1 /* 2 * mm/mmap.c 3 * 4 * Written by obz. 5 * 6 * Address space accounting code <alan@redhat.com> 7 */ 8 9 #include <linux/slab.h> 10 #include <linux/mm.h> 11 #include <linux/shm.h> 12 #include <linux/mman.h> 13 #include <linux/pagemap.h> 14 #include <linux/swap.h> 15 #include <linux/syscalls.h> 16 #include <linux/capability.h> 17 #include <linux/init.h> 18 #include <linux/file.h> 19 #include <linux/fs.h> 20 #include <linux/personality.h> 21 #include <linux/security.h> 22 #include <linux/hugetlb.h> 23 #include <linux/profile.h> 24 #include <linux/module.h> 25 #include <linux/mount.h> 26 #include <linux/mempolicy.h> 27 #include <linux/rmap.h> 28 29 #include <asm/uaccess.h> 30 #include <asm/cacheflush.h> 31 #include <asm/tlb.h> 32 33 #ifndef arch_mmap_check 34 #define arch_mmap_check(addr, len, flags) (0) 35 #endif 36 37 static void unmap_region(struct mm_struct *mm, 38 struct vm_area_struct *vma, struct vm_area_struct *prev, 39 unsigned long start, unsigned long end); 40 41 /* 42 * WARNING: the debugging will use recursive algorithms so never enable this 43 * unless you know what you are doing. 44 */ 45 #undef DEBUG_MM_RB 46 47 /* description of effects of mapping type and prot in current implementation. 48 * this is due to the limited x86 page protection hardware. The expected 49 * behavior is in parens: 50 * 51 * map_type prot 52 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC 53 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes 54 * w: (no) no w: (no) no w: (yes) yes w: (no) no 55 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 56 * 57 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes 58 * w: (no) no w: (no) no w: (copy) copy w: (no) no 59 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 60 * 61 */ 62 pgprot_t protection_map[16] = { 63 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111, 64 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111 65 }; 66 67 pgprot_t vm_get_page_prot(unsigned long vm_flags) 68 { 69 return protection_map[vm_flags & 70 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]; 71 } 72 EXPORT_SYMBOL(vm_get_page_prot); 73 74 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */ 75 int sysctl_overcommit_ratio = 50; /* default is 50% */ 76 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT; 77 atomic_t vm_committed_space = ATOMIC_INIT(0); 78 79 /* 80 * Check that a process has enough memory to allocate a new virtual 81 * mapping. 0 means there is enough memory for the allocation to 82 * succeed and -ENOMEM implies there is not. 83 * 84 * We currently support three overcommit policies, which are set via the 85 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting 86 * 87 * Strict overcommit modes added 2002 Feb 26 by Alan Cox. 88 * Additional code 2002 Jul 20 by Robert Love. 89 * 90 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise. 91 * 92 * Note this is a helper function intended to be used by LSMs which 93 * wish to use this logic. 94 */ 95 int __vm_enough_memory(long pages, int cap_sys_admin) 96 { 97 unsigned long free, allowed; 98 99 vm_acct_memory(pages); 100 101 /* 102 * Sometimes we want to use more memory than we have 103 */ 104 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS) 105 return 0; 106 107 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) { 108 unsigned long n; 109 110 free = global_page_state(NR_FILE_PAGES); 111 free += nr_swap_pages; 112 113 /* 114 * Any slabs which are created with the 115 * SLAB_RECLAIM_ACCOUNT flag claim to have contents 116 * which are reclaimable, under pressure. The dentry 117 * cache and most inode caches should fall into this 118 */ 119 free += global_page_state(NR_SLAB_RECLAIMABLE); 120 121 /* 122 * Leave the last 3% for root 123 */ 124 if (!cap_sys_admin) 125 free -= free / 32; 126 127 if (free > pages) 128 return 0; 129 130 /* 131 * nr_free_pages() is very expensive on large systems, 132 * only call if we're about to fail. 133 */ 134 n = nr_free_pages(); 135 136 /* 137 * Leave reserved pages. The pages are not for anonymous pages. 138 */ 139 if (n <= totalreserve_pages) 140 goto error; 141 else 142 n -= totalreserve_pages; 143 144 /* 145 * Leave the last 3% for root 146 */ 147 if (!cap_sys_admin) 148 n -= n / 32; 149 free += n; 150 151 if (free > pages) 152 return 0; 153 154 goto error; 155 } 156 157 allowed = (totalram_pages - hugetlb_total_pages()) 158 * sysctl_overcommit_ratio / 100; 159 /* 160 * Leave the last 3% for root 161 */ 162 if (!cap_sys_admin) 163 allowed -= allowed / 32; 164 allowed += total_swap_pages; 165 166 /* Don't let a single process grow too big: 167 leave 3% of the size of this process for other processes */ 168 allowed -= current->mm->total_vm / 32; 169 170 /* 171 * cast `allowed' as a signed long because vm_committed_space 172 * sometimes has a negative value 173 */ 174 if (atomic_read(&vm_committed_space) < (long)allowed) 175 return 0; 176 error: 177 vm_unacct_memory(pages); 178 179 return -ENOMEM; 180 } 181 182 EXPORT_SYMBOL(__vm_enough_memory); 183 184 /* 185 * Requires inode->i_mapping->i_mmap_lock 186 */ 187 static void __remove_shared_vm_struct(struct vm_area_struct *vma, 188 struct file *file, struct address_space *mapping) 189 { 190 if (vma->vm_flags & VM_DENYWRITE) 191 atomic_inc(&file->f_dentry->d_inode->i_writecount); 192 if (vma->vm_flags & VM_SHARED) 193 mapping->i_mmap_writable--; 194 195 flush_dcache_mmap_lock(mapping); 196 if (unlikely(vma->vm_flags & VM_NONLINEAR)) 197 list_del_init(&vma->shared.vm_set.list); 198 else 199 vma_prio_tree_remove(vma, &mapping->i_mmap); 200 flush_dcache_mmap_unlock(mapping); 201 } 202 203 /* 204 * Unlink a file-based vm structure from its prio_tree, to hide 205 * vma from rmap and vmtruncate before freeing its page tables. 206 */ 207 void unlink_file_vma(struct vm_area_struct *vma) 208 { 209 struct file *file = vma->vm_file; 210 211 if (file) { 212 struct address_space *mapping = file->f_mapping; 213 spin_lock(&mapping->i_mmap_lock); 214 __remove_shared_vm_struct(vma, file, mapping); 215 spin_unlock(&mapping->i_mmap_lock); 216 } 217 } 218 219 /* 220 * Close a vm structure and free it, returning the next. 221 */ 222 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma) 223 { 224 struct vm_area_struct *next = vma->vm_next; 225 226 might_sleep(); 227 if (vma->vm_ops && vma->vm_ops->close) 228 vma->vm_ops->close(vma); 229 if (vma->vm_file) 230 fput(vma->vm_file); 231 mpol_free(vma_policy(vma)); 232 kmem_cache_free(vm_area_cachep, vma); 233 return next; 234 } 235 236 asmlinkage unsigned long sys_brk(unsigned long brk) 237 { 238 unsigned long rlim, retval; 239 unsigned long newbrk, oldbrk; 240 struct mm_struct *mm = current->mm; 241 242 down_write(&mm->mmap_sem); 243 244 if (brk < mm->end_code) 245 goto out; 246 247 /* 248 * Check against rlimit here. If this check is done later after the test 249 * of oldbrk with newbrk then it can escape the test and let the data 250 * segment grow beyond its set limit the in case where the limit is 251 * not page aligned -Ram Gupta 252 */ 253 rlim = current->signal->rlim[RLIMIT_DATA].rlim_cur; 254 if (rlim < RLIM_INFINITY && brk - mm->start_data > rlim) 255 goto out; 256 257 newbrk = PAGE_ALIGN(brk); 258 oldbrk = PAGE_ALIGN(mm->brk); 259 if (oldbrk == newbrk) 260 goto set_brk; 261 262 /* Always allow shrinking brk. */ 263 if (brk <= mm->brk) { 264 if (!do_munmap(mm, newbrk, oldbrk-newbrk)) 265 goto set_brk; 266 goto out; 267 } 268 269 /* Check against existing mmap mappings. */ 270 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE)) 271 goto out; 272 273 /* Ok, looks good - let it rip. */ 274 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk) 275 goto out; 276 set_brk: 277 mm->brk = brk; 278 out: 279 retval = mm->brk; 280 up_write(&mm->mmap_sem); 281 return retval; 282 } 283 284 #ifdef DEBUG_MM_RB 285 static int browse_rb(struct rb_root *root) 286 { 287 int i = 0, j; 288 struct rb_node *nd, *pn = NULL; 289 unsigned long prev = 0, pend = 0; 290 291 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 292 struct vm_area_struct *vma; 293 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 294 if (vma->vm_start < prev) 295 printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1; 296 if (vma->vm_start < pend) 297 printk("vm_start %lx pend %lx\n", vma->vm_start, pend); 298 if (vma->vm_start > vma->vm_end) 299 printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start); 300 i++; 301 pn = nd; 302 } 303 j = 0; 304 for (nd = pn; nd; nd = rb_prev(nd)) { 305 j++; 306 } 307 if (i != j) 308 printk("backwards %d, forwards %d\n", j, i), i = 0; 309 return i; 310 } 311 312 void validate_mm(struct mm_struct *mm) 313 { 314 int bug = 0; 315 int i = 0; 316 struct vm_area_struct *tmp = mm->mmap; 317 while (tmp) { 318 tmp = tmp->vm_next; 319 i++; 320 } 321 if (i != mm->map_count) 322 printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1; 323 i = browse_rb(&mm->mm_rb); 324 if (i != mm->map_count) 325 printk("map_count %d rb %d\n", mm->map_count, i), bug = 1; 326 BUG_ON(bug); 327 } 328 #else 329 #define validate_mm(mm) do { } while (0) 330 #endif 331 332 static struct vm_area_struct * 333 find_vma_prepare(struct mm_struct *mm, unsigned long addr, 334 struct vm_area_struct **pprev, struct rb_node ***rb_link, 335 struct rb_node ** rb_parent) 336 { 337 struct vm_area_struct * vma; 338 struct rb_node ** __rb_link, * __rb_parent, * rb_prev; 339 340 __rb_link = &mm->mm_rb.rb_node; 341 rb_prev = __rb_parent = NULL; 342 vma = NULL; 343 344 while (*__rb_link) { 345 struct vm_area_struct *vma_tmp; 346 347 __rb_parent = *__rb_link; 348 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb); 349 350 if (vma_tmp->vm_end > addr) { 351 vma = vma_tmp; 352 if (vma_tmp->vm_start <= addr) 353 return vma; 354 __rb_link = &__rb_parent->rb_left; 355 } else { 356 rb_prev = __rb_parent; 357 __rb_link = &__rb_parent->rb_right; 358 } 359 } 360 361 *pprev = NULL; 362 if (rb_prev) 363 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); 364 *rb_link = __rb_link; 365 *rb_parent = __rb_parent; 366 return vma; 367 } 368 369 static inline void 370 __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma, 371 struct vm_area_struct *prev, struct rb_node *rb_parent) 372 { 373 if (prev) { 374 vma->vm_next = prev->vm_next; 375 prev->vm_next = vma; 376 } else { 377 mm->mmap = vma; 378 if (rb_parent) 379 vma->vm_next = rb_entry(rb_parent, 380 struct vm_area_struct, vm_rb); 381 else 382 vma->vm_next = NULL; 383 } 384 } 385 386 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma, 387 struct rb_node **rb_link, struct rb_node *rb_parent) 388 { 389 rb_link_node(&vma->vm_rb, rb_parent, rb_link); 390 rb_insert_color(&vma->vm_rb, &mm->mm_rb); 391 } 392 393 static inline void __vma_link_file(struct vm_area_struct *vma) 394 { 395 struct file * file; 396 397 file = vma->vm_file; 398 if (file) { 399 struct address_space *mapping = file->f_mapping; 400 401 if (vma->vm_flags & VM_DENYWRITE) 402 atomic_dec(&file->f_dentry->d_inode->i_writecount); 403 if (vma->vm_flags & VM_SHARED) 404 mapping->i_mmap_writable++; 405 406 flush_dcache_mmap_lock(mapping); 407 if (unlikely(vma->vm_flags & VM_NONLINEAR)) 408 vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear); 409 else 410 vma_prio_tree_insert(vma, &mapping->i_mmap); 411 flush_dcache_mmap_unlock(mapping); 412 } 413 } 414 415 static void 416 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 417 struct vm_area_struct *prev, struct rb_node **rb_link, 418 struct rb_node *rb_parent) 419 { 420 __vma_link_list(mm, vma, prev, rb_parent); 421 __vma_link_rb(mm, vma, rb_link, rb_parent); 422 __anon_vma_link(vma); 423 } 424 425 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 426 struct vm_area_struct *prev, struct rb_node **rb_link, 427 struct rb_node *rb_parent) 428 { 429 struct address_space *mapping = NULL; 430 431 if (vma->vm_file) 432 mapping = vma->vm_file->f_mapping; 433 434 if (mapping) { 435 spin_lock(&mapping->i_mmap_lock); 436 vma->vm_truncate_count = mapping->truncate_count; 437 } 438 anon_vma_lock(vma); 439 440 __vma_link(mm, vma, prev, rb_link, rb_parent); 441 __vma_link_file(vma); 442 443 anon_vma_unlock(vma); 444 if (mapping) 445 spin_unlock(&mapping->i_mmap_lock); 446 447 mm->map_count++; 448 validate_mm(mm); 449 } 450 451 /* 452 * Helper for vma_adjust in the split_vma insert case: 453 * insert vm structure into list and rbtree and anon_vma, 454 * but it has already been inserted into prio_tree earlier. 455 */ 456 static void 457 __insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma) 458 { 459 struct vm_area_struct * __vma, * prev; 460 struct rb_node ** rb_link, * rb_parent; 461 462 __vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent); 463 BUG_ON(__vma && __vma->vm_start < vma->vm_end); 464 __vma_link(mm, vma, prev, rb_link, rb_parent); 465 mm->map_count++; 466 } 467 468 static inline void 469 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma, 470 struct vm_area_struct *prev) 471 { 472 prev->vm_next = vma->vm_next; 473 rb_erase(&vma->vm_rb, &mm->mm_rb); 474 if (mm->mmap_cache == vma) 475 mm->mmap_cache = prev; 476 } 477 478 /* 479 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that 480 * is already present in an i_mmap tree without adjusting the tree. 481 * The following helper function should be used when such adjustments 482 * are necessary. The "insert" vma (if any) is to be inserted 483 * before we drop the necessary locks. 484 */ 485 void vma_adjust(struct vm_area_struct *vma, unsigned long start, 486 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 487 { 488 struct mm_struct *mm = vma->vm_mm; 489 struct vm_area_struct *next = vma->vm_next; 490 struct vm_area_struct *importer = NULL; 491 struct address_space *mapping = NULL; 492 struct prio_tree_root *root = NULL; 493 struct file *file = vma->vm_file; 494 struct anon_vma *anon_vma = NULL; 495 long adjust_next = 0; 496 int remove_next = 0; 497 498 if (next && !insert) { 499 if (end >= next->vm_end) { 500 /* 501 * vma expands, overlapping all the next, and 502 * perhaps the one after too (mprotect case 6). 503 */ 504 again: remove_next = 1 + (end > next->vm_end); 505 end = next->vm_end; 506 anon_vma = next->anon_vma; 507 importer = vma; 508 } else if (end > next->vm_start) { 509 /* 510 * vma expands, overlapping part of the next: 511 * mprotect case 5 shifting the boundary up. 512 */ 513 adjust_next = (end - next->vm_start) >> PAGE_SHIFT; 514 anon_vma = next->anon_vma; 515 importer = vma; 516 } else if (end < vma->vm_end) { 517 /* 518 * vma shrinks, and !insert tells it's not 519 * split_vma inserting another: so it must be 520 * mprotect case 4 shifting the boundary down. 521 */ 522 adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT); 523 anon_vma = next->anon_vma; 524 importer = next; 525 } 526 } 527 528 if (file) { 529 mapping = file->f_mapping; 530 if (!(vma->vm_flags & VM_NONLINEAR)) 531 root = &mapping->i_mmap; 532 spin_lock(&mapping->i_mmap_lock); 533 if (importer && 534 vma->vm_truncate_count != next->vm_truncate_count) { 535 /* 536 * unmap_mapping_range might be in progress: 537 * ensure that the expanding vma is rescanned. 538 */ 539 importer->vm_truncate_count = 0; 540 } 541 if (insert) { 542 insert->vm_truncate_count = vma->vm_truncate_count; 543 /* 544 * Put into prio_tree now, so instantiated pages 545 * are visible to arm/parisc __flush_dcache_page 546 * throughout; but we cannot insert into address 547 * space until vma start or end is updated. 548 */ 549 __vma_link_file(insert); 550 } 551 } 552 553 /* 554 * When changing only vma->vm_end, we don't really need 555 * anon_vma lock: but is that case worth optimizing out? 556 */ 557 if (vma->anon_vma) 558 anon_vma = vma->anon_vma; 559 if (anon_vma) { 560 spin_lock(&anon_vma->lock); 561 /* 562 * Easily overlooked: when mprotect shifts the boundary, 563 * make sure the expanding vma has anon_vma set if the 564 * shrinking vma had, to cover any anon pages imported. 565 */ 566 if (importer && !importer->anon_vma) { 567 importer->anon_vma = anon_vma; 568 __anon_vma_link(importer); 569 } 570 } 571 572 if (root) { 573 flush_dcache_mmap_lock(mapping); 574 vma_prio_tree_remove(vma, root); 575 if (adjust_next) 576 vma_prio_tree_remove(next, root); 577 } 578 579 vma->vm_start = start; 580 vma->vm_end = end; 581 vma->vm_pgoff = pgoff; 582 if (adjust_next) { 583 next->vm_start += adjust_next << PAGE_SHIFT; 584 next->vm_pgoff += adjust_next; 585 } 586 587 if (root) { 588 if (adjust_next) 589 vma_prio_tree_insert(next, root); 590 vma_prio_tree_insert(vma, root); 591 flush_dcache_mmap_unlock(mapping); 592 } 593 594 if (remove_next) { 595 /* 596 * vma_merge has merged next into vma, and needs 597 * us to remove next before dropping the locks. 598 */ 599 __vma_unlink(mm, next, vma); 600 if (file) 601 __remove_shared_vm_struct(next, file, mapping); 602 if (next->anon_vma) 603 __anon_vma_merge(vma, next); 604 } else if (insert) { 605 /* 606 * split_vma has split insert from vma, and needs 607 * us to insert it before dropping the locks 608 * (it may either follow vma or precede it). 609 */ 610 __insert_vm_struct(mm, insert); 611 } 612 613 if (anon_vma) 614 spin_unlock(&anon_vma->lock); 615 if (mapping) 616 spin_unlock(&mapping->i_mmap_lock); 617 618 if (remove_next) { 619 if (file) 620 fput(file); 621 mm->map_count--; 622 mpol_free(vma_policy(next)); 623 kmem_cache_free(vm_area_cachep, next); 624 /* 625 * In mprotect's case 6 (see comments on vma_merge), 626 * we must remove another next too. It would clutter 627 * up the code too much to do both in one go. 628 */ 629 if (remove_next == 2) { 630 next = vma->vm_next; 631 goto again; 632 } 633 } 634 635 validate_mm(mm); 636 } 637 638 /* 639 * If the vma has a ->close operation then the driver probably needs to release 640 * per-vma resources, so we don't attempt to merge those. 641 */ 642 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP) 643 644 static inline int is_mergeable_vma(struct vm_area_struct *vma, 645 struct file *file, unsigned long vm_flags) 646 { 647 if (vma->vm_flags != vm_flags) 648 return 0; 649 if (vma->vm_file != file) 650 return 0; 651 if (vma->vm_ops && vma->vm_ops->close) 652 return 0; 653 return 1; 654 } 655 656 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1, 657 struct anon_vma *anon_vma2) 658 { 659 return !anon_vma1 || !anon_vma2 || (anon_vma1 == anon_vma2); 660 } 661 662 /* 663 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 664 * in front of (at a lower virtual address and file offset than) the vma. 665 * 666 * We cannot merge two vmas if they have differently assigned (non-NULL) 667 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 668 * 669 * We don't check here for the merged mmap wrapping around the end of pagecache 670 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which 671 * wrap, nor mmaps which cover the final page at index -1UL. 672 */ 673 static int 674 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags, 675 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff) 676 { 677 if (is_mergeable_vma(vma, file, vm_flags) && 678 is_mergeable_anon_vma(anon_vma, vma->anon_vma)) { 679 if (vma->vm_pgoff == vm_pgoff) 680 return 1; 681 } 682 return 0; 683 } 684 685 /* 686 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 687 * beyond (at a higher virtual address and file offset than) the vma. 688 * 689 * We cannot merge two vmas if they have differently assigned (non-NULL) 690 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 691 */ 692 static int 693 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags, 694 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff) 695 { 696 if (is_mergeable_vma(vma, file, vm_flags) && 697 is_mergeable_anon_vma(anon_vma, vma->anon_vma)) { 698 pgoff_t vm_pglen; 699 vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 700 if (vma->vm_pgoff + vm_pglen == vm_pgoff) 701 return 1; 702 } 703 return 0; 704 } 705 706 /* 707 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out 708 * whether that can be merged with its predecessor or its successor. 709 * Or both (it neatly fills a hole). 710 * 711 * In most cases - when called for mmap, brk or mremap - [addr,end) is 712 * certain not to be mapped by the time vma_merge is called; but when 713 * called for mprotect, it is certain to be already mapped (either at 714 * an offset within prev, or at the start of next), and the flags of 715 * this area are about to be changed to vm_flags - and the no-change 716 * case has already been eliminated. 717 * 718 * The following mprotect cases have to be considered, where AAAA is 719 * the area passed down from mprotect_fixup, never extending beyond one 720 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after: 721 * 722 * AAAA AAAA AAAA AAAA 723 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX 724 * cannot merge might become might become might become 725 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or 726 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or 727 * mremap move: PPPPNNNNNNNN 8 728 * AAAA 729 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN 730 * might become case 1 below case 2 below case 3 below 731 * 732 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX: 733 * mprotect_fixup updates vm_flags & vm_page_prot on successful return. 734 */ 735 struct vm_area_struct *vma_merge(struct mm_struct *mm, 736 struct vm_area_struct *prev, unsigned long addr, 737 unsigned long end, unsigned long vm_flags, 738 struct anon_vma *anon_vma, struct file *file, 739 pgoff_t pgoff, struct mempolicy *policy) 740 { 741 pgoff_t pglen = (end - addr) >> PAGE_SHIFT; 742 struct vm_area_struct *area, *next; 743 744 /* 745 * We later require that vma->vm_flags == vm_flags, 746 * so this tests vma->vm_flags & VM_SPECIAL, too. 747 */ 748 if (vm_flags & VM_SPECIAL) 749 return NULL; 750 751 if (prev) 752 next = prev->vm_next; 753 else 754 next = mm->mmap; 755 area = next; 756 if (next && next->vm_end == end) /* cases 6, 7, 8 */ 757 next = next->vm_next; 758 759 /* 760 * Can it merge with the predecessor? 761 */ 762 if (prev && prev->vm_end == addr && 763 mpol_equal(vma_policy(prev), policy) && 764 can_vma_merge_after(prev, vm_flags, 765 anon_vma, file, pgoff)) { 766 /* 767 * OK, it can. Can we now merge in the successor as well? 768 */ 769 if (next && end == next->vm_start && 770 mpol_equal(policy, vma_policy(next)) && 771 can_vma_merge_before(next, vm_flags, 772 anon_vma, file, pgoff+pglen) && 773 is_mergeable_anon_vma(prev->anon_vma, 774 next->anon_vma)) { 775 /* cases 1, 6 */ 776 vma_adjust(prev, prev->vm_start, 777 next->vm_end, prev->vm_pgoff, NULL); 778 } else /* cases 2, 5, 7 */ 779 vma_adjust(prev, prev->vm_start, 780 end, prev->vm_pgoff, NULL); 781 return prev; 782 } 783 784 /* 785 * Can this new request be merged in front of next? 786 */ 787 if (next && end == next->vm_start && 788 mpol_equal(policy, vma_policy(next)) && 789 can_vma_merge_before(next, vm_flags, 790 anon_vma, file, pgoff+pglen)) { 791 if (prev && addr < prev->vm_end) /* case 4 */ 792 vma_adjust(prev, prev->vm_start, 793 addr, prev->vm_pgoff, NULL); 794 else /* cases 3, 8 */ 795 vma_adjust(area, addr, next->vm_end, 796 next->vm_pgoff - pglen, NULL); 797 return area; 798 } 799 800 return NULL; 801 } 802 803 /* 804 * find_mergeable_anon_vma is used by anon_vma_prepare, to check 805 * neighbouring vmas for a suitable anon_vma, before it goes off 806 * to allocate a new anon_vma. It checks because a repetitive 807 * sequence of mprotects and faults may otherwise lead to distinct 808 * anon_vmas being allocated, preventing vma merge in subsequent 809 * mprotect. 810 */ 811 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) 812 { 813 struct vm_area_struct *near; 814 unsigned long vm_flags; 815 816 near = vma->vm_next; 817 if (!near) 818 goto try_prev; 819 820 /* 821 * Since only mprotect tries to remerge vmas, match flags 822 * which might be mprotected into each other later on. 823 * Neither mlock nor madvise tries to remerge at present, 824 * so leave their flags as obstructing a merge. 825 */ 826 vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC); 827 vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC); 828 829 if (near->anon_vma && vma->vm_end == near->vm_start && 830 mpol_equal(vma_policy(vma), vma_policy(near)) && 831 can_vma_merge_before(near, vm_flags, 832 NULL, vma->vm_file, vma->vm_pgoff + 833 ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT))) 834 return near->anon_vma; 835 try_prev: 836 /* 837 * It is potentially slow to have to call find_vma_prev here. 838 * But it's only on the first write fault on the vma, not 839 * every time, and we could devise a way to avoid it later 840 * (e.g. stash info in next's anon_vma_node when assigning 841 * an anon_vma, or when trying vma_merge). Another time. 842 */ 843 BUG_ON(find_vma_prev(vma->vm_mm, vma->vm_start, &near) != vma); 844 if (!near) 845 goto none; 846 847 vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC); 848 vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC); 849 850 if (near->anon_vma && near->vm_end == vma->vm_start && 851 mpol_equal(vma_policy(near), vma_policy(vma)) && 852 can_vma_merge_after(near, vm_flags, 853 NULL, vma->vm_file, vma->vm_pgoff)) 854 return near->anon_vma; 855 none: 856 /* 857 * There's no absolute need to look only at touching neighbours: 858 * we could search further afield for "compatible" anon_vmas. 859 * But it would probably just be a waste of time searching, 860 * or lead to too many vmas hanging off the same anon_vma. 861 * We're trying to allow mprotect remerging later on, 862 * not trying to minimize memory used for anon_vmas. 863 */ 864 return NULL; 865 } 866 867 #ifdef CONFIG_PROC_FS 868 void vm_stat_account(struct mm_struct *mm, unsigned long flags, 869 struct file *file, long pages) 870 { 871 const unsigned long stack_flags 872 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN); 873 874 if (file) { 875 mm->shared_vm += pages; 876 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC) 877 mm->exec_vm += pages; 878 } else if (flags & stack_flags) 879 mm->stack_vm += pages; 880 if (flags & (VM_RESERVED|VM_IO)) 881 mm->reserved_vm += pages; 882 } 883 #endif /* CONFIG_PROC_FS */ 884 885 /* 886 * The caller must hold down_write(current->mm->mmap_sem). 887 */ 888 889 unsigned long do_mmap_pgoff(struct file * file, unsigned long addr, 890 unsigned long len, unsigned long prot, 891 unsigned long flags, unsigned long pgoff) 892 { 893 struct mm_struct * mm = current->mm; 894 struct vm_area_struct * vma, * prev; 895 struct inode *inode; 896 unsigned int vm_flags; 897 int correct_wcount = 0; 898 int error; 899 struct rb_node ** rb_link, * rb_parent; 900 int accountable = 1; 901 unsigned long charged = 0, reqprot = prot; 902 903 /* 904 * Does the application expect PROT_READ to imply PROT_EXEC? 905 * 906 * (the exception is when the underlying filesystem is noexec 907 * mounted, in which case we dont add PROT_EXEC.) 908 */ 909 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC)) 910 if (!(file && (file->f_vfsmnt->mnt_flags & MNT_NOEXEC))) 911 prot |= PROT_EXEC; 912 913 if (!len) 914 return -EINVAL; 915 916 error = arch_mmap_check(addr, len, flags); 917 if (error) 918 return error; 919 920 /* Careful about overflows.. */ 921 len = PAGE_ALIGN(len); 922 if (!len || len > TASK_SIZE) 923 return -ENOMEM; 924 925 /* offset overflow? */ 926 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff) 927 return -EOVERFLOW; 928 929 /* Too many mappings? */ 930 if (mm->map_count > sysctl_max_map_count) 931 return -ENOMEM; 932 933 /* Obtain the address to map to. we verify (or select) it and ensure 934 * that it represents a valid section of the address space. 935 */ 936 addr = get_unmapped_area(file, addr, len, pgoff, flags); 937 if (addr & ~PAGE_MASK) 938 return addr; 939 940 /* Do simple checking here so the lower-level routines won't have 941 * to. we assume access permissions have been handled by the open 942 * of the memory object, so we don't do any here. 943 */ 944 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) | 945 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 946 947 if (flags & MAP_LOCKED) { 948 if (!can_do_mlock()) 949 return -EPERM; 950 vm_flags |= VM_LOCKED; 951 } 952 /* mlock MCL_FUTURE? */ 953 if (vm_flags & VM_LOCKED) { 954 unsigned long locked, lock_limit; 955 locked = len >> PAGE_SHIFT; 956 locked += mm->locked_vm; 957 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur; 958 lock_limit >>= PAGE_SHIFT; 959 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 960 return -EAGAIN; 961 } 962 963 inode = file ? file->f_dentry->d_inode : NULL; 964 965 if (file) { 966 switch (flags & MAP_TYPE) { 967 case MAP_SHARED: 968 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE)) 969 return -EACCES; 970 971 /* 972 * Make sure we don't allow writing to an append-only 973 * file.. 974 */ 975 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE)) 976 return -EACCES; 977 978 /* 979 * Make sure there are no mandatory locks on the file. 980 */ 981 if (locks_verify_locked(inode)) 982 return -EAGAIN; 983 984 vm_flags |= VM_SHARED | VM_MAYSHARE; 985 if (!(file->f_mode & FMODE_WRITE)) 986 vm_flags &= ~(VM_MAYWRITE | VM_SHARED); 987 988 /* fall through */ 989 case MAP_PRIVATE: 990 if (!(file->f_mode & FMODE_READ)) 991 return -EACCES; 992 if (file->f_vfsmnt->mnt_flags & MNT_NOEXEC) { 993 if (vm_flags & VM_EXEC) 994 return -EPERM; 995 vm_flags &= ~VM_MAYEXEC; 996 } 997 if (is_file_hugepages(file)) 998 accountable = 0; 999 1000 if (!file->f_op || !file->f_op->mmap) 1001 return -ENODEV; 1002 break; 1003 1004 default: 1005 return -EINVAL; 1006 } 1007 } else { 1008 switch (flags & MAP_TYPE) { 1009 case MAP_SHARED: 1010 vm_flags |= VM_SHARED | VM_MAYSHARE; 1011 break; 1012 case MAP_PRIVATE: 1013 /* 1014 * Set pgoff according to addr for anon_vma. 1015 */ 1016 pgoff = addr >> PAGE_SHIFT; 1017 break; 1018 default: 1019 return -EINVAL; 1020 } 1021 } 1022 1023 error = security_file_mmap(file, reqprot, prot, flags); 1024 if (error) 1025 return error; 1026 1027 /* Clear old maps */ 1028 error = -ENOMEM; 1029 munmap_back: 1030 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent); 1031 if (vma && vma->vm_start < addr + len) { 1032 if (do_munmap(mm, addr, len)) 1033 return -ENOMEM; 1034 goto munmap_back; 1035 } 1036 1037 /* Check against address space limit. */ 1038 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) 1039 return -ENOMEM; 1040 1041 if (accountable && (!(flags & MAP_NORESERVE) || 1042 sysctl_overcommit_memory == OVERCOMMIT_NEVER)) { 1043 if (vm_flags & VM_SHARED) { 1044 /* Check memory availability in shmem_file_setup? */ 1045 vm_flags |= VM_ACCOUNT; 1046 } else if (vm_flags & VM_WRITE) { 1047 /* 1048 * Private writable mapping: check memory availability 1049 */ 1050 charged = len >> PAGE_SHIFT; 1051 if (security_vm_enough_memory(charged)) 1052 return -ENOMEM; 1053 vm_flags |= VM_ACCOUNT; 1054 } 1055 } 1056 1057 /* 1058 * Can we just expand an old private anonymous mapping? 1059 * The VM_SHARED test is necessary because shmem_zero_setup 1060 * will create the file object for a shared anonymous map below. 1061 */ 1062 if (!file && !(vm_flags & VM_SHARED) && 1063 vma_merge(mm, prev, addr, addr + len, vm_flags, 1064 NULL, NULL, pgoff, NULL)) 1065 goto out; 1066 1067 /* 1068 * Determine the object being mapped and call the appropriate 1069 * specific mapper. the address has already been validated, but 1070 * not unmapped, but the maps are removed from the list. 1071 */ 1072 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 1073 if (!vma) { 1074 error = -ENOMEM; 1075 goto unacct_error; 1076 } 1077 1078 vma->vm_mm = mm; 1079 vma->vm_start = addr; 1080 vma->vm_end = addr + len; 1081 vma->vm_flags = vm_flags; 1082 vma->vm_page_prot = protection_map[vm_flags & 1083 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]; 1084 vma->vm_pgoff = pgoff; 1085 1086 if (file) { 1087 error = -EINVAL; 1088 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1089 goto free_vma; 1090 if (vm_flags & VM_DENYWRITE) { 1091 error = deny_write_access(file); 1092 if (error) 1093 goto free_vma; 1094 correct_wcount = 1; 1095 } 1096 vma->vm_file = file; 1097 get_file(file); 1098 error = file->f_op->mmap(file, vma); 1099 if (error) 1100 goto unmap_and_free_vma; 1101 } else if (vm_flags & VM_SHARED) { 1102 error = shmem_zero_setup(vma); 1103 if (error) 1104 goto free_vma; 1105 } 1106 1107 /* We set VM_ACCOUNT in a shared mapping's vm_flags, to inform 1108 * shmem_zero_setup (perhaps called through /dev/zero's ->mmap) 1109 * that memory reservation must be checked; but that reservation 1110 * belongs to shared memory object, not to vma: so now clear it. 1111 */ 1112 if ((vm_flags & (VM_SHARED|VM_ACCOUNT)) == (VM_SHARED|VM_ACCOUNT)) 1113 vma->vm_flags &= ~VM_ACCOUNT; 1114 1115 /* Can addr have changed?? 1116 * 1117 * Answer: Yes, several device drivers can do it in their 1118 * f_op->mmap method. -DaveM 1119 */ 1120 addr = vma->vm_start; 1121 pgoff = vma->vm_pgoff; 1122 vm_flags = vma->vm_flags; 1123 1124 if (vma_wants_writenotify(vma)) 1125 vma->vm_page_prot = 1126 protection_map[vm_flags & (VM_READ|VM_WRITE|VM_EXEC)]; 1127 1128 if (!file || !vma_merge(mm, prev, addr, vma->vm_end, 1129 vma->vm_flags, NULL, file, pgoff, vma_policy(vma))) { 1130 file = vma->vm_file; 1131 vma_link(mm, vma, prev, rb_link, rb_parent); 1132 if (correct_wcount) 1133 atomic_inc(&inode->i_writecount); 1134 } else { 1135 if (file) { 1136 if (correct_wcount) 1137 atomic_inc(&inode->i_writecount); 1138 fput(file); 1139 } 1140 mpol_free(vma_policy(vma)); 1141 kmem_cache_free(vm_area_cachep, vma); 1142 } 1143 out: 1144 mm->total_vm += len >> PAGE_SHIFT; 1145 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT); 1146 if (vm_flags & VM_LOCKED) { 1147 mm->locked_vm += len >> PAGE_SHIFT; 1148 make_pages_present(addr, addr + len); 1149 } 1150 if (flags & MAP_POPULATE) { 1151 up_write(&mm->mmap_sem); 1152 sys_remap_file_pages(addr, len, 0, 1153 pgoff, flags & MAP_NONBLOCK); 1154 down_write(&mm->mmap_sem); 1155 } 1156 return addr; 1157 1158 unmap_and_free_vma: 1159 if (correct_wcount) 1160 atomic_inc(&inode->i_writecount); 1161 vma->vm_file = NULL; 1162 fput(file); 1163 1164 /* Undo any partial mapping done by a device driver. */ 1165 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end); 1166 charged = 0; 1167 free_vma: 1168 kmem_cache_free(vm_area_cachep, vma); 1169 unacct_error: 1170 if (charged) 1171 vm_unacct_memory(charged); 1172 return error; 1173 } 1174 1175 EXPORT_SYMBOL(do_mmap_pgoff); 1176 1177 /* Get an address range which is currently unmapped. 1178 * For shmat() with addr=0. 1179 * 1180 * Ugly calling convention alert: 1181 * Return value with the low bits set means error value, 1182 * ie 1183 * if (ret & ~PAGE_MASK) 1184 * error = ret; 1185 * 1186 * This function "knows" that -ENOMEM has the bits set. 1187 */ 1188 #ifndef HAVE_ARCH_UNMAPPED_AREA 1189 unsigned long 1190 arch_get_unmapped_area(struct file *filp, unsigned long addr, 1191 unsigned long len, unsigned long pgoff, unsigned long flags) 1192 { 1193 struct mm_struct *mm = current->mm; 1194 struct vm_area_struct *vma; 1195 unsigned long start_addr; 1196 1197 if (len > TASK_SIZE) 1198 return -ENOMEM; 1199 1200 if (addr) { 1201 addr = PAGE_ALIGN(addr); 1202 vma = find_vma(mm, addr); 1203 if (TASK_SIZE - len >= addr && 1204 (!vma || addr + len <= vma->vm_start)) 1205 return addr; 1206 } 1207 if (len > mm->cached_hole_size) { 1208 start_addr = addr = mm->free_area_cache; 1209 } else { 1210 start_addr = addr = TASK_UNMAPPED_BASE; 1211 mm->cached_hole_size = 0; 1212 } 1213 1214 full_search: 1215 for (vma = find_vma(mm, addr); ; vma = vma->vm_next) { 1216 /* At this point: (!vma || addr < vma->vm_end). */ 1217 if (TASK_SIZE - len < addr) { 1218 /* 1219 * Start a new search - just in case we missed 1220 * some holes. 1221 */ 1222 if (start_addr != TASK_UNMAPPED_BASE) { 1223 addr = TASK_UNMAPPED_BASE; 1224 start_addr = addr; 1225 mm->cached_hole_size = 0; 1226 goto full_search; 1227 } 1228 return -ENOMEM; 1229 } 1230 if (!vma || addr + len <= vma->vm_start) { 1231 /* 1232 * Remember the place where we stopped the search: 1233 */ 1234 mm->free_area_cache = addr + len; 1235 return addr; 1236 } 1237 if (addr + mm->cached_hole_size < vma->vm_start) 1238 mm->cached_hole_size = vma->vm_start - addr; 1239 addr = vma->vm_end; 1240 } 1241 } 1242 #endif 1243 1244 void arch_unmap_area(struct mm_struct *mm, unsigned long addr) 1245 { 1246 /* 1247 * Is this a new hole at the lowest possible address? 1248 */ 1249 if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) { 1250 mm->free_area_cache = addr; 1251 mm->cached_hole_size = ~0UL; 1252 } 1253 } 1254 1255 /* 1256 * This mmap-allocator allocates new areas top-down from below the 1257 * stack's low limit (the base): 1258 */ 1259 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 1260 unsigned long 1261 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0, 1262 const unsigned long len, const unsigned long pgoff, 1263 const unsigned long flags) 1264 { 1265 struct vm_area_struct *vma; 1266 struct mm_struct *mm = current->mm; 1267 unsigned long addr = addr0; 1268 1269 /* requested length too big for entire address space */ 1270 if (len > TASK_SIZE) 1271 return -ENOMEM; 1272 1273 /* requesting a specific address */ 1274 if (addr) { 1275 addr = PAGE_ALIGN(addr); 1276 vma = find_vma(mm, addr); 1277 if (TASK_SIZE - len >= addr && 1278 (!vma || addr + len <= vma->vm_start)) 1279 return addr; 1280 } 1281 1282 /* check if free_area_cache is useful for us */ 1283 if (len <= mm->cached_hole_size) { 1284 mm->cached_hole_size = 0; 1285 mm->free_area_cache = mm->mmap_base; 1286 } 1287 1288 /* either no address requested or can't fit in requested address hole */ 1289 addr = mm->free_area_cache; 1290 1291 /* make sure it can fit in the remaining address space */ 1292 if (addr > len) { 1293 vma = find_vma(mm, addr-len); 1294 if (!vma || addr <= vma->vm_start) 1295 /* remember the address as a hint for next time */ 1296 return (mm->free_area_cache = addr-len); 1297 } 1298 1299 if (mm->mmap_base < len) 1300 goto bottomup; 1301 1302 addr = mm->mmap_base-len; 1303 1304 do { 1305 /* 1306 * Lookup failure means no vma is above this address, 1307 * else if new region fits below vma->vm_start, 1308 * return with success: 1309 */ 1310 vma = find_vma(mm, addr); 1311 if (!vma || addr+len <= vma->vm_start) 1312 /* remember the address as a hint for next time */ 1313 return (mm->free_area_cache = addr); 1314 1315 /* remember the largest hole we saw so far */ 1316 if (addr + mm->cached_hole_size < vma->vm_start) 1317 mm->cached_hole_size = vma->vm_start - addr; 1318 1319 /* try just below the current vma->vm_start */ 1320 addr = vma->vm_start-len; 1321 } while (len < vma->vm_start); 1322 1323 bottomup: 1324 /* 1325 * A failed mmap() very likely causes application failure, 1326 * so fall back to the bottom-up function here. This scenario 1327 * can happen with large stack limits and large mmap() 1328 * allocations. 1329 */ 1330 mm->cached_hole_size = ~0UL; 1331 mm->free_area_cache = TASK_UNMAPPED_BASE; 1332 addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags); 1333 /* 1334 * Restore the topdown base: 1335 */ 1336 mm->free_area_cache = mm->mmap_base; 1337 mm->cached_hole_size = ~0UL; 1338 1339 return addr; 1340 } 1341 #endif 1342 1343 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr) 1344 { 1345 /* 1346 * Is this a new hole at the highest possible address? 1347 */ 1348 if (addr > mm->free_area_cache) 1349 mm->free_area_cache = addr; 1350 1351 /* dont allow allocations above current base */ 1352 if (mm->free_area_cache > mm->mmap_base) 1353 mm->free_area_cache = mm->mmap_base; 1354 } 1355 1356 unsigned long 1357 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 1358 unsigned long pgoff, unsigned long flags) 1359 { 1360 unsigned long ret; 1361 1362 if (!(flags & MAP_FIXED)) { 1363 unsigned long (*get_area)(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 1364 1365 get_area = current->mm->get_unmapped_area; 1366 if (file && file->f_op && file->f_op->get_unmapped_area) 1367 get_area = file->f_op->get_unmapped_area; 1368 addr = get_area(file, addr, len, pgoff, flags); 1369 if (IS_ERR_VALUE(addr)) 1370 return addr; 1371 } 1372 1373 if (addr > TASK_SIZE - len) 1374 return -ENOMEM; 1375 if (addr & ~PAGE_MASK) 1376 return -EINVAL; 1377 if (file && is_file_hugepages(file)) { 1378 /* 1379 * Check if the given range is hugepage aligned, and 1380 * can be made suitable for hugepages. 1381 */ 1382 ret = prepare_hugepage_range(addr, len, pgoff); 1383 } else { 1384 /* 1385 * Ensure that a normal request is not falling in a 1386 * reserved hugepage range. For some archs like IA-64, 1387 * there is a separate region for hugepages. 1388 */ 1389 ret = is_hugepage_only_range(current->mm, addr, len); 1390 } 1391 if (ret) 1392 return -EINVAL; 1393 return addr; 1394 } 1395 1396 EXPORT_SYMBOL(get_unmapped_area); 1397 1398 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 1399 struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr) 1400 { 1401 struct vm_area_struct *vma = NULL; 1402 1403 if (mm) { 1404 /* Check the cache first. */ 1405 /* (Cache hit rate is typically around 35%.) */ 1406 vma = mm->mmap_cache; 1407 if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) { 1408 struct rb_node * rb_node; 1409 1410 rb_node = mm->mm_rb.rb_node; 1411 vma = NULL; 1412 1413 while (rb_node) { 1414 struct vm_area_struct * vma_tmp; 1415 1416 vma_tmp = rb_entry(rb_node, 1417 struct vm_area_struct, vm_rb); 1418 1419 if (vma_tmp->vm_end > addr) { 1420 vma = vma_tmp; 1421 if (vma_tmp->vm_start <= addr) 1422 break; 1423 rb_node = rb_node->rb_left; 1424 } else 1425 rb_node = rb_node->rb_right; 1426 } 1427 if (vma) 1428 mm->mmap_cache = vma; 1429 } 1430 } 1431 return vma; 1432 } 1433 1434 EXPORT_SYMBOL(find_vma); 1435 1436 /* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */ 1437 struct vm_area_struct * 1438 find_vma_prev(struct mm_struct *mm, unsigned long addr, 1439 struct vm_area_struct **pprev) 1440 { 1441 struct vm_area_struct *vma = NULL, *prev = NULL; 1442 struct rb_node * rb_node; 1443 if (!mm) 1444 goto out; 1445 1446 /* Guard against addr being lower than the first VMA */ 1447 vma = mm->mmap; 1448 1449 /* Go through the RB tree quickly. */ 1450 rb_node = mm->mm_rb.rb_node; 1451 1452 while (rb_node) { 1453 struct vm_area_struct *vma_tmp; 1454 vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb); 1455 1456 if (addr < vma_tmp->vm_end) { 1457 rb_node = rb_node->rb_left; 1458 } else { 1459 prev = vma_tmp; 1460 if (!prev->vm_next || (addr < prev->vm_next->vm_end)) 1461 break; 1462 rb_node = rb_node->rb_right; 1463 } 1464 } 1465 1466 out: 1467 *pprev = prev; 1468 return prev ? prev->vm_next : vma; 1469 } 1470 1471 /* 1472 * Verify that the stack growth is acceptable and 1473 * update accounting. This is shared with both the 1474 * grow-up and grow-down cases. 1475 */ 1476 static int acct_stack_growth(struct vm_area_struct * vma, unsigned long size, unsigned long grow) 1477 { 1478 struct mm_struct *mm = vma->vm_mm; 1479 struct rlimit *rlim = current->signal->rlim; 1480 1481 /* address space limit tests */ 1482 if (!may_expand_vm(mm, grow)) 1483 return -ENOMEM; 1484 1485 /* Stack limit test */ 1486 if (size > rlim[RLIMIT_STACK].rlim_cur) 1487 return -ENOMEM; 1488 1489 /* mlock limit tests */ 1490 if (vma->vm_flags & VM_LOCKED) { 1491 unsigned long locked; 1492 unsigned long limit; 1493 locked = mm->locked_vm + grow; 1494 limit = rlim[RLIMIT_MEMLOCK].rlim_cur >> PAGE_SHIFT; 1495 if (locked > limit && !capable(CAP_IPC_LOCK)) 1496 return -ENOMEM; 1497 } 1498 1499 /* 1500 * Overcommit.. This must be the final test, as it will 1501 * update security statistics. 1502 */ 1503 if (security_vm_enough_memory(grow)) 1504 return -ENOMEM; 1505 1506 /* Ok, everything looks good - let it rip */ 1507 mm->total_vm += grow; 1508 if (vma->vm_flags & VM_LOCKED) 1509 mm->locked_vm += grow; 1510 vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow); 1511 return 0; 1512 } 1513 1514 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64) 1515 /* 1516 * PA-RISC uses this for its stack; IA64 for its Register Backing Store. 1517 * vma is the last one with address > vma->vm_end. Have to extend vma. 1518 */ 1519 #ifndef CONFIG_IA64 1520 static inline 1521 #endif 1522 int expand_upwards(struct vm_area_struct *vma, unsigned long address) 1523 { 1524 int error; 1525 1526 if (!(vma->vm_flags & VM_GROWSUP)) 1527 return -EFAULT; 1528 1529 /* 1530 * We must make sure the anon_vma is allocated 1531 * so that the anon_vma locking is not a noop. 1532 */ 1533 if (unlikely(anon_vma_prepare(vma))) 1534 return -ENOMEM; 1535 anon_vma_lock(vma); 1536 1537 /* 1538 * vma->vm_start/vm_end cannot change under us because the caller 1539 * is required to hold the mmap_sem in read mode. We need the 1540 * anon_vma lock to serialize against concurrent expand_stacks. 1541 */ 1542 address += 4 + PAGE_SIZE - 1; 1543 address &= PAGE_MASK; 1544 error = 0; 1545 1546 /* Somebody else might have raced and expanded it already */ 1547 if (address > vma->vm_end) { 1548 unsigned long size, grow; 1549 1550 size = address - vma->vm_start; 1551 grow = (address - vma->vm_end) >> PAGE_SHIFT; 1552 1553 error = acct_stack_growth(vma, size, grow); 1554 if (!error) 1555 vma->vm_end = address; 1556 } 1557 anon_vma_unlock(vma); 1558 return error; 1559 } 1560 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */ 1561 1562 #ifdef CONFIG_STACK_GROWSUP 1563 int expand_stack(struct vm_area_struct *vma, unsigned long address) 1564 { 1565 return expand_upwards(vma, address); 1566 } 1567 1568 struct vm_area_struct * 1569 find_extend_vma(struct mm_struct *mm, unsigned long addr) 1570 { 1571 struct vm_area_struct *vma, *prev; 1572 1573 addr &= PAGE_MASK; 1574 vma = find_vma_prev(mm, addr, &prev); 1575 if (vma && (vma->vm_start <= addr)) 1576 return vma; 1577 if (!prev || expand_stack(prev, addr)) 1578 return NULL; 1579 if (prev->vm_flags & VM_LOCKED) { 1580 make_pages_present(addr, prev->vm_end); 1581 } 1582 return prev; 1583 } 1584 #else 1585 /* 1586 * vma is the first one with address < vma->vm_start. Have to extend vma. 1587 */ 1588 int expand_stack(struct vm_area_struct *vma, unsigned long address) 1589 { 1590 int error; 1591 1592 /* 1593 * We must make sure the anon_vma is allocated 1594 * so that the anon_vma locking is not a noop. 1595 */ 1596 if (unlikely(anon_vma_prepare(vma))) 1597 return -ENOMEM; 1598 anon_vma_lock(vma); 1599 1600 /* 1601 * vma->vm_start/vm_end cannot change under us because the caller 1602 * is required to hold the mmap_sem in read mode. We need the 1603 * anon_vma lock to serialize against concurrent expand_stacks. 1604 */ 1605 address &= PAGE_MASK; 1606 error = 0; 1607 1608 /* Somebody else might have raced and expanded it already */ 1609 if (address < vma->vm_start) { 1610 unsigned long size, grow; 1611 1612 size = vma->vm_end - address; 1613 grow = (vma->vm_start - address) >> PAGE_SHIFT; 1614 1615 error = acct_stack_growth(vma, size, grow); 1616 if (!error) { 1617 vma->vm_start = address; 1618 vma->vm_pgoff -= grow; 1619 } 1620 } 1621 anon_vma_unlock(vma); 1622 return error; 1623 } 1624 1625 struct vm_area_struct * 1626 find_extend_vma(struct mm_struct * mm, unsigned long addr) 1627 { 1628 struct vm_area_struct * vma; 1629 unsigned long start; 1630 1631 addr &= PAGE_MASK; 1632 vma = find_vma(mm,addr); 1633 if (!vma) 1634 return NULL; 1635 if (vma->vm_start <= addr) 1636 return vma; 1637 if (!(vma->vm_flags & VM_GROWSDOWN)) 1638 return NULL; 1639 start = vma->vm_start; 1640 if (expand_stack(vma, addr)) 1641 return NULL; 1642 if (vma->vm_flags & VM_LOCKED) { 1643 make_pages_present(addr, start); 1644 } 1645 return vma; 1646 } 1647 #endif 1648 1649 /* 1650 * Ok - we have the memory areas we should free on the vma list, 1651 * so release them, and do the vma updates. 1652 * 1653 * Called with the mm semaphore held. 1654 */ 1655 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma) 1656 { 1657 /* Update high watermark before we lower total_vm */ 1658 update_hiwater_vm(mm); 1659 do { 1660 long nrpages = vma_pages(vma); 1661 1662 mm->total_vm -= nrpages; 1663 if (vma->vm_flags & VM_LOCKED) 1664 mm->locked_vm -= nrpages; 1665 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages); 1666 vma = remove_vma(vma); 1667 } while (vma); 1668 validate_mm(mm); 1669 } 1670 1671 /* 1672 * Get rid of page table information in the indicated region. 1673 * 1674 * Called with the mm semaphore held. 1675 */ 1676 static void unmap_region(struct mm_struct *mm, 1677 struct vm_area_struct *vma, struct vm_area_struct *prev, 1678 unsigned long start, unsigned long end) 1679 { 1680 struct vm_area_struct *next = prev? prev->vm_next: mm->mmap; 1681 struct mmu_gather *tlb; 1682 unsigned long nr_accounted = 0; 1683 1684 lru_add_drain(); 1685 tlb = tlb_gather_mmu(mm, 0); 1686 update_hiwater_rss(mm); 1687 unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL); 1688 vm_unacct_memory(nr_accounted); 1689 free_pgtables(&tlb, vma, prev? prev->vm_end: FIRST_USER_ADDRESS, 1690 next? next->vm_start: 0); 1691 tlb_finish_mmu(tlb, start, end); 1692 } 1693 1694 /* 1695 * Create a list of vma's touched by the unmap, removing them from the mm's 1696 * vma list as we go.. 1697 */ 1698 static void 1699 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma, 1700 struct vm_area_struct *prev, unsigned long end) 1701 { 1702 struct vm_area_struct **insertion_point; 1703 struct vm_area_struct *tail_vma = NULL; 1704 unsigned long addr; 1705 1706 insertion_point = (prev ? &prev->vm_next : &mm->mmap); 1707 do { 1708 rb_erase(&vma->vm_rb, &mm->mm_rb); 1709 mm->map_count--; 1710 tail_vma = vma; 1711 vma = vma->vm_next; 1712 } while (vma && vma->vm_start < end); 1713 *insertion_point = vma; 1714 tail_vma->vm_next = NULL; 1715 if (mm->unmap_area == arch_unmap_area) 1716 addr = prev ? prev->vm_end : mm->mmap_base; 1717 else 1718 addr = vma ? vma->vm_start : mm->mmap_base; 1719 mm->unmap_area(mm, addr); 1720 mm->mmap_cache = NULL; /* Kill the cache. */ 1721 } 1722 1723 /* 1724 * Split a vma into two pieces at address 'addr', a new vma is allocated 1725 * either for the first part or the the tail. 1726 */ 1727 int split_vma(struct mm_struct * mm, struct vm_area_struct * vma, 1728 unsigned long addr, int new_below) 1729 { 1730 struct mempolicy *pol; 1731 struct vm_area_struct *new; 1732 1733 if (is_vm_hugetlb_page(vma) && (addr & ~HPAGE_MASK)) 1734 return -EINVAL; 1735 1736 if (mm->map_count >= sysctl_max_map_count) 1737 return -ENOMEM; 1738 1739 new = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL); 1740 if (!new) 1741 return -ENOMEM; 1742 1743 /* most fields are the same, copy all, and then fixup */ 1744 *new = *vma; 1745 1746 if (new_below) 1747 new->vm_end = addr; 1748 else { 1749 new->vm_start = addr; 1750 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); 1751 } 1752 1753 pol = mpol_copy(vma_policy(vma)); 1754 if (IS_ERR(pol)) { 1755 kmem_cache_free(vm_area_cachep, new); 1756 return PTR_ERR(pol); 1757 } 1758 vma_set_policy(new, pol); 1759 1760 if (new->vm_file) 1761 get_file(new->vm_file); 1762 1763 if (new->vm_ops && new->vm_ops->open) 1764 new->vm_ops->open(new); 1765 1766 if (new_below) 1767 vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff + 1768 ((addr - new->vm_start) >> PAGE_SHIFT), new); 1769 else 1770 vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new); 1771 1772 return 0; 1773 } 1774 1775 /* Munmap is split into 2 main parts -- this part which finds 1776 * what needs doing, and the areas themselves, which do the 1777 * work. This now handles partial unmappings. 1778 * Jeremy Fitzhardinge <jeremy@goop.org> 1779 */ 1780 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len) 1781 { 1782 unsigned long end; 1783 struct vm_area_struct *vma, *prev, *last; 1784 1785 if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start) 1786 return -EINVAL; 1787 1788 if ((len = PAGE_ALIGN(len)) == 0) 1789 return -EINVAL; 1790 1791 /* Find the first overlapping VMA */ 1792 vma = find_vma_prev(mm, start, &prev); 1793 if (!vma) 1794 return 0; 1795 /* we have start < vma->vm_end */ 1796 1797 /* if it doesn't overlap, we have nothing.. */ 1798 end = start + len; 1799 if (vma->vm_start >= end) 1800 return 0; 1801 1802 /* 1803 * If we need to split any vma, do it now to save pain later. 1804 * 1805 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially 1806 * unmapped vm_area_struct will remain in use: so lower split_vma 1807 * places tmp vma above, and higher split_vma places tmp vma below. 1808 */ 1809 if (start > vma->vm_start) { 1810 int error = split_vma(mm, vma, start, 0); 1811 if (error) 1812 return error; 1813 prev = vma; 1814 } 1815 1816 /* Does it split the last one? */ 1817 last = find_vma(mm, end); 1818 if (last && end > last->vm_start) { 1819 int error = split_vma(mm, last, end, 1); 1820 if (error) 1821 return error; 1822 } 1823 vma = prev? prev->vm_next: mm->mmap; 1824 1825 /* 1826 * Remove the vma's, and unmap the actual pages 1827 */ 1828 detach_vmas_to_be_unmapped(mm, vma, prev, end); 1829 unmap_region(mm, vma, prev, start, end); 1830 1831 /* Fix up all other VM information */ 1832 remove_vma_list(mm, vma); 1833 1834 return 0; 1835 } 1836 1837 EXPORT_SYMBOL(do_munmap); 1838 1839 asmlinkage long sys_munmap(unsigned long addr, size_t len) 1840 { 1841 int ret; 1842 struct mm_struct *mm = current->mm; 1843 1844 profile_munmap(addr); 1845 1846 down_write(&mm->mmap_sem); 1847 ret = do_munmap(mm, addr, len); 1848 up_write(&mm->mmap_sem); 1849 return ret; 1850 } 1851 1852 static inline void verify_mm_writelocked(struct mm_struct *mm) 1853 { 1854 #ifdef CONFIG_DEBUG_VM 1855 if (unlikely(down_read_trylock(&mm->mmap_sem))) { 1856 WARN_ON(1); 1857 up_read(&mm->mmap_sem); 1858 } 1859 #endif 1860 } 1861 1862 /* 1863 * this is really a simplified "do_mmap". it only handles 1864 * anonymous maps. eventually we may be able to do some 1865 * brk-specific accounting here. 1866 */ 1867 unsigned long do_brk(unsigned long addr, unsigned long len) 1868 { 1869 struct mm_struct * mm = current->mm; 1870 struct vm_area_struct * vma, * prev; 1871 unsigned long flags; 1872 struct rb_node ** rb_link, * rb_parent; 1873 pgoff_t pgoff = addr >> PAGE_SHIFT; 1874 int error; 1875 1876 len = PAGE_ALIGN(len); 1877 if (!len) 1878 return addr; 1879 1880 if ((addr + len) > TASK_SIZE || (addr + len) < addr) 1881 return -EINVAL; 1882 1883 error = is_hugepage_only_range(current->mm, addr, len); 1884 if (error) 1885 return error; 1886 1887 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; 1888 1889 error = arch_mmap_check(addr, len, flags); 1890 if (error) 1891 return error; 1892 1893 /* 1894 * mlock MCL_FUTURE? 1895 */ 1896 if (mm->def_flags & VM_LOCKED) { 1897 unsigned long locked, lock_limit; 1898 locked = len >> PAGE_SHIFT; 1899 locked += mm->locked_vm; 1900 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur; 1901 lock_limit >>= PAGE_SHIFT; 1902 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 1903 return -EAGAIN; 1904 } 1905 1906 /* 1907 * mm->mmap_sem is required to protect against another thread 1908 * changing the mappings in case we sleep. 1909 */ 1910 verify_mm_writelocked(mm); 1911 1912 /* 1913 * Clear old maps. this also does some error checking for us 1914 */ 1915 munmap_back: 1916 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent); 1917 if (vma && vma->vm_start < addr + len) { 1918 if (do_munmap(mm, addr, len)) 1919 return -ENOMEM; 1920 goto munmap_back; 1921 } 1922 1923 /* Check against address space limits *after* clearing old maps... */ 1924 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) 1925 return -ENOMEM; 1926 1927 if (mm->map_count > sysctl_max_map_count) 1928 return -ENOMEM; 1929 1930 if (security_vm_enough_memory(len >> PAGE_SHIFT)) 1931 return -ENOMEM; 1932 1933 /* Can we just expand an old private anonymous mapping? */ 1934 if (vma_merge(mm, prev, addr, addr + len, flags, 1935 NULL, NULL, pgoff, NULL)) 1936 goto out; 1937 1938 /* 1939 * create a vma struct for an anonymous mapping 1940 */ 1941 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 1942 if (!vma) { 1943 vm_unacct_memory(len >> PAGE_SHIFT); 1944 return -ENOMEM; 1945 } 1946 1947 vma->vm_mm = mm; 1948 vma->vm_start = addr; 1949 vma->vm_end = addr + len; 1950 vma->vm_pgoff = pgoff; 1951 vma->vm_flags = flags; 1952 vma->vm_page_prot = protection_map[flags & 1953 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]; 1954 vma_link(mm, vma, prev, rb_link, rb_parent); 1955 out: 1956 mm->total_vm += len >> PAGE_SHIFT; 1957 if (flags & VM_LOCKED) { 1958 mm->locked_vm += len >> PAGE_SHIFT; 1959 make_pages_present(addr, addr + len); 1960 } 1961 return addr; 1962 } 1963 1964 EXPORT_SYMBOL(do_brk); 1965 1966 /* Release all mmaps. */ 1967 void exit_mmap(struct mm_struct *mm) 1968 { 1969 struct mmu_gather *tlb; 1970 struct vm_area_struct *vma = mm->mmap; 1971 unsigned long nr_accounted = 0; 1972 unsigned long end; 1973 1974 lru_add_drain(); 1975 flush_cache_mm(mm); 1976 tlb = tlb_gather_mmu(mm, 1); 1977 /* Don't update_hiwater_rss(mm) here, do_exit already did */ 1978 /* Use -1 here to ensure all VMAs in the mm are unmapped */ 1979 end = unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL); 1980 vm_unacct_memory(nr_accounted); 1981 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, 0); 1982 tlb_finish_mmu(tlb, 0, end); 1983 1984 /* 1985 * Walk the list again, actually closing and freeing it, 1986 * with preemption enabled, without holding any MM locks. 1987 */ 1988 while (vma) 1989 vma = remove_vma(vma); 1990 1991 BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT); 1992 } 1993 1994 /* Insert vm structure into process list sorted by address 1995 * and into the inode's i_mmap tree. If vm_file is non-NULL 1996 * then i_mmap_lock is taken here. 1997 */ 1998 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma) 1999 { 2000 struct vm_area_struct * __vma, * prev; 2001 struct rb_node ** rb_link, * rb_parent; 2002 2003 /* 2004 * The vm_pgoff of a purely anonymous vma should be irrelevant 2005 * until its first write fault, when page's anon_vma and index 2006 * are set. But now set the vm_pgoff it will almost certainly 2007 * end up with (unless mremap moves it elsewhere before that 2008 * first wfault), so /proc/pid/maps tells a consistent story. 2009 * 2010 * By setting it to reflect the virtual start address of the 2011 * vma, merges and splits can happen in a seamless way, just 2012 * using the existing file pgoff checks and manipulations. 2013 * Similarly in do_mmap_pgoff and in do_brk. 2014 */ 2015 if (!vma->vm_file) { 2016 BUG_ON(vma->anon_vma); 2017 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; 2018 } 2019 __vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent); 2020 if (__vma && __vma->vm_start < vma->vm_end) 2021 return -ENOMEM; 2022 if ((vma->vm_flags & VM_ACCOUNT) && 2023 security_vm_enough_memory(vma_pages(vma))) 2024 return -ENOMEM; 2025 vma_link(mm, vma, prev, rb_link, rb_parent); 2026 return 0; 2027 } 2028 2029 /* 2030 * Copy the vma structure to a new location in the same mm, 2031 * prior to moving page table entries, to effect an mremap move. 2032 */ 2033 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 2034 unsigned long addr, unsigned long len, pgoff_t pgoff) 2035 { 2036 struct vm_area_struct *vma = *vmap; 2037 unsigned long vma_start = vma->vm_start; 2038 struct mm_struct *mm = vma->vm_mm; 2039 struct vm_area_struct *new_vma, *prev; 2040 struct rb_node **rb_link, *rb_parent; 2041 struct mempolicy *pol; 2042 2043 /* 2044 * If anonymous vma has not yet been faulted, update new pgoff 2045 * to match new location, to increase its chance of merging. 2046 */ 2047 if (!vma->vm_file && !vma->anon_vma) 2048 pgoff = addr >> PAGE_SHIFT; 2049 2050 find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent); 2051 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags, 2052 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma)); 2053 if (new_vma) { 2054 /* 2055 * Source vma may have been merged into new_vma 2056 */ 2057 if (vma_start >= new_vma->vm_start && 2058 vma_start < new_vma->vm_end) 2059 *vmap = new_vma; 2060 } else { 2061 new_vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL); 2062 if (new_vma) { 2063 *new_vma = *vma; 2064 pol = mpol_copy(vma_policy(vma)); 2065 if (IS_ERR(pol)) { 2066 kmem_cache_free(vm_area_cachep, new_vma); 2067 return NULL; 2068 } 2069 vma_set_policy(new_vma, pol); 2070 new_vma->vm_start = addr; 2071 new_vma->vm_end = addr + len; 2072 new_vma->vm_pgoff = pgoff; 2073 if (new_vma->vm_file) 2074 get_file(new_vma->vm_file); 2075 if (new_vma->vm_ops && new_vma->vm_ops->open) 2076 new_vma->vm_ops->open(new_vma); 2077 vma_link(mm, new_vma, prev, rb_link, rb_parent); 2078 } 2079 } 2080 return new_vma; 2081 } 2082 2083 /* 2084 * Return true if the calling process may expand its vm space by the passed 2085 * number of pages 2086 */ 2087 int may_expand_vm(struct mm_struct *mm, unsigned long npages) 2088 { 2089 unsigned long cur = mm->total_vm; /* pages */ 2090 unsigned long lim; 2091 2092 lim = current->signal->rlim[RLIMIT_AS].rlim_cur >> PAGE_SHIFT; 2093 2094 if (cur + npages > lim) 2095 return 0; 2096 return 1; 2097 } 2098