xref: /linux/mm/mmap.c (revision cb07c9a1864a8eac9f3123e428100d5b2a16e65a)
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code	<alan@redhat.com>
7  */
8 
9 #include <linux/slab.h>
10 #include <linux/mm.h>
11 #include <linux/shm.h>
12 #include <linux/mman.h>
13 #include <linux/pagemap.h>
14 #include <linux/swap.h>
15 #include <linux/syscalls.h>
16 #include <linux/capability.h>
17 #include <linux/init.h>
18 #include <linux/file.h>
19 #include <linux/fs.h>
20 #include <linux/personality.h>
21 #include <linux/security.h>
22 #include <linux/hugetlb.h>
23 #include <linux/profile.h>
24 #include <linux/module.h>
25 #include <linux/mount.h>
26 #include <linux/mempolicy.h>
27 #include <linux/rmap.h>
28 
29 #include <asm/uaccess.h>
30 #include <asm/cacheflush.h>
31 #include <asm/tlb.h>
32 
33 #ifndef arch_mmap_check
34 #define arch_mmap_check(addr, len, flags)	(0)
35 #endif
36 
37 static void unmap_region(struct mm_struct *mm,
38 		struct vm_area_struct *vma, struct vm_area_struct *prev,
39 		unsigned long start, unsigned long end);
40 
41 /*
42  * WARNING: the debugging will use recursive algorithms so never enable this
43  * unless you know what you are doing.
44  */
45 #undef DEBUG_MM_RB
46 
47 /* description of effects of mapping type and prot in current implementation.
48  * this is due to the limited x86 page protection hardware.  The expected
49  * behavior is in parens:
50  *
51  * map_type	prot
52  *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
53  * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
54  *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
55  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
56  *
57  * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
58  *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
59  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
60  *
61  */
62 pgprot_t protection_map[16] = {
63 	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
64 	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
65 };
66 
67 pgprot_t vm_get_page_prot(unsigned long vm_flags)
68 {
69 	return protection_map[vm_flags &
70 				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)];
71 }
72 EXPORT_SYMBOL(vm_get_page_prot);
73 
74 int sysctl_overcommit_memory = OVERCOMMIT_GUESS;  /* heuristic overcommit */
75 int sysctl_overcommit_ratio = 50;	/* default is 50% */
76 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
77 atomic_t vm_committed_space = ATOMIC_INIT(0);
78 
79 /*
80  * Check that a process has enough memory to allocate a new virtual
81  * mapping. 0 means there is enough memory for the allocation to
82  * succeed and -ENOMEM implies there is not.
83  *
84  * We currently support three overcommit policies, which are set via the
85  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
86  *
87  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
88  * Additional code 2002 Jul 20 by Robert Love.
89  *
90  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
91  *
92  * Note this is a helper function intended to be used by LSMs which
93  * wish to use this logic.
94  */
95 int __vm_enough_memory(long pages, int cap_sys_admin)
96 {
97 	unsigned long free, allowed;
98 
99 	vm_acct_memory(pages);
100 
101 	/*
102 	 * Sometimes we want to use more memory than we have
103 	 */
104 	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
105 		return 0;
106 
107 	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
108 		unsigned long n;
109 
110 		free = global_page_state(NR_FILE_PAGES);
111 		free += nr_swap_pages;
112 
113 		/*
114 		 * Any slabs which are created with the
115 		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
116 		 * which are reclaimable, under pressure.  The dentry
117 		 * cache and most inode caches should fall into this
118 		 */
119 		free += global_page_state(NR_SLAB_RECLAIMABLE);
120 
121 		/*
122 		 * Leave the last 3% for root
123 		 */
124 		if (!cap_sys_admin)
125 			free -= free / 32;
126 
127 		if (free > pages)
128 			return 0;
129 
130 		/*
131 		 * nr_free_pages() is very expensive on large systems,
132 		 * only call if we're about to fail.
133 		 */
134 		n = nr_free_pages();
135 
136 		/*
137 		 * Leave reserved pages. The pages are not for anonymous pages.
138 		 */
139 		if (n <= totalreserve_pages)
140 			goto error;
141 		else
142 			n -= totalreserve_pages;
143 
144 		/*
145 		 * Leave the last 3% for root
146 		 */
147 		if (!cap_sys_admin)
148 			n -= n / 32;
149 		free += n;
150 
151 		if (free > pages)
152 			return 0;
153 
154 		goto error;
155 	}
156 
157 	allowed = (totalram_pages - hugetlb_total_pages())
158 	       	* sysctl_overcommit_ratio / 100;
159 	/*
160 	 * Leave the last 3% for root
161 	 */
162 	if (!cap_sys_admin)
163 		allowed -= allowed / 32;
164 	allowed += total_swap_pages;
165 
166 	/* Don't let a single process grow too big:
167 	   leave 3% of the size of this process for other processes */
168 	allowed -= current->mm->total_vm / 32;
169 
170 	/*
171 	 * cast `allowed' as a signed long because vm_committed_space
172 	 * sometimes has a negative value
173 	 */
174 	if (atomic_read(&vm_committed_space) < (long)allowed)
175 		return 0;
176 error:
177 	vm_unacct_memory(pages);
178 
179 	return -ENOMEM;
180 }
181 
182 EXPORT_SYMBOL(__vm_enough_memory);
183 
184 /*
185  * Requires inode->i_mapping->i_mmap_lock
186  */
187 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
188 		struct file *file, struct address_space *mapping)
189 {
190 	if (vma->vm_flags & VM_DENYWRITE)
191 		atomic_inc(&file->f_dentry->d_inode->i_writecount);
192 	if (vma->vm_flags & VM_SHARED)
193 		mapping->i_mmap_writable--;
194 
195 	flush_dcache_mmap_lock(mapping);
196 	if (unlikely(vma->vm_flags & VM_NONLINEAR))
197 		list_del_init(&vma->shared.vm_set.list);
198 	else
199 		vma_prio_tree_remove(vma, &mapping->i_mmap);
200 	flush_dcache_mmap_unlock(mapping);
201 }
202 
203 /*
204  * Unlink a file-based vm structure from its prio_tree, to hide
205  * vma from rmap and vmtruncate before freeing its page tables.
206  */
207 void unlink_file_vma(struct vm_area_struct *vma)
208 {
209 	struct file *file = vma->vm_file;
210 
211 	if (file) {
212 		struct address_space *mapping = file->f_mapping;
213 		spin_lock(&mapping->i_mmap_lock);
214 		__remove_shared_vm_struct(vma, file, mapping);
215 		spin_unlock(&mapping->i_mmap_lock);
216 	}
217 }
218 
219 /*
220  * Close a vm structure and free it, returning the next.
221  */
222 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
223 {
224 	struct vm_area_struct *next = vma->vm_next;
225 
226 	might_sleep();
227 	if (vma->vm_ops && vma->vm_ops->close)
228 		vma->vm_ops->close(vma);
229 	if (vma->vm_file)
230 		fput(vma->vm_file);
231 	mpol_free(vma_policy(vma));
232 	kmem_cache_free(vm_area_cachep, vma);
233 	return next;
234 }
235 
236 asmlinkage unsigned long sys_brk(unsigned long brk)
237 {
238 	unsigned long rlim, retval;
239 	unsigned long newbrk, oldbrk;
240 	struct mm_struct *mm = current->mm;
241 
242 	down_write(&mm->mmap_sem);
243 
244 	if (brk < mm->end_code)
245 		goto out;
246 
247 	/*
248 	 * Check against rlimit here. If this check is done later after the test
249 	 * of oldbrk with newbrk then it can escape the test and let the data
250 	 * segment grow beyond its set limit the in case where the limit is
251 	 * not page aligned -Ram Gupta
252 	 */
253 	rlim = current->signal->rlim[RLIMIT_DATA].rlim_cur;
254 	if (rlim < RLIM_INFINITY && brk - mm->start_data > rlim)
255 		goto out;
256 
257 	newbrk = PAGE_ALIGN(brk);
258 	oldbrk = PAGE_ALIGN(mm->brk);
259 	if (oldbrk == newbrk)
260 		goto set_brk;
261 
262 	/* Always allow shrinking brk. */
263 	if (brk <= mm->brk) {
264 		if (!do_munmap(mm, newbrk, oldbrk-newbrk))
265 			goto set_brk;
266 		goto out;
267 	}
268 
269 	/* Check against existing mmap mappings. */
270 	if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
271 		goto out;
272 
273 	/* Ok, looks good - let it rip. */
274 	if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
275 		goto out;
276 set_brk:
277 	mm->brk = brk;
278 out:
279 	retval = mm->brk;
280 	up_write(&mm->mmap_sem);
281 	return retval;
282 }
283 
284 #ifdef DEBUG_MM_RB
285 static int browse_rb(struct rb_root *root)
286 {
287 	int i = 0, j;
288 	struct rb_node *nd, *pn = NULL;
289 	unsigned long prev = 0, pend = 0;
290 
291 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
292 		struct vm_area_struct *vma;
293 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
294 		if (vma->vm_start < prev)
295 			printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
296 		if (vma->vm_start < pend)
297 			printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
298 		if (vma->vm_start > vma->vm_end)
299 			printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
300 		i++;
301 		pn = nd;
302 	}
303 	j = 0;
304 	for (nd = pn; nd; nd = rb_prev(nd)) {
305 		j++;
306 	}
307 	if (i != j)
308 		printk("backwards %d, forwards %d\n", j, i), i = 0;
309 	return i;
310 }
311 
312 void validate_mm(struct mm_struct *mm)
313 {
314 	int bug = 0;
315 	int i = 0;
316 	struct vm_area_struct *tmp = mm->mmap;
317 	while (tmp) {
318 		tmp = tmp->vm_next;
319 		i++;
320 	}
321 	if (i != mm->map_count)
322 		printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
323 	i = browse_rb(&mm->mm_rb);
324 	if (i != mm->map_count)
325 		printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
326 	BUG_ON(bug);
327 }
328 #else
329 #define validate_mm(mm) do { } while (0)
330 #endif
331 
332 static struct vm_area_struct *
333 find_vma_prepare(struct mm_struct *mm, unsigned long addr,
334 		struct vm_area_struct **pprev, struct rb_node ***rb_link,
335 		struct rb_node ** rb_parent)
336 {
337 	struct vm_area_struct * vma;
338 	struct rb_node ** __rb_link, * __rb_parent, * rb_prev;
339 
340 	__rb_link = &mm->mm_rb.rb_node;
341 	rb_prev = __rb_parent = NULL;
342 	vma = NULL;
343 
344 	while (*__rb_link) {
345 		struct vm_area_struct *vma_tmp;
346 
347 		__rb_parent = *__rb_link;
348 		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
349 
350 		if (vma_tmp->vm_end > addr) {
351 			vma = vma_tmp;
352 			if (vma_tmp->vm_start <= addr)
353 				return vma;
354 			__rb_link = &__rb_parent->rb_left;
355 		} else {
356 			rb_prev = __rb_parent;
357 			__rb_link = &__rb_parent->rb_right;
358 		}
359 	}
360 
361 	*pprev = NULL;
362 	if (rb_prev)
363 		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
364 	*rb_link = __rb_link;
365 	*rb_parent = __rb_parent;
366 	return vma;
367 }
368 
369 static inline void
370 __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
371 		struct vm_area_struct *prev, struct rb_node *rb_parent)
372 {
373 	if (prev) {
374 		vma->vm_next = prev->vm_next;
375 		prev->vm_next = vma;
376 	} else {
377 		mm->mmap = vma;
378 		if (rb_parent)
379 			vma->vm_next = rb_entry(rb_parent,
380 					struct vm_area_struct, vm_rb);
381 		else
382 			vma->vm_next = NULL;
383 	}
384 }
385 
386 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
387 		struct rb_node **rb_link, struct rb_node *rb_parent)
388 {
389 	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
390 	rb_insert_color(&vma->vm_rb, &mm->mm_rb);
391 }
392 
393 static inline void __vma_link_file(struct vm_area_struct *vma)
394 {
395 	struct file * file;
396 
397 	file = vma->vm_file;
398 	if (file) {
399 		struct address_space *mapping = file->f_mapping;
400 
401 		if (vma->vm_flags & VM_DENYWRITE)
402 			atomic_dec(&file->f_dentry->d_inode->i_writecount);
403 		if (vma->vm_flags & VM_SHARED)
404 			mapping->i_mmap_writable++;
405 
406 		flush_dcache_mmap_lock(mapping);
407 		if (unlikely(vma->vm_flags & VM_NONLINEAR))
408 			vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
409 		else
410 			vma_prio_tree_insert(vma, &mapping->i_mmap);
411 		flush_dcache_mmap_unlock(mapping);
412 	}
413 }
414 
415 static void
416 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
417 	struct vm_area_struct *prev, struct rb_node **rb_link,
418 	struct rb_node *rb_parent)
419 {
420 	__vma_link_list(mm, vma, prev, rb_parent);
421 	__vma_link_rb(mm, vma, rb_link, rb_parent);
422 	__anon_vma_link(vma);
423 }
424 
425 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
426 			struct vm_area_struct *prev, struct rb_node **rb_link,
427 			struct rb_node *rb_parent)
428 {
429 	struct address_space *mapping = NULL;
430 
431 	if (vma->vm_file)
432 		mapping = vma->vm_file->f_mapping;
433 
434 	if (mapping) {
435 		spin_lock(&mapping->i_mmap_lock);
436 		vma->vm_truncate_count = mapping->truncate_count;
437 	}
438 	anon_vma_lock(vma);
439 
440 	__vma_link(mm, vma, prev, rb_link, rb_parent);
441 	__vma_link_file(vma);
442 
443 	anon_vma_unlock(vma);
444 	if (mapping)
445 		spin_unlock(&mapping->i_mmap_lock);
446 
447 	mm->map_count++;
448 	validate_mm(mm);
449 }
450 
451 /*
452  * Helper for vma_adjust in the split_vma insert case:
453  * insert vm structure into list and rbtree and anon_vma,
454  * but it has already been inserted into prio_tree earlier.
455  */
456 static void
457 __insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
458 {
459 	struct vm_area_struct * __vma, * prev;
460 	struct rb_node ** rb_link, * rb_parent;
461 
462 	__vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent);
463 	BUG_ON(__vma && __vma->vm_start < vma->vm_end);
464 	__vma_link(mm, vma, prev, rb_link, rb_parent);
465 	mm->map_count++;
466 }
467 
468 static inline void
469 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
470 		struct vm_area_struct *prev)
471 {
472 	prev->vm_next = vma->vm_next;
473 	rb_erase(&vma->vm_rb, &mm->mm_rb);
474 	if (mm->mmap_cache == vma)
475 		mm->mmap_cache = prev;
476 }
477 
478 /*
479  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
480  * is already present in an i_mmap tree without adjusting the tree.
481  * The following helper function should be used when such adjustments
482  * are necessary.  The "insert" vma (if any) is to be inserted
483  * before we drop the necessary locks.
484  */
485 void vma_adjust(struct vm_area_struct *vma, unsigned long start,
486 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
487 {
488 	struct mm_struct *mm = vma->vm_mm;
489 	struct vm_area_struct *next = vma->vm_next;
490 	struct vm_area_struct *importer = NULL;
491 	struct address_space *mapping = NULL;
492 	struct prio_tree_root *root = NULL;
493 	struct file *file = vma->vm_file;
494 	struct anon_vma *anon_vma = NULL;
495 	long adjust_next = 0;
496 	int remove_next = 0;
497 
498 	if (next && !insert) {
499 		if (end >= next->vm_end) {
500 			/*
501 			 * vma expands, overlapping all the next, and
502 			 * perhaps the one after too (mprotect case 6).
503 			 */
504 again:			remove_next = 1 + (end > next->vm_end);
505 			end = next->vm_end;
506 			anon_vma = next->anon_vma;
507 			importer = vma;
508 		} else if (end > next->vm_start) {
509 			/*
510 			 * vma expands, overlapping part of the next:
511 			 * mprotect case 5 shifting the boundary up.
512 			 */
513 			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
514 			anon_vma = next->anon_vma;
515 			importer = vma;
516 		} else if (end < vma->vm_end) {
517 			/*
518 			 * vma shrinks, and !insert tells it's not
519 			 * split_vma inserting another: so it must be
520 			 * mprotect case 4 shifting the boundary down.
521 			 */
522 			adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
523 			anon_vma = next->anon_vma;
524 			importer = next;
525 		}
526 	}
527 
528 	if (file) {
529 		mapping = file->f_mapping;
530 		if (!(vma->vm_flags & VM_NONLINEAR))
531 			root = &mapping->i_mmap;
532 		spin_lock(&mapping->i_mmap_lock);
533 		if (importer &&
534 		    vma->vm_truncate_count != next->vm_truncate_count) {
535 			/*
536 			 * unmap_mapping_range might be in progress:
537 			 * ensure that the expanding vma is rescanned.
538 			 */
539 			importer->vm_truncate_count = 0;
540 		}
541 		if (insert) {
542 			insert->vm_truncate_count = vma->vm_truncate_count;
543 			/*
544 			 * Put into prio_tree now, so instantiated pages
545 			 * are visible to arm/parisc __flush_dcache_page
546 			 * throughout; but we cannot insert into address
547 			 * space until vma start or end is updated.
548 			 */
549 			__vma_link_file(insert);
550 		}
551 	}
552 
553 	/*
554 	 * When changing only vma->vm_end, we don't really need
555 	 * anon_vma lock: but is that case worth optimizing out?
556 	 */
557 	if (vma->anon_vma)
558 		anon_vma = vma->anon_vma;
559 	if (anon_vma) {
560 		spin_lock(&anon_vma->lock);
561 		/*
562 		 * Easily overlooked: when mprotect shifts the boundary,
563 		 * make sure the expanding vma has anon_vma set if the
564 		 * shrinking vma had, to cover any anon pages imported.
565 		 */
566 		if (importer && !importer->anon_vma) {
567 			importer->anon_vma = anon_vma;
568 			__anon_vma_link(importer);
569 		}
570 	}
571 
572 	if (root) {
573 		flush_dcache_mmap_lock(mapping);
574 		vma_prio_tree_remove(vma, root);
575 		if (adjust_next)
576 			vma_prio_tree_remove(next, root);
577 	}
578 
579 	vma->vm_start = start;
580 	vma->vm_end = end;
581 	vma->vm_pgoff = pgoff;
582 	if (adjust_next) {
583 		next->vm_start += adjust_next << PAGE_SHIFT;
584 		next->vm_pgoff += adjust_next;
585 	}
586 
587 	if (root) {
588 		if (adjust_next)
589 			vma_prio_tree_insert(next, root);
590 		vma_prio_tree_insert(vma, root);
591 		flush_dcache_mmap_unlock(mapping);
592 	}
593 
594 	if (remove_next) {
595 		/*
596 		 * vma_merge has merged next into vma, and needs
597 		 * us to remove next before dropping the locks.
598 		 */
599 		__vma_unlink(mm, next, vma);
600 		if (file)
601 			__remove_shared_vm_struct(next, file, mapping);
602 		if (next->anon_vma)
603 			__anon_vma_merge(vma, next);
604 	} else if (insert) {
605 		/*
606 		 * split_vma has split insert from vma, and needs
607 		 * us to insert it before dropping the locks
608 		 * (it may either follow vma or precede it).
609 		 */
610 		__insert_vm_struct(mm, insert);
611 	}
612 
613 	if (anon_vma)
614 		spin_unlock(&anon_vma->lock);
615 	if (mapping)
616 		spin_unlock(&mapping->i_mmap_lock);
617 
618 	if (remove_next) {
619 		if (file)
620 			fput(file);
621 		mm->map_count--;
622 		mpol_free(vma_policy(next));
623 		kmem_cache_free(vm_area_cachep, next);
624 		/*
625 		 * In mprotect's case 6 (see comments on vma_merge),
626 		 * we must remove another next too. It would clutter
627 		 * up the code too much to do both in one go.
628 		 */
629 		if (remove_next == 2) {
630 			next = vma->vm_next;
631 			goto again;
632 		}
633 	}
634 
635 	validate_mm(mm);
636 }
637 
638 /*
639  * If the vma has a ->close operation then the driver probably needs to release
640  * per-vma resources, so we don't attempt to merge those.
641  */
642 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP)
643 
644 static inline int is_mergeable_vma(struct vm_area_struct *vma,
645 			struct file *file, unsigned long vm_flags)
646 {
647 	if (vma->vm_flags != vm_flags)
648 		return 0;
649 	if (vma->vm_file != file)
650 		return 0;
651 	if (vma->vm_ops && vma->vm_ops->close)
652 		return 0;
653 	return 1;
654 }
655 
656 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
657 					struct anon_vma *anon_vma2)
658 {
659 	return !anon_vma1 || !anon_vma2 || (anon_vma1 == anon_vma2);
660 }
661 
662 /*
663  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
664  * in front of (at a lower virtual address and file offset than) the vma.
665  *
666  * We cannot merge two vmas if they have differently assigned (non-NULL)
667  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
668  *
669  * We don't check here for the merged mmap wrapping around the end of pagecache
670  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
671  * wrap, nor mmaps which cover the final page at index -1UL.
672  */
673 static int
674 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
675 	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
676 {
677 	if (is_mergeable_vma(vma, file, vm_flags) &&
678 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
679 		if (vma->vm_pgoff == vm_pgoff)
680 			return 1;
681 	}
682 	return 0;
683 }
684 
685 /*
686  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
687  * beyond (at a higher virtual address and file offset than) the vma.
688  *
689  * We cannot merge two vmas if they have differently assigned (non-NULL)
690  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
691  */
692 static int
693 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
694 	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
695 {
696 	if (is_mergeable_vma(vma, file, vm_flags) &&
697 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
698 		pgoff_t vm_pglen;
699 		vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
700 		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
701 			return 1;
702 	}
703 	return 0;
704 }
705 
706 /*
707  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
708  * whether that can be merged with its predecessor or its successor.
709  * Or both (it neatly fills a hole).
710  *
711  * In most cases - when called for mmap, brk or mremap - [addr,end) is
712  * certain not to be mapped by the time vma_merge is called; but when
713  * called for mprotect, it is certain to be already mapped (either at
714  * an offset within prev, or at the start of next), and the flags of
715  * this area are about to be changed to vm_flags - and the no-change
716  * case has already been eliminated.
717  *
718  * The following mprotect cases have to be considered, where AAAA is
719  * the area passed down from mprotect_fixup, never extending beyond one
720  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
721  *
722  *     AAAA             AAAA                AAAA          AAAA
723  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
724  *    cannot merge    might become    might become    might become
725  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
726  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
727  *    mremap move:                                    PPPPNNNNNNNN 8
728  *        AAAA
729  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
730  *    might become    case 1 below    case 2 below    case 3 below
731  *
732  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
733  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
734  */
735 struct vm_area_struct *vma_merge(struct mm_struct *mm,
736 			struct vm_area_struct *prev, unsigned long addr,
737 			unsigned long end, unsigned long vm_flags,
738 		     	struct anon_vma *anon_vma, struct file *file,
739 			pgoff_t pgoff, struct mempolicy *policy)
740 {
741 	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
742 	struct vm_area_struct *area, *next;
743 
744 	/*
745 	 * We later require that vma->vm_flags == vm_flags,
746 	 * so this tests vma->vm_flags & VM_SPECIAL, too.
747 	 */
748 	if (vm_flags & VM_SPECIAL)
749 		return NULL;
750 
751 	if (prev)
752 		next = prev->vm_next;
753 	else
754 		next = mm->mmap;
755 	area = next;
756 	if (next && next->vm_end == end)		/* cases 6, 7, 8 */
757 		next = next->vm_next;
758 
759 	/*
760 	 * Can it merge with the predecessor?
761 	 */
762 	if (prev && prev->vm_end == addr &&
763   			mpol_equal(vma_policy(prev), policy) &&
764 			can_vma_merge_after(prev, vm_flags,
765 						anon_vma, file, pgoff)) {
766 		/*
767 		 * OK, it can.  Can we now merge in the successor as well?
768 		 */
769 		if (next && end == next->vm_start &&
770 				mpol_equal(policy, vma_policy(next)) &&
771 				can_vma_merge_before(next, vm_flags,
772 					anon_vma, file, pgoff+pglen) &&
773 				is_mergeable_anon_vma(prev->anon_vma,
774 						      next->anon_vma)) {
775 							/* cases 1, 6 */
776 			vma_adjust(prev, prev->vm_start,
777 				next->vm_end, prev->vm_pgoff, NULL);
778 		} else					/* cases 2, 5, 7 */
779 			vma_adjust(prev, prev->vm_start,
780 				end, prev->vm_pgoff, NULL);
781 		return prev;
782 	}
783 
784 	/*
785 	 * Can this new request be merged in front of next?
786 	 */
787 	if (next && end == next->vm_start &&
788  			mpol_equal(policy, vma_policy(next)) &&
789 			can_vma_merge_before(next, vm_flags,
790 					anon_vma, file, pgoff+pglen)) {
791 		if (prev && addr < prev->vm_end)	/* case 4 */
792 			vma_adjust(prev, prev->vm_start,
793 				addr, prev->vm_pgoff, NULL);
794 		else					/* cases 3, 8 */
795 			vma_adjust(area, addr, next->vm_end,
796 				next->vm_pgoff - pglen, NULL);
797 		return area;
798 	}
799 
800 	return NULL;
801 }
802 
803 /*
804  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
805  * neighbouring vmas for a suitable anon_vma, before it goes off
806  * to allocate a new anon_vma.  It checks because a repetitive
807  * sequence of mprotects and faults may otherwise lead to distinct
808  * anon_vmas being allocated, preventing vma merge in subsequent
809  * mprotect.
810  */
811 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
812 {
813 	struct vm_area_struct *near;
814 	unsigned long vm_flags;
815 
816 	near = vma->vm_next;
817 	if (!near)
818 		goto try_prev;
819 
820 	/*
821 	 * Since only mprotect tries to remerge vmas, match flags
822 	 * which might be mprotected into each other later on.
823 	 * Neither mlock nor madvise tries to remerge at present,
824 	 * so leave their flags as obstructing a merge.
825 	 */
826 	vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
827 	vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
828 
829 	if (near->anon_vma && vma->vm_end == near->vm_start &&
830  			mpol_equal(vma_policy(vma), vma_policy(near)) &&
831 			can_vma_merge_before(near, vm_flags,
832 				NULL, vma->vm_file, vma->vm_pgoff +
833 				((vma->vm_end - vma->vm_start) >> PAGE_SHIFT)))
834 		return near->anon_vma;
835 try_prev:
836 	/*
837 	 * It is potentially slow to have to call find_vma_prev here.
838 	 * But it's only on the first write fault on the vma, not
839 	 * every time, and we could devise a way to avoid it later
840 	 * (e.g. stash info in next's anon_vma_node when assigning
841 	 * an anon_vma, or when trying vma_merge).  Another time.
842 	 */
843 	BUG_ON(find_vma_prev(vma->vm_mm, vma->vm_start, &near) != vma);
844 	if (!near)
845 		goto none;
846 
847 	vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
848 	vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
849 
850 	if (near->anon_vma && near->vm_end == vma->vm_start &&
851   			mpol_equal(vma_policy(near), vma_policy(vma)) &&
852 			can_vma_merge_after(near, vm_flags,
853 				NULL, vma->vm_file, vma->vm_pgoff))
854 		return near->anon_vma;
855 none:
856 	/*
857 	 * There's no absolute need to look only at touching neighbours:
858 	 * we could search further afield for "compatible" anon_vmas.
859 	 * But it would probably just be a waste of time searching,
860 	 * or lead to too many vmas hanging off the same anon_vma.
861 	 * We're trying to allow mprotect remerging later on,
862 	 * not trying to minimize memory used for anon_vmas.
863 	 */
864 	return NULL;
865 }
866 
867 #ifdef CONFIG_PROC_FS
868 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
869 						struct file *file, long pages)
870 {
871 	const unsigned long stack_flags
872 		= VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
873 
874 	if (file) {
875 		mm->shared_vm += pages;
876 		if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
877 			mm->exec_vm += pages;
878 	} else if (flags & stack_flags)
879 		mm->stack_vm += pages;
880 	if (flags & (VM_RESERVED|VM_IO))
881 		mm->reserved_vm += pages;
882 }
883 #endif /* CONFIG_PROC_FS */
884 
885 /*
886  * The caller must hold down_write(current->mm->mmap_sem).
887  */
888 
889 unsigned long do_mmap_pgoff(struct file * file, unsigned long addr,
890 			unsigned long len, unsigned long prot,
891 			unsigned long flags, unsigned long pgoff)
892 {
893 	struct mm_struct * mm = current->mm;
894 	struct vm_area_struct * vma, * prev;
895 	struct inode *inode;
896 	unsigned int vm_flags;
897 	int correct_wcount = 0;
898 	int error;
899 	struct rb_node ** rb_link, * rb_parent;
900 	int accountable = 1;
901 	unsigned long charged = 0, reqprot = prot;
902 
903 	/*
904 	 * Does the application expect PROT_READ to imply PROT_EXEC?
905 	 *
906 	 * (the exception is when the underlying filesystem is noexec
907 	 *  mounted, in which case we dont add PROT_EXEC.)
908 	 */
909 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
910 		if (!(file && (file->f_vfsmnt->mnt_flags & MNT_NOEXEC)))
911 			prot |= PROT_EXEC;
912 
913 	if (!len)
914 		return -EINVAL;
915 
916 	error = arch_mmap_check(addr, len, flags);
917 	if (error)
918 		return error;
919 
920 	/* Careful about overflows.. */
921 	len = PAGE_ALIGN(len);
922 	if (!len || len > TASK_SIZE)
923 		return -ENOMEM;
924 
925 	/* offset overflow? */
926 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
927                return -EOVERFLOW;
928 
929 	/* Too many mappings? */
930 	if (mm->map_count > sysctl_max_map_count)
931 		return -ENOMEM;
932 
933 	/* Obtain the address to map to. we verify (or select) it and ensure
934 	 * that it represents a valid section of the address space.
935 	 */
936 	addr = get_unmapped_area(file, addr, len, pgoff, flags);
937 	if (addr & ~PAGE_MASK)
938 		return addr;
939 
940 	/* Do simple checking here so the lower-level routines won't have
941 	 * to. we assume access permissions have been handled by the open
942 	 * of the memory object, so we don't do any here.
943 	 */
944 	vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
945 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
946 
947 	if (flags & MAP_LOCKED) {
948 		if (!can_do_mlock())
949 			return -EPERM;
950 		vm_flags |= VM_LOCKED;
951 	}
952 	/* mlock MCL_FUTURE? */
953 	if (vm_flags & VM_LOCKED) {
954 		unsigned long locked, lock_limit;
955 		locked = len >> PAGE_SHIFT;
956 		locked += mm->locked_vm;
957 		lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
958 		lock_limit >>= PAGE_SHIFT;
959 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
960 			return -EAGAIN;
961 	}
962 
963 	inode = file ? file->f_dentry->d_inode : NULL;
964 
965 	if (file) {
966 		switch (flags & MAP_TYPE) {
967 		case MAP_SHARED:
968 			if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
969 				return -EACCES;
970 
971 			/*
972 			 * Make sure we don't allow writing to an append-only
973 			 * file..
974 			 */
975 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
976 				return -EACCES;
977 
978 			/*
979 			 * Make sure there are no mandatory locks on the file.
980 			 */
981 			if (locks_verify_locked(inode))
982 				return -EAGAIN;
983 
984 			vm_flags |= VM_SHARED | VM_MAYSHARE;
985 			if (!(file->f_mode & FMODE_WRITE))
986 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
987 
988 			/* fall through */
989 		case MAP_PRIVATE:
990 			if (!(file->f_mode & FMODE_READ))
991 				return -EACCES;
992 			if (file->f_vfsmnt->mnt_flags & MNT_NOEXEC) {
993 				if (vm_flags & VM_EXEC)
994 					return -EPERM;
995 				vm_flags &= ~VM_MAYEXEC;
996 			}
997 			if (is_file_hugepages(file))
998 				accountable = 0;
999 
1000 			if (!file->f_op || !file->f_op->mmap)
1001 				return -ENODEV;
1002 			break;
1003 
1004 		default:
1005 			return -EINVAL;
1006 		}
1007 	} else {
1008 		switch (flags & MAP_TYPE) {
1009 		case MAP_SHARED:
1010 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1011 			break;
1012 		case MAP_PRIVATE:
1013 			/*
1014 			 * Set pgoff according to addr for anon_vma.
1015 			 */
1016 			pgoff = addr >> PAGE_SHIFT;
1017 			break;
1018 		default:
1019 			return -EINVAL;
1020 		}
1021 	}
1022 
1023 	error = security_file_mmap(file, reqprot, prot, flags);
1024 	if (error)
1025 		return error;
1026 
1027 	/* Clear old maps */
1028 	error = -ENOMEM;
1029 munmap_back:
1030 	vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1031 	if (vma && vma->vm_start < addr + len) {
1032 		if (do_munmap(mm, addr, len))
1033 			return -ENOMEM;
1034 		goto munmap_back;
1035 	}
1036 
1037 	/* Check against address space limit. */
1038 	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1039 		return -ENOMEM;
1040 
1041 	if (accountable && (!(flags & MAP_NORESERVE) ||
1042 			    sysctl_overcommit_memory == OVERCOMMIT_NEVER)) {
1043 		if (vm_flags & VM_SHARED) {
1044 			/* Check memory availability in shmem_file_setup? */
1045 			vm_flags |= VM_ACCOUNT;
1046 		} else if (vm_flags & VM_WRITE) {
1047 			/*
1048 			 * Private writable mapping: check memory availability
1049 			 */
1050 			charged = len >> PAGE_SHIFT;
1051 			if (security_vm_enough_memory(charged))
1052 				return -ENOMEM;
1053 			vm_flags |= VM_ACCOUNT;
1054 		}
1055 	}
1056 
1057 	/*
1058 	 * Can we just expand an old private anonymous mapping?
1059 	 * The VM_SHARED test is necessary because shmem_zero_setup
1060 	 * will create the file object for a shared anonymous map below.
1061 	 */
1062 	if (!file && !(vm_flags & VM_SHARED) &&
1063 	    vma_merge(mm, prev, addr, addr + len, vm_flags,
1064 					NULL, NULL, pgoff, NULL))
1065 		goto out;
1066 
1067 	/*
1068 	 * Determine the object being mapped and call the appropriate
1069 	 * specific mapper. the address has already been validated, but
1070 	 * not unmapped, but the maps are removed from the list.
1071 	 */
1072 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1073 	if (!vma) {
1074 		error = -ENOMEM;
1075 		goto unacct_error;
1076 	}
1077 
1078 	vma->vm_mm = mm;
1079 	vma->vm_start = addr;
1080 	vma->vm_end = addr + len;
1081 	vma->vm_flags = vm_flags;
1082 	vma->vm_page_prot = protection_map[vm_flags &
1083 				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)];
1084 	vma->vm_pgoff = pgoff;
1085 
1086 	if (file) {
1087 		error = -EINVAL;
1088 		if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1089 			goto free_vma;
1090 		if (vm_flags & VM_DENYWRITE) {
1091 			error = deny_write_access(file);
1092 			if (error)
1093 				goto free_vma;
1094 			correct_wcount = 1;
1095 		}
1096 		vma->vm_file = file;
1097 		get_file(file);
1098 		error = file->f_op->mmap(file, vma);
1099 		if (error)
1100 			goto unmap_and_free_vma;
1101 	} else if (vm_flags & VM_SHARED) {
1102 		error = shmem_zero_setup(vma);
1103 		if (error)
1104 			goto free_vma;
1105 	}
1106 
1107 	/* We set VM_ACCOUNT in a shared mapping's vm_flags, to inform
1108 	 * shmem_zero_setup (perhaps called through /dev/zero's ->mmap)
1109 	 * that memory reservation must be checked; but that reservation
1110 	 * belongs to shared memory object, not to vma: so now clear it.
1111 	 */
1112 	if ((vm_flags & (VM_SHARED|VM_ACCOUNT)) == (VM_SHARED|VM_ACCOUNT))
1113 		vma->vm_flags &= ~VM_ACCOUNT;
1114 
1115 	/* Can addr have changed??
1116 	 *
1117 	 * Answer: Yes, several device drivers can do it in their
1118 	 *         f_op->mmap method. -DaveM
1119 	 */
1120 	addr = vma->vm_start;
1121 	pgoff = vma->vm_pgoff;
1122 	vm_flags = vma->vm_flags;
1123 
1124 	if (vma_wants_writenotify(vma))
1125 		vma->vm_page_prot =
1126 			protection_map[vm_flags & (VM_READ|VM_WRITE|VM_EXEC)];
1127 
1128 	if (!file || !vma_merge(mm, prev, addr, vma->vm_end,
1129 			vma->vm_flags, NULL, file, pgoff, vma_policy(vma))) {
1130 		file = vma->vm_file;
1131 		vma_link(mm, vma, prev, rb_link, rb_parent);
1132 		if (correct_wcount)
1133 			atomic_inc(&inode->i_writecount);
1134 	} else {
1135 		if (file) {
1136 			if (correct_wcount)
1137 				atomic_inc(&inode->i_writecount);
1138 			fput(file);
1139 		}
1140 		mpol_free(vma_policy(vma));
1141 		kmem_cache_free(vm_area_cachep, vma);
1142 	}
1143 out:
1144 	mm->total_vm += len >> PAGE_SHIFT;
1145 	vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1146 	if (vm_flags & VM_LOCKED) {
1147 		mm->locked_vm += len >> PAGE_SHIFT;
1148 		make_pages_present(addr, addr + len);
1149 	}
1150 	if (flags & MAP_POPULATE) {
1151 		up_write(&mm->mmap_sem);
1152 		sys_remap_file_pages(addr, len, 0,
1153 					pgoff, flags & MAP_NONBLOCK);
1154 		down_write(&mm->mmap_sem);
1155 	}
1156 	return addr;
1157 
1158 unmap_and_free_vma:
1159 	if (correct_wcount)
1160 		atomic_inc(&inode->i_writecount);
1161 	vma->vm_file = NULL;
1162 	fput(file);
1163 
1164 	/* Undo any partial mapping done by a device driver. */
1165 	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1166 	charged = 0;
1167 free_vma:
1168 	kmem_cache_free(vm_area_cachep, vma);
1169 unacct_error:
1170 	if (charged)
1171 		vm_unacct_memory(charged);
1172 	return error;
1173 }
1174 
1175 EXPORT_SYMBOL(do_mmap_pgoff);
1176 
1177 /* Get an address range which is currently unmapped.
1178  * For shmat() with addr=0.
1179  *
1180  * Ugly calling convention alert:
1181  * Return value with the low bits set means error value,
1182  * ie
1183  *	if (ret & ~PAGE_MASK)
1184  *		error = ret;
1185  *
1186  * This function "knows" that -ENOMEM has the bits set.
1187  */
1188 #ifndef HAVE_ARCH_UNMAPPED_AREA
1189 unsigned long
1190 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1191 		unsigned long len, unsigned long pgoff, unsigned long flags)
1192 {
1193 	struct mm_struct *mm = current->mm;
1194 	struct vm_area_struct *vma;
1195 	unsigned long start_addr;
1196 
1197 	if (len > TASK_SIZE)
1198 		return -ENOMEM;
1199 
1200 	if (addr) {
1201 		addr = PAGE_ALIGN(addr);
1202 		vma = find_vma(mm, addr);
1203 		if (TASK_SIZE - len >= addr &&
1204 		    (!vma || addr + len <= vma->vm_start))
1205 			return addr;
1206 	}
1207 	if (len > mm->cached_hole_size) {
1208 	        start_addr = addr = mm->free_area_cache;
1209 	} else {
1210 	        start_addr = addr = TASK_UNMAPPED_BASE;
1211 	        mm->cached_hole_size = 0;
1212 	}
1213 
1214 full_search:
1215 	for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1216 		/* At this point:  (!vma || addr < vma->vm_end). */
1217 		if (TASK_SIZE - len < addr) {
1218 			/*
1219 			 * Start a new search - just in case we missed
1220 			 * some holes.
1221 			 */
1222 			if (start_addr != TASK_UNMAPPED_BASE) {
1223 				addr = TASK_UNMAPPED_BASE;
1224 			        start_addr = addr;
1225 				mm->cached_hole_size = 0;
1226 				goto full_search;
1227 			}
1228 			return -ENOMEM;
1229 		}
1230 		if (!vma || addr + len <= vma->vm_start) {
1231 			/*
1232 			 * Remember the place where we stopped the search:
1233 			 */
1234 			mm->free_area_cache = addr + len;
1235 			return addr;
1236 		}
1237 		if (addr + mm->cached_hole_size < vma->vm_start)
1238 		        mm->cached_hole_size = vma->vm_start - addr;
1239 		addr = vma->vm_end;
1240 	}
1241 }
1242 #endif
1243 
1244 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1245 {
1246 	/*
1247 	 * Is this a new hole at the lowest possible address?
1248 	 */
1249 	if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) {
1250 		mm->free_area_cache = addr;
1251 		mm->cached_hole_size = ~0UL;
1252 	}
1253 }
1254 
1255 /*
1256  * This mmap-allocator allocates new areas top-down from below the
1257  * stack's low limit (the base):
1258  */
1259 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1260 unsigned long
1261 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1262 			  const unsigned long len, const unsigned long pgoff,
1263 			  const unsigned long flags)
1264 {
1265 	struct vm_area_struct *vma;
1266 	struct mm_struct *mm = current->mm;
1267 	unsigned long addr = addr0;
1268 
1269 	/* requested length too big for entire address space */
1270 	if (len > TASK_SIZE)
1271 		return -ENOMEM;
1272 
1273 	/* requesting a specific address */
1274 	if (addr) {
1275 		addr = PAGE_ALIGN(addr);
1276 		vma = find_vma(mm, addr);
1277 		if (TASK_SIZE - len >= addr &&
1278 				(!vma || addr + len <= vma->vm_start))
1279 			return addr;
1280 	}
1281 
1282 	/* check if free_area_cache is useful for us */
1283 	if (len <= mm->cached_hole_size) {
1284  	        mm->cached_hole_size = 0;
1285  		mm->free_area_cache = mm->mmap_base;
1286  	}
1287 
1288 	/* either no address requested or can't fit in requested address hole */
1289 	addr = mm->free_area_cache;
1290 
1291 	/* make sure it can fit in the remaining address space */
1292 	if (addr > len) {
1293 		vma = find_vma(mm, addr-len);
1294 		if (!vma || addr <= vma->vm_start)
1295 			/* remember the address as a hint for next time */
1296 			return (mm->free_area_cache = addr-len);
1297 	}
1298 
1299 	if (mm->mmap_base < len)
1300 		goto bottomup;
1301 
1302 	addr = mm->mmap_base-len;
1303 
1304 	do {
1305 		/*
1306 		 * Lookup failure means no vma is above this address,
1307 		 * else if new region fits below vma->vm_start,
1308 		 * return with success:
1309 		 */
1310 		vma = find_vma(mm, addr);
1311 		if (!vma || addr+len <= vma->vm_start)
1312 			/* remember the address as a hint for next time */
1313 			return (mm->free_area_cache = addr);
1314 
1315  		/* remember the largest hole we saw so far */
1316  		if (addr + mm->cached_hole_size < vma->vm_start)
1317  		        mm->cached_hole_size = vma->vm_start - addr;
1318 
1319 		/* try just below the current vma->vm_start */
1320 		addr = vma->vm_start-len;
1321 	} while (len < vma->vm_start);
1322 
1323 bottomup:
1324 	/*
1325 	 * A failed mmap() very likely causes application failure,
1326 	 * so fall back to the bottom-up function here. This scenario
1327 	 * can happen with large stack limits and large mmap()
1328 	 * allocations.
1329 	 */
1330 	mm->cached_hole_size = ~0UL;
1331   	mm->free_area_cache = TASK_UNMAPPED_BASE;
1332 	addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1333 	/*
1334 	 * Restore the topdown base:
1335 	 */
1336 	mm->free_area_cache = mm->mmap_base;
1337 	mm->cached_hole_size = ~0UL;
1338 
1339 	return addr;
1340 }
1341 #endif
1342 
1343 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1344 {
1345 	/*
1346 	 * Is this a new hole at the highest possible address?
1347 	 */
1348 	if (addr > mm->free_area_cache)
1349 		mm->free_area_cache = addr;
1350 
1351 	/* dont allow allocations above current base */
1352 	if (mm->free_area_cache > mm->mmap_base)
1353 		mm->free_area_cache = mm->mmap_base;
1354 }
1355 
1356 unsigned long
1357 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1358 		unsigned long pgoff, unsigned long flags)
1359 {
1360 	unsigned long ret;
1361 
1362 	if (!(flags & MAP_FIXED)) {
1363 		unsigned long (*get_area)(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1364 
1365 		get_area = current->mm->get_unmapped_area;
1366 		if (file && file->f_op && file->f_op->get_unmapped_area)
1367 			get_area = file->f_op->get_unmapped_area;
1368 		addr = get_area(file, addr, len, pgoff, flags);
1369 		if (IS_ERR_VALUE(addr))
1370 			return addr;
1371 	}
1372 
1373 	if (addr > TASK_SIZE - len)
1374 		return -ENOMEM;
1375 	if (addr & ~PAGE_MASK)
1376 		return -EINVAL;
1377 	if (file && is_file_hugepages(file))  {
1378 		/*
1379 		 * Check if the given range is hugepage aligned, and
1380 		 * can be made suitable for hugepages.
1381 		 */
1382 		ret = prepare_hugepage_range(addr, len, pgoff);
1383 	} else {
1384 		/*
1385 		 * Ensure that a normal request is not falling in a
1386 		 * reserved hugepage range.  For some archs like IA-64,
1387 		 * there is a separate region for hugepages.
1388 		 */
1389 		ret = is_hugepage_only_range(current->mm, addr, len);
1390 	}
1391 	if (ret)
1392 		return -EINVAL;
1393 	return addr;
1394 }
1395 
1396 EXPORT_SYMBOL(get_unmapped_area);
1397 
1398 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1399 struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr)
1400 {
1401 	struct vm_area_struct *vma = NULL;
1402 
1403 	if (mm) {
1404 		/* Check the cache first. */
1405 		/* (Cache hit rate is typically around 35%.) */
1406 		vma = mm->mmap_cache;
1407 		if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1408 			struct rb_node * rb_node;
1409 
1410 			rb_node = mm->mm_rb.rb_node;
1411 			vma = NULL;
1412 
1413 			while (rb_node) {
1414 				struct vm_area_struct * vma_tmp;
1415 
1416 				vma_tmp = rb_entry(rb_node,
1417 						struct vm_area_struct, vm_rb);
1418 
1419 				if (vma_tmp->vm_end > addr) {
1420 					vma = vma_tmp;
1421 					if (vma_tmp->vm_start <= addr)
1422 						break;
1423 					rb_node = rb_node->rb_left;
1424 				} else
1425 					rb_node = rb_node->rb_right;
1426 			}
1427 			if (vma)
1428 				mm->mmap_cache = vma;
1429 		}
1430 	}
1431 	return vma;
1432 }
1433 
1434 EXPORT_SYMBOL(find_vma);
1435 
1436 /* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */
1437 struct vm_area_struct *
1438 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1439 			struct vm_area_struct **pprev)
1440 {
1441 	struct vm_area_struct *vma = NULL, *prev = NULL;
1442 	struct rb_node * rb_node;
1443 	if (!mm)
1444 		goto out;
1445 
1446 	/* Guard against addr being lower than the first VMA */
1447 	vma = mm->mmap;
1448 
1449 	/* Go through the RB tree quickly. */
1450 	rb_node = mm->mm_rb.rb_node;
1451 
1452 	while (rb_node) {
1453 		struct vm_area_struct *vma_tmp;
1454 		vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1455 
1456 		if (addr < vma_tmp->vm_end) {
1457 			rb_node = rb_node->rb_left;
1458 		} else {
1459 			prev = vma_tmp;
1460 			if (!prev->vm_next || (addr < prev->vm_next->vm_end))
1461 				break;
1462 			rb_node = rb_node->rb_right;
1463 		}
1464 	}
1465 
1466 out:
1467 	*pprev = prev;
1468 	return prev ? prev->vm_next : vma;
1469 }
1470 
1471 /*
1472  * Verify that the stack growth is acceptable and
1473  * update accounting. This is shared with both the
1474  * grow-up and grow-down cases.
1475  */
1476 static int acct_stack_growth(struct vm_area_struct * vma, unsigned long size, unsigned long grow)
1477 {
1478 	struct mm_struct *mm = vma->vm_mm;
1479 	struct rlimit *rlim = current->signal->rlim;
1480 
1481 	/* address space limit tests */
1482 	if (!may_expand_vm(mm, grow))
1483 		return -ENOMEM;
1484 
1485 	/* Stack limit test */
1486 	if (size > rlim[RLIMIT_STACK].rlim_cur)
1487 		return -ENOMEM;
1488 
1489 	/* mlock limit tests */
1490 	if (vma->vm_flags & VM_LOCKED) {
1491 		unsigned long locked;
1492 		unsigned long limit;
1493 		locked = mm->locked_vm + grow;
1494 		limit = rlim[RLIMIT_MEMLOCK].rlim_cur >> PAGE_SHIFT;
1495 		if (locked > limit && !capable(CAP_IPC_LOCK))
1496 			return -ENOMEM;
1497 	}
1498 
1499 	/*
1500 	 * Overcommit..  This must be the final test, as it will
1501 	 * update security statistics.
1502 	 */
1503 	if (security_vm_enough_memory(grow))
1504 		return -ENOMEM;
1505 
1506 	/* Ok, everything looks good - let it rip */
1507 	mm->total_vm += grow;
1508 	if (vma->vm_flags & VM_LOCKED)
1509 		mm->locked_vm += grow;
1510 	vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1511 	return 0;
1512 }
1513 
1514 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1515 /*
1516  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1517  * vma is the last one with address > vma->vm_end.  Have to extend vma.
1518  */
1519 #ifndef CONFIG_IA64
1520 static inline
1521 #endif
1522 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1523 {
1524 	int error;
1525 
1526 	if (!(vma->vm_flags & VM_GROWSUP))
1527 		return -EFAULT;
1528 
1529 	/*
1530 	 * We must make sure the anon_vma is allocated
1531 	 * so that the anon_vma locking is not a noop.
1532 	 */
1533 	if (unlikely(anon_vma_prepare(vma)))
1534 		return -ENOMEM;
1535 	anon_vma_lock(vma);
1536 
1537 	/*
1538 	 * vma->vm_start/vm_end cannot change under us because the caller
1539 	 * is required to hold the mmap_sem in read mode.  We need the
1540 	 * anon_vma lock to serialize against concurrent expand_stacks.
1541 	 */
1542 	address += 4 + PAGE_SIZE - 1;
1543 	address &= PAGE_MASK;
1544 	error = 0;
1545 
1546 	/* Somebody else might have raced and expanded it already */
1547 	if (address > vma->vm_end) {
1548 		unsigned long size, grow;
1549 
1550 		size = address - vma->vm_start;
1551 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
1552 
1553 		error = acct_stack_growth(vma, size, grow);
1554 		if (!error)
1555 			vma->vm_end = address;
1556 	}
1557 	anon_vma_unlock(vma);
1558 	return error;
1559 }
1560 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1561 
1562 #ifdef CONFIG_STACK_GROWSUP
1563 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1564 {
1565 	return expand_upwards(vma, address);
1566 }
1567 
1568 struct vm_area_struct *
1569 find_extend_vma(struct mm_struct *mm, unsigned long addr)
1570 {
1571 	struct vm_area_struct *vma, *prev;
1572 
1573 	addr &= PAGE_MASK;
1574 	vma = find_vma_prev(mm, addr, &prev);
1575 	if (vma && (vma->vm_start <= addr))
1576 		return vma;
1577 	if (!prev || expand_stack(prev, addr))
1578 		return NULL;
1579 	if (prev->vm_flags & VM_LOCKED) {
1580 		make_pages_present(addr, prev->vm_end);
1581 	}
1582 	return prev;
1583 }
1584 #else
1585 /*
1586  * vma is the first one with address < vma->vm_start.  Have to extend vma.
1587  */
1588 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1589 {
1590 	int error;
1591 
1592 	/*
1593 	 * We must make sure the anon_vma is allocated
1594 	 * so that the anon_vma locking is not a noop.
1595 	 */
1596 	if (unlikely(anon_vma_prepare(vma)))
1597 		return -ENOMEM;
1598 	anon_vma_lock(vma);
1599 
1600 	/*
1601 	 * vma->vm_start/vm_end cannot change under us because the caller
1602 	 * is required to hold the mmap_sem in read mode.  We need the
1603 	 * anon_vma lock to serialize against concurrent expand_stacks.
1604 	 */
1605 	address &= PAGE_MASK;
1606 	error = 0;
1607 
1608 	/* Somebody else might have raced and expanded it already */
1609 	if (address < vma->vm_start) {
1610 		unsigned long size, grow;
1611 
1612 		size = vma->vm_end - address;
1613 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
1614 
1615 		error = acct_stack_growth(vma, size, grow);
1616 		if (!error) {
1617 			vma->vm_start = address;
1618 			vma->vm_pgoff -= grow;
1619 		}
1620 	}
1621 	anon_vma_unlock(vma);
1622 	return error;
1623 }
1624 
1625 struct vm_area_struct *
1626 find_extend_vma(struct mm_struct * mm, unsigned long addr)
1627 {
1628 	struct vm_area_struct * vma;
1629 	unsigned long start;
1630 
1631 	addr &= PAGE_MASK;
1632 	vma = find_vma(mm,addr);
1633 	if (!vma)
1634 		return NULL;
1635 	if (vma->vm_start <= addr)
1636 		return vma;
1637 	if (!(vma->vm_flags & VM_GROWSDOWN))
1638 		return NULL;
1639 	start = vma->vm_start;
1640 	if (expand_stack(vma, addr))
1641 		return NULL;
1642 	if (vma->vm_flags & VM_LOCKED) {
1643 		make_pages_present(addr, start);
1644 	}
1645 	return vma;
1646 }
1647 #endif
1648 
1649 /*
1650  * Ok - we have the memory areas we should free on the vma list,
1651  * so release them, and do the vma updates.
1652  *
1653  * Called with the mm semaphore held.
1654  */
1655 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1656 {
1657 	/* Update high watermark before we lower total_vm */
1658 	update_hiwater_vm(mm);
1659 	do {
1660 		long nrpages = vma_pages(vma);
1661 
1662 		mm->total_vm -= nrpages;
1663 		if (vma->vm_flags & VM_LOCKED)
1664 			mm->locked_vm -= nrpages;
1665 		vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
1666 		vma = remove_vma(vma);
1667 	} while (vma);
1668 	validate_mm(mm);
1669 }
1670 
1671 /*
1672  * Get rid of page table information in the indicated region.
1673  *
1674  * Called with the mm semaphore held.
1675  */
1676 static void unmap_region(struct mm_struct *mm,
1677 		struct vm_area_struct *vma, struct vm_area_struct *prev,
1678 		unsigned long start, unsigned long end)
1679 {
1680 	struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1681 	struct mmu_gather *tlb;
1682 	unsigned long nr_accounted = 0;
1683 
1684 	lru_add_drain();
1685 	tlb = tlb_gather_mmu(mm, 0);
1686 	update_hiwater_rss(mm);
1687 	unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL);
1688 	vm_unacct_memory(nr_accounted);
1689 	free_pgtables(&tlb, vma, prev? prev->vm_end: FIRST_USER_ADDRESS,
1690 				 next? next->vm_start: 0);
1691 	tlb_finish_mmu(tlb, start, end);
1692 }
1693 
1694 /*
1695  * Create a list of vma's touched by the unmap, removing them from the mm's
1696  * vma list as we go..
1697  */
1698 static void
1699 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1700 	struct vm_area_struct *prev, unsigned long end)
1701 {
1702 	struct vm_area_struct **insertion_point;
1703 	struct vm_area_struct *tail_vma = NULL;
1704 	unsigned long addr;
1705 
1706 	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1707 	do {
1708 		rb_erase(&vma->vm_rb, &mm->mm_rb);
1709 		mm->map_count--;
1710 		tail_vma = vma;
1711 		vma = vma->vm_next;
1712 	} while (vma && vma->vm_start < end);
1713 	*insertion_point = vma;
1714 	tail_vma->vm_next = NULL;
1715 	if (mm->unmap_area == arch_unmap_area)
1716 		addr = prev ? prev->vm_end : mm->mmap_base;
1717 	else
1718 		addr = vma ?  vma->vm_start : mm->mmap_base;
1719 	mm->unmap_area(mm, addr);
1720 	mm->mmap_cache = NULL;		/* Kill the cache. */
1721 }
1722 
1723 /*
1724  * Split a vma into two pieces at address 'addr', a new vma is allocated
1725  * either for the first part or the the tail.
1726  */
1727 int split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1728 	      unsigned long addr, int new_below)
1729 {
1730 	struct mempolicy *pol;
1731 	struct vm_area_struct *new;
1732 
1733 	if (is_vm_hugetlb_page(vma) && (addr & ~HPAGE_MASK))
1734 		return -EINVAL;
1735 
1736 	if (mm->map_count >= sysctl_max_map_count)
1737 		return -ENOMEM;
1738 
1739 	new = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
1740 	if (!new)
1741 		return -ENOMEM;
1742 
1743 	/* most fields are the same, copy all, and then fixup */
1744 	*new = *vma;
1745 
1746 	if (new_below)
1747 		new->vm_end = addr;
1748 	else {
1749 		new->vm_start = addr;
1750 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
1751 	}
1752 
1753 	pol = mpol_copy(vma_policy(vma));
1754 	if (IS_ERR(pol)) {
1755 		kmem_cache_free(vm_area_cachep, new);
1756 		return PTR_ERR(pol);
1757 	}
1758 	vma_set_policy(new, pol);
1759 
1760 	if (new->vm_file)
1761 		get_file(new->vm_file);
1762 
1763 	if (new->vm_ops && new->vm_ops->open)
1764 		new->vm_ops->open(new);
1765 
1766 	if (new_below)
1767 		vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
1768 			((addr - new->vm_start) >> PAGE_SHIFT), new);
1769 	else
1770 		vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
1771 
1772 	return 0;
1773 }
1774 
1775 /* Munmap is split into 2 main parts -- this part which finds
1776  * what needs doing, and the areas themselves, which do the
1777  * work.  This now handles partial unmappings.
1778  * Jeremy Fitzhardinge <jeremy@goop.org>
1779  */
1780 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1781 {
1782 	unsigned long end;
1783 	struct vm_area_struct *vma, *prev, *last;
1784 
1785 	if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
1786 		return -EINVAL;
1787 
1788 	if ((len = PAGE_ALIGN(len)) == 0)
1789 		return -EINVAL;
1790 
1791 	/* Find the first overlapping VMA */
1792 	vma = find_vma_prev(mm, start, &prev);
1793 	if (!vma)
1794 		return 0;
1795 	/* we have  start < vma->vm_end  */
1796 
1797 	/* if it doesn't overlap, we have nothing.. */
1798 	end = start + len;
1799 	if (vma->vm_start >= end)
1800 		return 0;
1801 
1802 	/*
1803 	 * If we need to split any vma, do it now to save pain later.
1804 	 *
1805 	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
1806 	 * unmapped vm_area_struct will remain in use: so lower split_vma
1807 	 * places tmp vma above, and higher split_vma places tmp vma below.
1808 	 */
1809 	if (start > vma->vm_start) {
1810 		int error = split_vma(mm, vma, start, 0);
1811 		if (error)
1812 			return error;
1813 		prev = vma;
1814 	}
1815 
1816 	/* Does it split the last one? */
1817 	last = find_vma(mm, end);
1818 	if (last && end > last->vm_start) {
1819 		int error = split_vma(mm, last, end, 1);
1820 		if (error)
1821 			return error;
1822 	}
1823 	vma = prev? prev->vm_next: mm->mmap;
1824 
1825 	/*
1826 	 * Remove the vma's, and unmap the actual pages
1827 	 */
1828 	detach_vmas_to_be_unmapped(mm, vma, prev, end);
1829 	unmap_region(mm, vma, prev, start, end);
1830 
1831 	/* Fix up all other VM information */
1832 	remove_vma_list(mm, vma);
1833 
1834 	return 0;
1835 }
1836 
1837 EXPORT_SYMBOL(do_munmap);
1838 
1839 asmlinkage long sys_munmap(unsigned long addr, size_t len)
1840 {
1841 	int ret;
1842 	struct mm_struct *mm = current->mm;
1843 
1844 	profile_munmap(addr);
1845 
1846 	down_write(&mm->mmap_sem);
1847 	ret = do_munmap(mm, addr, len);
1848 	up_write(&mm->mmap_sem);
1849 	return ret;
1850 }
1851 
1852 static inline void verify_mm_writelocked(struct mm_struct *mm)
1853 {
1854 #ifdef CONFIG_DEBUG_VM
1855 	if (unlikely(down_read_trylock(&mm->mmap_sem))) {
1856 		WARN_ON(1);
1857 		up_read(&mm->mmap_sem);
1858 	}
1859 #endif
1860 }
1861 
1862 /*
1863  *  this is really a simplified "do_mmap".  it only handles
1864  *  anonymous maps.  eventually we may be able to do some
1865  *  brk-specific accounting here.
1866  */
1867 unsigned long do_brk(unsigned long addr, unsigned long len)
1868 {
1869 	struct mm_struct * mm = current->mm;
1870 	struct vm_area_struct * vma, * prev;
1871 	unsigned long flags;
1872 	struct rb_node ** rb_link, * rb_parent;
1873 	pgoff_t pgoff = addr >> PAGE_SHIFT;
1874 	int error;
1875 
1876 	len = PAGE_ALIGN(len);
1877 	if (!len)
1878 		return addr;
1879 
1880 	if ((addr + len) > TASK_SIZE || (addr + len) < addr)
1881 		return -EINVAL;
1882 
1883 	error = is_hugepage_only_range(current->mm, addr, len);
1884 	if (error)
1885 		return error;
1886 
1887 	flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
1888 
1889 	error = arch_mmap_check(addr, len, flags);
1890 	if (error)
1891 		return error;
1892 
1893 	/*
1894 	 * mlock MCL_FUTURE?
1895 	 */
1896 	if (mm->def_flags & VM_LOCKED) {
1897 		unsigned long locked, lock_limit;
1898 		locked = len >> PAGE_SHIFT;
1899 		locked += mm->locked_vm;
1900 		lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
1901 		lock_limit >>= PAGE_SHIFT;
1902 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1903 			return -EAGAIN;
1904 	}
1905 
1906 	/*
1907 	 * mm->mmap_sem is required to protect against another thread
1908 	 * changing the mappings in case we sleep.
1909 	 */
1910 	verify_mm_writelocked(mm);
1911 
1912 	/*
1913 	 * Clear old maps.  this also does some error checking for us
1914 	 */
1915  munmap_back:
1916 	vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1917 	if (vma && vma->vm_start < addr + len) {
1918 		if (do_munmap(mm, addr, len))
1919 			return -ENOMEM;
1920 		goto munmap_back;
1921 	}
1922 
1923 	/* Check against address space limits *after* clearing old maps... */
1924 	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1925 		return -ENOMEM;
1926 
1927 	if (mm->map_count > sysctl_max_map_count)
1928 		return -ENOMEM;
1929 
1930 	if (security_vm_enough_memory(len >> PAGE_SHIFT))
1931 		return -ENOMEM;
1932 
1933 	/* Can we just expand an old private anonymous mapping? */
1934 	if (vma_merge(mm, prev, addr, addr + len, flags,
1935 					NULL, NULL, pgoff, NULL))
1936 		goto out;
1937 
1938 	/*
1939 	 * create a vma struct for an anonymous mapping
1940 	 */
1941 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1942 	if (!vma) {
1943 		vm_unacct_memory(len >> PAGE_SHIFT);
1944 		return -ENOMEM;
1945 	}
1946 
1947 	vma->vm_mm = mm;
1948 	vma->vm_start = addr;
1949 	vma->vm_end = addr + len;
1950 	vma->vm_pgoff = pgoff;
1951 	vma->vm_flags = flags;
1952 	vma->vm_page_prot = protection_map[flags &
1953 				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)];
1954 	vma_link(mm, vma, prev, rb_link, rb_parent);
1955 out:
1956 	mm->total_vm += len >> PAGE_SHIFT;
1957 	if (flags & VM_LOCKED) {
1958 		mm->locked_vm += len >> PAGE_SHIFT;
1959 		make_pages_present(addr, addr + len);
1960 	}
1961 	return addr;
1962 }
1963 
1964 EXPORT_SYMBOL(do_brk);
1965 
1966 /* Release all mmaps. */
1967 void exit_mmap(struct mm_struct *mm)
1968 {
1969 	struct mmu_gather *tlb;
1970 	struct vm_area_struct *vma = mm->mmap;
1971 	unsigned long nr_accounted = 0;
1972 	unsigned long end;
1973 
1974 	lru_add_drain();
1975 	flush_cache_mm(mm);
1976 	tlb = tlb_gather_mmu(mm, 1);
1977 	/* Don't update_hiwater_rss(mm) here, do_exit already did */
1978 	/* Use -1 here to ensure all VMAs in the mm are unmapped */
1979 	end = unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL);
1980 	vm_unacct_memory(nr_accounted);
1981 	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, 0);
1982 	tlb_finish_mmu(tlb, 0, end);
1983 
1984 	/*
1985 	 * Walk the list again, actually closing and freeing it,
1986 	 * with preemption enabled, without holding any MM locks.
1987 	 */
1988 	while (vma)
1989 		vma = remove_vma(vma);
1990 
1991 	BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
1992 }
1993 
1994 /* Insert vm structure into process list sorted by address
1995  * and into the inode's i_mmap tree.  If vm_file is non-NULL
1996  * then i_mmap_lock is taken here.
1997  */
1998 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
1999 {
2000 	struct vm_area_struct * __vma, * prev;
2001 	struct rb_node ** rb_link, * rb_parent;
2002 
2003 	/*
2004 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
2005 	 * until its first write fault, when page's anon_vma and index
2006 	 * are set.  But now set the vm_pgoff it will almost certainly
2007 	 * end up with (unless mremap moves it elsewhere before that
2008 	 * first wfault), so /proc/pid/maps tells a consistent story.
2009 	 *
2010 	 * By setting it to reflect the virtual start address of the
2011 	 * vma, merges and splits can happen in a seamless way, just
2012 	 * using the existing file pgoff checks and manipulations.
2013 	 * Similarly in do_mmap_pgoff and in do_brk.
2014 	 */
2015 	if (!vma->vm_file) {
2016 		BUG_ON(vma->anon_vma);
2017 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2018 	}
2019 	__vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent);
2020 	if (__vma && __vma->vm_start < vma->vm_end)
2021 		return -ENOMEM;
2022 	if ((vma->vm_flags & VM_ACCOUNT) &&
2023 	     security_vm_enough_memory(vma_pages(vma)))
2024 		return -ENOMEM;
2025 	vma_link(mm, vma, prev, rb_link, rb_parent);
2026 	return 0;
2027 }
2028 
2029 /*
2030  * Copy the vma structure to a new location in the same mm,
2031  * prior to moving page table entries, to effect an mremap move.
2032  */
2033 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2034 	unsigned long addr, unsigned long len, pgoff_t pgoff)
2035 {
2036 	struct vm_area_struct *vma = *vmap;
2037 	unsigned long vma_start = vma->vm_start;
2038 	struct mm_struct *mm = vma->vm_mm;
2039 	struct vm_area_struct *new_vma, *prev;
2040 	struct rb_node **rb_link, *rb_parent;
2041 	struct mempolicy *pol;
2042 
2043 	/*
2044 	 * If anonymous vma has not yet been faulted, update new pgoff
2045 	 * to match new location, to increase its chance of merging.
2046 	 */
2047 	if (!vma->vm_file && !vma->anon_vma)
2048 		pgoff = addr >> PAGE_SHIFT;
2049 
2050 	find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2051 	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2052 			vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2053 	if (new_vma) {
2054 		/*
2055 		 * Source vma may have been merged into new_vma
2056 		 */
2057 		if (vma_start >= new_vma->vm_start &&
2058 		    vma_start < new_vma->vm_end)
2059 			*vmap = new_vma;
2060 	} else {
2061 		new_vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
2062 		if (new_vma) {
2063 			*new_vma = *vma;
2064 			pol = mpol_copy(vma_policy(vma));
2065 			if (IS_ERR(pol)) {
2066 				kmem_cache_free(vm_area_cachep, new_vma);
2067 				return NULL;
2068 			}
2069 			vma_set_policy(new_vma, pol);
2070 			new_vma->vm_start = addr;
2071 			new_vma->vm_end = addr + len;
2072 			new_vma->vm_pgoff = pgoff;
2073 			if (new_vma->vm_file)
2074 				get_file(new_vma->vm_file);
2075 			if (new_vma->vm_ops && new_vma->vm_ops->open)
2076 				new_vma->vm_ops->open(new_vma);
2077 			vma_link(mm, new_vma, prev, rb_link, rb_parent);
2078 		}
2079 	}
2080 	return new_vma;
2081 }
2082 
2083 /*
2084  * Return true if the calling process may expand its vm space by the passed
2085  * number of pages
2086  */
2087 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2088 {
2089 	unsigned long cur = mm->total_vm;	/* pages */
2090 	unsigned long lim;
2091 
2092 	lim = current->signal->rlim[RLIMIT_AS].rlim_cur >> PAGE_SHIFT;
2093 
2094 	if (cur + npages > lim)
2095 		return 0;
2096 	return 1;
2097 }
2098