xref: /linux/mm/mmap.c (revision ccea15f45eb0ab12d658f88b5d4be005cb2bb1a7)
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code	<alan@redhat.com>
7  */
8 
9 #include <linux/slab.h>
10 #include <linux/mm.h>
11 #include <linux/shm.h>
12 #include <linux/mman.h>
13 #include <linux/pagemap.h>
14 #include <linux/swap.h>
15 #include <linux/syscalls.h>
16 #include <linux/capability.h>
17 #include <linux/init.h>
18 #include <linux/file.h>
19 #include <linux/fs.h>
20 #include <linux/personality.h>
21 #include <linux/security.h>
22 #include <linux/hugetlb.h>
23 #include <linux/profile.h>
24 #include <linux/module.h>
25 #include <linux/mount.h>
26 #include <linux/mempolicy.h>
27 #include <linux/rmap.h>
28 
29 #include <asm/uaccess.h>
30 #include <asm/cacheflush.h>
31 #include <asm/tlb.h>
32 
33 static void unmap_region(struct mm_struct *mm,
34 		struct vm_area_struct *vma, struct vm_area_struct *prev,
35 		unsigned long start, unsigned long end);
36 
37 /*
38  * WARNING: the debugging will use recursive algorithms so never enable this
39  * unless you know what you are doing.
40  */
41 #undef DEBUG_MM_RB
42 
43 /* description of effects of mapping type and prot in current implementation.
44  * this is due to the limited x86 page protection hardware.  The expected
45  * behavior is in parens:
46  *
47  * map_type	prot
48  *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
49  * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
50  *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
51  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
52  *
53  * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
54  *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
55  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
56  *
57  */
58 pgprot_t protection_map[16] = {
59 	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
60 	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
61 };
62 
63 int sysctl_overcommit_memory = OVERCOMMIT_GUESS;  /* heuristic overcommit */
64 int sysctl_overcommit_ratio = 50;	/* default is 50% */
65 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
66 atomic_t vm_committed_space = ATOMIC_INIT(0);
67 
68 /*
69  * Check that a process has enough memory to allocate a new virtual
70  * mapping. 0 means there is enough memory for the allocation to
71  * succeed and -ENOMEM implies there is not.
72  *
73  * We currently support three overcommit policies, which are set via the
74  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
75  *
76  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
77  * Additional code 2002 Jul 20 by Robert Love.
78  *
79  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
80  *
81  * Note this is a helper function intended to be used by LSMs which
82  * wish to use this logic.
83  */
84 int __vm_enough_memory(long pages, int cap_sys_admin)
85 {
86 	unsigned long free, allowed;
87 
88 	vm_acct_memory(pages);
89 
90 	/*
91 	 * Sometimes we want to use more memory than we have
92 	 */
93 	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
94 		return 0;
95 
96 	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
97 		unsigned long n;
98 
99 		free = get_page_cache_size();
100 		free += nr_swap_pages;
101 
102 		/*
103 		 * Any slabs which are created with the
104 		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
105 		 * which are reclaimable, under pressure.  The dentry
106 		 * cache and most inode caches should fall into this
107 		 */
108 		free += atomic_read(&slab_reclaim_pages);
109 
110 		/*
111 		 * Leave the last 3% for root
112 		 */
113 		if (!cap_sys_admin)
114 			free -= free / 32;
115 
116 		if (free > pages)
117 			return 0;
118 
119 		/*
120 		 * nr_free_pages() is very expensive on large systems,
121 		 * only call if we're about to fail.
122 		 */
123 		n = nr_free_pages();
124 
125 		/*
126 		 * Leave reserved pages. The pages are not for anonymous pages.
127 		 */
128 		if (n <= totalreserve_pages)
129 			goto error;
130 		else
131 			n -= totalreserve_pages;
132 
133 		/*
134 		 * Leave the last 3% for root
135 		 */
136 		if (!cap_sys_admin)
137 			n -= n / 32;
138 		free += n;
139 
140 		if (free > pages)
141 			return 0;
142 
143 		goto error;
144 	}
145 
146 	allowed = (totalram_pages - hugetlb_total_pages())
147 	       	* sysctl_overcommit_ratio / 100;
148 	/*
149 	 * Leave the last 3% for root
150 	 */
151 	if (!cap_sys_admin)
152 		allowed -= allowed / 32;
153 	allowed += total_swap_pages;
154 
155 	/* Don't let a single process grow too big:
156 	   leave 3% of the size of this process for other processes */
157 	allowed -= current->mm->total_vm / 32;
158 
159 	/*
160 	 * cast `allowed' as a signed long because vm_committed_space
161 	 * sometimes has a negative value
162 	 */
163 	if (atomic_read(&vm_committed_space) < (long)allowed)
164 		return 0;
165 error:
166 	vm_unacct_memory(pages);
167 
168 	return -ENOMEM;
169 }
170 
171 EXPORT_SYMBOL(__vm_enough_memory);
172 
173 /*
174  * Requires inode->i_mapping->i_mmap_lock
175  */
176 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
177 		struct file *file, struct address_space *mapping)
178 {
179 	if (vma->vm_flags & VM_DENYWRITE)
180 		atomic_inc(&file->f_dentry->d_inode->i_writecount);
181 	if (vma->vm_flags & VM_SHARED)
182 		mapping->i_mmap_writable--;
183 
184 	flush_dcache_mmap_lock(mapping);
185 	if (unlikely(vma->vm_flags & VM_NONLINEAR))
186 		list_del_init(&vma->shared.vm_set.list);
187 	else
188 		vma_prio_tree_remove(vma, &mapping->i_mmap);
189 	flush_dcache_mmap_unlock(mapping);
190 }
191 
192 /*
193  * Unlink a file-based vm structure from its prio_tree, to hide
194  * vma from rmap and vmtruncate before freeing its page tables.
195  */
196 void unlink_file_vma(struct vm_area_struct *vma)
197 {
198 	struct file *file = vma->vm_file;
199 
200 	if (file) {
201 		struct address_space *mapping = file->f_mapping;
202 		spin_lock(&mapping->i_mmap_lock);
203 		__remove_shared_vm_struct(vma, file, mapping);
204 		spin_unlock(&mapping->i_mmap_lock);
205 	}
206 }
207 
208 /*
209  * Close a vm structure and free it, returning the next.
210  */
211 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
212 {
213 	struct vm_area_struct *next = vma->vm_next;
214 
215 	might_sleep();
216 	if (vma->vm_ops && vma->vm_ops->close)
217 		vma->vm_ops->close(vma);
218 	if (vma->vm_file)
219 		fput(vma->vm_file);
220 	mpol_free(vma_policy(vma));
221 	kmem_cache_free(vm_area_cachep, vma);
222 	return next;
223 }
224 
225 asmlinkage unsigned long sys_brk(unsigned long brk)
226 {
227 	unsigned long rlim, retval;
228 	unsigned long newbrk, oldbrk;
229 	struct mm_struct *mm = current->mm;
230 
231 	down_write(&mm->mmap_sem);
232 
233 	if (brk < mm->end_code)
234 		goto out;
235 
236 	/*
237 	 * Check against rlimit here. If this check is done later after the test
238 	 * of oldbrk with newbrk then it can escape the test and let the data
239 	 * segment grow beyond its set limit the in case where the limit is
240 	 * not page aligned -Ram Gupta
241 	 */
242 	rlim = current->signal->rlim[RLIMIT_DATA].rlim_cur;
243 	if (rlim < RLIM_INFINITY && brk - mm->start_data > rlim)
244 		goto out;
245 
246 	newbrk = PAGE_ALIGN(brk);
247 	oldbrk = PAGE_ALIGN(mm->brk);
248 	if (oldbrk == newbrk)
249 		goto set_brk;
250 
251 	/* Always allow shrinking brk. */
252 	if (brk <= mm->brk) {
253 		if (!do_munmap(mm, newbrk, oldbrk-newbrk))
254 			goto set_brk;
255 		goto out;
256 	}
257 
258 	/* Check against existing mmap mappings. */
259 	if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
260 		goto out;
261 
262 	/* Ok, looks good - let it rip. */
263 	if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
264 		goto out;
265 set_brk:
266 	mm->brk = brk;
267 out:
268 	retval = mm->brk;
269 	up_write(&mm->mmap_sem);
270 	return retval;
271 }
272 
273 #ifdef DEBUG_MM_RB
274 static int browse_rb(struct rb_root *root)
275 {
276 	int i = 0, j;
277 	struct rb_node *nd, *pn = NULL;
278 	unsigned long prev = 0, pend = 0;
279 
280 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
281 		struct vm_area_struct *vma;
282 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
283 		if (vma->vm_start < prev)
284 			printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
285 		if (vma->vm_start < pend)
286 			printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
287 		if (vma->vm_start > vma->vm_end)
288 			printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
289 		i++;
290 		pn = nd;
291 	}
292 	j = 0;
293 	for (nd = pn; nd; nd = rb_prev(nd)) {
294 		j++;
295 	}
296 	if (i != j)
297 		printk("backwards %d, forwards %d\n", j, i), i = 0;
298 	return i;
299 }
300 
301 void validate_mm(struct mm_struct *mm)
302 {
303 	int bug = 0;
304 	int i = 0;
305 	struct vm_area_struct *tmp = mm->mmap;
306 	while (tmp) {
307 		tmp = tmp->vm_next;
308 		i++;
309 	}
310 	if (i != mm->map_count)
311 		printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
312 	i = browse_rb(&mm->mm_rb);
313 	if (i != mm->map_count)
314 		printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
315 	BUG_ON(bug);
316 }
317 #else
318 #define validate_mm(mm) do { } while (0)
319 #endif
320 
321 static struct vm_area_struct *
322 find_vma_prepare(struct mm_struct *mm, unsigned long addr,
323 		struct vm_area_struct **pprev, struct rb_node ***rb_link,
324 		struct rb_node ** rb_parent)
325 {
326 	struct vm_area_struct * vma;
327 	struct rb_node ** __rb_link, * __rb_parent, * rb_prev;
328 
329 	__rb_link = &mm->mm_rb.rb_node;
330 	rb_prev = __rb_parent = NULL;
331 	vma = NULL;
332 
333 	while (*__rb_link) {
334 		struct vm_area_struct *vma_tmp;
335 
336 		__rb_parent = *__rb_link;
337 		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
338 
339 		if (vma_tmp->vm_end > addr) {
340 			vma = vma_tmp;
341 			if (vma_tmp->vm_start <= addr)
342 				return vma;
343 			__rb_link = &__rb_parent->rb_left;
344 		} else {
345 			rb_prev = __rb_parent;
346 			__rb_link = &__rb_parent->rb_right;
347 		}
348 	}
349 
350 	*pprev = NULL;
351 	if (rb_prev)
352 		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
353 	*rb_link = __rb_link;
354 	*rb_parent = __rb_parent;
355 	return vma;
356 }
357 
358 static inline void
359 __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
360 		struct vm_area_struct *prev, struct rb_node *rb_parent)
361 {
362 	if (prev) {
363 		vma->vm_next = prev->vm_next;
364 		prev->vm_next = vma;
365 	} else {
366 		mm->mmap = vma;
367 		if (rb_parent)
368 			vma->vm_next = rb_entry(rb_parent,
369 					struct vm_area_struct, vm_rb);
370 		else
371 			vma->vm_next = NULL;
372 	}
373 }
374 
375 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
376 		struct rb_node **rb_link, struct rb_node *rb_parent)
377 {
378 	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
379 	rb_insert_color(&vma->vm_rb, &mm->mm_rb);
380 }
381 
382 static inline void __vma_link_file(struct vm_area_struct *vma)
383 {
384 	struct file * file;
385 
386 	file = vma->vm_file;
387 	if (file) {
388 		struct address_space *mapping = file->f_mapping;
389 
390 		if (vma->vm_flags & VM_DENYWRITE)
391 			atomic_dec(&file->f_dentry->d_inode->i_writecount);
392 		if (vma->vm_flags & VM_SHARED)
393 			mapping->i_mmap_writable++;
394 
395 		flush_dcache_mmap_lock(mapping);
396 		if (unlikely(vma->vm_flags & VM_NONLINEAR))
397 			vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
398 		else
399 			vma_prio_tree_insert(vma, &mapping->i_mmap);
400 		flush_dcache_mmap_unlock(mapping);
401 	}
402 }
403 
404 static void
405 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
406 	struct vm_area_struct *prev, struct rb_node **rb_link,
407 	struct rb_node *rb_parent)
408 {
409 	__vma_link_list(mm, vma, prev, rb_parent);
410 	__vma_link_rb(mm, vma, rb_link, rb_parent);
411 	__anon_vma_link(vma);
412 }
413 
414 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
415 			struct vm_area_struct *prev, struct rb_node **rb_link,
416 			struct rb_node *rb_parent)
417 {
418 	struct address_space *mapping = NULL;
419 
420 	if (vma->vm_file)
421 		mapping = vma->vm_file->f_mapping;
422 
423 	if (mapping) {
424 		spin_lock(&mapping->i_mmap_lock);
425 		vma->vm_truncate_count = mapping->truncate_count;
426 	}
427 	anon_vma_lock(vma);
428 
429 	__vma_link(mm, vma, prev, rb_link, rb_parent);
430 	__vma_link_file(vma);
431 
432 	anon_vma_unlock(vma);
433 	if (mapping)
434 		spin_unlock(&mapping->i_mmap_lock);
435 
436 	mm->map_count++;
437 	validate_mm(mm);
438 }
439 
440 /*
441  * Helper for vma_adjust in the split_vma insert case:
442  * insert vm structure into list and rbtree and anon_vma,
443  * but it has already been inserted into prio_tree earlier.
444  */
445 static void
446 __insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
447 {
448 	struct vm_area_struct * __vma, * prev;
449 	struct rb_node ** rb_link, * rb_parent;
450 
451 	__vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent);
452 	BUG_ON(__vma && __vma->vm_start < vma->vm_end);
453 	__vma_link(mm, vma, prev, rb_link, rb_parent);
454 	mm->map_count++;
455 }
456 
457 static inline void
458 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
459 		struct vm_area_struct *prev)
460 {
461 	prev->vm_next = vma->vm_next;
462 	rb_erase(&vma->vm_rb, &mm->mm_rb);
463 	if (mm->mmap_cache == vma)
464 		mm->mmap_cache = prev;
465 }
466 
467 /*
468  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
469  * is already present in an i_mmap tree without adjusting the tree.
470  * The following helper function should be used when such adjustments
471  * are necessary.  The "insert" vma (if any) is to be inserted
472  * before we drop the necessary locks.
473  */
474 void vma_adjust(struct vm_area_struct *vma, unsigned long start,
475 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
476 {
477 	struct mm_struct *mm = vma->vm_mm;
478 	struct vm_area_struct *next = vma->vm_next;
479 	struct vm_area_struct *importer = NULL;
480 	struct address_space *mapping = NULL;
481 	struct prio_tree_root *root = NULL;
482 	struct file *file = vma->vm_file;
483 	struct anon_vma *anon_vma = NULL;
484 	long adjust_next = 0;
485 	int remove_next = 0;
486 
487 	if (next && !insert) {
488 		if (end >= next->vm_end) {
489 			/*
490 			 * vma expands, overlapping all the next, and
491 			 * perhaps the one after too (mprotect case 6).
492 			 */
493 again:			remove_next = 1 + (end > next->vm_end);
494 			end = next->vm_end;
495 			anon_vma = next->anon_vma;
496 			importer = vma;
497 		} else if (end > next->vm_start) {
498 			/*
499 			 * vma expands, overlapping part of the next:
500 			 * mprotect case 5 shifting the boundary up.
501 			 */
502 			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
503 			anon_vma = next->anon_vma;
504 			importer = vma;
505 		} else if (end < vma->vm_end) {
506 			/*
507 			 * vma shrinks, and !insert tells it's not
508 			 * split_vma inserting another: so it must be
509 			 * mprotect case 4 shifting the boundary down.
510 			 */
511 			adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
512 			anon_vma = next->anon_vma;
513 			importer = next;
514 		}
515 	}
516 
517 	if (file) {
518 		mapping = file->f_mapping;
519 		if (!(vma->vm_flags & VM_NONLINEAR))
520 			root = &mapping->i_mmap;
521 		spin_lock(&mapping->i_mmap_lock);
522 		if (importer &&
523 		    vma->vm_truncate_count != next->vm_truncate_count) {
524 			/*
525 			 * unmap_mapping_range might be in progress:
526 			 * ensure that the expanding vma is rescanned.
527 			 */
528 			importer->vm_truncate_count = 0;
529 		}
530 		if (insert) {
531 			insert->vm_truncate_count = vma->vm_truncate_count;
532 			/*
533 			 * Put into prio_tree now, so instantiated pages
534 			 * are visible to arm/parisc __flush_dcache_page
535 			 * throughout; but we cannot insert into address
536 			 * space until vma start or end is updated.
537 			 */
538 			__vma_link_file(insert);
539 		}
540 	}
541 
542 	/*
543 	 * When changing only vma->vm_end, we don't really need
544 	 * anon_vma lock: but is that case worth optimizing out?
545 	 */
546 	if (vma->anon_vma)
547 		anon_vma = vma->anon_vma;
548 	if (anon_vma) {
549 		spin_lock(&anon_vma->lock);
550 		/*
551 		 * Easily overlooked: when mprotect shifts the boundary,
552 		 * make sure the expanding vma has anon_vma set if the
553 		 * shrinking vma had, to cover any anon pages imported.
554 		 */
555 		if (importer && !importer->anon_vma) {
556 			importer->anon_vma = anon_vma;
557 			__anon_vma_link(importer);
558 		}
559 	}
560 
561 	if (root) {
562 		flush_dcache_mmap_lock(mapping);
563 		vma_prio_tree_remove(vma, root);
564 		if (adjust_next)
565 			vma_prio_tree_remove(next, root);
566 	}
567 
568 	vma->vm_start = start;
569 	vma->vm_end = end;
570 	vma->vm_pgoff = pgoff;
571 	if (adjust_next) {
572 		next->vm_start += adjust_next << PAGE_SHIFT;
573 		next->vm_pgoff += adjust_next;
574 	}
575 
576 	if (root) {
577 		if (adjust_next)
578 			vma_prio_tree_insert(next, root);
579 		vma_prio_tree_insert(vma, root);
580 		flush_dcache_mmap_unlock(mapping);
581 	}
582 
583 	if (remove_next) {
584 		/*
585 		 * vma_merge has merged next into vma, and needs
586 		 * us to remove next before dropping the locks.
587 		 */
588 		__vma_unlink(mm, next, vma);
589 		if (file)
590 			__remove_shared_vm_struct(next, file, mapping);
591 		if (next->anon_vma)
592 			__anon_vma_merge(vma, next);
593 	} else if (insert) {
594 		/*
595 		 * split_vma has split insert from vma, and needs
596 		 * us to insert it before dropping the locks
597 		 * (it may either follow vma or precede it).
598 		 */
599 		__insert_vm_struct(mm, insert);
600 	}
601 
602 	if (anon_vma)
603 		spin_unlock(&anon_vma->lock);
604 	if (mapping)
605 		spin_unlock(&mapping->i_mmap_lock);
606 
607 	if (remove_next) {
608 		if (file)
609 			fput(file);
610 		mm->map_count--;
611 		mpol_free(vma_policy(next));
612 		kmem_cache_free(vm_area_cachep, next);
613 		/*
614 		 * In mprotect's case 6 (see comments on vma_merge),
615 		 * we must remove another next too. It would clutter
616 		 * up the code too much to do both in one go.
617 		 */
618 		if (remove_next == 2) {
619 			next = vma->vm_next;
620 			goto again;
621 		}
622 	}
623 
624 	validate_mm(mm);
625 }
626 
627 /*
628  * If the vma has a ->close operation then the driver probably needs to release
629  * per-vma resources, so we don't attempt to merge those.
630  */
631 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP)
632 
633 static inline int is_mergeable_vma(struct vm_area_struct *vma,
634 			struct file *file, unsigned long vm_flags)
635 {
636 	if (vma->vm_flags != vm_flags)
637 		return 0;
638 	if (vma->vm_file != file)
639 		return 0;
640 	if (vma->vm_ops && vma->vm_ops->close)
641 		return 0;
642 	return 1;
643 }
644 
645 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
646 					struct anon_vma *anon_vma2)
647 {
648 	return !anon_vma1 || !anon_vma2 || (anon_vma1 == anon_vma2);
649 }
650 
651 /*
652  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
653  * in front of (at a lower virtual address and file offset than) the vma.
654  *
655  * We cannot merge two vmas if they have differently assigned (non-NULL)
656  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
657  *
658  * We don't check here for the merged mmap wrapping around the end of pagecache
659  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
660  * wrap, nor mmaps which cover the final page at index -1UL.
661  */
662 static int
663 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
664 	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
665 {
666 	if (is_mergeable_vma(vma, file, vm_flags) &&
667 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
668 		if (vma->vm_pgoff == vm_pgoff)
669 			return 1;
670 	}
671 	return 0;
672 }
673 
674 /*
675  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
676  * beyond (at a higher virtual address and file offset than) the vma.
677  *
678  * We cannot merge two vmas if they have differently assigned (non-NULL)
679  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
680  */
681 static int
682 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
683 	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
684 {
685 	if (is_mergeable_vma(vma, file, vm_flags) &&
686 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
687 		pgoff_t vm_pglen;
688 		vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
689 		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
690 			return 1;
691 	}
692 	return 0;
693 }
694 
695 /*
696  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
697  * whether that can be merged with its predecessor or its successor.
698  * Or both (it neatly fills a hole).
699  *
700  * In most cases - when called for mmap, brk or mremap - [addr,end) is
701  * certain not to be mapped by the time vma_merge is called; but when
702  * called for mprotect, it is certain to be already mapped (either at
703  * an offset within prev, or at the start of next), and the flags of
704  * this area are about to be changed to vm_flags - and the no-change
705  * case has already been eliminated.
706  *
707  * The following mprotect cases have to be considered, where AAAA is
708  * the area passed down from mprotect_fixup, never extending beyond one
709  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
710  *
711  *     AAAA             AAAA                AAAA          AAAA
712  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
713  *    cannot merge    might become    might become    might become
714  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
715  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
716  *    mremap move:                                    PPPPNNNNNNNN 8
717  *        AAAA
718  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
719  *    might become    case 1 below    case 2 below    case 3 below
720  *
721  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
722  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
723  */
724 struct vm_area_struct *vma_merge(struct mm_struct *mm,
725 			struct vm_area_struct *prev, unsigned long addr,
726 			unsigned long end, unsigned long vm_flags,
727 		     	struct anon_vma *anon_vma, struct file *file,
728 			pgoff_t pgoff, struct mempolicy *policy)
729 {
730 	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
731 	struct vm_area_struct *area, *next;
732 
733 	/*
734 	 * We later require that vma->vm_flags == vm_flags,
735 	 * so this tests vma->vm_flags & VM_SPECIAL, too.
736 	 */
737 	if (vm_flags & VM_SPECIAL)
738 		return NULL;
739 
740 	if (prev)
741 		next = prev->vm_next;
742 	else
743 		next = mm->mmap;
744 	area = next;
745 	if (next && next->vm_end == end)		/* cases 6, 7, 8 */
746 		next = next->vm_next;
747 
748 	/*
749 	 * Can it merge with the predecessor?
750 	 */
751 	if (prev && prev->vm_end == addr &&
752   			mpol_equal(vma_policy(prev), policy) &&
753 			can_vma_merge_after(prev, vm_flags,
754 						anon_vma, file, pgoff)) {
755 		/*
756 		 * OK, it can.  Can we now merge in the successor as well?
757 		 */
758 		if (next && end == next->vm_start &&
759 				mpol_equal(policy, vma_policy(next)) &&
760 				can_vma_merge_before(next, vm_flags,
761 					anon_vma, file, pgoff+pglen) &&
762 				is_mergeable_anon_vma(prev->anon_vma,
763 						      next->anon_vma)) {
764 							/* cases 1, 6 */
765 			vma_adjust(prev, prev->vm_start,
766 				next->vm_end, prev->vm_pgoff, NULL);
767 		} else					/* cases 2, 5, 7 */
768 			vma_adjust(prev, prev->vm_start,
769 				end, prev->vm_pgoff, NULL);
770 		return prev;
771 	}
772 
773 	/*
774 	 * Can this new request be merged in front of next?
775 	 */
776 	if (next && end == next->vm_start &&
777  			mpol_equal(policy, vma_policy(next)) &&
778 			can_vma_merge_before(next, vm_flags,
779 					anon_vma, file, pgoff+pglen)) {
780 		if (prev && addr < prev->vm_end)	/* case 4 */
781 			vma_adjust(prev, prev->vm_start,
782 				addr, prev->vm_pgoff, NULL);
783 		else					/* cases 3, 8 */
784 			vma_adjust(area, addr, next->vm_end,
785 				next->vm_pgoff - pglen, NULL);
786 		return area;
787 	}
788 
789 	return NULL;
790 }
791 
792 /*
793  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
794  * neighbouring vmas for a suitable anon_vma, before it goes off
795  * to allocate a new anon_vma.  It checks because a repetitive
796  * sequence of mprotects and faults may otherwise lead to distinct
797  * anon_vmas being allocated, preventing vma merge in subsequent
798  * mprotect.
799  */
800 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
801 {
802 	struct vm_area_struct *near;
803 	unsigned long vm_flags;
804 
805 	near = vma->vm_next;
806 	if (!near)
807 		goto try_prev;
808 
809 	/*
810 	 * Since only mprotect tries to remerge vmas, match flags
811 	 * which might be mprotected into each other later on.
812 	 * Neither mlock nor madvise tries to remerge at present,
813 	 * so leave their flags as obstructing a merge.
814 	 */
815 	vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
816 	vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
817 
818 	if (near->anon_vma && vma->vm_end == near->vm_start &&
819  			mpol_equal(vma_policy(vma), vma_policy(near)) &&
820 			can_vma_merge_before(near, vm_flags,
821 				NULL, vma->vm_file, vma->vm_pgoff +
822 				((vma->vm_end - vma->vm_start) >> PAGE_SHIFT)))
823 		return near->anon_vma;
824 try_prev:
825 	/*
826 	 * It is potentially slow to have to call find_vma_prev here.
827 	 * But it's only on the first write fault on the vma, not
828 	 * every time, and we could devise a way to avoid it later
829 	 * (e.g. stash info in next's anon_vma_node when assigning
830 	 * an anon_vma, or when trying vma_merge).  Another time.
831 	 */
832 	BUG_ON(find_vma_prev(vma->vm_mm, vma->vm_start, &near) != vma);
833 	if (!near)
834 		goto none;
835 
836 	vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
837 	vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
838 
839 	if (near->anon_vma && near->vm_end == vma->vm_start &&
840   			mpol_equal(vma_policy(near), vma_policy(vma)) &&
841 			can_vma_merge_after(near, vm_flags,
842 				NULL, vma->vm_file, vma->vm_pgoff))
843 		return near->anon_vma;
844 none:
845 	/*
846 	 * There's no absolute need to look only at touching neighbours:
847 	 * we could search further afield for "compatible" anon_vmas.
848 	 * But it would probably just be a waste of time searching,
849 	 * or lead to too many vmas hanging off the same anon_vma.
850 	 * We're trying to allow mprotect remerging later on,
851 	 * not trying to minimize memory used for anon_vmas.
852 	 */
853 	return NULL;
854 }
855 
856 #ifdef CONFIG_PROC_FS
857 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
858 						struct file *file, long pages)
859 {
860 	const unsigned long stack_flags
861 		= VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
862 
863 	if (file) {
864 		mm->shared_vm += pages;
865 		if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
866 			mm->exec_vm += pages;
867 	} else if (flags & stack_flags)
868 		mm->stack_vm += pages;
869 	if (flags & (VM_RESERVED|VM_IO))
870 		mm->reserved_vm += pages;
871 }
872 #endif /* CONFIG_PROC_FS */
873 
874 /*
875  * The caller must hold down_write(current->mm->mmap_sem).
876  */
877 
878 unsigned long do_mmap_pgoff(struct file * file, unsigned long addr,
879 			unsigned long len, unsigned long prot,
880 			unsigned long flags, unsigned long pgoff)
881 {
882 	struct mm_struct * mm = current->mm;
883 	struct vm_area_struct * vma, * prev;
884 	struct inode *inode;
885 	unsigned int vm_flags;
886 	int correct_wcount = 0;
887 	int error;
888 	struct rb_node ** rb_link, * rb_parent;
889 	int accountable = 1;
890 	unsigned long charged = 0, reqprot = prot;
891 
892 	if (file) {
893 		if (is_file_hugepages(file))
894 			accountable = 0;
895 
896 		if (!file->f_op || !file->f_op->mmap)
897 			return -ENODEV;
898 
899 		if ((prot & PROT_EXEC) &&
900 		    (file->f_vfsmnt->mnt_flags & MNT_NOEXEC))
901 			return -EPERM;
902 	}
903 	/*
904 	 * Does the application expect PROT_READ to imply PROT_EXEC?
905 	 *
906 	 * (the exception is when the underlying filesystem is noexec
907 	 *  mounted, in which case we dont add PROT_EXEC.)
908 	 */
909 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
910 		if (!(file && (file->f_vfsmnt->mnt_flags & MNT_NOEXEC)))
911 			prot |= PROT_EXEC;
912 
913 	if (!len)
914 		return -EINVAL;
915 
916 	/* Careful about overflows.. */
917 	len = PAGE_ALIGN(len);
918 	if (!len || len > TASK_SIZE)
919 		return -ENOMEM;
920 
921 	/* offset overflow? */
922 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
923                return -EOVERFLOW;
924 
925 	/* Too many mappings? */
926 	if (mm->map_count > sysctl_max_map_count)
927 		return -ENOMEM;
928 
929 	/* Obtain the address to map to. we verify (or select) it and ensure
930 	 * that it represents a valid section of the address space.
931 	 */
932 	addr = get_unmapped_area(file, addr, len, pgoff, flags);
933 	if (addr & ~PAGE_MASK)
934 		return addr;
935 
936 	/* Do simple checking here so the lower-level routines won't have
937 	 * to. we assume access permissions have been handled by the open
938 	 * of the memory object, so we don't do any here.
939 	 */
940 	vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
941 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
942 
943 	if (flags & MAP_LOCKED) {
944 		if (!can_do_mlock())
945 			return -EPERM;
946 		vm_flags |= VM_LOCKED;
947 	}
948 	/* mlock MCL_FUTURE? */
949 	if (vm_flags & VM_LOCKED) {
950 		unsigned long locked, lock_limit;
951 		locked = len >> PAGE_SHIFT;
952 		locked += mm->locked_vm;
953 		lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
954 		lock_limit >>= PAGE_SHIFT;
955 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
956 			return -EAGAIN;
957 	}
958 
959 	inode = file ? file->f_dentry->d_inode : NULL;
960 
961 	if (file) {
962 		switch (flags & MAP_TYPE) {
963 		case MAP_SHARED:
964 			if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
965 				return -EACCES;
966 
967 			/*
968 			 * Make sure we don't allow writing to an append-only
969 			 * file..
970 			 */
971 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
972 				return -EACCES;
973 
974 			/*
975 			 * Make sure there are no mandatory locks on the file.
976 			 */
977 			if (locks_verify_locked(inode))
978 				return -EAGAIN;
979 
980 			vm_flags |= VM_SHARED | VM_MAYSHARE;
981 			if (!(file->f_mode & FMODE_WRITE))
982 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
983 
984 			/* fall through */
985 		case MAP_PRIVATE:
986 			if (!(file->f_mode & FMODE_READ))
987 				return -EACCES;
988 			break;
989 
990 		default:
991 			return -EINVAL;
992 		}
993 	} else {
994 		switch (flags & MAP_TYPE) {
995 		case MAP_SHARED:
996 			vm_flags |= VM_SHARED | VM_MAYSHARE;
997 			break;
998 		case MAP_PRIVATE:
999 			/*
1000 			 * Set pgoff according to addr for anon_vma.
1001 			 */
1002 			pgoff = addr >> PAGE_SHIFT;
1003 			break;
1004 		default:
1005 			return -EINVAL;
1006 		}
1007 	}
1008 
1009 	error = security_file_mmap(file, reqprot, prot, flags);
1010 	if (error)
1011 		return error;
1012 
1013 	/* Clear old maps */
1014 	error = -ENOMEM;
1015 munmap_back:
1016 	vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1017 	if (vma && vma->vm_start < addr + len) {
1018 		if (do_munmap(mm, addr, len))
1019 			return -ENOMEM;
1020 		goto munmap_back;
1021 	}
1022 
1023 	/* Check against address space limit. */
1024 	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1025 		return -ENOMEM;
1026 
1027 	if (accountable && (!(flags & MAP_NORESERVE) ||
1028 			    sysctl_overcommit_memory == OVERCOMMIT_NEVER)) {
1029 		if (vm_flags & VM_SHARED) {
1030 			/* Check memory availability in shmem_file_setup? */
1031 			vm_flags |= VM_ACCOUNT;
1032 		} else if (vm_flags & VM_WRITE) {
1033 			/*
1034 			 * Private writable mapping: check memory availability
1035 			 */
1036 			charged = len >> PAGE_SHIFT;
1037 			if (security_vm_enough_memory(charged))
1038 				return -ENOMEM;
1039 			vm_flags |= VM_ACCOUNT;
1040 		}
1041 	}
1042 
1043 	/*
1044 	 * Can we just expand an old private anonymous mapping?
1045 	 * The VM_SHARED test is necessary because shmem_zero_setup
1046 	 * will create the file object for a shared anonymous map below.
1047 	 */
1048 	if (!file && !(vm_flags & VM_SHARED) &&
1049 	    vma_merge(mm, prev, addr, addr + len, vm_flags,
1050 					NULL, NULL, pgoff, NULL))
1051 		goto out;
1052 
1053 	/*
1054 	 * Determine the object being mapped and call the appropriate
1055 	 * specific mapper. the address has already been validated, but
1056 	 * not unmapped, but the maps are removed from the list.
1057 	 */
1058 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1059 	if (!vma) {
1060 		error = -ENOMEM;
1061 		goto unacct_error;
1062 	}
1063 
1064 	vma->vm_mm = mm;
1065 	vma->vm_start = addr;
1066 	vma->vm_end = addr + len;
1067 	vma->vm_flags = vm_flags;
1068 	vma->vm_page_prot = protection_map[vm_flags & 0x0f];
1069 	vma->vm_pgoff = pgoff;
1070 
1071 	if (file) {
1072 		error = -EINVAL;
1073 		if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1074 			goto free_vma;
1075 		if (vm_flags & VM_DENYWRITE) {
1076 			error = deny_write_access(file);
1077 			if (error)
1078 				goto free_vma;
1079 			correct_wcount = 1;
1080 		}
1081 		vma->vm_file = file;
1082 		get_file(file);
1083 		error = file->f_op->mmap(file, vma);
1084 		if (error)
1085 			goto unmap_and_free_vma;
1086 	} else if (vm_flags & VM_SHARED) {
1087 		error = shmem_zero_setup(vma);
1088 		if (error)
1089 			goto free_vma;
1090 	}
1091 
1092 	/* We set VM_ACCOUNT in a shared mapping's vm_flags, to inform
1093 	 * shmem_zero_setup (perhaps called through /dev/zero's ->mmap)
1094 	 * that memory reservation must be checked; but that reservation
1095 	 * belongs to shared memory object, not to vma: so now clear it.
1096 	 */
1097 	if ((vm_flags & (VM_SHARED|VM_ACCOUNT)) == (VM_SHARED|VM_ACCOUNT))
1098 		vma->vm_flags &= ~VM_ACCOUNT;
1099 
1100 	/* Can addr have changed??
1101 	 *
1102 	 * Answer: Yes, several device drivers can do it in their
1103 	 *         f_op->mmap method. -DaveM
1104 	 */
1105 	addr = vma->vm_start;
1106 	pgoff = vma->vm_pgoff;
1107 	vm_flags = vma->vm_flags;
1108 
1109 	if (!file || !vma_merge(mm, prev, addr, vma->vm_end,
1110 			vma->vm_flags, NULL, file, pgoff, vma_policy(vma))) {
1111 		file = vma->vm_file;
1112 		vma_link(mm, vma, prev, rb_link, rb_parent);
1113 		if (correct_wcount)
1114 			atomic_inc(&inode->i_writecount);
1115 	} else {
1116 		if (file) {
1117 			if (correct_wcount)
1118 				atomic_inc(&inode->i_writecount);
1119 			fput(file);
1120 		}
1121 		mpol_free(vma_policy(vma));
1122 		kmem_cache_free(vm_area_cachep, vma);
1123 	}
1124 out:
1125 	mm->total_vm += len >> PAGE_SHIFT;
1126 	vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1127 	if (vm_flags & VM_LOCKED) {
1128 		mm->locked_vm += len >> PAGE_SHIFT;
1129 		make_pages_present(addr, addr + len);
1130 	}
1131 	if (flags & MAP_POPULATE) {
1132 		up_write(&mm->mmap_sem);
1133 		sys_remap_file_pages(addr, len, 0,
1134 					pgoff, flags & MAP_NONBLOCK);
1135 		down_write(&mm->mmap_sem);
1136 	}
1137 	return addr;
1138 
1139 unmap_and_free_vma:
1140 	if (correct_wcount)
1141 		atomic_inc(&inode->i_writecount);
1142 	vma->vm_file = NULL;
1143 	fput(file);
1144 
1145 	/* Undo any partial mapping done by a device driver. */
1146 	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1147 	charged = 0;
1148 free_vma:
1149 	kmem_cache_free(vm_area_cachep, vma);
1150 unacct_error:
1151 	if (charged)
1152 		vm_unacct_memory(charged);
1153 	return error;
1154 }
1155 
1156 EXPORT_SYMBOL(do_mmap_pgoff);
1157 
1158 /* Get an address range which is currently unmapped.
1159  * For shmat() with addr=0.
1160  *
1161  * Ugly calling convention alert:
1162  * Return value with the low bits set means error value,
1163  * ie
1164  *	if (ret & ~PAGE_MASK)
1165  *		error = ret;
1166  *
1167  * This function "knows" that -ENOMEM has the bits set.
1168  */
1169 #ifndef HAVE_ARCH_UNMAPPED_AREA
1170 unsigned long
1171 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1172 		unsigned long len, unsigned long pgoff, unsigned long flags)
1173 {
1174 	struct mm_struct *mm = current->mm;
1175 	struct vm_area_struct *vma;
1176 	unsigned long start_addr;
1177 
1178 	if (len > TASK_SIZE)
1179 		return -ENOMEM;
1180 
1181 	if (addr) {
1182 		addr = PAGE_ALIGN(addr);
1183 		vma = find_vma(mm, addr);
1184 		if (TASK_SIZE - len >= addr &&
1185 		    (!vma || addr + len <= vma->vm_start))
1186 			return addr;
1187 	}
1188 	if (len > mm->cached_hole_size) {
1189 	        start_addr = addr = mm->free_area_cache;
1190 	} else {
1191 	        start_addr = addr = TASK_UNMAPPED_BASE;
1192 	        mm->cached_hole_size = 0;
1193 	}
1194 
1195 full_search:
1196 	for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1197 		/* At this point:  (!vma || addr < vma->vm_end). */
1198 		if (TASK_SIZE - len < addr) {
1199 			/*
1200 			 * Start a new search - just in case we missed
1201 			 * some holes.
1202 			 */
1203 			if (start_addr != TASK_UNMAPPED_BASE) {
1204 				addr = TASK_UNMAPPED_BASE;
1205 			        start_addr = addr;
1206 				mm->cached_hole_size = 0;
1207 				goto full_search;
1208 			}
1209 			return -ENOMEM;
1210 		}
1211 		if (!vma || addr + len <= vma->vm_start) {
1212 			/*
1213 			 * Remember the place where we stopped the search:
1214 			 */
1215 			mm->free_area_cache = addr + len;
1216 			return addr;
1217 		}
1218 		if (addr + mm->cached_hole_size < vma->vm_start)
1219 		        mm->cached_hole_size = vma->vm_start - addr;
1220 		addr = vma->vm_end;
1221 	}
1222 }
1223 #endif
1224 
1225 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1226 {
1227 	/*
1228 	 * Is this a new hole at the lowest possible address?
1229 	 */
1230 	if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) {
1231 		mm->free_area_cache = addr;
1232 		mm->cached_hole_size = ~0UL;
1233 	}
1234 }
1235 
1236 /*
1237  * This mmap-allocator allocates new areas top-down from below the
1238  * stack's low limit (the base):
1239  */
1240 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1241 unsigned long
1242 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1243 			  const unsigned long len, const unsigned long pgoff,
1244 			  const unsigned long flags)
1245 {
1246 	struct vm_area_struct *vma;
1247 	struct mm_struct *mm = current->mm;
1248 	unsigned long addr = addr0;
1249 
1250 	/* requested length too big for entire address space */
1251 	if (len > TASK_SIZE)
1252 		return -ENOMEM;
1253 
1254 	/* requesting a specific address */
1255 	if (addr) {
1256 		addr = PAGE_ALIGN(addr);
1257 		vma = find_vma(mm, addr);
1258 		if (TASK_SIZE - len >= addr &&
1259 				(!vma || addr + len <= vma->vm_start))
1260 			return addr;
1261 	}
1262 
1263 	/* check if free_area_cache is useful for us */
1264 	if (len <= mm->cached_hole_size) {
1265  	        mm->cached_hole_size = 0;
1266  		mm->free_area_cache = mm->mmap_base;
1267  	}
1268 
1269 	/* either no address requested or can't fit in requested address hole */
1270 	addr = mm->free_area_cache;
1271 
1272 	/* make sure it can fit in the remaining address space */
1273 	if (addr > len) {
1274 		vma = find_vma(mm, addr-len);
1275 		if (!vma || addr <= vma->vm_start)
1276 			/* remember the address as a hint for next time */
1277 			return (mm->free_area_cache = addr-len);
1278 	}
1279 
1280 	if (mm->mmap_base < len)
1281 		goto bottomup;
1282 
1283 	addr = mm->mmap_base-len;
1284 
1285 	do {
1286 		/*
1287 		 * Lookup failure means no vma is above this address,
1288 		 * else if new region fits below vma->vm_start,
1289 		 * return with success:
1290 		 */
1291 		vma = find_vma(mm, addr);
1292 		if (!vma || addr+len <= vma->vm_start)
1293 			/* remember the address as a hint for next time */
1294 			return (mm->free_area_cache = addr);
1295 
1296  		/* remember the largest hole we saw so far */
1297  		if (addr + mm->cached_hole_size < vma->vm_start)
1298  		        mm->cached_hole_size = vma->vm_start - addr;
1299 
1300 		/* try just below the current vma->vm_start */
1301 		addr = vma->vm_start-len;
1302 	} while (len < vma->vm_start);
1303 
1304 bottomup:
1305 	/*
1306 	 * A failed mmap() very likely causes application failure,
1307 	 * so fall back to the bottom-up function here. This scenario
1308 	 * can happen with large stack limits and large mmap()
1309 	 * allocations.
1310 	 */
1311 	mm->cached_hole_size = ~0UL;
1312   	mm->free_area_cache = TASK_UNMAPPED_BASE;
1313 	addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1314 	/*
1315 	 * Restore the topdown base:
1316 	 */
1317 	mm->free_area_cache = mm->mmap_base;
1318 	mm->cached_hole_size = ~0UL;
1319 
1320 	return addr;
1321 }
1322 #endif
1323 
1324 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1325 {
1326 	/*
1327 	 * Is this a new hole at the highest possible address?
1328 	 */
1329 	if (addr > mm->free_area_cache)
1330 		mm->free_area_cache = addr;
1331 
1332 	/* dont allow allocations above current base */
1333 	if (mm->free_area_cache > mm->mmap_base)
1334 		mm->free_area_cache = mm->mmap_base;
1335 }
1336 
1337 unsigned long
1338 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1339 		unsigned long pgoff, unsigned long flags)
1340 {
1341 	unsigned long ret;
1342 
1343 	if (!(flags & MAP_FIXED)) {
1344 		unsigned long (*get_area)(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1345 
1346 		get_area = current->mm->get_unmapped_area;
1347 		if (file && file->f_op && file->f_op->get_unmapped_area)
1348 			get_area = file->f_op->get_unmapped_area;
1349 		addr = get_area(file, addr, len, pgoff, flags);
1350 		if (IS_ERR_VALUE(addr))
1351 			return addr;
1352 	}
1353 
1354 	if (addr > TASK_SIZE - len)
1355 		return -ENOMEM;
1356 	if (addr & ~PAGE_MASK)
1357 		return -EINVAL;
1358 	if (file && is_file_hugepages(file))  {
1359 		/*
1360 		 * Check if the given range is hugepage aligned, and
1361 		 * can be made suitable for hugepages.
1362 		 */
1363 		ret = prepare_hugepage_range(addr, len);
1364 	} else {
1365 		/*
1366 		 * Ensure that a normal request is not falling in a
1367 		 * reserved hugepage range.  For some archs like IA-64,
1368 		 * there is a separate region for hugepages.
1369 		 */
1370 		ret = is_hugepage_only_range(current->mm, addr, len);
1371 	}
1372 	if (ret)
1373 		return -EINVAL;
1374 	return addr;
1375 }
1376 
1377 EXPORT_SYMBOL(get_unmapped_area);
1378 
1379 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1380 struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr)
1381 {
1382 	struct vm_area_struct *vma = NULL;
1383 
1384 	if (mm) {
1385 		/* Check the cache first. */
1386 		/* (Cache hit rate is typically around 35%.) */
1387 		vma = mm->mmap_cache;
1388 		if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1389 			struct rb_node * rb_node;
1390 
1391 			rb_node = mm->mm_rb.rb_node;
1392 			vma = NULL;
1393 
1394 			while (rb_node) {
1395 				struct vm_area_struct * vma_tmp;
1396 
1397 				vma_tmp = rb_entry(rb_node,
1398 						struct vm_area_struct, vm_rb);
1399 
1400 				if (vma_tmp->vm_end > addr) {
1401 					vma = vma_tmp;
1402 					if (vma_tmp->vm_start <= addr)
1403 						break;
1404 					rb_node = rb_node->rb_left;
1405 				} else
1406 					rb_node = rb_node->rb_right;
1407 			}
1408 			if (vma)
1409 				mm->mmap_cache = vma;
1410 		}
1411 	}
1412 	return vma;
1413 }
1414 
1415 EXPORT_SYMBOL(find_vma);
1416 
1417 /* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */
1418 struct vm_area_struct *
1419 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1420 			struct vm_area_struct **pprev)
1421 {
1422 	struct vm_area_struct *vma = NULL, *prev = NULL;
1423 	struct rb_node * rb_node;
1424 	if (!mm)
1425 		goto out;
1426 
1427 	/* Guard against addr being lower than the first VMA */
1428 	vma = mm->mmap;
1429 
1430 	/* Go through the RB tree quickly. */
1431 	rb_node = mm->mm_rb.rb_node;
1432 
1433 	while (rb_node) {
1434 		struct vm_area_struct *vma_tmp;
1435 		vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1436 
1437 		if (addr < vma_tmp->vm_end) {
1438 			rb_node = rb_node->rb_left;
1439 		} else {
1440 			prev = vma_tmp;
1441 			if (!prev->vm_next || (addr < prev->vm_next->vm_end))
1442 				break;
1443 			rb_node = rb_node->rb_right;
1444 		}
1445 	}
1446 
1447 out:
1448 	*pprev = prev;
1449 	return prev ? prev->vm_next : vma;
1450 }
1451 
1452 /*
1453  * Verify that the stack growth is acceptable and
1454  * update accounting. This is shared with both the
1455  * grow-up and grow-down cases.
1456  */
1457 static int acct_stack_growth(struct vm_area_struct * vma, unsigned long size, unsigned long grow)
1458 {
1459 	struct mm_struct *mm = vma->vm_mm;
1460 	struct rlimit *rlim = current->signal->rlim;
1461 
1462 	/* address space limit tests */
1463 	if (!may_expand_vm(mm, grow))
1464 		return -ENOMEM;
1465 
1466 	/* Stack limit test */
1467 	if (size > rlim[RLIMIT_STACK].rlim_cur)
1468 		return -ENOMEM;
1469 
1470 	/* mlock limit tests */
1471 	if (vma->vm_flags & VM_LOCKED) {
1472 		unsigned long locked;
1473 		unsigned long limit;
1474 		locked = mm->locked_vm + grow;
1475 		limit = rlim[RLIMIT_MEMLOCK].rlim_cur >> PAGE_SHIFT;
1476 		if (locked > limit && !capable(CAP_IPC_LOCK))
1477 			return -ENOMEM;
1478 	}
1479 
1480 	/*
1481 	 * Overcommit..  This must be the final test, as it will
1482 	 * update security statistics.
1483 	 */
1484 	if (security_vm_enough_memory(grow))
1485 		return -ENOMEM;
1486 
1487 	/* Ok, everything looks good - let it rip */
1488 	mm->total_vm += grow;
1489 	if (vma->vm_flags & VM_LOCKED)
1490 		mm->locked_vm += grow;
1491 	vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1492 	return 0;
1493 }
1494 
1495 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1496 /*
1497  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1498  * vma is the last one with address > vma->vm_end.  Have to extend vma.
1499  */
1500 #ifndef CONFIG_IA64
1501 static inline
1502 #endif
1503 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1504 {
1505 	int error;
1506 
1507 	if (!(vma->vm_flags & VM_GROWSUP))
1508 		return -EFAULT;
1509 
1510 	/*
1511 	 * We must make sure the anon_vma is allocated
1512 	 * so that the anon_vma locking is not a noop.
1513 	 */
1514 	if (unlikely(anon_vma_prepare(vma)))
1515 		return -ENOMEM;
1516 	anon_vma_lock(vma);
1517 
1518 	/*
1519 	 * vma->vm_start/vm_end cannot change under us because the caller
1520 	 * is required to hold the mmap_sem in read mode.  We need the
1521 	 * anon_vma lock to serialize against concurrent expand_stacks.
1522 	 */
1523 	address += 4 + PAGE_SIZE - 1;
1524 	address &= PAGE_MASK;
1525 	error = 0;
1526 
1527 	/* Somebody else might have raced and expanded it already */
1528 	if (address > vma->vm_end) {
1529 		unsigned long size, grow;
1530 
1531 		size = address - vma->vm_start;
1532 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
1533 
1534 		error = acct_stack_growth(vma, size, grow);
1535 		if (!error)
1536 			vma->vm_end = address;
1537 	}
1538 	anon_vma_unlock(vma);
1539 	return error;
1540 }
1541 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1542 
1543 #ifdef CONFIG_STACK_GROWSUP
1544 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1545 {
1546 	return expand_upwards(vma, address);
1547 }
1548 
1549 struct vm_area_struct *
1550 find_extend_vma(struct mm_struct *mm, unsigned long addr)
1551 {
1552 	struct vm_area_struct *vma, *prev;
1553 
1554 	addr &= PAGE_MASK;
1555 	vma = find_vma_prev(mm, addr, &prev);
1556 	if (vma && (vma->vm_start <= addr))
1557 		return vma;
1558 	if (!prev || expand_stack(prev, addr))
1559 		return NULL;
1560 	if (prev->vm_flags & VM_LOCKED) {
1561 		make_pages_present(addr, prev->vm_end);
1562 	}
1563 	return prev;
1564 }
1565 #else
1566 /*
1567  * vma is the first one with address < vma->vm_start.  Have to extend vma.
1568  */
1569 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1570 {
1571 	int error;
1572 
1573 	/*
1574 	 * We must make sure the anon_vma is allocated
1575 	 * so that the anon_vma locking is not a noop.
1576 	 */
1577 	if (unlikely(anon_vma_prepare(vma)))
1578 		return -ENOMEM;
1579 	anon_vma_lock(vma);
1580 
1581 	/*
1582 	 * vma->vm_start/vm_end cannot change under us because the caller
1583 	 * is required to hold the mmap_sem in read mode.  We need the
1584 	 * anon_vma lock to serialize against concurrent expand_stacks.
1585 	 */
1586 	address &= PAGE_MASK;
1587 	error = 0;
1588 
1589 	/* Somebody else might have raced and expanded it already */
1590 	if (address < vma->vm_start) {
1591 		unsigned long size, grow;
1592 
1593 		size = vma->vm_end - address;
1594 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
1595 
1596 		error = acct_stack_growth(vma, size, grow);
1597 		if (!error) {
1598 			vma->vm_start = address;
1599 			vma->vm_pgoff -= grow;
1600 		}
1601 	}
1602 	anon_vma_unlock(vma);
1603 	return error;
1604 }
1605 
1606 struct vm_area_struct *
1607 find_extend_vma(struct mm_struct * mm, unsigned long addr)
1608 {
1609 	struct vm_area_struct * vma;
1610 	unsigned long start;
1611 
1612 	addr &= PAGE_MASK;
1613 	vma = find_vma(mm,addr);
1614 	if (!vma)
1615 		return NULL;
1616 	if (vma->vm_start <= addr)
1617 		return vma;
1618 	if (!(vma->vm_flags & VM_GROWSDOWN))
1619 		return NULL;
1620 	start = vma->vm_start;
1621 	if (expand_stack(vma, addr))
1622 		return NULL;
1623 	if (vma->vm_flags & VM_LOCKED) {
1624 		make_pages_present(addr, start);
1625 	}
1626 	return vma;
1627 }
1628 #endif
1629 
1630 /*
1631  * Ok - we have the memory areas we should free on the vma list,
1632  * so release them, and do the vma updates.
1633  *
1634  * Called with the mm semaphore held.
1635  */
1636 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1637 {
1638 	/* Update high watermark before we lower total_vm */
1639 	update_hiwater_vm(mm);
1640 	do {
1641 		long nrpages = vma_pages(vma);
1642 
1643 		mm->total_vm -= nrpages;
1644 		if (vma->vm_flags & VM_LOCKED)
1645 			mm->locked_vm -= nrpages;
1646 		vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
1647 		vma = remove_vma(vma);
1648 	} while (vma);
1649 	validate_mm(mm);
1650 }
1651 
1652 /*
1653  * Get rid of page table information in the indicated region.
1654  *
1655  * Called with the mm semaphore held.
1656  */
1657 static void unmap_region(struct mm_struct *mm,
1658 		struct vm_area_struct *vma, struct vm_area_struct *prev,
1659 		unsigned long start, unsigned long end)
1660 {
1661 	struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1662 	struct mmu_gather *tlb;
1663 	unsigned long nr_accounted = 0;
1664 
1665 	lru_add_drain();
1666 	tlb = tlb_gather_mmu(mm, 0);
1667 	update_hiwater_rss(mm);
1668 	unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL);
1669 	vm_unacct_memory(nr_accounted);
1670 	free_pgtables(&tlb, vma, prev? prev->vm_end: FIRST_USER_ADDRESS,
1671 				 next? next->vm_start: 0);
1672 	tlb_finish_mmu(tlb, start, end);
1673 }
1674 
1675 /*
1676  * Create a list of vma's touched by the unmap, removing them from the mm's
1677  * vma list as we go..
1678  */
1679 static void
1680 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1681 	struct vm_area_struct *prev, unsigned long end)
1682 {
1683 	struct vm_area_struct **insertion_point;
1684 	struct vm_area_struct *tail_vma = NULL;
1685 	unsigned long addr;
1686 
1687 	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1688 	do {
1689 		rb_erase(&vma->vm_rb, &mm->mm_rb);
1690 		mm->map_count--;
1691 		tail_vma = vma;
1692 		vma = vma->vm_next;
1693 	} while (vma && vma->vm_start < end);
1694 	*insertion_point = vma;
1695 	tail_vma->vm_next = NULL;
1696 	if (mm->unmap_area == arch_unmap_area)
1697 		addr = prev ? prev->vm_end : mm->mmap_base;
1698 	else
1699 		addr = vma ?  vma->vm_start : mm->mmap_base;
1700 	mm->unmap_area(mm, addr);
1701 	mm->mmap_cache = NULL;		/* Kill the cache. */
1702 }
1703 
1704 /*
1705  * Split a vma into two pieces at address 'addr', a new vma is allocated
1706  * either for the first part or the the tail.
1707  */
1708 int split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1709 	      unsigned long addr, int new_below)
1710 {
1711 	struct mempolicy *pol;
1712 	struct vm_area_struct *new;
1713 
1714 	if (is_vm_hugetlb_page(vma) && (addr & ~HPAGE_MASK))
1715 		return -EINVAL;
1716 
1717 	if (mm->map_count >= sysctl_max_map_count)
1718 		return -ENOMEM;
1719 
1720 	new = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
1721 	if (!new)
1722 		return -ENOMEM;
1723 
1724 	/* most fields are the same, copy all, and then fixup */
1725 	*new = *vma;
1726 
1727 	if (new_below)
1728 		new->vm_end = addr;
1729 	else {
1730 		new->vm_start = addr;
1731 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
1732 	}
1733 
1734 	pol = mpol_copy(vma_policy(vma));
1735 	if (IS_ERR(pol)) {
1736 		kmem_cache_free(vm_area_cachep, new);
1737 		return PTR_ERR(pol);
1738 	}
1739 	vma_set_policy(new, pol);
1740 
1741 	if (new->vm_file)
1742 		get_file(new->vm_file);
1743 
1744 	if (new->vm_ops && new->vm_ops->open)
1745 		new->vm_ops->open(new);
1746 
1747 	if (new_below)
1748 		vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
1749 			((addr - new->vm_start) >> PAGE_SHIFT), new);
1750 	else
1751 		vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
1752 
1753 	return 0;
1754 }
1755 
1756 /* Munmap is split into 2 main parts -- this part which finds
1757  * what needs doing, and the areas themselves, which do the
1758  * work.  This now handles partial unmappings.
1759  * Jeremy Fitzhardinge <jeremy@goop.org>
1760  */
1761 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1762 {
1763 	unsigned long end;
1764 	struct vm_area_struct *vma, *prev, *last;
1765 
1766 	if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
1767 		return -EINVAL;
1768 
1769 	if ((len = PAGE_ALIGN(len)) == 0)
1770 		return -EINVAL;
1771 
1772 	/* Find the first overlapping VMA */
1773 	vma = find_vma_prev(mm, start, &prev);
1774 	if (!vma)
1775 		return 0;
1776 	/* we have  start < vma->vm_end  */
1777 
1778 	/* if it doesn't overlap, we have nothing.. */
1779 	end = start + len;
1780 	if (vma->vm_start >= end)
1781 		return 0;
1782 
1783 	/*
1784 	 * If we need to split any vma, do it now to save pain later.
1785 	 *
1786 	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
1787 	 * unmapped vm_area_struct will remain in use: so lower split_vma
1788 	 * places tmp vma above, and higher split_vma places tmp vma below.
1789 	 */
1790 	if (start > vma->vm_start) {
1791 		int error = split_vma(mm, vma, start, 0);
1792 		if (error)
1793 			return error;
1794 		prev = vma;
1795 	}
1796 
1797 	/* Does it split the last one? */
1798 	last = find_vma(mm, end);
1799 	if (last && end > last->vm_start) {
1800 		int error = split_vma(mm, last, end, 1);
1801 		if (error)
1802 			return error;
1803 	}
1804 	vma = prev? prev->vm_next: mm->mmap;
1805 
1806 	/*
1807 	 * Remove the vma's, and unmap the actual pages
1808 	 */
1809 	detach_vmas_to_be_unmapped(mm, vma, prev, end);
1810 	unmap_region(mm, vma, prev, start, end);
1811 
1812 	/* Fix up all other VM information */
1813 	remove_vma_list(mm, vma);
1814 
1815 	return 0;
1816 }
1817 
1818 EXPORT_SYMBOL(do_munmap);
1819 
1820 asmlinkage long sys_munmap(unsigned long addr, size_t len)
1821 {
1822 	int ret;
1823 	struct mm_struct *mm = current->mm;
1824 
1825 	profile_munmap(addr);
1826 
1827 	down_write(&mm->mmap_sem);
1828 	ret = do_munmap(mm, addr, len);
1829 	up_write(&mm->mmap_sem);
1830 	return ret;
1831 }
1832 
1833 static inline void verify_mm_writelocked(struct mm_struct *mm)
1834 {
1835 #ifdef CONFIG_DEBUG_VM
1836 	if (unlikely(down_read_trylock(&mm->mmap_sem))) {
1837 		WARN_ON(1);
1838 		up_read(&mm->mmap_sem);
1839 	}
1840 #endif
1841 }
1842 
1843 /*
1844  *  this is really a simplified "do_mmap".  it only handles
1845  *  anonymous maps.  eventually we may be able to do some
1846  *  brk-specific accounting here.
1847  */
1848 unsigned long do_brk(unsigned long addr, unsigned long len)
1849 {
1850 	struct mm_struct * mm = current->mm;
1851 	struct vm_area_struct * vma, * prev;
1852 	unsigned long flags;
1853 	struct rb_node ** rb_link, * rb_parent;
1854 	pgoff_t pgoff = addr >> PAGE_SHIFT;
1855 
1856 	len = PAGE_ALIGN(len);
1857 	if (!len)
1858 		return addr;
1859 
1860 	if ((addr + len) > TASK_SIZE || (addr + len) < addr)
1861 		return -EINVAL;
1862 
1863 	/*
1864 	 * mlock MCL_FUTURE?
1865 	 */
1866 	if (mm->def_flags & VM_LOCKED) {
1867 		unsigned long locked, lock_limit;
1868 		locked = len >> PAGE_SHIFT;
1869 		locked += mm->locked_vm;
1870 		lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
1871 		lock_limit >>= PAGE_SHIFT;
1872 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1873 			return -EAGAIN;
1874 	}
1875 
1876 	/*
1877 	 * mm->mmap_sem is required to protect against another thread
1878 	 * changing the mappings in case we sleep.
1879 	 */
1880 	verify_mm_writelocked(mm);
1881 
1882 	/*
1883 	 * Clear old maps.  this also does some error checking for us
1884 	 */
1885  munmap_back:
1886 	vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1887 	if (vma && vma->vm_start < addr + len) {
1888 		if (do_munmap(mm, addr, len))
1889 			return -ENOMEM;
1890 		goto munmap_back;
1891 	}
1892 
1893 	/* Check against address space limits *after* clearing old maps... */
1894 	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1895 		return -ENOMEM;
1896 
1897 	if (mm->map_count > sysctl_max_map_count)
1898 		return -ENOMEM;
1899 
1900 	if (security_vm_enough_memory(len >> PAGE_SHIFT))
1901 		return -ENOMEM;
1902 
1903 	flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
1904 
1905 	/* Can we just expand an old private anonymous mapping? */
1906 	if (vma_merge(mm, prev, addr, addr + len, flags,
1907 					NULL, NULL, pgoff, NULL))
1908 		goto out;
1909 
1910 	/*
1911 	 * create a vma struct for an anonymous mapping
1912 	 */
1913 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1914 	if (!vma) {
1915 		vm_unacct_memory(len >> PAGE_SHIFT);
1916 		return -ENOMEM;
1917 	}
1918 
1919 	vma->vm_mm = mm;
1920 	vma->vm_start = addr;
1921 	vma->vm_end = addr + len;
1922 	vma->vm_pgoff = pgoff;
1923 	vma->vm_flags = flags;
1924 	vma->vm_page_prot = protection_map[flags & 0x0f];
1925 	vma_link(mm, vma, prev, rb_link, rb_parent);
1926 out:
1927 	mm->total_vm += len >> PAGE_SHIFT;
1928 	if (flags & VM_LOCKED) {
1929 		mm->locked_vm += len >> PAGE_SHIFT;
1930 		make_pages_present(addr, addr + len);
1931 	}
1932 	return addr;
1933 }
1934 
1935 EXPORT_SYMBOL(do_brk);
1936 
1937 /* Release all mmaps. */
1938 void exit_mmap(struct mm_struct *mm)
1939 {
1940 	struct mmu_gather *tlb;
1941 	struct vm_area_struct *vma = mm->mmap;
1942 	unsigned long nr_accounted = 0;
1943 	unsigned long end;
1944 
1945 	lru_add_drain();
1946 	flush_cache_mm(mm);
1947 	tlb = tlb_gather_mmu(mm, 1);
1948 	/* Don't update_hiwater_rss(mm) here, do_exit already did */
1949 	/* Use -1 here to ensure all VMAs in the mm are unmapped */
1950 	end = unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL);
1951 	vm_unacct_memory(nr_accounted);
1952 	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, 0);
1953 	tlb_finish_mmu(tlb, 0, end);
1954 
1955 	/*
1956 	 * Walk the list again, actually closing and freeing it,
1957 	 * with preemption enabled, without holding any MM locks.
1958 	 */
1959 	while (vma)
1960 		vma = remove_vma(vma);
1961 
1962 	BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
1963 }
1964 
1965 /* Insert vm structure into process list sorted by address
1966  * and into the inode's i_mmap tree.  If vm_file is non-NULL
1967  * then i_mmap_lock is taken here.
1968  */
1969 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
1970 {
1971 	struct vm_area_struct * __vma, * prev;
1972 	struct rb_node ** rb_link, * rb_parent;
1973 
1974 	/*
1975 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
1976 	 * until its first write fault, when page's anon_vma and index
1977 	 * are set.  But now set the vm_pgoff it will almost certainly
1978 	 * end up with (unless mremap moves it elsewhere before that
1979 	 * first wfault), so /proc/pid/maps tells a consistent story.
1980 	 *
1981 	 * By setting it to reflect the virtual start address of the
1982 	 * vma, merges and splits can happen in a seamless way, just
1983 	 * using the existing file pgoff checks and manipulations.
1984 	 * Similarly in do_mmap_pgoff and in do_brk.
1985 	 */
1986 	if (!vma->vm_file) {
1987 		BUG_ON(vma->anon_vma);
1988 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
1989 	}
1990 	__vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent);
1991 	if (__vma && __vma->vm_start < vma->vm_end)
1992 		return -ENOMEM;
1993 	if ((vma->vm_flags & VM_ACCOUNT) &&
1994 	     security_vm_enough_memory(vma_pages(vma)))
1995 		return -ENOMEM;
1996 	vma_link(mm, vma, prev, rb_link, rb_parent);
1997 	return 0;
1998 }
1999 
2000 /*
2001  * Copy the vma structure to a new location in the same mm,
2002  * prior to moving page table entries, to effect an mremap move.
2003  */
2004 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2005 	unsigned long addr, unsigned long len, pgoff_t pgoff)
2006 {
2007 	struct vm_area_struct *vma = *vmap;
2008 	unsigned long vma_start = vma->vm_start;
2009 	struct mm_struct *mm = vma->vm_mm;
2010 	struct vm_area_struct *new_vma, *prev;
2011 	struct rb_node **rb_link, *rb_parent;
2012 	struct mempolicy *pol;
2013 
2014 	/*
2015 	 * If anonymous vma has not yet been faulted, update new pgoff
2016 	 * to match new location, to increase its chance of merging.
2017 	 */
2018 	if (!vma->vm_file && !vma->anon_vma)
2019 		pgoff = addr >> PAGE_SHIFT;
2020 
2021 	find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2022 	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2023 			vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2024 	if (new_vma) {
2025 		/*
2026 		 * Source vma may have been merged into new_vma
2027 		 */
2028 		if (vma_start >= new_vma->vm_start &&
2029 		    vma_start < new_vma->vm_end)
2030 			*vmap = new_vma;
2031 	} else {
2032 		new_vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
2033 		if (new_vma) {
2034 			*new_vma = *vma;
2035 			pol = mpol_copy(vma_policy(vma));
2036 			if (IS_ERR(pol)) {
2037 				kmem_cache_free(vm_area_cachep, new_vma);
2038 				return NULL;
2039 			}
2040 			vma_set_policy(new_vma, pol);
2041 			new_vma->vm_start = addr;
2042 			new_vma->vm_end = addr + len;
2043 			new_vma->vm_pgoff = pgoff;
2044 			if (new_vma->vm_file)
2045 				get_file(new_vma->vm_file);
2046 			if (new_vma->vm_ops && new_vma->vm_ops->open)
2047 				new_vma->vm_ops->open(new_vma);
2048 			vma_link(mm, new_vma, prev, rb_link, rb_parent);
2049 		}
2050 	}
2051 	return new_vma;
2052 }
2053 
2054 /*
2055  * Return true if the calling process may expand its vm space by the passed
2056  * number of pages
2057  */
2058 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2059 {
2060 	unsigned long cur = mm->total_vm;	/* pages */
2061 	unsigned long lim;
2062 
2063 	lim = current->signal->rlim[RLIMIT_AS].rlim_cur >> PAGE_SHIFT;
2064 
2065 	if (cur + npages > lim)
2066 		return 0;
2067 	return 1;
2068 }
2069