1 /* 2 * mm/mmap.c 3 * 4 * Written by obz. 5 * 6 * Address space accounting code <alan@lxorguk.ukuu.org.uk> 7 */ 8 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/kernel.h> 12 #include <linux/slab.h> 13 #include <linux/backing-dev.h> 14 #include <linux/mm.h> 15 #include <linux/vmacache.h> 16 #include <linux/shm.h> 17 #include <linux/mman.h> 18 #include <linux/pagemap.h> 19 #include <linux/swap.h> 20 #include <linux/syscalls.h> 21 #include <linux/capability.h> 22 #include <linux/init.h> 23 #include <linux/file.h> 24 #include <linux/fs.h> 25 #include <linux/personality.h> 26 #include <linux/security.h> 27 #include <linux/hugetlb.h> 28 #include <linux/profile.h> 29 #include <linux/export.h> 30 #include <linux/mount.h> 31 #include <linux/mempolicy.h> 32 #include <linux/rmap.h> 33 #include <linux/mmu_notifier.h> 34 #include <linux/mmdebug.h> 35 #include <linux/perf_event.h> 36 #include <linux/audit.h> 37 #include <linux/khugepaged.h> 38 #include <linux/uprobes.h> 39 #include <linux/rbtree_augmented.h> 40 #include <linux/sched/sysctl.h> 41 #include <linux/notifier.h> 42 #include <linux/memory.h> 43 #include <linux/printk.h> 44 #include <linux/userfaultfd_k.h> 45 46 #include <asm/uaccess.h> 47 #include <asm/cacheflush.h> 48 #include <asm/tlb.h> 49 #include <asm/mmu_context.h> 50 51 #include "internal.h" 52 53 #ifndef arch_mmap_check 54 #define arch_mmap_check(addr, len, flags) (0) 55 #endif 56 57 #ifndef arch_rebalance_pgtables 58 #define arch_rebalance_pgtables(addr, len) (addr) 59 #endif 60 61 static void unmap_region(struct mm_struct *mm, 62 struct vm_area_struct *vma, struct vm_area_struct *prev, 63 unsigned long start, unsigned long end); 64 65 /* description of effects of mapping type and prot in current implementation. 66 * this is due to the limited x86 page protection hardware. The expected 67 * behavior is in parens: 68 * 69 * map_type prot 70 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC 71 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes 72 * w: (no) no w: (no) no w: (yes) yes w: (no) no 73 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 74 * 75 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes 76 * w: (no) no w: (no) no w: (copy) copy w: (no) no 77 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 78 * 79 */ 80 pgprot_t protection_map[16] = { 81 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111, 82 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111 83 }; 84 85 pgprot_t vm_get_page_prot(unsigned long vm_flags) 86 { 87 return __pgprot(pgprot_val(protection_map[vm_flags & 88 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) | 89 pgprot_val(arch_vm_get_page_prot(vm_flags))); 90 } 91 EXPORT_SYMBOL(vm_get_page_prot); 92 93 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags) 94 { 95 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags)); 96 } 97 98 /* Update vma->vm_page_prot to reflect vma->vm_flags. */ 99 void vma_set_page_prot(struct vm_area_struct *vma) 100 { 101 unsigned long vm_flags = vma->vm_flags; 102 103 vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags); 104 if (vma_wants_writenotify(vma)) { 105 vm_flags &= ~VM_SHARED; 106 vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, 107 vm_flags); 108 } 109 } 110 111 112 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; /* heuristic overcommit */ 113 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */ 114 unsigned long sysctl_overcommit_kbytes __read_mostly; 115 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT; 116 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */ 117 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */ 118 /* 119 * Make sure vm_committed_as in one cacheline and not cacheline shared with 120 * other variables. It can be updated by several CPUs frequently. 121 */ 122 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp; 123 124 /* 125 * The global memory commitment made in the system can be a metric 126 * that can be used to drive ballooning decisions when Linux is hosted 127 * as a guest. On Hyper-V, the host implements a policy engine for dynamically 128 * balancing memory across competing virtual machines that are hosted. 129 * Several metrics drive this policy engine including the guest reported 130 * memory commitment. 131 */ 132 unsigned long vm_memory_committed(void) 133 { 134 return percpu_counter_read_positive(&vm_committed_as); 135 } 136 EXPORT_SYMBOL_GPL(vm_memory_committed); 137 138 /* 139 * Check that a process has enough memory to allocate a new virtual 140 * mapping. 0 means there is enough memory for the allocation to 141 * succeed and -ENOMEM implies there is not. 142 * 143 * We currently support three overcommit policies, which are set via the 144 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting 145 * 146 * Strict overcommit modes added 2002 Feb 26 by Alan Cox. 147 * Additional code 2002 Jul 20 by Robert Love. 148 * 149 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise. 150 * 151 * Note this is a helper function intended to be used by LSMs which 152 * wish to use this logic. 153 */ 154 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin) 155 { 156 long free, allowed, reserve; 157 158 VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) < 159 -(s64)vm_committed_as_batch * num_online_cpus(), 160 "memory commitment underflow"); 161 162 vm_acct_memory(pages); 163 164 /* 165 * Sometimes we want to use more memory than we have 166 */ 167 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS) 168 return 0; 169 170 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) { 171 free = global_page_state(NR_FREE_PAGES); 172 free += global_page_state(NR_FILE_PAGES); 173 174 /* 175 * shmem pages shouldn't be counted as free in this 176 * case, they can't be purged, only swapped out, and 177 * that won't affect the overall amount of available 178 * memory in the system. 179 */ 180 free -= global_page_state(NR_SHMEM); 181 182 free += get_nr_swap_pages(); 183 184 /* 185 * Any slabs which are created with the 186 * SLAB_RECLAIM_ACCOUNT flag claim to have contents 187 * which are reclaimable, under pressure. The dentry 188 * cache and most inode caches should fall into this 189 */ 190 free += global_page_state(NR_SLAB_RECLAIMABLE); 191 192 /* 193 * Leave reserved pages. The pages are not for anonymous pages. 194 */ 195 if (free <= totalreserve_pages) 196 goto error; 197 else 198 free -= totalreserve_pages; 199 200 /* 201 * Reserve some for root 202 */ 203 if (!cap_sys_admin) 204 free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10); 205 206 if (free > pages) 207 return 0; 208 209 goto error; 210 } 211 212 allowed = vm_commit_limit(); 213 /* 214 * Reserve some for root 215 */ 216 if (!cap_sys_admin) 217 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10); 218 219 /* 220 * Don't let a single process grow so big a user can't recover 221 */ 222 if (mm) { 223 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10); 224 allowed -= min_t(long, mm->total_vm / 32, reserve); 225 } 226 227 if (percpu_counter_read_positive(&vm_committed_as) < allowed) 228 return 0; 229 error: 230 vm_unacct_memory(pages); 231 232 return -ENOMEM; 233 } 234 235 /* 236 * Requires inode->i_mapping->i_mmap_rwsem 237 */ 238 static void __remove_shared_vm_struct(struct vm_area_struct *vma, 239 struct file *file, struct address_space *mapping) 240 { 241 if (vma->vm_flags & VM_DENYWRITE) 242 atomic_inc(&file_inode(file)->i_writecount); 243 if (vma->vm_flags & VM_SHARED) 244 mapping_unmap_writable(mapping); 245 246 flush_dcache_mmap_lock(mapping); 247 vma_interval_tree_remove(vma, &mapping->i_mmap); 248 flush_dcache_mmap_unlock(mapping); 249 } 250 251 /* 252 * Unlink a file-based vm structure from its interval tree, to hide 253 * vma from rmap and vmtruncate before freeing its page tables. 254 */ 255 void unlink_file_vma(struct vm_area_struct *vma) 256 { 257 struct file *file = vma->vm_file; 258 259 if (file) { 260 struct address_space *mapping = file->f_mapping; 261 i_mmap_lock_write(mapping); 262 __remove_shared_vm_struct(vma, file, mapping); 263 i_mmap_unlock_write(mapping); 264 } 265 } 266 267 /* 268 * Close a vm structure and free it, returning the next. 269 */ 270 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma) 271 { 272 struct vm_area_struct *next = vma->vm_next; 273 274 might_sleep(); 275 if (vma->vm_ops && vma->vm_ops->close) 276 vma->vm_ops->close(vma); 277 if (vma->vm_file) 278 fput(vma->vm_file); 279 mpol_put(vma_policy(vma)); 280 kmem_cache_free(vm_area_cachep, vma); 281 return next; 282 } 283 284 static unsigned long do_brk(unsigned long addr, unsigned long len); 285 286 SYSCALL_DEFINE1(brk, unsigned long, brk) 287 { 288 unsigned long retval; 289 unsigned long newbrk, oldbrk; 290 struct mm_struct *mm = current->mm; 291 unsigned long min_brk; 292 bool populate; 293 294 down_write(&mm->mmap_sem); 295 296 #ifdef CONFIG_COMPAT_BRK 297 /* 298 * CONFIG_COMPAT_BRK can still be overridden by setting 299 * randomize_va_space to 2, which will still cause mm->start_brk 300 * to be arbitrarily shifted 301 */ 302 if (current->brk_randomized) 303 min_brk = mm->start_brk; 304 else 305 min_brk = mm->end_data; 306 #else 307 min_brk = mm->start_brk; 308 #endif 309 if (brk < min_brk) 310 goto out; 311 312 /* 313 * Check against rlimit here. If this check is done later after the test 314 * of oldbrk with newbrk then it can escape the test and let the data 315 * segment grow beyond its set limit the in case where the limit is 316 * not page aligned -Ram Gupta 317 */ 318 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk, 319 mm->end_data, mm->start_data)) 320 goto out; 321 322 newbrk = PAGE_ALIGN(brk); 323 oldbrk = PAGE_ALIGN(mm->brk); 324 if (oldbrk == newbrk) 325 goto set_brk; 326 327 /* Always allow shrinking brk. */ 328 if (brk <= mm->brk) { 329 if (!do_munmap(mm, newbrk, oldbrk-newbrk)) 330 goto set_brk; 331 goto out; 332 } 333 334 /* Check against existing mmap mappings. */ 335 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE)) 336 goto out; 337 338 /* Ok, looks good - let it rip. */ 339 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk) 340 goto out; 341 342 set_brk: 343 mm->brk = brk; 344 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0; 345 up_write(&mm->mmap_sem); 346 if (populate) 347 mm_populate(oldbrk, newbrk - oldbrk); 348 return brk; 349 350 out: 351 retval = mm->brk; 352 up_write(&mm->mmap_sem); 353 return retval; 354 } 355 356 static long vma_compute_subtree_gap(struct vm_area_struct *vma) 357 { 358 unsigned long max, subtree_gap; 359 max = vma->vm_start; 360 if (vma->vm_prev) 361 max -= vma->vm_prev->vm_end; 362 if (vma->vm_rb.rb_left) { 363 subtree_gap = rb_entry(vma->vm_rb.rb_left, 364 struct vm_area_struct, vm_rb)->rb_subtree_gap; 365 if (subtree_gap > max) 366 max = subtree_gap; 367 } 368 if (vma->vm_rb.rb_right) { 369 subtree_gap = rb_entry(vma->vm_rb.rb_right, 370 struct vm_area_struct, vm_rb)->rb_subtree_gap; 371 if (subtree_gap > max) 372 max = subtree_gap; 373 } 374 return max; 375 } 376 377 #ifdef CONFIG_DEBUG_VM_RB 378 static int browse_rb(struct rb_root *root) 379 { 380 int i = 0, j, bug = 0; 381 struct rb_node *nd, *pn = NULL; 382 unsigned long prev = 0, pend = 0; 383 384 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 385 struct vm_area_struct *vma; 386 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 387 if (vma->vm_start < prev) { 388 pr_emerg("vm_start %lx < prev %lx\n", 389 vma->vm_start, prev); 390 bug = 1; 391 } 392 if (vma->vm_start < pend) { 393 pr_emerg("vm_start %lx < pend %lx\n", 394 vma->vm_start, pend); 395 bug = 1; 396 } 397 if (vma->vm_start > vma->vm_end) { 398 pr_emerg("vm_start %lx > vm_end %lx\n", 399 vma->vm_start, vma->vm_end); 400 bug = 1; 401 } 402 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) { 403 pr_emerg("free gap %lx, correct %lx\n", 404 vma->rb_subtree_gap, 405 vma_compute_subtree_gap(vma)); 406 bug = 1; 407 } 408 i++; 409 pn = nd; 410 prev = vma->vm_start; 411 pend = vma->vm_end; 412 } 413 j = 0; 414 for (nd = pn; nd; nd = rb_prev(nd)) 415 j++; 416 if (i != j) { 417 pr_emerg("backwards %d, forwards %d\n", j, i); 418 bug = 1; 419 } 420 return bug ? -1 : i; 421 } 422 423 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore) 424 { 425 struct rb_node *nd; 426 427 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 428 struct vm_area_struct *vma; 429 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 430 VM_BUG_ON_VMA(vma != ignore && 431 vma->rb_subtree_gap != vma_compute_subtree_gap(vma), 432 vma); 433 } 434 } 435 436 static void validate_mm(struct mm_struct *mm) 437 { 438 int bug = 0; 439 int i = 0; 440 unsigned long highest_address = 0; 441 struct vm_area_struct *vma = mm->mmap; 442 443 while (vma) { 444 struct anon_vma_chain *avc; 445 446 vma_lock_anon_vma(vma); 447 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 448 anon_vma_interval_tree_verify(avc); 449 vma_unlock_anon_vma(vma); 450 highest_address = vma->vm_end; 451 vma = vma->vm_next; 452 i++; 453 } 454 if (i != mm->map_count) { 455 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i); 456 bug = 1; 457 } 458 if (highest_address != mm->highest_vm_end) { 459 pr_emerg("mm->highest_vm_end %lx, found %lx\n", 460 mm->highest_vm_end, highest_address); 461 bug = 1; 462 } 463 i = browse_rb(&mm->mm_rb); 464 if (i != mm->map_count) { 465 if (i != -1) 466 pr_emerg("map_count %d rb %d\n", mm->map_count, i); 467 bug = 1; 468 } 469 VM_BUG_ON_MM(bug, mm); 470 } 471 #else 472 #define validate_mm_rb(root, ignore) do { } while (0) 473 #define validate_mm(mm) do { } while (0) 474 #endif 475 476 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb, 477 unsigned long, rb_subtree_gap, vma_compute_subtree_gap) 478 479 /* 480 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or 481 * vma->vm_prev->vm_end values changed, without modifying the vma's position 482 * in the rbtree. 483 */ 484 static void vma_gap_update(struct vm_area_struct *vma) 485 { 486 /* 487 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback 488 * function that does exacltly what we want. 489 */ 490 vma_gap_callbacks_propagate(&vma->vm_rb, NULL); 491 } 492 493 static inline void vma_rb_insert(struct vm_area_struct *vma, 494 struct rb_root *root) 495 { 496 /* All rb_subtree_gap values must be consistent prior to insertion */ 497 validate_mm_rb(root, NULL); 498 499 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks); 500 } 501 502 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root) 503 { 504 /* 505 * All rb_subtree_gap values must be consistent prior to erase, 506 * with the possible exception of the vma being erased. 507 */ 508 validate_mm_rb(root, vma); 509 510 /* 511 * Note rb_erase_augmented is a fairly large inline function, 512 * so make sure we instantiate it only once with our desired 513 * augmented rbtree callbacks. 514 */ 515 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks); 516 } 517 518 /* 519 * vma has some anon_vma assigned, and is already inserted on that 520 * anon_vma's interval trees. 521 * 522 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the 523 * vma must be removed from the anon_vma's interval trees using 524 * anon_vma_interval_tree_pre_update_vma(). 525 * 526 * After the update, the vma will be reinserted using 527 * anon_vma_interval_tree_post_update_vma(). 528 * 529 * The entire update must be protected by exclusive mmap_sem and by 530 * the root anon_vma's mutex. 531 */ 532 static inline void 533 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma) 534 { 535 struct anon_vma_chain *avc; 536 537 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 538 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root); 539 } 540 541 static inline void 542 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma) 543 { 544 struct anon_vma_chain *avc; 545 546 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 547 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root); 548 } 549 550 static int find_vma_links(struct mm_struct *mm, unsigned long addr, 551 unsigned long end, struct vm_area_struct **pprev, 552 struct rb_node ***rb_link, struct rb_node **rb_parent) 553 { 554 struct rb_node **__rb_link, *__rb_parent, *rb_prev; 555 556 __rb_link = &mm->mm_rb.rb_node; 557 rb_prev = __rb_parent = NULL; 558 559 while (*__rb_link) { 560 struct vm_area_struct *vma_tmp; 561 562 __rb_parent = *__rb_link; 563 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb); 564 565 if (vma_tmp->vm_end > addr) { 566 /* Fail if an existing vma overlaps the area */ 567 if (vma_tmp->vm_start < end) 568 return -ENOMEM; 569 __rb_link = &__rb_parent->rb_left; 570 } else { 571 rb_prev = __rb_parent; 572 __rb_link = &__rb_parent->rb_right; 573 } 574 } 575 576 *pprev = NULL; 577 if (rb_prev) 578 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); 579 *rb_link = __rb_link; 580 *rb_parent = __rb_parent; 581 return 0; 582 } 583 584 static unsigned long count_vma_pages_range(struct mm_struct *mm, 585 unsigned long addr, unsigned long end) 586 { 587 unsigned long nr_pages = 0; 588 struct vm_area_struct *vma; 589 590 /* Find first overlaping mapping */ 591 vma = find_vma_intersection(mm, addr, end); 592 if (!vma) 593 return 0; 594 595 nr_pages = (min(end, vma->vm_end) - 596 max(addr, vma->vm_start)) >> PAGE_SHIFT; 597 598 /* Iterate over the rest of the overlaps */ 599 for (vma = vma->vm_next; vma; vma = vma->vm_next) { 600 unsigned long overlap_len; 601 602 if (vma->vm_start > end) 603 break; 604 605 overlap_len = min(end, vma->vm_end) - vma->vm_start; 606 nr_pages += overlap_len >> PAGE_SHIFT; 607 } 608 609 return nr_pages; 610 } 611 612 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma, 613 struct rb_node **rb_link, struct rb_node *rb_parent) 614 { 615 /* Update tracking information for the gap following the new vma. */ 616 if (vma->vm_next) 617 vma_gap_update(vma->vm_next); 618 else 619 mm->highest_vm_end = vma->vm_end; 620 621 /* 622 * vma->vm_prev wasn't known when we followed the rbtree to find the 623 * correct insertion point for that vma. As a result, we could not 624 * update the vma vm_rb parents rb_subtree_gap values on the way down. 625 * So, we first insert the vma with a zero rb_subtree_gap value 626 * (to be consistent with what we did on the way down), and then 627 * immediately update the gap to the correct value. Finally we 628 * rebalance the rbtree after all augmented values have been set. 629 */ 630 rb_link_node(&vma->vm_rb, rb_parent, rb_link); 631 vma->rb_subtree_gap = 0; 632 vma_gap_update(vma); 633 vma_rb_insert(vma, &mm->mm_rb); 634 } 635 636 static void __vma_link_file(struct vm_area_struct *vma) 637 { 638 struct file *file; 639 640 file = vma->vm_file; 641 if (file) { 642 struct address_space *mapping = file->f_mapping; 643 644 if (vma->vm_flags & VM_DENYWRITE) 645 atomic_dec(&file_inode(file)->i_writecount); 646 if (vma->vm_flags & VM_SHARED) 647 atomic_inc(&mapping->i_mmap_writable); 648 649 flush_dcache_mmap_lock(mapping); 650 vma_interval_tree_insert(vma, &mapping->i_mmap); 651 flush_dcache_mmap_unlock(mapping); 652 } 653 } 654 655 static void 656 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 657 struct vm_area_struct *prev, struct rb_node **rb_link, 658 struct rb_node *rb_parent) 659 { 660 __vma_link_list(mm, vma, prev, rb_parent); 661 __vma_link_rb(mm, vma, rb_link, rb_parent); 662 } 663 664 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 665 struct vm_area_struct *prev, struct rb_node **rb_link, 666 struct rb_node *rb_parent) 667 { 668 struct address_space *mapping = NULL; 669 670 if (vma->vm_file) { 671 mapping = vma->vm_file->f_mapping; 672 i_mmap_lock_write(mapping); 673 } 674 675 __vma_link(mm, vma, prev, rb_link, rb_parent); 676 __vma_link_file(vma); 677 678 if (mapping) 679 i_mmap_unlock_write(mapping); 680 681 mm->map_count++; 682 validate_mm(mm); 683 } 684 685 /* 686 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the 687 * mm's list and rbtree. It has already been inserted into the interval tree. 688 */ 689 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 690 { 691 struct vm_area_struct *prev; 692 struct rb_node **rb_link, *rb_parent; 693 694 if (find_vma_links(mm, vma->vm_start, vma->vm_end, 695 &prev, &rb_link, &rb_parent)) 696 BUG(); 697 __vma_link(mm, vma, prev, rb_link, rb_parent); 698 mm->map_count++; 699 } 700 701 static inline void 702 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma, 703 struct vm_area_struct *prev) 704 { 705 struct vm_area_struct *next; 706 707 vma_rb_erase(vma, &mm->mm_rb); 708 prev->vm_next = next = vma->vm_next; 709 if (next) 710 next->vm_prev = prev; 711 712 /* Kill the cache */ 713 vmacache_invalidate(mm); 714 } 715 716 /* 717 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that 718 * is already present in an i_mmap tree without adjusting the tree. 719 * The following helper function should be used when such adjustments 720 * are necessary. The "insert" vma (if any) is to be inserted 721 * before we drop the necessary locks. 722 */ 723 int vma_adjust(struct vm_area_struct *vma, unsigned long start, 724 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 725 { 726 struct mm_struct *mm = vma->vm_mm; 727 struct vm_area_struct *next = vma->vm_next; 728 struct vm_area_struct *importer = NULL; 729 struct address_space *mapping = NULL; 730 struct rb_root *root = NULL; 731 struct anon_vma *anon_vma = NULL; 732 struct file *file = vma->vm_file; 733 bool start_changed = false, end_changed = false; 734 long adjust_next = 0; 735 int remove_next = 0; 736 737 if (next && !insert) { 738 struct vm_area_struct *exporter = NULL; 739 740 if (end >= next->vm_end) { 741 /* 742 * vma expands, overlapping all the next, and 743 * perhaps the one after too (mprotect case 6). 744 */ 745 again: remove_next = 1 + (end > next->vm_end); 746 end = next->vm_end; 747 exporter = next; 748 importer = vma; 749 } else if (end > next->vm_start) { 750 /* 751 * vma expands, overlapping part of the next: 752 * mprotect case 5 shifting the boundary up. 753 */ 754 adjust_next = (end - next->vm_start) >> PAGE_SHIFT; 755 exporter = next; 756 importer = vma; 757 } else if (end < vma->vm_end) { 758 /* 759 * vma shrinks, and !insert tells it's not 760 * split_vma inserting another: so it must be 761 * mprotect case 4 shifting the boundary down. 762 */ 763 adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT); 764 exporter = vma; 765 importer = next; 766 } 767 768 /* 769 * Easily overlooked: when mprotect shifts the boundary, 770 * make sure the expanding vma has anon_vma set if the 771 * shrinking vma had, to cover any anon pages imported. 772 */ 773 if (exporter && exporter->anon_vma && !importer->anon_vma) { 774 int error; 775 776 importer->anon_vma = exporter->anon_vma; 777 error = anon_vma_clone(importer, exporter); 778 if (error) 779 return error; 780 } 781 } 782 783 if (file) { 784 mapping = file->f_mapping; 785 root = &mapping->i_mmap; 786 uprobe_munmap(vma, vma->vm_start, vma->vm_end); 787 788 if (adjust_next) 789 uprobe_munmap(next, next->vm_start, next->vm_end); 790 791 i_mmap_lock_write(mapping); 792 if (insert) { 793 /* 794 * Put into interval tree now, so instantiated pages 795 * are visible to arm/parisc __flush_dcache_page 796 * throughout; but we cannot insert into address 797 * space until vma start or end is updated. 798 */ 799 __vma_link_file(insert); 800 } 801 } 802 803 vma_adjust_trans_huge(vma, start, end, adjust_next); 804 805 anon_vma = vma->anon_vma; 806 if (!anon_vma && adjust_next) 807 anon_vma = next->anon_vma; 808 if (anon_vma) { 809 VM_BUG_ON_VMA(adjust_next && next->anon_vma && 810 anon_vma != next->anon_vma, next); 811 anon_vma_lock_write(anon_vma); 812 anon_vma_interval_tree_pre_update_vma(vma); 813 if (adjust_next) 814 anon_vma_interval_tree_pre_update_vma(next); 815 } 816 817 if (root) { 818 flush_dcache_mmap_lock(mapping); 819 vma_interval_tree_remove(vma, root); 820 if (adjust_next) 821 vma_interval_tree_remove(next, root); 822 } 823 824 if (start != vma->vm_start) { 825 vma->vm_start = start; 826 start_changed = true; 827 } 828 if (end != vma->vm_end) { 829 vma->vm_end = end; 830 end_changed = true; 831 } 832 vma->vm_pgoff = pgoff; 833 if (adjust_next) { 834 next->vm_start += adjust_next << PAGE_SHIFT; 835 next->vm_pgoff += adjust_next; 836 } 837 838 if (root) { 839 if (adjust_next) 840 vma_interval_tree_insert(next, root); 841 vma_interval_tree_insert(vma, root); 842 flush_dcache_mmap_unlock(mapping); 843 } 844 845 if (remove_next) { 846 /* 847 * vma_merge has merged next into vma, and needs 848 * us to remove next before dropping the locks. 849 */ 850 __vma_unlink(mm, next, vma); 851 if (file) 852 __remove_shared_vm_struct(next, file, mapping); 853 } else if (insert) { 854 /* 855 * split_vma has split insert from vma, and needs 856 * us to insert it before dropping the locks 857 * (it may either follow vma or precede it). 858 */ 859 __insert_vm_struct(mm, insert); 860 } else { 861 if (start_changed) 862 vma_gap_update(vma); 863 if (end_changed) { 864 if (!next) 865 mm->highest_vm_end = end; 866 else if (!adjust_next) 867 vma_gap_update(next); 868 } 869 } 870 871 if (anon_vma) { 872 anon_vma_interval_tree_post_update_vma(vma); 873 if (adjust_next) 874 anon_vma_interval_tree_post_update_vma(next); 875 anon_vma_unlock_write(anon_vma); 876 } 877 if (mapping) 878 i_mmap_unlock_write(mapping); 879 880 if (root) { 881 uprobe_mmap(vma); 882 883 if (adjust_next) 884 uprobe_mmap(next); 885 } 886 887 if (remove_next) { 888 if (file) { 889 uprobe_munmap(next, next->vm_start, next->vm_end); 890 fput(file); 891 } 892 if (next->anon_vma) 893 anon_vma_merge(vma, next); 894 mm->map_count--; 895 mpol_put(vma_policy(next)); 896 kmem_cache_free(vm_area_cachep, next); 897 /* 898 * In mprotect's case 6 (see comments on vma_merge), 899 * we must remove another next too. It would clutter 900 * up the code too much to do both in one go. 901 */ 902 next = vma->vm_next; 903 if (remove_next == 2) 904 goto again; 905 else if (next) 906 vma_gap_update(next); 907 else 908 mm->highest_vm_end = end; 909 } 910 if (insert && file) 911 uprobe_mmap(insert); 912 913 validate_mm(mm); 914 915 return 0; 916 } 917 918 /* 919 * If the vma has a ->close operation then the driver probably needs to release 920 * per-vma resources, so we don't attempt to merge those. 921 */ 922 static inline int is_mergeable_vma(struct vm_area_struct *vma, 923 struct file *file, unsigned long vm_flags, 924 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 925 { 926 /* 927 * VM_SOFTDIRTY should not prevent from VMA merging, if we 928 * match the flags but dirty bit -- the caller should mark 929 * merged VMA as dirty. If dirty bit won't be excluded from 930 * comparison, we increase pressue on the memory system forcing 931 * the kernel to generate new VMAs when old one could be 932 * extended instead. 933 */ 934 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY) 935 return 0; 936 if (vma->vm_file != file) 937 return 0; 938 if (vma->vm_ops && vma->vm_ops->close) 939 return 0; 940 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx)) 941 return 0; 942 return 1; 943 } 944 945 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1, 946 struct anon_vma *anon_vma2, 947 struct vm_area_struct *vma) 948 { 949 /* 950 * The list_is_singular() test is to avoid merging VMA cloned from 951 * parents. This can improve scalability caused by anon_vma lock. 952 */ 953 if ((!anon_vma1 || !anon_vma2) && (!vma || 954 list_is_singular(&vma->anon_vma_chain))) 955 return 1; 956 return anon_vma1 == anon_vma2; 957 } 958 959 /* 960 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 961 * in front of (at a lower virtual address and file offset than) the vma. 962 * 963 * We cannot merge two vmas if they have differently assigned (non-NULL) 964 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 965 * 966 * We don't check here for the merged mmap wrapping around the end of pagecache 967 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which 968 * wrap, nor mmaps which cover the final page at index -1UL. 969 */ 970 static int 971 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags, 972 struct anon_vma *anon_vma, struct file *file, 973 pgoff_t vm_pgoff, 974 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 975 { 976 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) && 977 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 978 if (vma->vm_pgoff == vm_pgoff) 979 return 1; 980 } 981 return 0; 982 } 983 984 /* 985 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 986 * beyond (at a higher virtual address and file offset than) the vma. 987 * 988 * We cannot merge two vmas if they have differently assigned (non-NULL) 989 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 990 */ 991 static int 992 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags, 993 struct anon_vma *anon_vma, struct file *file, 994 pgoff_t vm_pgoff, 995 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 996 { 997 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) && 998 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 999 pgoff_t vm_pglen; 1000 vm_pglen = vma_pages(vma); 1001 if (vma->vm_pgoff + vm_pglen == vm_pgoff) 1002 return 1; 1003 } 1004 return 0; 1005 } 1006 1007 /* 1008 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out 1009 * whether that can be merged with its predecessor or its successor. 1010 * Or both (it neatly fills a hole). 1011 * 1012 * In most cases - when called for mmap, brk or mremap - [addr,end) is 1013 * certain not to be mapped by the time vma_merge is called; but when 1014 * called for mprotect, it is certain to be already mapped (either at 1015 * an offset within prev, or at the start of next), and the flags of 1016 * this area are about to be changed to vm_flags - and the no-change 1017 * case has already been eliminated. 1018 * 1019 * The following mprotect cases have to be considered, where AAAA is 1020 * the area passed down from mprotect_fixup, never extending beyond one 1021 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after: 1022 * 1023 * AAAA AAAA AAAA AAAA 1024 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX 1025 * cannot merge might become might become might become 1026 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or 1027 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or 1028 * mremap move: PPPPNNNNNNNN 8 1029 * AAAA 1030 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN 1031 * might become case 1 below case 2 below case 3 below 1032 * 1033 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX: 1034 * mprotect_fixup updates vm_flags & vm_page_prot on successful return. 1035 */ 1036 struct vm_area_struct *vma_merge(struct mm_struct *mm, 1037 struct vm_area_struct *prev, unsigned long addr, 1038 unsigned long end, unsigned long vm_flags, 1039 struct anon_vma *anon_vma, struct file *file, 1040 pgoff_t pgoff, struct mempolicy *policy, 1041 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 1042 { 1043 pgoff_t pglen = (end - addr) >> PAGE_SHIFT; 1044 struct vm_area_struct *area, *next; 1045 int err; 1046 1047 /* 1048 * We later require that vma->vm_flags == vm_flags, 1049 * so this tests vma->vm_flags & VM_SPECIAL, too. 1050 */ 1051 if (vm_flags & VM_SPECIAL) 1052 return NULL; 1053 1054 if (prev) 1055 next = prev->vm_next; 1056 else 1057 next = mm->mmap; 1058 area = next; 1059 if (next && next->vm_end == end) /* cases 6, 7, 8 */ 1060 next = next->vm_next; 1061 1062 /* 1063 * Can it merge with the predecessor? 1064 */ 1065 if (prev && prev->vm_end == addr && 1066 mpol_equal(vma_policy(prev), policy) && 1067 can_vma_merge_after(prev, vm_flags, 1068 anon_vma, file, pgoff, 1069 vm_userfaultfd_ctx)) { 1070 /* 1071 * OK, it can. Can we now merge in the successor as well? 1072 */ 1073 if (next && end == next->vm_start && 1074 mpol_equal(policy, vma_policy(next)) && 1075 can_vma_merge_before(next, vm_flags, 1076 anon_vma, file, 1077 pgoff+pglen, 1078 vm_userfaultfd_ctx) && 1079 is_mergeable_anon_vma(prev->anon_vma, 1080 next->anon_vma, NULL)) { 1081 /* cases 1, 6 */ 1082 err = vma_adjust(prev, prev->vm_start, 1083 next->vm_end, prev->vm_pgoff, NULL); 1084 } else /* cases 2, 5, 7 */ 1085 err = vma_adjust(prev, prev->vm_start, 1086 end, prev->vm_pgoff, NULL); 1087 if (err) 1088 return NULL; 1089 khugepaged_enter_vma_merge(prev, vm_flags); 1090 return prev; 1091 } 1092 1093 /* 1094 * Can this new request be merged in front of next? 1095 */ 1096 if (next && end == next->vm_start && 1097 mpol_equal(policy, vma_policy(next)) && 1098 can_vma_merge_before(next, vm_flags, 1099 anon_vma, file, pgoff+pglen, 1100 vm_userfaultfd_ctx)) { 1101 if (prev && addr < prev->vm_end) /* case 4 */ 1102 err = vma_adjust(prev, prev->vm_start, 1103 addr, prev->vm_pgoff, NULL); 1104 else /* cases 3, 8 */ 1105 err = vma_adjust(area, addr, next->vm_end, 1106 next->vm_pgoff - pglen, NULL); 1107 if (err) 1108 return NULL; 1109 khugepaged_enter_vma_merge(area, vm_flags); 1110 return area; 1111 } 1112 1113 return NULL; 1114 } 1115 1116 /* 1117 * Rough compatbility check to quickly see if it's even worth looking 1118 * at sharing an anon_vma. 1119 * 1120 * They need to have the same vm_file, and the flags can only differ 1121 * in things that mprotect may change. 1122 * 1123 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that 1124 * we can merge the two vma's. For example, we refuse to merge a vma if 1125 * there is a vm_ops->close() function, because that indicates that the 1126 * driver is doing some kind of reference counting. But that doesn't 1127 * really matter for the anon_vma sharing case. 1128 */ 1129 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b) 1130 { 1131 return a->vm_end == b->vm_start && 1132 mpol_equal(vma_policy(a), vma_policy(b)) && 1133 a->vm_file == b->vm_file && 1134 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) && 1135 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT); 1136 } 1137 1138 /* 1139 * Do some basic sanity checking to see if we can re-use the anon_vma 1140 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be 1141 * the same as 'old', the other will be the new one that is trying 1142 * to share the anon_vma. 1143 * 1144 * NOTE! This runs with mm_sem held for reading, so it is possible that 1145 * the anon_vma of 'old' is concurrently in the process of being set up 1146 * by another page fault trying to merge _that_. But that's ok: if it 1147 * is being set up, that automatically means that it will be a singleton 1148 * acceptable for merging, so we can do all of this optimistically. But 1149 * we do that READ_ONCE() to make sure that we never re-load the pointer. 1150 * 1151 * IOW: that the "list_is_singular()" test on the anon_vma_chain only 1152 * matters for the 'stable anon_vma' case (ie the thing we want to avoid 1153 * is to return an anon_vma that is "complex" due to having gone through 1154 * a fork). 1155 * 1156 * We also make sure that the two vma's are compatible (adjacent, 1157 * and with the same memory policies). That's all stable, even with just 1158 * a read lock on the mm_sem. 1159 */ 1160 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b) 1161 { 1162 if (anon_vma_compatible(a, b)) { 1163 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma); 1164 1165 if (anon_vma && list_is_singular(&old->anon_vma_chain)) 1166 return anon_vma; 1167 } 1168 return NULL; 1169 } 1170 1171 /* 1172 * find_mergeable_anon_vma is used by anon_vma_prepare, to check 1173 * neighbouring vmas for a suitable anon_vma, before it goes off 1174 * to allocate a new anon_vma. It checks because a repetitive 1175 * sequence of mprotects and faults may otherwise lead to distinct 1176 * anon_vmas being allocated, preventing vma merge in subsequent 1177 * mprotect. 1178 */ 1179 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) 1180 { 1181 struct anon_vma *anon_vma; 1182 struct vm_area_struct *near; 1183 1184 near = vma->vm_next; 1185 if (!near) 1186 goto try_prev; 1187 1188 anon_vma = reusable_anon_vma(near, vma, near); 1189 if (anon_vma) 1190 return anon_vma; 1191 try_prev: 1192 near = vma->vm_prev; 1193 if (!near) 1194 goto none; 1195 1196 anon_vma = reusable_anon_vma(near, near, vma); 1197 if (anon_vma) 1198 return anon_vma; 1199 none: 1200 /* 1201 * There's no absolute need to look only at touching neighbours: 1202 * we could search further afield for "compatible" anon_vmas. 1203 * But it would probably just be a waste of time searching, 1204 * or lead to too many vmas hanging off the same anon_vma. 1205 * We're trying to allow mprotect remerging later on, 1206 * not trying to minimize memory used for anon_vmas. 1207 */ 1208 return NULL; 1209 } 1210 1211 #ifdef CONFIG_PROC_FS 1212 void vm_stat_account(struct mm_struct *mm, unsigned long flags, 1213 struct file *file, long pages) 1214 { 1215 const unsigned long stack_flags 1216 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN); 1217 1218 mm->total_vm += pages; 1219 1220 if (file) { 1221 mm->shared_vm += pages; 1222 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC) 1223 mm->exec_vm += pages; 1224 } else if (flags & stack_flags) 1225 mm->stack_vm += pages; 1226 } 1227 #endif /* CONFIG_PROC_FS */ 1228 1229 /* 1230 * If a hint addr is less than mmap_min_addr change hint to be as 1231 * low as possible but still greater than mmap_min_addr 1232 */ 1233 static inline unsigned long round_hint_to_min(unsigned long hint) 1234 { 1235 hint &= PAGE_MASK; 1236 if (((void *)hint != NULL) && 1237 (hint < mmap_min_addr)) 1238 return PAGE_ALIGN(mmap_min_addr); 1239 return hint; 1240 } 1241 1242 static inline int mlock_future_check(struct mm_struct *mm, 1243 unsigned long flags, 1244 unsigned long len) 1245 { 1246 unsigned long locked, lock_limit; 1247 1248 /* mlock MCL_FUTURE? */ 1249 if (flags & VM_LOCKED) { 1250 locked = len >> PAGE_SHIFT; 1251 locked += mm->locked_vm; 1252 lock_limit = rlimit(RLIMIT_MEMLOCK); 1253 lock_limit >>= PAGE_SHIFT; 1254 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 1255 return -EAGAIN; 1256 } 1257 return 0; 1258 } 1259 1260 /* 1261 * The caller must hold down_write(¤t->mm->mmap_sem). 1262 */ 1263 unsigned long do_mmap(struct file *file, unsigned long addr, 1264 unsigned long len, unsigned long prot, 1265 unsigned long flags, vm_flags_t vm_flags, 1266 unsigned long pgoff, unsigned long *populate) 1267 { 1268 struct mm_struct *mm = current->mm; 1269 1270 *populate = 0; 1271 1272 if (!len) 1273 return -EINVAL; 1274 1275 /* 1276 * Does the application expect PROT_READ to imply PROT_EXEC? 1277 * 1278 * (the exception is when the underlying filesystem is noexec 1279 * mounted, in which case we dont add PROT_EXEC.) 1280 */ 1281 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC)) 1282 if (!(file && path_noexec(&file->f_path))) 1283 prot |= PROT_EXEC; 1284 1285 if (!(flags & MAP_FIXED)) 1286 addr = round_hint_to_min(addr); 1287 1288 /* Careful about overflows.. */ 1289 len = PAGE_ALIGN(len); 1290 if (!len) 1291 return -ENOMEM; 1292 1293 /* offset overflow? */ 1294 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff) 1295 return -EOVERFLOW; 1296 1297 /* Too many mappings? */ 1298 if (mm->map_count > sysctl_max_map_count) 1299 return -ENOMEM; 1300 1301 /* Obtain the address to map to. we verify (or select) it and ensure 1302 * that it represents a valid section of the address space. 1303 */ 1304 addr = get_unmapped_area(file, addr, len, pgoff, flags); 1305 if (addr & ~PAGE_MASK) 1306 return addr; 1307 1308 /* Do simple checking here so the lower-level routines won't have 1309 * to. we assume access permissions have been handled by the open 1310 * of the memory object, so we don't do any here. 1311 */ 1312 vm_flags |= calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) | 1313 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 1314 1315 if (flags & MAP_LOCKED) 1316 if (!can_do_mlock()) 1317 return -EPERM; 1318 1319 if (mlock_future_check(mm, vm_flags, len)) 1320 return -EAGAIN; 1321 1322 if (file) { 1323 struct inode *inode = file_inode(file); 1324 1325 switch (flags & MAP_TYPE) { 1326 case MAP_SHARED: 1327 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE)) 1328 return -EACCES; 1329 1330 /* 1331 * Make sure we don't allow writing to an append-only 1332 * file.. 1333 */ 1334 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE)) 1335 return -EACCES; 1336 1337 /* 1338 * Make sure there are no mandatory locks on the file. 1339 */ 1340 if (locks_verify_locked(file)) 1341 return -EAGAIN; 1342 1343 vm_flags |= VM_SHARED | VM_MAYSHARE; 1344 if (!(file->f_mode & FMODE_WRITE)) 1345 vm_flags &= ~(VM_MAYWRITE | VM_SHARED); 1346 1347 /* fall through */ 1348 case MAP_PRIVATE: 1349 if (!(file->f_mode & FMODE_READ)) 1350 return -EACCES; 1351 if (path_noexec(&file->f_path)) { 1352 if (vm_flags & VM_EXEC) 1353 return -EPERM; 1354 vm_flags &= ~VM_MAYEXEC; 1355 } 1356 1357 if (!file->f_op->mmap) 1358 return -ENODEV; 1359 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1360 return -EINVAL; 1361 break; 1362 1363 default: 1364 return -EINVAL; 1365 } 1366 } else { 1367 switch (flags & MAP_TYPE) { 1368 case MAP_SHARED: 1369 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1370 return -EINVAL; 1371 /* 1372 * Ignore pgoff. 1373 */ 1374 pgoff = 0; 1375 vm_flags |= VM_SHARED | VM_MAYSHARE; 1376 break; 1377 case MAP_PRIVATE: 1378 /* 1379 * Set pgoff according to addr for anon_vma. 1380 */ 1381 pgoff = addr >> PAGE_SHIFT; 1382 break; 1383 default: 1384 return -EINVAL; 1385 } 1386 } 1387 1388 /* 1389 * Set 'VM_NORESERVE' if we should not account for the 1390 * memory use of this mapping. 1391 */ 1392 if (flags & MAP_NORESERVE) { 1393 /* We honor MAP_NORESERVE if allowed to overcommit */ 1394 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER) 1395 vm_flags |= VM_NORESERVE; 1396 1397 /* hugetlb applies strict overcommit unless MAP_NORESERVE */ 1398 if (file && is_file_hugepages(file)) 1399 vm_flags |= VM_NORESERVE; 1400 } 1401 1402 addr = mmap_region(file, addr, len, vm_flags, pgoff); 1403 if (!IS_ERR_VALUE(addr) && 1404 ((vm_flags & VM_LOCKED) || 1405 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE)) 1406 *populate = len; 1407 return addr; 1408 } 1409 1410 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1411 unsigned long, prot, unsigned long, flags, 1412 unsigned long, fd, unsigned long, pgoff) 1413 { 1414 struct file *file = NULL; 1415 unsigned long retval = -EBADF; 1416 1417 if (!(flags & MAP_ANONYMOUS)) { 1418 audit_mmap_fd(fd, flags); 1419 file = fget(fd); 1420 if (!file) 1421 goto out; 1422 if (is_file_hugepages(file)) 1423 len = ALIGN(len, huge_page_size(hstate_file(file))); 1424 retval = -EINVAL; 1425 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file))) 1426 goto out_fput; 1427 } else if (flags & MAP_HUGETLB) { 1428 struct user_struct *user = NULL; 1429 struct hstate *hs; 1430 1431 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK); 1432 if (!hs) 1433 return -EINVAL; 1434 1435 len = ALIGN(len, huge_page_size(hs)); 1436 /* 1437 * VM_NORESERVE is used because the reservations will be 1438 * taken when vm_ops->mmap() is called 1439 * A dummy user value is used because we are not locking 1440 * memory so no accounting is necessary 1441 */ 1442 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, 1443 VM_NORESERVE, 1444 &user, HUGETLB_ANONHUGE_INODE, 1445 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 1446 if (IS_ERR(file)) 1447 return PTR_ERR(file); 1448 } 1449 1450 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE); 1451 1452 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1453 out_fput: 1454 if (file) 1455 fput(file); 1456 out: 1457 return retval; 1458 } 1459 1460 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1461 struct mmap_arg_struct { 1462 unsigned long addr; 1463 unsigned long len; 1464 unsigned long prot; 1465 unsigned long flags; 1466 unsigned long fd; 1467 unsigned long offset; 1468 }; 1469 1470 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1471 { 1472 struct mmap_arg_struct a; 1473 1474 if (copy_from_user(&a, arg, sizeof(a))) 1475 return -EFAULT; 1476 if (a.offset & ~PAGE_MASK) 1477 return -EINVAL; 1478 1479 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1480 a.offset >> PAGE_SHIFT); 1481 } 1482 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1483 1484 /* 1485 * Some shared mappigns will want the pages marked read-only 1486 * to track write events. If so, we'll downgrade vm_page_prot 1487 * to the private version (using protection_map[] without the 1488 * VM_SHARED bit). 1489 */ 1490 int vma_wants_writenotify(struct vm_area_struct *vma) 1491 { 1492 vm_flags_t vm_flags = vma->vm_flags; 1493 const struct vm_operations_struct *vm_ops = vma->vm_ops; 1494 1495 /* If it was private or non-writable, the write bit is already clear */ 1496 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED))) 1497 return 0; 1498 1499 /* The backer wishes to know when pages are first written to? */ 1500 if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite)) 1501 return 1; 1502 1503 /* The open routine did something to the protections that pgprot_modify 1504 * won't preserve? */ 1505 if (pgprot_val(vma->vm_page_prot) != 1506 pgprot_val(vm_pgprot_modify(vma->vm_page_prot, vm_flags))) 1507 return 0; 1508 1509 /* Do we need to track softdirty? */ 1510 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY)) 1511 return 1; 1512 1513 /* Specialty mapping? */ 1514 if (vm_flags & VM_PFNMAP) 1515 return 0; 1516 1517 /* Can the mapping track the dirty pages? */ 1518 return vma->vm_file && vma->vm_file->f_mapping && 1519 mapping_cap_account_dirty(vma->vm_file->f_mapping); 1520 } 1521 1522 /* 1523 * We account for memory if it's a private writeable mapping, 1524 * not hugepages and VM_NORESERVE wasn't set. 1525 */ 1526 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags) 1527 { 1528 /* 1529 * hugetlb has its own accounting separate from the core VM 1530 * VM_HUGETLB may not be set yet so we cannot check for that flag. 1531 */ 1532 if (file && is_file_hugepages(file)) 1533 return 0; 1534 1535 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE; 1536 } 1537 1538 unsigned long mmap_region(struct file *file, unsigned long addr, 1539 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff) 1540 { 1541 struct mm_struct *mm = current->mm; 1542 struct vm_area_struct *vma, *prev; 1543 int error; 1544 struct rb_node **rb_link, *rb_parent; 1545 unsigned long charged = 0; 1546 1547 /* Check against address space limit. */ 1548 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) { 1549 unsigned long nr_pages; 1550 1551 /* 1552 * MAP_FIXED may remove pages of mappings that intersects with 1553 * requested mapping. Account for the pages it would unmap. 1554 */ 1555 if (!(vm_flags & MAP_FIXED)) 1556 return -ENOMEM; 1557 1558 nr_pages = count_vma_pages_range(mm, addr, addr + len); 1559 1560 if (!may_expand_vm(mm, (len >> PAGE_SHIFT) - nr_pages)) 1561 return -ENOMEM; 1562 } 1563 1564 /* Clear old maps */ 1565 error = -ENOMEM; 1566 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link, 1567 &rb_parent)) { 1568 if (do_munmap(mm, addr, len)) 1569 return -ENOMEM; 1570 } 1571 1572 /* 1573 * Private writable mapping: check memory availability 1574 */ 1575 if (accountable_mapping(file, vm_flags)) { 1576 charged = len >> PAGE_SHIFT; 1577 if (security_vm_enough_memory_mm(mm, charged)) 1578 return -ENOMEM; 1579 vm_flags |= VM_ACCOUNT; 1580 } 1581 1582 /* 1583 * Can we just expand an old mapping? 1584 */ 1585 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, 1586 NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX); 1587 if (vma) 1588 goto out; 1589 1590 /* 1591 * Determine the object being mapped and call the appropriate 1592 * specific mapper. the address has already been validated, but 1593 * not unmapped, but the maps are removed from the list. 1594 */ 1595 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 1596 if (!vma) { 1597 error = -ENOMEM; 1598 goto unacct_error; 1599 } 1600 1601 vma->vm_mm = mm; 1602 vma->vm_start = addr; 1603 vma->vm_end = addr + len; 1604 vma->vm_flags = vm_flags; 1605 vma->vm_page_prot = vm_get_page_prot(vm_flags); 1606 vma->vm_pgoff = pgoff; 1607 INIT_LIST_HEAD(&vma->anon_vma_chain); 1608 1609 if (file) { 1610 if (vm_flags & VM_DENYWRITE) { 1611 error = deny_write_access(file); 1612 if (error) 1613 goto free_vma; 1614 } 1615 if (vm_flags & VM_SHARED) { 1616 error = mapping_map_writable(file->f_mapping); 1617 if (error) 1618 goto allow_write_and_free_vma; 1619 } 1620 1621 /* ->mmap() can change vma->vm_file, but must guarantee that 1622 * vma_link() below can deny write-access if VM_DENYWRITE is set 1623 * and map writably if VM_SHARED is set. This usually means the 1624 * new file must not have been exposed to user-space, yet. 1625 */ 1626 vma->vm_file = get_file(file); 1627 error = file->f_op->mmap(file, vma); 1628 if (error) 1629 goto unmap_and_free_vma; 1630 1631 /* Can addr have changed?? 1632 * 1633 * Answer: Yes, several device drivers can do it in their 1634 * f_op->mmap method. -DaveM 1635 * Bug: If addr is changed, prev, rb_link, rb_parent should 1636 * be updated for vma_link() 1637 */ 1638 WARN_ON_ONCE(addr != vma->vm_start); 1639 1640 addr = vma->vm_start; 1641 vm_flags = vma->vm_flags; 1642 } else if (vm_flags & VM_SHARED) { 1643 error = shmem_zero_setup(vma); 1644 if (error) 1645 goto free_vma; 1646 } 1647 1648 vma_link(mm, vma, prev, rb_link, rb_parent); 1649 /* Once vma denies write, undo our temporary denial count */ 1650 if (file) { 1651 if (vm_flags & VM_SHARED) 1652 mapping_unmap_writable(file->f_mapping); 1653 if (vm_flags & VM_DENYWRITE) 1654 allow_write_access(file); 1655 } 1656 file = vma->vm_file; 1657 out: 1658 perf_event_mmap(vma); 1659 1660 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT); 1661 if (vm_flags & VM_LOCKED) { 1662 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) || 1663 vma == get_gate_vma(current->mm))) 1664 mm->locked_vm += (len >> PAGE_SHIFT); 1665 else 1666 vma->vm_flags &= ~VM_LOCKED; 1667 } 1668 1669 if (file) 1670 uprobe_mmap(vma); 1671 1672 /* 1673 * New (or expanded) vma always get soft dirty status. 1674 * Otherwise user-space soft-dirty page tracker won't 1675 * be able to distinguish situation when vma area unmapped, 1676 * then new mapped in-place (which must be aimed as 1677 * a completely new data area). 1678 */ 1679 vma->vm_flags |= VM_SOFTDIRTY; 1680 1681 vma_set_page_prot(vma); 1682 1683 return addr; 1684 1685 unmap_and_free_vma: 1686 vma->vm_file = NULL; 1687 fput(file); 1688 1689 /* Undo any partial mapping done by a device driver. */ 1690 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end); 1691 charged = 0; 1692 if (vm_flags & VM_SHARED) 1693 mapping_unmap_writable(file->f_mapping); 1694 allow_write_and_free_vma: 1695 if (vm_flags & VM_DENYWRITE) 1696 allow_write_access(file); 1697 free_vma: 1698 kmem_cache_free(vm_area_cachep, vma); 1699 unacct_error: 1700 if (charged) 1701 vm_unacct_memory(charged); 1702 return error; 1703 } 1704 1705 unsigned long unmapped_area(struct vm_unmapped_area_info *info) 1706 { 1707 /* 1708 * We implement the search by looking for an rbtree node that 1709 * immediately follows a suitable gap. That is, 1710 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length; 1711 * - gap_end = vma->vm_start >= info->low_limit + length; 1712 * - gap_end - gap_start >= length 1713 */ 1714 1715 struct mm_struct *mm = current->mm; 1716 struct vm_area_struct *vma; 1717 unsigned long length, low_limit, high_limit, gap_start, gap_end; 1718 1719 /* Adjust search length to account for worst case alignment overhead */ 1720 length = info->length + info->align_mask; 1721 if (length < info->length) 1722 return -ENOMEM; 1723 1724 /* Adjust search limits by the desired length */ 1725 if (info->high_limit < length) 1726 return -ENOMEM; 1727 high_limit = info->high_limit - length; 1728 1729 if (info->low_limit > high_limit) 1730 return -ENOMEM; 1731 low_limit = info->low_limit + length; 1732 1733 /* Check if rbtree root looks promising */ 1734 if (RB_EMPTY_ROOT(&mm->mm_rb)) 1735 goto check_highest; 1736 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb); 1737 if (vma->rb_subtree_gap < length) 1738 goto check_highest; 1739 1740 while (true) { 1741 /* Visit left subtree if it looks promising */ 1742 gap_end = vma->vm_start; 1743 if (gap_end >= low_limit && vma->vm_rb.rb_left) { 1744 struct vm_area_struct *left = 1745 rb_entry(vma->vm_rb.rb_left, 1746 struct vm_area_struct, vm_rb); 1747 if (left->rb_subtree_gap >= length) { 1748 vma = left; 1749 continue; 1750 } 1751 } 1752 1753 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0; 1754 check_current: 1755 /* Check if current node has a suitable gap */ 1756 if (gap_start > high_limit) 1757 return -ENOMEM; 1758 if (gap_end >= low_limit && gap_end - gap_start >= length) 1759 goto found; 1760 1761 /* Visit right subtree if it looks promising */ 1762 if (vma->vm_rb.rb_right) { 1763 struct vm_area_struct *right = 1764 rb_entry(vma->vm_rb.rb_right, 1765 struct vm_area_struct, vm_rb); 1766 if (right->rb_subtree_gap >= length) { 1767 vma = right; 1768 continue; 1769 } 1770 } 1771 1772 /* Go back up the rbtree to find next candidate node */ 1773 while (true) { 1774 struct rb_node *prev = &vma->vm_rb; 1775 if (!rb_parent(prev)) 1776 goto check_highest; 1777 vma = rb_entry(rb_parent(prev), 1778 struct vm_area_struct, vm_rb); 1779 if (prev == vma->vm_rb.rb_left) { 1780 gap_start = vma->vm_prev->vm_end; 1781 gap_end = vma->vm_start; 1782 goto check_current; 1783 } 1784 } 1785 } 1786 1787 check_highest: 1788 /* Check highest gap, which does not precede any rbtree node */ 1789 gap_start = mm->highest_vm_end; 1790 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */ 1791 if (gap_start > high_limit) 1792 return -ENOMEM; 1793 1794 found: 1795 /* We found a suitable gap. Clip it with the original low_limit. */ 1796 if (gap_start < info->low_limit) 1797 gap_start = info->low_limit; 1798 1799 /* Adjust gap address to the desired alignment */ 1800 gap_start += (info->align_offset - gap_start) & info->align_mask; 1801 1802 VM_BUG_ON(gap_start + info->length > info->high_limit); 1803 VM_BUG_ON(gap_start + info->length > gap_end); 1804 return gap_start; 1805 } 1806 1807 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info) 1808 { 1809 struct mm_struct *mm = current->mm; 1810 struct vm_area_struct *vma; 1811 unsigned long length, low_limit, high_limit, gap_start, gap_end; 1812 1813 /* Adjust search length to account for worst case alignment overhead */ 1814 length = info->length + info->align_mask; 1815 if (length < info->length) 1816 return -ENOMEM; 1817 1818 /* 1819 * Adjust search limits by the desired length. 1820 * See implementation comment at top of unmapped_area(). 1821 */ 1822 gap_end = info->high_limit; 1823 if (gap_end < length) 1824 return -ENOMEM; 1825 high_limit = gap_end - length; 1826 1827 if (info->low_limit > high_limit) 1828 return -ENOMEM; 1829 low_limit = info->low_limit + length; 1830 1831 /* Check highest gap, which does not precede any rbtree node */ 1832 gap_start = mm->highest_vm_end; 1833 if (gap_start <= high_limit) 1834 goto found_highest; 1835 1836 /* Check if rbtree root looks promising */ 1837 if (RB_EMPTY_ROOT(&mm->mm_rb)) 1838 return -ENOMEM; 1839 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb); 1840 if (vma->rb_subtree_gap < length) 1841 return -ENOMEM; 1842 1843 while (true) { 1844 /* Visit right subtree if it looks promising */ 1845 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0; 1846 if (gap_start <= high_limit && vma->vm_rb.rb_right) { 1847 struct vm_area_struct *right = 1848 rb_entry(vma->vm_rb.rb_right, 1849 struct vm_area_struct, vm_rb); 1850 if (right->rb_subtree_gap >= length) { 1851 vma = right; 1852 continue; 1853 } 1854 } 1855 1856 check_current: 1857 /* Check if current node has a suitable gap */ 1858 gap_end = vma->vm_start; 1859 if (gap_end < low_limit) 1860 return -ENOMEM; 1861 if (gap_start <= high_limit && gap_end - gap_start >= length) 1862 goto found; 1863 1864 /* Visit left subtree if it looks promising */ 1865 if (vma->vm_rb.rb_left) { 1866 struct vm_area_struct *left = 1867 rb_entry(vma->vm_rb.rb_left, 1868 struct vm_area_struct, vm_rb); 1869 if (left->rb_subtree_gap >= length) { 1870 vma = left; 1871 continue; 1872 } 1873 } 1874 1875 /* Go back up the rbtree to find next candidate node */ 1876 while (true) { 1877 struct rb_node *prev = &vma->vm_rb; 1878 if (!rb_parent(prev)) 1879 return -ENOMEM; 1880 vma = rb_entry(rb_parent(prev), 1881 struct vm_area_struct, vm_rb); 1882 if (prev == vma->vm_rb.rb_right) { 1883 gap_start = vma->vm_prev ? 1884 vma->vm_prev->vm_end : 0; 1885 goto check_current; 1886 } 1887 } 1888 } 1889 1890 found: 1891 /* We found a suitable gap. Clip it with the original high_limit. */ 1892 if (gap_end > info->high_limit) 1893 gap_end = info->high_limit; 1894 1895 found_highest: 1896 /* Compute highest gap address at the desired alignment */ 1897 gap_end -= info->length; 1898 gap_end -= (gap_end - info->align_offset) & info->align_mask; 1899 1900 VM_BUG_ON(gap_end < info->low_limit); 1901 VM_BUG_ON(gap_end < gap_start); 1902 return gap_end; 1903 } 1904 1905 /* Get an address range which is currently unmapped. 1906 * For shmat() with addr=0. 1907 * 1908 * Ugly calling convention alert: 1909 * Return value with the low bits set means error value, 1910 * ie 1911 * if (ret & ~PAGE_MASK) 1912 * error = ret; 1913 * 1914 * This function "knows" that -ENOMEM has the bits set. 1915 */ 1916 #ifndef HAVE_ARCH_UNMAPPED_AREA 1917 unsigned long 1918 arch_get_unmapped_area(struct file *filp, unsigned long addr, 1919 unsigned long len, unsigned long pgoff, unsigned long flags) 1920 { 1921 struct mm_struct *mm = current->mm; 1922 struct vm_area_struct *vma; 1923 struct vm_unmapped_area_info info; 1924 1925 if (len > TASK_SIZE - mmap_min_addr) 1926 return -ENOMEM; 1927 1928 if (flags & MAP_FIXED) 1929 return addr; 1930 1931 if (addr) { 1932 addr = PAGE_ALIGN(addr); 1933 vma = find_vma(mm, addr); 1934 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr && 1935 (!vma || addr + len <= vma->vm_start)) 1936 return addr; 1937 } 1938 1939 info.flags = 0; 1940 info.length = len; 1941 info.low_limit = mm->mmap_base; 1942 info.high_limit = TASK_SIZE; 1943 info.align_mask = 0; 1944 return vm_unmapped_area(&info); 1945 } 1946 #endif 1947 1948 /* 1949 * This mmap-allocator allocates new areas top-down from below the 1950 * stack's low limit (the base): 1951 */ 1952 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 1953 unsigned long 1954 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0, 1955 const unsigned long len, const unsigned long pgoff, 1956 const unsigned long flags) 1957 { 1958 struct vm_area_struct *vma; 1959 struct mm_struct *mm = current->mm; 1960 unsigned long addr = addr0; 1961 struct vm_unmapped_area_info info; 1962 1963 /* requested length too big for entire address space */ 1964 if (len > TASK_SIZE - mmap_min_addr) 1965 return -ENOMEM; 1966 1967 if (flags & MAP_FIXED) 1968 return addr; 1969 1970 /* requesting a specific address */ 1971 if (addr) { 1972 addr = PAGE_ALIGN(addr); 1973 vma = find_vma(mm, addr); 1974 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr && 1975 (!vma || addr + len <= vma->vm_start)) 1976 return addr; 1977 } 1978 1979 info.flags = VM_UNMAPPED_AREA_TOPDOWN; 1980 info.length = len; 1981 info.low_limit = max(PAGE_SIZE, mmap_min_addr); 1982 info.high_limit = mm->mmap_base; 1983 info.align_mask = 0; 1984 addr = vm_unmapped_area(&info); 1985 1986 /* 1987 * A failed mmap() very likely causes application failure, 1988 * so fall back to the bottom-up function here. This scenario 1989 * can happen with large stack limits and large mmap() 1990 * allocations. 1991 */ 1992 if (addr & ~PAGE_MASK) { 1993 VM_BUG_ON(addr != -ENOMEM); 1994 info.flags = 0; 1995 info.low_limit = TASK_UNMAPPED_BASE; 1996 info.high_limit = TASK_SIZE; 1997 addr = vm_unmapped_area(&info); 1998 } 1999 2000 return addr; 2001 } 2002 #endif 2003 2004 unsigned long 2005 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 2006 unsigned long pgoff, unsigned long flags) 2007 { 2008 unsigned long (*get_area)(struct file *, unsigned long, 2009 unsigned long, unsigned long, unsigned long); 2010 2011 unsigned long error = arch_mmap_check(addr, len, flags); 2012 if (error) 2013 return error; 2014 2015 /* Careful about overflows.. */ 2016 if (len > TASK_SIZE) 2017 return -ENOMEM; 2018 2019 get_area = current->mm->get_unmapped_area; 2020 if (file && file->f_op->get_unmapped_area) 2021 get_area = file->f_op->get_unmapped_area; 2022 addr = get_area(file, addr, len, pgoff, flags); 2023 if (IS_ERR_VALUE(addr)) 2024 return addr; 2025 2026 if (addr > TASK_SIZE - len) 2027 return -ENOMEM; 2028 if (addr & ~PAGE_MASK) 2029 return -EINVAL; 2030 2031 addr = arch_rebalance_pgtables(addr, len); 2032 error = security_mmap_addr(addr); 2033 return error ? error : addr; 2034 } 2035 2036 EXPORT_SYMBOL(get_unmapped_area); 2037 2038 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2039 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 2040 { 2041 struct rb_node *rb_node; 2042 struct vm_area_struct *vma; 2043 2044 /* Check the cache first. */ 2045 vma = vmacache_find(mm, addr); 2046 if (likely(vma)) 2047 return vma; 2048 2049 rb_node = mm->mm_rb.rb_node; 2050 vma = NULL; 2051 2052 while (rb_node) { 2053 struct vm_area_struct *tmp; 2054 2055 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb); 2056 2057 if (tmp->vm_end > addr) { 2058 vma = tmp; 2059 if (tmp->vm_start <= addr) 2060 break; 2061 rb_node = rb_node->rb_left; 2062 } else 2063 rb_node = rb_node->rb_right; 2064 } 2065 2066 if (vma) 2067 vmacache_update(addr, vma); 2068 return vma; 2069 } 2070 2071 EXPORT_SYMBOL(find_vma); 2072 2073 /* 2074 * Same as find_vma, but also return a pointer to the previous VMA in *pprev. 2075 */ 2076 struct vm_area_struct * 2077 find_vma_prev(struct mm_struct *mm, unsigned long addr, 2078 struct vm_area_struct **pprev) 2079 { 2080 struct vm_area_struct *vma; 2081 2082 vma = find_vma(mm, addr); 2083 if (vma) { 2084 *pprev = vma->vm_prev; 2085 } else { 2086 struct rb_node *rb_node = mm->mm_rb.rb_node; 2087 *pprev = NULL; 2088 while (rb_node) { 2089 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb); 2090 rb_node = rb_node->rb_right; 2091 } 2092 } 2093 return vma; 2094 } 2095 2096 /* 2097 * Verify that the stack growth is acceptable and 2098 * update accounting. This is shared with both the 2099 * grow-up and grow-down cases. 2100 */ 2101 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow) 2102 { 2103 struct mm_struct *mm = vma->vm_mm; 2104 struct rlimit *rlim = current->signal->rlim; 2105 unsigned long new_start, actual_size; 2106 2107 /* address space limit tests */ 2108 if (!may_expand_vm(mm, grow)) 2109 return -ENOMEM; 2110 2111 /* Stack limit test */ 2112 actual_size = size; 2113 if (size && (vma->vm_flags & (VM_GROWSUP | VM_GROWSDOWN))) 2114 actual_size -= PAGE_SIZE; 2115 if (actual_size > READ_ONCE(rlim[RLIMIT_STACK].rlim_cur)) 2116 return -ENOMEM; 2117 2118 /* mlock limit tests */ 2119 if (vma->vm_flags & VM_LOCKED) { 2120 unsigned long locked; 2121 unsigned long limit; 2122 locked = mm->locked_vm + grow; 2123 limit = READ_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur); 2124 limit >>= PAGE_SHIFT; 2125 if (locked > limit && !capable(CAP_IPC_LOCK)) 2126 return -ENOMEM; 2127 } 2128 2129 /* Check to ensure the stack will not grow into a hugetlb-only region */ 2130 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : 2131 vma->vm_end - size; 2132 if (is_hugepage_only_range(vma->vm_mm, new_start, size)) 2133 return -EFAULT; 2134 2135 /* 2136 * Overcommit.. This must be the final test, as it will 2137 * update security statistics. 2138 */ 2139 if (security_vm_enough_memory_mm(mm, grow)) 2140 return -ENOMEM; 2141 2142 /* Ok, everything looks good - let it rip */ 2143 if (vma->vm_flags & VM_LOCKED) 2144 mm->locked_vm += grow; 2145 vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow); 2146 return 0; 2147 } 2148 2149 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64) 2150 /* 2151 * PA-RISC uses this for its stack; IA64 for its Register Backing Store. 2152 * vma is the last one with address > vma->vm_end. Have to extend vma. 2153 */ 2154 int expand_upwards(struct vm_area_struct *vma, unsigned long address) 2155 { 2156 int error; 2157 2158 if (!(vma->vm_flags & VM_GROWSUP)) 2159 return -EFAULT; 2160 2161 /* 2162 * We must make sure the anon_vma is allocated 2163 * so that the anon_vma locking is not a noop. 2164 */ 2165 if (unlikely(anon_vma_prepare(vma))) 2166 return -ENOMEM; 2167 vma_lock_anon_vma(vma); 2168 2169 /* 2170 * vma->vm_start/vm_end cannot change under us because the caller 2171 * is required to hold the mmap_sem in read mode. We need the 2172 * anon_vma lock to serialize against concurrent expand_stacks. 2173 * Also guard against wrapping around to address 0. 2174 */ 2175 if (address < PAGE_ALIGN(address+4)) 2176 address = PAGE_ALIGN(address+4); 2177 else { 2178 vma_unlock_anon_vma(vma); 2179 return -ENOMEM; 2180 } 2181 error = 0; 2182 2183 /* Somebody else might have raced and expanded it already */ 2184 if (address > vma->vm_end) { 2185 unsigned long size, grow; 2186 2187 size = address - vma->vm_start; 2188 grow = (address - vma->vm_end) >> PAGE_SHIFT; 2189 2190 error = -ENOMEM; 2191 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) { 2192 error = acct_stack_growth(vma, size, grow); 2193 if (!error) { 2194 /* 2195 * vma_gap_update() doesn't support concurrent 2196 * updates, but we only hold a shared mmap_sem 2197 * lock here, so we need to protect against 2198 * concurrent vma expansions. 2199 * vma_lock_anon_vma() doesn't help here, as 2200 * we don't guarantee that all growable vmas 2201 * in a mm share the same root anon vma. 2202 * So, we reuse mm->page_table_lock to guard 2203 * against concurrent vma expansions. 2204 */ 2205 spin_lock(&vma->vm_mm->page_table_lock); 2206 anon_vma_interval_tree_pre_update_vma(vma); 2207 vma->vm_end = address; 2208 anon_vma_interval_tree_post_update_vma(vma); 2209 if (vma->vm_next) 2210 vma_gap_update(vma->vm_next); 2211 else 2212 vma->vm_mm->highest_vm_end = address; 2213 spin_unlock(&vma->vm_mm->page_table_lock); 2214 2215 perf_event_mmap(vma); 2216 } 2217 } 2218 } 2219 vma_unlock_anon_vma(vma); 2220 khugepaged_enter_vma_merge(vma, vma->vm_flags); 2221 validate_mm(vma->vm_mm); 2222 return error; 2223 } 2224 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */ 2225 2226 /* 2227 * vma is the first one with address < vma->vm_start. Have to extend vma. 2228 */ 2229 int expand_downwards(struct vm_area_struct *vma, 2230 unsigned long address) 2231 { 2232 int error; 2233 2234 /* 2235 * We must make sure the anon_vma is allocated 2236 * so that the anon_vma locking is not a noop. 2237 */ 2238 if (unlikely(anon_vma_prepare(vma))) 2239 return -ENOMEM; 2240 2241 address &= PAGE_MASK; 2242 error = security_mmap_addr(address); 2243 if (error) 2244 return error; 2245 2246 vma_lock_anon_vma(vma); 2247 2248 /* 2249 * vma->vm_start/vm_end cannot change under us because the caller 2250 * is required to hold the mmap_sem in read mode. We need the 2251 * anon_vma lock to serialize against concurrent expand_stacks. 2252 */ 2253 2254 /* Somebody else might have raced and expanded it already */ 2255 if (address < vma->vm_start) { 2256 unsigned long size, grow; 2257 2258 size = vma->vm_end - address; 2259 grow = (vma->vm_start - address) >> PAGE_SHIFT; 2260 2261 error = -ENOMEM; 2262 if (grow <= vma->vm_pgoff) { 2263 error = acct_stack_growth(vma, size, grow); 2264 if (!error) { 2265 /* 2266 * vma_gap_update() doesn't support concurrent 2267 * updates, but we only hold a shared mmap_sem 2268 * lock here, so we need to protect against 2269 * concurrent vma expansions. 2270 * vma_lock_anon_vma() doesn't help here, as 2271 * we don't guarantee that all growable vmas 2272 * in a mm share the same root anon vma. 2273 * So, we reuse mm->page_table_lock to guard 2274 * against concurrent vma expansions. 2275 */ 2276 spin_lock(&vma->vm_mm->page_table_lock); 2277 anon_vma_interval_tree_pre_update_vma(vma); 2278 vma->vm_start = address; 2279 vma->vm_pgoff -= grow; 2280 anon_vma_interval_tree_post_update_vma(vma); 2281 vma_gap_update(vma); 2282 spin_unlock(&vma->vm_mm->page_table_lock); 2283 2284 perf_event_mmap(vma); 2285 } 2286 } 2287 } 2288 vma_unlock_anon_vma(vma); 2289 khugepaged_enter_vma_merge(vma, vma->vm_flags); 2290 validate_mm(vma->vm_mm); 2291 return error; 2292 } 2293 2294 /* 2295 * Note how expand_stack() refuses to expand the stack all the way to 2296 * abut the next virtual mapping, *unless* that mapping itself is also 2297 * a stack mapping. We want to leave room for a guard page, after all 2298 * (the guard page itself is not added here, that is done by the 2299 * actual page faulting logic) 2300 * 2301 * This matches the behavior of the guard page logic (see mm/memory.c: 2302 * check_stack_guard_page()), which only allows the guard page to be 2303 * removed under these circumstances. 2304 */ 2305 #ifdef CONFIG_STACK_GROWSUP 2306 int expand_stack(struct vm_area_struct *vma, unsigned long address) 2307 { 2308 struct vm_area_struct *next; 2309 2310 address &= PAGE_MASK; 2311 next = vma->vm_next; 2312 if (next && next->vm_start == address + PAGE_SIZE) { 2313 if (!(next->vm_flags & VM_GROWSUP)) 2314 return -ENOMEM; 2315 } 2316 return expand_upwards(vma, address); 2317 } 2318 2319 struct vm_area_struct * 2320 find_extend_vma(struct mm_struct *mm, unsigned long addr) 2321 { 2322 struct vm_area_struct *vma, *prev; 2323 2324 addr &= PAGE_MASK; 2325 vma = find_vma_prev(mm, addr, &prev); 2326 if (vma && (vma->vm_start <= addr)) 2327 return vma; 2328 if (!prev || expand_stack(prev, addr)) 2329 return NULL; 2330 if (prev->vm_flags & VM_LOCKED) 2331 populate_vma_page_range(prev, addr, prev->vm_end, NULL); 2332 return prev; 2333 } 2334 #else 2335 int expand_stack(struct vm_area_struct *vma, unsigned long address) 2336 { 2337 struct vm_area_struct *prev; 2338 2339 address &= PAGE_MASK; 2340 prev = vma->vm_prev; 2341 if (prev && prev->vm_end == address) { 2342 if (!(prev->vm_flags & VM_GROWSDOWN)) 2343 return -ENOMEM; 2344 } 2345 return expand_downwards(vma, address); 2346 } 2347 2348 struct vm_area_struct * 2349 find_extend_vma(struct mm_struct *mm, unsigned long addr) 2350 { 2351 struct vm_area_struct *vma; 2352 unsigned long start; 2353 2354 addr &= PAGE_MASK; 2355 vma = find_vma(mm, addr); 2356 if (!vma) 2357 return NULL; 2358 if (vma->vm_start <= addr) 2359 return vma; 2360 if (!(vma->vm_flags & VM_GROWSDOWN)) 2361 return NULL; 2362 start = vma->vm_start; 2363 if (expand_stack(vma, addr)) 2364 return NULL; 2365 if (vma->vm_flags & VM_LOCKED) 2366 populate_vma_page_range(vma, addr, start, NULL); 2367 return vma; 2368 } 2369 #endif 2370 2371 EXPORT_SYMBOL_GPL(find_extend_vma); 2372 2373 /* 2374 * Ok - we have the memory areas we should free on the vma list, 2375 * so release them, and do the vma updates. 2376 * 2377 * Called with the mm semaphore held. 2378 */ 2379 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma) 2380 { 2381 unsigned long nr_accounted = 0; 2382 2383 /* Update high watermark before we lower total_vm */ 2384 update_hiwater_vm(mm); 2385 do { 2386 long nrpages = vma_pages(vma); 2387 2388 if (vma->vm_flags & VM_ACCOUNT) 2389 nr_accounted += nrpages; 2390 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages); 2391 vma = remove_vma(vma); 2392 } while (vma); 2393 vm_unacct_memory(nr_accounted); 2394 validate_mm(mm); 2395 } 2396 2397 /* 2398 * Get rid of page table information in the indicated region. 2399 * 2400 * Called with the mm semaphore held. 2401 */ 2402 static void unmap_region(struct mm_struct *mm, 2403 struct vm_area_struct *vma, struct vm_area_struct *prev, 2404 unsigned long start, unsigned long end) 2405 { 2406 struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap; 2407 struct mmu_gather tlb; 2408 2409 lru_add_drain(); 2410 tlb_gather_mmu(&tlb, mm, start, end); 2411 update_hiwater_rss(mm); 2412 unmap_vmas(&tlb, vma, start, end); 2413 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS, 2414 next ? next->vm_start : USER_PGTABLES_CEILING); 2415 tlb_finish_mmu(&tlb, start, end); 2416 } 2417 2418 /* 2419 * Create a list of vma's touched by the unmap, removing them from the mm's 2420 * vma list as we go.. 2421 */ 2422 static void 2423 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma, 2424 struct vm_area_struct *prev, unsigned long end) 2425 { 2426 struct vm_area_struct **insertion_point; 2427 struct vm_area_struct *tail_vma = NULL; 2428 2429 insertion_point = (prev ? &prev->vm_next : &mm->mmap); 2430 vma->vm_prev = NULL; 2431 do { 2432 vma_rb_erase(vma, &mm->mm_rb); 2433 mm->map_count--; 2434 tail_vma = vma; 2435 vma = vma->vm_next; 2436 } while (vma && vma->vm_start < end); 2437 *insertion_point = vma; 2438 if (vma) { 2439 vma->vm_prev = prev; 2440 vma_gap_update(vma); 2441 } else 2442 mm->highest_vm_end = prev ? prev->vm_end : 0; 2443 tail_vma->vm_next = NULL; 2444 2445 /* Kill the cache */ 2446 vmacache_invalidate(mm); 2447 } 2448 2449 /* 2450 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the 2451 * munmap path where it doesn't make sense to fail. 2452 */ 2453 static int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 2454 unsigned long addr, int new_below) 2455 { 2456 struct vm_area_struct *new; 2457 int err; 2458 2459 if (is_vm_hugetlb_page(vma) && (addr & 2460 ~(huge_page_mask(hstate_vma(vma))))) 2461 return -EINVAL; 2462 2463 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 2464 if (!new) 2465 return -ENOMEM; 2466 2467 /* most fields are the same, copy all, and then fixup */ 2468 *new = *vma; 2469 2470 INIT_LIST_HEAD(&new->anon_vma_chain); 2471 2472 if (new_below) 2473 new->vm_end = addr; 2474 else { 2475 new->vm_start = addr; 2476 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); 2477 } 2478 2479 err = vma_dup_policy(vma, new); 2480 if (err) 2481 goto out_free_vma; 2482 2483 err = anon_vma_clone(new, vma); 2484 if (err) 2485 goto out_free_mpol; 2486 2487 if (new->vm_file) 2488 get_file(new->vm_file); 2489 2490 if (new->vm_ops && new->vm_ops->open) 2491 new->vm_ops->open(new); 2492 2493 if (new_below) 2494 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff + 2495 ((addr - new->vm_start) >> PAGE_SHIFT), new); 2496 else 2497 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new); 2498 2499 /* Success. */ 2500 if (!err) 2501 return 0; 2502 2503 /* Clean everything up if vma_adjust failed. */ 2504 if (new->vm_ops && new->vm_ops->close) 2505 new->vm_ops->close(new); 2506 if (new->vm_file) 2507 fput(new->vm_file); 2508 unlink_anon_vmas(new); 2509 out_free_mpol: 2510 mpol_put(vma_policy(new)); 2511 out_free_vma: 2512 kmem_cache_free(vm_area_cachep, new); 2513 return err; 2514 } 2515 2516 /* 2517 * Split a vma into two pieces at address 'addr', a new vma is allocated 2518 * either for the first part or the tail. 2519 */ 2520 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 2521 unsigned long addr, int new_below) 2522 { 2523 if (mm->map_count >= sysctl_max_map_count) 2524 return -ENOMEM; 2525 2526 return __split_vma(mm, vma, addr, new_below); 2527 } 2528 2529 /* Munmap is split into 2 main parts -- this part which finds 2530 * what needs doing, and the areas themselves, which do the 2531 * work. This now handles partial unmappings. 2532 * Jeremy Fitzhardinge <jeremy@goop.org> 2533 */ 2534 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len) 2535 { 2536 unsigned long end; 2537 struct vm_area_struct *vma, *prev, *last; 2538 2539 if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start) 2540 return -EINVAL; 2541 2542 len = PAGE_ALIGN(len); 2543 if (len == 0) 2544 return -EINVAL; 2545 2546 /* Find the first overlapping VMA */ 2547 vma = find_vma(mm, start); 2548 if (!vma) 2549 return 0; 2550 prev = vma->vm_prev; 2551 /* we have start < vma->vm_end */ 2552 2553 /* if it doesn't overlap, we have nothing.. */ 2554 end = start + len; 2555 if (vma->vm_start >= end) 2556 return 0; 2557 2558 /* 2559 * If we need to split any vma, do it now to save pain later. 2560 * 2561 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially 2562 * unmapped vm_area_struct will remain in use: so lower split_vma 2563 * places tmp vma above, and higher split_vma places tmp vma below. 2564 */ 2565 if (start > vma->vm_start) { 2566 int error; 2567 2568 /* 2569 * Make sure that map_count on return from munmap() will 2570 * not exceed its limit; but let map_count go just above 2571 * its limit temporarily, to help free resources as expected. 2572 */ 2573 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count) 2574 return -ENOMEM; 2575 2576 error = __split_vma(mm, vma, start, 0); 2577 if (error) 2578 return error; 2579 prev = vma; 2580 } 2581 2582 /* Does it split the last one? */ 2583 last = find_vma(mm, end); 2584 if (last && end > last->vm_start) { 2585 int error = __split_vma(mm, last, end, 1); 2586 if (error) 2587 return error; 2588 } 2589 vma = prev ? prev->vm_next : mm->mmap; 2590 2591 /* 2592 * unlock any mlock()ed ranges before detaching vmas 2593 */ 2594 if (mm->locked_vm) { 2595 struct vm_area_struct *tmp = vma; 2596 while (tmp && tmp->vm_start < end) { 2597 if (tmp->vm_flags & VM_LOCKED) { 2598 mm->locked_vm -= vma_pages(tmp); 2599 munlock_vma_pages_all(tmp); 2600 } 2601 tmp = tmp->vm_next; 2602 } 2603 } 2604 2605 /* 2606 * Remove the vma's, and unmap the actual pages 2607 */ 2608 detach_vmas_to_be_unmapped(mm, vma, prev, end); 2609 unmap_region(mm, vma, prev, start, end); 2610 2611 arch_unmap(mm, vma, start, end); 2612 2613 /* Fix up all other VM information */ 2614 remove_vma_list(mm, vma); 2615 2616 return 0; 2617 } 2618 2619 int vm_munmap(unsigned long start, size_t len) 2620 { 2621 int ret; 2622 struct mm_struct *mm = current->mm; 2623 2624 down_write(&mm->mmap_sem); 2625 ret = do_munmap(mm, start, len); 2626 up_write(&mm->mmap_sem); 2627 return ret; 2628 } 2629 EXPORT_SYMBOL(vm_munmap); 2630 2631 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 2632 { 2633 profile_munmap(addr); 2634 return vm_munmap(addr, len); 2635 } 2636 2637 2638 /* 2639 * Emulation of deprecated remap_file_pages() syscall. 2640 */ 2641 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size, 2642 unsigned long, prot, unsigned long, pgoff, unsigned long, flags) 2643 { 2644 2645 struct mm_struct *mm = current->mm; 2646 struct vm_area_struct *vma; 2647 unsigned long populate = 0; 2648 unsigned long ret = -EINVAL; 2649 struct file *file; 2650 2651 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. " 2652 "See Documentation/vm/remap_file_pages.txt.\n", 2653 current->comm, current->pid); 2654 2655 if (prot) 2656 return ret; 2657 start = start & PAGE_MASK; 2658 size = size & PAGE_MASK; 2659 2660 if (start + size <= start) 2661 return ret; 2662 2663 /* Does pgoff wrap? */ 2664 if (pgoff + (size >> PAGE_SHIFT) < pgoff) 2665 return ret; 2666 2667 down_write(&mm->mmap_sem); 2668 vma = find_vma(mm, start); 2669 2670 if (!vma || !(vma->vm_flags & VM_SHARED)) 2671 goto out; 2672 2673 if (start < vma->vm_start || start + size > vma->vm_end) 2674 goto out; 2675 2676 if (pgoff == linear_page_index(vma, start)) { 2677 ret = 0; 2678 goto out; 2679 } 2680 2681 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0; 2682 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0; 2683 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0; 2684 2685 flags &= MAP_NONBLOCK; 2686 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE; 2687 if (vma->vm_flags & VM_LOCKED) { 2688 flags |= MAP_LOCKED; 2689 /* drop PG_Mlocked flag for over-mapped range */ 2690 munlock_vma_pages_range(vma, start, start + size); 2691 } 2692 2693 file = get_file(vma->vm_file); 2694 ret = do_mmap_pgoff(vma->vm_file, start, size, 2695 prot, flags, pgoff, &populate); 2696 fput(file); 2697 out: 2698 up_write(&mm->mmap_sem); 2699 if (populate) 2700 mm_populate(ret, populate); 2701 if (!IS_ERR_VALUE(ret)) 2702 ret = 0; 2703 return ret; 2704 } 2705 2706 static inline void verify_mm_writelocked(struct mm_struct *mm) 2707 { 2708 #ifdef CONFIG_DEBUG_VM 2709 if (unlikely(down_read_trylock(&mm->mmap_sem))) { 2710 WARN_ON(1); 2711 up_read(&mm->mmap_sem); 2712 } 2713 #endif 2714 } 2715 2716 /* 2717 * this is really a simplified "do_mmap". it only handles 2718 * anonymous maps. eventually we may be able to do some 2719 * brk-specific accounting here. 2720 */ 2721 static unsigned long do_brk(unsigned long addr, unsigned long len) 2722 { 2723 struct mm_struct *mm = current->mm; 2724 struct vm_area_struct *vma, *prev; 2725 unsigned long flags; 2726 struct rb_node **rb_link, *rb_parent; 2727 pgoff_t pgoff = addr >> PAGE_SHIFT; 2728 int error; 2729 2730 len = PAGE_ALIGN(len); 2731 if (!len) 2732 return addr; 2733 2734 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; 2735 2736 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED); 2737 if (error & ~PAGE_MASK) 2738 return error; 2739 2740 error = mlock_future_check(mm, mm->def_flags, len); 2741 if (error) 2742 return error; 2743 2744 /* 2745 * mm->mmap_sem is required to protect against another thread 2746 * changing the mappings in case we sleep. 2747 */ 2748 verify_mm_writelocked(mm); 2749 2750 /* 2751 * Clear old maps. this also does some error checking for us 2752 */ 2753 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link, 2754 &rb_parent)) { 2755 if (do_munmap(mm, addr, len)) 2756 return -ENOMEM; 2757 } 2758 2759 /* Check against address space limits *after* clearing old maps... */ 2760 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) 2761 return -ENOMEM; 2762 2763 if (mm->map_count > sysctl_max_map_count) 2764 return -ENOMEM; 2765 2766 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT)) 2767 return -ENOMEM; 2768 2769 /* Can we just expand an old private anonymous mapping? */ 2770 vma = vma_merge(mm, prev, addr, addr + len, flags, 2771 NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX); 2772 if (vma) 2773 goto out; 2774 2775 /* 2776 * create a vma struct for an anonymous mapping 2777 */ 2778 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 2779 if (!vma) { 2780 vm_unacct_memory(len >> PAGE_SHIFT); 2781 return -ENOMEM; 2782 } 2783 2784 INIT_LIST_HEAD(&vma->anon_vma_chain); 2785 vma->vm_mm = mm; 2786 vma->vm_start = addr; 2787 vma->vm_end = addr + len; 2788 vma->vm_pgoff = pgoff; 2789 vma->vm_flags = flags; 2790 vma->vm_page_prot = vm_get_page_prot(flags); 2791 vma_link(mm, vma, prev, rb_link, rb_parent); 2792 out: 2793 perf_event_mmap(vma); 2794 mm->total_vm += len >> PAGE_SHIFT; 2795 if (flags & VM_LOCKED) 2796 mm->locked_vm += (len >> PAGE_SHIFT); 2797 vma->vm_flags |= VM_SOFTDIRTY; 2798 return addr; 2799 } 2800 2801 unsigned long vm_brk(unsigned long addr, unsigned long len) 2802 { 2803 struct mm_struct *mm = current->mm; 2804 unsigned long ret; 2805 bool populate; 2806 2807 down_write(&mm->mmap_sem); 2808 ret = do_brk(addr, len); 2809 populate = ((mm->def_flags & VM_LOCKED) != 0); 2810 up_write(&mm->mmap_sem); 2811 if (populate) 2812 mm_populate(addr, len); 2813 return ret; 2814 } 2815 EXPORT_SYMBOL(vm_brk); 2816 2817 /* Release all mmaps. */ 2818 void exit_mmap(struct mm_struct *mm) 2819 { 2820 struct mmu_gather tlb; 2821 struct vm_area_struct *vma; 2822 unsigned long nr_accounted = 0; 2823 2824 /* mm's last user has gone, and its about to be pulled down */ 2825 mmu_notifier_release(mm); 2826 2827 if (mm->locked_vm) { 2828 vma = mm->mmap; 2829 while (vma) { 2830 if (vma->vm_flags & VM_LOCKED) 2831 munlock_vma_pages_all(vma); 2832 vma = vma->vm_next; 2833 } 2834 } 2835 2836 arch_exit_mmap(mm); 2837 2838 vma = mm->mmap; 2839 if (!vma) /* Can happen if dup_mmap() received an OOM */ 2840 return; 2841 2842 lru_add_drain(); 2843 flush_cache_mm(mm); 2844 tlb_gather_mmu(&tlb, mm, 0, -1); 2845 /* update_hiwater_rss(mm) here? but nobody should be looking */ 2846 /* Use -1 here to ensure all VMAs in the mm are unmapped */ 2847 unmap_vmas(&tlb, vma, 0, -1); 2848 2849 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING); 2850 tlb_finish_mmu(&tlb, 0, -1); 2851 2852 /* 2853 * Walk the list again, actually closing and freeing it, 2854 * with preemption enabled, without holding any MM locks. 2855 */ 2856 while (vma) { 2857 if (vma->vm_flags & VM_ACCOUNT) 2858 nr_accounted += vma_pages(vma); 2859 vma = remove_vma(vma); 2860 } 2861 vm_unacct_memory(nr_accounted); 2862 } 2863 2864 /* Insert vm structure into process list sorted by address 2865 * and into the inode's i_mmap tree. If vm_file is non-NULL 2866 * then i_mmap_rwsem is taken here. 2867 */ 2868 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 2869 { 2870 struct vm_area_struct *prev; 2871 struct rb_node **rb_link, *rb_parent; 2872 2873 if (find_vma_links(mm, vma->vm_start, vma->vm_end, 2874 &prev, &rb_link, &rb_parent)) 2875 return -ENOMEM; 2876 if ((vma->vm_flags & VM_ACCOUNT) && 2877 security_vm_enough_memory_mm(mm, vma_pages(vma))) 2878 return -ENOMEM; 2879 2880 /* 2881 * The vm_pgoff of a purely anonymous vma should be irrelevant 2882 * until its first write fault, when page's anon_vma and index 2883 * are set. But now set the vm_pgoff it will almost certainly 2884 * end up with (unless mremap moves it elsewhere before that 2885 * first wfault), so /proc/pid/maps tells a consistent story. 2886 * 2887 * By setting it to reflect the virtual start address of the 2888 * vma, merges and splits can happen in a seamless way, just 2889 * using the existing file pgoff checks and manipulations. 2890 * Similarly in do_mmap_pgoff and in do_brk. 2891 */ 2892 if (vma_is_anonymous(vma)) { 2893 BUG_ON(vma->anon_vma); 2894 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; 2895 } 2896 2897 vma_link(mm, vma, prev, rb_link, rb_parent); 2898 return 0; 2899 } 2900 2901 /* 2902 * Copy the vma structure to a new location in the same mm, 2903 * prior to moving page table entries, to effect an mremap move. 2904 */ 2905 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 2906 unsigned long addr, unsigned long len, pgoff_t pgoff, 2907 bool *need_rmap_locks) 2908 { 2909 struct vm_area_struct *vma = *vmap; 2910 unsigned long vma_start = vma->vm_start; 2911 struct mm_struct *mm = vma->vm_mm; 2912 struct vm_area_struct *new_vma, *prev; 2913 struct rb_node **rb_link, *rb_parent; 2914 bool faulted_in_anon_vma = true; 2915 2916 /* 2917 * If anonymous vma has not yet been faulted, update new pgoff 2918 * to match new location, to increase its chance of merging. 2919 */ 2920 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) { 2921 pgoff = addr >> PAGE_SHIFT; 2922 faulted_in_anon_vma = false; 2923 } 2924 2925 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) 2926 return NULL; /* should never get here */ 2927 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags, 2928 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma), 2929 vma->vm_userfaultfd_ctx); 2930 if (new_vma) { 2931 /* 2932 * Source vma may have been merged into new_vma 2933 */ 2934 if (unlikely(vma_start >= new_vma->vm_start && 2935 vma_start < new_vma->vm_end)) { 2936 /* 2937 * The only way we can get a vma_merge with 2938 * self during an mremap is if the vma hasn't 2939 * been faulted in yet and we were allowed to 2940 * reset the dst vma->vm_pgoff to the 2941 * destination address of the mremap to allow 2942 * the merge to happen. mremap must change the 2943 * vm_pgoff linearity between src and dst vmas 2944 * (in turn preventing a vma_merge) to be 2945 * safe. It is only safe to keep the vm_pgoff 2946 * linear if there are no pages mapped yet. 2947 */ 2948 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma); 2949 *vmap = vma = new_vma; 2950 } 2951 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff); 2952 } else { 2953 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 2954 if (!new_vma) 2955 goto out; 2956 *new_vma = *vma; 2957 new_vma->vm_start = addr; 2958 new_vma->vm_end = addr + len; 2959 new_vma->vm_pgoff = pgoff; 2960 if (vma_dup_policy(vma, new_vma)) 2961 goto out_free_vma; 2962 INIT_LIST_HEAD(&new_vma->anon_vma_chain); 2963 if (anon_vma_clone(new_vma, vma)) 2964 goto out_free_mempol; 2965 if (new_vma->vm_file) 2966 get_file(new_vma->vm_file); 2967 if (new_vma->vm_ops && new_vma->vm_ops->open) 2968 new_vma->vm_ops->open(new_vma); 2969 vma_link(mm, new_vma, prev, rb_link, rb_parent); 2970 *need_rmap_locks = false; 2971 } 2972 return new_vma; 2973 2974 out_free_mempol: 2975 mpol_put(vma_policy(new_vma)); 2976 out_free_vma: 2977 kmem_cache_free(vm_area_cachep, new_vma); 2978 out: 2979 return NULL; 2980 } 2981 2982 /* 2983 * Return true if the calling process may expand its vm space by the passed 2984 * number of pages 2985 */ 2986 int may_expand_vm(struct mm_struct *mm, unsigned long npages) 2987 { 2988 unsigned long cur = mm->total_vm; /* pages */ 2989 unsigned long lim; 2990 2991 lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT; 2992 2993 if (cur + npages > lim) 2994 return 0; 2995 return 1; 2996 } 2997 2998 static int special_mapping_fault(struct vm_area_struct *vma, 2999 struct vm_fault *vmf); 3000 3001 /* 3002 * Having a close hook prevents vma merging regardless of flags. 3003 */ 3004 static void special_mapping_close(struct vm_area_struct *vma) 3005 { 3006 } 3007 3008 static const char *special_mapping_name(struct vm_area_struct *vma) 3009 { 3010 return ((struct vm_special_mapping *)vma->vm_private_data)->name; 3011 } 3012 3013 static const struct vm_operations_struct special_mapping_vmops = { 3014 .close = special_mapping_close, 3015 .fault = special_mapping_fault, 3016 .name = special_mapping_name, 3017 }; 3018 3019 static const struct vm_operations_struct legacy_special_mapping_vmops = { 3020 .close = special_mapping_close, 3021 .fault = special_mapping_fault, 3022 }; 3023 3024 static int special_mapping_fault(struct vm_area_struct *vma, 3025 struct vm_fault *vmf) 3026 { 3027 pgoff_t pgoff; 3028 struct page **pages; 3029 3030 if (vma->vm_ops == &legacy_special_mapping_vmops) 3031 pages = vma->vm_private_data; 3032 else 3033 pages = ((struct vm_special_mapping *)vma->vm_private_data)-> 3034 pages; 3035 3036 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages) 3037 pgoff--; 3038 3039 if (*pages) { 3040 struct page *page = *pages; 3041 get_page(page); 3042 vmf->page = page; 3043 return 0; 3044 } 3045 3046 return VM_FAULT_SIGBUS; 3047 } 3048 3049 static struct vm_area_struct *__install_special_mapping( 3050 struct mm_struct *mm, 3051 unsigned long addr, unsigned long len, 3052 unsigned long vm_flags, const struct vm_operations_struct *ops, 3053 void *priv) 3054 { 3055 int ret; 3056 struct vm_area_struct *vma; 3057 3058 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 3059 if (unlikely(vma == NULL)) 3060 return ERR_PTR(-ENOMEM); 3061 3062 INIT_LIST_HEAD(&vma->anon_vma_chain); 3063 vma->vm_mm = mm; 3064 vma->vm_start = addr; 3065 vma->vm_end = addr + len; 3066 3067 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY; 3068 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 3069 3070 vma->vm_ops = ops; 3071 vma->vm_private_data = priv; 3072 3073 ret = insert_vm_struct(mm, vma); 3074 if (ret) 3075 goto out; 3076 3077 mm->total_vm += len >> PAGE_SHIFT; 3078 3079 perf_event_mmap(vma); 3080 3081 return vma; 3082 3083 out: 3084 kmem_cache_free(vm_area_cachep, vma); 3085 return ERR_PTR(ret); 3086 } 3087 3088 /* 3089 * Called with mm->mmap_sem held for writing. 3090 * Insert a new vma covering the given region, with the given flags. 3091 * Its pages are supplied by the given array of struct page *. 3092 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated. 3093 * The region past the last page supplied will always produce SIGBUS. 3094 * The array pointer and the pages it points to are assumed to stay alive 3095 * for as long as this mapping might exist. 3096 */ 3097 struct vm_area_struct *_install_special_mapping( 3098 struct mm_struct *mm, 3099 unsigned long addr, unsigned long len, 3100 unsigned long vm_flags, const struct vm_special_mapping *spec) 3101 { 3102 return __install_special_mapping(mm, addr, len, vm_flags, 3103 &special_mapping_vmops, (void *)spec); 3104 } 3105 3106 int install_special_mapping(struct mm_struct *mm, 3107 unsigned long addr, unsigned long len, 3108 unsigned long vm_flags, struct page **pages) 3109 { 3110 struct vm_area_struct *vma = __install_special_mapping( 3111 mm, addr, len, vm_flags, &legacy_special_mapping_vmops, 3112 (void *)pages); 3113 3114 return PTR_ERR_OR_ZERO(vma); 3115 } 3116 3117 static DEFINE_MUTEX(mm_all_locks_mutex); 3118 3119 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) 3120 { 3121 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) { 3122 /* 3123 * The LSB of head.next can't change from under us 3124 * because we hold the mm_all_locks_mutex. 3125 */ 3126 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem); 3127 /* 3128 * We can safely modify head.next after taking the 3129 * anon_vma->root->rwsem. If some other vma in this mm shares 3130 * the same anon_vma we won't take it again. 3131 * 3132 * No need of atomic instructions here, head.next 3133 * can't change from under us thanks to the 3134 * anon_vma->root->rwsem. 3135 */ 3136 if (__test_and_set_bit(0, (unsigned long *) 3137 &anon_vma->root->rb_root.rb_node)) 3138 BUG(); 3139 } 3140 } 3141 3142 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) 3143 { 3144 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3145 /* 3146 * AS_MM_ALL_LOCKS can't change from under us because 3147 * we hold the mm_all_locks_mutex. 3148 * 3149 * Operations on ->flags have to be atomic because 3150 * even if AS_MM_ALL_LOCKS is stable thanks to the 3151 * mm_all_locks_mutex, there may be other cpus 3152 * changing other bitflags in parallel to us. 3153 */ 3154 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) 3155 BUG(); 3156 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem); 3157 } 3158 } 3159 3160 /* 3161 * This operation locks against the VM for all pte/vma/mm related 3162 * operations that could ever happen on a certain mm. This includes 3163 * vmtruncate, try_to_unmap, and all page faults. 3164 * 3165 * The caller must take the mmap_sem in write mode before calling 3166 * mm_take_all_locks(). The caller isn't allowed to release the 3167 * mmap_sem until mm_drop_all_locks() returns. 3168 * 3169 * mmap_sem in write mode is required in order to block all operations 3170 * that could modify pagetables and free pages without need of 3171 * altering the vma layout. It's also needed in write mode to avoid new 3172 * anon_vmas to be associated with existing vmas. 3173 * 3174 * A single task can't take more than one mm_take_all_locks() in a row 3175 * or it would deadlock. 3176 * 3177 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in 3178 * mapping->flags avoid to take the same lock twice, if more than one 3179 * vma in this mm is backed by the same anon_vma or address_space. 3180 * 3181 * We can take all the locks in random order because the VM code 3182 * taking i_mmap_rwsem or anon_vma->rwsem outside the mmap_sem never 3183 * takes more than one of them in a row. Secondly we're protected 3184 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex. 3185 * 3186 * mm_take_all_locks() and mm_drop_all_locks are expensive operations 3187 * that may have to take thousand of locks. 3188 * 3189 * mm_take_all_locks() can fail if it's interrupted by signals. 3190 */ 3191 int mm_take_all_locks(struct mm_struct *mm) 3192 { 3193 struct vm_area_struct *vma; 3194 struct anon_vma_chain *avc; 3195 3196 BUG_ON(down_read_trylock(&mm->mmap_sem)); 3197 3198 mutex_lock(&mm_all_locks_mutex); 3199 3200 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3201 if (signal_pending(current)) 3202 goto out_unlock; 3203 if (vma->vm_file && vma->vm_file->f_mapping) 3204 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3205 } 3206 3207 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3208 if (signal_pending(current)) 3209 goto out_unlock; 3210 if (vma->anon_vma) 3211 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3212 vm_lock_anon_vma(mm, avc->anon_vma); 3213 } 3214 3215 return 0; 3216 3217 out_unlock: 3218 mm_drop_all_locks(mm); 3219 return -EINTR; 3220 } 3221 3222 static void vm_unlock_anon_vma(struct anon_vma *anon_vma) 3223 { 3224 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) { 3225 /* 3226 * The LSB of head.next can't change to 0 from under 3227 * us because we hold the mm_all_locks_mutex. 3228 * 3229 * We must however clear the bitflag before unlocking 3230 * the vma so the users using the anon_vma->rb_root will 3231 * never see our bitflag. 3232 * 3233 * No need of atomic instructions here, head.next 3234 * can't change from under us until we release the 3235 * anon_vma->root->rwsem. 3236 */ 3237 if (!__test_and_clear_bit(0, (unsigned long *) 3238 &anon_vma->root->rb_root.rb_node)) 3239 BUG(); 3240 anon_vma_unlock_write(anon_vma); 3241 } 3242 } 3243 3244 static void vm_unlock_mapping(struct address_space *mapping) 3245 { 3246 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3247 /* 3248 * AS_MM_ALL_LOCKS can't change to 0 from under us 3249 * because we hold the mm_all_locks_mutex. 3250 */ 3251 i_mmap_unlock_write(mapping); 3252 if (!test_and_clear_bit(AS_MM_ALL_LOCKS, 3253 &mapping->flags)) 3254 BUG(); 3255 } 3256 } 3257 3258 /* 3259 * The mmap_sem cannot be released by the caller until 3260 * mm_drop_all_locks() returns. 3261 */ 3262 void mm_drop_all_locks(struct mm_struct *mm) 3263 { 3264 struct vm_area_struct *vma; 3265 struct anon_vma_chain *avc; 3266 3267 BUG_ON(down_read_trylock(&mm->mmap_sem)); 3268 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); 3269 3270 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3271 if (vma->anon_vma) 3272 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3273 vm_unlock_anon_vma(avc->anon_vma); 3274 if (vma->vm_file && vma->vm_file->f_mapping) 3275 vm_unlock_mapping(vma->vm_file->f_mapping); 3276 } 3277 3278 mutex_unlock(&mm_all_locks_mutex); 3279 } 3280 3281 /* 3282 * initialise the VMA slab 3283 */ 3284 void __init mmap_init(void) 3285 { 3286 int ret; 3287 3288 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL); 3289 VM_BUG_ON(ret); 3290 } 3291 3292 /* 3293 * Initialise sysctl_user_reserve_kbytes. 3294 * 3295 * This is intended to prevent a user from starting a single memory hogging 3296 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER 3297 * mode. 3298 * 3299 * The default value is min(3% of free memory, 128MB) 3300 * 128MB is enough to recover with sshd/login, bash, and top/kill. 3301 */ 3302 static int init_user_reserve(void) 3303 { 3304 unsigned long free_kbytes; 3305 3306 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3307 3308 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17); 3309 return 0; 3310 } 3311 subsys_initcall(init_user_reserve); 3312 3313 /* 3314 * Initialise sysctl_admin_reserve_kbytes. 3315 * 3316 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin 3317 * to log in and kill a memory hogging process. 3318 * 3319 * Systems with more than 256MB will reserve 8MB, enough to recover 3320 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will 3321 * only reserve 3% of free pages by default. 3322 */ 3323 static int init_admin_reserve(void) 3324 { 3325 unsigned long free_kbytes; 3326 3327 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3328 3329 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13); 3330 return 0; 3331 } 3332 subsys_initcall(init_admin_reserve); 3333 3334 /* 3335 * Reinititalise user and admin reserves if memory is added or removed. 3336 * 3337 * The default user reserve max is 128MB, and the default max for the 3338 * admin reserve is 8MB. These are usually, but not always, enough to 3339 * enable recovery from a memory hogging process using login/sshd, a shell, 3340 * and tools like top. It may make sense to increase or even disable the 3341 * reserve depending on the existence of swap or variations in the recovery 3342 * tools. So, the admin may have changed them. 3343 * 3344 * If memory is added and the reserves have been eliminated or increased above 3345 * the default max, then we'll trust the admin. 3346 * 3347 * If memory is removed and there isn't enough free memory, then we 3348 * need to reset the reserves. 3349 * 3350 * Otherwise keep the reserve set by the admin. 3351 */ 3352 static int reserve_mem_notifier(struct notifier_block *nb, 3353 unsigned long action, void *data) 3354 { 3355 unsigned long tmp, free_kbytes; 3356 3357 switch (action) { 3358 case MEM_ONLINE: 3359 /* Default max is 128MB. Leave alone if modified by operator. */ 3360 tmp = sysctl_user_reserve_kbytes; 3361 if (0 < tmp && tmp < (1UL << 17)) 3362 init_user_reserve(); 3363 3364 /* Default max is 8MB. Leave alone if modified by operator. */ 3365 tmp = sysctl_admin_reserve_kbytes; 3366 if (0 < tmp && tmp < (1UL << 13)) 3367 init_admin_reserve(); 3368 3369 break; 3370 case MEM_OFFLINE: 3371 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3372 3373 if (sysctl_user_reserve_kbytes > free_kbytes) { 3374 init_user_reserve(); 3375 pr_info("vm.user_reserve_kbytes reset to %lu\n", 3376 sysctl_user_reserve_kbytes); 3377 } 3378 3379 if (sysctl_admin_reserve_kbytes > free_kbytes) { 3380 init_admin_reserve(); 3381 pr_info("vm.admin_reserve_kbytes reset to %lu\n", 3382 sysctl_admin_reserve_kbytes); 3383 } 3384 break; 3385 default: 3386 break; 3387 } 3388 return NOTIFY_OK; 3389 } 3390 3391 static struct notifier_block reserve_mem_nb = { 3392 .notifier_call = reserve_mem_notifier, 3393 }; 3394 3395 static int __meminit init_reserve_notifier(void) 3396 { 3397 if (register_hotmemory_notifier(&reserve_mem_nb)) 3398 pr_err("Failed registering memory add/remove notifier for admin reserve\n"); 3399 3400 return 0; 3401 } 3402 subsys_initcall(init_reserve_notifier); 3403