->vm_start, 1207 addr, prev->vm_pgoff, NULL, next); 1208 else { /* cases 3, 8 */ 1209 err = __vma_adjust(area, addr, next->vm_end, 1210 next->vm_pgoff - pglen, NULL, next); 1211 /* 1212 * In case 3 area is already equal to next and 1213 * this is a noop, but in case 8 "area" has 1214 * been removed and next was expanded over it. 1215 */ 1216 area = next; 1217 } 1218 if (err) 1219 return NULL; 1220 khugepaged_enter_vma_merge(area, vm_flags); 1221 return area; 1222 } 1223 1224 return NULL; 1225 } 1226 1227 /* 1228 * Rough compatbility check to quickly see if it's even worth looking 1229 * at sharing an anon_vma. 1230 * 1231 * They need to have the same vm_file, and the flags can only differ 1232 * in things that mprotect may change. 1233 * 1234 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that 1235 * we can merge the two vma's. For example, we refuse to merge a vma if 1236 * there is a vm_ops->close() function, because that indicates that the 1237 * driver is doing some kind of reference counting. But that doesn't 1238 * really matter for the anon_vma sharing case. 1239 */ 1240 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b) 1241 { 1242 return a->vm_end == b->vm_start && 1243 mpol_equal(vma_policy(a), vma_policy(b)) && 1244 a->vm_file == b->vm_file && 1245 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) && 1246 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT); 1247 } 1248 1249 /* 1250 * Do some basic sanity checking to see if we can re-use the anon_vma 1251 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be 1252 * the same as 'old', the other will be the new one that is trying 1253 * to share the anon_vma. 1254 * 1255 * NOTE! This runs with mm_sem held for reading, so it is possible that 1256 * the anon_vma of 'old' is concurrently in the process of being set up 1257 * by another page fault trying to merge _that_. But that's ok: if it 1258 * is being set up, that automatically means that it will be a singleton 1259 * acceptable for merging, so we can do all of this optimistically. But 1260 * we do that READ_ONCE() to make sure that we never re-load the pointer. 1261 * 1262 * IOW: that the "list_is_singular()" test on the anon_vma_chain only 1263 * matters for the 'stable anon_vma' case (ie the thing we want to avoid 1264 * is to return an anon_vma that is "complex" due to having gone through 1265 * a fork). 1266 * 1267 * We also make sure that the two vma's are compatible (adjacent, 1268 * and with the same memory policies). That's all stable, even with just 1269 * a read lock on the mm_sem. 1270 */ 1271 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b) 1272 { 1273 if (anon_vma_compatible(a, b)) { 1274 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma); 1275 1276 if (anon_vma && list_is_singular(&old->anon_vma_chain)) 1277 return anon_vma; 1278 } 1279 return NULL; 1280 } 1281 1282 /* 1283 * find_mergeable_anon_vma is used by anon_vma_prepare, to check 1284 * neighbouring vmas for a suitable anon_vma, before it goes off 1285 * to allocate a new anon_vma. It checks because a repetitive 1286 * sequence of mprotects and faults may otherwise lead to distinct 1287 * anon_vmas being allocated, preventing vma merge in subsequent 1288 * mprotect. 1289 */ 1290 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) 1291 { 1292 struct anon_vma *anon_vma; 1293 struct vm_area_struct *near; 1294 1295 near = vma->vm_next; 1296 if (!near) 1297 goto try_prev; 1298 1299 anon_vma = reusable_anon_vma(near, vma, near); 1300 if (anon_vma) 1301 return anon_vma; 1302 try_prev: 1303 near = vma->vm_prev; 1304 if (!near) 1305 goto none; 1306 1307 anon_vma = reusable_anon_vma(near, near, vma); 1308 if (anon_vma) 1309 return anon_vma; 1310 none: 1311 /* 1312 * There's no absolute need to look only at touching neighbours: 1313 * we could search further afield for "compatible" anon_vmas. 1314 * But it would probably just be a waste of time searching, 1315 * or lead to too many vmas hanging off the same anon_vma. 1316 * We're trying to allow mprotect remerging later on, 1317 * not trying to minimize memory used for anon_vmas. 1318 */ 1319 return NULL; 1320 } 1321 1322 /* 1323 * If a hint addr is less than mmap_min_addr change hint to be as 1324 * low as possible but still greater than mmap_min_addr 1325 */ 1326 static inline unsigned long round_hint_to_min(unsigned long hint) 1327 { 1328 hint &= PAGE_MASK; 1329 if (((void *)hint != NULL) && 1330 (hint < mmap_min_addr)) 1331 return PAGE_ALIGN(mmap_min_addr); 1332 return hint; 1333 } 1334 1335 static inline int mlock_future_check(struct mm_struct *mm, 1336 unsigned long flags, 1337 unsigned long len) 1338 { 1339 unsigned long locked, lock_limit; 1340 1341 /* mlock MCL_FUTURE? */ 1342 if (flags & VM_LOCKED) { 1343 locked = len >> PAGE_SHIFT; 1344 locked += mm->locked_vm; 1345 lock_limit = rlimit(RLIMIT_MEMLOCK); 1346 lock_limit >>= PAGE_SHIFT; 1347 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 1348 return -EAGAIN; 1349 } 1350 return 0; 1351 } 1352 1353 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode) 1354 { 1355 if (S_ISREG(inode->i_mode)) 1356 return MAX_LFS_FILESIZE; 1357 1358 if (S_ISBLK(inode->i_mode)) 1359 return MAX_LFS_FILESIZE; 1360 1361 /* Special "we do even unsigned file positions" case */ 1362 if (file->f_mode & FMODE_UNSIGNED_OFFSET) 1363 return 0; 1364 1365 /* Yes, random drivers might want more. But I'm tired of buggy drivers */ 1366 return ULONG_MAX; 1367 } 1368 1369 static inline bool file_mmap_ok(struct file *file, struct inode *inode, 1370 unsigned long pgoff, unsigned long len) 1371 { 1372 u64 maxsize = file_mmap_size_max(file, inode); 1373 1374 if (maxsize && len > maxsize) 1375 return false; 1376 maxsize -= len; 1377 if (pgoff > maxsize >> PAGE_SHIFT) 1378 return false; 1379 return true; 1380 } 1381 1382 /* 1383 * The caller must hold down_write(¤t->mm->mmap_sem). 1384 */ 1385 unsigned long do_mmap(struct file *file, unsigned long addr, 1386 unsigned long len, unsigned long prot, 1387 unsigned long flags, vm_flags_t vm_flags, 1388 unsigned long pgoff, unsigned long *populate, 1389 struct list_head *uf) 1390 { 1391 struct mm_struct *mm = current->mm; 1392 int pkey = 0; 1393 1394 *populate = 0; 1395 1396 if (!len) 1397 return -EINVAL; 1398 1399 /* 1400 * Does the application expect PROT_READ to imply PROT_EXEC? 1401 * 1402 * (the exception is when the underlying filesystem is noexec 1403 * mounted, in which case we dont add PROT_EXEC.) 1404 */ 1405 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC)) 1406 if (!(file && path_noexec(&file->f_path))) 1407 prot |= PROT_EXEC; 1408 1409 /* force arch specific MAP_FIXED handling in get_unmapped_area */ 1410 if (flags & MAP_FIXED_NOREPLACE) 1411 flags |= MAP_FIXED; 1412 1413 if (!(flags & MAP_FIXED)) 1414 addr = round_hint_to_min(addr); 1415 1416 /* Careful about overflows.. */ 1417 len = PAGE_ALIGN(len); 1418 if (!len) 1419 return -ENOMEM; 1420 1421 /* offset overflow? */ 1422 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff) 1423 return -EOVERFLOW; 1424 1425 /* Too many mappings? */ 1426 if (mm->map_count > sysctl_max_map_count) 1427 return -ENOMEM; 1428 1429 /* Obtain the address to map to. we verify (or select) it and ensure 1430 * that it represents a valid section of the address space. 1431 */ 1432 addr = get_unmapped_area(file, addr, len, pgoff, flags); 1433 if (offset_in_page(addr)) 1434 return addr; 1435 1436 if (flags & MAP_FIXED_NOREPLACE) { 1437 struct vm_area_struct *vma = find_vma(mm, addr); 1438 1439 if (vma && vma->vm_start < addr + len) 1440 return -EEXIST; 1441 } 1442 1443 if (prot == PROT_EXEC) { 1444 pkey = execute_only_pkey(mm); 1445 if (pkey < 0) 1446 pkey = 0; 1447 } 1448 1449 /* Do simple checking here so the lower-level routines won't have 1450 * to. we assume access permissions have been handled by the open 1451 * of the memory object, so we don't do any here. 1452 */ 1453 vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) | 1454 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 1455 1456 if (flags & MAP_LOCKED) 1457 if (!can_do_mlock()) 1458 return -EPERM; 1459 1460 if (mlock_future_check(mm, vm_flags, len)) 1461 return -EAGAIN; 1462 1463 if (file) { 1464 struct inode *inode = file_inode(file); 1465 unsigned long flags_mask; 1466 1467 if (!file_mmap_ok(file, inode, pgoff, len)) 1468 return -EOVERFLOW; 1469 1470 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags; 1471 1472 switch (flags & MAP_TYPE) { 1473 case MAP_SHARED: 1474 /* 1475 * Force use of MAP_SHARED_VALIDATE with non-legacy 1476 * flags. E.g. MAP_SYNC is dangerous to use with 1477 * MAP_SHARED as you don't know which consistency model 1478 * you will get. We silently ignore unsupported flags 1479 * with MAP_SHARED to preserve backward compatibility. 1480 */ 1481 flags &= LEGACY_MAP_MASK; 1482 /* fall through */ 1483 case MAP_SHARED_VALIDATE: 1484 if (flags & ~flags_mask) 1485 return -EOPNOTSUPP; 1486 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE)) 1487 return -EACCES; 1488 1489 /* 1490 * Make sure we don't allow writing to an append-only 1491 * file.. 1492 */ 1493 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE)) 1494 return -EACCES; 1495 1496 /* 1497 * Make sure there are no mandatory locks on the file. 1498 */ 1499 if (locks_verify_locked(file)) 1500 return -EAGAIN; 1501 1502 vm_flags |= VM_SHARED | VM_MAYSHARE; 1503 if (!(file->f_mode & FMODE_WRITE)) 1504 vm_flags &= ~(VM_MAYWRITE | VM_SHARED); 1505 1506 /* fall through */ 1507 case MAP_PRIVATE: 1508 if (!(file->f_mode & FMODE_READ)) 1509 return -EACCES; 1510 if (path_noexec(&file->f_path)) { 1511 if (vm_flags & VM_EXEC) 1512 return -EPERM; 1513 vm_flags &= ~VM_MAYEXEC; 1514 } 1515 1516 if (!file->f_op->mmap) 1517 return -ENODEV; 1518 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1519 return -EINVAL; 1520 break; 1521 1522 default: 1523 return -EINVAL; 1524 } 1525 } else { 1526 switch (flags & MAP_TYPE) { 1527 case MAP_SHARED: 1528 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1529 return -EINVAL; 1530 /* 1531 * Ignore pgoff. 1532 */ 1533 pgoff = 0; 1534 vm_flags |= VM_SHARED | VM_MAYSHARE; 1535 break; 1536 case MAP_PRIVATE: 1537 /* 1538 * Set pgoff according to addr for anon_vma. 1539 */ 1540 pgoff = addr >> PAGE_SHIFT; 1541 break; 1542 default: 1543 return -EINVAL; 1544 } 1545 } 1546 1547 /* 1548 * Set 'VM_NORESERVE' if we should not account for the 1549 * memory use of this mapping. 1550 */ 1551 if (flags & MAP_NORESERVE) { 1552 /* We honor MAP_NORESERVE if allowed to overcommit */ 1553 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER) 1554 vm_flags |= VM_NORESERVE; 1555 1556 /* hugetlb applies strict overcommit unless MAP_NORESERVE */ 1557 if (file && is_file_hugepages(file)) 1558 vm_flags |= VM_NORESERVE; 1559 } 1560 1561 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf); 1562 if (!IS_ERR_VALUE(addr) && 1563 ((vm_flags & VM_LOCKED) || 1564 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE)) 1565 *populate = len; 1566 return addr; 1567 } 1568 1569 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len, 1570 unsigned long prot, unsigned long flags, 1571 unsigned long fd, unsigned long pgoff) 1572 { 1573 struct file *file = NULL; 1574 unsigned long retval; 1575 1576 if (!(flags & MAP_ANONYMOUS)) { 1577 audit_mmap_fd(fd, flags); 1578 file = fget(fd); 1579 if (!file) 1580 return -EBADF; 1581 if (is_file_hugepages(file)) 1582 len = ALIGN(len, huge_page_size(hstate_file(file))); 1583 retval = -EINVAL; 1584 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file))) 1585 goto out_fput; 1586 } else if (flags & MAP_HUGETLB) { 1587 struct user_struct *user = NULL; 1588 struct hstate *hs; 1589 1590 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 1591 if (!hs) 1592 return -EINVAL; 1593 1594 len = ALIGN(len, huge_page_size(hs)); 1595 /* 1596 * VM_NORESERVE is used because the reservations will be 1597 * taken when vm_ops->mmap() is called 1598 * A dummy user value is used because we are not locking 1599 * memory so no accounting is necessary 1600 */ 1601 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, 1602 VM_NORESERVE, 1603 &user, HUGETLB_ANONHUGE_INODE, 1604 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 1605 if (IS_ERR(file)) 1606 return PTR_ERR(file); 1607 } 1608 1609 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE); 1610 1611 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1612 out_fput: 1613 if (file) 1614 fput(file); 1615 return retval; 1616 } 1617 1618 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1619 unsigned long, prot, unsigned long, flags, 1620 unsigned long, fd, unsigned long, pgoff) 1621 { 1622 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff); 1623 } 1624 1625 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1626 struct mmap_arg_struct { 1627 unsigned long addr; 1628 unsigned long len; 1629 unsigned long prot; 1630 unsigned long flags; 1631 unsigned long fd; 1632 unsigned long offset; 1633 }; 1634 1635 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1636 { 1637 struct mmap_arg_struct a; 1638 1639 if (copy_from_user(&a, arg, sizeof(a))) 1640 return -EFAULT; 1641 if (offset_in_page(a.offset)) 1642 return -EINVAL; 1643 1644 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1645 a.offset >> PAGE_SHIFT); 1646 } 1647 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1648 1649 /* 1650 * Some shared mappings will want the pages marked read-only 1651 * to track write events. If so, we'll downgrade vm_page_prot 1652 * to the private version (using protection_map[] without the 1653 * VM_SHARED bit). 1654 */ 1655 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot) 1656 { 1657 vm_flags_t vm_flags = vma->vm_flags; 1658 const struct vm_operations_struct *vm_ops = vma->vm_ops; 1659 1660 /* If it was private or non-writable, the write bit is already clear */ 1661 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED))) 1662 return 0; 1663 1664 /* The backer wishes to know when pages are first written to? */ 1665 if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite)) 1666 return 1; 1667 1668 /* The open routine did something to the protections that pgprot_modify 1669 * won't preserve? */ 1670 if (pgprot_val(vm_page_prot) != 1671 pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags))) 1672 return 0; 1673 1674 /* Do we need to track softdirty? */ 1675 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY)) 1676 return 1; 1677 1678 /* Specialty mapping? */ 1679 if (vm_flags & VM_PFNMAP) 1680 return 0; 1681 1682 /* Can the mapping track the dirty pages? */ 1683 return vma->vm_file && vma->vm_file->f_mapping && 1684 mapping_cap_account_dirty(vma->vm_file->f_mapping); 1685 } 1686 1687 /* 1688 * We account for memory if it's a private writeable mapping, 1689 * not hugepages and VM_NORESERVE wasn't set. 1690 */ 1691 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags) 1692 { 1693 /* 1694 * hugetlb has its own accounting separate from the core VM 1695 * VM_HUGETLB may not be set yet so we cannot check for that flag. 1696 */ 1697 if (file && is_file_hugepages(file)) 1698 return 0; 1699 1700 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE; 1701 } 1702 1703 unsigned long mmap_region(struct file *file, unsigned long addr, 1704 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 1705 struct list_head *uf) 1706 { 1707 struct mm_struct *mm = current->mm; 1708 struct vm_area_struct *vma, *prev; 1709 int error; 1710 struct rb_node **rb_link, *rb_parent; 1711 unsigned long charged = 0; 1712 1713 /* Check against address space limit. */ 1714 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) { 1715 unsigned long nr_pages; 1716 1717 /* 1718 * MAP_FIXED may remove pages of mappings that intersects with 1719 * requested mapping. Account for the pages it would unmap. 1720 */ 1721 nr_pages = count_vma_pages_range(mm, addr, addr + len); 1722 1723 if (!may_expand_vm(mm, vm_flags, 1724 (len >> PAGE_SHIFT) - nr_pages)) 1725 return -ENOMEM; 1726 } 1727 1728 /* Clear old maps */ 1729 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link, 1730 &rb_parent)) { 1731 if (do_munmap(mm, addr, len, uf)) 1732 return -ENOMEM; 1733 } 1734 1735 /* 1736 * Private writable mapping: check memory availability 1737 */ 1738 if (accountable_mapping(file, vm_flags)) { 1739 charged = len >> PAGE_SHIFT; 1740 if (security_vm_enough_memory_mm(mm, charged)) 1741 return -ENOMEM; 1742 vm_flags |= VM_ACCOUNT; 1743 } 1744 1745 /* 1746 * Can we just expand an old mapping? 1747 */ 1748 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, 1749 NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX); 1750 if (vma) 1751 goto out; 1752 1753 /* 1754 * Determine the object being mapped and call the appropriate 1755 * specific mapper. the address has already been validated, but 1756 * not unmapped, but the maps are removed from the list. 1757 */ 1758 vma = vm_area_alloc(mm); 1759 if (!vma) { 1760 error = -ENOMEM; 1761 goto unacct_error; 1762 } 1763 1764 vma->vm_start = addr; 1765 vma->vm_end = addr + len; 1766 vma->vm_flags = vm_flags; 1767 vma->vm_page_prot = vm_get_page_prot(vm_flags); 1768 vma->vm_pgoff = pgoff; 1769 1770 if (file) { 1771 if (vm_flags & VM_DENYWRITE) { 1772 error = deny_write_access(file); 1773 if (error) 1774 goto free_vma; 1775 } 1776 if (vm_flags & VM_SHARED) { 1777 error = mapping_map_writable(file->f_mapping); 1778 if (error) 1779 goto allow_write_and_free_vma; 1780 } 1781 1782 /* ->mmap() can change vma->vm_file, but must guarantee that 1783 * vma_link() below can deny write-access if VM_DENYWRITE is set 1784 * and map writably if VM_SHARED is set. This usually means the 1785 * new file must not have been exposed to user-space, yet. 1786 */ 1787 vma->vm_file = get_file(file); 1788 error = call_mmap(file, vma); 1789 if (error) 1790 goto unmap_and_free_vma; 1791 1792 /* Can addr have changed?? 1793 * 1794 * Answer: Yes, several device drivers can do it in their 1795 * f_op->mmap method. -DaveM 1796 * Bug: If addr is changed, prev, rb_link, rb_parent should 1797 * be updated for vma_link() 1798 */ 1799 WARN_ON_ONCE(addr != vma->vm_start); 1800 1801 addr = vma->vm_start; 1802 vm_flags = vma->vm_flags; 1803 } else if (vm_flags & VM_SHARED) { 1804 error = shmem_zero_setup(vma); 1805 if (error) 1806 goto free_vma; 1807 } else { 1808 vma_set_anonymous(vma); 1809 } 1810 1811 vma_link(mm, vma, prev, rb_link, rb_parent); 1812 /* Once vma denies write, undo our temporary denial count */ 1813 if (file) { 1814 if (vm_flags & VM_SHARED) 1815 mapping_unmap_writable(file->f_mapping); 1816 if (vm_flags & VM_DENYWRITE) 1817 allow_write_access(file); 1818 } 1819 file = vma->vm_file; 1820 out: 1821 perf_event_mmap(vma); 1822 1823 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT); 1824 if (vm_flags & VM_LOCKED) { 1825 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) || 1826 is_vm_hugetlb_page(vma) || 1827 vma == get_gate_vma(current->mm)) 1828 vma->vm_flags &= VM_LOCKED_CLEAR_MASK; 1829 else 1830 mm->locked_vm += (len >> PAGE_SHIFT); 1831 } 1832 1833 if (file) 1834 uprobe_mmap(vma); 1835 1836 /* 1837 * New (or expanded) vma always get soft dirty status. 1838 * Otherwise user-space soft-dirty page tracker won't 1839 * be able to distinguish situation when vma area unmapped, 1840 * then new mapped in-place (which must be aimed as 1841 * a completely new data area). 1842 */ 1843 vma->vm_flags |= VM_SOFTDIRTY; 1844 1845 vma_set_page_prot(vma); 1846 1847 return addr; 1848 1849 unmap_and_free_vma: 1850 vma->vm_file = NULL; 1851 fput(file); 1852 1853 /* Undo any partial mapping done by a device driver. */ 1854 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end); 1855 charged = 0; 1856 if (vm_flags & VM_SHARED) 1857 mapping_unmap_writable(file->f_mapping); 1858 allow_write_and_free_vma: 1859 if (vm_flags & VM_DENYWRITE) 1860 allow_write_access(file); 1861 free_vma: 1862 vm_area_free(vma); 1863 unacct_error: 1864 if (charged) 1865 vm_unacct_memory(charged); 1866 return error; 1867 } 1868 1869 unsigned long unmapped_area(struct vm_unmapped_area_info *info) 1870 { 1871 /* 1872 * We implement the search by looking for an rbtree node that 1873 * immediately follows a suitable gap. That is, 1874 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length; 1875 * - gap_end = vma->vm_start >= info->low_limit + length; 1876 * - gap_end - gap_start >= length 1877 */ 1878 1879 struct mm_struct *mm = current->mm; 1880 struct vm_area_struct *vma; 1881 unsigned long length, low_limit, high_limit, gap_start, gap_end; 1882 1883 /* Adjust search length to account for worst case alignment overhead */ 1884 length = info->length + info->align_mask; 1885 if (length < info->length) 1886 return -ENOMEM; 1887 1888 /* Adjust search limits by the desired length */ 1889 if (info->high_limit < length) 1890 return -ENOMEM; 1891 high_limit = info->high_limit - length; 1892 1893 if (info->low_limit > high_limit) 1894 return -ENOMEM; 1895 low_limit = info->low_limit + length; 1896 1897 /* Check if rbtree root looks promising */ 1898 if (RB_EMPTY_ROOT(&mm->mm_rb)) 1899 goto check_highest; 1900 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb); 1901 if (vma->rb_subtree_gap < length) 1902 goto check_highest; 1903 1904 while (true) { 1905 /* Visit left subtree if it looks promising */ 1906 gap_end = vm_start_gap(vma); 1907 if (gap_end >= low_limit && vma->vm_rb.rb_left) { 1908 struct vm_area_struct *left = 1909 rb_entry(vma->vm_rb.rb_left, 1910 struct vm_area_struct, vm_rb); 1911 if (left->rb_subtree_gap >= length) { 1912 vma = left; 1913 continue; 1914 } 1915 } 1916 1917 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0; 1918 check_current: 1919 /* Check if current node has a suitable gap */ 1920 if (gap_start > high_limit) 1921 return -ENOMEM; 1922 if (gap_end >= low_limit && 1923 gap_end > gap_start && gap_end - gap_start >= length) 1924 goto found; 1925 1926 /* Visit right subtree if it looks promising */ 1927 if (vma->vm_rb.rb_right) { 1928 struct vm_area_struct *right = 1929 rb_entry(vma->vm_rb.rb_right, 1930 struct vm_area_struct, vm_rb); 1931 if (right->rb_subtree_gap >= length) { 1932 vma = right; 1933 continue; 1934 } 1935 } 1936 1937 /* Go back up the rbtree to find next candidate node */ 1938 while (true) { 1939 struct rb_node *prev = &vma->vm_rb; 1940 if (!rb_parent(prev)) 1941 goto check_highest; 1942 vma = rb_entry(rb_parent(prev), 1943 struct vm_area_struct, vm_rb); 1944 if (prev == vma->vm_rb.rb_left) { 1945 gap_start = vm_end_gap(vma->vm_prev); 1946 gap_end = vm_start_gap(vma); 1947 goto check_current; 1948 } 1949 } 1950 } 1951 1952 check_highest: 1953 /* Check highest gap, which does not precede any rbtree node */ 1954 gap_start = mm->highest_vm_end; 1955 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */ 1956 if (gap_start > high_limit) 1957 return -ENOMEM; 1958 1959 found: 1960 /* We found a suitable gap. Clip it with the original low_limit. */ 1961 if (gap_start < info->low_limit) 1962 gap_start = info->low_limit; 1963 1964 /* Adjust gap address to the desired alignment */ 1965 gap_start += (info->align_offset - gap_start) & info->align_mask; 1966 1967 VM_BUG_ON(gap_start + info->length > info->high_limit); 1968 VM_BUG_ON(gap_start + info->length > gap_end); 1969 return gap_start; 1970 } 1971 1972 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info) 1973 { 1974 struct mm_struct *mm = current->mm; 1975 struct vm_area_struct *vma; 1976 unsigned long length, low_limit, high_limit, gap_start, gap_end; 1977 1978 /* Adjust search length to account for worst case alignment overhead */ 1979 length = info->length + info->align_mask; 1980 if (length < info->length) 1981 return -ENOMEM; 1982 1983 /* 1984 * Adjust search limits by the desired length. 1985 * See implementation comment at top of unmapped_area(). 1986 */ 1987 gap_end = info->high_limit; 1988 if (gap_end < length) 1989 return -ENOMEM; 1990 high_limit = gap_end - length; 1991 1992 if (info->low_limit > high_limit) 1993 return -ENOMEM; 1994 low_limit = info->low_limit + length; 1995 1996 /* Check highest gap, which does not precede any rbtree node */ 1997 gap_start = mm->highest_vm_end; 1998 if (gap_start <= high_limit) 1999 goto found_highest; 2000 2001 /* Check if rbtree root looks promising */ 2002 if (RB_EMPTY_ROOT(&mm->mm_rb)) 2003 return -ENOMEM; 2004 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb); 2005 if (vma->rb_subtree_gap < length) 2006 return -ENOMEM; 2007 2008 while (true) { 2009 /* Visit right subtree if it looks promising */ 2010 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0; 2011 if (gap_start <= high_limit && vma->vm_rb.rb_right) { 2012 struct vm_area_struct *right = 2013 rb_entry(vma->vm_rb.rb_right, 2014 struct vm_area_struct, vm_rb); 2015 if (right->rb_subtree_gap >= length) { 2016 vma = right; 2017 continue; 2018 } 2019 } 2020 2021 check_current: 2022 /* Check if current node has a suitable gap */ 2023 gap_end = vm_start_gap(vma); 2024 if (gap_end < low_limit) 2025 return -ENOMEM; 2026 if (gap_start <= high_limit && 2027 gap_end > gap_start && gap_end - gap_start >= length) 2028 goto found; 2029 2030 /* Visit left subtree if it looks promising */ 2031 if (vma->vm_rb.rb_left) { 2032 struct vm_area_struct *left = 2033 rb_entry(vma->vm_rb.rb_left, 2034 struct vm_area_struct, vm_rb); 2035 if (left->rb_subtree_gap >= length) { 2036 vma = left; 2037 continue; 2038 } 2039 } 2040 2041 /* Go back up the rbtree to find next candidate node */ 2042 while (true) { 2043 struct rb_node *prev = &vma->vm_rb; 2044 if (!rb_parent(prev)) 2045 return -ENOMEM; 2046 vma = rb_entry(rb_parent(prev), 2047 struct vm_area_struct, vm_rb); 2048 if (prev == vma->vm_rb.rb_right) { 2049 gap_start = vma->vm_prev ? 2050 vm_end_gap(vma->vm_prev) : 0; 2051 goto check_current; 2052 } 2053 } 2054 } 2055 2056 found: 2057 /* We found a suitable gap. Clip it with the original high_limit. */ 2058 if (gap_end > info->high_limit) 2059 gap_end = info->high_limit; 2060 2061 found_highest: 2062 /* Compute highest gap address at the desired alignment */ 2063 gap_end -= info->length; 2064 gap_end -= (gap_end - info->align_offset) & info->align_mask; 2065 2066 VM_BUG_ON(gap_end < info->low_limit); 2067 VM_BUG_ON(gap_end < gap_start); 2068 return gap_end; 2069 } 2070 2071 2072 #ifndef arch_get_mmap_end 2073 #define arch_get_mmap_end(addr) (TASK_SIZE) 2074 #endif 2075 2076 #ifndef arch_get_mmap_base 2077 #define arch_get_mmap_base(addr, base) (base) 2078 #endif 2079 2080 /* Get an address range which is currently unmapped. 2081 * For shmat() with addr=0. 2082 * 2083 * Ugly calling convention alert: 2084 * Return value with the low bits set means error value, 2085 * ie 2086 * if (ret & ~PAGE_MASK) 2087 * error = ret; 2088 * 2089 * This function "knows" that -ENOMEM has the bits set. 2090 */ 2091 #ifndef HAVE_ARCH_UNMAPPED_AREA 2092 unsigned long 2093 arch_get_unmapped_area(struct file *filp, unsigned long addr, 2094 unsigned long len, unsigned long pgoff, unsigned long flags) 2095 { 2096 struct mm_struct *mm = current->mm; 2097 struct vm_area_struct *vma, *prev; 2098 struct vm_unmapped_area_info info; 2099 const unsigned long mmap_end = arch_get_mmap_end(addr); 2100 2101 if (len > mmap_end - mmap_min_addr) 2102 return -ENOMEM; 2103 2104 if (flags & MAP_FIXED) 2105 return addr; 2106 2107 if (addr) { 2108 addr = PAGE_ALIGN(addr); 2109 vma = find_vma_prev(mm, addr, &prev); 2110 if (mmap_end - len >= addr && addr >= mmap_min_addr && 2111 (!vma || addr + len <= vm_start_gap(vma)) && 2112 (!prev || addr >= vm_end_gap(prev))) 2113 return addr; 2114 } 2115 2116 info.flags = 0; 2117 info.length = len; 2118 info.low_limit = mm->mmap_base; 2119 info.high_limit = mmap_end; 2120 info.align_mask = 0; 2121 return vm_unmapped_area(&info); 2122 } 2123 #endif 2124 2125 /* 2126 * This mmap-allocator allocates new areas top-down from below the 2127 * stack's low limit (the base): 2128 */ 2129 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 2130 unsigned long 2131 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 2132 unsigned long len, unsigned long pgoff, 2133 unsigned long flags) 2134 { 2135 struct vm_area_struct *vma, *prev; 2136 struct mm_struct *mm = current->mm; 2137 struct vm_unmapped_area_info info; 2138 const unsigned long mmap_end = arch_get_mmap_end(addr); 2139 2140 /* requested length too big for entire address space */ 2141 if (len > mmap_end - mmap_min_addr) 2142 return -ENOMEM; 2143 2144 if (flags & MAP_FIXED) 2145 return addr; 2146 2147 /* requesting a specific address */ 2148 if (addr) { 2149 addr = PAGE_ALIGN(addr); 2150 vma = find_vma_prev(mm, addr, &prev); 2151 if (mmap_end - len >= addr && addr >= mmap_min_addr && 2152 (!vma || addr + len <= vm_start_gap(vma)) && 2153 (!prev || addr >= vm_end_gap(prev))) 2154 return addr; 2155 } 2156 2157 info.flags = VM_UNMAPPED_AREA_TOPDOWN; 2158 info.length = len; 2159 info.low_limit = max(PAGE_SIZE, mmap_min_addr); 2160 info.high_limit = arch_get_mmap_base(addr, mm->mmap_base); 2161 info.align_mask = 0; 2162 addr = vm_unmapped_area(&info); 2163 2164 /* 2165 * A failed mmap() very likely causes application failure, 2166 * so fall back to the bottom-up function here. This scenario 2167 * can happen with large stack limits and large mmap() 2168 * allocations. 2169 */ 2170 if (offset_in_page(addr)) { 2171 VM_BUG_ON(addr != -ENOMEM); 2172 info.flags = 0; 2173 info.low_limit = TASK_UNMAPPED_BASE; 2174 info.high_limit = mmap_end; 2175 addr = vm_unmapped_area(&info); 2176 } 2177 2178 return addr; 2179 } 2180 #endif 2181 2182 unsigned long 2183 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 2184 unsigned long pgoff, unsigned long flags) 2185 { 2186 unsigned long (*get_area)(struct file *, unsigned long, 2187 unsigned long, unsigned long, unsigned long); 2188 2189 unsigned long error = arch_mmap_check(addr, len, flags); 2190 if (error) 2191 return error; 2192 2193 /* Careful about overflows.. */ 2194 if (len > TASK_SIZE) 2195 return -ENOMEM; 2196 2197 get_area = current->mm->get_unmapped_area; 2198 if (file) { 2199 if (file->f_op->get_unmapped_area) 2200 get_area = file->f_op->get_unmapped_area; 2201 } else if (flags & MAP_SHARED) { 2202 /* 2203 * mmap_region() will call shmem_zero_setup() to create a file, 2204 * so use shmem's get_unmapped_area in case it can be huge. 2205 * do_mmap_pgoff() will clear pgoff, so match alignment. 2206 */ 2207 pgoff = 0; 2208 get_area = shmem_get_unmapped_area; 2209 } 2210 2211 addr = get_area(file, addr, len, pgoff, flags); 2212 if (IS_ERR_VALUE(addr)) 2213 return addr; 2214 2215 if (addr > TASK_SIZE - len) 2216 return -ENOMEM; 2217 if (offset_in_page(addr)) 2218 return -EINVAL; 2219 2220 error = security_mmap_addr(addr); 2221 return error ? error : addr; 2222 } 2223 2224 EXPORT_SYMBOL(get_unmapped_area); 2225 2226 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2227 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 2228 { 2229 struct rb_node *rb_node; 2230 struct vm_area_struct *vma; 2231 2232 /* Check the cache first. */ 2233 vma = vmacache_find(mm, addr); 2234 if (likely(vma)) 2235 return vma; 2236 2237 rb_node = mm->mm_rb.rb_node; 2238 2239 while (rb_node) { 2240 struct vm_area_struct *tmp; 2241 2242 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb); 2243 2244 if (tmp->vm_end > addr) { 2245 vma = tmp; 2246 if (tmp->vm_start <= addr) 2247 break; 2248 rb_node = rb_node->rb_left; 2249 } else 2250 rb_node = rb_node->rb_right; 2251 } 2252 2253 if (vma) 2254 vmacache_update(addr, vma); 2255 return vma; 2256 } 2257 2258 EXPORT_SYMBOL(find_vma); 2259 2260 /* 2261 * Same as find_vma, but also return a pointer to the previous VMA in *pprev. 2262 */ 2263 struct vm_area_struct * 2264 find_vma_prev(struct mm_struct *mm, unsigned long addr, 2265 struct vm_area_struct **pprev) 2266 { 2267 struct vm_area_struct *vma; 2268 2269 vma = find_vma(mm, addr); 2270 if (vma) { 2271 *pprev = vma->vm_prev; 2272 } else { 2273 struct rb_node *rb_node = mm->mm_rb.rb_node; 2274 *pprev = NULL; 2275 while (rb_node) { 2276 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb); 2277 rb_node = rb_node->rb_right; 2278 } 2279 } 2280 return vma; 2281 } 2282 2283 /* 2284 * Verify that the stack growth is acceptable and 2285 * update accounting. This is shared with both the 2286 * grow-up and grow-down cases. 2287 */ 2288 static int acct_stack_growth(struct vm_area_struct *vma, 2289 unsigned long size, unsigned long grow) 2290 { 2291 struct mm_struct *mm = vma->vm_mm; 2292 unsigned long new_start; 2293 2294 /* address space limit tests */ 2295 if (!may_expand_vm(mm, vma->vm_flags, grow)) 2296 return -ENOMEM; 2297 2298 /* Stack limit test */ 2299 if (size > rlimit(RLIMIT_STACK)) 2300 return -ENOMEM; 2301 2302 /* mlock limit tests */ 2303 if (vma->vm_flags & VM_LOCKED) { 2304 unsigned long locked; 2305 unsigned long limit; 2306 locked = mm->locked_vm + grow; 2307 limit = rlimit(RLIMIT_MEMLOCK); 2308 limit >>= PAGE_SHIFT; 2309 if (locked > limit && !capable(CAP_IPC_LOCK)) 2310 return -ENOMEM; 2311 } 2312 2313 /* Check to ensure the stack will not grow into a hugetlb-only region */ 2314 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : 2315 vma->vm_end - size; 2316 if (is_hugepage_only_range(vma->vm_mm, new_start, size)) 2317 return -EFAULT; 2318 2319 /* 2320 * Overcommit.. This must be the final test, as it will 2321 * update security statistics. 2322 */ 2323 if (security_vm_enough_memory_mm(mm, grow)) 2324 return -ENOMEM; 2325 2326 return 0; 2327 } 2328 2329 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64) 2330 /* 2331 * PA-RISC uses this for its stack; IA64 for its Register Backing Store. 2332 * vma is the last one with address > vma->vm_end. Have to extend vma. 2333 */ 2334 int expand_upwards(struct vm_area_struct *vma, unsigned long address) 2335 { 2336 struct mm_struct *mm = vma->vm_mm; 2337 struct vm_area_struct *next; 2338 unsigned long gap_addr; 2339 int error = 0; 2340 2341 if (!(vma->vm_flags & VM_GROWSUP)) 2342 return -EFAULT; 2343 2344 /* Guard against exceeding limits of the address space. */ 2345 address &= PAGE_MASK; 2346 if (address >= (TASK_SIZE & PAGE_MASK)) 2347 return -ENOMEM; 2348 address += PAGE_SIZE; 2349 2350 /* Enforce stack_guard_gap */ 2351 gap_addr = address + stack_guard_gap; 2352 2353 /* Guard against overflow */ 2354 if (gap_addr < address || gap_addr > TASK_SIZE) 2355 gap_addr = TASK_SIZE; 2356 2357 next = vma->vm_next; 2358 if (next && next->vm_start < gap_addr && 2359 (next->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) { 2360 if (!(next->vm_flags & VM_GROWSUP)) 2361 return -ENOMEM; 2362 /* Check that both stack segments have the same anon_vma? */ 2363 } 2364 2365 /* We must make sure the anon_vma is allocated. */ 2366 if (unlikely(anon_vma_prepare(vma))) 2367 return -ENOMEM; 2368 2369 /* 2370 * vma->vm_start/vm_end cannot change under us because the caller 2371 * is required to hold the mmap_sem in read mode. We need the 2372 * anon_vma lock to serialize against concurrent expand_stacks. 2373 */ 2374 anon_vma_lock_write(vma->anon_vma); 2375 2376 /* Somebody else might have raced and expanded it already */ 2377 if (address > vma->vm_end) { 2378 unsigned long size, grow; 2379 2380 size = address - vma->vm_start; 2381 grow = (address - vma->vm_end) >> PAGE_SHIFT; 2382 2383 error = -ENOMEM; 2384 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) { 2385 error = acct_stack_growth(vma, size, grow); 2386 if (!error) { 2387 /* 2388 * vma_gap_update() doesn't support concurrent 2389 * updates, but we only hold a shared mmap_sem 2390 * lock here, so we need to protect against 2391 * concurrent vma expansions. 2392 * anon_vma_lock_write() doesn't help here, as 2393 * we don't guarantee that all growable vmas 2394 * in a mm share the same root anon vma. 2395 * So, we reuse mm->page_table_lock to guard 2396 * against concurrent vma expansions. 2397 */ 2398 spin_lock(&mm->page_table_lock); 2399 if (vma->vm_flags & VM_LOCKED) 2400 mm->locked_vm += grow; 2401 vm_stat_account(mm, vma->vm_flags, grow); 2402 anon_vma_interval_tree_pre_update_vma(vma); 2403 vma->vm_end = address; 2404 anon_vma_interval_tree_post_update_vma(vma); 2405 if (vma->vm_next) 2406 vma_gap_update(vma->vm_next); 2407 else 2408 mm->highest_vm_end = vm_end_gap(vma); 2409 spin_unlock(&mm->page_table_lock); 2410 2411 perf_event_mmap(vma); 2412 } 2413 } 2414 } 2415 anon_vma_unlock_write(vma->anon_vma); 2416 khugepaged_enter_vma_merge(vma, vma->vm_flags); 2417 validate_mm(mm); 2418 return error; 2419 } 2420 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */ 2421 2422 /* 2423 * vma is the first one with address < vma->vm_start. Have to extend vma. 2424 */ 2425 int expand_downwards(struct vm_area_struct *vma, 2426 unsigned long address) 2427 { 2428 struct mm_struct *mm = vma->vm_mm; 2429 struct vm_area_struct *prev; 2430 int error = 0; 2431 2432 address &= PAGE_MASK; 2433 if (address < mmap_min_addr) 2434 return -EPERM; 2435 2436 /* Enforce stack_guard_gap */ 2437 prev = vma->vm_prev; 2438 /* Check that both stack segments have the same anon_vma? */ 2439 if (prev && !(prev->vm_flags & VM_GROWSDOWN) && 2440 (prev->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) { 2441 if (address - prev->vm_end < stack_guard_gap) 2442 return -ENOMEM; 2443 } 2444 2445 /* We must make sure the anon_vma is allocated. */ 2446 if (unlikely(anon_vma_prepare(vma))) 2447 return -ENOMEM; 2448 2449 /* 2450 * vma->vm_start/vm_end cannot change under us because the caller 2451 * is required to hold the mmap_sem in read mode. We need the 2452 * anon_vma lock to serialize against concurrent expand_stacks. 2453 */ 2454 anon_vma_lock_write(vma->anon_vma); 2455 2456 /* Somebody else might have raced and expanded it already */ 2457 if (address < vma->vm_start) { 2458 unsigned long size, grow; 2459 2460 size = vma->vm_end - address; 2461 grow = (vma->vm_start - address) >> PAGE_SHIFT; 2462 2463 error = -ENOMEM; 2464 if (grow <= vma->vm_pgoff) { 2465 error = acct_stack_growth(vma, size, grow); 2466 if (!error) { 2467 /* 2468 * vma_gap_update() doesn't support concurrent 2469 * updates, but we only hold a shared mmap_sem 2470 * lock here, so we need to protect against 2471 * concurrent vma expansions. 2472 * anon_vma_lock_write() doesn't help here, as 2473 * we don't guarantee that all growable vmas 2474 * in a mm share the same root anon vma. 2475 * So, we reuse mm->page_table_lock to guard 2476 * against concurrent vma expansions. 2477 */ 2478 spin_lock(&mm->page_table_lock); 2479 if (vma->vm_flags & VM_LOCKED) 2480 mm->locked_vm += grow; 2481 vm_stat_account(mm, vma->vm_flags, grow); 2482 anon_vma_interval_tree_pre_update_vma(vma); 2483 vma->vm_start = address; 2484 vma->vm_pgoff -= grow; 2485 anon_vma_interval_tree_post_update_vma(vma); 2486 vma_gap_update(vma); 2487 spin_unlock(&mm->page_table_lock); 2488 2489 perf_event_mmap(vma); 2490 } 2491 } 2492 } 2493 anon_vma_unlock_write(vma->anon_vma); 2494 khugepaged_enter_vma_merge(vma, vma->vm_flags); 2495 validate_mm(mm); 2496 return error; 2497 } 2498 2499 /* enforced gap between the expanding stack and other mappings. */ 2500 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT; 2501 2502 static int __init cmdline_parse_stack_guard_gap(char *p) 2503 { 2504 unsigned long val; 2505 char *endptr; 2506 2507 val = simple_strtoul(p, &endptr, 10); 2508 if (!*endptr) 2509 stack_guard_gap = val << PAGE_SHIFT; 2510 2511 return 0; 2512 } 2513 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap); 2514 2515 #ifdef CONFIG_STACK_GROWSUP 2516 int expand_stack(struct vm_area_struct *vma, unsigned long address) 2517 { 2518 return expand_upwards(vma, address); 2519 } 2520 2521 struct vm_area_struct * 2522 find_extend_vma(struct mm_struct *mm, unsigned long addr) 2523 { 2524 struct vm_area_struct *vma, *prev; 2525 2526 addr &= PAGE_MASK; 2527 vma = find_vma_prev(mm, addr, &prev); 2528 if (vma && (vma->vm_start <= addr)) 2529 return vma; 2530 /* don't alter vm_end if the coredump is running */ 2531 if (!prev || !mmget_still_valid(mm) || expand_stack(prev, addr)) 2532 return NULL; 2533 if (prev->vm_flags & VM_LOCKED) 2534 populate_vma_page_range(prev, addr, prev->vm_end, NULL); 2535 return prev; 2536 } 2537 #else 2538 int expand_stack(struct vm_area_struct *vma, unsigned long address) 2539 { 2540 return expand_downwards(vma, address); 2541 } 2542 2543 struct vm_area_struct * 2544 find_extend_vma(struct mm_struct *mm, unsigned long addr) 2545 { 2546 struct vm_area_struct *vma; 2547 unsigned long start; 2548 2549 addr &= PAGE_MASK; 2550 vma = find_vma(mm, addr); 2551 if (!vma) 2552 return NULL; 2553 if (vma->vm_start <= addr) 2554 return vma; 2555 if (!(vma->vm_flags & VM_GROWSDOWN)) 2556 return NULL; 2557 /* don't alter vm_start if the coredump is running */ 2558 if (!mmget_still_valid(mm)) 2559 return NULL; 2560 start = vma->vm_start; 2561 if (expand_stack(vma, addr)) 2562 return NULL; 2563 if (vma->vm_flags & VM_LOCKED) 2564 populate_vma_page_range(vma, addr, start, NULL); 2565 return vma; 2566 } 2567 #endif 2568 2569 EXPORT_SYMBOL_GPL(find_extend_vma); 2570 2571 /* 2572 * Ok - we have the memory areas we should free on the vma list, 2573 * so release them, and do the vma updates. 2574 * 2575 * Called with the mm semaphore held. 2576 */ 2577 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma) 2578 { 2579 unsigned long nr_accounted = 0; 2580 2581 /* Update high watermark before we lower total_vm */ 2582 update_hiwater_vm(mm); 2583 do { 2584 long nrpages = vma_pages(vma); 2585 2586 if (vma->vm_flags & VM_ACCOUNT) 2587 nr_accounted += nrpages; 2588 vm_stat_account(mm, vma->vm_flags, -nrpages); 2589 vma = remove_vma(vma); 2590 } while (vma); 2591 vm_unacct_memory(nr_accounted); 2592 validate_mm(mm); 2593 } 2594 2595 /* 2596 * Get rid of page table information in the indicated region. 2597 * 2598 * Called with the mm semaphore held. 2599 */ 2600 static void unmap_region(struct mm_struct *mm, 2601 struct vm_area_struct *vma, struct vm_area_struct *prev, 2602 unsigned long start, unsigned long end) 2603 { 2604 struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap; 2605 struct mmu_gather tlb; 2606 2607 lru_add_drain(); 2608 tlb_gather_mmu(&tlb, mm, start, end); 2609 update_hiwater_rss(mm); 2610 unmap_vmas(&tlb, vma, start, end); 2611 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS, 2612 next ? next->vm_start : USER_PGTABLES_CEILING); 2613 tlb_finish_mmu(&tlb, start, end); 2614 } 2615 2616 /* 2617 * Create a list of vma's touched by the unmap, removing them from the mm's 2618 * vma list as we go.. 2619 */ 2620 static void 2621 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma, 2622 struct vm_area_struct *prev, unsigned long end) 2623 { 2624 struct vm_area_struct **insertion_point; 2625 struct vm_area_struct *tail_vma = NULL; 2626 2627 insertion_point = (prev ? &prev->vm_next : &mm->mmap); 2628 vma->vm_prev = NULL; 2629 do { 2630 vma_rb_erase(vma, &mm->mm_rb); 2631 mm->map_count--; 2632 tail_vma = vma; 2633 vma = vma->vm_next; 2634 } while (vma && vma->vm_start < end); 2635 *insertion_point = vma; 2636 if (vma) { 2637 vma->vm_prev = prev; 2638 vma_gap_update(vma); 2639 } else 2640 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0; 2641 tail_vma->vm_next = NULL; 2642 2643 /* Kill the cache */ 2644 vmacache_invalidate(mm); 2645 } 2646 2647 /* 2648 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it 2649 * has already been checked or doesn't make sense to fail. 2650 */ 2651 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 2652 unsigned long addr, int new_below) 2653 { 2654 struct vm_area_struct *new; 2655 int err; 2656 2657 if (vma->vm_ops && vma->vm_ops->split) { 2658 err = vma->vm_ops->split(vma, addr); 2659 if (err) 2660 return err; 2661 } 2662 2663 new = vm_area_dup(vma); 2664 if (!new) 2665 return -ENOMEM; 2666 2667 if (new_below) 2668 new->vm_end = addr; 2669 else { 2670 new->vm_start = addr; 2671 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); 2672 } 2673 2674 err = vma_dup_policy(vma, new); 2675 if (err) 2676 goto out_free_vma; 2677 2678 err = anon_vma_clone(new, vma); 2679 if (err) 2680 goto out_free_mpol; 2681 2682 if (new->vm_file) 2683 get_file(new->vm_file); 2684 2685 if (new->vm_ops && new->vm_ops->open) 2686 new->vm_ops->open(new); 2687 2688 if (new_below) 2689 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff + 2690 ((addr - new->vm_start) >> PAGE_SHIFT), new); 2691 else 2692 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new); 2693 2694 /* Success. */ 2695 if (!err) 2696 return 0; 2697 2698 /* Clean everything up if vma_adjust failed. */ 2699 if (new->vm_ops && new->vm_ops->close) 2700 new->vm_ops->close(new); 2701 if (new->vm_file) 2702 fput(new->vm_file); 2703 unlink_anon_vmas(new); 2704 out_free_mpol: 2705 mpol_put(vma_policy(new)); 2706 out_free_vma: 2707 vm_area_free(new); 2708 return err; 2709 } 2710 2711 /* 2712 * Split a vma into two pieces at address 'addr', a new vma is allocated 2713 * either for the first part or the tail. 2714 */ 2715 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 2716 unsigned long addr, int new_below) 2717 { 2718 if (mm->map_count >= sysctl_max_map_count) 2719 return -ENOMEM; 2720 2721 return __split_vma(mm, vma, addr, new_below); 2722 } 2723 2724 /* Munmap is split into 2 main parts -- this part which finds 2725 * what needs doing, and the areas themselves, which do the 2726 * work. This now handles partial unmappings. 2727 * Jeremy Fitzhardinge <jeremy@goop.org> 2728 */ 2729 int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len, 2730 struct list_head *uf, bool downgrade) 2731 { 2732 unsigned long end; 2733 struct vm_area_struct *vma, *prev, *last; 2734 2735 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start) 2736 return -EINVAL; 2737 2738 len = PAGE_ALIGN(len); 2739 end = start + len; 2740 if (len == 0) 2741 return -EINVAL; 2742 2743 /* 2744 * arch_unmap() might do unmaps itself. It must be called 2745 * and finish any rbtree manipulation before this code 2746 * runs and also starts to manipulate the rbtree. 2747 */ 2748 arch_unmap(mm, start, end); 2749 2750 /* Find the first overlapping VMA */ 2751 vma = find_vma(mm, start); 2752 if (!vma) 2753 return 0; 2754 prev = vma->vm_prev; 2755 /* we have start < vma->vm_end */ 2756 2757 /* if it doesn't overlap, we have nothing.. */ 2758 if (vma->vm_start >= end) 2759 return 0; 2760 2761 /* 2762 * If we need to split any vma, do it now to save pain later. 2763 * 2764 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially 2765 * unmapped vm_area_struct will remain in use: so lower split_vma 2766 * places tmp vma above, and higher split_vma places tmp vma below. 2767 */ 2768 if (start > vma->vm_start) { 2769 int error; 2770 2771 /* 2772 * Make sure that map_count on return from munmap() will 2773 * not exceed its limit; but let map_count go just above 2774 * its limit temporarily, to help free resources as expected. 2775 */ 2776 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count) 2777 return -ENOMEM; 2778 2779 error = __split_vma(mm, vma, start, 0); 2780 if (error) 2781 return error; 2782 prev = vma; 2783 } 2784 2785 /* Does it split the last one? */ 2786 last = find_vma(mm, end); 2787 if (last && end > last->vm_start) { 2788 int error = __split_vma(mm, last, end, 1); 2789 if (error) 2790 return error; 2791 } 2792 vma = prev ? prev->vm_next : mm->mmap; 2793 2794 if (unlikely(uf)) { 2795 /* 2796 * If userfaultfd_unmap_prep returns an error the vmas 2797 * will remain splitted, but userland will get a 2798 * highly unexpected error anyway. This is no 2799 * different than the case where the first of the two 2800 * __split_vma fails, but we don't undo the first 2801 * split, despite we could. This is unlikely enough 2802 * failure that it's not worth optimizing it for. 2803 */ 2804 int error = userfaultfd_unmap_prep(vma, start, end, uf); 2805 if (error) 2806 return error; 2807 } 2808 2809 /* 2810 * unlock any mlock()ed ranges before detaching vmas 2811 */ 2812 if (mm->locked_vm) { 2813 struct vm_area_struct *tmp = vma; 2814 while (tmp && tmp->vm_start < end) { 2815 if (tmp->vm_flags & VM_LOCKED) { 2816 mm->locked_vm -= vma_pages(tmp); 2817 munlock_vma_pages_all(tmp); 2818 } 2819 2820 tmp = tmp->vm_next; 2821 } 2822 } 2823 2824 /* Detach vmas from rbtree */ 2825 detach_vmas_to_be_unmapped(mm, vma, prev, end); 2826 2827 if (downgrade) 2828 downgrade_write(&mm->mmap_sem); 2829 2830 unmap_region(mm, vma, prev, start, end); 2831 2832 /* Fix up all other VM information */ 2833 remove_vma_list(mm, vma); 2834 2835 return downgrade ? 1 : 0; 2836 } 2837 2838 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, 2839 struct list_head *uf) 2840 { 2841 return __do_munmap(mm, start, len, uf, false); 2842 } 2843 2844 static int __vm_munmap(unsigned long start, size_t len, bool downgrade) 2845 { 2846 int ret; 2847 struct mm_struct *mm = current->mm; 2848 LIST_HEAD(uf); 2849 2850 if (down_write_killable(&mm->mmap_sem)) 2851 return -EINTR; 2852 2853 ret = __do_munmap(mm, start, len, &uf, downgrade); 2854 /* 2855 * Returning 1 indicates mmap_sem is downgraded. 2856 * But 1 is not legal return value of vm_munmap() and munmap(), reset 2857 * it to 0 before return. 2858 */ 2859 if (ret == 1) { 2860 up_read(&mm->mmap_sem); 2861 ret = 0; 2862 } else 2863 up_write(&mm->mmap_sem); 2864 2865 userfaultfd_unmap_complete(mm, &uf); 2866 return ret; 2867 } 2868 2869 int vm_munmap(unsigned long start, size_t len) 2870 { 2871 return __vm_munmap(start, len, false); 2872 } 2873 EXPORT_SYMBOL(vm_munmap); 2874 2875 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 2876 { 2877 profile_munmap(addr); 2878 return __vm_munmap(addr, len, true); 2879 } 2880 2881 2882 /* 2883 * Emulation of deprecated remap_file_pages() syscall. 2884 */ 2885 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size, 2886 unsigned long, prot, unsigned long, pgoff, unsigned long, flags) 2887 { 2888 2889 struct mm_struct *mm = current->mm; 2890 struct vm_area_struct *vma; 2891 unsigned long populate = 0; 2892 unsigned long ret = -EINVAL; 2893 struct file *file; 2894 2895 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n", 2896 current->comm, current->pid); 2897 2898 if (prot) 2899 return ret; 2900 start = start & PAGE_MASK; 2901 size = size & PAGE_MASK; 2902 2903 if (start + size <= start) 2904 return ret; 2905 2906 /* Does pgoff wrap? */ 2907 if (pgoff + (size >> PAGE_SHIFT) < pgoff) 2908 return ret; 2909 2910 if (down_write_killable(&mm->mmap_sem)) 2911 return -EINTR; 2912 2913 vma = find_vma(mm, start); 2914 2915 if (!vma || !(vma->vm_flags & VM_SHARED)) 2916 goto out; 2917 2918 if (start < vma->vm_start) 2919 goto out; 2920 2921 if (start + size > vma->vm_end) { 2922 struct vm_area_struct *next; 2923 2924 for (next = vma->vm_next; next; next = next->vm_next) { 2925 /* hole between vmas ? */ 2926 if (next->vm_start != next->vm_prev->vm_end) 2927 goto out; 2928 2929 if (next->vm_file != vma->vm_file) 2930 goto out; 2931 2932 if (next->vm_flags != vma->vm_flags) 2933 goto out; 2934 2935 if (start + size <= next->vm_end) 2936 break; 2937 } 2938 2939 if (!next) 2940 goto out; 2941 } 2942 2943 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0; 2944 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0; 2945 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0; 2946 2947 flags &= MAP_NONBLOCK; 2948 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE; 2949 if (vma->vm_flags & VM_LOCKED) { 2950 struct vm_area_struct *tmp; 2951 flags |= MAP_LOCKED; 2952 2953 /* drop PG_Mlocked flag for over-mapped range */ 2954 for (tmp = vma; tmp->vm_start >= start + size; 2955 tmp = tmp->vm_next) { 2956 /* 2957 * Split pmd and munlock page on the border 2958 * of the range. 2959 */ 2960 vma_adjust_trans_huge(tmp, start, start + size, 0); 2961 2962 munlock_vma_pages_range(tmp, 2963 max(tmp->vm_start, start), 2964 min(tmp->vm_end, start + size)); 2965 } 2966 } 2967 2968 file = get_file(vma->vm_file); 2969 ret = do_mmap_pgoff(vma->vm_file, start, size, 2970 prot, flags, pgoff, &populate, NULL); 2971 fput(file); 2972 out: 2973 up_write(&mm->mmap_sem); 2974 if (populate) 2975 mm_populate(ret, populate); 2976 if (!IS_ERR_VALUE(ret)) 2977 ret = 0; 2978 return ret; 2979 } 2980 2981 /* 2982 * this is really a simplified "do_mmap". it only handles 2983 * anonymous maps. eventually we may be able to do some 2984 * brk-specific accounting here. 2985 */ 2986 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf) 2987 { 2988 struct mm_struct *mm = current->mm; 2989 struct vm_area_struct *vma, *prev; 2990 struct rb_node **rb_link, *rb_parent; 2991 pgoff_t pgoff = addr >> PAGE_SHIFT; 2992 int error; 2993 2994 /* Until we need other flags, refuse anything except VM_EXEC. */ 2995 if ((flags & (~VM_EXEC)) != 0) 2996 return -EINVAL; 2997 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; 2998 2999 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED); 3000 if (offset_in_page(error)) 3001 return error; 3002 3003 error = mlock_future_check(mm, mm->def_flags, len); 3004 if (error) 3005 return error; 3006 3007 /* 3008 * Clear old maps. this also does some error checking for us 3009 */ 3010 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link, 3011 &rb_parent)) { 3012 if (do_munmap(mm, addr, len, uf)) 3013 return -ENOMEM; 3014 } 3015 3016 /* Check against address space limits *after* clearing old maps... */ 3017 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT)) 3018 return -ENOMEM; 3019 3020 if (mm->map_count > sysctl_max_map_count) 3021 return -ENOMEM; 3022 3023 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT)) 3024 return -ENOMEM; 3025 3026 /* Can we just expand an old private anonymous mapping? */ 3027 vma = vma_merge(mm, prev, addr, addr + len, flags, 3028 NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX); 3029 if (vma) 3030 goto out; 3031 3032 /* 3033 * create a vma struct for an anonymous mapping 3034 */ 3035 vma = vm_area_alloc(mm); 3036 if (!vma) { 3037 vm_unacct_memory(len >> PAGE_SHIFT); 3038 return -ENOMEM; 3039 } 3040 3041 vma_set_anonymous(vma); 3042 vma->vm_start = addr; 3043 vma->vm_end = addr + len; 3044 vma->vm_pgoff = pgoff; 3045 vma->vm_flags = flags; 3046 vma->vm_page_prot = vm_get_page_prot(flags); 3047 vma_link(mm, vma, prev, rb_link, rb_parent); 3048 out: 3049 perf_event_mmap(vma); 3050 mm->total_vm += len >> PAGE_SHIFT; 3051 mm->data_vm += len >> PAGE_SHIFT; 3052 if (flags & VM_LOCKED) 3053 mm->locked_vm += (len >> PAGE_SHIFT); 3054 vma->vm_flags |= VM_SOFTDIRTY; 3055 return 0; 3056 } 3057 3058 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags) 3059 { 3060 struct mm_struct *mm = current->mm; 3061 unsigned long len; 3062 int ret; 3063 bool populate; 3064 LIST_HEAD(uf); 3065 3066 len = PAGE_ALIGN(request); 3067 if (len < request) 3068 return -ENOMEM; 3069 if (!len) 3070 return 0; 3071 3072 if (down_write_killable(&mm->mmap_sem)) 3073 return -EINTR; 3074 3075 ret = do_brk_flags(addr, len, flags, &uf); 3076 populate = ((mm->def_flags & VM_LOCKED) != 0); 3077 up_write(&mm->mmap_sem); 3078 userfaultfd_unmap_complete(mm, &uf); 3079 if (populate && !ret) 3080 mm_populate(addr, len); 3081 return ret; 3082 } 3083 EXPORT_SYMBOL(vm_brk_flags); 3084 3085 int vm_brk(unsigned long addr, unsigned long len) 3086 { 3087 return vm_brk_flags(addr, len, 0); 3088 } 3089 EXPORT_SYMBOL(vm_brk); 3090 3091 /* Release all mmaps. */ 3092 void exit_mmap(struct mm_struct *mm) 3093 { 3094 struct mmu_gather tlb; 3095 struct vm_area_struct *vma; 3096 unsigned long nr_accounted = 0; 3097 3098 /* mm's last user has gone, and its about to be pulled down */ 3099 mmu_notifier_release(mm); 3100 3101 if (unlikely(mm_is_oom_victim(mm))) { 3102 /* 3103 * Manually reap the mm to free as much memory as possible. 3104 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard 3105 * this mm from further consideration. Taking mm->mmap_sem for 3106 * write after setting MMF_OOM_SKIP will guarantee that the oom 3107 * reaper will not run on this mm again after mmap_sem is 3108 * dropped. 3109 * 3110 * Nothing can be holding mm->mmap_sem here and the above call 3111 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in 3112 * __oom_reap_task_mm() will not block. 3113 * 3114 * This needs to be done before calling munlock_vma_pages_all(), 3115 * which clears VM_LOCKED, otherwise the oom reaper cannot 3116 * reliably test it. 3117 */ 3118 (void)__oom_reap_task_mm(mm); 3119 3120 set_bit(MMF_OOM_SKIP, &mm->flags); 3121 down_write(&mm->mmap_sem); 3122 up_write(&mm->mmap_sem); 3123 } 3124 3125 if (mm->locked_vm) { 3126 vma = mm->mmap; 3127 while (vma) { 3128 if (vma->vm_flags & VM_LOCKED) 3129 munlock_vma_pages_all(vma); 3130 vma = vma->vm_next; 3131 } 3132 } 3133 3134 arch_exit_mmap(mm); 3135 3136 vma = mm->mmap; 3137 if (!vma) /* Can happen if dup_mmap() received an OOM */ 3138 return; 3139 3140 lru_add_drain(); 3141 flush_cache_mm(mm); 3142 tlb_gather_mmu(&tlb, mm, 0, -1); 3143 /* update_hiwater_rss(mm) here? but nobody should be looking */ 3144 /* Use -1 here to ensure all VMAs in the mm are unmapped */ 3145 unmap_vmas(&tlb, vma, 0, -1); 3146 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING); 3147 tlb_finish_mmu(&tlb, 0, -1); 3148 3149 /* 3150 * Walk the list again, actually closing and freeing it, 3151 * with preemption enabled, without holding any MM locks. 3152 */ 3153 while (vma) { 3154 if (vma->vm_flags & VM_ACCOUNT) 3155 nr_accounted += vma_pages(vma); 3156 vma = remove_vma(vma); 3157 } 3158 vm_unacct_memory(nr_accounted); 3159 } 3160 3161 /* Insert vm structure into process list sorted by address 3162 * and into the inode's i_mmap tree. If vm_file is non-NULL 3163 * then i_mmap_rwsem is taken here. 3164 */ 3165 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 3166 { 3167 struct vm_area_struct *prev; 3168 struct rb_node **rb_link, *rb_parent; 3169 3170 if (find_vma_links(mm, vma->vm_start, vma->vm_end, 3171 &prev, &rb_link, &rb_parent)) 3172 return -ENOMEM; 3173 if ((vma->vm_flags & VM_ACCOUNT) && 3174 security_vm_enough_memory_mm(mm, vma_pages(vma))) 3175 return -ENOMEM; 3176 3177 /* 3178 * The vm_pgoff of a purely anonymous vma should be irrelevant 3179 * until its first write fault, when page's anon_vma and index 3180 * are set. But now set the vm_pgoff it will almost certainly 3181 * end up with (unless mremap moves it elsewhere before that 3182 * first wfault), so /proc/pid/maps tells a consistent story. 3183 * 3184 * By setting it to reflect the virtual start address of the 3185 * vma, merges and splits can happen in a seamless way, just 3186 * using the existing file pgoff checks and manipulations. 3187 * Similarly in do_mmap_pgoff and in do_brk. 3188 */ 3189 if (vma_is_anonymous(vma)) { 3190 BUG_ON(vma->anon_vma); 3191 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; 3192 } 3193 3194 vma_link(mm, vma, prev, rb_link, rb_parent); 3195 return 0; 3196 } 3197 3198 /* 3199 * Copy the vma structure to a new location in the same mm, 3200 * prior to moving page table entries, to effect an mremap move. 3201 */ 3202 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 3203 unsigned long addr, unsigned long len, pgoff_t pgoff, 3204 bool *need_rmap_locks) 3205 { 3206 struct vm_area_struct *vma = *vmap; 3207 unsigned long vma_start = vma->vm_start; 3208 struct mm_struct *mm = vma->vm_mm; 3209 struct vm_area_struct *new_vma, *prev; 3210 struct rb_node **rb_link, *rb_parent; 3211 bool faulted_in_anon_vma = true; 3212 3213 /* 3214 * If anonymous vma has not yet been faulted, update new pgoff 3215 * to match new location, to increase its chance of merging. 3216 */ 3217 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) { 3218 pgoff = addr >> PAGE_SHIFT; 3219 faulted_in_anon_vma = false; 3220 } 3221 3222 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) 3223 return NULL; /* should never get here */ 3224 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags, 3225 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma), 3226 vma->vm_userfaultfd_ctx); 3227 if (new_vma) { 3228 /* 3229 * Source vma may have been merged into new_vma 3230 */ 3231 if (unlikely(vma_start >= new_vma->vm_start && 3232 vma_start < new_vma->vm_end)) { 3233 /* 3234 * The only way we can get a vma_merge with 3235 * self during an mremap is if the vma hasn't 3236 * been faulted in yet and we were allowed to 3237 * reset the dst vma->vm_pgoff to the 3238 * destination address of the mremap to allow 3239 * the merge to happen. mremap must change the 3240 * vm_pgoff linearity between src and dst vmas 3241 * (in turn preventing a vma_merge) to be 3242 * safe. It is only safe to keep the vm_pgoff 3243 * linear if there are no pages mapped yet. 3244 */ 3245 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma); 3246 *vmap = vma = new_vma; 3247 } 3248 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff); 3249 } else { 3250 new_vma = vm_area_dup(vma); 3251 if (!new_vma) 3252 goto out; 3253 new_vma->vm_start = addr; 3254 new_vma->vm_end = addr + len; 3255 new_vma->vm_pgoff = pgoff; 3256 if (vma_dup_policy(vma, new_vma)) 3257 goto out_free_vma; 3258 if (anon_vma_clone(new_vma, vma)) 3259 goto out_free_mempol; 3260 if (new_vma->vm_file) 3261 get_file(new_vma->vm_file); 3262 if (new_vma->vm_ops && new_vma->vm_ops->open) 3263 new_vma->vm_ops->open(new_vma); 3264 vma_link(mm, new_vma, prev, rb_link, rb_parent); 3265 *need_rmap_locks = false; 3266 } 3267 return new_vma; 3268 3269 out_free_mempol: 3270 mpol_put(vma_policy(new_vma)); 3271 out_free_vma: 3272 vm_area_free(new_vma); 3273 out: 3274 return NULL; 3275 } 3276 3277 /* 3278 * Return true if the calling process may expand its vm space by the passed 3279 * number of pages 3280 */ 3281 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages) 3282 { 3283 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT) 3284 return false; 3285 3286 if (is_data_mapping(flags) && 3287 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) { 3288 /* Workaround for Valgrind */ 3289 if (rlimit(RLIMIT_DATA) == 0 && 3290 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT) 3291 return true; 3292 3293 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n", 3294 current->comm, current->pid, 3295 (mm->data_vm + npages) << PAGE_SHIFT, 3296 rlimit(RLIMIT_DATA), 3297 ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data"); 3298 3299 if (!ignore_rlimit_data) 3300 return false; 3301 } 3302 3303 return true; 3304 } 3305 3306 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages) 3307 { 3308 mm->total_vm += npages; 3309 3310 if (is_exec_mapping(flags)) 3311 mm->exec_vm += npages; 3312 else if (is_stack_mapping(flags)) 3313 mm->stack_vm += npages; 3314 else if (is_data_mapping(flags)) 3315 mm->data_vm += npages; 3316 } 3317 3318 static vm_fault_t special_mapping_fault(struct vm_fault *vmf); 3319 3320 /* 3321 * Having a close hook prevents vma merging regardless of flags. 3322 */ 3323 static void special_mapping_close(struct vm_area_struct *vma) 3324 { 3325 } 3326 3327 static const char *special_mapping_name(struct vm_area_struct *vma) 3328 { 3329 return ((struct vm_special_mapping *)vma->vm_private_data)->name; 3330 } 3331 3332 static int special_mapping_mremap(struct vm_area_struct *new_vma) 3333 { 3334 struct vm_special_mapping *sm = new_vma->vm_private_data; 3335 3336 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm)) 3337 return -EFAULT; 3338 3339 if (sm->mremap) 3340 return sm->mremap(sm, new_vma); 3341 3342 return 0; 3343 } 3344 3345 static const struct vm_operations_struct special_mapping_vmops = { 3346 .close = special_mapping_close, 3347 .fault = special_mapping_fault, 3348 .mremap = special_mapping_mremap, 3349 .name = special_mapping_name, 3350 }; 3351 3352 static const struct vm_operations_struct legacy_special_mapping_vmops = { 3353 .close = special_mapping_close, 3354 .fault = special_mapping_fault, 3355 }; 3356 3357 static vm_fault_t special_mapping_fault(struct vm_fault *vmf) 3358 { 3359 struct vm_area_struct *vma = vmf->vma; 3360 pgoff_t pgoff; 3361 struct page **pages; 3362 3363 if (vma->vm_ops == &legacy_special_mapping_vmops) { 3364 pages = vma->vm_private_data; 3365 } else { 3366 struct vm_special_mapping *sm = vma->vm_private_data; 3367 3368 if (sm->fault) 3369 return sm->fault(sm, vmf->vma, vmf); 3370 3371 pages = sm->pages; 3372 } 3373 3374 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages) 3375 pgoff--; 3376 3377 if (*pages) { 3378 struct page *page = *pages; 3379 get_page(page); 3380 vmf->page = page; 3381 return 0; 3382 } 3383 3384 return VM_FAULT_SIGBUS; 3385 } 3386 3387 static struct vm_area_struct *__install_special_mapping( 3388 struct mm_struct *mm, 3389 unsigned long addr, unsigned long len, 3390 unsigned long vm_flags, void *priv, 3391 const struct vm_operations_struct *ops) 3392 { 3393 int ret; 3394 struct vm_area_struct *vma; 3395 3396 vma = vm_area_alloc(mm); 3397 if (unlikely(vma == NULL)) 3398 return ERR_PTR(-ENOMEM); 3399 3400 vma->vm_start = addr; 3401 vma->vm_end = addr + len; 3402 3403 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY; 3404 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 3405 3406 vma->vm_ops = ops; 3407 vma->vm_private_data = priv; 3408 3409 ret = insert_vm_struct(mm, vma); 3410 if (ret) 3411 goto out; 3412 3413 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT); 3414 3415 perf_event_mmap(vma); 3416 3417 return vma; 3418 3419 out: 3420 vm_area_free(vma); 3421 return ERR_PTR(ret); 3422 } 3423 3424 bool vma_is_special_mapping(const struct vm_area_struct *vma, 3425 const struct vm_special_mapping *sm) 3426 { 3427 return vma->vm_private_data == sm && 3428 (vma->vm_ops == &special_mapping_vmops || 3429 vma->vm_ops == &legacy_special_mapping_vmops); 3430 } 3431 3432 /* 3433 * Called with mm->mmap_sem held for writing. 3434 * Insert a new vma covering the given region, with the given flags. 3435 * Its pages are supplied by the given array of struct page *. 3436 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated. 3437 * The region past the last page supplied will always produce SIGBUS. 3438 * The array pointer and the pages it points to are assumed to stay alive 3439 * for as long as this mapping might exist. 3440 */ 3441 struct vm_area_struct *_install_special_mapping( 3442 struct mm_struct *mm, 3443 unsigned long addr, unsigned long len, 3444 unsigned long vm_flags, const struct vm_special_mapping *spec) 3445 { 3446 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec, 3447 &special_mapping_vmops); 3448 } 3449 3450 int install_special_mapping(struct mm_struct *mm, 3451 unsigned long addr, unsigned long len, 3452 unsigned long vm_flags, struct page **pages) 3453 { 3454 struct vm_area_struct *vma = __install_special_mapping( 3455 mm, addr, len, vm_flags, (void *)pages, 3456 &legacy_special_mapping_vmops); 3457 3458 return PTR_ERR_OR_ZERO(vma); 3459 } 3460 3461 static DEFINE_MUTEX(mm_all_locks_mutex); 3462 3463 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) 3464 { 3465 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 3466 /* 3467 * The LSB of head.next can't change from under us 3468 * because we hold the mm_all_locks_mutex. 3469 */ 3470 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem); 3471 /* 3472 * We can safely modify head.next after taking the 3473 * anon_vma->root->rwsem. If some other vma in this mm shares 3474 * the same anon_vma we won't take it again. 3475 * 3476 * No need of atomic instructions here, head.next 3477 * can't change from under us thanks to the 3478 * anon_vma->root->rwsem. 3479 */ 3480 if (__test_and_set_bit(0, (unsigned long *) 3481 &anon_vma->root->rb_root.rb_root.rb_node)) 3482 BUG(); 3483 } 3484 } 3485 3486 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) 3487 { 3488 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3489 /* 3490 * AS_MM_ALL_LOCKS can't change from under us because 3491 * we hold the mm_all_locks_mutex. 3492 * 3493 * Operations on ->flags have to be atomic because 3494 * even if AS_MM_ALL_LOCKS is stable thanks to the 3495 * mm_all_locks_mutex, there may be other cpus 3496 * changing other bitflags in parallel to us. 3497 */ 3498 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) 3499 BUG(); 3500 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem); 3501 } 3502 } 3503 3504 /* 3505 * This operation locks against the VM for all pte/vma/mm related 3506 * operations that could ever happen on a certain mm. This includes 3507 * vmtruncate, try_to_unmap, and all page faults. 3508 * 3509 * The caller must take the mmap_sem in write mode before calling 3510 * mm_take_all_locks(). The caller isn't allowed to release the 3511 * mmap_sem until mm_drop_all_locks() returns. 3512 * 3513 * mmap_sem in write mode is required in order to block all operations 3514 * that could modify pagetables and free pages without need of 3515 * altering the vma layout. It's also needed in write mode to avoid new 3516 * anon_vmas to be associated with existing vmas. 3517 * 3518 * A single task can't take more than one mm_take_all_locks() in a row 3519 * or it would deadlock. 3520 * 3521 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in 3522 * mapping->flags avoid to take the same lock twice, if more than one 3523 * vma in this mm is backed by the same anon_vma or address_space. 3524 * 3525 * We take locks in following order, accordingly to comment at beginning 3526 * of mm/rmap.c: 3527 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for 3528 * hugetlb mapping); 3529 * - all i_mmap_rwsem locks; 3530 * - all anon_vma->rwseml 3531 * 3532 * We can take all locks within these types randomly because the VM code 3533 * doesn't nest them and we protected from parallel mm_take_all_locks() by 3534 * mm_all_locks_mutex. 3535 * 3536 * mm_take_all_locks() and mm_drop_all_locks are expensive operations 3537 * that may have to take thousand of locks. 3538 * 3539 * mm_take_all_locks() can fail if it's interrupted by signals. 3540 */ 3541 int mm_take_all_locks(struct mm_struct *mm) 3542 { 3543 struct vm_area_struct *vma; 3544 struct anon_vma_chain *avc; 3545 3546 BUG_ON(down_read_trylock(&mm->mmap_sem)); 3547 3548 mutex_lock(&mm_all_locks_mutex); 3549 3550 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3551 if (signal_pending(current)) 3552 goto out_unlock; 3553 if (vma->vm_file && vma->vm_file->f_mapping && 3554 is_vm_hugetlb_page(vma)) 3555 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3556 } 3557 3558 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3559 if (signal_pending(current)) 3560 goto out_unlock; 3561 if (vma->vm_file && vma->vm_file->f_mapping && 3562 !is_vm_hugetlb_page(vma)) 3563 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3564 } 3565 3566 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3567 if (signal_pending(current)) 3568 goto out_unlock; 3569 if (vma->anon_vma) 3570 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3571 vm_lock_anon_vma(mm, avc->anon_vma); 3572 } 3573 3574 return 0; 3575 3576 out_unlock: 3577 mm_drop_all_locks(mm); 3578 return -EINTR; 3579 } 3580 3581 static void vm_unlock_anon_vma(struct anon_vma *anon_vma) 3582 { 3583 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 3584 /* 3585 * The LSB of head.next can't change to 0 from under 3586 * us because we hold the mm_all_locks_mutex. 3587 * 3588 * We must however clear the bitflag before unlocking 3589 * the vma so the users using the anon_vma->rb_root will 3590 * never see our bitflag. 3591 * 3592 * No need of atomic instructions here, head.next 3593 * can't change from under us until we release the 3594 * anon_vma->root->rwsem. 3595 */ 3596 if (!__test_and_clear_bit(0, (unsigned long *) 3597 &anon_vma->root->rb_root.rb_root.rb_node)) 3598 BUG(); 3599 anon_vma_unlock_write(anon_vma); 3600 } 3601 } 3602 3603 static void vm_unlock_mapping(struct address_space *mapping) 3604 { 3605 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3606 /* 3607 * AS_MM_ALL_LOCKS can't change to 0 from under us 3608 * because we hold the mm_all_locks_mutex. 3609 */ 3610 i_mmap_unlock_write(mapping); 3611 if (!test_and_clear_bit(AS_MM_ALL_LOCKS, 3612 &mapping->flags)) 3613 BUG(); 3614 } 3615 } 3616 3617 /* 3618 * The mmap_sem cannot be released by the caller until 3619 * mm_drop_all_locks() returns. 3620 */ 3621 void mm_drop_all_locks(struct mm_struct *mm) 3622 { 3623 struct vm_area_struct *vma; 3624 struct anon_vma_chain *avc; 3625 3626 BUG_ON(down_read_trylock(&mm->mmap_sem)); 3627 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); 3628 3629 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3630 if (vma->anon_vma) 3631 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3632 vm_unlock_anon_vma(avc->anon_vma); 3633 if (vma->vm_file && vma->vm_file->f_mapping) 3634 vm_unlock_mapping(vma->vm_file->f_mapping); 3635 } 3636 3637 mutex_unlock(&mm_all_locks_mutex); 3638 } 3639 3640 /* 3641 * initialise the percpu counter for VM 3642 */ 3643 void __init mmap_init(void) 3644 { 3645 int ret; 3646 3647 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL); 3648 VM_BUG_ON(ret); 3649 } 3650 3651 /* 3652 * Initialise sysctl_user_reserve_kbytes. 3653 * 3654 * This is intended to prevent a user from starting a single memory hogging 3655 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER 3656 * mode. 3657 * 3658 * The default value is min(3% of free memory, 128MB) 3659 * 128MB is enough to recover with sshd/login, bash, and top/kill. 3660 */ 3661 static int init_user_reserve(void) 3662 { 3663 unsigned long free_kbytes; 3664 3665 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3666 3667 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17); 3668 return 0; 3669 } 3670 subsys_initcall(init_user_reserve); 3671 3672 /* 3673 * Initialise sysctl_admin_reserve_kbytes. 3674 * 3675 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin 3676 * to log in and kill a memory hogging process. 3677 * 3678 * Systems with more than 256MB will reserve 8MB, enough to recover 3679 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will 3680 * only reserve 3% of free pages by default. 3681 */ 3682 static int init_admin_reserve(void) 3683 { 3684 unsigned long free_kbytes; 3685 3686 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3687 3688 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13); 3689 return 0; 3690 } 3691 subsys_initcall(init_admin_reserve); 3692 3693 /* 3694 * Reinititalise user and admin reserves if memory is added or removed. 3695 * 3696 * The default user reserve max is 128MB, and the default max for the 3697 * admin reserve is 8MB. These are usually, but not always, enough to 3698 * enable recovery from a memory hogging process using login/sshd, a shell, 3699 * and tools like top. It may make sense to increase or even disable the 3700 * reserve depending on the existence of swap or variations in the recovery 3701 * tools. So, the admin may have changed them. 3702 * 3703 * If memory is added and the reserves have been eliminated or increased above 3704 * the default max, then we'll trust the admin. 3705 * 3706 * If memory is removed and there isn't enough free memory, then we 3707 * need to reset the reserves. 3708 * 3709 * Otherwise keep the reserve set by the admin. 3710 */ 3711 static int reserve_mem_notifier(struct notifier_block *nb, 3712 unsigned long action, void *data) 3713 { 3714 unsigned long tmp, free_kbytes; 3715 3716 switch (action) { 3717 case MEM_ONLINE: 3718 /* Default max is 128MB. Leave alone if modified by operator. */ 3719 tmp = sysctl_user_reserve_kbytes; 3720 if (0 < tmp && tmp < (1UL << 17)) 3721 init_user_reserve(); 3722 3723 /* Default max is 8MB. Leave alone if modified by operator. */ 3724 tmp = sysctl_admin_reserve_kbytes; 3725 if (0 < tmp && tmp < (1UL << 13)) 3726 init_admin_reserve(); 3727 3728 break; 3729 case MEM_OFFLINE: 3730 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3731 3732 if (sysctl_user_reserve_kbytes > free_kbytes) { 3733 init_user_reserve(); 3734 pr_info("vm.user_reserve_kbytes reset to %lu\n", 3735 sysctl_user_reserve_kbytes); 3736 } 3737 3738 if (sysctl_admin_reserve_kbytes > free_kbytes) { 3739 init_admin_reserve(); 3740 pr_info("vm.admin_reserve_kbytes reset to %lu\n", 3741 sysctl_admin_reserve_kbytes); 3742 } 3743 break; 3744 default: 3745 break; 3746 } 3747 return NOTIFY_OK; 3748 } 3749 3750 static struct notifier_block reserve_mem_nb = { 3751 .notifier_call = reserve_mem_notifier, 3752 }; 3753 3754 static int __meminit init_reserve_notifier(void) 3755 { 3756 if (register_hotmemory_notifier(&reserve_mem_nb)) 3757 pr_err("Failed registering memory add/remove notifier for admin reserve\n"); 3758 3759 return 0; 3760 } 3761 subsys_initcall(init_reserve_notifier); 3762