1 /* 2 * mm/mmap.c 3 * 4 * Written by obz. 5 * 6 * Address space accounting code <alan@redhat.com> 7 */ 8 9 #include <linux/slab.h> 10 #include <linux/mm.h> 11 #include <linux/shm.h> 12 #include <linux/mman.h> 13 #include <linux/pagemap.h> 14 #include <linux/swap.h> 15 #include <linux/syscalls.h> 16 #include <linux/capability.h> 17 #include <linux/init.h> 18 #include <linux/file.h> 19 #include <linux/fs.h> 20 #include <linux/personality.h> 21 #include <linux/security.h> 22 #include <linux/hugetlb.h> 23 #include <linux/profile.h> 24 #include <linux/module.h> 25 #include <linux/mount.h> 26 #include <linux/mempolicy.h> 27 #include <linux/rmap.h> 28 29 #include <asm/uaccess.h> 30 #include <asm/cacheflush.h> 31 #include <asm/tlb.h> 32 33 static void unmap_region(struct mm_struct *mm, 34 struct vm_area_struct *vma, struct vm_area_struct *prev, 35 unsigned long start, unsigned long end); 36 37 /* 38 * WARNING: the debugging will use recursive algorithms so never enable this 39 * unless you know what you are doing. 40 */ 41 #undef DEBUG_MM_RB 42 43 /* description of effects of mapping type and prot in current implementation. 44 * this is due to the limited x86 page protection hardware. The expected 45 * behavior is in parens: 46 * 47 * map_type prot 48 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC 49 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes 50 * w: (no) no w: (no) no w: (yes) yes w: (no) no 51 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 52 * 53 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes 54 * w: (no) no w: (no) no w: (copy) copy w: (no) no 55 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 56 * 57 */ 58 pgprot_t protection_map[16] = { 59 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111, 60 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111 61 }; 62 63 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */ 64 int sysctl_overcommit_ratio = 50; /* default is 50% */ 65 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT; 66 atomic_t vm_committed_space = ATOMIC_INIT(0); 67 68 /* 69 * Check that a process has enough memory to allocate a new virtual 70 * mapping. 0 means there is enough memory for the allocation to 71 * succeed and -ENOMEM implies there is not. 72 * 73 * We currently support three overcommit policies, which are set via the 74 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting 75 * 76 * Strict overcommit modes added 2002 Feb 26 by Alan Cox. 77 * Additional code 2002 Jul 20 by Robert Love. 78 * 79 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise. 80 * 81 * Note this is a helper function intended to be used by LSMs which 82 * wish to use this logic. 83 */ 84 int __vm_enough_memory(long pages, int cap_sys_admin) 85 { 86 unsigned long free, allowed; 87 88 vm_acct_memory(pages); 89 90 /* 91 * Sometimes we want to use more memory than we have 92 */ 93 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS) 94 return 0; 95 96 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) { 97 unsigned long n; 98 99 free = get_page_cache_size(); 100 free += nr_swap_pages; 101 102 /* 103 * Any slabs which are created with the 104 * SLAB_RECLAIM_ACCOUNT flag claim to have contents 105 * which are reclaimable, under pressure. The dentry 106 * cache and most inode caches should fall into this 107 */ 108 free += atomic_read(&slab_reclaim_pages); 109 110 /* 111 * Leave the last 3% for root 112 */ 113 if (!cap_sys_admin) 114 free -= free / 32; 115 116 if (free > pages) 117 return 0; 118 119 /* 120 * nr_free_pages() is very expensive on large systems, 121 * only call if we're about to fail. 122 */ 123 n = nr_free_pages(); 124 125 /* 126 * Leave reserved pages. The pages are not for anonymous pages. 127 */ 128 if (n <= totalreserve_pages) 129 goto error; 130 else 131 n -= totalreserve_pages; 132 133 /* 134 * Leave the last 3% for root 135 */ 136 if (!cap_sys_admin) 137 n -= n / 32; 138 free += n; 139 140 if (free > pages) 141 return 0; 142 143 goto error; 144 } 145 146 allowed = (totalram_pages - hugetlb_total_pages()) 147 * sysctl_overcommit_ratio / 100; 148 /* 149 * Leave the last 3% for root 150 */ 151 if (!cap_sys_admin) 152 allowed -= allowed / 32; 153 allowed += total_swap_pages; 154 155 /* Don't let a single process grow too big: 156 leave 3% of the size of this process for other processes */ 157 allowed -= current->mm->total_vm / 32; 158 159 /* 160 * cast `allowed' as a signed long because vm_committed_space 161 * sometimes has a negative value 162 */ 163 if (atomic_read(&vm_committed_space) < (long)allowed) 164 return 0; 165 error: 166 vm_unacct_memory(pages); 167 168 return -ENOMEM; 169 } 170 171 EXPORT_SYMBOL(__vm_enough_memory); 172 173 /* 174 * Requires inode->i_mapping->i_mmap_lock 175 */ 176 static void __remove_shared_vm_struct(struct vm_area_struct *vma, 177 struct file *file, struct address_space *mapping) 178 { 179 if (vma->vm_flags & VM_DENYWRITE) 180 atomic_inc(&file->f_dentry->d_inode->i_writecount); 181 if (vma->vm_flags & VM_SHARED) 182 mapping->i_mmap_writable--; 183 184 flush_dcache_mmap_lock(mapping); 185 if (unlikely(vma->vm_flags & VM_NONLINEAR)) 186 list_del_init(&vma->shared.vm_set.list); 187 else 188 vma_prio_tree_remove(vma, &mapping->i_mmap); 189 flush_dcache_mmap_unlock(mapping); 190 } 191 192 /* 193 * Unlink a file-based vm structure from its prio_tree, to hide 194 * vma from rmap and vmtruncate before freeing its page tables. 195 */ 196 void unlink_file_vma(struct vm_area_struct *vma) 197 { 198 struct file *file = vma->vm_file; 199 200 if (file) { 201 struct address_space *mapping = file->f_mapping; 202 spin_lock(&mapping->i_mmap_lock); 203 __remove_shared_vm_struct(vma, file, mapping); 204 spin_unlock(&mapping->i_mmap_lock); 205 } 206 } 207 208 /* 209 * Close a vm structure and free it, returning the next. 210 */ 211 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma) 212 { 213 struct vm_area_struct *next = vma->vm_next; 214 215 might_sleep(); 216 if (vma->vm_ops && vma->vm_ops->close) 217 vma->vm_ops->close(vma); 218 if (vma->vm_file) 219 fput(vma->vm_file); 220 mpol_free(vma_policy(vma)); 221 kmem_cache_free(vm_area_cachep, vma); 222 return next; 223 } 224 225 asmlinkage unsigned long sys_brk(unsigned long brk) 226 { 227 unsigned long rlim, retval; 228 unsigned long newbrk, oldbrk; 229 struct mm_struct *mm = current->mm; 230 231 down_write(&mm->mmap_sem); 232 233 if (brk < mm->end_code) 234 goto out; 235 236 /* 237 * Check against rlimit here. If this check is done later after the test 238 * of oldbrk with newbrk then it can escape the test and let the data 239 * segment grow beyond its set limit the in case where the limit is 240 * not page aligned -Ram Gupta 241 */ 242 rlim = current->signal->rlim[RLIMIT_DATA].rlim_cur; 243 if (rlim < RLIM_INFINITY && brk - mm->start_data > rlim) 244 goto out; 245 246 newbrk = PAGE_ALIGN(brk); 247 oldbrk = PAGE_ALIGN(mm->brk); 248 if (oldbrk == newbrk) 249 goto set_brk; 250 251 /* Always allow shrinking brk. */ 252 if (brk <= mm->brk) { 253 if (!do_munmap(mm, newbrk, oldbrk-newbrk)) 254 goto set_brk; 255 goto out; 256 } 257 258 /* Check against existing mmap mappings. */ 259 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE)) 260 goto out; 261 262 /* Ok, looks good - let it rip. */ 263 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk) 264 goto out; 265 set_brk: 266 mm->brk = brk; 267 out: 268 retval = mm->brk; 269 up_write(&mm->mmap_sem); 270 return retval; 271 } 272 273 #ifdef DEBUG_MM_RB 274 static int browse_rb(struct rb_root *root) 275 { 276 int i = 0, j; 277 struct rb_node *nd, *pn = NULL; 278 unsigned long prev = 0, pend = 0; 279 280 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 281 struct vm_area_struct *vma; 282 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 283 if (vma->vm_start < prev) 284 printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1; 285 if (vma->vm_start < pend) 286 printk("vm_start %lx pend %lx\n", vma->vm_start, pend); 287 if (vma->vm_start > vma->vm_end) 288 printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start); 289 i++; 290 pn = nd; 291 } 292 j = 0; 293 for (nd = pn; nd; nd = rb_prev(nd)) { 294 j++; 295 } 296 if (i != j) 297 printk("backwards %d, forwards %d\n", j, i), i = 0; 298 return i; 299 } 300 301 void validate_mm(struct mm_struct *mm) 302 { 303 int bug = 0; 304 int i = 0; 305 struct vm_area_struct *tmp = mm->mmap; 306 while (tmp) { 307 tmp = tmp->vm_next; 308 i++; 309 } 310 if (i != mm->map_count) 311 printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1; 312 i = browse_rb(&mm->mm_rb); 313 if (i != mm->map_count) 314 printk("map_count %d rb %d\n", mm->map_count, i), bug = 1; 315 BUG_ON(bug); 316 } 317 #else 318 #define validate_mm(mm) do { } while (0) 319 #endif 320 321 static struct vm_area_struct * 322 find_vma_prepare(struct mm_struct *mm, unsigned long addr, 323 struct vm_area_struct **pprev, struct rb_node ***rb_link, 324 struct rb_node ** rb_parent) 325 { 326 struct vm_area_struct * vma; 327 struct rb_node ** __rb_link, * __rb_parent, * rb_prev; 328 329 __rb_link = &mm->mm_rb.rb_node; 330 rb_prev = __rb_parent = NULL; 331 vma = NULL; 332 333 while (*__rb_link) { 334 struct vm_area_struct *vma_tmp; 335 336 __rb_parent = *__rb_link; 337 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb); 338 339 if (vma_tmp->vm_end > addr) { 340 vma = vma_tmp; 341 if (vma_tmp->vm_start <= addr) 342 return vma; 343 __rb_link = &__rb_parent->rb_left; 344 } else { 345 rb_prev = __rb_parent; 346 __rb_link = &__rb_parent->rb_right; 347 } 348 } 349 350 *pprev = NULL; 351 if (rb_prev) 352 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); 353 *rb_link = __rb_link; 354 *rb_parent = __rb_parent; 355 return vma; 356 } 357 358 static inline void 359 __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma, 360 struct vm_area_struct *prev, struct rb_node *rb_parent) 361 { 362 if (prev) { 363 vma->vm_next = prev->vm_next; 364 prev->vm_next = vma; 365 } else { 366 mm->mmap = vma; 367 if (rb_parent) 368 vma->vm_next = rb_entry(rb_parent, 369 struct vm_area_struct, vm_rb); 370 else 371 vma->vm_next = NULL; 372 } 373 } 374 375 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma, 376 struct rb_node **rb_link, struct rb_node *rb_parent) 377 { 378 rb_link_node(&vma->vm_rb, rb_parent, rb_link); 379 rb_insert_color(&vma->vm_rb, &mm->mm_rb); 380 } 381 382 static inline void __vma_link_file(struct vm_area_struct *vma) 383 { 384 struct file * file; 385 386 file = vma->vm_file; 387 if (file) { 388 struct address_space *mapping = file->f_mapping; 389 390 if (vma->vm_flags & VM_DENYWRITE) 391 atomic_dec(&file->f_dentry->d_inode->i_writecount); 392 if (vma->vm_flags & VM_SHARED) 393 mapping->i_mmap_writable++; 394 395 flush_dcache_mmap_lock(mapping); 396 if (unlikely(vma->vm_flags & VM_NONLINEAR)) 397 vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear); 398 else 399 vma_prio_tree_insert(vma, &mapping->i_mmap); 400 flush_dcache_mmap_unlock(mapping); 401 } 402 } 403 404 static void 405 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 406 struct vm_area_struct *prev, struct rb_node **rb_link, 407 struct rb_node *rb_parent) 408 { 409 __vma_link_list(mm, vma, prev, rb_parent); 410 __vma_link_rb(mm, vma, rb_link, rb_parent); 411 __anon_vma_link(vma); 412 } 413 414 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 415 struct vm_area_struct *prev, struct rb_node **rb_link, 416 struct rb_node *rb_parent) 417 { 418 struct address_space *mapping = NULL; 419 420 if (vma->vm_file) 421 mapping = vma->vm_file->f_mapping; 422 423 if (mapping) { 424 spin_lock(&mapping->i_mmap_lock); 425 vma->vm_truncate_count = mapping->truncate_count; 426 } 427 anon_vma_lock(vma); 428 429 __vma_link(mm, vma, prev, rb_link, rb_parent); 430 __vma_link_file(vma); 431 432 anon_vma_unlock(vma); 433 if (mapping) 434 spin_unlock(&mapping->i_mmap_lock); 435 436 mm->map_count++; 437 validate_mm(mm); 438 } 439 440 /* 441 * Helper for vma_adjust in the split_vma insert case: 442 * insert vm structure into list and rbtree and anon_vma, 443 * but it has already been inserted into prio_tree earlier. 444 */ 445 static void 446 __insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma) 447 { 448 struct vm_area_struct * __vma, * prev; 449 struct rb_node ** rb_link, * rb_parent; 450 451 __vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent); 452 BUG_ON(__vma && __vma->vm_start < vma->vm_end); 453 __vma_link(mm, vma, prev, rb_link, rb_parent); 454 mm->map_count++; 455 } 456 457 static inline void 458 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma, 459 struct vm_area_struct *prev) 460 { 461 prev->vm_next = vma->vm_next; 462 rb_erase(&vma->vm_rb, &mm->mm_rb); 463 if (mm->mmap_cache == vma) 464 mm->mmap_cache = prev; 465 } 466 467 /* 468 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that 469 * is already present in an i_mmap tree without adjusting the tree. 470 * The following helper function should be used when such adjustments 471 * are necessary. The "insert" vma (if any) is to be inserted 472 * before we drop the necessary locks. 473 */ 474 void vma_adjust(struct vm_area_struct *vma, unsigned long start, 475 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 476 { 477 struct mm_struct *mm = vma->vm_mm; 478 struct vm_area_struct *next = vma->vm_next; 479 struct vm_area_struct *importer = NULL; 480 struct address_space *mapping = NULL; 481 struct prio_tree_root *root = NULL; 482 struct file *file = vma->vm_file; 483 struct anon_vma *anon_vma = NULL; 484 long adjust_next = 0; 485 int remove_next = 0; 486 487 if (next && !insert) { 488 if (end >= next->vm_end) { 489 /* 490 * vma expands, overlapping all the next, and 491 * perhaps the one after too (mprotect case 6). 492 */ 493 again: remove_next = 1 + (end > next->vm_end); 494 end = next->vm_end; 495 anon_vma = next->anon_vma; 496 importer = vma; 497 } else if (end > next->vm_start) { 498 /* 499 * vma expands, overlapping part of the next: 500 * mprotect case 5 shifting the boundary up. 501 */ 502 adjust_next = (end - next->vm_start) >> PAGE_SHIFT; 503 anon_vma = next->anon_vma; 504 importer = vma; 505 } else if (end < vma->vm_end) { 506 /* 507 * vma shrinks, and !insert tells it's not 508 * split_vma inserting another: so it must be 509 * mprotect case 4 shifting the boundary down. 510 */ 511 adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT); 512 anon_vma = next->anon_vma; 513 importer = next; 514 } 515 } 516 517 if (file) { 518 mapping = file->f_mapping; 519 if (!(vma->vm_flags & VM_NONLINEAR)) 520 root = &mapping->i_mmap; 521 spin_lock(&mapping->i_mmap_lock); 522 if (importer && 523 vma->vm_truncate_count != next->vm_truncate_count) { 524 /* 525 * unmap_mapping_range might be in progress: 526 * ensure that the expanding vma is rescanned. 527 */ 528 importer->vm_truncate_count = 0; 529 } 530 if (insert) { 531 insert->vm_truncate_count = vma->vm_truncate_count; 532 /* 533 * Put into prio_tree now, so instantiated pages 534 * are visible to arm/parisc __flush_dcache_page 535 * throughout; but we cannot insert into address 536 * space until vma start or end is updated. 537 */ 538 __vma_link_file(insert); 539 } 540 } 541 542 /* 543 * When changing only vma->vm_end, we don't really need 544 * anon_vma lock: but is that case worth optimizing out? 545 */ 546 if (vma->anon_vma) 547 anon_vma = vma->anon_vma; 548 if (anon_vma) { 549 spin_lock(&anon_vma->lock); 550 /* 551 * Easily overlooked: when mprotect shifts the boundary, 552 * make sure the expanding vma has anon_vma set if the 553 * shrinking vma had, to cover any anon pages imported. 554 */ 555 if (importer && !importer->anon_vma) { 556 importer->anon_vma = anon_vma; 557 __anon_vma_link(importer); 558 } 559 } 560 561 if (root) { 562 flush_dcache_mmap_lock(mapping); 563 vma_prio_tree_remove(vma, root); 564 if (adjust_next) 565 vma_prio_tree_remove(next, root); 566 } 567 568 vma->vm_start = start; 569 vma->vm_end = end; 570 vma->vm_pgoff = pgoff; 571 if (adjust_next) { 572 next->vm_start += adjust_next << PAGE_SHIFT; 573 next->vm_pgoff += adjust_next; 574 } 575 576 if (root) { 577 if (adjust_next) 578 vma_prio_tree_insert(next, root); 579 vma_prio_tree_insert(vma, root); 580 flush_dcache_mmap_unlock(mapping); 581 } 582 583 if (remove_next) { 584 /* 585 * vma_merge has merged next into vma, and needs 586 * us to remove next before dropping the locks. 587 */ 588 __vma_unlink(mm, next, vma); 589 if (file) 590 __remove_shared_vm_struct(next, file, mapping); 591 if (next->anon_vma) 592 __anon_vma_merge(vma, next); 593 } else if (insert) { 594 /* 595 * split_vma has split insert from vma, and needs 596 * us to insert it before dropping the locks 597 * (it may either follow vma or precede it). 598 */ 599 __insert_vm_struct(mm, insert); 600 } 601 602 if (anon_vma) 603 spin_unlock(&anon_vma->lock); 604 if (mapping) 605 spin_unlock(&mapping->i_mmap_lock); 606 607 if (remove_next) { 608 if (file) 609 fput(file); 610 mm->map_count--; 611 mpol_free(vma_policy(next)); 612 kmem_cache_free(vm_area_cachep, next); 613 /* 614 * In mprotect's case 6 (see comments on vma_merge), 615 * we must remove another next too. It would clutter 616 * up the code too much to do both in one go. 617 */ 618 if (remove_next == 2) { 619 next = vma->vm_next; 620 goto again; 621 } 622 } 623 624 validate_mm(mm); 625 } 626 627 /* 628 * If the vma has a ->close operation then the driver probably needs to release 629 * per-vma resources, so we don't attempt to merge those. 630 */ 631 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP) 632 633 static inline int is_mergeable_vma(struct vm_area_struct *vma, 634 struct file *file, unsigned long vm_flags) 635 { 636 if (vma->vm_flags != vm_flags) 637 return 0; 638 if (vma->vm_file != file) 639 return 0; 640 if (vma->vm_ops && vma->vm_ops->close) 641 return 0; 642 return 1; 643 } 644 645 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1, 646 struct anon_vma *anon_vma2) 647 { 648 return !anon_vma1 || !anon_vma2 || (anon_vma1 == anon_vma2); 649 } 650 651 /* 652 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 653 * in front of (at a lower virtual address and file offset than) the vma. 654 * 655 * We cannot merge two vmas if they have differently assigned (non-NULL) 656 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 657 * 658 * We don't check here for the merged mmap wrapping around the end of pagecache 659 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which 660 * wrap, nor mmaps which cover the final page at index -1UL. 661 */ 662 static int 663 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags, 664 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff) 665 { 666 if (is_mergeable_vma(vma, file, vm_flags) && 667 is_mergeable_anon_vma(anon_vma, vma->anon_vma)) { 668 if (vma->vm_pgoff == vm_pgoff) 669 return 1; 670 } 671 return 0; 672 } 673 674 /* 675 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 676 * beyond (at a higher virtual address and file offset than) the vma. 677 * 678 * We cannot merge two vmas if they have differently assigned (non-NULL) 679 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 680 */ 681 static int 682 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags, 683 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff) 684 { 685 if (is_mergeable_vma(vma, file, vm_flags) && 686 is_mergeable_anon_vma(anon_vma, vma->anon_vma)) { 687 pgoff_t vm_pglen; 688 vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 689 if (vma->vm_pgoff + vm_pglen == vm_pgoff) 690 return 1; 691 } 692 return 0; 693 } 694 695 /* 696 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out 697 * whether that can be merged with its predecessor or its successor. 698 * Or both (it neatly fills a hole). 699 * 700 * In most cases - when called for mmap, brk or mremap - [addr,end) is 701 * certain not to be mapped by the time vma_merge is called; but when 702 * called for mprotect, it is certain to be already mapped (either at 703 * an offset within prev, or at the start of next), and the flags of 704 * this area are about to be changed to vm_flags - and the no-change 705 * case has already been eliminated. 706 * 707 * The following mprotect cases have to be considered, where AAAA is 708 * the area passed down from mprotect_fixup, never extending beyond one 709 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after: 710 * 711 * AAAA AAAA AAAA AAAA 712 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX 713 * cannot merge might become might become might become 714 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or 715 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or 716 * mremap move: PPPPNNNNNNNN 8 717 * AAAA 718 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN 719 * might become case 1 below case 2 below case 3 below 720 * 721 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX: 722 * mprotect_fixup updates vm_flags & vm_page_prot on successful return. 723 */ 724 struct vm_area_struct *vma_merge(struct mm_struct *mm, 725 struct vm_area_struct *prev, unsigned long addr, 726 unsigned long end, unsigned long vm_flags, 727 struct anon_vma *anon_vma, struct file *file, 728 pgoff_t pgoff, struct mempolicy *policy) 729 { 730 pgoff_t pglen = (end - addr) >> PAGE_SHIFT; 731 struct vm_area_struct *area, *next; 732 733 /* 734 * We later require that vma->vm_flags == vm_flags, 735 * so this tests vma->vm_flags & VM_SPECIAL, too. 736 */ 737 if (vm_flags & VM_SPECIAL) 738 return NULL; 739 740 if (prev) 741 next = prev->vm_next; 742 else 743 next = mm->mmap; 744 area = next; 745 if (next && next->vm_end == end) /* cases 6, 7, 8 */ 746 next = next->vm_next; 747 748 /* 749 * Can it merge with the predecessor? 750 */ 751 if (prev && prev->vm_end == addr && 752 mpol_equal(vma_policy(prev), policy) && 753 can_vma_merge_after(prev, vm_flags, 754 anon_vma, file, pgoff)) { 755 /* 756 * OK, it can. Can we now merge in the successor as well? 757 */ 758 if (next && end == next->vm_start && 759 mpol_equal(policy, vma_policy(next)) && 760 can_vma_merge_before(next, vm_flags, 761 anon_vma, file, pgoff+pglen) && 762 is_mergeable_anon_vma(prev->anon_vma, 763 next->anon_vma)) { 764 /* cases 1, 6 */ 765 vma_adjust(prev, prev->vm_start, 766 next->vm_end, prev->vm_pgoff, NULL); 767 } else /* cases 2, 5, 7 */ 768 vma_adjust(prev, prev->vm_start, 769 end, prev->vm_pgoff, NULL); 770 return prev; 771 } 772 773 /* 774 * Can this new request be merged in front of next? 775 */ 776 if (next && end == next->vm_start && 777 mpol_equal(policy, vma_policy(next)) && 778 can_vma_merge_before(next, vm_flags, 779 anon_vma, file, pgoff+pglen)) { 780 if (prev && addr < prev->vm_end) /* case 4 */ 781 vma_adjust(prev, prev->vm_start, 782 addr, prev->vm_pgoff, NULL); 783 else /* cases 3, 8 */ 784 vma_adjust(area, addr, next->vm_end, 785 next->vm_pgoff - pglen, NULL); 786 return area; 787 } 788 789 return NULL; 790 } 791 792 /* 793 * find_mergeable_anon_vma is used by anon_vma_prepare, to check 794 * neighbouring vmas for a suitable anon_vma, before it goes off 795 * to allocate a new anon_vma. It checks because a repetitive 796 * sequence of mprotects and faults may otherwise lead to distinct 797 * anon_vmas being allocated, preventing vma merge in subsequent 798 * mprotect. 799 */ 800 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) 801 { 802 struct vm_area_struct *near; 803 unsigned long vm_flags; 804 805 near = vma->vm_next; 806 if (!near) 807 goto try_prev; 808 809 /* 810 * Since only mprotect tries to remerge vmas, match flags 811 * which might be mprotected into each other later on. 812 * Neither mlock nor madvise tries to remerge at present, 813 * so leave their flags as obstructing a merge. 814 */ 815 vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC); 816 vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC); 817 818 if (near->anon_vma && vma->vm_end == near->vm_start && 819 mpol_equal(vma_policy(vma), vma_policy(near)) && 820 can_vma_merge_before(near, vm_flags, 821 NULL, vma->vm_file, vma->vm_pgoff + 822 ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT))) 823 return near->anon_vma; 824 try_prev: 825 /* 826 * It is potentially slow to have to call find_vma_prev here. 827 * But it's only on the first write fault on the vma, not 828 * every time, and we could devise a way to avoid it later 829 * (e.g. stash info in next's anon_vma_node when assigning 830 * an anon_vma, or when trying vma_merge). Another time. 831 */ 832 BUG_ON(find_vma_prev(vma->vm_mm, vma->vm_start, &near) != vma); 833 if (!near) 834 goto none; 835 836 vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC); 837 vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC); 838 839 if (near->anon_vma && near->vm_end == vma->vm_start && 840 mpol_equal(vma_policy(near), vma_policy(vma)) && 841 can_vma_merge_after(near, vm_flags, 842 NULL, vma->vm_file, vma->vm_pgoff)) 843 return near->anon_vma; 844 none: 845 /* 846 * There's no absolute need to look only at touching neighbours: 847 * we could search further afield for "compatible" anon_vmas. 848 * But it would probably just be a waste of time searching, 849 * or lead to too many vmas hanging off the same anon_vma. 850 * We're trying to allow mprotect remerging later on, 851 * not trying to minimize memory used for anon_vmas. 852 */ 853 return NULL; 854 } 855 856 #ifdef CONFIG_PROC_FS 857 void vm_stat_account(struct mm_struct *mm, unsigned long flags, 858 struct file *file, long pages) 859 { 860 const unsigned long stack_flags 861 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN); 862 863 if (file) { 864 mm->shared_vm += pages; 865 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC) 866 mm->exec_vm += pages; 867 } else if (flags & stack_flags) 868 mm->stack_vm += pages; 869 if (flags & (VM_RESERVED|VM_IO)) 870 mm->reserved_vm += pages; 871 } 872 #endif /* CONFIG_PROC_FS */ 873 874 /* 875 * The caller must hold down_write(current->mm->mmap_sem). 876 */ 877 878 unsigned long do_mmap_pgoff(struct file * file, unsigned long addr, 879 unsigned long len, unsigned long prot, 880 unsigned long flags, unsigned long pgoff) 881 { 882 struct mm_struct * mm = current->mm; 883 struct vm_area_struct * vma, * prev; 884 struct inode *inode; 885 unsigned int vm_flags; 886 int correct_wcount = 0; 887 int error; 888 struct rb_node ** rb_link, * rb_parent; 889 int accountable = 1; 890 unsigned long charged = 0, reqprot = prot; 891 892 if (file) { 893 if (is_file_hugepages(file)) 894 accountable = 0; 895 896 if (!file->f_op || !file->f_op->mmap) 897 return -ENODEV; 898 899 if ((prot & PROT_EXEC) && 900 (file->f_vfsmnt->mnt_flags & MNT_NOEXEC)) 901 return -EPERM; 902 } 903 /* 904 * Does the application expect PROT_READ to imply PROT_EXEC? 905 * 906 * (the exception is when the underlying filesystem is noexec 907 * mounted, in which case we dont add PROT_EXEC.) 908 */ 909 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC)) 910 if (!(file && (file->f_vfsmnt->mnt_flags & MNT_NOEXEC))) 911 prot |= PROT_EXEC; 912 913 if (!len) 914 return -EINVAL; 915 916 /* Careful about overflows.. */ 917 len = PAGE_ALIGN(len); 918 if (!len || len > TASK_SIZE) 919 return -ENOMEM; 920 921 /* offset overflow? */ 922 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff) 923 return -EOVERFLOW; 924 925 /* Too many mappings? */ 926 if (mm->map_count > sysctl_max_map_count) 927 return -ENOMEM; 928 929 /* Obtain the address to map to. we verify (or select) it and ensure 930 * that it represents a valid section of the address space. 931 */ 932 addr = get_unmapped_area(file, addr, len, pgoff, flags); 933 if (addr & ~PAGE_MASK) 934 return addr; 935 936 /* Do simple checking here so the lower-level routines won't have 937 * to. we assume access permissions have been handled by the open 938 * of the memory object, so we don't do any here. 939 */ 940 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) | 941 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 942 943 if (flags & MAP_LOCKED) { 944 if (!can_do_mlock()) 945 return -EPERM; 946 vm_flags |= VM_LOCKED; 947 } 948 /* mlock MCL_FUTURE? */ 949 if (vm_flags & VM_LOCKED) { 950 unsigned long locked, lock_limit; 951 locked = len >> PAGE_SHIFT; 952 locked += mm->locked_vm; 953 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur; 954 lock_limit >>= PAGE_SHIFT; 955 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 956 return -EAGAIN; 957 } 958 959 inode = file ? file->f_dentry->d_inode : NULL; 960 961 if (file) { 962 switch (flags & MAP_TYPE) { 963 case MAP_SHARED: 964 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE)) 965 return -EACCES; 966 967 /* 968 * Make sure we don't allow writing to an append-only 969 * file.. 970 */ 971 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE)) 972 return -EACCES; 973 974 /* 975 * Make sure there are no mandatory locks on the file. 976 */ 977 if (locks_verify_locked(inode)) 978 return -EAGAIN; 979 980 vm_flags |= VM_SHARED | VM_MAYSHARE; 981 if (!(file->f_mode & FMODE_WRITE)) 982 vm_flags &= ~(VM_MAYWRITE | VM_SHARED); 983 984 /* fall through */ 985 case MAP_PRIVATE: 986 if (!(file->f_mode & FMODE_READ)) 987 return -EACCES; 988 break; 989 990 default: 991 return -EINVAL; 992 } 993 } else { 994 switch (flags & MAP_TYPE) { 995 case MAP_SHARED: 996 vm_flags |= VM_SHARED | VM_MAYSHARE; 997 break; 998 case MAP_PRIVATE: 999 /* 1000 * Set pgoff according to addr for anon_vma. 1001 */ 1002 pgoff = addr >> PAGE_SHIFT; 1003 break; 1004 default: 1005 return -EINVAL; 1006 } 1007 } 1008 1009 error = security_file_mmap(file, reqprot, prot, flags); 1010 if (error) 1011 return error; 1012 1013 /* Clear old maps */ 1014 error = -ENOMEM; 1015 munmap_back: 1016 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent); 1017 if (vma && vma->vm_start < addr + len) { 1018 if (do_munmap(mm, addr, len)) 1019 return -ENOMEM; 1020 goto munmap_back; 1021 } 1022 1023 /* Check against address space limit. */ 1024 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) 1025 return -ENOMEM; 1026 1027 if (accountable && (!(flags & MAP_NORESERVE) || 1028 sysctl_overcommit_memory == OVERCOMMIT_NEVER)) { 1029 if (vm_flags & VM_SHARED) { 1030 /* Check memory availability in shmem_file_setup? */ 1031 vm_flags |= VM_ACCOUNT; 1032 } else if (vm_flags & VM_WRITE) { 1033 /* 1034 * Private writable mapping: check memory availability 1035 */ 1036 charged = len >> PAGE_SHIFT; 1037 if (security_vm_enough_memory(charged)) 1038 return -ENOMEM; 1039 vm_flags |= VM_ACCOUNT; 1040 } 1041 } 1042 1043 /* 1044 * Can we just expand an old private anonymous mapping? 1045 * The VM_SHARED test is necessary because shmem_zero_setup 1046 * will create the file object for a shared anonymous map below. 1047 */ 1048 if (!file && !(vm_flags & VM_SHARED) && 1049 vma_merge(mm, prev, addr, addr + len, vm_flags, 1050 NULL, NULL, pgoff, NULL)) 1051 goto out; 1052 1053 /* 1054 * Determine the object being mapped and call the appropriate 1055 * specific mapper. the address has already been validated, but 1056 * not unmapped, but the maps are removed from the list. 1057 */ 1058 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 1059 if (!vma) { 1060 error = -ENOMEM; 1061 goto unacct_error; 1062 } 1063 1064 vma->vm_mm = mm; 1065 vma->vm_start = addr; 1066 vma->vm_end = addr + len; 1067 vma->vm_flags = vm_flags; 1068 vma->vm_page_prot = protection_map[vm_flags & 0x0f]; 1069 vma->vm_pgoff = pgoff; 1070 1071 if (file) { 1072 error = -EINVAL; 1073 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1074 goto free_vma; 1075 if (vm_flags & VM_DENYWRITE) { 1076 error = deny_write_access(file); 1077 if (error) 1078 goto free_vma; 1079 correct_wcount = 1; 1080 } 1081 vma->vm_file = file; 1082 get_file(file); 1083 error = file->f_op->mmap(file, vma); 1084 if (error) 1085 goto unmap_and_free_vma; 1086 } else if (vm_flags & VM_SHARED) { 1087 error = shmem_zero_setup(vma); 1088 if (error) 1089 goto free_vma; 1090 } 1091 1092 /* We set VM_ACCOUNT in a shared mapping's vm_flags, to inform 1093 * shmem_zero_setup (perhaps called through /dev/zero's ->mmap) 1094 * that memory reservation must be checked; but that reservation 1095 * belongs to shared memory object, not to vma: so now clear it. 1096 */ 1097 if ((vm_flags & (VM_SHARED|VM_ACCOUNT)) == (VM_SHARED|VM_ACCOUNT)) 1098 vma->vm_flags &= ~VM_ACCOUNT; 1099 1100 /* Can addr have changed?? 1101 * 1102 * Answer: Yes, several device drivers can do it in their 1103 * f_op->mmap method. -DaveM 1104 */ 1105 addr = vma->vm_start; 1106 pgoff = vma->vm_pgoff; 1107 vm_flags = vma->vm_flags; 1108 1109 if (!file || !vma_merge(mm, prev, addr, vma->vm_end, 1110 vma->vm_flags, NULL, file, pgoff, vma_policy(vma))) { 1111 file = vma->vm_file; 1112 vma_link(mm, vma, prev, rb_link, rb_parent); 1113 if (correct_wcount) 1114 atomic_inc(&inode->i_writecount); 1115 } else { 1116 if (file) { 1117 if (correct_wcount) 1118 atomic_inc(&inode->i_writecount); 1119 fput(file); 1120 } 1121 mpol_free(vma_policy(vma)); 1122 kmem_cache_free(vm_area_cachep, vma); 1123 } 1124 out: 1125 mm->total_vm += len >> PAGE_SHIFT; 1126 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT); 1127 if (vm_flags & VM_LOCKED) { 1128 mm->locked_vm += len >> PAGE_SHIFT; 1129 make_pages_present(addr, addr + len); 1130 } 1131 if (flags & MAP_POPULATE) { 1132 up_write(&mm->mmap_sem); 1133 sys_remap_file_pages(addr, len, 0, 1134 pgoff, flags & MAP_NONBLOCK); 1135 down_write(&mm->mmap_sem); 1136 } 1137 return addr; 1138 1139 unmap_and_free_vma: 1140 if (correct_wcount) 1141 atomic_inc(&inode->i_writecount); 1142 vma->vm_file = NULL; 1143 fput(file); 1144 1145 /* Undo any partial mapping done by a device driver. */ 1146 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end); 1147 charged = 0; 1148 free_vma: 1149 kmem_cache_free(vm_area_cachep, vma); 1150 unacct_error: 1151 if (charged) 1152 vm_unacct_memory(charged); 1153 return error; 1154 } 1155 1156 EXPORT_SYMBOL(do_mmap_pgoff); 1157 1158 /* Get an address range which is currently unmapped. 1159 * For shmat() with addr=0. 1160 * 1161 * Ugly calling convention alert: 1162 * Return value with the low bits set means error value, 1163 * ie 1164 * if (ret & ~PAGE_MASK) 1165 * error = ret; 1166 * 1167 * This function "knows" that -ENOMEM has the bits set. 1168 */ 1169 #ifndef HAVE_ARCH_UNMAPPED_AREA 1170 unsigned long 1171 arch_get_unmapped_area(struct file *filp, unsigned long addr, 1172 unsigned long len, unsigned long pgoff, unsigned long flags) 1173 { 1174 struct mm_struct *mm = current->mm; 1175 struct vm_area_struct *vma; 1176 unsigned long start_addr; 1177 1178 if (len > TASK_SIZE) 1179 return -ENOMEM; 1180 1181 if (addr) { 1182 addr = PAGE_ALIGN(addr); 1183 vma = find_vma(mm, addr); 1184 if (TASK_SIZE - len >= addr && 1185 (!vma || addr + len <= vma->vm_start)) 1186 return addr; 1187 } 1188 if (len > mm->cached_hole_size) { 1189 start_addr = addr = mm->free_area_cache; 1190 } else { 1191 start_addr = addr = TASK_UNMAPPED_BASE; 1192 mm->cached_hole_size = 0; 1193 } 1194 1195 full_search: 1196 for (vma = find_vma(mm, addr); ; vma = vma->vm_next) { 1197 /* At this point: (!vma || addr < vma->vm_end). */ 1198 if (TASK_SIZE - len < addr) { 1199 /* 1200 * Start a new search - just in case we missed 1201 * some holes. 1202 */ 1203 if (start_addr != TASK_UNMAPPED_BASE) { 1204 addr = TASK_UNMAPPED_BASE; 1205 start_addr = addr; 1206 mm->cached_hole_size = 0; 1207 goto full_search; 1208 } 1209 return -ENOMEM; 1210 } 1211 if (!vma || addr + len <= vma->vm_start) { 1212 /* 1213 * Remember the place where we stopped the search: 1214 */ 1215 mm->free_area_cache = addr + len; 1216 return addr; 1217 } 1218 if (addr + mm->cached_hole_size < vma->vm_start) 1219 mm->cached_hole_size = vma->vm_start - addr; 1220 addr = vma->vm_end; 1221 } 1222 } 1223 #endif 1224 1225 void arch_unmap_area(struct mm_struct *mm, unsigned long addr) 1226 { 1227 /* 1228 * Is this a new hole at the lowest possible address? 1229 */ 1230 if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) { 1231 mm->free_area_cache = addr; 1232 mm->cached_hole_size = ~0UL; 1233 } 1234 } 1235 1236 /* 1237 * This mmap-allocator allocates new areas top-down from below the 1238 * stack's low limit (the base): 1239 */ 1240 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 1241 unsigned long 1242 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0, 1243 const unsigned long len, const unsigned long pgoff, 1244 const unsigned long flags) 1245 { 1246 struct vm_area_struct *vma; 1247 struct mm_struct *mm = current->mm; 1248 unsigned long addr = addr0; 1249 1250 /* requested length too big for entire address space */ 1251 if (len > TASK_SIZE) 1252 return -ENOMEM; 1253 1254 /* requesting a specific address */ 1255 if (addr) { 1256 addr = PAGE_ALIGN(addr); 1257 vma = find_vma(mm, addr); 1258 if (TASK_SIZE - len >= addr && 1259 (!vma || addr + len <= vma->vm_start)) 1260 return addr; 1261 } 1262 1263 /* check if free_area_cache is useful for us */ 1264 if (len <= mm->cached_hole_size) { 1265 mm->cached_hole_size = 0; 1266 mm->free_area_cache = mm->mmap_base; 1267 } 1268 1269 /* either no address requested or can't fit in requested address hole */ 1270 addr = mm->free_area_cache; 1271 1272 /* make sure it can fit in the remaining address space */ 1273 if (addr > len) { 1274 vma = find_vma(mm, addr-len); 1275 if (!vma || addr <= vma->vm_start) 1276 /* remember the address as a hint for next time */ 1277 return (mm->free_area_cache = addr-len); 1278 } 1279 1280 if (mm->mmap_base < len) 1281 goto bottomup; 1282 1283 addr = mm->mmap_base-len; 1284 1285 do { 1286 /* 1287 * Lookup failure means no vma is above this address, 1288 * else if new region fits below vma->vm_start, 1289 * return with success: 1290 */ 1291 vma = find_vma(mm, addr); 1292 if (!vma || addr+len <= vma->vm_start) 1293 /* remember the address as a hint for next time */ 1294 return (mm->free_area_cache = addr); 1295 1296 /* remember the largest hole we saw so far */ 1297 if (addr + mm->cached_hole_size < vma->vm_start) 1298 mm->cached_hole_size = vma->vm_start - addr; 1299 1300 /* try just below the current vma->vm_start */ 1301 addr = vma->vm_start-len; 1302 } while (len < vma->vm_start); 1303 1304 bottomup: 1305 /* 1306 * A failed mmap() very likely causes application failure, 1307 * so fall back to the bottom-up function here. This scenario 1308 * can happen with large stack limits and large mmap() 1309 * allocations. 1310 */ 1311 mm->cached_hole_size = ~0UL; 1312 mm->free_area_cache = TASK_UNMAPPED_BASE; 1313 addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags); 1314 /* 1315 * Restore the topdown base: 1316 */ 1317 mm->free_area_cache = mm->mmap_base; 1318 mm->cached_hole_size = ~0UL; 1319 1320 return addr; 1321 } 1322 #endif 1323 1324 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr) 1325 { 1326 /* 1327 * Is this a new hole at the highest possible address? 1328 */ 1329 if (addr > mm->free_area_cache) 1330 mm->free_area_cache = addr; 1331 1332 /* dont allow allocations above current base */ 1333 if (mm->free_area_cache > mm->mmap_base) 1334 mm->free_area_cache = mm->mmap_base; 1335 } 1336 1337 unsigned long 1338 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 1339 unsigned long pgoff, unsigned long flags) 1340 { 1341 unsigned long ret; 1342 1343 if (!(flags & MAP_FIXED)) { 1344 unsigned long (*get_area)(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 1345 1346 get_area = current->mm->get_unmapped_area; 1347 if (file && file->f_op && file->f_op->get_unmapped_area) 1348 get_area = file->f_op->get_unmapped_area; 1349 addr = get_area(file, addr, len, pgoff, flags); 1350 if (IS_ERR_VALUE(addr)) 1351 return addr; 1352 } 1353 1354 if (addr > TASK_SIZE - len) 1355 return -ENOMEM; 1356 if (addr & ~PAGE_MASK) 1357 return -EINVAL; 1358 if (file && is_file_hugepages(file)) { 1359 /* 1360 * Check if the given range is hugepage aligned, and 1361 * can be made suitable for hugepages. 1362 */ 1363 ret = prepare_hugepage_range(addr, len); 1364 } else { 1365 /* 1366 * Ensure that a normal request is not falling in a 1367 * reserved hugepage range. For some archs like IA-64, 1368 * there is a separate region for hugepages. 1369 */ 1370 ret = is_hugepage_only_range(current->mm, addr, len); 1371 } 1372 if (ret) 1373 return -EINVAL; 1374 return addr; 1375 } 1376 1377 EXPORT_SYMBOL(get_unmapped_area); 1378 1379 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 1380 struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr) 1381 { 1382 struct vm_area_struct *vma = NULL; 1383 1384 if (mm) { 1385 /* Check the cache first. */ 1386 /* (Cache hit rate is typically around 35%.) */ 1387 vma = mm->mmap_cache; 1388 if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) { 1389 struct rb_node * rb_node; 1390 1391 rb_node = mm->mm_rb.rb_node; 1392 vma = NULL; 1393 1394 while (rb_node) { 1395 struct vm_area_struct * vma_tmp; 1396 1397 vma_tmp = rb_entry(rb_node, 1398 struct vm_area_struct, vm_rb); 1399 1400 if (vma_tmp->vm_end > addr) { 1401 vma = vma_tmp; 1402 if (vma_tmp->vm_start <= addr) 1403 break; 1404 rb_node = rb_node->rb_left; 1405 } else 1406 rb_node = rb_node->rb_right; 1407 } 1408 if (vma) 1409 mm->mmap_cache = vma; 1410 } 1411 } 1412 return vma; 1413 } 1414 1415 EXPORT_SYMBOL(find_vma); 1416 1417 /* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */ 1418 struct vm_area_struct * 1419 find_vma_prev(struct mm_struct *mm, unsigned long addr, 1420 struct vm_area_struct **pprev) 1421 { 1422 struct vm_area_struct *vma = NULL, *prev = NULL; 1423 struct rb_node * rb_node; 1424 if (!mm) 1425 goto out; 1426 1427 /* Guard against addr being lower than the first VMA */ 1428 vma = mm->mmap; 1429 1430 /* Go through the RB tree quickly. */ 1431 rb_node = mm->mm_rb.rb_node; 1432 1433 while (rb_node) { 1434 struct vm_area_struct *vma_tmp; 1435 vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb); 1436 1437 if (addr < vma_tmp->vm_end) { 1438 rb_node = rb_node->rb_left; 1439 } else { 1440 prev = vma_tmp; 1441 if (!prev->vm_next || (addr < prev->vm_next->vm_end)) 1442 break; 1443 rb_node = rb_node->rb_right; 1444 } 1445 } 1446 1447 out: 1448 *pprev = prev; 1449 return prev ? prev->vm_next : vma; 1450 } 1451 1452 /* 1453 * Verify that the stack growth is acceptable and 1454 * update accounting. This is shared with both the 1455 * grow-up and grow-down cases. 1456 */ 1457 static int acct_stack_growth(struct vm_area_struct * vma, unsigned long size, unsigned long grow) 1458 { 1459 struct mm_struct *mm = vma->vm_mm; 1460 struct rlimit *rlim = current->signal->rlim; 1461 1462 /* address space limit tests */ 1463 if (!may_expand_vm(mm, grow)) 1464 return -ENOMEM; 1465 1466 /* Stack limit test */ 1467 if (size > rlim[RLIMIT_STACK].rlim_cur) 1468 return -ENOMEM; 1469 1470 /* mlock limit tests */ 1471 if (vma->vm_flags & VM_LOCKED) { 1472 unsigned long locked; 1473 unsigned long limit; 1474 locked = mm->locked_vm + grow; 1475 limit = rlim[RLIMIT_MEMLOCK].rlim_cur >> PAGE_SHIFT; 1476 if (locked > limit && !capable(CAP_IPC_LOCK)) 1477 return -ENOMEM; 1478 } 1479 1480 /* 1481 * Overcommit.. This must be the final test, as it will 1482 * update security statistics. 1483 */ 1484 if (security_vm_enough_memory(grow)) 1485 return -ENOMEM; 1486 1487 /* Ok, everything looks good - let it rip */ 1488 mm->total_vm += grow; 1489 if (vma->vm_flags & VM_LOCKED) 1490 mm->locked_vm += grow; 1491 vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow); 1492 return 0; 1493 } 1494 1495 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64) 1496 /* 1497 * PA-RISC uses this for its stack; IA64 for its Register Backing Store. 1498 * vma is the last one with address > vma->vm_end. Have to extend vma. 1499 */ 1500 #ifndef CONFIG_IA64 1501 static inline 1502 #endif 1503 int expand_upwards(struct vm_area_struct *vma, unsigned long address) 1504 { 1505 int error; 1506 1507 if (!(vma->vm_flags & VM_GROWSUP)) 1508 return -EFAULT; 1509 1510 /* 1511 * We must make sure the anon_vma is allocated 1512 * so that the anon_vma locking is not a noop. 1513 */ 1514 if (unlikely(anon_vma_prepare(vma))) 1515 return -ENOMEM; 1516 anon_vma_lock(vma); 1517 1518 /* 1519 * vma->vm_start/vm_end cannot change under us because the caller 1520 * is required to hold the mmap_sem in read mode. We need the 1521 * anon_vma lock to serialize against concurrent expand_stacks. 1522 */ 1523 address += 4 + PAGE_SIZE - 1; 1524 address &= PAGE_MASK; 1525 error = 0; 1526 1527 /* Somebody else might have raced and expanded it already */ 1528 if (address > vma->vm_end) { 1529 unsigned long size, grow; 1530 1531 size = address - vma->vm_start; 1532 grow = (address - vma->vm_end) >> PAGE_SHIFT; 1533 1534 error = acct_stack_growth(vma, size, grow); 1535 if (!error) 1536 vma->vm_end = address; 1537 } 1538 anon_vma_unlock(vma); 1539 return error; 1540 } 1541 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */ 1542 1543 #ifdef CONFIG_STACK_GROWSUP 1544 int expand_stack(struct vm_area_struct *vma, unsigned long address) 1545 { 1546 return expand_upwards(vma, address); 1547 } 1548 1549 struct vm_area_struct * 1550 find_extend_vma(struct mm_struct *mm, unsigned long addr) 1551 { 1552 struct vm_area_struct *vma, *prev; 1553 1554 addr &= PAGE_MASK; 1555 vma = find_vma_prev(mm, addr, &prev); 1556 if (vma && (vma->vm_start <= addr)) 1557 return vma; 1558 if (!prev || expand_stack(prev, addr)) 1559 return NULL; 1560 if (prev->vm_flags & VM_LOCKED) { 1561 make_pages_present(addr, prev->vm_end); 1562 } 1563 return prev; 1564 } 1565 #else 1566 /* 1567 * vma is the first one with address < vma->vm_start. Have to extend vma. 1568 */ 1569 int expand_stack(struct vm_area_struct *vma, unsigned long address) 1570 { 1571 int error; 1572 1573 /* 1574 * We must make sure the anon_vma is allocated 1575 * so that the anon_vma locking is not a noop. 1576 */ 1577 if (unlikely(anon_vma_prepare(vma))) 1578 return -ENOMEM; 1579 anon_vma_lock(vma); 1580 1581 /* 1582 * vma->vm_start/vm_end cannot change under us because the caller 1583 * is required to hold the mmap_sem in read mode. We need the 1584 * anon_vma lock to serialize against concurrent expand_stacks. 1585 */ 1586 address &= PAGE_MASK; 1587 error = 0; 1588 1589 /* Somebody else might have raced and expanded it already */ 1590 if (address < vma->vm_start) { 1591 unsigned long size, grow; 1592 1593 size = vma->vm_end - address; 1594 grow = (vma->vm_start - address) >> PAGE_SHIFT; 1595 1596 error = acct_stack_growth(vma, size, grow); 1597 if (!error) { 1598 vma->vm_start = address; 1599 vma->vm_pgoff -= grow; 1600 } 1601 } 1602 anon_vma_unlock(vma); 1603 return error; 1604 } 1605 1606 struct vm_area_struct * 1607 find_extend_vma(struct mm_struct * mm, unsigned long addr) 1608 { 1609 struct vm_area_struct * vma; 1610 unsigned long start; 1611 1612 addr &= PAGE_MASK; 1613 vma = find_vma(mm,addr); 1614 if (!vma) 1615 return NULL; 1616 if (vma->vm_start <= addr) 1617 return vma; 1618 if (!(vma->vm_flags & VM_GROWSDOWN)) 1619 return NULL; 1620 start = vma->vm_start; 1621 if (expand_stack(vma, addr)) 1622 return NULL; 1623 if (vma->vm_flags & VM_LOCKED) { 1624 make_pages_present(addr, start); 1625 } 1626 return vma; 1627 } 1628 #endif 1629 1630 /* 1631 * Ok - we have the memory areas we should free on the vma list, 1632 * so release them, and do the vma updates. 1633 * 1634 * Called with the mm semaphore held. 1635 */ 1636 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma) 1637 { 1638 /* Update high watermark before we lower total_vm */ 1639 update_hiwater_vm(mm); 1640 do { 1641 long nrpages = vma_pages(vma); 1642 1643 mm->total_vm -= nrpages; 1644 if (vma->vm_flags & VM_LOCKED) 1645 mm->locked_vm -= nrpages; 1646 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages); 1647 vma = remove_vma(vma); 1648 } while (vma); 1649 validate_mm(mm); 1650 } 1651 1652 /* 1653 * Get rid of page table information in the indicated region. 1654 * 1655 * Called with the mm semaphore held. 1656 */ 1657 static void unmap_region(struct mm_struct *mm, 1658 struct vm_area_struct *vma, struct vm_area_struct *prev, 1659 unsigned long start, unsigned long end) 1660 { 1661 struct vm_area_struct *next = prev? prev->vm_next: mm->mmap; 1662 struct mmu_gather *tlb; 1663 unsigned long nr_accounted = 0; 1664 1665 lru_add_drain(); 1666 tlb = tlb_gather_mmu(mm, 0); 1667 update_hiwater_rss(mm); 1668 unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL); 1669 vm_unacct_memory(nr_accounted); 1670 free_pgtables(&tlb, vma, prev? prev->vm_end: FIRST_USER_ADDRESS, 1671 next? next->vm_start: 0); 1672 tlb_finish_mmu(tlb, start, end); 1673 } 1674 1675 /* 1676 * Create a list of vma's touched by the unmap, removing them from the mm's 1677 * vma list as we go.. 1678 */ 1679 static void 1680 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma, 1681 struct vm_area_struct *prev, unsigned long end) 1682 { 1683 struct vm_area_struct **insertion_point; 1684 struct vm_area_struct *tail_vma = NULL; 1685 unsigned long addr; 1686 1687 insertion_point = (prev ? &prev->vm_next : &mm->mmap); 1688 do { 1689 rb_erase(&vma->vm_rb, &mm->mm_rb); 1690 mm->map_count--; 1691 tail_vma = vma; 1692 vma = vma->vm_next; 1693 } while (vma && vma->vm_start < end); 1694 *insertion_point = vma; 1695 tail_vma->vm_next = NULL; 1696 if (mm->unmap_area == arch_unmap_area) 1697 addr = prev ? prev->vm_end : mm->mmap_base; 1698 else 1699 addr = vma ? vma->vm_start : mm->mmap_base; 1700 mm->unmap_area(mm, addr); 1701 mm->mmap_cache = NULL; /* Kill the cache. */ 1702 } 1703 1704 /* 1705 * Split a vma into two pieces at address 'addr', a new vma is allocated 1706 * either for the first part or the the tail. 1707 */ 1708 int split_vma(struct mm_struct * mm, struct vm_area_struct * vma, 1709 unsigned long addr, int new_below) 1710 { 1711 struct mempolicy *pol; 1712 struct vm_area_struct *new; 1713 1714 if (is_vm_hugetlb_page(vma) && (addr & ~HPAGE_MASK)) 1715 return -EINVAL; 1716 1717 if (mm->map_count >= sysctl_max_map_count) 1718 return -ENOMEM; 1719 1720 new = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL); 1721 if (!new) 1722 return -ENOMEM; 1723 1724 /* most fields are the same, copy all, and then fixup */ 1725 *new = *vma; 1726 1727 if (new_below) 1728 new->vm_end = addr; 1729 else { 1730 new->vm_start = addr; 1731 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); 1732 } 1733 1734 pol = mpol_copy(vma_policy(vma)); 1735 if (IS_ERR(pol)) { 1736 kmem_cache_free(vm_area_cachep, new); 1737 return PTR_ERR(pol); 1738 } 1739 vma_set_policy(new, pol); 1740 1741 if (new->vm_file) 1742 get_file(new->vm_file); 1743 1744 if (new->vm_ops && new->vm_ops->open) 1745 new->vm_ops->open(new); 1746 1747 if (new_below) 1748 vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff + 1749 ((addr - new->vm_start) >> PAGE_SHIFT), new); 1750 else 1751 vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new); 1752 1753 return 0; 1754 } 1755 1756 /* Munmap is split into 2 main parts -- this part which finds 1757 * what needs doing, and the areas themselves, which do the 1758 * work. This now handles partial unmappings. 1759 * Jeremy Fitzhardinge <jeremy@goop.org> 1760 */ 1761 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len) 1762 { 1763 unsigned long end; 1764 struct vm_area_struct *vma, *prev, *last; 1765 1766 if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start) 1767 return -EINVAL; 1768 1769 if ((len = PAGE_ALIGN(len)) == 0) 1770 return -EINVAL; 1771 1772 /* Find the first overlapping VMA */ 1773 vma = find_vma_prev(mm, start, &prev); 1774 if (!vma) 1775 return 0; 1776 /* we have start < vma->vm_end */ 1777 1778 /* if it doesn't overlap, we have nothing.. */ 1779 end = start + len; 1780 if (vma->vm_start >= end) 1781 return 0; 1782 1783 /* 1784 * If we need to split any vma, do it now to save pain later. 1785 * 1786 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially 1787 * unmapped vm_area_struct will remain in use: so lower split_vma 1788 * places tmp vma above, and higher split_vma places tmp vma below. 1789 */ 1790 if (start > vma->vm_start) { 1791 int error = split_vma(mm, vma, start, 0); 1792 if (error) 1793 return error; 1794 prev = vma; 1795 } 1796 1797 /* Does it split the last one? */ 1798 last = find_vma(mm, end); 1799 if (last && end > last->vm_start) { 1800 int error = split_vma(mm, last, end, 1); 1801 if (error) 1802 return error; 1803 } 1804 vma = prev? prev->vm_next: mm->mmap; 1805 1806 /* 1807 * Remove the vma's, and unmap the actual pages 1808 */ 1809 detach_vmas_to_be_unmapped(mm, vma, prev, end); 1810 unmap_region(mm, vma, prev, start, end); 1811 1812 /* Fix up all other VM information */ 1813 remove_vma_list(mm, vma); 1814 1815 return 0; 1816 } 1817 1818 EXPORT_SYMBOL(do_munmap); 1819 1820 asmlinkage long sys_munmap(unsigned long addr, size_t len) 1821 { 1822 int ret; 1823 struct mm_struct *mm = current->mm; 1824 1825 profile_munmap(addr); 1826 1827 down_write(&mm->mmap_sem); 1828 ret = do_munmap(mm, addr, len); 1829 up_write(&mm->mmap_sem); 1830 return ret; 1831 } 1832 1833 static inline void verify_mm_writelocked(struct mm_struct *mm) 1834 { 1835 #ifdef CONFIG_DEBUG_VM 1836 if (unlikely(down_read_trylock(&mm->mmap_sem))) { 1837 WARN_ON(1); 1838 up_read(&mm->mmap_sem); 1839 } 1840 #endif 1841 } 1842 1843 /* 1844 * this is really a simplified "do_mmap". it only handles 1845 * anonymous maps. eventually we may be able to do some 1846 * brk-specific accounting here. 1847 */ 1848 unsigned long do_brk(unsigned long addr, unsigned long len) 1849 { 1850 struct mm_struct * mm = current->mm; 1851 struct vm_area_struct * vma, * prev; 1852 unsigned long flags; 1853 struct rb_node ** rb_link, * rb_parent; 1854 pgoff_t pgoff = addr >> PAGE_SHIFT; 1855 1856 len = PAGE_ALIGN(len); 1857 if (!len) 1858 return addr; 1859 1860 if ((addr + len) > TASK_SIZE || (addr + len) < addr) 1861 return -EINVAL; 1862 1863 /* 1864 * mlock MCL_FUTURE? 1865 */ 1866 if (mm->def_flags & VM_LOCKED) { 1867 unsigned long locked, lock_limit; 1868 locked = len >> PAGE_SHIFT; 1869 locked += mm->locked_vm; 1870 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur; 1871 lock_limit >>= PAGE_SHIFT; 1872 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 1873 return -EAGAIN; 1874 } 1875 1876 /* 1877 * mm->mmap_sem is required to protect against another thread 1878 * changing the mappings in case we sleep. 1879 */ 1880 verify_mm_writelocked(mm); 1881 1882 /* 1883 * Clear old maps. this also does some error checking for us 1884 */ 1885 munmap_back: 1886 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent); 1887 if (vma && vma->vm_start < addr + len) { 1888 if (do_munmap(mm, addr, len)) 1889 return -ENOMEM; 1890 goto munmap_back; 1891 } 1892 1893 /* Check against address space limits *after* clearing old maps... */ 1894 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) 1895 return -ENOMEM; 1896 1897 if (mm->map_count > sysctl_max_map_count) 1898 return -ENOMEM; 1899 1900 if (security_vm_enough_memory(len >> PAGE_SHIFT)) 1901 return -ENOMEM; 1902 1903 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; 1904 1905 /* Can we just expand an old private anonymous mapping? */ 1906 if (vma_merge(mm, prev, addr, addr + len, flags, 1907 NULL, NULL, pgoff, NULL)) 1908 goto out; 1909 1910 /* 1911 * create a vma struct for an anonymous mapping 1912 */ 1913 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 1914 if (!vma) { 1915 vm_unacct_memory(len >> PAGE_SHIFT); 1916 return -ENOMEM; 1917 } 1918 1919 vma->vm_mm = mm; 1920 vma->vm_start = addr; 1921 vma->vm_end = addr + len; 1922 vma->vm_pgoff = pgoff; 1923 vma->vm_flags = flags; 1924 vma->vm_page_prot = protection_map[flags & 0x0f]; 1925 vma_link(mm, vma, prev, rb_link, rb_parent); 1926 out: 1927 mm->total_vm += len >> PAGE_SHIFT; 1928 if (flags & VM_LOCKED) { 1929 mm->locked_vm += len >> PAGE_SHIFT; 1930 make_pages_present(addr, addr + len); 1931 } 1932 return addr; 1933 } 1934 1935 EXPORT_SYMBOL(do_brk); 1936 1937 /* Release all mmaps. */ 1938 void exit_mmap(struct mm_struct *mm) 1939 { 1940 struct mmu_gather *tlb; 1941 struct vm_area_struct *vma = mm->mmap; 1942 unsigned long nr_accounted = 0; 1943 unsigned long end; 1944 1945 lru_add_drain(); 1946 flush_cache_mm(mm); 1947 tlb = tlb_gather_mmu(mm, 1); 1948 /* Don't update_hiwater_rss(mm) here, do_exit already did */ 1949 /* Use -1 here to ensure all VMAs in the mm are unmapped */ 1950 end = unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL); 1951 vm_unacct_memory(nr_accounted); 1952 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, 0); 1953 tlb_finish_mmu(tlb, 0, end); 1954 1955 /* 1956 * Walk the list again, actually closing and freeing it, 1957 * with preemption enabled, without holding any MM locks. 1958 */ 1959 while (vma) 1960 vma = remove_vma(vma); 1961 1962 BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT); 1963 } 1964 1965 /* Insert vm structure into process list sorted by address 1966 * and into the inode's i_mmap tree. If vm_file is non-NULL 1967 * then i_mmap_lock is taken here. 1968 */ 1969 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma) 1970 { 1971 struct vm_area_struct * __vma, * prev; 1972 struct rb_node ** rb_link, * rb_parent; 1973 1974 /* 1975 * The vm_pgoff of a purely anonymous vma should be irrelevant 1976 * until its first write fault, when page's anon_vma and index 1977 * are set. But now set the vm_pgoff it will almost certainly 1978 * end up with (unless mremap moves it elsewhere before that 1979 * first wfault), so /proc/pid/maps tells a consistent story. 1980 * 1981 * By setting it to reflect the virtual start address of the 1982 * vma, merges and splits can happen in a seamless way, just 1983 * using the existing file pgoff checks and manipulations. 1984 * Similarly in do_mmap_pgoff and in do_brk. 1985 */ 1986 if (!vma->vm_file) { 1987 BUG_ON(vma->anon_vma); 1988 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; 1989 } 1990 __vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent); 1991 if (__vma && __vma->vm_start < vma->vm_end) 1992 return -ENOMEM; 1993 if ((vma->vm_flags & VM_ACCOUNT) && 1994 security_vm_enough_memory(vma_pages(vma))) 1995 return -ENOMEM; 1996 vma_link(mm, vma, prev, rb_link, rb_parent); 1997 return 0; 1998 } 1999 2000 /* 2001 * Copy the vma structure to a new location in the same mm, 2002 * prior to moving page table entries, to effect an mremap move. 2003 */ 2004 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 2005 unsigned long addr, unsigned long len, pgoff_t pgoff) 2006 { 2007 struct vm_area_struct *vma = *vmap; 2008 unsigned long vma_start = vma->vm_start; 2009 struct mm_struct *mm = vma->vm_mm; 2010 struct vm_area_struct *new_vma, *prev; 2011 struct rb_node **rb_link, *rb_parent; 2012 struct mempolicy *pol; 2013 2014 /* 2015 * If anonymous vma has not yet been faulted, update new pgoff 2016 * to match new location, to increase its chance of merging. 2017 */ 2018 if (!vma->vm_file && !vma->anon_vma) 2019 pgoff = addr >> PAGE_SHIFT; 2020 2021 find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent); 2022 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags, 2023 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma)); 2024 if (new_vma) { 2025 /* 2026 * Source vma may have been merged into new_vma 2027 */ 2028 if (vma_start >= new_vma->vm_start && 2029 vma_start < new_vma->vm_end) 2030 *vmap = new_vma; 2031 } else { 2032 new_vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL); 2033 if (new_vma) { 2034 *new_vma = *vma; 2035 pol = mpol_copy(vma_policy(vma)); 2036 if (IS_ERR(pol)) { 2037 kmem_cache_free(vm_area_cachep, new_vma); 2038 return NULL; 2039 } 2040 vma_set_policy(new_vma, pol); 2041 new_vma->vm_start = addr; 2042 new_vma->vm_end = addr + len; 2043 new_vma->vm_pgoff = pgoff; 2044 if (new_vma->vm_file) 2045 get_file(new_vma->vm_file); 2046 if (new_vma->vm_ops && new_vma->vm_ops->open) 2047 new_vma->vm_ops->open(new_vma); 2048 vma_link(mm, new_vma, prev, rb_link, rb_parent); 2049 } 2050 } 2051 return new_vma; 2052 } 2053 2054 /* 2055 * Return true if the calling process may expand its vm space by the passed 2056 * number of pages 2057 */ 2058 int may_expand_vm(struct mm_struct *mm, unsigned long npages) 2059 { 2060 unsigned long cur = mm->total_vm; /* pages */ 2061 unsigned long lim; 2062 2063 lim = current->signal->rlim[RLIMIT_AS].rlim_cur >> PAGE_SHIFT; 2064 2065 if (cur + npages > lim) 2066 return 0; 2067 return 1; 2068 } 2069