xref: /linux/mm/mmap.c (revision c7e1e3ccfbd153c890240a391f258efaedfa94d0)
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
14 #include <linux/mm.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/profile.h>
29 #include <linux/export.h>
30 #include <linux/mount.h>
31 #include <linux/mempolicy.h>
32 #include <linux/rmap.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/mmdebug.h>
35 #include <linux/perf_event.h>
36 #include <linux/audit.h>
37 #include <linux/khugepaged.h>
38 #include <linux/uprobes.h>
39 #include <linux/rbtree_augmented.h>
40 #include <linux/sched/sysctl.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 
46 #include <asm/uaccess.h>
47 #include <asm/cacheflush.h>
48 #include <asm/tlb.h>
49 #include <asm/mmu_context.h>
50 
51 #include "internal.h"
52 
53 #ifndef arch_mmap_check
54 #define arch_mmap_check(addr, len, flags)	(0)
55 #endif
56 
57 #ifndef arch_rebalance_pgtables
58 #define arch_rebalance_pgtables(addr, len)		(addr)
59 #endif
60 
61 static void unmap_region(struct mm_struct *mm,
62 		struct vm_area_struct *vma, struct vm_area_struct *prev,
63 		unsigned long start, unsigned long end);
64 
65 /* description of effects of mapping type and prot in current implementation.
66  * this is due to the limited x86 page protection hardware.  The expected
67  * behavior is in parens:
68  *
69  * map_type	prot
70  *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
71  * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
72  *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
73  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
74  *
75  * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
76  *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
77  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
78  *
79  */
80 pgprot_t protection_map[16] = {
81 	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
82 	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
83 };
84 
85 pgprot_t vm_get_page_prot(unsigned long vm_flags)
86 {
87 	return __pgprot(pgprot_val(protection_map[vm_flags &
88 				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
89 			pgprot_val(arch_vm_get_page_prot(vm_flags)));
90 }
91 EXPORT_SYMBOL(vm_get_page_prot);
92 
93 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
94 {
95 	return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
96 }
97 
98 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
99 void vma_set_page_prot(struct vm_area_struct *vma)
100 {
101 	unsigned long vm_flags = vma->vm_flags;
102 
103 	vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
104 	if (vma_wants_writenotify(vma)) {
105 		vm_flags &= ~VM_SHARED;
106 		vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot,
107 						     vm_flags);
108 	}
109 }
110 
111 
112 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;  /* heuristic overcommit */
113 int sysctl_overcommit_ratio __read_mostly = 50;	/* default is 50% */
114 unsigned long sysctl_overcommit_kbytes __read_mostly;
115 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
116 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
117 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
118 /*
119  * Make sure vm_committed_as in one cacheline and not cacheline shared with
120  * other variables. It can be updated by several CPUs frequently.
121  */
122 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
123 
124 /*
125  * The global memory commitment made in the system can be a metric
126  * that can be used to drive ballooning decisions when Linux is hosted
127  * as a guest. On Hyper-V, the host implements a policy engine for dynamically
128  * balancing memory across competing virtual machines that are hosted.
129  * Several metrics drive this policy engine including the guest reported
130  * memory commitment.
131  */
132 unsigned long vm_memory_committed(void)
133 {
134 	return percpu_counter_read_positive(&vm_committed_as);
135 }
136 EXPORT_SYMBOL_GPL(vm_memory_committed);
137 
138 /*
139  * Check that a process has enough memory to allocate a new virtual
140  * mapping. 0 means there is enough memory for the allocation to
141  * succeed and -ENOMEM implies there is not.
142  *
143  * We currently support three overcommit policies, which are set via the
144  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
145  *
146  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
147  * Additional code 2002 Jul 20 by Robert Love.
148  *
149  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
150  *
151  * Note this is a helper function intended to be used by LSMs which
152  * wish to use this logic.
153  */
154 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
155 {
156 	long free, allowed, reserve;
157 
158 	VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) <
159 			-(s64)vm_committed_as_batch * num_online_cpus(),
160 			"memory commitment underflow");
161 
162 	vm_acct_memory(pages);
163 
164 	/*
165 	 * Sometimes we want to use more memory than we have
166 	 */
167 	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
168 		return 0;
169 
170 	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
171 		free = global_page_state(NR_FREE_PAGES);
172 		free += global_page_state(NR_FILE_PAGES);
173 
174 		/*
175 		 * shmem pages shouldn't be counted as free in this
176 		 * case, they can't be purged, only swapped out, and
177 		 * that won't affect the overall amount of available
178 		 * memory in the system.
179 		 */
180 		free -= global_page_state(NR_SHMEM);
181 
182 		free += get_nr_swap_pages();
183 
184 		/*
185 		 * Any slabs which are created with the
186 		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
187 		 * which are reclaimable, under pressure.  The dentry
188 		 * cache and most inode caches should fall into this
189 		 */
190 		free += global_page_state(NR_SLAB_RECLAIMABLE);
191 
192 		/*
193 		 * Leave reserved pages. The pages are not for anonymous pages.
194 		 */
195 		if (free <= totalreserve_pages)
196 			goto error;
197 		else
198 			free -= totalreserve_pages;
199 
200 		/*
201 		 * Reserve some for root
202 		 */
203 		if (!cap_sys_admin)
204 			free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
205 
206 		if (free > pages)
207 			return 0;
208 
209 		goto error;
210 	}
211 
212 	allowed = vm_commit_limit();
213 	/*
214 	 * Reserve some for root
215 	 */
216 	if (!cap_sys_admin)
217 		allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
218 
219 	/*
220 	 * Don't let a single process grow so big a user can't recover
221 	 */
222 	if (mm) {
223 		reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
224 		allowed -= min_t(long, mm->total_vm / 32, reserve);
225 	}
226 
227 	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
228 		return 0;
229 error:
230 	vm_unacct_memory(pages);
231 
232 	return -ENOMEM;
233 }
234 
235 /*
236  * Requires inode->i_mapping->i_mmap_rwsem
237  */
238 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
239 		struct file *file, struct address_space *mapping)
240 {
241 	if (vma->vm_flags & VM_DENYWRITE)
242 		atomic_inc(&file_inode(file)->i_writecount);
243 	if (vma->vm_flags & VM_SHARED)
244 		mapping_unmap_writable(mapping);
245 
246 	flush_dcache_mmap_lock(mapping);
247 	vma_interval_tree_remove(vma, &mapping->i_mmap);
248 	flush_dcache_mmap_unlock(mapping);
249 }
250 
251 /*
252  * Unlink a file-based vm structure from its interval tree, to hide
253  * vma from rmap and vmtruncate before freeing its page tables.
254  */
255 void unlink_file_vma(struct vm_area_struct *vma)
256 {
257 	struct file *file = vma->vm_file;
258 
259 	if (file) {
260 		struct address_space *mapping = file->f_mapping;
261 		i_mmap_lock_write(mapping);
262 		__remove_shared_vm_struct(vma, file, mapping);
263 		i_mmap_unlock_write(mapping);
264 	}
265 }
266 
267 /*
268  * Close a vm structure and free it, returning the next.
269  */
270 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
271 {
272 	struct vm_area_struct *next = vma->vm_next;
273 
274 	might_sleep();
275 	if (vma->vm_ops && vma->vm_ops->close)
276 		vma->vm_ops->close(vma);
277 	if (vma->vm_file)
278 		fput(vma->vm_file);
279 	mpol_put(vma_policy(vma));
280 	kmem_cache_free(vm_area_cachep, vma);
281 	return next;
282 }
283 
284 static unsigned long do_brk(unsigned long addr, unsigned long len);
285 
286 SYSCALL_DEFINE1(brk, unsigned long, brk)
287 {
288 	unsigned long retval;
289 	unsigned long newbrk, oldbrk;
290 	struct mm_struct *mm = current->mm;
291 	unsigned long min_brk;
292 	bool populate;
293 
294 	down_write(&mm->mmap_sem);
295 
296 #ifdef CONFIG_COMPAT_BRK
297 	/*
298 	 * CONFIG_COMPAT_BRK can still be overridden by setting
299 	 * randomize_va_space to 2, which will still cause mm->start_brk
300 	 * to be arbitrarily shifted
301 	 */
302 	if (current->brk_randomized)
303 		min_brk = mm->start_brk;
304 	else
305 		min_brk = mm->end_data;
306 #else
307 	min_brk = mm->start_brk;
308 #endif
309 	if (brk < min_brk)
310 		goto out;
311 
312 	/*
313 	 * Check against rlimit here. If this check is done later after the test
314 	 * of oldbrk with newbrk then it can escape the test and let the data
315 	 * segment grow beyond its set limit the in case where the limit is
316 	 * not page aligned -Ram Gupta
317 	 */
318 	if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
319 			      mm->end_data, mm->start_data))
320 		goto out;
321 
322 	newbrk = PAGE_ALIGN(brk);
323 	oldbrk = PAGE_ALIGN(mm->brk);
324 	if (oldbrk == newbrk)
325 		goto set_brk;
326 
327 	/* Always allow shrinking brk. */
328 	if (brk <= mm->brk) {
329 		if (!do_munmap(mm, newbrk, oldbrk-newbrk))
330 			goto set_brk;
331 		goto out;
332 	}
333 
334 	/* Check against existing mmap mappings. */
335 	if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
336 		goto out;
337 
338 	/* Ok, looks good - let it rip. */
339 	if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
340 		goto out;
341 
342 set_brk:
343 	mm->brk = brk;
344 	populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
345 	up_write(&mm->mmap_sem);
346 	if (populate)
347 		mm_populate(oldbrk, newbrk - oldbrk);
348 	return brk;
349 
350 out:
351 	retval = mm->brk;
352 	up_write(&mm->mmap_sem);
353 	return retval;
354 }
355 
356 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
357 {
358 	unsigned long max, subtree_gap;
359 	max = vma->vm_start;
360 	if (vma->vm_prev)
361 		max -= vma->vm_prev->vm_end;
362 	if (vma->vm_rb.rb_left) {
363 		subtree_gap = rb_entry(vma->vm_rb.rb_left,
364 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
365 		if (subtree_gap > max)
366 			max = subtree_gap;
367 	}
368 	if (vma->vm_rb.rb_right) {
369 		subtree_gap = rb_entry(vma->vm_rb.rb_right,
370 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
371 		if (subtree_gap > max)
372 			max = subtree_gap;
373 	}
374 	return max;
375 }
376 
377 #ifdef CONFIG_DEBUG_VM_RB
378 static int browse_rb(struct rb_root *root)
379 {
380 	int i = 0, j, bug = 0;
381 	struct rb_node *nd, *pn = NULL;
382 	unsigned long prev = 0, pend = 0;
383 
384 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
385 		struct vm_area_struct *vma;
386 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
387 		if (vma->vm_start < prev) {
388 			pr_emerg("vm_start %lx < prev %lx\n",
389 				  vma->vm_start, prev);
390 			bug = 1;
391 		}
392 		if (vma->vm_start < pend) {
393 			pr_emerg("vm_start %lx < pend %lx\n",
394 				  vma->vm_start, pend);
395 			bug = 1;
396 		}
397 		if (vma->vm_start > vma->vm_end) {
398 			pr_emerg("vm_start %lx > vm_end %lx\n",
399 				  vma->vm_start, vma->vm_end);
400 			bug = 1;
401 		}
402 		if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
403 			pr_emerg("free gap %lx, correct %lx\n",
404 			       vma->rb_subtree_gap,
405 			       vma_compute_subtree_gap(vma));
406 			bug = 1;
407 		}
408 		i++;
409 		pn = nd;
410 		prev = vma->vm_start;
411 		pend = vma->vm_end;
412 	}
413 	j = 0;
414 	for (nd = pn; nd; nd = rb_prev(nd))
415 		j++;
416 	if (i != j) {
417 		pr_emerg("backwards %d, forwards %d\n", j, i);
418 		bug = 1;
419 	}
420 	return bug ? -1 : i;
421 }
422 
423 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
424 {
425 	struct rb_node *nd;
426 
427 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
428 		struct vm_area_struct *vma;
429 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
430 		VM_BUG_ON_VMA(vma != ignore &&
431 			vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
432 			vma);
433 	}
434 }
435 
436 static void validate_mm(struct mm_struct *mm)
437 {
438 	int bug = 0;
439 	int i = 0;
440 	unsigned long highest_address = 0;
441 	struct vm_area_struct *vma = mm->mmap;
442 
443 	while (vma) {
444 		struct anon_vma_chain *avc;
445 
446 		vma_lock_anon_vma(vma);
447 		list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
448 			anon_vma_interval_tree_verify(avc);
449 		vma_unlock_anon_vma(vma);
450 		highest_address = vma->vm_end;
451 		vma = vma->vm_next;
452 		i++;
453 	}
454 	if (i != mm->map_count) {
455 		pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
456 		bug = 1;
457 	}
458 	if (highest_address != mm->highest_vm_end) {
459 		pr_emerg("mm->highest_vm_end %lx, found %lx\n",
460 			  mm->highest_vm_end, highest_address);
461 		bug = 1;
462 	}
463 	i = browse_rb(&mm->mm_rb);
464 	if (i != mm->map_count) {
465 		if (i != -1)
466 			pr_emerg("map_count %d rb %d\n", mm->map_count, i);
467 		bug = 1;
468 	}
469 	VM_BUG_ON_MM(bug, mm);
470 }
471 #else
472 #define validate_mm_rb(root, ignore) do { } while (0)
473 #define validate_mm(mm) do { } while (0)
474 #endif
475 
476 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
477 		     unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
478 
479 /*
480  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
481  * vma->vm_prev->vm_end values changed, without modifying the vma's position
482  * in the rbtree.
483  */
484 static void vma_gap_update(struct vm_area_struct *vma)
485 {
486 	/*
487 	 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
488 	 * function that does exacltly what we want.
489 	 */
490 	vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
491 }
492 
493 static inline void vma_rb_insert(struct vm_area_struct *vma,
494 				 struct rb_root *root)
495 {
496 	/* All rb_subtree_gap values must be consistent prior to insertion */
497 	validate_mm_rb(root, NULL);
498 
499 	rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
500 }
501 
502 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
503 {
504 	/*
505 	 * All rb_subtree_gap values must be consistent prior to erase,
506 	 * with the possible exception of the vma being erased.
507 	 */
508 	validate_mm_rb(root, vma);
509 
510 	/*
511 	 * Note rb_erase_augmented is a fairly large inline function,
512 	 * so make sure we instantiate it only once with our desired
513 	 * augmented rbtree callbacks.
514 	 */
515 	rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
516 }
517 
518 /*
519  * vma has some anon_vma assigned, and is already inserted on that
520  * anon_vma's interval trees.
521  *
522  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
523  * vma must be removed from the anon_vma's interval trees using
524  * anon_vma_interval_tree_pre_update_vma().
525  *
526  * After the update, the vma will be reinserted using
527  * anon_vma_interval_tree_post_update_vma().
528  *
529  * The entire update must be protected by exclusive mmap_sem and by
530  * the root anon_vma's mutex.
531  */
532 static inline void
533 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
534 {
535 	struct anon_vma_chain *avc;
536 
537 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
538 		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
539 }
540 
541 static inline void
542 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
543 {
544 	struct anon_vma_chain *avc;
545 
546 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
547 		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
548 }
549 
550 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
551 		unsigned long end, struct vm_area_struct **pprev,
552 		struct rb_node ***rb_link, struct rb_node **rb_parent)
553 {
554 	struct rb_node **__rb_link, *__rb_parent, *rb_prev;
555 
556 	__rb_link = &mm->mm_rb.rb_node;
557 	rb_prev = __rb_parent = NULL;
558 
559 	while (*__rb_link) {
560 		struct vm_area_struct *vma_tmp;
561 
562 		__rb_parent = *__rb_link;
563 		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
564 
565 		if (vma_tmp->vm_end > addr) {
566 			/* Fail if an existing vma overlaps the area */
567 			if (vma_tmp->vm_start < end)
568 				return -ENOMEM;
569 			__rb_link = &__rb_parent->rb_left;
570 		} else {
571 			rb_prev = __rb_parent;
572 			__rb_link = &__rb_parent->rb_right;
573 		}
574 	}
575 
576 	*pprev = NULL;
577 	if (rb_prev)
578 		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
579 	*rb_link = __rb_link;
580 	*rb_parent = __rb_parent;
581 	return 0;
582 }
583 
584 static unsigned long count_vma_pages_range(struct mm_struct *mm,
585 		unsigned long addr, unsigned long end)
586 {
587 	unsigned long nr_pages = 0;
588 	struct vm_area_struct *vma;
589 
590 	/* Find first overlaping mapping */
591 	vma = find_vma_intersection(mm, addr, end);
592 	if (!vma)
593 		return 0;
594 
595 	nr_pages = (min(end, vma->vm_end) -
596 		max(addr, vma->vm_start)) >> PAGE_SHIFT;
597 
598 	/* Iterate over the rest of the overlaps */
599 	for (vma = vma->vm_next; vma; vma = vma->vm_next) {
600 		unsigned long overlap_len;
601 
602 		if (vma->vm_start > end)
603 			break;
604 
605 		overlap_len = min(end, vma->vm_end) - vma->vm_start;
606 		nr_pages += overlap_len >> PAGE_SHIFT;
607 	}
608 
609 	return nr_pages;
610 }
611 
612 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
613 		struct rb_node **rb_link, struct rb_node *rb_parent)
614 {
615 	/* Update tracking information for the gap following the new vma. */
616 	if (vma->vm_next)
617 		vma_gap_update(vma->vm_next);
618 	else
619 		mm->highest_vm_end = vma->vm_end;
620 
621 	/*
622 	 * vma->vm_prev wasn't known when we followed the rbtree to find the
623 	 * correct insertion point for that vma. As a result, we could not
624 	 * update the vma vm_rb parents rb_subtree_gap values on the way down.
625 	 * So, we first insert the vma with a zero rb_subtree_gap value
626 	 * (to be consistent with what we did on the way down), and then
627 	 * immediately update the gap to the correct value. Finally we
628 	 * rebalance the rbtree after all augmented values have been set.
629 	 */
630 	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
631 	vma->rb_subtree_gap = 0;
632 	vma_gap_update(vma);
633 	vma_rb_insert(vma, &mm->mm_rb);
634 }
635 
636 static void __vma_link_file(struct vm_area_struct *vma)
637 {
638 	struct file *file;
639 
640 	file = vma->vm_file;
641 	if (file) {
642 		struct address_space *mapping = file->f_mapping;
643 
644 		if (vma->vm_flags & VM_DENYWRITE)
645 			atomic_dec(&file_inode(file)->i_writecount);
646 		if (vma->vm_flags & VM_SHARED)
647 			atomic_inc(&mapping->i_mmap_writable);
648 
649 		flush_dcache_mmap_lock(mapping);
650 		vma_interval_tree_insert(vma, &mapping->i_mmap);
651 		flush_dcache_mmap_unlock(mapping);
652 	}
653 }
654 
655 static void
656 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
657 	struct vm_area_struct *prev, struct rb_node **rb_link,
658 	struct rb_node *rb_parent)
659 {
660 	__vma_link_list(mm, vma, prev, rb_parent);
661 	__vma_link_rb(mm, vma, rb_link, rb_parent);
662 }
663 
664 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
665 			struct vm_area_struct *prev, struct rb_node **rb_link,
666 			struct rb_node *rb_parent)
667 {
668 	struct address_space *mapping = NULL;
669 
670 	if (vma->vm_file) {
671 		mapping = vma->vm_file->f_mapping;
672 		i_mmap_lock_write(mapping);
673 	}
674 
675 	__vma_link(mm, vma, prev, rb_link, rb_parent);
676 	__vma_link_file(vma);
677 
678 	if (mapping)
679 		i_mmap_unlock_write(mapping);
680 
681 	mm->map_count++;
682 	validate_mm(mm);
683 }
684 
685 /*
686  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
687  * mm's list and rbtree.  It has already been inserted into the interval tree.
688  */
689 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
690 {
691 	struct vm_area_struct *prev;
692 	struct rb_node **rb_link, *rb_parent;
693 
694 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
695 			   &prev, &rb_link, &rb_parent))
696 		BUG();
697 	__vma_link(mm, vma, prev, rb_link, rb_parent);
698 	mm->map_count++;
699 }
700 
701 static inline void
702 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
703 		struct vm_area_struct *prev)
704 {
705 	struct vm_area_struct *next;
706 
707 	vma_rb_erase(vma, &mm->mm_rb);
708 	prev->vm_next = next = vma->vm_next;
709 	if (next)
710 		next->vm_prev = prev;
711 
712 	/* Kill the cache */
713 	vmacache_invalidate(mm);
714 }
715 
716 /*
717  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
718  * is already present in an i_mmap tree without adjusting the tree.
719  * The following helper function should be used when such adjustments
720  * are necessary.  The "insert" vma (if any) is to be inserted
721  * before we drop the necessary locks.
722  */
723 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
724 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
725 {
726 	struct mm_struct *mm = vma->vm_mm;
727 	struct vm_area_struct *next = vma->vm_next;
728 	struct vm_area_struct *importer = NULL;
729 	struct address_space *mapping = NULL;
730 	struct rb_root *root = NULL;
731 	struct anon_vma *anon_vma = NULL;
732 	struct file *file = vma->vm_file;
733 	bool start_changed = false, end_changed = false;
734 	long adjust_next = 0;
735 	int remove_next = 0;
736 
737 	if (next && !insert) {
738 		struct vm_area_struct *exporter = NULL;
739 
740 		if (end >= next->vm_end) {
741 			/*
742 			 * vma expands, overlapping all the next, and
743 			 * perhaps the one after too (mprotect case 6).
744 			 */
745 again:			remove_next = 1 + (end > next->vm_end);
746 			end = next->vm_end;
747 			exporter = next;
748 			importer = vma;
749 		} else if (end > next->vm_start) {
750 			/*
751 			 * vma expands, overlapping part of the next:
752 			 * mprotect case 5 shifting the boundary up.
753 			 */
754 			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
755 			exporter = next;
756 			importer = vma;
757 		} else if (end < vma->vm_end) {
758 			/*
759 			 * vma shrinks, and !insert tells it's not
760 			 * split_vma inserting another: so it must be
761 			 * mprotect case 4 shifting the boundary down.
762 			 */
763 			adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
764 			exporter = vma;
765 			importer = next;
766 		}
767 
768 		/*
769 		 * Easily overlooked: when mprotect shifts the boundary,
770 		 * make sure the expanding vma has anon_vma set if the
771 		 * shrinking vma had, to cover any anon pages imported.
772 		 */
773 		if (exporter && exporter->anon_vma && !importer->anon_vma) {
774 			int error;
775 
776 			importer->anon_vma = exporter->anon_vma;
777 			error = anon_vma_clone(importer, exporter);
778 			if (error)
779 				return error;
780 		}
781 	}
782 
783 	if (file) {
784 		mapping = file->f_mapping;
785 		root = &mapping->i_mmap;
786 		uprobe_munmap(vma, vma->vm_start, vma->vm_end);
787 
788 		if (adjust_next)
789 			uprobe_munmap(next, next->vm_start, next->vm_end);
790 
791 		i_mmap_lock_write(mapping);
792 		if (insert) {
793 			/*
794 			 * Put into interval tree now, so instantiated pages
795 			 * are visible to arm/parisc __flush_dcache_page
796 			 * throughout; but we cannot insert into address
797 			 * space until vma start or end is updated.
798 			 */
799 			__vma_link_file(insert);
800 		}
801 	}
802 
803 	vma_adjust_trans_huge(vma, start, end, adjust_next);
804 
805 	anon_vma = vma->anon_vma;
806 	if (!anon_vma && adjust_next)
807 		anon_vma = next->anon_vma;
808 	if (anon_vma) {
809 		VM_BUG_ON_VMA(adjust_next && next->anon_vma &&
810 			  anon_vma != next->anon_vma, next);
811 		anon_vma_lock_write(anon_vma);
812 		anon_vma_interval_tree_pre_update_vma(vma);
813 		if (adjust_next)
814 			anon_vma_interval_tree_pre_update_vma(next);
815 	}
816 
817 	if (root) {
818 		flush_dcache_mmap_lock(mapping);
819 		vma_interval_tree_remove(vma, root);
820 		if (adjust_next)
821 			vma_interval_tree_remove(next, root);
822 	}
823 
824 	if (start != vma->vm_start) {
825 		vma->vm_start = start;
826 		start_changed = true;
827 	}
828 	if (end != vma->vm_end) {
829 		vma->vm_end = end;
830 		end_changed = true;
831 	}
832 	vma->vm_pgoff = pgoff;
833 	if (adjust_next) {
834 		next->vm_start += adjust_next << PAGE_SHIFT;
835 		next->vm_pgoff += adjust_next;
836 	}
837 
838 	if (root) {
839 		if (adjust_next)
840 			vma_interval_tree_insert(next, root);
841 		vma_interval_tree_insert(vma, root);
842 		flush_dcache_mmap_unlock(mapping);
843 	}
844 
845 	if (remove_next) {
846 		/*
847 		 * vma_merge has merged next into vma, and needs
848 		 * us to remove next before dropping the locks.
849 		 */
850 		__vma_unlink(mm, next, vma);
851 		if (file)
852 			__remove_shared_vm_struct(next, file, mapping);
853 	} else if (insert) {
854 		/*
855 		 * split_vma has split insert from vma, and needs
856 		 * us to insert it before dropping the locks
857 		 * (it may either follow vma or precede it).
858 		 */
859 		__insert_vm_struct(mm, insert);
860 	} else {
861 		if (start_changed)
862 			vma_gap_update(vma);
863 		if (end_changed) {
864 			if (!next)
865 				mm->highest_vm_end = end;
866 			else if (!adjust_next)
867 				vma_gap_update(next);
868 		}
869 	}
870 
871 	if (anon_vma) {
872 		anon_vma_interval_tree_post_update_vma(vma);
873 		if (adjust_next)
874 			anon_vma_interval_tree_post_update_vma(next);
875 		anon_vma_unlock_write(anon_vma);
876 	}
877 	if (mapping)
878 		i_mmap_unlock_write(mapping);
879 
880 	if (root) {
881 		uprobe_mmap(vma);
882 
883 		if (adjust_next)
884 			uprobe_mmap(next);
885 	}
886 
887 	if (remove_next) {
888 		if (file) {
889 			uprobe_munmap(next, next->vm_start, next->vm_end);
890 			fput(file);
891 		}
892 		if (next->anon_vma)
893 			anon_vma_merge(vma, next);
894 		mm->map_count--;
895 		mpol_put(vma_policy(next));
896 		kmem_cache_free(vm_area_cachep, next);
897 		/*
898 		 * In mprotect's case 6 (see comments on vma_merge),
899 		 * we must remove another next too. It would clutter
900 		 * up the code too much to do both in one go.
901 		 */
902 		next = vma->vm_next;
903 		if (remove_next == 2)
904 			goto again;
905 		else if (next)
906 			vma_gap_update(next);
907 		else
908 			mm->highest_vm_end = end;
909 	}
910 	if (insert && file)
911 		uprobe_mmap(insert);
912 
913 	validate_mm(mm);
914 
915 	return 0;
916 }
917 
918 /*
919  * If the vma has a ->close operation then the driver probably needs to release
920  * per-vma resources, so we don't attempt to merge those.
921  */
922 static inline int is_mergeable_vma(struct vm_area_struct *vma,
923 				struct file *file, unsigned long vm_flags,
924 				struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
925 {
926 	/*
927 	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
928 	 * match the flags but dirty bit -- the caller should mark
929 	 * merged VMA as dirty. If dirty bit won't be excluded from
930 	 * comparison, we increase pressue on the memory system forcing
931 	 * the kernel to generate new VMAs when old one could be
932 	 * extended instead.
933 	 */
934 	if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
935 		return 0;
936 	if (vma->vm_file != file)
937 		return 0;
938 	if (vma->vm_ops && vma->vm_ops->close)
939 		return 0;
940 	if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
941 		return 0;
942 	return 1;
943 }
944 
945 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
946 					struct anon_vma *anon_vma2,
947 					struct vm_area_struct *vma)
948 {
949 	/*
950 	 * The list_is_singular() test is to avoid merging VMA cloned from
951 	 * parents. This can improve scalability caused by anon_vma lock.
952 	 */
953 	if ((!anon_vma1 || !anon_vma2) && (!vma ||
954 		list_is_singular(&vma->anon_vma_chain)))
955 		return 1;
956 	return anon_vma1 == anon_vma2;
957 }
958 
959 /*
960  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
961  * in front of (at a lower virtual address and file offset than) the vma.
962  *
963  * We cannot merge two vmas if they have differently assigned (non-NULL)
964  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
965  *
966  * We don't check here for the merged mmap wrapping around the end of pagecache
967  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
968  * wrap, nor mmaps which cover the final page at index -1UL.
969  */
970 static int
971 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
972 		     struct anon_vma *anon_vma, struct file *file,
973 		     pgoff_t vm_pgoff,
974 		     struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
975 {
976 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
977 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
978 		if (vma->vm_pgoff == vm_pgoff)
979 			return 1;
980 	}
981 	return 0;
982 }
983 
984 /*
985  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
986  * beyond (at a higher virtual address and file offset than) the vma.
987  *
988  * We cannot merge two vmas if they have differently assigned (non-NULL)
989  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
990  */
991 static int
992 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
993 		    struct anon_vma *anon_vma, struct file *file,
994 		    pgoff_t vm_pgoff,
995 		    struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
996 {
997 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
998 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
999 		pgoff_t vm_pglen;
1000 		vm_pglen = vma_pages(vma);
1001 		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1002 			return 1;
1003 	}
1004 	return 0;
1005 }
1006 
1007 /*
1008  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1009  * whether that can be merged with its predecessor or its successor.
1010  * Or both (it neatly fills a hole).
1011  *
1012  * In most cases - when called for mmap, brk or mremap - [addr,end) is
1013  * certain not to be mapped by the time vma_merge is called; but when
1014  * called for mprotect, it is certain to be already mapped (either at
1015  * an offset within prev, or at the start of next), and the flags of
1016  * this area are about to be changed to vm_flags - and the no-change
1017  * case has already been eliminated.
1018  *
1019  * The following mprotect cases have to be considered, where AAAA is
1020  * the area passed down from mprotect_fixup, never extending beyond one
1021  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1022  *
1023  *     AAAA             AAAA                AAAA          AAAA
1024  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
1025  *    cannot merge    might become    might become    might become
1026  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
1027  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
1028  *    mremap move:                                    PPPPNNNNNNNN 8
1029  *        AAAA
1030  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
1031  *    might become    case 1 below    case 2 below    case 3 below
1032  *
1033  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
1034  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
1035  */
1036 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1037 			struct vm_area_struct *prev, unsigned long addr,
1038 			unsigned long end, unsigned long vm_flags,
1039 			struct anon_vma *anon_vma, struct file *file,
1040 			pgoff_t pgoff, struct mempolicy *policy,
1041 			struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1042 {
1043 	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1044 	struct vm_area_struct *area, *next;
1045 	int err;
1046 
1047 	/*
1048 	 * We later require that vma->vm_flags == vm_flags,
1049 	 * so this tests vma->vm_flags & VM_SPECIAL, too.
1050 	 */
1051 	if (vm_flags & VM_SPECIAL)
1052 		return NULL;
1053 
1054 	if (prev)
1055 		next = prev->vm_next;
1056 	else
1057 		next = mm->mmap;
1058 	area = next;
1059 	if (next && next->vm_end == end)		/* cases 6, 7, 8 */
1060 		next = next->vm_next;
1061 
1062 	/*
1063 	 * Can it merge with the predecessor?
1064 	 */
1065 	if (prev && prev->vm_end == addr &&
1066 			mpol_equal(vma_policy(prev), policy) &&
1067 			can_vma_merge_after(prev, vm_flags,
1068 					    anon_vma, file, pgoff,
1069 					    vm_userfaultfd_ctx)) {
1070 		/*
1071 		 * OK, it can.  Can we now merge in the successor as well?
1072 		 */
1073 		if (next && end == next->vm_start &&
1074 				mpol_equal(policy, vma_policy(next)) &&
1075 				can_vma_merge_before(next, vm_flags,
1076 						     anon_vma, file,
1077 						     pgoff+pglen,
1078 						     vm_userfaultfd_ctx) &&
1079 				is_mergeable_anon_vma(prev->anon_vma,
1080 						      next->anon_vma, NULL)) {
1081 							/* cases 1, 6 */
1082 			err = vma_adjust(prev, prev->vm_start,
1083 				next->vm_end, prev->vm_pgoff, NULL);
1084 		} else					/* cases 2, 5, 7 */
1085 			err = vma_adjust(prev, prev->vm_start,
1086 				end, prev->vm_pgoff, NULL);
1087 		if (err)
1088 			return NULL;
1089 		khugepaged_enter_vma_merge(prev, vm_flags);
1090 		return prev;
1091 	}
1092 
1093 	/*
1094 	 * Can this new request be merged in front of next?
1095 	 */
1096 	if (next && end == next->vm_start &&
1097 			mpol_equal(policy, vma_policy(next)) &&
1098 			can_vma_merge_before(next, vm_flags,
1099 					     anon_vma, file, pgoff+pglen,
1100 					     vm_userfaultfd_ctx)) {
1101 		if (prev && addr < prev->vm_end)	/* case 4 */
1102 			err = vma_adjust(prev, prev->vm_start,
1103 				addr, prev->vm_pgoff, NULL);
1104 		else					/* cases 3, 8 */
1105 			err = vma_adjust(area, addr, next->vm_end,
1106 				next->vm_pgoff - pglen, NULL);
1107 		if (err)
1108 			return NULL;
1109 		khugepaged_enter_vma_merge(area, vm_flags);
1110 		return area;
1111 	}
1112 
1113 	return NULL;
1114 }
1115 
1116 /*
1117  * Rough compatbility check to quickly see if it's even worth looking
1118  * at sharing an anon_vma.
1119  *
1120  * They need to have the same vm_file, and the flags can only differ
1121  * in things that mprotect may change.
1122  *
1123  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1124  * we can merge the two vma's. For example, we refuse to merge a vma if
1125  * there is a vm_ops->close() function, because that indicates that the
1126  * driver is doing some kind of reference counting. But that doesn't
1127  * really matter for the anon_vma sharing case.
1128  */
1129 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1130 {
1131 	return a->vm_end == b->vm_start &&
1132 		mpol_equal(vma_policy(a), vma_policy(b)) &&
1133 		a->vm_file == b->vm_file &&
1134 		!((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1135 		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1136 }
1137 
1138 /*
1139  * Do some basic sanity checking to see if we can re-use the anon_vma
1140  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1141  * the same as 'old', the other will be the new one that is trying
1142  * to share the anon_vma.
1143  *
1144  * NOTE! This runs with mm_sem held for reading, so it is possible that
1145  * the anon_vma of 'old' is concurrently in the process of being set up
1146  * by another page fault trying to merge _that_. But that's ok: if it
1147  * is being set up, that automatically means that it will be a singleton
1148  * acceptable for merging, so we can do all of this optimistically. But
1149  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1150  *
1151  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1152  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1153  * is to return an anon_vma that is "complex" due to having gone through
1154  * a fork).
1155  *
1156  * We also make sure that the two vma's are compatible (adjacent,
1157  * and with the same memory policies). That's all stable, even with just
1158  * a read lock on the mm_sem.
1159  */
1160 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1161 {
1162 	if (anon_vma_compatible(a, b)) {
1163 		struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1164 
1165 		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1166 			return anon_vma;
1167 	}
1168 	return NULL;
1169 }
1170 
1171 /*
1172  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1173  * neighbouring vmas for a suitable anon_vma, before it goes off
1174  * to allocate a new anon_vma.  It checks because a repetitive
1175  * sequence of mprotects and faults may otherwise lead to distinct
1176  * anon_vmas being allocated, preventing vma merge in subsequent
1177  * mprotect.
1178  */
1179 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1180 {
1181 	struct anon_vma *anon_vma;
1182 	struct vm_area_struct *near;
1183 
1184 	near = vma->vm_next;
1185 	if (!near)
1186 		goto try_prev;
1187 
1188 	anon_vma = reusable_anon_vma(near, vma, near);
1189 	if (anon_vma)
1190 		return anon_vma;
1191 try_prev:
1192 	near = vma->vm_prev;
1193 	if (!near)
1194 		goto none;
1195 
1196 	anon_vma = reusable_anon_vma(near, near, vma);
1197 	if (anon_vma)
1198 		return anon_vma;
1199 none:
1200 	/*
1201 	 * There's no absolute need to look only at touching neighbours:
1202 	 * we could search further afield for "compatible" anon_vmas.
1203 	 * But it would probably just be a waste of time searching,
1204 	 * or lead to too many vmas hanging off the same anon_vma.
1205 	 * We're trying to allow mprotect remerging later on,
1206 	 * not trying to minimize memory used for anon_vmas.
1207 	 */
1208 	return NULL;
1209 }
1210 
1211 #ifdef CONFIG_PROC_FS
1212 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
1213 						struct file *file, long pages)
1214 {
1215 	const unsigned long stack_flags
1216 		= VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
1217 
1218 	mm->total_vm += pages;
1219 
1220 	if (file) {
1221 		mm->shared_vm += pages;
1222 		if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
1223 			mm->exec_vm += pages;
1224 	} else if (flags & stack_flags)
1225 		mm->stack_vm += pages;
1226 }
1227 #endif /* CONFIG_PROC_FS */
1228 
1229 /*
1230  * If a hint addr is less than mmap_min_addr change hint to be as
1231  * low as possible but still greater than mmap_min_addr
1232  */
1233 static inline unsigned long round_hint_to_min(unsigned long hint)
1234 {
1235 	hint &= PAGE_MASK;
1236 	if (((void *)hint != NULL) &&
1237 	    (hint < mmap_min_addr))
1238 		return PAGE_ALIGN(mmap_min_addr);
1239 	return hint;
1240 }
1241 
1242 static inline int mlock_future_check(struct mm_struct *mm,
1243 				     unsigned long flags,
1244 				     unsigned long len)
1245 {
1246 	unsigned long locked, lock_limit;
1247 
1248 	/*  mlock MCL_FUTURE? */
1249 	if (flags & VM_LOCKED) {
1250 		locked = len >> PAGE_SHIFT;
1251 		locked += mm->locked_vm;
1252 		lock_limit = rlimit(RLIMIT_MEMLOCK);
1253 		lock_limit >>= PAGE_SHIFT;
1254 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1255 			return -EAGAIN;
1256 	}
1257 	return 0;
1258 }
1259 
1260 /*
1261  * The caller must hold down_write(&current->mm->mmap_sem).
1262  */
1263 
1264 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1265 			unsigned long len, unsigned long prot,
1266 			unsigned long flags, unsigned long pgoff,
1267 			unsigned long *populate)
1268 {
1269 	struct mm_struct *mm = current->mm;
1270 	vm_flags_t vm_flags;
1271 
1272 	*populate = 0;
1273 
1274 	if (!len)
1275 		return -EINVAL;
1276 
1277 	/*
1278 	 * Does the application expect PROT_READ to imply PROT_EXEC?
1279 	 *
1280 	 * (the exception is when the underlying filesystem is noexec
1281 	 *  mounted, in which case we dont add PROT_EXEC.)
1282 	 */
1283 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1284 		if (!(file && path_noexec(&file->f_path)))
1285 			prot |= PROT_EXEC;
1286 
1287 	if (!(flags & MAP_FIXED))
1288 		addr = round_hint_to_min(addr);
1289 
1290 	/* Careful about overflows.. */
1291 	len = PAGE_ALIGN(len);
1292 	if (!len)
1293 		return -ENOMEM;
1294 
1295 	/* offset overflow? */
1296 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1297 		return -EOVERFLOW;
1298 
1299 	/* Too many mappings? */
1300 	if (mm->map_count > sysctl_max_map_count)
1301 		return -ENOMEM;
1302 
1303 	/* Obtain the address to map to. we verify (or select) it and ensure
1304 	 * that it represents a valid section of the address space.
1305 	 */
1306 	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1307 	if (addr & ~PAGE_MASK)
1308 		return addr;
1309 
1310 	/* Do simple checking here so the lower-level routines won't have
1311 	 * to. we assume access permissions have been handled by the open
1312 	 * of the memory object, so we don't do any here.
1313 	 */
1314 	vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1315 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1316 
1317 	if (flags & MAP_LOCKED)
1318 		if (!can_do_mlock())
1319 			return -EPERM;
1320 
1321 	if (mlock_future_check(mm, vm_flags, len))
1322 		return -EAGAIN;
1323 
1324 	if (file) {
1325 		struct inode *inode = file_inode(file);
1326 
1327 		switch (flags & MAP_TYPE) {
1328 		case MAP_SHARED:
1329 			if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1330 				return -EACCES;
1331 
1332 			/*
1333 			 * Make sure we don't allow writing to an append-only
1334 			 * file..
1335 			 */
1336 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1337 				return -EACCES;
1338 
1339 			/*
1340 			 * Make sure there are no mandatory locks on the file.
1341 			 */
1342 			if (locks_verify_locked(file))
1343 				return -EAGAIN;
1344 
1345 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1346 			if (!(file->f_mode & FMODE_WRITE))
1347 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1348 
1349 			/* fall through */
1350 		case MAP_PRIVATE:
1351 			if (!(file->f_mode & FMODE_READ))
1352 				return -EACCES;
1353 			if (path_noexec(&file->f_path)) {
1354 				if (vm_flags & VM_EXEC)
1355 					return -EPERM;
1356 				vm_flags &= ~VM_MAYEXEC;
1357 			}
1358 
1359 			if (!file->f_op->mmap)
1360 				return -ENODEV;
1361 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1362 				return -EINVAL;
1363 			break;
1364 
1365 		default:
1366 			return -EINVAL;
1367 		}
1368 	} else {
1369 		switch (flags & MAP_TYPE) {
1370 		case MAP_SHARED:
1371 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1372 				return -EINVAL;
1373 			/*
1374 			 * Ignore pgoff.
1375 			 */
1376 			pgoff = 0;
1377 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1378 			break;
1379 		case MAP_PRIVATE:
1380 			/*
1381 			 * Set pgoff according to addr for anon_vma.
1382 			 */
1383 			pgoff = addr >> PAGE_SHIFT;
1384 			break;
1385 		default:
1386 			return -EINVAL;
1387 		}
1388 	}
1389 
1390 	/*
1391 	 * Set 'VM_NORESERVE' if we should not account for the
1392 	 * memory use of this mapping.
1393 	 */
1394 	if (flags & MAP_NORESERVE) {
1395 		/* We honor MAP_NORESERVE if allowed to overcommit */
1396 		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1397 			vm_flags |= VM_NORESERVE;
1398 
1399 		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1400 		if (file && is_file_hugepages(file))
1401 			vm_flags |= VM_NORESERVE;
1402 	}
1403 
1404 	addr = mmap_region(file, addr, len, vm_flags, pgoff);
1405 	if (!IS_ERR_VALUE(addr) &&
1406 	    ((vm_flags & VM_LOCKED) ||
1407 	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1408 		*populate = len;
1409 	return addr;
1410 }
1411 
1412 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1413 		unsigned long, prot, unsigned long, flags,
1414 		unsigned long, fd, unsigned long, pgoff)
1415 {
1416 	struct file *file = NULL;
1417 	unsigned long retval = -EBADF;
1418 
1419 	if (!(flags & MAP_ANONYMOUS)) {
1420 		audit_mmap_fd(fd, flags);
1421 		file = fget(fd);
1422 		if (!file)
1423 			goto out;
1424 		if (is_file_hugepages(file))
1425 			len = ALIGN(len, huge_page_size(hstate_file(file)));
1426 		retval = -EINVAL;
1427 		if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1428 			goto out_fput;
1429 	} else if (flags & MAP_HUGETLB) {
1430 		struct user_struct *user = NULL;
1431 		struct hstate *hs;
1432 
1433 		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1434 		if (!hs)
1435 			return -EINVAL;
1436 
1437 		len = ALIGN(len, huge_page_size(hs));
1438 		/*
1439 		 * VM_NORESERVE is used because the reservations will be
1440 		 * taken when vm_ops->mmap() is called
1441 		 * A dummy user value is used because we are not locking
1442 		 * memory so no accounting is necessary
1443 		 */
1444 		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1445 				VM_NORESERVE,
1446 				&user, HUGETLB_ANONHUGE_INODE,
1447 				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1448 		if (IS_ERR(file))
1449 			return PTR_ERR(file);
1450 	}
1451 
1452 	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1453 
1454 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1455 out_fput:
1456 	if (file)
1457 		fput(file);
1458 out:
1459 	return retval;
1460 }
1461 
1462 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1463 struct mmap_arg_struct {
1464 	unsigned long addr;
1465 	unsigned long len;
1466 	unsigned long prot;
1467 	unsigned long flags;
1468 	unsigned long fd;
1469 	unsigned long offset;
1470 };
1471 
1472 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1473 {
1474 	struct mmap_arg_struct a;
1475 
1476 	if (copy_from_user(&a, arg, sizeof(a)))
1477 		return -EFAULT;
1478 	if (a.offset & ~PAGE_MASK)
1479 		return -EINVAL;
1480 
1481 	return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1482 			      a.offset >> PAGE_SHIFT);
1483 }
1484 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1485 
1486 /*
1487  * Some shared mappigns will want the pages marked read-only
1488  * to track write events. If so, we'll downgrade vm_page_prot
1489  * to the private version (using protection_map[] without the
1490  * VM_SHARED bit).
1491  */
1492 int vma_wants_writenotify(struct vm_area_struct *vma)
1493 {
1494 	vm_flags_t vm_flags = vma->vm_flags;
1495 
1496 	/* If it was private or non-writable, the write bit is already clear */
1497 	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1498 		return 0;
1499 
1500 	/* The backer wishes to know when pages are first written to? */
1501 	if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1502 		return 1;
1503 
1504 	/* The open routine did something to the protections that pgprot_modify
1505 	 * won't preserve? */
1506 	if (pgprot_val(vma->vm_page_prot) !=
1507 	    pgprot_val(vm_pgprot_modify(vma->vm_page_prot, vm_flags)))
1508 		return 0;
1509 
1510 	/* Do we need to track softdirty? */
1511 	if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1512 		return 1;
1513 
1514 	/* Specialty mapping? */
1515 	if (vm_flags & VM_PFNMAP)
1516 		return 0;
1517 
1518 	/* Can the mapping track the dirty pages? */
1519 	return vma->vm_file && vma->vm_file->f_mapping &&
1520 		mapping_cap_account_dirty(vma->vm_file->f_mapping);
1521 }
1522 
1523 /*
1524  * We account for memory if it's a private writeable mapping,
1525  * not hugepages and VM_NORESERVE wasn't set.
1526  */
1527 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1528 {
1529 	/*
1530 	 * hugetlb has its own accounting separate from the core VM
1531 	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1532 	 */
1533 	if (file && is_file_hugepages(file))
1534 		return 0;
1535 
1536 	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1537 }
1538 
1539 unsigned long mmap_region(struct file *file, unsigned long addr,
1540 		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1541 {
1542 	struct mm_struct *mm = current->mm;
1543 	struct vm_area_struct *vma, *prev;
1544 	int error;
1545 	struct rb_node **rb_link, *rb_parent;
1546 	unsigned long charged = 0;
1547 
1548 	/* Check against address space limit. */
1549 	if (!may_expand_vm(mm, len >> PAGE_SHIFT)) {
1550 		unsigned long nr_pages;
1551 
1552 		/*
1553 		 * MAP_FIXED may remove pages of mappings that intersects with
1554 		 * requested mapping. Account for the pages it would unmap.
1555 		 */
1556 		if (!(vm_flags & MAP_FIXED))
1557 			return -ENOMEM;
1558 
1559 		nr_pages = count_vma_pages_range(mm, addr, addr + len);
1560 
1561 		if (!may_expand_vm(mm, (len >> PAGE_SHIFT) - nr_pages))
1562 			return -ENOMEM;
1563 	}
1564 
1565 	/* Clear old maps */
1566 	error = -ENOMEM;
1567 	while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1568 			      &rb_parent)) {
1569 		if (do_munmap(mm, addr, len))
1570 			return -ENOMEM;
1571 	}
1572 
1573 	/*
1574 	 * Private writable mapping: check memory availability
1575 	 */
1576 	if (accountable_mapping(file, vm_flags)) {
1577 		charged = len >> PAGE_SHIFT;
1578 		if (security_vm_enough_memory_mm(mm, charged))
1579 			return -ENOMEM;
1580 		vm_flags |= VM_ACCOUNT;
1581 	}
1582 
1583 	/*
1584 	 * Can we just expand an old mapping?
1585 	 */
1586 	vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1587 			NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1588 	if (vma)
1589 		goto out;
1590 
1591 	/*
1592 	 * Determine the object being mapped and call the appropriate
1593 	 * specific mapper. the address has already been validated, but
1594 	 * not unmapped, but the maps are removed from the list.
1595 	 */
1596 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1597 	if (!vma) {
1598 		error = -ENOMEM;
1599 		goto unacct_error;
1600 	}
1601 
1602 	vma->vm_mm = mm;
1603 	vma->vm_start = addr;
1604 	vma->vm_end = addr + len;
1605 	vma->vm_flags = vm_flags;
1606 	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1607 	vma->vm_pgoff = pgoff;
1608 	INIT_LIST_HEAD(&vma->anon_vma_chain);
1609 
1610 	if (file) {
1611 		if (vm_flags & VM_DENYWRITE) {
1612 			error = deny_write_access(file);
1613 			if (error)
1614 				goto free_vma;
1615 		}
1616 		if (vm_flags & VM_SHARED) {
1617 			error = mapping_map_writable(file->f_mapping);
1618 			if (error)
1619 				goto allow_write_and_free_vma;
1620 		}
1621 
1622 		/* ->mmap() can change vma->vm_file, but must guarantee that
1623 		 * vma_link() below can deny write-access if VM_DENYWRITE is set
1624 		 * and map writably if VM_SHARED is set. This usually means the
1625 		 * new file must not have been exposed to user-space, yet.
1626 		 */
1627 		vma->vm_file = get_file(file);
1628 		error = file->f_op->mmap(file, vma);
1629 		if (error)
1630 			goto unmap_and_free_vma;
1631 
1632 		/* Can addr have changed??
1633 		 *
1634 		 * Answer: Yes, several device drivers can do it in their
1635 		 *         f_op->mmap method. -DaveM
1636 		 * Bug: If addr is changed, prev, rb_link, rb_parent should
1637 		 *      be updated for vma_link()
1638 		 */
1639 		WARN_ON_ONCE(addr != vma->vm_start);
1640 
1641 		addr = vma->vm_start;
1642 		vm_flags = vma->vm_flags;
1643 	} else if (vm_flags & VM_SHARED) {
1644 		error = shmem_zero_setup(vma);
1645 		if (error)
1646 			goto free_vma;
1647 	}
1648 
1649 	vma_link(mm, vma, prev, rb_link, rb_parent);
1650 	/* Once vma denies write, undo our temporary denial count */
1651 	if (file) {
1652 		if (vm_flags & VM_SHARED)
1653 			mapping_unmap_writable(file->f_mapping);
1654 		if (vm_flags & VM_DENYWRITE)
1655 			allow_write_access(file);
1656 	}
1657 	file = vma->vm_file;
1658 out:
1659 	perf_event_mmap(vma);
1660 
1661 	vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1662 	if (vm_flags & VM_LOCKED) {
1663 		if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1664 					vma == get_gate_vma(current->mm)))
1665 			mm->locked_vm += (len >> PAGE_SHIFT);
1666 		else
1667 			vma->vm_flags &= ~VM_LOCKED;
1668 	}
1669 
1670 	if (file)
1671 		uprobe_mmap(vma);
1672 
1673 	/*
1674 	 * New (or expanded) vma always get soft dirty status.
1675 	 * Otherwise user-space soft-dirty page tracker won't
1676 	 * be able to distinguish situation when vma area unmapped,
1677 	 * then new mapped in-place (which must be aimed as
1678 	 * a completely new data area).
1679 	 */
1680 	vma->vm_flags |= VM_SOFTDIRTY;
1681 
1682 	vma_set_page_prot(vma);
1683 
1684 	return addr;
1685 
1686 unmap_and_free_vma:
1687 	vma->vm_file = NULL;
1688 	fput(file);
1689 
1690 	/* Undo any partial mapping done by a device driver. */
1691 	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1692 	charged = 0;
1693 	if (vm_flags & VM_SHARED)
1694 		mapping_unmap_writable(file->f_mapping);
1695 allow_write_and_free_vma:
1696 	if (vm_flags & VM_DENYWRITE)
1697 		allow_write_access(file);
1698 free_vma:
1699 	kmem_cache_free(vm_area_cachep, vma);
1700 unacct_error:
1701 	if (charged)
1702 		vm_unacct_memory(charged);
1703 	return error;
1704 }
1705 
1706 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1707 {
1708 	/*
1709 	 * We implement the search by looking for an rbtree node that
1710 	 * immediately follows a suitable gap. That is,
1711 	 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1712 	 * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1713 	 * - gap_end - gap_start >= length
1714 	 */
1715 
1716 	struct mm_struct *mm = current->mm;
1717 	struct vm_area_struct *vma;
1718 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1719 
1720 	/* Adjust search length to account for worst case alignment overhead */
1721 	length = info->length + info->align_mask;
1722 	if (length < info->length)
1723 		return -ENOMEM;
1724 
1725 	/* Adjust search limits by the desired length */
1726 	if (info->high_limit < length)
1727 		return -ENOMEM;
1728 	high_limit = info->high_limit - length;
1729 
1730 	if (info->low_limit > high_limit)
1731 		return -ENOMEM;
1732 	low_limit = info->low_limit + length;
1733 
1734 	/* Check if rbtree root looks promising */
1735 	if (RB_EMPTY_ROOT(&mm->mm_rb))
1736 		goto check_highest;
1737 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1738 	if (vma->rb_subtree_gap < length)
1739 		goto check_highest;
1740 
1741 	while (true) {
1742 		/* Visit left subtree if it looks promising */
1743 		gap_end = vma->vm_start;
1744 		if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1745 			struct vm_area_struct *left =
1746 				rb_entry(vma->vm_rb.rb_left,
1747 					 struct vm_area_struct, vm_rb);
1748 			if (left->rb_subtree_gap >= length) {
1749 				vma = left;
1750 				continue;
1751 			}
1752 		}
1753 
1754 		gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1755 check_current:
1756 		/* Check if current node has a suitable gap */
1757 		if (gap_start > high_limit)
1758 			return -ENOMEM;
1759 		if (gap_end >= low_limit && gap_end - gap_start >= length)
1760 			goto found;
1761 
1762 		/* Visit right subtree if it looks promising */
1763 		if (vma->vm_rb.rb_right) {
1764 			struct vm_area_struct *right =
1765 				rb_entry(vma->vm_rb.rb_right,
1766 					 struct vm_area_struct, vm_rb);
1767 			if (right->rb_subtree_gap >= length) {
1768 				vma = right;
1769 				continue;
1770 			}
1771 		}
1772 
1773 		/* Go back up the rbtree to find next candidate node */
1774 		while (true) {
1775 			struct rb_node *prev = &vma->vm_rb;
1776 			if (!rb_parent(prev))
1777 				goto check_highest;
1778 			vma = rb_entry(rb_parent(prev),
1779 				       struct vm_area_struct, vm_rb);
1780 			if (prev == vma->vm_rb.rb_left) {
1781 				gap_start = vma->vm_prev->vm_end;
1782 				gap_end = vma->vm_start;
1783 				goto check_current;
1784 			}
1785 		}
1786 	}
1787 
1788 check_highest:
1789 	/* Check highest gap, which does not precede any rbtree node */
1790 	gap_start = mm->highest_vm_end;
1791 	gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1792 	if (gap_start > high_limit)
1793 		return -ENOMEM;
1794 
1795 found:
1796 	/* We found a suitable gap. Clip it with the original low_limit. */
1797 	if (gap_start < info->low_limit)
1798 		gap_start = info->low_limit;
1799 
1800 	/* Adjust gap address to the desired alignment */
1801 	gap_start += (info->align_offset - gap_start) & info->align_mask;
1802 
1803 	VM_BUG_ON(gap_start + info->length > info->high_limit);
1804 	VM_BUG_ON(gap_start + info->length > gap_end);
1805 	return gap_start;
1806 }
1807 
1808 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1809 {
1810 	struct mm_struct *mm = current->mm;
1811 	struct vm_area_struct *vma;
1812 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1813 
1814 	/* Adjust search length to account for worst case alignment overhead */
1815 	length = info->length + info->align_mask;
1816 	if (length < info->length)
1817 		return -ENOMEM;
1818 
1819 	/*
1820 	 * Adjust search limits by the desired length.
1821 	 * See implementation comment at top of unmapped_area().
1822 	 */
1823 	gap_end = info->high_limit;
1824 	if (gap_end < length)
1825 		return -ENOMEM;
1826 	high_limit = gap_end - length;
1827 
1828 	if (info->low_limit > high_limit)
1829 		return -ENOMEM;
1830 	low_limit = info->low_limit + length;
1831 
1832 	/* Check highest gap, which does not precede any rbtree node */
1833 	gap_start = mm->highest_vm_end;
1834 	if (gap_start <= high_limit)
1835 		goto found_highest;
1836 
1837 	/* Check if rbtree root looks promising */
1838 	if (RB_EMPTY_ROOT(&mm->mm_rb))
1839 		return -ENOMEM;
1840 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1841 	if (vma->rb_subtree_gap < length)
1842 		return -ENOMEM;
1843 
1844 	while (true) {
1845 		/* Visit right subtree if it looks promising */
1846 		gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1847 		if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1848 			struct vm_area_struct *right =
1849 				rb_entry(vma->vm_rb.rb_right,
1850 					 struct vm_area_struct, vm_rb);
1851 			if (right->rb_subtree_gap >= length) {
1852 				vma = right;
1853 				continue;
1854 			}
1855 		}
1856 
1857 check_current:
1858 		/* Check if current node has a suitable gap */
1859 		gap_end = vma->vm_start;
1860 		if (gap_end < low_limit)
1861 			return -ENOMEM;
1862 		if (gap_start <= high_limit && gap_end - gap_start >= length)
1863 			goto found;
1864 
1865 		/* Visit left subtree if it looks promising */
1866 		if (vma->vm_rb.rb_left) {
1867 			struct vm_area_struct *left =
1868 				rb_entry(vma->vm_rb.rb_left,
1869 					 struct vm_area_struct, vm_rb);
1870 			if (left->rb_subtree_gap >= length) {
1871 				vma = left;
1872 				continue;
1873 			}
1874 		}
1875 
1876 		/* Go back up the rbtree to find next candidate node */
1877 		while (true) {
1878 			struct rb_node *prev = &vma->vm_rb;
1879 			if (!rb_parent(prev))
1880 				return -ENOMEM;
1881 			vma = rb_entry(rb_parent(prev),
1882 				       struct vm_area_struct, vm_rb);
1883 			if (prev == vma->vm_rb.rb_right) {
1884 				gap_start = vma->vm_prev ?
1885 					vma->vm_prev->vm_end : 0;
1886 				goto check_current;
1887 			}
1888 		}
1889 	}
1890 
1891 found:
1892 	/* We found a suitable gap. Clip it with the original high_limit. */
1893 	if (gap_end > info->high_limit)
1894 		gap_end = info->high_limit;
1895 
1896 found_highest:
1897 	/* Compute highest gap address at the desired alignment */
1898 	gap_end -= info->length;
1899 	gap_end -= (gap_end - info->align_offset) & info->align_mask;
1900 
1901 	VM_BUG_ON(gap_end < info->low_limit);
1902 	VM_BUG_ON(gap_end < gap_start);
1903 	return gap_end;
1904 }
1905 
1906 /* Get an address range which is currently unmapped.
1907  * For shmat() with addr=0.
1908  *
1909  * Ugly calling convention alert:
1910  * Return value with the low bits set means error value,
1911  * ie
1912  *	if (ret & ~PAGE_MASK)
1913  *		error = ret;
1914  *
1915  * This function "knows" that -ENOMEM has the bits set.
1916  */
1917 #ifndef HAVE_ARCH_UNMAPPED_AREA
1918 unsigned long
1919 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1920 		unsigned long len, unsigned long pgoff, unsigned long flags)
1921 {
1922 	struct mm_struct *mm = current->mm;
1923 	struct vm_area_struct *vma;
1924 	struct vm_unmapped_area_info info;
1925 
1926 	if (len > TASK_SIZE - mmap_min_addr)
1927 		return -ENOMEM;
1928 
1929 	if (flags & MAP_FIXED)
1930 		return addr;
1931 
1932 	if (addr) {
1933 		addr = PAGE_ALIGN(addr);
1934 		vma = find_vma(mm, addr);
1935 		if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1936 		    (!vma || addr + len <= vma->vm_start))
1937 			return addr;
1938 	}
1939 
1940 	info.flags = 0;
1941 	info.length = len;
1942 	info.low_limit = mm->mmap_base;
1943 	info.high_limit = TASK_SIZE;
1944 	info.align_mask = 0;
1945 	return vm_unmapped_area(&info);
1946 }
1947 #endif
1948 
1949 /*
1950  * This mmap-allocator allocates new areas top-down from below the
1951  * stack's low limit (the base):
1952  */
1953 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1954 unsigned long
1955 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1956 			  const unsigned long len, const unsigned long pgoff,
1957 			  const unsigned long flags)
1958 {
1959 	struct vm_area_struct *vma;
1960 	struct mm_struct *mm = current->mm;
1961 	unsigned long addr = addr0;
1962 	struct vm_unmapped_area_info info;
1963 
1964 	/* requested length too big for entire address space */
1965 	if (len > TASK_SIZE - mmap_min_addr)
1966 		return -ENOMEM;
1967 
1968 	if (flags & MAP_FIXED)
1969 		return addr;
1970 
1971 	/* requesting a specific address */
1972 	if (addr) {
1973 		addr = PAGE_ALIGN(addr);
1974 		vma = find_vma(mm, addr);
1975 		if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1976 				(!vma || addr + len <= vma->vm_start))
1977 			return addr;
1978 	}
1979 
1980 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1981 	info.length = len;
1982 	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
1983 	info.high_limit = mm->mmap_base;
1984 	info.align_mask = 0;
1985 	addr = vm_unmapped_area(&info);
1986 
1987 	/*
1988 	 * A failed mmap() very likely causes application failure,
1989 	 * so fall back to the bottom-up function here. This scenario
1990 	 * can happen with large stack limits and large mmap()
1991 	 * allocations.
1992 	 */
1993 	if (addr & ~PAGE_MASK) {
1994 		VM_BUG_ON(addr != -ENOMEM);
1995 		info.flags = 0;
1996 		info.low_limit = TASK_UNMAPPED_BASE;
1997 		info.high_limit = TASK_SIZE;
1998 		addr = vm_unmapped_area(&info);
1999 	}
2000 
2001 	return addr;
2002 }
2003 #endif
2004 
2005 unsigned long
2006 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2007 		unsigned long pgoff, unsigned long flags)
2008 {
2009 	unsigned long (*get_area)(struct file *, unsigned long,
2010 				  unsigned long, unsigned long, unsigned long);
2011 
2012 	unsigned long error = arch_mmap_check(addr, len, flags);
2013 	if (error)
2014 		return error;
2015 
2016 	/* Careful about overflows.. */
2017 	if (len > TASK_SIZE)
2018 		return -ENOMEM;
2019 
2020 	get_area = current->mm->get_unmapped_area;
2021 	if (file && file->f_op->get_unmapped_area)
2022 		get_area = file->f_op->get_unmapped_area;
2023 	addr = get_area(file, addr, len, pgoff, flags);
2024 	if (IS_ERR_VALUE(addr))
2025 		return addr;
2026 
2027 	if (addr > TASK_SIZE - len)
2028 		return -ENOMEM;
2029 	if (addr & ~PAGE_MASK)
2030 		return -EINVAL;
2031 
2032 	addr = arch_rebalance_pgtables(addr, len);
2033 	error = security_mmap_addr(addr);
2034 	return error ? error : addr;
2035 }
2036 
2037 EXPORT_SYMBOL(get_unmapped_area);
2038 
2039 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2040 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2041 {
2042 	struct rb_node *rb_node;
2043 	struct vm_area_struct *vma;
2044 
2045 	/* Check the cache first. */
2046 	vma = vmacache_find(mm, addr);
2047 	if (likely(vma))
2048 		return vma;
2049 
2050 	rb_node = mm->mm_rb.rb_node;
2051 	vma = NULL;
2052 
2053 	while (rb_node) {
2054 		struct vm_area_struct *tmp;
2055 
2056 		tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2057 
2058 		if (tmp->vm_end > addr) {
2059 			vma = tmp;
2060 			if (tmp->vm_start <= addr)
2061 				break;
2062 			rb_node = rb_node->rb_left;
2063 		} else
2064 			rb_node = rb_node->rb_right;
2065 	}
2066 
2067 	if (vma)
2068 		vmacache_update(addr, vma);
2069 	return vma;
2070 }
2071 
2072 EXPORT_SYMBOL(find_vma);
2073 
2074 /*
2075  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2076  */
2077 struct vm_area_struct *
2078 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2079 			struct vm_area_struct **pprev)
2080 {
2081 	struct vm_area_struct *vma;
2082 
2083 	vma = find_vma(mm, addr);
2084 	if (vma) {
2085 		*pprev = vma->vm_prev;
2086 	} else {
2087 		struct rb_node *rb_node = mm->mm_rb.rb_node;
2088 		*pprev = NULL;
2089 		while (rb_node) {
2090 			*pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2091 			rb_node = rb_node->rb_right;
2092 		}
2093 	}
2094 	return vma;
2095 }
2096 
2097 /*
2098  * Verify that the stack growth is acceptable and
2099  * update accounting. This is shared with both the
2100  * grow-up and grow-down cases.
2101  */
2102 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
2103 {
2104 	struct mm_struct *mm = vma->vm_mm;
2105 	struct rlimit *rlim = current->signal->rlim;
2106 	unsigned long new_start, actual_size;
2107 
2108 	/* address space limit tests */
2109 	if (!may_expand_vm(mm, grow))
2110 		return -ENOMEM;
2111 
2112 	/* Stack limit test */
2113 	actual_size = size;
2114 	if (size && (vma->vm_flags & (VM_GROWSUP | VM_GROWSDOWN)))
2115 		actual_size -= PAGE_SIZE;
2116 	if (actual_size > READ_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2117 		return -ENOMEM;
2118 
2119 	/* mlock limit tests */
2120 	if (vma->vm_flags & VM_LOCKED) {
2121 		unsigned long locked;
2122 		unsigned long limit;
2123 		locked = mm->locked_vm + grow;
2124 		limit = READ_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2125 		limit >>= PAGE_SHIFT;
2126 		if (locked > limit && !capable(CAP_IPC_LOCK))
2127 			return -ENOMEM;
2128 	}
2129 
2130 	/* Check to ensure the stack will not grow into a hugetlb-only region */
2131 	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2132 			vma->vm_end - size;
2133 	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2134 		return -EFAULT;
2135 
2136 	/*
2137 	 * Overcommit..  This must be the final test, as it will
2138 	 * update security statistics.
2139 	 */
2140 	if (security_vm_enough_memory_mm(mm, grow))
2141 		return -ENOMEM;
2142 
2143 	/* Ok, everything looks good - let it rip */
2144 	if (vma->vm_flags & VM_LOCKED)
2145 		mm->locked_vm += grow;
2146 	vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
2147 	return 0;
2148 }
2149 
2150 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2151 /*
2152  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2153  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2154  */
2155 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2156 {
2157 	int error;
2158 
2159 	if (!(vma->vm_flags & VM_GROWSUP))
2160 		return -EFAULT;
2161 
2162 	/*
2163 	 * We must make sure the anon_vma is allocated
2164 	 * so that the anon_vma locking is not a noop.
2165 	 */
2166 	if (unlikely(anon_vma_prepare(vma)))
2167 		return -ENOMEM;
2168 	vma_lock_anon_vma(vma);
2169 
2170 	/*
2171 	 * vma->vm_start/vm_end cannot change under us because the caller
2172 	 * is required to hold the mmap_sem in read mode.  We need the
2173 	 * anon_vma lock to serialize against concurrent expand_stacks.
2174 	 * Also guard against wrapping around to address 0.
2175 	 */
2176 	if (address < PAGE_ALIGN(address+4))
2177 		address = PAGE_ALIGN(address+4);
2178 	else {
2179 		vma_unlock_anon_vma(vma);
2180 		return -ENOMEM;
2181 	}
2182 	error = 0;
2183 
2184 	/* Somebody else might have raced and expanded it already */
2185 	if (address > vma->vm_end) {
2186 		unsigned long size, grow;
2187 
2188 		size = address - vma->vm_start;
2189 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
2190 
2191 		error = -ENOMEM;
2192 		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2193 			error = acct_stack_growth(vma, size, grow);
2194 			if (!error) {
2195 				/*
2196 				 * vma_gap_update() doesn't support concurrent
2197 				 * updates, but we only hold a shared mmap_sem
2198 				 * lock here, so we need to protect against
2199 				 * concurrent vma expansions.
2200 				 * vma_lock_anon_vma() doesn't help here, as
2201 				 * we don't guarantee that all growable vmas
2202 				 * in a mm share the same root anon vma.
2203 				 * So, we reuse mm->page_table_lock to guard
2204 				 * against concurrent vma expansions.
2205 				 */
2206 				spin_lock(&vma->vm_mm->page_table_lock);
2207 				anon_vma_interval_tree_pre_update_vma(vma);
2208 				vma->vm_end = address;
2209 				anon_vma_interval_tree_post_update_vma(vma);
2210 				if (vma->vm_next)
2211 					vma_gap_update(vma->vm_next);
2212 				else
2213 					vma->vm_mm->highest_vm_end = address;
2214 				spin_unlock(&vma->vm_mm->page_table_lock);
2215 
2216 				perf_event_mmap(vma);
2217 			}
2218 		}
2219 	}
2220 	vma_unlock_anon_vma(vma);
2221 	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2222 	validate_mm(vma->vm_mm);
2223 	return error;
2224 }
2225 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2226 
2227 /*
2228  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2229  */
2230 int expand_downwards(struct vm_area_struct *vma,
2231 				   unsigned long address)
2232 {
2233 	int error;
2234 
2235 	/*
2236 	 * We must make sure the anon_vma is allocated
2237 	 * so that the anon_vma locking is not a noop.
2238 	 */
2239 	if (unlikely(anon_vma_prepare(vma)))
2240 		return -ENOMEM;
2241 
2242 	address &= PAGE_MASK;
2243 	error = security_mmap_addr(address);
2244 	if (error)
2245 		return error;
2246 
2247 	vma_lock_anon_vma(vma);
2248 
2249 	/*
2250 	 * vma->vm_start/vm_end cannot change under us because the caller
2251 	 * is required to hold the mmap_sem in read mode.  We need the
2252 	 * anon_vma lock to serialize against concurrent expand_stacks.
2253 	 */
2254 
2255 	/* Somebody else might have raced and expanded it already */
2256 	if (address < vma->vm_start) {
2257 		unsigned long size, grow;
2258 
2259 		size = vma->vm_end - address;
2260 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
2261 
2262 		error = -ENOMEM;
2263 		if (grow <= vma->vm_pgoff) {
2264 			error = acct_stack_growth(vma, size, grow);
2265 			if (!error) {
2266 				/*
2267 				 * vma_gap_update() doesn't support concurrent
2268 				 * updates, but we only hold a shared mmap_sem
2269 				 * lock here, so we need to protect against
2270 				 * concurrent vma expansions.
2271 				 * vma_lock_anon_vma() doesn't help here, as
2272 				 * we don't guarantee that all growable vmas
2273 				 * in a mm share the same root anon vma.
2274 				 * So, we reuse mm->page_table_lock to guard
2275 				 * against concurrent vma expansions.
2276 				 */
2277 				spin_lock(&vma->vm_mm->page_table_lock);
2278 				anon_vma_interval_tree_pre_update_vma(vma);
2279 				vma->vm_start = address;
2280 				vma->vm_pgoff -= grow;
2281 				anon_vma_interval_tree_post_update_vma(vma);
2282 				vma_gap_update(vma);
2283 				spin_unlock(&vma->vm_mm->page_table_lock);
2284 
2285 				perf_event_mmap(vma);
2286 			}
2287 		}
2288 	}
2289 	vma_unlock_anon_vma(vma);
2290 	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2291 	validate_mm(vma->vm_mm);
2292 	return error;
2293 }
2294 
2295 /*
2296  * Note how expand_stack() refuses to expand the stack all the way to
2297  * abut the next virtual mapping, *unless* that mapping itself is also
2298  * a stack mapping. We want to leave room for a guard page, after all
2299  * (the guard page itself is not added here, that is done by the
2300  * actual page faulting logic)
2301  *
2302  * This matches the behavior of the guard page logic (see mm/memory.c:
2303  * check_stack_guard_page()), which only allows the guard page to be
2304  * removed under these circumstances.
2305  */
2306 #ifdef CONFIG_STACK_GROWSUP
2307 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2308 {
2309 	struct vm_area_struct *next;
2310 
2311 	address &= PAGE_MASK;
2312 	next = vma->vm_next;
2313 	if (next && next->vm_start == address + PAGE_SIZE) {
2314 		if (!(next->vm_flags & VM_GROWSUP))
2315 			return -ENOMEM;
2316 	}
2317 	return expand_upwards(vma, address);
2318 }
2319 
2320 struct vm_area_struct *
2321 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2322 {
2323 	struct vm_area_struct *vma, *prev;
2324 
2325 	addr &= PAGE_MASK;
2326 	vma = find_vma_prev(mm, addr, &prev);
2327 	if (vma && (vma->vm_start <= addr))
2328 		return vma;
2329 	if (!prev || expand_stack(prev, addr))
2330 		return NULL;
2331 	if (prev->vm_flags & VM_LOCKED)
2332 		populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2333 	return prev;
2334 }
2335 #else
2336 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2337 {
2338 	struct vm_area_struct *prev;
2339 
2340 	address &= PAGE_MASK;
2341 	prev = vma->vm_prev;
2342 	if (prev && prev->vm_end == address) {
2343 		if (!(prev->vm_flags & VM_GROWSDOWN))
2344 			return -ENOMEM;
2345 	}
2346 	return expand_downwards(vma, address);
2347 }
2348 
2349 struct vm_area_struct *
2350 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2351 {
2352 	struct vm_area_struct *vma;
2353 	unsigned long start;
2354 
2355 	addr &= PAGE_MASK;
2356 	vma = find_vma(mm, addr);
2357 	if (!vma)
2358 		return NULL;
2359 	if (vma->vm_start <= addr)
2360 		return vma;
2361 	if (!(vma->vm_flags & VM_GROWSDOWN))
2362 		return NULL;
2363 	start = vma->vm_start;
2364 	if (expand_stack(vma, addr))
2365 		return NULL;
2366 	if (vma->vm_flags & VM_LOCKED)
2367 		populate_vma_page_range(vma, addr, start, NULL);
2368 	return vma;
2369 }
2370 #endif
2371 
2372 EXPORT_SYMBOL_GPL(find_extend_vma);
2373 
2374 /*
2375  * Ok - we have the memory areas we should free on the vma list,
2376  * so release them, and do the vma updates.
2377  *
2378  * Called with the mm semaphore held.
2379  */
2380 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2381 {
2382 	unsigned long nr_accounted = 0;
2383 
2384 	/* Update high watermark before we lower total_vm */
2385 	update_hiwater_vm(mm);
2386 	do {
2387 		long nrpages = vma_pages(vma);
2388 
2389 		if (vma->vm_flags & VM_ACCOUNT)
2390 			nr_accounted += nrpages;
2391 		vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
2392 		vma = remove_vma(vma);
2393 	} while (vma);
2394 	vm_unacct_memory(nr_accounted);
2395 	validate_mm(mm);
2396 }
2397 
2398 /*
2399  * Get rid of page table information in the indicated region.
2400  *
2401  * Called with the mm semaphore held.
2402  */
2403 static void unmap_region(struct mm_struct *mm,
2404 		struct vm_area_struct *vma, struct vm_area_struct *prev,
2405 		unsigned long start, unsigned long end)
2406 {
2407 	struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2408 	struct mmu_gather tlb;
2409 
2410 	lru_add_drain();
2411 	tlb_gather_mmu(&tlb, mm, start, end);
2412 	update_hiwater_rss(mm);
2413 	unmap_vmas(&tlb, vma, start, end);
2414 	free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2415 				 next ? next->vm_start : USER_PGTABLES_CEILING);
2416 	tlb_finish_mmu(&tlb, start, end);
2417 }
2418 
2419 /*
2420  * Create a list of vma's touched by the unmap, removing them from the mm's
2421  * vma list as we go..
2422  */
2423 static void
2424 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2425 	struct vm_area_struct *prev, unsigned long end)
2426 {
2427 	struct vm_area_struct **insertion_point;
2428 	struct vm_area_struct *tail_vma = NULL;
2429 
2430 	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2431 	vma->vm_prev = NULL;
2432 	do {
2433 		vma_rb_erase(vma, &mm->mm_rb);
2434 		mm->map_count--;
2435 		tail_vma = vma;
2436 		vma = vma->vm_next;
2437 	} while (vma && vma->vm_start < end);
2438 	*insertion_point = vma;
2439 	if (vma) {
2440 		vma->vm_prev = prev;
2441 		vma_gap_update(vma);
2442 	} else
2443 		mm->highest_vm_end = prev ? prev->vm_end : 0;
2444 	tail_vma->vm_next = NULL;
2445 
2446 	/* Kill the cache */
2447 	vmacache_invalidate(mm);
2448 }
2449 
2450 /*
2451  * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
2452  * munmap path where it doesn't make sense to fail.
2453  */
2454 static int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2455 	      unsigned long addr, int new_below)
2456 {
2457 	struct vm_area_struct *new;
2458 	int err = -ENOMEM;
2459 
2460 	if (is_vm_hugetlb_page(vma) && (addr &
2461 					~(huge_page_mask(hstate_vma(vma)))))
2462 		return -EINVAL;
2463 
2464 	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2465 	if (!new)
2466 		goto out_err;
2467 
2468 	/* most fields are the same, copy all, and then fixup */
2469 	*new = *vma;
2470 
2471 	INIT_LIST_HEAD(&new->anon_vma_chain);
2472 
2473 	if (new_below)
2474 		new->vm_end = addr;
2475 	else {
2476 		new->vm_start = addr;
2477 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2478 	}
2479 
2480 	err = vma_dup_policy(vma, new);
2481 	if (err)
2482 		goto out_free_vma;
2483 
2484 	err = anon_vma_clone(new, vma);
2485 	if (err)
2486 		goto out_free_mpol;
2487 
2488 	if (new->vm_file)
2489 		get_file(new->vm_file);
2490 
2491 	if (new->vm_ops && new->vm_ops->open)
2492 		new->vm_ops->open(new);
2493 
2494 	if (new_below)
2495 		err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2496 			((addr - new->vm_start) >> PAGE_SHIFT), new);
2497 	else
2498 		err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2499 
2500 	/* Success. */
2501 	if (!err)
2502 		return 0;
2503 
2504 	/* Clean everything up if vma_adjust failed. */
2505 	if (new->vm_ops && new->vm_ops->close)
2506 		new->vm_ops->close(new);
2507 	if (new->vm_file)
2508 		fput(new->vm_file);
2509 	unlink_anon_vmas(new);
2510  out_free_mpol:
2511 	mpol_put(vma_policy(new));
2512  out_free_vma:
2513 	kmem_cache_free(vm_area_cachep, new);
2514  out_err:
2515 	return err;
2516 }
2517 
2518 /*
2519  * Split a vma into two pieces at address 'addr', a new vma is allocated
2520  * either for the first part or the tail.
2521  */
2522 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2523 	      unsigned long addr, int new_below)
2524 {
2525 	if (mm->map_count >= sysctl_max_map_count)
2526 		return -ENOMEM;
2527 
2528 	return __split_vma(mm, vma, addr, new_below);
2529 }
2530 
2531 /* Munmap is split into 2 main parts -- this part which finds
2532  * what needs doing, and the areas themselves, which do the
2533  * work.  This now handles partial unmappings.
2534  * Jeremy Fitzhardinge <jeremy@goop.org>
2535  */
2536 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2537 {
2538 	unsigned long end;
2539 	struct vm_area_struct *vma, *prev, *last;
2540 
2541 	if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2542 		return -EINVAL;
2543 
2544 	len = PAGE_ALIGN(len);
2545 	if (len == 0)
2546 		return -EINVAL;
2547 
2548 	/* Find the first overlapping VMA */
2549 	vma = find_vma(mm, start);
2550 	if (!vma)
2551 		return 0;
2552 	prev = vma->vm_prev;
2553 	/* we have  start < vma->vm_end  */
2554 
2555 	/* if it doesn't overlap, we have nothing.. */
2556 	end = start + len;
2557 	if (vma->vm_start >= end)
2558 		return 0;
2559 
2560 	/*
2561 	 * If we need to split any vma, do it now to save pain later.
2562 	 *
2563 	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2564 	 * unmapped vm_area_struct will remain in use: so lower split_vma
2565 	 * places tmp vma above, and higher split_vma places tmp vma below.
2566 	 */
2567 	if (start > vma->vm_start) {
2568 		int error;
2569 
2570 		/*
2571 		 * Make sure that map_count on return from munmap() will
2572 		 * not exceed its limit; but let map_count go just above
2573 		 * its limit temporarily, to help free resources as expected.
2574 		 */
2575 		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2576 			return -ENOMEM;
2577 
2578 		error = __split_vma(mm, vma, start, 0);
2579 		if (error)
2580 			return error;
2581 		prev = vma;
2582 	}
2583 
2584 	/* Does it split the last one? */
2585 	last = find_vma(mm, end);
2586 	if (last && end > last->vm_start) {
2587 		int error = __split_vma(mm, last, end, 1);
2588 		if (error)
2589 			return error;
2590 	}
2591 	vma = prev ? prev->vm_next : mm->mmap;
2592 
2593 	/*
2594 	 * unlock any mlock()ed ranges before detaching vmas
2595 	 */
2596 	if (mm->locked_vm) {
2597 		struct vm_area_struct *tmp = vma;
2598 		while (tmp && tmp->vm_start < end) {
2599 			if (tmp->vm_flags & VM_LOCKED) {
2600 				mm->locked_vm -= vma_pages(tmp);
2601 				munlock_vma_pages_all(tmp);
2602 			}
2603 			tmp = tmp->vm_next;
2604 		}
2605 	}
2606 
2607 	/*
2608 	 * Remove the vma's, and unmap the actual pages
2609 	 */
2610 	detach_vmas_to_be_unmapped(mm, vma, prev, end);
2611 	unmap_region(mm, vma, prev, start, end);
2612 
2613 	arch_unmap(mm, vma, start, end);
2614 
2615 	/* Fix up all other VM information */
2616 	remove_vma_list(mm, vma);
2617 
2618 	return 0;
2619 }
2620 
2621 int vm_munmap(unsigned long start, size_t len)
2622 {
2623 	int ret;
2624 	struct mm_struct *mm = current->mm;
2625 
2626 	down_write(&mm->mmap_sem);
2627 	ret = do_munmap(mm, start, len);
2628 	up_write(&mm->mmap_sem);
2629 	return ret;
2630 }
2631 EXPORT_SYMBOL(vm_munmap);
2632 
2633 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2634 {
2635 	profile_munmap(addr);
2636 	return vm_munmap(addr, len);
2637 }
2638 
2639 
2640 /*
2641  * Emulation of deprecated remap_file_pages() syscall.
2642  */
2643 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2644 		unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2645 {
2646 
2647 	struct mm_struct *mm = current->mm;
2648 	struct vm_area_struct *vma;
2649 	unsigned long populate = 0;
2650 	unsigned long ret = -EINVAL;
2651 	struct file *file;
2652 
2653 	pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. "
2654 			"See Documentation/vm/remap_file_pages.txt.\n",
2655 			current->comm, current->pid);
2656 
2657 	if (prot)
2658 		return ret;
2659 	start = start & PAGE_MASK;
2660 	size = size & PAGE_MASK;
2661 
2662 	if (start + size <= start)
2663 		return ret;
2664 
2665 	/* Does pgoff wrap? */
2666 	if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2667 		return ret;
2668 
2669 	down_write(&mm->mmap_sem);
2670 	vma = find_vma(mm, start);
2671 
2672 	if (!vma || !(vma->vm_flags & VM_SHARED))
2673 		goto out;
2674 
2675 	if (start < vma->vm_start || start + size > vma->vm_end)
2676 		goto out;
2677 
2678 	if (pgoff == linear_page_index(vma, start)) {
2679 		ret = 0;
2680 		goto out;
2681 	}
2682 
2683 	prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2684 	prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2685 	prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2686 
2687 	flags &= MAP_NONBLOCK;
2688 	flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2689 	if (vma->vm_flags & VM_LOCKED) {
2690 		flags |= MAP_LOCKED;
2691 		/* drop PG_Mlocked flag for over-mapped range */
2692 		munlock_vma_pages_range(vma, start, start + size);
2693 	}
2694 
2695 	file = get_file(vma->vm_file);
2696 	ret = do_mmap_pgoff(vma->vm_file, start, size,
2697 			prot, flags, pgoff, &populate);
2698 	fput(file);
2699 out:
2700 	up_write(&mm->mmap_sem);
2701 	if (populate)
2702 		mm_populate(ret, populate);
2703 	if (!IS_ERR_VALUE(ret))
2704 		ret = 0;
2705 	return ret;
2706 }
2707 
2708 static inline void verify_mm_writelocked(struct mm_struct *mm)
2709 {
2710 #ifdef CONFIG_DEBUG_VM
2711 	if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2712 		WARN_ON(1);
2713 		up_read(&mm->mmap_sem);
2714 	}
2715 #endif
2716 }
2717 
2718 /*
2719  *  this is really a simplified "do_mmap".  it only handles
2720  *  anonymous maps.  eventually we may be able to do some
2721  *  brk-specific accounting here.
2722  */
2723 static unsigned long do_brk(unsigned long addr, unsigned long len)
2724 {
2725 	struct mm_struct *mm = current->mm;
2726 	struct vm_area_struct *vma, *prev;
2727 	unsigned long flags;
2728 	struct rb_node **rb_link, *rb_parent;
2729 	pgoff_t pgoff = addr >> PAGE_SHIFT;
2730 	int error;
2731 
2732 	len = PAGE_ALIGN(len);
2733 	if (!len)
2734 		return addr;
2735 
2736 	flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2737 
2738 	error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2739 	if (error & ~PAGE_MASK)
2740 		return error;
2741 
2742 	error = mlock_future_check(mm, mm->def_flags, len);
2743 	if (error)
2744 		return error;
2745 
2746 	/*
2747 	 * mm->mmap_sem is required to protect against another thread
2748 	 * changing the mappings in case we sleep.
2749 	 */
2750 	verify_mm_writelocked(mm);
2751 
2752 	/*
2753 	 * Clear old maps.  this also does some error checking for us
2754 	 */
2755 	while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
2756 			      &rb_parent)) {
2757 		if (do_munmap(mm, addr, len))
2758 			return -ENOMEM;
2759 	}
2760 
2761 	/* Check against address space limits *after* clearing old maps... */
2762 	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2763 		return -ENOMEM;
2764 
2765 	if (mm->map_count > sysctl_max_map_count)
2766 		return -ENOMEM;
2767 
2768 	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2769 		return -ENOMEM;
2770 
2771 	/* Can we just expand an old private anonymous mapping? */
2772 	vma = vma_merge(mm, prev, addr, addr + len, flags,
2773 			NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
2774 	if (vma)
2775 		goto out;
2776 
2777 	/*
2778 	 * create a vma struct for an anonymous mapping
2779 	 */
2780 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2781 	if (!vma) {
2782 		vm_unacct_memory(len >> PAGE_SHIFT);
2783 		return -ENOMEM;
2784 	}
2785 
2786 	INIT_LIST_HEAD(&vma->anon_vma_chain);
2787 	vma->vm_mm = mm;
2788 	vma->vm_start = addr;
2789 	vma->vm_end = addr + len;
2790 	vma->vm_pgoff = pgoff;
2791 	vma->vm_flags = flags;
2792 	vma->vm_page_prot = vm_get_page_prot(flags);
2793 	vma_link(mm, vma, prev, rb_link, rb_parent);
2794 out:
2795 	perf_event_mmap(vma);
2796 	mm->total_vm += len >> PAGE_SHIFT;
2797 	if (flags & VM_LOCKED)
2798 		mm->locked_vm += (len >> PAGE_SHIFT);
2799 	vma->vm_flags |= VM_SOFTDIRTY;
2800 	return addr;
2801 }
2802 
2803 unsigned long vm_brk(unsigned long addr, unsigned long len)
2804 {
2805 	struct mm_struct *mm = current->mm;
2806 	unsigned long ret;
2807 	bool populate;
2808 
2809 	down_write(&mm->mmap_sem);
2810 	ret = do_brk(addr, len);
2811 	populate = ((mm->def_flags & VM_LOCKED) != 0);
2812 	up_write(&mm->mmap_sem);
2813 	if (populate)
2814 		mm_populate(addr, len);
2815 	return ret;
2816 }
2817 EXPORT_SYMBOL(vm_brk);
2818 
2819 /* Release all mmaps. */
2820 void exit_mmap(struct mm_struct *mm)
2821 {
2822 	struct mmu_gather tlb;
2823 	struct vm_area_struct *vma;
2824 	unsigned long nr_accounted = 0;
2825 
2826 	/* mm's last user has gone, and its about to be pulled down */
2827 	mmu_notifier_release(mm);
2828 
2829 	if (mm->locked_vm) {
2830 		vma = mm->mmap;
2831 		while (vma) {
2832 			if (vma->vm_flags & VM_LOCKED)
2833 				munlock_vma_pages_all(vma);
2834 			vma = vma->vm_next;
2835 		}
2836 	}
2837 
2838 	arch_exit_mmap(mm);
2839 
2840 	vma = mm->mmap;
2841 	if (!vma)	/* Can happen if dup_mmap() received an OOM */
2842 		return;
2843 
2844 	lru_add_drain();
2845 	flush_cache_mm(mm);
2846 	tlb_gather_mmu(&tlb, mm, 0, -1);
2847 	/* update_hiwater_rss(mm) here? but nobody should be looking */
2848 	/* Use -1 here to ensure all VMAs in the mm are unmapped */
2849 	unmap_vmas(&tlb, vma, 0, -1);
2850 
2851 	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2852 	tlb_finish_mmu(&tlb, 0, -1);
2853 
2854 	/*
2855 	 * Walk the list again, actually closing and freeing it,
2856 	 * with preemption enabled, without holding any MM locks.
2857 	 */
2858 	while (vma) {
2859 		if (vma->vm_flags & VM_ACCOUNT)
2860 			nr_accounted += vma_pages(vma);
2861 		vma = remove_vma(vma);
2862 	}
2863 	vm_unacct_memory(nr_accounted);
2864 }
2865 
2866 /* Insert vm structure into process list sorted by address
2867  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2868  * then i_mmap_rwsem is taken here.
2869  */
2870 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2871 {
2872 	struct vm_area_struct *prev;
2873 	struct rb_node **rb_link, *rb_parent;
2874 
2875 	/*
2876 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
2877 	 * until its first write fault, when page's anon_vma and index
2878 	 * are set.  But now set the vm_pgoff it will almost certainly
2879 	 * end up with (unless mremap moves it elsewhere before that
2880 	 * first wfault), so /proc/pid/maps tells a consistent story.
2881 	 *
2882 	 * By setting it to reflect the virtual start address of the
2883 	 * vma, merges and splits can happen in a seamless way, just
2884 	 * using the existing file pgoff checks and manipulations.
2885 	 * Similarly in do_mmap_pgoff and in do_brk.
2886 	 */
2887 	if (!vma->vm_file) {
2888 		BUG_ON(vma->anon_vma);
2889 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2890 	}
2891 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2892 			   &prev, &rb_link, &rb_parent))
2893 		return -ENOMEM;
2894 	if ((vma->vm_flags & VM_ACCOUNT) &&
2895 	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
2896 		return -ENOMEM;
2897 
2898 	vma_link(mm, vma, prev, rb_link, rb_parent);
2899 	return 0;
2900 }
2901 
2902 /*
2903  * Copy the vma structure to a new location in the same mm,
2904  * prior to moving page table entries, to effect an mremap move.
2905  */
2906 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2907 	unsigned long addr, unsigned long len, pgoff_t pgoff,
2908 	bool *need_rmap_locks)
2909 {
2910 	struct vm_area_struct *vma = *vmap;
2911 	unsigned long vma_start = vma->vm_start;
2912 	struct mm_struct *mm = vma->vm_mm;
2913 	struct vm_area_struct *new_vma, *prev;
2914 	struct rb_node **rb_link, *rb_parent;
2915 	bool faulted_in_anon_vma = true;
2916 
2917 	/*
2918 	 * If anonymous vma has not yet been faulted, update new pgoff
2919 	 * to match new location, to increase its chance of merging.
2920 	 */
2921 	if (unlikely(!vma->vm_file && !vma->anon_vma)) {
2922 		pgoff = addr >> PAGE_SHIFT;
2923 		faulted_in_anon_vma = false;
2924 	}
2925 
2926 	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2927 		return NULL;	/* should never get here */
2928 	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2929 			    vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
2930 			    vma->vm_userfaultfd_ctx);
2931 	if (new_vma) {
2932 		/*
2933 		 * Source vma may have been merged into new_vma
2934 		 */
2935 		if (unlikely(vma_start >= new_vma->vm_start &&
2936 			     vma_start < new_vma->vm_end)) {
2937 			/*
2938 			 * The only way we can get a vma_merge with
2939 			 * self during an mremap is if the vma hasn't
2940 			 * been faulted in yet and we were allowed to
2941 			 * reset the dst vma->vm_pgoff to the
2942 			 * destination address of the mremap to allow
2943 			 * the merge to happen. mremap must change the
2944 			 * vm_pgoff linearity between src and dst vmas
2945 			 * (in turn preventing a vma_merge) to be
2946 			 * safe. It is only safe to keep the vm_pgoff
2947 			 * linear if there are no pages mapped yet.
2948 			 */
2949 			VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
2950 			*vmap = vma = new_vma;
2951 		}
2952 		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2953 	} else {
2954 		new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2955 		if (new_vma) {
2956 			*new_vma = *vma;
2957 			new_vma->vm_start = addr;
2958 			new_vma->vm_end = addr + len;
2959 			new_vma->vm_pgoff = pgoff;
2960 			if (vma_dup_policy(vma, new_vma))
2961 				goto out_free_vma;
2962 			INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2963 			if (anon_vma_clone(new_vma, vma))
2964 				goto out_free_mempol;
2965 			if (new_vma->vm_file)
2966 				get_file(new_vma->vm_file);
2967 			if (new_vma->vm_ops && new_vma->vm_ops->open)
2968 				new_vma->vm_ops->open(new_vma);
2969 			vma_link(mm, new_vma, prev, rb_link, rb_parent);
2970 			*need_rmap_locks = false;
2971 		}
2972 	}
2973 	return new_vma;
2974 
2975  out_free_mempol:
2976 	mpol_put(vma_policy(new_vma));
2977  out_free_vma:
2978 	kmem_cache_free(vm_area_cachep, new_vma);
2979 	return NULL;
2980 }
2981 
2982 /*
2983  * Return true if the calling process may expand its vm space by the passed
2984  * number of pages
2985  */
2986 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2987 {
2988 	unsigned long cur = mm->total_vm;	/* pages */
2989 	unsigned long lim;
2990 
2991 	lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2992 
2993 	if (cur + npages > lim)
2994 		return 0;
2995 	return 1;
2996 }
2997 
2998 static int special_mapping_fault(struct vm_area_struct *vma,
2999 				 struct vm_fault *vmf);
3000 
3001 /*
3002  * Having a close hook prevents vma merging regardless of flags.
3003  */
3004 static void special_mapping_close(struct vm_area_struct *vma)
3005 {
3006 }
3007 
3008 static const char *special_mapping_name(struct vm_area_struct *vma)
3009 {
3010 	return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3011 }
3012 
3013 static const struct vm_operations_struct special_mapping_vmops = {
3014 	.close = special_mapping_close,
3015 	.fault = special_mapping_fault,
3016 	.name = special_mapping_name,
3017 };
3018 
3019 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3020 	.close = special_mapping_close,
3021 	.fault = special_mapping_fault,
3022 };
3023 
3024 static int special_mapping_fault(struct vm_area_struct *vma,
3025 				struct vm_fault *vmf)
3026 {
3027 	pgoff_t pgoff;
3028 	struct page **pages;
3029 
3030 	/*
3031 	 * special mappings have no vm_file, and in that case, the mm
3032 	 * uses vm_pgoff internally. So we have to subtract it from here.
3033 	 * We are allowed to do this because we are the mm; do not copy
3034 	 * this code into drivers!
3035 	 */
3036 	pgoff = vmf->pgoff - vma->vm_pgoff;
3037 
3038 	if (vma->vm_ops == &legacy_special_mapping_vmops)
3039 		pages = vma->vm_private_data;
3040 	else
3041 		pages = ((struct vm_special_mapping *)vma->vm_private_data)->
3042 			pages;
3043 
3044 	for (; pgoff && *pages; ++pages)
3045 		pgoff--;
3046 
3047 	if (*pages) {
3048 		struct page *page = *pages;
3049 		get_page(page);
3050 		vmf->page = page;
3051 		return 0;
3052 	}
3053 
3054 	return VM_FAULT_SIGBUS;
3055 }
3056 
3057 static struct vm_area_struct *__install_special_mapping(
3058 	struct mm_struct *mm,
3059 	unsigned long addr, unsigned long len,
3060 	unsigned long vm_flags, const struct vm_operations_struct *ops,
3061 	void *priv)
3062 {
3063 	int ret;
3064 	struct vm_area_struct *vma;
3065 
3066 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
3067 	if (unlikely(vma == NULL))
3068 		return ERR_PTR(-ENOMEM);
3069 
3070 	INIT_LIST_HEAD(&vma->anon_vma_chain);
3071 	vma->vm_mm = mm;
3072 	vma->vm_start = addr;
3073 	vma->vm_end = addr + len;
3074 
3075 	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3076 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3077 
3078 	vma->vm_ops = ops;
3079 	vma->vm_private_data = priv;
3080 
3081 	ret = insert_vm_struct(mm, vma);
3082 	if (ret)
3083 		goto out;
3084 
3085 	mm->total_vm += len >> PAGE_SHIFT;
3086 
3087 	perf_event_mmap(vma);
3088 
3089 	return vma;
3090 
3091 out:
3092 	kmem_cache_free(vm_area_cachep, vma);
3093 	return ERR_PTR(ret);
3094 }
3095 
3096 /*
3097  * Called with mm->mmap_sem held for writing.
3098  * Insert a new vma covering the given region, with the given flags.
3099  * Its pages are supplied by the given array of struct page *.
3100  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3101  * The region past the last page supplied will always produce SIGBUS.
3102  * The array pointer and the pages it points to are assumed to stay alive
3103  * for as long as this mapping might exist.
3104  */
3105 struct vm_area_struct *_install_special_mapping(
3106 	struct mm_struct *mm,
3107 	unsigned long addr, unsigned long len,
3108 	unsigned long vm_flags, const struct vm_special_mapping *spec)
3109 {
3110 	return __install_special_mapping(mm, addr, len, vm_flags,
3111 					 &special_mapping_vmops, (void *)spec);
3112 }
3113 
3114 int install_special_mapping(struct mm_struct *mm,
3115 			    unsigned long addr, unsigned long len,
3116 			    unsigned long vm_flags, struct page **pages)
3117 {
3118 	struct vm_area_struct *vma = __install_special_mapping(
3119 		mm, addr, len, vm_flags, &legacy_special_mapping_vmops,
3120 		(void *)pages);
3121 
3122 	return PTR_ERR_OR_ZERO(vma);
3123 }
3124 
3125 static DEFINE_MUTEX(mm_all_locks_mutex);
3126 
3127 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3128 {
3129 	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3130 		/*
3131 		 * The LSB of head.next can't change from under us
3132 		 * because we hold the mm_all_locks_mutex.
3133 		 */
3134 		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3135 		/*
3136 		 * We can safely modify head.next after taking the
3137 		 * anon_vma->root->rwsem. If some other vma in this mm shares
3138 		 * the same anon_vma we won't take it again.
3139 		 *
3140 		 * No need of atomic instructions here, head.next
3141 		 * can't change from under us thanks to the
3142 		 * anon_vma->root->rwsem.
3143 		 */
3144 		if (__test_and_set_bit(0, (unsigned long *)
3145 				       &anon_vma->root->rb_root.rb_node))
3146 			BUG();
3147 	}
3148 }
3149 
3150 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3151 {
3152 	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3153 		/*
3154 		 * AS_MM_ALL_LOCKS can't change from under us because
3155 		 * we hold the mm_all_locks_mutex.
3156 		 *
3157 		 * Operations on ->flags have to be atomic because
3158 		 * even if AS_MM_ALL_LOCKS is stable thanks to the
3159 		 * mm_all_locks_mutex, there may be other cpus
3160 		 * changing other bitflags in parallel to us.
3161 		 */
3162 		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3163 			BUG();
3164 		down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3165 	}
3166 }
3167 
3168 /*
3169  * This operation locks against the VM for all pte/vma/mm related
3170  * operations that could ever happen on a certain mm. This includes
3171  * vmtruncate, try_to_unmap, and all page faults.
3172  *
3173  * The caller must take the mmap_sem in write mode before calling
3174  * mm_take_all_locks(). The caller isn't allowed to release the
3175  * mmap_sem until mm_drop_all_locks() returns.
3176  *
3177  * mmap_sem in write mode is required in order to block all operations
3178  * that could modify pagetables and free pages without need of
3179  * altering the vma layout. It's also needed in write mode to avoid new
3180  * anon_vmas to be associated with existing vmas.
3181  *
3182  * A single task can't take more than one mm_take_all_locks() in a row
3183  * or it would deadlock.
3184  *
3185  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3186  * mapping->flags avoid to take the same lock twice, if more than one
3187  * vma in this mm is backed by the same anon_vma or address_space.
3188  *
3189  * We can take all the locks in random order because the VM code
3190  * taking i_mmap_rwsem or anon_vma->rwsem outside the mmap_sem never
3191  * takes more than one of them in a row. Secondly we're protected
3192  * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
3193  *
3194  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3195  * that may have to take thousand of locks.
3196  *
3197  * mm_take_all_locks() can fail if it's interrupted by signals.
3198  */
3199 int mm_take_all_locks(struct mm_struct *mm)
3200 {
3201 	struct vm_area_struct *vma;
3202 	struct anon_vma_chain *avc;
3203 
3204 	BUG_ON(down_read_trylock(&mm->mmap_sem));
3205 
3206 	mutex_lock(&mm_all_locks_mutex);
3207 
3208 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3209 		if (signal_pending(current))
3210 			goto out_unlock;
3211 		if (vma->vm_file && vma->vm_file->f_mapping)
3212 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3213 	}
3214 
3215 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3216 		if (signal_pending(current))
3217 			goto out_unlock;
3218 		if (vma->anon_vma)
3219 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3220 				vm_lock_anon_vma(mm, avc->anon_vma);
3221 	}
3222 
3223 	return 0;
3224 
3225 out_unlock:
3226 	mm_drop_all_locks(mm);
3227 	return -EINTR;
3228 }
3229 
3230 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3231 {
3232 	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3233 		/*
3234 		 * The LSB of head.next can't change to 0 from under
3235 		 * us because we hold the mm_all_locks_mutex.
3236 		 *
3237 		 * We must however clear the bitflag before unlocking
3238 		 * the vma so the users using the anon_vma->rb_root will
3239 		 * never see our bitflag.
3240 		 *
3241 		 * No need of atomic instructions here, head.next
3242 		 * can't change from under us until we release the
3243 		 * anon_vma->root->rwsem.
3244 		 */
3245 		if (!__test_and_clear_bit(0, (unsigned long *)
3246 					  &anon_vma->root->rb_root.rb_node))
3247 			BUG();
3248 		anon_vma_unlock_write(anon_vma);
3249 	}
3250 }
3251 
3252 static void vm_unlock_mapping(struct address_space *mapping)
3253 {
3254 	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3255 		/*
3256 		 * AS_MM_ALL_LOCKS can't change to 0 from under us
3257 		 * because we hold the mm_all_locks_mutex.
3258 		 */
3259 		i_mmap_unlock_write(mapping);
3260 		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3261 					&mapping->flags))
3262 			BUG();
3263 	}
3264 }
3265 
3266 /*
3267  * The mmap_sem cannot be released by the caller until
3268  * mm_drop_all_locks() returns.
3269  */
3270 void mm_drop_all_locks(struct mm_struct *mm)
3271 {
3272 	struct vm_area_struct *vma;
3273 	struct anon_vma_chain *avc;
3274 
3275 	BUG_ON(down_read_trylock(&mm->mmap_sem));
3276 	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3277 
3278 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3279 		if (vma->anon_vma)
3280 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3281 				vm_unlock_anon_vma(avc->anon_vma);
3282 		if (vma->vm_file && vma->vm_file->f_mapping)
3283 			vm_unlock_mapping(vma->vm_file->f_mapping);
3284 	}
3285 
3286 	mutex_unlock(&mm_all_locks_mutex);
3287 }
3288 
3289 /*
3290  * initialise the VMA slab
3291  */
3292 void __init mmap_init(void)
3293 {
3294 	int ret;
3295 
3296 	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3297 	VM_BUG_ON(ret);
3298 }
3299 
3300 /*
3301  * Initialise sysctl_user_reserve_kbytes.
3302  *
3303  * This is intended to prevent a user from starting a single memory hogging
3304  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3305  * mode.
3306  *
3307  * The default value is min(3% of free memory, 128MB)
3308  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3309  */
3310 static int init_user_reserve(void)
3311 {
3312 	unsigned long free_kbytes;
3313 
3314 	free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3315 
3316 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3317 	return 0;
3318 }
3319 subsys_initcall(init_user_reserve);
3320 
3321 /*
3322  * Initialise sysctl_admin_reserve_kbytes.
3323  *
3324  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3325  * to log in and kill a memory hogging process.
3326  *
3327  * Systems with more than 256MB will reserve 8MB, enough to recover
3328  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3329  * only reserve 3% of free pages by default.
3330  */
3331 static int init_admin_reserve(void)
3332 {
3333 	unsigned long free_kbytes;
3334 
3335 	free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3336 
3337 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3338 	return 0;
3339 }
3340 subsys_initcall(init_admin_reserve);
3341 
3342 /*
3343  * Reinititalise user and admin reserves if memory is added or removed.
3344  *
3345  * The default user reserve max is 128MB, and the default max for the
3346  * admin reserve is 8MB. These are usually, but not always, enough to
3347  * enable recovery from a memory hogging process using login/sshd, a shell,
3348  * and tools like top. It may make sense to increase or even disable the
3349  * reserve depending on the existence of swap or variations in the recovery
3350  * tools. So, the admin may have changed them.
3351  *
3352  * If memory is added and the reserves have been eliminated or increased above
3353  * the default max, then we'll trust the admin.
3354  *
3355  * If memory is removed and there isn't enough free memory, then we
3356  * need to reset the reserves.
3357  *
3358  * Otherwise keep the reserve set by the admin.
3359  */
3360 static int reserve_mem_notifier(struct notifier_block *nb,
3361 			     unsigned long action, void *data)
3362 {
3363 	unsigned long tmp, free_kbytes;
3364 
3365 	switch (action) {
3366 	case MEM_ONLINE:
3367 		/* Default max is 128MB. Leave alone if modified by operator. */
3368 		tmp = sysctl_user_reserve_kbytes;
3369 		if (0 < tmp && tmp < (1UL << 17))
3370 			init_user_reserve();
3371 
3372 		/* Default max is 8MB.  Leave alone if modified by operator. */
3373 		tmp = sysctl_admin_reserve_kbytes;
3374 		if (0 < tmp && tmp < (1UL << 13))
3375 			init_admin_reserve();
3376 
3377 		break;
3378 	case MEM_OFFLINE:
3379 		free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3380 
3381 		if (sysctl_user_reserve_kbytes > free_kbytes) {
3382 			init_user_reserve();
3383 			pr_info("vm.user_reserve_kbytes reset to %lu\n",
3384 				sysctl_user_reserve_kbytes);
3385 		}
3386 
3387 		if (sysctl_admin_reserve_kbytes > free_kbytes) {
3388 			init_admin_reserve();
3389 			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3390 				sysctl_admin_reserve_kbytes);
3391 		}
3392 		break;
3393 	default:
3394 		break;
3395 	}
3396 	return NOTIFY_OK;
3397 }
3398 
3399 static struct notifier_block reserve_mem_nb = {
3400 	.notifier_call = reserve_mem_notifier,
3401 };
3402 
3403 static int __meminit init_reserve_notifier(void)
3404 {
3405 	if (register_hotmemory_notifier(&reserve_mem_nb))
3406 		pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3407 
3408 	return 0;
3409 }
3410 subsys_initcall(init_reserve_notifier);
3411