1 /* 2 * mm/mmap.c 3 * 4 * Written by obz. 5 * 6 * Address space accounting code <alan@redhat.com> 7 */ 8 9 #include <linux/slab.h> 10 #include <linux/mm.h> 11 #include <linux/shm.h> 12 #include <linux/mman.h> 13 #include <linux/pagemap.h> 14 #include <linux/swap.h> 15 #include <linux/syscalls.h> 16 #include <linux/capability.h> 17 #include <linux/init.h> 18 #include <linux/file.h> 19 #include <linux/fs.h> 20 #include <linux/personality.h> 21 #include <linux/security.h> 22 #include <linux/hugetlb.h> 23 #include <linux/profile.h> 24 #include <linux/module.h> 25 #include <linux/mount.h> 26 #include <linux/mempolicy.h> 27 #include <linux/rmap.h> 28 29 #include <asm/uaccess.h> 30 #include <asm/cacheflush.h> 31 #include <asm/tlb.h> 32 33 #ifndef arch_mmap_check 34 #define arch_mmap_check(addr, len, flags) (0) 35 #endif 36 37 static void unmap_region(struct mm_struct *mm, 38 struct vm_area_struct *vma, struct vm_area_struct *prev, 39 unsigned long start, unsigned long end); 40 41 /* 42 * WARNING: the debugging will use recursive algorithms so never enable this 43 * unless you know what you are doing. 44 */ 45 #undef DEBUG_MM_RB 46 47 /* description of effects of mapping type and prot in current implementation. 48 * this is due to the limited x86 page protection hardware. The expected 49 * behavior is in parens: 50 * 51 * map_type prot 52 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC 53 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes 54 * w: (no) no w: (no) no w: (yes) yes w: (no) no 55 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 56 * 57 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes 58 * w: (no) no w: (no) no w: (copy) copy w: (no) no 59 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 60 * 61 */ 62 pgprot_t protection_map[16] = { 63 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111, 64 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111 65 }; 66 67 pgprot_t vm_get_page_prot(unsigned long vm_flags) 68 { 69 return protection_map[vm_flags & 70 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]; 71 } 72 EXPORT_SYMBOL(vm_get_page_prot); 73 74 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */ 75 int sysctl_overcommit_ratio = 50; /* default is 50% */ 76 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT; 77 atomic_t vm_committed_space = ATOMIC_INIT(0); 78 79 /* 80 * Check that a process has enough memory to allocate a new virtual 81 * mapping. 0 means there is enough memory for the allocation to 82 * succeed and -ENOMEM implies there is not. 83 * 84 * We currently support three overcommit policies, which are set via the 85 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting 86 * 87 * Strict overcommit modes added 2002 Feb 26 by Alan Cox. 88 * Additional code 2002 Jul 20 by Robert Love. 89 * 90 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise. 91 * 92 * Note this is a helper function intended to be used by LSMs which 93 * wish to use this logic. 94 */ 95 int __vm_enough_memory(long pages, int cap_sys_admin) 96 { 97 unsigned long free, allowed; 98 99 vm_acct_memory(pages); 100 101 /* 102 * Sometimes we want to use more memory than we have 103 */ 104 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS) 105 return 0; 106 107 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) { 108 unsigned long n; 109 110 free = global_page_state(NR_FILE_PAGES); 111 free += nr_swap_pages; 112 113 /* 114 * Any slabs which are created with the 115 * SLAB_RECLAIM_ACCOUNT flag claim to have contents 116 * which are reclaimable, under pressure. The dentry 117 * cache and most inode caches should fall into this 118 */ 119 free += global_page_state(NR_SLAB_RECLAIMABLE); 120 121 /* 122 * Leave the last 3% for root 123 */ 124 if (!cap_sys_admin) 125 free -= free / 32; 126 127 if (free > pages) 128 return 0; 129 130 /* 131 * nr_free_pages() is very expensive on large systems, 132 * only call if we're about to fail. 133 */ 134 n = nr_free_pages(); 135 136 /* 137 * Leave reserved pages. The pages are not for anonymous pages. 138 */ 139 if (n <= totalreserve_pages) 140 goto error; 141 else 142 n -= totalreserve_pages; 143 144 /* 145 * Leave the last 3% for root 146 */ 147 if (!cap_sys_admin) 148 n -= n / 32; 149 free += n; 150 151 if (free > pages) 152 return 0; 153 154 goto error; 155 } 156 157 allowed = (totalram_pages - hugetlb_total_pages()) 158 * sysctl_overcommit_ratio / 100; 159 /* 160 * Leave the last 3% for root 161 */ 162 if (!cap_sys_admin) 163 allowed -= allowed / 32; 164 allowed += total_swap_pages; 165 166 /* Don't let a single process grow too big: 167 leave 3% of the size of this process for other processes */ 168 allowed -= current->mm->total_vm / 32; 169 170 /* 171 * cast `allowed' as a signed long because vm_committed_space 172 * sometimes has a negative value 173 */ 174 if (atomic_read(&vm_committed_space) < (long)allowed) 175 return 0; 176 error: 177 vm_unacct_memory(pages); 178 179 return -ENOMEM; 180 } 181 182 EXPORT_SYMBOL(__vm_enough_memory); 183 184 /* 185 * Requires inode->i_mapping->i_mmap_lock 186 */ 187 static void __remove_shared_vm_struct(struct vm_area_struct *vma, 188 struct file *file, struct address_space *mapping) 189 { 190 if (vma->vm_flags & VM_DENYWRITE) 191 atomic_inc(&file->f_path.dentry->d_inode->i_writecount); 192 if (vma->vm_flags & VM_SHARED) 193 mapping->i_mmap_writable--; 194 195 flush_dcache_mmap_lock(mapping); 196 if (unlikely(vma->vm_flags & VM_NONLINEAR)) 197 list_del_init(&vma->shared.vm_set.list); 198 else 199 vma_prio_tree_remove(vma, &mapping->i_mmap); 200 flush_dcache_mmap_unlock(mapping); 201 } 202 203 /* 204 * Unlink a file-based vm structure from its prio_tree, to hide 205 * vma from rmap and vmtruncate before freeing its page tables. 206 */ 207 void unlink_file_vma(struct vm_area_struct *vma) 208 { 209 struct file *file = vma->vm_file; 210 211 if (file) { 212 struct address_space *mapping = file->f_mapping; 213 spin_lock(&mapping->i_mmap_lock); 214 __remove_shared_vm_struct(vma, file, mapping); 215 spin_unlock(&mapping->i_mmap_lock); 216 } 217 } 218 219 /* 220 * Close a vm structure and free it, returning the next. 221 */ 222 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma) 223 { 224 struct vm_area_struct *next = vma->vm_next; 225 226 might_sleep(); 227 if (vma->vm_ops && vma->vm_ops->close) 228 vma->vm_ops->close(vma); 229 if (vma->vm_file) 230 fput(vma->vm_file); 231 mpol_free(vma_policy(vma)); 232 kmem_cache_free(vm_area_cachep, vma); 233 return next; 234 } 235 236 asmlinkage unsigned long sys_brk(unsigned long brk) 237 { 238 unsigned long rlim, retval; 239 unsigned long newbrk, oldbrk; 240 struct mm_struct *mm = current->mm; 241 242 down_write(&mm->mmap_sem); 243 244 if (brk < mm->end_code) 245 goto out; 246 247 /* 248 * Check against rlimit here. If this check is done later after the test 249 * of oldbrk with newbrk then it can escape the test and let the data 250 * segment grow beyond its set limit the in case where the limit is 251 * not page aligned -Ram Gupta 252 */ 253 rlim = current->signal->rlim[RLIMIT_DATA].rlim_cur; 254 if (rlim < RLIM_INFINITY && brk - mm->start_data > rlim) 255 goto out; 256 257 newbrk = PAGE_ALIGN(brk); 258 oldbrk = PAGE_ALIGN(mm->brk); 259 if (oldbrk == newbrk) 260 goto set_brk; 261 262 /* Always allow shrinking brk. */ 263 if (brk <= mm->brk) { 264 if (!do_munmap(mm, newbrk, oldbrk-newbrk)) 265 goto set_brk; 266 goto out; 267 } 268 269 /* Check against existing mmap mappings. */ 270 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE)) 271 goto out; 272 273 /* Ok, looks good - let it rip. */ 274 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk) 275 goto out; 276 set_brk: 277 mm->brk = brk; 278 out: 279 retval = mm->brk; 280 up_write(&mm->mmap_sem); 281 return retval; 282 } 283 284 #ifdef DEBUG_MM_RB 285 static int browse_rb(struct rb_root *root) 286 { 287 int i = 0, j; 288 struct rb_node *nd, *pn = NULL; 289 unsigned long prev = 0, pend = 0; 290 291 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 292 struct vm_area_struct *vma; 293 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 294 if (vma->vm_start < prev) 295 printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1; 296 if (vma->vm_start < pend) 297 printk("vm_start %lx pend %lx\n", vma->vm_start, pend); 298 if (vma->vm_start > vma->vm_end) 299 printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start); 300 i++; 301 pn = nd; 302 prev = vma->vm_start; 303 pend = vma->vm_end; 304 } 305 j = 0; 306 for (nd = pn; nd; nd = rb_prev(nd)) { 307 j++; 308 } 309 if (i != j) 310 printk("backwards %d, forwards %d\n", j, i), i = 0; 311 return i; 312 } 313 314 void validate_mm(struct mm_struct *mm) 315 { 316 int bug = 0; 317 int i = 0; 318 struct vm_area_struct *tmp = mm->mmap; 319 while (tmp) { 320 tmp = tmp->vm_next; 321 i++; 322 } 323 if (i != mm->map_count) 324 printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1; 325 i = browse_rb(&mm->mm_rb); 326 if (i != mm->map_count) 327 printk("map_count %d rb %d\n", mm->map_count, i), bug = 1; 328 BUG_ON(bug); 329 } 330 #else 331 #define validate_mm(mm) do { } while (0) 332 #endif 333 334 static struct vm_area_struct * 335 find_vma_prepare(struct mm_struct *mm, unsigned long addr, 336 struct vm_area_struct **pprev, struct rb_node ***rb_link, 337 struct rb_node ** rb_parent) 338 { 339 struct vm_area_struct * vma; 340 struct rb_node ** __rb_link, * __rb_parent, * rb_prev; 341 342 __rb_link = &mm->mm_rb.rb_node; 343 rb_prev = __rb_parent = NULL; 344 vma = NULL; 345 346 while (*__rb_link) { 347 struct vm_area_struct *vma_tmp; 348 349 __rb_parent = *__rb_link; 350 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb); 351 352 if (vma_tmp->vm_end > addr) { 353 vma = vma_tmp; 354 if (vma_tmp->vm_start <= addr) 355 return vma; 356 __rb_link = &__rb_parent->rb_left; 357 } else { 358 rb_prev = __rb_parent; 359 __rb_link = &__rb_parent->rb_right; 360 } 361 } 362 363 *pprev = NULL; 364 if (rb_prev) 365 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); 366 *rb_link = __rb_link; 367 *rb_parent = __rb_parent; 368 return vma; 369 } 370 371 static inline void 372 __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma, 373 struct vm_area_struct *prev, struct rb_node *rb_parent) 374 { 375 if (prev) { 376 vma->vm_next = prev->vm_next; 377 prev->vm_next = vma; 378 } else { 379 mm->mmap = vma; 380 if (rb_parent) 381 vma->vm_next = rb_entry(rb_parent, 382 struct vm_area_struct, vm_rb); 383 else 384 vma->vm_next = NULL; 385 } 386 } 387 388 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma, 389 struct rb_node **rb_link, struct rb_node *rb_parent) 390 { 391 rb_link_node(&vma->vm_rb, rb_parent, rb_link); 392 rb_insert_color(&vma->vm_rb, &mm->mm_rb); 393 } 394 395 static inline void __vma_link_file(struct vm_area_struct *vma) 396 { 397 struct file * file; 398 399 file = vma->vm_file; 400 if (file) { 401 struct address_space *mapping = file->f_mapping; 402 403 if (vma->vm_flags & VM_DENYWRITE) 404 atomic_dec(&file->f_path.dentry->d_inode->i_writecount); 405 if (vma->vm_flags & VM_SHARED) 406 mapping->i_mmap_writable++; 407 408 flush_dcache_mmap_lock(mapping); 409 if (unlikely(vma->vm_flags & VM_NONLINEAR)) 410 vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear); 411 else 412 vma_prio_tree_insert(vma, &mapping->i_mmap); 413 flush_dcache_mmap_unlock(mapping); 414 } 415 } 416 417 static void 418 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 419 struct vm_area_struct *prev, struct rb_node **rb_link, 420 struct rb_node *rb_parent) 421 { 422 __vma_link_list(mm, vma, prev, rb_parent); 423 __vma_link_rb(mm, vma, rb_link, rb_parent); 424 __anon_vma_link(vma); 425 } 426 427 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 428 struct vm_area_struct *prev, struct rb_node **rb_link, 429 struct rb_node *rb_parent) 430 { 431 struct address_space *mapping = NULL; 432 433 if (vma->vm_file) 434 mapping = vma->vm_file->f_mapping; 435 436 if (mapping) { 437 spin_lock(&mapping->i_mmap_lock); 438 vma->vm_truncate_count = mapping->truncate_count; 439 } 440 anon_vma_lock(vma); 441 442 __vma_link(mm, vma, prev, rb_link, rb_parent); 443 __vma_link_file(vma); 444 445 anon_vma_unlock(vma); 446 if (mapping) 447 spin_unlock(&mapping->i_mmap_lock); 448 449 mm->map_count++; 450 validate_mm(mm); 451 } 452 453 /* 454 * Helper for vma_adjust in the split_vma insert case: 455 * insert vm structure into list and rbtree and anon_vma, 456 * but it has already been inserted into prio_tree earlier. 457 */ 458 static void 459 __insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma) 460 { 461 struct vm_area_struct * __vma, * prev; 462 struct rb_node ** rb_link, * rb_parent; 463 464 __vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent); 465 BUG_ON(__vma && __vma->vm_start < vma->vm_end); 466 __vma_link(mm, vma, prev, rb_link, rb_parent); 467 mm->map_count++; 468 } 469 470 static inline void 471 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma, 472 struct vm_area_struct *prev) 473 { 474 prev->vm_next = vma->vm_next; 475 rb_erase(&vma->vm_rb, &mm->mm_rb); 476 if (mm->mmap_cache == vma) 477 mm->mmap_cache = prev; 478 } 479 480 /* 481 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that 482 * is already present in an i_mmap tree without adjusting the tree. 483 * The following helper function should be used when such adjustments 484 * are necessary. The "insert" vma (if any) is to be inserted 485 * before we drop the necessary locks. 486 */ 487 void vma_adjust(struct vm_area_struct *vma, unsigned long start, 488 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 489 { 490 struct mm_struct *mm = vma->vm_mm; 491 struct vm_area_struct *next = vma->vm_next; 492 struct vm_area_struct *importer = NULL; 493 struct address_space *mapping = NULL; 494 struct prio_tree_root *root = NULL; 495 struct file *file = vma->vm_file; 496 struct anon_vma *anon_vma = NULL; 497 long adjust_next = 0; 498 int remove_next = 0; 499 500 if (next && !insert) { 501 if (end >= next->vm_end) { 502 /* 503 * vma expands, overlapping all the next, and 504 * perhaps the one after too (mprotect case 6). 505 */ 506 again: remove_next = 1 + (end > next->vm_end); 507 end = next->vm_end; 508 anon_vma = next->anon_vma; 509 importer = vma; 510 } else if (end > next->vm_start) { 511 /* 512 * vma expands, overlapping part of the next: 513 * mprotect case 5 shifting the boundary up. 514 */ 515 adjust_next = (end - next->vm_start) >> PAGE_SHIFT; 516 anon_vma = next->anon_vma; 517 importer = vma; 518 } else if (end < vma->vm_end) { 519 /* 520 * vma shrinks, and !insert tells it's not 521 * split_vma inserting another: so it must be 522 * mprotect case 4 shifting the boundary down. 523 */ 524 adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT); 525 anon_vma = next->anon_vma; 526 importer = next; 527 } 528 } 529 530 if (file) { 531 mapping = file->f_mapping; 532 if (!(vma->vm_flags & VM_NONLINEAR)) 533 root = &mapping->i_mmap; 534 spin_lock(&mapping->i_mmap_lock); 535 if (importer && 536 vma->vm_truncate_count != next->vm_truncate_count) { 537 /* 538 * unmap_mapping_range might be in progress: 539 * ensure that the expanding vma is rescanned. 540 */ 541 importer->vm_truncate_count = 0; 542 } 543 if (insert) { 544 insert->vm_truncate_count = vma->vm_truncate_count; 545 /* 546 * Put into prio_tree now, so instantiated pages 547 * are visible to arm/parisc __flush_dcache_page 548 * throughout; but we cannot insert into address 549 * space until vma start or end is updated. 550 */ 551 __vma_link_file(insert); 552 } 553 } 554 555 /* 556 * When changing only vma->vm_end, we don't really need 557 * anon_vma lock: but is that case worth optimizing out? 558 */ 559 if (vma->anon_vma) 560 anon_vma = vma->anon_vma; 561 if (anon_vma) { 562 spin_lock(&anon_vma->lock); 563 /* 564 * Easily overlooked: when mprotect shifts the boundary, 565 * make sure the expanding vma has anon_vma set if the 566 * shrinking vma had, to cover any anon pages imported. 567 */ 568 if (importer && !importer->anon_vma) { 569 importer->anon_vma = anon_vma; 570 __anon_vma_link(importer); 571 } 572 } 573 574 if (root) { 575 flush_dcache_mmap_lock(mapping); 576 vma_prio_tree_remove(vma, root); 577 if (adjust_next) 578 vma_prio_tree_remove(next, root); 579 } 580 581 vma->vm_start = start; 582 vma->vm_end = end; 583 vma->vm_pgoff = pgoff; 584 if (adjust_next) { 585 next->vm_start += adjust_next << PAGE_SHIFT; 586 next->vm_pgoff += adjust_next; 587 } 588 589 if (root) { 590 if (adjust_next) 591 vma_prio_tree_insert(next, root); 592 vma_prio_tree_insert(vma, root); 593 flush_dcache_mmap_unlock(mapping); 594 } 595 596 if (remove_next) { 597 /* 598 * vma_merge has merged next into vma, and needs 599 * us to remove next before dropping the locks. 600 */ 601 __vma_unlink(mm, next, vma); 602 if (file) 603 __remove_shared_vm_struct(next, file, mapping); 604 if (next->anon_vma) 605 __anon_vma_merge(vma, next); 606 } else if (insert) { 607 /* 608 * split_vma has split insert from vma, and needs 609 * us to insert it before dropping the locks 610 * (it may either follow vma or precede it). 611 */ 612 __insert_vm_struct(mm, insert); 613 } 614 615 if (anon_vma) 616 spin_unlock(&anon_vma->lock); 617 if (mapping) 618 spin_unlock(&mapping->i_mmap_lock); 619 620 if (remove_next) { 621 if (file) 622 fput(file); 623 mm->map_count--; 624 mpol_free(vma_policy(next)); 625 kmem_cache_free(vm_area_cachep, next); 626 /* 627 * In mprotect's case 6 (see comments on vma_merge), 628 * we must remove another next too. It would clutter 629 * up the code too much to do both in one go. 630 */ 631 if (remove_next == 2) { 632 next = vma->vm_next; 633 goto again; 634 } 635 } 636 637 validate_mm(mm); 638 } 639 640 /* 641 * If the vma has a ->close operation then the driver probably needs to release 642 * per-vma resources, so we don't attempt to merge those. 643 */ 644 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP) 645 646 static inline int is_mergeable_vma(struct vm_area_struct *vma, 647 struct file *file, unsigned long vm_flags) 648 { 649 if (vma->vm_flags != vm_flags) 650 return 0; 651 if (vma->vm_file != file) 652 return 0; 653 if (vma->vm_ops && vma->vm_ops->close) 654 return 0; 655 return 1; 656 } 657 658 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1, 659 struct anon_vma *anon_vma2) 660 { 661 return !anon_vma1 || !anon_vma2 || (anon_vma1 == anon_vma2); 662 } 663 664 /* 665 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 666 * in front of (at a lower virtual address and file offset than) the vma. 667 * 668 * We cannot merge two vmas if they have differently assigned (non-NULL) 669 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 670 * 671 * We don't check here for the merged mmap wrapping around the end of pagecache 672 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which 673 * wrap, nor mmaps which cover the final page at index -1UL. 674 */ 675 static int 676 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags, 677 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff) 678 { 679 if (is_mergeable_vma(vma, file, vm_flags) && 680 is_mergeable_anon_vma(anon_vma, vma->anon_vma)) { 681 if (vma->vm_pgoff == vm_pgoff) 682 return 1; 683 } 684 return 0; 685 } 686 687 /* 688 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 689 * beyond (at a higher virtual address and file offset than) the vma. 690 * 691 * We cannot merge two vmas if they have differently assigned (non-NULL) 692 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 693 */ 694 static int 695 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags, 696 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff) 697 { 698 if (is_mergeable_vma(vma, file, vm_flags) && 699 is_mergeable_anon_vma(anon_vma, vma->anon_vma)) { 700 pgoff_t vm_pglen; 701 vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 702 if (vma->vm_pgoff + vm_pglen == vm_pgoff) 703 return 1; 704 } 705 return 0; 706 } 707 708 /* 709 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out 710 * whether that can be merged with its predecessor or its successor. 711 * Or both (it neatly fills a hole). 712 * 713 * In most cases - when called for mmap, brk or mremap - [addr,end) is 714 * certain not to be mapped by the time vma_merge is called; but when 715 * called for mprotect, it is certain to be already mapped (either at 716 * an offset within prev, or at the start of next), and the flags of 717 * this area are about to be changed to vm_flags - and the no-change 718 * case has already been eliminated. 719 * 720 * The following mprotect cases have to be considered, where AAAA is 721 * the area passed down from mprotect_fixup, never extending beyond one 722 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after: 723 * 724 * AAAA AAAA AAAA AAAA 725 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX 726 * cannot merge might become might become might become 727 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or 728 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or 729 * mremap move: PPPPNNNNNNNN 8 730 * AAAA 731 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN 732 * might become case 1 below case 2 below case 3 below 733 * 734 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX: 735 * mprotect_fixup updates vm_flags & vm_page_prot on successful return. 736 */ 737 struct vm_area_struct *vma_merge(struct mm_struct *mm, 738 struct vm_area_struct *prev, unsigned long addr, 739 unsigned long end, unsigned long vm_flags, 740 struct anon_vma *anon_vma, struct file *file, 741 pgoff_t pgoff, struct mempolicy *policy) 742 { 743 pgoff_t pglen = (end - addr) >> PAGE_SHIFT; 744 struct vm_area_struct *area, *next; 745 746 /* 747 * We later require that vma->vm_flags == vm_flags, 748 * so this tests vma->vm_flags & VM_SPECIAL, too. 749 */ 750 if (vm_flags & VM_SPECIAL) 751 return NULL; 752 753 if (prev) 754 next = prev->vm_next; 755 else 756 next = mm->mmap; 757 area = next; 758 if (next && next->vm_end == end) /* cases 6, 7, 8 */ 759 next = next->vm_next; 760 761 /* 762 * Can it merge with the predecessor? 763 */ 764 if (prev && prev->vm_end == addr && 765 mpol_equal(vma_policy(prev), policy) && 766 can_vma_merge_after(prev, vm_flags, 767 anon_vma, file, pgoff)) { 768 /* 769 * OK, it can. Can we now merge in the successor as well? 770 */ 771 if (next && end == next->vm_start && 772 mpol_equal(policy, vma_policy(next)) && 773 can_vma_merge_before(next, vm_flags, 774 anon_vma, file, pgoff+pglen) && 775 is_mergeable_anon_vma(prev->anon_vma, 776 next->anon_vma)) { 777 /* cases 1, 6 */ 778 vma_adjust(prev, prev->vm_start, 779 next->vm_end, prev->vm_pgoff, NULL); 780 } else /* cases 2, 5, 7 */ 781 vma_adjust(prev, prev->vm_start, 782 end, prev->vm_pgoff, NULL); 783 return prev; 784 } 785 786 /* 787 * Can this new request be merged in front of next? 788 */ 789 if (next && end == next->vm_start && 790 mpol_equal(policy, vma_policy(next)) && 791 can_vma_merge_before(next, vm_flags, 792 anon_vma, file, pgoff+pglen)) { 793 if (prev && addr < prev->vm_end) /* case 4 */ 794 vma_adjust(prev, prev->vm_start, 795 addr, prev->vm_pgoff, NULL); 796 else /* cases 3, 8 */ 797 vma_adjust(area, addr, next->vm_end, 798 next->vm_pgoff - pglen, NULL); 799 return area; 800 } 801 802 return NULL; 803 } 804 805 /* 806 * find_mergeable_anon_vma is used by anon_vma_prepare, to check 807 * neighbouring vmas for a suitable anon_vma, before it goes off 808 * to allocate a new anon_vma. It checks because a repetitive 809 * sequence of mprotects and faults may otherwise lead to distinct 810 * anon_vmas being allocated, preventing vma merge in subsequent 811 * mprotect. 812 */ 813 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) 814 { 815 struct vm_area_struct *near; 816 unsigned long vm_flags; 817 818 near = vma->vm_next; 819 if (!near) 820 goto try_prev; 821 822 /* 823 * Since only mprotect tries to remerge vmas, match flags 824 * which might be mprotected into each other later on. 825 * Neither mlock nor madvise tries to remerge at present, 826 * so leave their flags as obstructing a merge. 827 */ 828 vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC); 829 vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC); 830 831 if (near->anon_vma && vma->vm_end == near->vm_start && 832 mpol_equal(vma_policy(vma), vma_policy(near)) && 833 can_vma_merge_before(near, vm_flags, 834 NULL, vma->vm_file, vma->vm_pgoff + 835 ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT))) 836 return near->anon_vma; 837 try_prev: 838 /* 839 * It is potentially slow to have to call find_vma_prev here. 840 * But it's only on the first write fault on the vma, not 841 * every time, and we could devise a way to avoid it later 842 * (e.g. stash info in next's anon_vma_node when assigning 843 * an anon_vma, or when trying vma_merge). Another time. 844 */ 845 BUG_ON(find_vma_prev(vma->vm_mm, vma->vm_start, &near) != vma); 846 if (!near) 847 goto none; 848 849 vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC); 850 vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC); 851 852 if (near->anon_vma && near->vm_end == vma->vm_start && 853 mpol_equal(vma_policy(near), vma_policy(vma)) && 854 can_vma_merge_after(near, vm_flags, 855 NULL, vma->vm_file, vma->vm_pgoff)) 856 return near->anon_vma; 857 none: 858 /* 859 * There's no absolute need to look only at touching neighbours: 860 * we could search further afield for "compatible" anon_vmas. 861 * But it would probably just be a waste of time searching, 862 * or lead to too many vmas hanging off the same anon_vma. 863 * We're trying to allow mprotect remerging later on, 864 * not trying to minimize memory used for anon_vmas. 865 */ 866 return NULL; 867 } 868 869 #ifdef CONFIG_PROC_FS 870 void vm_stat_account(struct mm_struct *mm, unsigned long flags, 871 struct file *file, long pages) 872 { 873 const unsigned long stack_flags 874 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN); 875 876 if (file) { 877 mm->shared_vm += pages; 878 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC) 879 mm->exec_vm += pages; 880 } else if (flags & stack_flags) 881 mm->stack_vm += pages; 882 if (flags & (VM_RESERVED|VM_IO)) 883 mm->reserved_vm += pages; 884 } 885 #endif /* CONFIG_PROC_FS */ 886 887 /* 888 * The caller must hold down_write(current->mm->mmap_sem). 889 */ 890 891 unsigned long do_mmap_pgoff(struct file * file, unsigned long addr, 892 unsigned long len, unsigned long prot, 893 unsigned long flags, unsigned long pgoff) 894 { 895 struct mm_struct * mm = current->mm; 896 struct vm_area_struct * vma, * prev; 897 struct inode *inode; 898 unsigned int vm_flags; 899 int correct_wcount = 0; 900 int error; 901 struct rb_node ** rb_link, * rb_parent; 902 int accountable = 1; 903 unsigned long charged = 0, reqprot = prot; 904 905 /* 906 * Does the application expect PROT_READ to imply PROT_EXEC? 907 * 908 * (the exception is when the underlying filesystem is noexec 909 * mounted, in which case we dont add PROT_EXEC.) 910 */ 911 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC)) 912 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC))) 913 prot |= PROT_EXEC; 914 915 if (!len) 916 return -EINVAL; 917 918 error = arch_mmap_check(addr, len, flags); 919 if (error) 920 return error; 921 922 /* Careful about overflows.. */ 923 len = PAGE_ALIGN(len); 924 if (!len || len > TASK_SIZE) 925 return -ENOMEM; 926 927 /* offset overflow? */ 928 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff) 929 return -EOVERFLOW; 930 931 /* Too many mappings? */ 932 if (mm->map_count > sysctl_max_map_count) 933 return -ENOMEM; 934 935 /* Obtain the address to map to. we verify (or select) it and ensure 936 * that it represents a valid section of the address space. 937 */ 938 addr = get_unmapped_area(file, addr, len, pgoff, flags); 939 if (addr & ~PAGE_MASK) 940 return addr; 941 942 /* Do simple checking here so the lower-level routines won't have 943 * to. we assume access permissions have been handled by the open 944 * of the memory object, so we don't do any here. 945 */ 946 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) | 947 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 948 949 if (flags & MAP_LOCKED) { 950 if (!can_do_mlock()) 951 return -EPERM; 952 vm_flags |= VM_LOCKED; 953 } 954 /* mlock MCL_FUTURE? */ 955 if (vm_flags & VM_LOCKED) { 956 unsigned long locked, lock_limit; 957 locked = len >> PAGE_SHIFT; 958 locked += mm->locked_vm; 959 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur; 960 lock_limit >>= PAGE_SHIFT; 961 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 962 return -EAGAIN; 963 } 964 965 inode = file ? file->f_path.dentry->d_inode : NULL; 966 967 if (file) { 968 switch (flags & MAP_TYPE) { 969 case MAP_SHARED: 970 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE)) 971 return -EACCES; 972 973 /* 974 * Make sure we don't allow writing to an append-only 975 * file.. 976 */ 977 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE)) 978 return -EACCES; 979 980 /* 981 * Make sure there are no mandatory locks on the file. 982 */ 983 if (locks_verify_locked(inode)) 984 return -EAGAIN; 985 986 vm_flags |= VM_SHARED | VM_MAYSHARE; 987 if (!(file->f_mode & FMODE_WRITE)) 988 vm_flags &= ~(VM_MAYWRITE | VM_SHARED); 989 990 /* fall through */ 991 case MAP_PRIVATE: 992 if (!(file->f_mode & FMODE_READ)) 993 return -EACCES; 994 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) { 995 if (vm_flags & VM_EXEC) 996 return -EPERM; 997 vm_flags &= ~VM_MAYEXEC; 998 } 999 if (is_file_hugepages(file)) 1000 accountable = 0; 1001 1002 if (!file->f_op || !file->f_op->mmap) 1003 return -ENODEV; 1004 break; 1005 1006 default: 1007 return -EINVAL; 1008 } 1009 } else { 1010 switch (flags & MAP_TYPE) { 1011 case MAP_SHARED: 1012 vm_flags |= VM_SHARED | VM_MAYSHARE; 1013 break; 1014 case MAP_PRIVATE: 1015 /* 1016 * Set pgoff according to addr for anon_vma. 1017 */ 1018 pgoff = addr >> PAGE_SHIFT; 1019 break; 1020 default: 1021 return -EINVAL; 1022 } 1023 } 1024 1025 error = security_file_mmap(file, reqprot, prot, flags); 1026 if (error) 1027 return error; 1028 1029 /* Clear old maps */ 1030 error = -ENOMEM; 1031 munmap_back: 1032 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent); 1033 if (vma && vma->vm_start < addr + len) { 1034 if (do_munmap(mm, addr, len)) 1035 return -ENOMEM; 1036 goto munmap_back; 1037 } 1038 1039 /* Check against address space limit. */ 1040 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) 1041 return -ENOMEM; 1042 1043 if (accountable && (!(flags & MAP_NORESERVE) || 1044 sysctl_overcommit_memory == OVERCOMMIT_NEVER)) { 1045 if (vm_flags & VM_SHARED) { 1046 /* Check memory availability in shmem_file_setup? */ 1047 vm_flags |= VM_ACCOUNT; 1048 } else if (vm_flags & VM_WRITE) { 1049 /* 1050 * Private writable mapping: check memory availability 1051 */ 1052 charged = len >> PAGE_SHIFT; 1053 if (security_vm_enough_memory(charged)) 1054 return -ENOMEM; 1055 vm_flags |= VM_ACCOUNT; 1056 } 1057 } 1058 1059 /* 1060 * Can we just expand an old private anonymous mapping? 1061 * The VM_SHARED test is necessary because shmem_zero_setup 1062 * will create the file object for a shared anonymous map below. 1063 */ 1064 if (!file && !(vm_flags & VM_SHARED) && 1065 vma_merge(mm, prev, addr, addr + len, vm_flags, 1066 NULL, NULL, pgoff, NULL)) 1067 goto out; 1068 1069 /* 1070 * Determine the object being mapped and call the appropriate 1071 * specific mapper. the address has already been validated, but 1072 * not unmapped, but the maps are removed from the list. 1073 */ 1074 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 1075 if (!vma) { 1076 error = -ENOMEM; 1077 goto unacct_error; 1078 } 1079 1080 vma->vm_mm = mm; 1081 vma->vm_start = addr; 1082 vma->vm_end = addr + len; 1083 vma->vm_flags = vm_flags; 1084 vma->vm_page_prot = protection_map[vm_flags & 1085 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]; 1086 vma->vm_pgoff = pgoff; 1087 1088 if (file) { 1089 error = -EINVAL; 1090 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1091 goto free_vma; 1092 if (vm_flags & VM_DENYWRITE) { 1093 error = deny_write_access(file); 1094 if (error) 1095 goto free_vma; 1096 correct_wcount = 1; 1097 } 1098 vma->vm_file = file; 1099 get_file(file); 1100 error = file->f_op->mmap(file, vma); 1101 if (error) 1102 goto unmap_and_free_vma; 1103 } else if (vm_flags & VM_SHARED) { 1104 error = shmem_zero_setup(vma); 1105 if (error) 1106 goto free_vma; 1107 } 1108 1109 /* We set VM_ACCOUNT in a shared mapping's vm_flags, to inform 1110 * shmem_zero_setup (perhaps called through /dev/zero's ->mmap) 1111 * that memory reservation must be checked; but that reservation 1112 * belongs to shared memory object, not to vma: so now clear it. 1113 */ 1114 if ((vm_flags & (VM_SHARED|VM_ACCOUNT)) == (VM_SHARED|VM_ACCOUNT)) 1115 vma->vm_flags &= ~VM_ACCOUNT; 1116 1117 /* Can addr have changed?? 1118 * 1119 * Answer: Yes, several device drivers can do it in their 1120 * f_op->mmap method. -DaveM 1121 */ 1122 addr = vma->vm_start; 1123 pgoff = vma->vm_pgoff; 1124 vm_flags = vma->vm_flags; 1125 1126 if (vma_wants_writenotify(vma)) 1127 vma->vm_page_prot = 1128 protection_map[vm_flags & (VM_READ|VM_WRITE|VM_EXEC)]; 1129 1130 if (!file || !vma_merge(mm, prev, addr, vma->vm_end, 1131 vma->vm_flags, NULL, file, pgoff, vma_policy(vma))) { 1132 file = vma->vm_file; 1133 vma_link(mm, vma, prev, rb_link, rb_parent); 1134 if (correct_wcount) 1135 atomic_inc(&inode->i_writecount); 1136 } else { 1137 if (file) { 1138 if (correct_wcount) 1139 atomic_inc(&inode->i_writecount); 1140 fput(file); 1141 } 1142 mpol_free(vma_policy(vma)); 1143 kmem_cache_free(vm_area_cachep, vma); 1144 } 1145 out: 1146 mm->total_vm += len >> PAGE_SHIFT; 1147 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT); 1148 if (vm_flags & VM_LOCKED) { 1149 mm->locked_vm += len >> PAGE_SHIFT; 1150 make_pages_present(addr, addr + len); 1151 } 1152 if (flags & MAP_POPULATE) { 1153 up_write(&mm->mmap_sem); 1154 sys_remap_file_pages(addr, len, 0, 1155 pgoff, flags & MAP_NONBLOCK); 1156 down_write(&mm->mmap_sem); 1157 } 1158 return addr; 1159 1160 unmap_and_free_vma: 1161 if (correct_wcount) 1162 atomic_inc(&inode->i_writecount); 1163 vma->vm_file = NULL; 1164 fput(file); 1165 1166 /* Undo any partial mapping done by a device driver. */ 1167 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end); 1168 charged = 0; 1169 free_vma: 1170 kmem_cache_free(vm_area_cachep, vma); 1171 unacct_error: 1172 if (charged) 1173 vm_unacct_memory(charged); 1174 return error; 1175 } 1176 1177 EXPORT_SYMBOL(do_mmap_pgoff); 1178 1179 /* Get an address range which is currently unmapped. 1180 * For shmat() with addr=0. 1181 * 1182 * Ugly calling convention alert: 1183 * Return value with the low bits set means error value, 1184 * ie 1185 * if (ret & ~PAGE_MASK) 1186 * error = ret; 1187 * 1188 * This function "knows" that -ENOMEM has the bits set. 1189 */ 1190 #ifndef HAVE_ARCH_UNMAPPED_AREA 1191 unsigned long 1192 arch_get_unmapped_area(struct file *filp, unsigned long addr, 1193 unsigned long len, unsigned long pgoff, unsigned long flags) 1194 { 1195 struct mm_struct *mm = current->mm; 1196 struct vm_area_struct *vma; 1197 unsigned long start_addr; 1198 1199 if (len > TASK_SIZE) 1200 return -ENOMEM; 1201 1202 if (addr) { 1203 addr = PAGE_ALIGN(addr); 1204 vma = find_vma(mm, addr); 1205 if (TASK_SIZE - len >= addr && 1206 (!vma || addr + len <= vma->vm_start)) 1207 return addr; 1208 } 1209 if (len > mm->cached_hole_size) { 1210 start_addr = addr = mm->free_area_cache; 1211 } else { 1212 start_addr = addr = TASK_UNMAPPED_BASE; 1213 mm->cached_hole_size = 0; 1214 } 1215 1216 full_search: 1217 for (vma = find_vma(mm, addr); ; vma = vma->vm_next) { 1218 /* At this point: (!vma || addr < vma->vm_end). */ 1219 if (TASK_SIZE - len < addr) { 1220 /* 1221 * Start a new search - just in case we missed 1222 * some holes. 1223 */ 1224 if (start_addr != TASK_UNMAPPED_BASE) { 1225 addr = TASK_UNMAPPED_BASE; 1226 start_addr = addr; 1227 mm->cached_hole_size = 0; 1228 goto full_search; 1229 } 1230 return -ENOMEM; 1231 } 1232 if (!vma || addr + len <= vma->vm_start) { 1233 /* 1234 * Remember the place where we stopped the search: 1235 */ 1236 mm->free_area_cache = addr + len; 1237 return addr; 1238 } 1239 if (addr + mm->cached_hole_size < vma->vm_start) 1240 mm->cached_hole_size = vma->vm_start - addr; 1241 addr = vma->vm_end; 1242 } 1243 } 1244 #endif 1245 1246 void arch_unmap_area(struct mm_struct *mm, unsigned long addr) 1247 { 1248 /* 1249 * Is this a new hole at the lowest possible address? 1250 */ 1251 if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) { 1252 mm->free_area_cache = addr; 1253 mm->cached_hole_size = ~0UL; 1254 } 1255 } 1256 1257 /* 1258 * This mmap-allocator allocates new areas top-down from below the 1259 * stack's low limit (the base): 1260 */ 1261 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 1262 unsigned long 1263 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0, 1264 const unsigned long len, const unsigned long pgoff, 1265 const unsigned long flags) 1266 { 1267 struct vm_area_struct *vma; 1268 struct mm_struct *mm = current->mm; 1269 unsigned long addr = addr0; 1270 1271 /* requested length too big for entire address space */ 1272 if (len > TASK_SIZE) 1273 return -ENOMEM; 1274 1275 /* requesting a specific address */ 1276 if (addr) { 1277 addr = PAGE_ALIGN(addr); 1278 vma = find_vma(mm, addr); 1279 if (TASK_SIZE - len >= addr && 1280 (!vma || addr + len <= vma->vm_start)) 1281 return addr; 1282 } 1283 1284 /* check if free_area_cache is useful for us */ 1285 if (len <= mm->cached_hole_size) { 1286 mm->cached_hole_size = 0; 1287 mm->free_area_cache = mm->mmap_base; 1288 } 1289 1290 /* either no address requested or can't fit in requested address hole */ 1291 addr = mm->free_area_cache; 1292 1293 /* make sure it can fit in the remaining address space */ 1294 if (addr > len) { 1295 vma = find_vma(mm, addr-len); 1296 if (!vma || addr <= vma->vm_start) 1297 /* remember the address as a hint for next time */ 1298 return (mm->free_area_cache = addr-len); 1299 } 1300 1301 if (mm->mmap_base < len) 1302 goto bottomup; 1303 1304 addr = mm->mmap_base-len; 1305 1306 do { 1307 /* 1308 * Lookup failure means no vma is above this address, 1309 * else if new region fits below vma->vm_start, 1310 * return with success: 1311 */ 1312 vma = find_vma(mm, addr); 1313 if (!vma || addr+len <= vma->vm_start) 1314 /* remember the address as a hint for next time */ 1315 return (mm->free_area_cache = addr); 1316 1317 /* remember the largest hole we saw so far */ 1318 if (addr + mm->cached_hole_size < vma->vm_start) 1319 mm->cached_hole_size = vma->vm_start - addr; 1320 1321 /* try just below the current vma->vm_start */ 1322 addr = vma->vm_start-len; 1323 } while (len < vma->vm_start); 1324 1325 bottomup: 1326 /* 1327 * A failed mmap() very likely causes application failure, 1328 * so fall back to the bottom-up function here. This scenario 1329 * can happen with large stack limits and large mmap() 1330 * allocations. 1331 */ 1332 mm->cached_hole_size = ~0UL; 1333 mm->free_area_cache = TASK_UNMAPPED_BASE; 1334 addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags); 1335 /* 1336 * Restore the topdown base: 1337 */ 1338 mm->free_area_cache = mm->mmap_base; 1339 mm->cached_hole_size = ~0UL; 1340 1341 return addr; 1342 } 1343 #endif 1344 1345 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr) 1346 { 1347 /* 1348 * Is this a new hole at the highest possible address? 1349 */ 1350 if (addr > mm->free_area_cache) 1351 mm->free_area_cache = addr; 1352 1353 /* dont allow allocations above current base */ 1354 if (mm->free_area_cache > mm->mmap_base) 1355 mm->free_area_cache = mm->mmap_base; 1356 } 1357 1358 unsigned long 1359 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 1360 unsigned long pgoff, unsigned long flags) 1361 { 1362 unsigned long ret; 1363 1364 if (!(flags & MAP_FIXED)) { 1365 unsigned long (*get_area)(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 1366 1367 get_area = current->mm->get_unmapped_area; 1368 if (file && file->f_op && file->f_op->get_unmapped_area) 1369 get_area = file->f_op->get_unmapped_area; 1370 addr = get_area(file, addr, len, pgoff, flags); 1371 if (IS_ERR_VALUE(addr)) 1372 return addr; 1373 } 1374 1375 if (addr > TASK_SIZE - len) 1376 return -ENOMEM; 1377 if (addr & ~PAGE_MASK) 1378 return -EINVAL; 1379 if (file && is_file_hugepages(file)) { 1380 /* 1381 * Check if the given range is hugepage aligned, and 1382 * can be made suitable for hugepages. 1383 */ 1384 ret = prepare_hugepage_range(addr, len, pgoff); 1385 } else { 1386 /* 1387 * Ensure that a normal request is not falling in a 1388 * reserved hugepage range. For some archs like IA-64, 1389 * there is a separate region for hugepages. 1390 */ 1391 ret = is_hugepage_only_range(current->mm, addr, len); 1392 } 1393 if (ret) 1394 return -EINVAL; 1395 return addr; 1396 } 1397 1398 EXPORT_SYMBOL(get_unmapped_area); 1399 1400 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 1401 struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr) 1402 { 1403 struct vm_area_struct *vma = NULL; 1404 1405 if (mm) { 1406 /* Check the cache first. */ 1407 /* (Cache hit rate is typically around 35%.) */ 1408 vma = mm->mmap_cache; 1409 if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) { 1410 struct rb_node * rb_node; 1411 1412 rb_node = mm->mm_rb.rb_node; 1413 vma = NULL; 1414 1415 while (rb_node) { 1416 struct vm_area_struct * vma_tmp; 1417 1418 vma_tmp = rb_entry(rb_node, 1419 struct vm_area_struct, vm_rb); 1420 1421 if (vma_tmp->vm_end > addr) { 1422 vma = vma_tmp; 1423 if (vma_tmp->vm_start <= addr) 1424 break; 1425 rb_node = rb_node->rb_left; 1426 } else 1427 rb_node = rb_node->rb_right; 1428 } 1429 if (vma) 1430 mm->mmap_cache = vma; 1431 } 1432 } 1433 return vma; 1434 } 1435 1436 EXPORT_SYMBOL(find_vma); 1437 1438 /* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */ 1439 struct vm_area_struct * 1440 find_vma_prev(struct mm_struct *mm, unsigned long addr, 1441 struct vm_area_struct **pprev) 1442 { 1443 struct vm_area_struct *vma = NULL, *prev = NULL; 1444 struct rb_node * rb_node; 1445 if (!mm) 1446 goto out; 1447 1448 /* Guard against addr being lower than the first VMA */ 1449 vma = mm->mmap; 1450 1451 /* Go through the RB tree quickly. */ 1452 rb_node = mm->mm_rb.rb_node; 1453 1454 while (rb_node) { 1455 struct vm_area_struct *vma_tmp; 1456 vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb); 1457 1458 if (addr < vma_tmp->vm_end) { 1459 rb_node = rb_node->rb_left; 1460 } else { 1461 prev = vma_tmp; 1462 if (!prev->vm_next || (addr < prev->vm_next->vm_end)) 1463 break; 1464 rb_node = rb_node->rb_right; 1465 } 1466 } 1467 1468 out: 1469 *pprev = prev; 1470 return prev ? prev->vm_next : vma; 1471 } 1472 1473 /* 1474 * Verify that the stack growth is acceptable and 1475 * update accounting. This is shared with both the 1476 * grow-up and grow-down cases. 1477 */ 1478 static int acct_stack_growth(struct vm_area_struct * vma, unsigned long size, unsigned long grow) 1479 { 1480 struct mm_struct *mm = vma->vm_mm; 1481 struct rlimit *rlim = current->signal->rlim; 1482 unsigned long new_start; 1483 1484 /* address space limit tests */ 1485 if (!may_expand_vm(mm, grow)) 1486 return -ENOMEM; 1487 1488 /* Stack limit test */ 1489 if (size > rlim[RLIMIT_STACK].rlim_cur) 1490 return -ENOMEM; 1491 1492 /* mlock limit tests */ 1493 if (vma->vm_flags & VM_LOCKED) { 1494 unsigned long locked; 1495 unsigned long limit; 1496 locked = mm->locked_vm + grow; 1497 limit = rlim[RLIMIT_MEMLOCK].rlim_cur >> PAGE_SHIFT; 1498 if (locked > limit && !capable(CAP_IPC_LOCK)) 1499 return -ENOMEM; 1500 } 1501 1502 /* Check to ensure the stack will not grow into a hugetlb-only region */ 1503 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : 1504 vma->vm_end - size; 1505 if (is_hugepage_only_range(vma->vm_mm, new_start, size)) 1506 return -EFAULT; 1507 1508 /* 1509 * Overcommit.. This must be the final test, as it will 1510 * update security statistics. 1511 */ 1512 if (security_vm_enough_memory(grow)) 1513 return -ENOMEM; 1514 1515 /* Ok, everything looks good - let it rip */ 1516 mm->total_vm += grow; 1517 if (vma->vm_flags & VM_LOCKED) 1518 mm->locked_vm += grow; 1519 vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow); 1520 return 0; 1521 } 1522 1523 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64) 1524 /* 1525 * PA-RISC uses this for its stack; IA64 for its Register Backing Store. 1526 * vma is the last one with address > vma->vm_end. Have to extend vma. 1527 */ 1528 #ifndef CONFIG_IA64 1529 static inline 1530 #endif 1531 int expand_upwards(struct vm_area_struct *vma, unsigned long address) 1532 { 1533 int error; 1534 1535 if (!(vma->vm_flags & VM_GROWSUP)) 1536 return -EFAULT; 1537 1538 /* 1539 * We must make sure the anon_vma is allocated 1540 * so that the anon_vma locking is not a noop. 1541 */ 1542 if (unlikely(anon_vma_prepare(vma))) 1543 return -ENOMEM; 1544 anon_vma_lock(vma); 1545 1546 /* 1547 * vma->vm_start/vm_end cannot change under us because the caller 1548 * is required to hold the mmap_sem in read mode. We need the 1549 * anon_vma lock to serialize against concurrent expand_stacks. 1550 */ 1551 address += 4 + PAGE_SIZE - 1; 1552 address &= PAGE_MASK; 1553 error = 0; 1554 1555 /* Somebody else might have raced and expanded it already */ 1556 if (address > vma->vm_end) { 1557 unsigned long size, grow; 1558 1559 size = address - vma->vm_start; 1560 grow = (address - vma->vm_end) >> PAGE_SHIFT; 1561 1562 error = acct_stack_growth(vma, size, grow); 1563 if (!error) 1564 vma->vm_end = address; 1565 } 1566 anon_vma_unlock(vma); 1567 return error; 1568 } 1569 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */ 1570 1571 #ifdef CONFIG_STACK_GROWSUP 1572 int expand_stack(struct vm_area_struct *vma, unsigned long address) 1573 { 1574 return expand_upwards(vma, address); 1575 } 1576 1577 struct vm_area_struct * 1578 find_extend_vma(struct mm_struct *mm, unsigned long addr) 1579 { 1580 struct vm_area_struct *vma, *prev; 1581 1582 addr &= PAGE_MASK; 1583 vma = find_vma_prev(mm, addr, &prev); 1584 if (vma && (vma->vm_start <= addr)) 1585 return vma; 1586 if (!prev || expand_stack(prev, addr)) 1587 return NULL; 1588 if (prev->vm_flags & VM_LOCKED) { 1589 make_pages_present(addr, prev->vm_end); 1590 } 1591 return prev; 1592 } 1593 #else 1594 /* 1595 * vma is the first one with address < vma->vm_start. Have to extend vma. 1596 */ 1597 int expand_stack(struct vm_area_struct *vma, unsigned long address) 1598 { 1599 int error; 1600 1601 /* 1602 * We must make sure the anon_vma is allocated 1603 * so that the anon_vma locking is not a noop. 1604 */ 1605 if (unlikely(anon_vma_prepare(vma))) 1606 return -ENOMEM; 1607 anon_vma_lock(vma); 1608 1609 /* 1610 * vma->vm_start/vm_end cannot change under us because the caller 1611 * is required to hold the mmap_sem in read mode. We need the 1612 * anon_vma lock to serialize against concurrent expand_stacks. 1613 */ 1614 address &= PAGE_MASK; 1615 error = 0; 1616 1617 /* Somebody else might have raced and expanded it already */ 1618 if (address < vma->vm_start) { 1619 unsigned long size, grow; 1620 1621 size = vma->vm_end - address; 1622 grow = (vma->vm_start - address) >> PAGE_SHIFT; 1623 1624 error = acct_stack_growth(vma, size, grow); 1625 if (!error) { 1626 vma->vm_start = address; 1627 vma->vm_pgoff -= grow; 1628 } 1629 } 1630 anon_vma_unlock(vma); 1631 return error; 1632 } 1633 1634 struct vm_area_struct * 1635 find_extend_vma(struct mm_struct * mm, unsigned long addr) 1636 { 1637 struct vm_area_struct * vma; 1638 unsigned long start; 1639 1640 addr &= PAGE_MASK; 1641 vma = find_vma(mm,addr); 1642 if (!vma) 1643 return NULL; 1644 if (vma->vm_start <= addr) 1645 return vma; 1646 if (!(vma->vm_flags & VM_GROWSDOWN)) 1647 return NULL; 1648 start = vma->vm_start; 1649 if (expand_stack(vma, addr)) 1650 return NULL; 1651 if (vma->vm_flags & VM_LOCKED) { 1652 make_pages_present(addr, start); 1653 } 1654 return vma; 1655 } 1656 #endif 1657 1658 /* 1659 * Ok - we have the memory areas we should free on the vma list, 1660 * so release them, and do the vma updates. 1661 * 1662 * Called with the mm semaphore held. 1663 */ 1664 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma) 1665 { 1666 /* Update high watermark before we lower total_vm */ 1667 update_hiwater_vm(mm); 1668 do { 1669 long nrpages = vma_pages(vma); 1670 1671 mm->total_vm -= nrpages; 1672 if (vma->vm_flags & VM_LOCKED) 1673 mm->locked_vm -= nrpages; 1674 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages); 1675 vma = remove_vma(vma); 1676 } while (vma); 1677 validate_mm(mm); 1678 } 1679 1680 /* 1681 * Get rid of page table information in the indicated region. 1682 * 1683 * Called with the mm semaphore held. 1684 */ 1685 static void unmap_region(struct mm_struct *mm, 1686 struct vm_area_struct *vma, struct vm_area_struct *prev, 1687 unsigned long start, unsigned long end) 1688 { 1689 struct vm_area_struct *next = prev? prev->vm_next: mm->mmap; 1690 struct mmu_gather *tlb; 1691 unsigned long nr_accounted = 0; 1692 1693 lru_add_drain(); 1694 tlb = tlb_gather_mmu(mm, 0); 1695 update_hiwater_rss(mm); 1696 unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL); 1697 vm_unacct_memory(nr_accounted); 1698 free_pgtables(&tlb, vma, prev? prev->vm_end: FIRST_USER_ADDRESS, 1699 next? next->vm_start: 0); 1700 tlb_finish_mmu(tlb, start, end); 1701 } 1702 1703 /* 1704 * Create a list of vma's touched by the unmap, removing them from the mm's 1705 * vma list as we go.. 1706 */ 1707 static void 1708 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma, 1709 struct vm_area_struct *prev, unsigned long end) 1710 { 1711 struct vm_area_struct **insertion_point; 1712 struct vm_area_struct *tail_vma = NULL; 1713 unsigned long addr; 1714 1715 insertion_point = (prev ? &prev->vm_next : &mm->mmap); 1716 do { 1717 rb_erase(&vma->vm_rb, &mm->mm_rb); 1718 mm->map_count--; 1719 tail_vma = vma; 1720 vma = vma->vm_next; 1721 } while (vma && vma->vm_start < end); 1722 *insertion_point = vma; 1723 tail_vma->vm_next = NULL; 1724 if (mm->unmap_area == arch_unmap_area) 1725 addr = prev ? prev->vm_end : mm->mmap_base; 1726 else 1727 addr = vma ? vma->vm_start : mm->mmap_base; 1728 mm->unmap_area(mm, addr); 1729 mm->mmap_cache = NULL; /* Kill the cache. */ 1730 } 1731 1732 /* 1733 * Split a vma into two pieces at address 'addr', a new vma is allocated 1734 * either for the first part or the the tail. 1735 */ 1736 int split_vma(struct mm_struct * mm, struct vm_area_struct * vma, 1737 unsigned long addr, int new_below) 1738 { 1739 struct mempolicy *pol; 1740 struct vm_area_struct *new; 1741 1742 if (is_vm_hugetlb_page(vma) && (addr & ~HPAGE_MASK)) 1743 return -EINVAL; 1744 1745 if (mm->map_count >= sysctl_max_map_count) 1746 return -ENOMEM; 1747 1748 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 1749 if (!new) 1750 return -ENOMEM; 1751 1752 /* most fields are the same, copy all, and then fixup */ 1753 *new = *vma; 1754 1755 if (new_below) 1756 new->vm_end = addr; 1757 else { 1758 new->vm_start = addr; 1759 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); 1760 } 1761 1762 pol = mpol_copy(vma_policy(vma)); 1763 if (IS_ERR(pol)) { 1764 kmem_cache_free(vm_area_cachep, new); 1765 return PTR_ERR(pol); 1766 } 1767 vma_set_policy(new, pol); 1768 1769 if (new->vm_file) 1770 get_file(new->vm_file); 1771 1772 if (new->vm_ops && new->vm_ops->open) 1773 new->vm_ops->open(new); 1774 1775 if (new_below) 1776 vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff + 1777 ((addr - new->vm_start) >> PAGE_SHIFT), new); 1778 else 1779 vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new); 1780 1781 return 0; 1782 } 1783 1784 /* Munmap is split into 2 main parts -- this part which finds 1785 * what needs doing, and the areas themselves, which do the 1786 * work. This now handles partial unmappings. 1787 * Jeremy Fitzhardinge <jeremy@goop.org> 1788 */ 1789 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len) 1790 { 1791 unsigned long end; 1792 struct vm_area_struct *vma, *prev, *last; 1793 1794 if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start) 1795 return -EINVAL; 1796 1797 if ((len = PAGE_ALIGN(len)) == 0) 1798 return -EINVAL; 1799 1800 /* Find the first overlapping VMA */ 1801 vma = find_vma_prev(mm, start, &prev); 1802 if (!vma) 1803 return 0; 1804 /* we have start < vma->vm_end */ 1805 1806 /* if it doesn't overlap, we have nothing.. */ 1807 end = start + len; 1808 if (vma->vm_start >= end) 1809 return 0; 1810 1811 /* 1812 * If we need to split any vma, do it now to save pain later. 1813 * 1814 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially 1815 * unmapped vm_area_struct will remain in use: so lower split_vma 1816 * places tmp vma above, and higher split_vma places tmp vma below. 1817 */ 1818 if (start > vma->vm_start) { 1819 int error = split_vma(mm, vma, start, 0); 1820 if (error) 1821 return error; 1822 prev = vma; 1823 } 1824 1825 /* Does it split the last one? */ 1826 last = find_vma(mm, end); 1827 if (last && end > last->vm_start) { 1828 int error = split_vma(mm, last, end, 1); 1829 if (error) 1830 return error; 1831 } 1832 vma = prev? prev->vm_next: mm->mmap; 1833 1834 /* 1835 * Remove the vma's, and unmap the actual pages 1836 */ 1837 detach_vmas_to_be_unmapped(mm, vma, prev, end); 1838 unmap_region(mm, vma, prev, start, end); 1839 1840 /* Fix up all other VM information */ 1841 remove_vma_list(mm, vma); 1842 1843 return 0; 1844 } 1845 1846 EXPORT_SYMBOL(do_munmap); 1847 1848 asmlinkage long sys_munmap(unsigned long addr, size_t len) 1849 { 1850 int ret; 1851 struct mm_struct *mm = current->mm; 1852 1853 profile_munmap(addr); 1854 1855 down_write(&mm->mmap_sem); 1856 ret = do_munmap(mm, addr, len); 1857 up_write(&mm->mmap_sem); 1858 return ret; 1859 } 1860 1861 static inline void verify_mm_writelocked(struct mm_struct *mm) 1862 { 1863 #ifdef CONFIG_DEBUG_VM 1864 if (unlikely(down_read_trylock(&mm->mmap_sem))) { 1865 WARN_ON(1); 1866 up_read(&mm->mmap_sem); 1867 } 1868 #endif 1869 } 1870 1871 /* 1872 * this is really a simplified "do_mmap". it only handles 1873 * anonymous maps. eventually we may be able to do some 1874 * brk-specific accounting here. 1875 */ 1876 unsigned long do_brk(unsigned long addr, unsigned long len) 1877 { 1878 struct mm_struct * mm = current->mm; 1879 struct vm_area_struct * vma, * prev; 1880 unsigned long flags; 1881 struct rb_node ** rb_link, * rb_parent; 1882 pgoff_t pgoff = addr >> PAGE_SHIFT; 1883 int error; 1884 1885 len = PAGE_ALIGN(len); 1886 if (!len) 1887 return addr; 1888 1889 if ((addr + len) > TASK_SIZE || (addr + len) < addr) 1890 return -EINVAL; 1891 1892 if (is_hugepage_only_range(mm, addr, len)) 1893 return -EINVAL; 1894 1895 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; 1896 1897 error = arch_mmap_check(addr, len, flags); 1898 if (error) 1899 return error; 1900 1901 /* 1902 * mlock MCL_FUTURE? 1903 */ 1904 if (mm->def_flags & VM_LOCKED) { 1905 unsigned long locked, lock_limit; 1906 locked = len >> PAGE_SHIFT; 1907 locked += mm->locked_vm; 1908 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur; 1909 lock_limit >>= PAGE_SHIFT; 1910 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 1911 return -EAGAIN; 1912 } 1913 1914 /* 1915 * mm->mmap_sem is required to protect against another thread 1916 * changing the mappings in case we sleep. 1917 */ 1918 verify_mm_writelocked(mm); 1919 1920 /* 1921 * Clear old maps. this also does some error checking for us 1922 */ 1923 munmap_back: 1924 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent); 1925 if (vma && vma->vm_start < addr + len) { 1926 if (do_munmap(mm, addr, len)) 1927 return -ENOMEM; 1928 goto munmap_back; 1929 } 1930 1931 /* Check against address space limits *after* clearing old maps... */ 1932 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) 1933 return -ENOMEM; 1934 1935 if (mm->map_count > sysctl_max_map_count) 1936 return -ENOMEM; 1937 1938 if (security_vm_enough_memory(len >> PAGE_SHIFT)) 1939 return -ENOMEM; 1940 1941 /* Can we just expand an old private anonymous mapping? */ 1942 if (vma_merge(mm, prev, addr, addr + len, flags, 1943 NULL, NULL, pgoff, NULL)) 1944 goto out; 1945 1946 /* 1947 * create a vma struct for an anonymous mapping 1948 */ 1949 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 1950 if (!vma) { 1951 vm_unacct_memory(len >> PAGE_SHIFT); 1952 return -ENOMEM; 1953 } 1954 1955 vma->vm_mm = mm; 1956 vma->vm_start = addr; 1957 vma->vm_end = addr + len; 1958 vma->vm_pgoff = pgoff; 1959 vma->vm_flags = flags; 1960 vma->vm_page_prot = protection_map[flags & 1961 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]; 1962 vma_link(mm, vma, prev, rb_link, rb_parent); 1963 out: 1964 mm->total_vm += len >> PAGE_SHIFT; 1965 if (flags & VM_LOCKED) { 1966 mm->locked_vm += len >> PAGE_SHIFT; 1967 make_pages_present(addr, addr + len); 1968 } 1969 return addr; 1970 } 1971 1972 EXPORT_SYMBOL(do_brk); 1973 1974 /* Release all mmaps. */ 1975 void exit_mmap(struct mm_struct *mm) 1976 { 1977 struct mmu_gather *tlb; 1978 struct vm_area_struct *vma = mm->mmap; 1979 unsigned long nr_accounted = 0; 1980 unsigned long end; 1981 1982 lru_add_drain(); 1983 flush_cache_mm(mm); 1984 tlb = tlb_gather_mmu(mm, 1); 1985 /* Don't update_hiwater_rss(mm) here, do_exit already did */ 1986 /* Use -1 here to ensure all VMAs in the mm are unmapped */ 1987 end = unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL); 1988 vm_unacct_memory(nr_accounted); 1989 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, 0); 1990 tlb_finish_mmu(tlb, 0, end); 1991 1992 /* 1993 * Walk the list again, actually closing and freeing it, 1994 * with preemption enabled, without holding any MM locks. 1995 */ 1996 while (vma) 1997 vma = remove_vma(vma); 1998 1999 BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT); 2000 } 2001 2002 /* Insert vm structure into process list sorted by address 2003 * and into the inode's i_mmap tree. If vm_file is non-NULL 2004 * then i_mmap_lock is taken here. 2005 */ 2006 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma) 2007 { 2008 struct vm_area_struct * __vma, * prev; 2009 struct rb_node ** rb_link, * rb_parent; 2010 2011 /* 2012 * The vm_pgoff of a purely anonymous vma should be irrelevant 2013 * until its first write fault, when page's anon_vma and index 2014 * are set. But now set the vm_pgoff it will almost certainly 2015 * end up with (unless mremap moves it elsewhere before that 2016 * first wfault), so /proc/pid/maps tells a consistent story. 2017 * 2018 * By setting it to reflect the virtual start address of the 2019 * vma, merges and splits can happen in a seamless way, just 2020 * using the existing file pgoff checks and manipulations. 2021 * Similarly in do_mmap_pgoff and in do_brk. 2022 */ 2023 if (!vma->vm_file) { 2024 BUG_ON(vma->anon_vma); 2025 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; 2026 } 2027 __vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent); 2028 if (__vma && __vma->vm_start < vma->vm_end) 2029 return -ENOMEM; 2030 if ((vma->vm_flags & VM_ACCOUNT) && 2031 security_vm_enough_memory(vma_pages(vma))) 2032 return -ENOMEM; 2033 vma_link(mm, vma, prev, rb_link, rb_parent); 2034 return 0; 2035 } 2036 2037 /* 2038 * Copy the vma structure to a new location in the same mm, 2039 * prior to moving page table entries, to effect an mremap move. 2040 */ 2041 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 2042 unsigned long addr, unsigned long len, pgoff_t pgoff) 2043 { 2044 struct vm_area_struct *vma = *vmap; 2045 unsigned long vma_start = vma->vm_start; 2046 struct mm_struct *mm = vma->vm_mm; 2047 struct vm_area_struct *new_vma, *prev; 2048 struct rb_node **rb_link, *rb_parent; 2049 struct mempolicy *pol; 2050 2051 /* 2052 * If anonymous vma has not yet been faulted, update new pgoff 2053 * to match new location, to increase its chance of merging. 2054 */ 2055 if (!vma->vm_file && !vma->anon_vma) 2056 pgoff = addr >> PAGE_SHIFT; 2057 2058 find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent); 2059 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags, 2060 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma)); 2061 if (new_vma) { 2062 /* 2063 * Source vma may have been merged into new_vma 2064 */ 2065 if (vma_start >= new_vma->vm_start && 2066 vma_start < new_vma->vm_end) 2067 *vmap = new_vma; 2068 } else { 2069 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 2070 if (new_vma) { 2071 *new_vma = *vma; 2072 pol = mpol_copy(vma_policy(vma)); 2073 if (IS_ERR(pol)) { 2074 kmem_cache_free(vm_area_cachep, new_vma); 2075 return NULL; 2076 } 2077 vma_set_policy(new_vma, pol); 2078 new_vma->vm_start = addr; 2079 new_vma->vm_end = addr + len; 2080 new_vma->vm_pgoff = pgoff; 2081 if (new_vma->vm_file) 2082 get_file(new_vma->vm_file); 2083 if (new_vma->vm_ops && new_vma->vm_ops->open) 2084 new_vma->vm_ops->open(new_vma); 2085 vma_link(mm, new_vma, prev, rb_link, rb_parent); 2086 } 2087 } 2088 return new_vma; 2089 } 2090 2091 /* 2092 * Return true if the calling process may expand its vm space by the passed 2093 * number of pages 2094 */ 2095 int may_expand_vm(struct mm_struct *mm, unsigned long npages) 2096 { 2097 unsigned long cur = mm->total_vm; /* pages */ 2098 unsigned long lim; 2099 2100 lim = current->signal->rlim[RLIMIT_AS].rlim_cur >> PAGE_SHIFT; 2101 2102 if (cur + npages > lim) 2103 return 0; 2104 return 1; 2105 } 2106 2107 2108 static struct page *special_mapping_nopage(struct vm_area_struct *vma, 2109 unsigned long address, int *type) 2110 { 2111 struct page **pages; 2112 2113 BUG_ON(address < vma->vm_start || address >= vma->vm_end); 2114 2115 address -= vma->vm_start; 2116 for (pages = vma->vm_private_data; address > 0 && *pages; ++pages) 2117 address -= PAGE_SIZE; 2118 2119 if (*pages) { 2120 struct page *page = *pages; 2121 get_page(page); 2122 return page; 2123 } 2124 2125 return NOPAGE_SIGBUS; 2126 } 2127 2128 /* 2129 * Having a close hook prevents vma merging regardless of flags. 2130 */ 2131 static void special_mapping_close(struct vm_area_struct *vma) 2132 { 2133 } 2134 2135 static struct vm_operations_struct special_mapping_vmops = { 2136 .close = special_mapping_close, 2137 .nopage = special_mapping_nopage, 2138 }; 2139 2140 /* 2141 * Called with mm->mmap_sem held for writing. 2142 * Insert a new vma covering the given region, with the given flags. 2143 * Its pages are supplied by the given array of struct page *. 2144 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated. 2145 * The region past the last page supplied will always produce SIGBUS. 2146 * The array pointer and the pages it points to are assumed to stay alive 2147 * for as long as this mapping might exist. 2148 */ 2149 int install_special_mapping(struct mm_struct *mm, 2150 unsigned long addr, unsigned long len, 2151 unsigned long vm_flags, struct page **pages) 2152 { 2153 struct vm_area_struct *vma; 2154 2155 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 2156 if (unlikely(vma == NULL)) 2157 return -ENOMEM; 2158 2159 vma->vm_mm = mm; 2160 vma->vm_start = addr; 2161 vma->vm_end = addr + len; 2162 2163 vma->vm_flags = vm_flags | mm->def_flags; 2164 vma->vm_page_prot = protection_map[vma->vm_flags & 7]; 2165 2166 vma->vm_ops = &special_mapping_vmops; 2167 vma->vm_private_data = pages; 2168 2169 if (unlikely(insert_vm_struct(mm, vma))) { 2170 kmem_cache_free(vm_area_cachep, vma); 2171 return -ENOMEM; 2172 } 2173 2174 mm->total_vm += len >> PAGE_SHIFT; 2175 2176 return 0; 2177 } 2178