xref: /linux/mm/mmap.c (revision c537b994505099b7197e7d3125b942ecbcc51eb6)
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code	<alan@redhat.com>
7  */
8 
9 #include <linux/slab.h>
10 #include <linux/mm.h>
11 #include <linux/shm.h>
12 #include <linux/mman.h>
13 #include <linux/pagemap.h>
14 #include <linux/swap.h>
15 #include <linux/syscalls.h>
16 #include <linux/capability.h>
17 #include <linux/init.h>
18 #include <linux/file.h>
19 #include <linux/fs.h>
20 #include <linux/personality.h>
21 #include <linux/security.h>
22 #include <linux/hugetlb.h>
23 #include <linux/profile.h>
24 #include <linux/module.h>
25 #include <linux/mount.h>
26 #include <linux/mempolicy.h>
27 #include <linux/rmap.h>
28 
29 #include <asm/uaccess.h>
30 #include <asm/cacheflush.h>
31 #include <asm/tlb.h>
32 
33 #ifndef arch_mmap_check
34 #define arch_mmap_check(addr, len, flags)	(0)
35 #endif
36 
37 static void unmap_region(struct mm_struct *mm,
38 		struct vm_area_struct *vma, struct vm_area_struct *prev,
39 		unsigned long start, unsigned long end);
40 
41 /*
42  * WARNING: the debugging will use recursive algorithms so never enable this
43  * unless you know what you are doing.
44  */
45 #undef DEBUG_MM_RB
46 
47 /* description of effects of mapping type and prot in current implementation.
48  * this is due to the limited x86 page protection hardware.  The expected
49  * behavior is in parens:
50  *
51  * map_type	prot
52  *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
53  * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
54  *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
55  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
56  *
57  * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
58  *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
59  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
60  *
61  */
62 pgprot_t protection_map[16] = {
63 	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
64 	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
65 };
66 
67 pgprot_t vm_get_page_prot(unsigned long vm_flags)
68 {
69 	return protection_map[vm_flags &
70 				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)];
71 }
72 EXPORT_SYMBOL(vm_get_page_prot);
73 
74 int sysctl_overcommit_memory = OVERCOMMIT_GUESS;  /* heuristic overcommit */
75 int sysctl_overcommit_ratio = 50;	/* default is 50% */
76 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
77 atomic_t vm_committed_space = ATOMIC_INIT(0);
78 
79 /*
80  * Check that a process has enough memory to allocate a new virtual
81  * mapping. 0 means there is enough memory for the allocation to
82  * succeed and -ENOMEM implies there is not.
83  *
84  * We currently support three overcommit policies, which are set via the
85  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
86  *
87  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
88  * Additional code 2002 Jul 20 by Robert Love.
89  *
90  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
91  *
92  * Note this is a helper function intended to be used by LSMs which
93  * wish to use this logic.
94  */
95 int __vm_enough_memory(long pages, int cap_sys_admin)
96 {
97 	unsigned long free, allowed;
98 
99 	vm_acct_memory(pages);
100 
101 	/*
102 	 * Sometimes we want to use more memory than we have
103 	 */
104 	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
105 		return 0;
106 
107 	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
108 		unsigned long n;
109 
110 		free = global_page_state(NR_FILE_PAGES);
111 		free += nr_swap_pages;
112 
113 		/*
114 		 * Any slabs which are created with the
115 		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
116 		 * which are reclaimable, under pressure.  The dentry
117 		 * cache and most inode caches should fall into this
118 		 */
119 		free += global_page_state(NR_SLAB_RECLAIMABLE);
120 
121 		/*
122 		 * Leave the last 3% for root
123 		 */
124 		if (!cap_sys_admin)
125 			free -= free / 32;
126 
127 		if (free > pages)
128 			return 0;
129 
130 		/*
131 		 * nr_free_pages() is very expensive on large systems,
132 		 * only call if we're about to fail.
133 		 */
134 		n = nr_free_pages();
135 
136 		/*
137 		 * Leave reserved pages. The pages are not for anonymous pages.
138 		 */
139 		if (n <= totalreserve_pages)
140 			goto error;
141 		else
142 			n -= totalreserve_pages;
143 
144 		/*
145 		 * Leave the last 3% for root
146 		 */
147 		if (!cap_sys_admin)
148 			n -= n / 32;
149 		free += n;
150 
151 		if (free > pages)
152 			return 0;
153 
154 		goto error;
155 	}
156 
157 	allowed = (totalram_pages - hugetlb_total_pages())
158 	       	* sysctl_overcommit_ratio / 100;
159 	/*
160 	 * Leave the last 3% for root
161 	 */
162 	if (!cap_sys_admin)
163 		allowed -= allowed / 32;
164 	allowed += total_swap_pages;
165 
166 	/* Don't let a single process grow too big:
167 	   leave 3% of the size of this process for other processes */
168 	allowed -= current->mm->total_vm / 32;
169 
170 	/*
171 	 * cast `allowed' as a signed long because vm_committed_space
172 	 * sometimes has a negative value
173 	 */
174 	if (atomic_read(&vm_committed_space) < (long)allowed)
175 		return 0;
176 error:
177 	vm_unacct_memory(pages);
178 
179 	return -ENOMEM;
180 }
181 
182 EXPORT_SYMBOL(__vm_enough_memory);
183 
184 /*
185  * Requires inode->i_mapping->i_mmap_lock
186  */
187 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
188 		struct file *file, struct address_space *mapping)
189 {
190 	if (vma->vm_flags & VM_DENYWRITE)
191 		atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
192 	if (vma->vm_flags & VM_SHARED)
193 		mapping->i_mmap_writable--;
194 
195 	flush_dcache_mmap_lock(mapping);
196 	if (unlikely(vma->vm_flags & VM_NONLINEAR))
197 		list_del_init(&vma->shared.vm_set.list);
198 	else
199 		vma_prio_tree_remove(vma, &mapping->i_mmap);
200 	flush_dcache_mmap_unlock(mapping);
201 }
202 
203 /*
204  * Unlink a file-based vm structure from its prio_tree, to hide
205  * vma from rmap and vmtruncate before freeing its page tables.
206  */
207 void unlink_file_vma(struct vm_area_struct *vma)
208 {
209 	struct file *file = vma->vm_file;
210 
211 	if (file) {
212 		struct address_space *mapping = file->f_mapping;
213 		spin_lock(&mapping->i_mmap_lock);
214 		__remove_shared_vm_struct(vma, file, mapping);
215 		spin_unlock(&mapping->i_mmap_lock);
216 	}
217 }
218 
219 /*
220  * Close a vm structure and free it, returning the next.
221  */
222 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
223 {
224 	struct vm_area_struct *next = vma->vm_next;
225 
226 	might_sleep();
227 	if (vma->vm_ops && vma->vm_ops->close)
228 		vma->vm_ops->close(vma);
229 	if (vma->vm_file)
230 		fput(vma->vm_file);
231 	mpol_free(vma_policy(vma));
232 	kmem_cache_free(vm_area_cachep, vma);
233 	return next;
234 }
235 
236 asmlinkage unsigned long sys_brk(unsigned long brk)
237 {
238 	unsigned long rlim, retval;
239 	unsigned long newbrk, oldbrk;
240 	struct mm_struct *mm = current->mm;
241 
242 	down_write(&mm->mmap_sem);
243 
244 	if (brk < mm->end_code)
245 		goto out;
246 
247 	/*
248 	 * Check against rlimit here. If this check is done later after the test
249 	 * of oldbrk with newbrk then it can escape the test and let the data
250 	 * segment grow beyond its set limit the in case where the limit is
251 	 * not page aligned -Ram Gupta
252 	 */
253 	rlim = current->signal->rlim[RLIMIT_DATA].rlim_cur;
254 	if (rlim < RLIM_INFINITY && brk - mm->start_data > rlim)
255 		goto out;
256 
257 	newbrk = PAGE_ALIGN(brk);
258 	oldbrk = PAGE_ALIGN(mm->brk);
259 	if (oldbrk == newbrk)
260 		goto set_brk;
261 
262 	/* Always allow shrinking brk. */
263 	if (brk <= mm->brk) {
264 		if (!do_munmap(mm, newbrk, oldbrk-newbrk))
265 			goto set_brk;
266 		goto out;
267 	}
268 
269 	/* Check against existing mmap mappings. */
270 	if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
271 		goto out;
272 
273 	/* Ok, looks good - let it rip. */
274 	if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
275 		goto out;
276 set_brk:
277 	mm->brk = brk;
278 out:
279 	retval = mm->brk;
280 	up_write(&mm->mmap_sem);
281 	return retval;
282 }
283 
284 #ifdef DEBUG_MM_RB
285 static int browse_rb(struct rb_root *root)
286 {
287 	int i = 0, j;
288 	struct rb_node *nd, *pn = NULL;
289 	unsigned long prev = 0, pend = 0;
290 
291 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
292 		struct vm_area_struct *vma;
293 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
294 		if (vma->vm_start < prev)
295 			printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
296 		if (vma->vm_start < pend)
297 			printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
298 		if (vma->vm_start > vma->vm_end)
299 			printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
300 		i++;
301 		pn = nd;
302 		prev = vma->vm_start;
303 		pend = vma->vm_end;
304 	}
305 	j = 0;
306 	for (nd = pn; nd; nd = rb_prev(nd)) {
307 		j++;
308 	}
309 	if (i != j)
310 		printk("backwards %d, forwards %d\n", j, i), i = 0;
311 	return i;
312 }
313 
314 void validate_mm(struct mm_struct *mm)
315 {
316 	int bug = 0;
317 	int i = 0;
318 	struct vm_area_struct *tmp = mm->mmap;
319 	while (tmp) {
320 		tmp = tmp->vm_next;
321 		i++;
322 	}
323 	if (i != mm->map_count)
324 		printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
325 	i = browse_rb(&mm->mm_rb);
326 	if (i != mm->map_count)
327 		printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
328 	BUG_ON(bug);
329 }
330 #else
331 #define validate_mm(mm) do { } while (0)
332 #endif
333 
334 static struct vm_area_struct *
335 find_vma_prepare(struct mm_struct *mm, unsigned long addr,
336 		struct vm_area_struct **pprev, struct rb_node ***rb_link,
337 		struct rb_node ** rb_parent)
338 {
339 	struct vm_area_struct * vma;
340 	struct rb_node ** __rb_link, * __rb_parent, * rb_prev;
341 
342 	__rb_link = &mm->mm_rb.rb_node;
343 	rb_prev = __rb_parent = NULL;
344 	vma = NULL;
345 
346 	while (*__rb_link) {
347 		struct vm_area_struct *vma_tmp;
348 
349 		__rb_parent = *__rb_link;
350 		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
351 
352 		if (vma_tmp->vm_end > addr) {
353 			vma = vma_tmp;
354 			if (vma_tmp->vm_start <= addr)
355 				return vma;
356 			__rb_link = &__rb_parent->rb_left;
357 		} else {
358 			rb_prev = __rb_parent;
359 			__rb_link = &__rb_parent->rb_right;
360 		}
361 	}
362 
363 	*pprev = NULL;
364 	if (rb_prev)
365 		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
366 	*rb_link = __rb_link;
367 	*rb_parent = __rb_parent;
368 	return vma;
369 }
370 
371 static inline void
372 __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
373 		struct vm_area_struct *prev, struct rb_node *rb_parent)
374 {
375 	if (prev) {
376 		vma->vm_next = prev->vm_next;
377 		prev->vm_next = vma;
378 	} else {
379 		mm->mmap = vma;
380 		if (rb_parent)
381 			vma->vm_next = rb_entry(rb_parent,
382 					struct vm_area_struct, vm_rb);
383 		else
384 			vma->vm_next = NULL;
385 	}
386 }
387 
388 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
389 		struct rb_node **rb_link, struct rb_node *rb_parent)
390 {
391 	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
392 	rb_insert_color(&vma->vm_rb, &mm->mm_rb);
393 }
394 
395 static inline void __vma_link_file(struct vm_area_struct *vma)
396 {
397 	struct file * file;
398 
399 	file = vma->vm_file;
400 	if (file) {
401 		struct address_space *mapping = file->f_mapping;
402 
403 		if (vma->vm_flags & VM_DENYWRITE)
404 			atomic_dec(&file->f_path.dentry->d_inode->i_writecount);
405 		if (vma->vm_flags & VM_SHARED)
406 			mapping->i_mmap_writable++;
407 
408 		flush_dcache_mmap_lock(mapping);
409 		if (unlikely(vma->vm_flags & VM_NONLINEAR))
410 			vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
411 		else
412 			vma_prio_tree_insert(vma, &mapping->i_mmap);
413 		flush_dcache_mmap_unlock(mapping);
414 	}
415 }
416 
417 static void
418 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
419 	struct vm_area_struct *prev, struct rb_node **rb_link,
420 	struct rb_node *rb_parent)
421 {
422 	__vma_link_list(mm, vma, prev, rb_parent);
423 	__vma_link_rb(mm, vma, rb_link, rb_parent);
424 	__anon_vma_link(vma);
425 }
426 
427 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
428 			struct vm_area_struct *prev, struct rb_node **rb_link,
429 			struct rb_node *rb_parent)
430 {
431 	struct address_space *mapping = NULL;
432 
433 	if (vma->vm_file)
434 		mapping = vma->vm_file->f_mapping;
435 
436 	if (mapping) {
437 		spin_lock(&mapping->i_mmap_lock);
438 		vma->vm_truncate_count = mapping->truncate_count;
439 	}
440 	anon_vma_lock(vma);
441 
442 	__vma_link(mm, vma, prev, rb_link, rb_parent);
443 	__vma_link_file(vma);
444 
445 	anon_vma_unlock(vma);
446 	if (mapping)
447 		spin_unlock(&mapping->i_mmap_lock);
448 
449 	mm->map_count++;
450 	validate_mm(mm);
451 }
452 
453 /*
454  * Helper for vma_adjust in the split_vma insert case:
455  * insert vm structure into list and rbtree and anon_vma,
456  * but it has already been inserted into prio_tree earlier.
457  */
458 static void
459 __insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
460 {
461 	struct vm_area_struct * __vma, * prev;
462 	struct rb_node ** rb_link, * rb_parent;
463 
464 	__vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent);
465 	BUG_ON(__vma && __vma->vm_start < vma->vm_end);
466 	__vma_link(mm, vma, prev, rb_link, rb_parent);
467 	mm->map_count++;
468 }
469 
470 static inline void
471 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
472 		struct vm_area_struct *prev)
473 {
474 	prev->vm_next = vma->vm_next;
475 	rb_erase(&vma->vm_rb, &mm->mm_rb);
476 	if (mm->mmap_cache == vma)
477 		mm->mmap_cache = prev;
478 }
479 
480 /*
481  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
482  * is already present in an i_mmap tree without adjusting the tree.
483  * The following helper function should be used when such adjustments
484  * are necessary.  The "insert" vma (if any) is to be inserted
485  * before we drop the necessary locks.
486  */
487 void vma_adjust(struct vm_area_struct *vma, unsigned long start,
488 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
489 {
490 	struct mm_struct *mm = vma->vm_mm;
491 	struct vm_area_struct *next = vma->vm_next;
492 	struct vm_area_struct *importer = NULL;
493 	struct address_space *mapping = NULL;
494 	struct prio_tree_root *root = NULL;
495 	struct file *file = vma->vm_file;
496 	struct anon_vma *anon_vma = NULL;
497 	long adjust_next = 0;
498 	int remove_next = 0;
499 
500 	if (next && !insert) {
501 		if (end >= next->vm_end) {
502 			/*
503 			 * vma expands, overlapping all the next, and
504 			 * perhaps the one after too (mprotect case 6).
505 			 */
506 again:			remove_next = 1 + (end > next->vm_end);
507 			end = next->vm_end;
508 			anon_vma = next->anon_vma;
509 			importer = vma;
510 		} else if (end > next->vm_start) {
511 			/*
512 			 * vma expands, overlapping part of the next:
513 			 * mprotect case 5 shifting the boundary up.
514 			 */
515 			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
516 			anon_vma = next->anon_vma;
517 			importer = vma;
518 		} else if (end < vma->vm_end) {
519 			/*
520 			 * vma shrinks, and !insert tells it's not
521 			 * split_vma inserting another: so it must be
522 			 * mprotect case 4 shifting the boundary down.
523 			 */
524 			adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
525 			anon_vma = next->anon_vma;
526 			importer = next;
527 		}
528 	}
529 
530 	if (file) {
531 		mapping = file->f_mapping;
532 		if (!(vma->vm_flags & VM_NONLINEAR))
533 			root = &mapping->i_mmap;
534 		spin_lock(&mapping->i_mmap_lock);
535 		if (importer &&
536 		    vma->vm_truncate_count != next->vm_truncate_count) {
537 			/*
538 			 * unmap_mapping_range might be in progress:
539 			 * ensure that the expanding vma is rescanned.
540 			 */
541 			importer->vm_truncate_count = 0;
542 		}
543 		if (insert) {
544 			insert->vm_truncate_count = vma->vm_truncate_count;
545 			/*
546 			 * Put into prio_tree now, so instantiated pages
547 			 * are visible to arm/parisc __flush_dcache_page
548 			 * throughout; but we cannot insert into address
549 			 * space until vma start or end is updated.
550 			 */
551 			__vma_link_file(insert);
552 		}
553 	}
554 
555 	/*
556 	 * When changing only vma->vm_end, we don't really need
557 	 * anon_vma lock: but is that case worth optimizing out?
558 	 */
559 	if (vma->anon_vma)
560 		anon_vma = vma->anon_vma;
561 	if (anon_vma) {
562 		spin_lock(&anon_vma->lock);
563 		/*
564 		 * Easily overlooked: when mprotect shifts the boundary,
565 		 * make sure the expanding vma has anon_vma set if the
566 		 * shrinking vma had, to cover any anon pages imported.
567 		 */
568 		if (importer && !importer->anon_vma) {
569 			importer->anon_vma = anon_vma;
570 			__anon_vma_link(importer);
571 		}
572 	}
573 
574 	if (root) {
575 		flush_dcache_mmap_lock(mapping);
576 		vma_prio_tree_remove(vma, root);
577 		if (adjust_next)
578 			vma_prio_tree_remove(next, root);
579 	}
580 
581 	vma->vm_start = start;
582 	vma->vm_end = end;
583 	vma->vm_pgoff = pgoff;
584 	if (adjust_next) {
585 		next->vm_start += adjust_next << PAGE_SHIFT;
586 		next->vm_pgoff += adjust_next;
587 	}
588 
589 	if (root) {
590 		if (adjust_next)
591 			vma_prio_tree_insert(next, root);
592 		vma_prio_tree_insert(vma, root);
593 		flush_dcache_mmap_unlock(mapping);
594 	}
595 
596 	if (remove_next) {
597 		/*
598 		 * vma_merge has merged next into vma, and needs
599 		 * us to remove next before dropping the locks.
600 		 */
601 		__vma_unlink(mm, next, vma);
602 		if (file)
603 			__remove_shared_vm_struct(next, file, mapping);
604 		if (next->anon_vma)
605 			__anon_vma_merge(vma, next);
606 	} else if (insert) {
607 		/*
608 		 * split_vma has split insert from vma, and needs
609 		 * us to insert it before dropping the locks
610 		 * (it may either follow vma or precede it).
611 		 */
612 		__insert_vm_struct(mm, insert);
613 	}
614 
615 	if (anon_vma)
616 		spin_unlock(&anon_vma->lock);
617 	if (mapping)
618 		spin_unlock(&mapping->i_mmap_lock);
619 
620 	if (remove_next) {
621 		if (file)
622 			fput(file);
623 		mm->map_count--;
624 		mpol_free(vma_policy(next));
625 		kmem_cache_free(vm_area_cachep, next);
626 		/*
627 		 * In mprotect's case 6 (see comments on vma_merge),
628 		 * we must remove another next too. It would clutter
629 		 * up the code too much to do both in one go.
630 		 */
631 		if (remove_next == 2) {
632 			next = vma->vm_next;
633 			goto again;
634 		}
635 	}
636 
637 	validate_mm(mm);
638 }
639 
640 /*
641  * If the vma has a ->close operation then the driver probably needs to release
642  * per-vma resources, so we don't attempt to merge those.
643  */
644 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP)
645 
646 static inline int is_mergeable_vma(struct vm_area_struct *vma,
647 			struct file *file, unsigned long vm_flags)
648 {
649 	if (vma->vm_flags != vm_flags)
650 		return 0;
651 	if (vma->vm_file != file)
652 		return 0;
653 	if (vma->vm_ops && vma->vm_ops->close)
654 		return 0;
655 	return 1;
656 }
657 
658 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
659 					struct anon_vma *anon_vma2)
660 {
661 	return !anon_vma1 || !anon_vma2 || (anon_vma1 == anon_vma2);
662 }
663 
664 /*
665  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
666  * in front of (at a lower virtual address and file offset than) the vma.
667  *
668  * We cannot merge two vmas if they have differently assigned (non-NULL)
669  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
670  *
671  * We don't check here for the merged mmap wrapping around the end of pagecache
672  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
673  * wrap, nor mmaps which cover the final page at index -1UL.
674  */
675 static int
676 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
677 	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
678 {
679 	if (is_mergeable_vma(vma, file, vm_flags) &&
680 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
681 		if (vma->vm_pgoff == vm_pgoff)
682 			return 1;
683 	}
684 	return 0;
685 }
686 
687 /*
688  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
689  * beyond (at a higher virtual address and file offset than) the vma.
690  *
691  * We cannot merge two vmas if they have differently assigned (non-NULL)
692  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
693  */
694 static int
695 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
696 	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
697 {
698 	if (is_mergeable_vma(vma, file, vm_flags) &&
699 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
700 		pgoff_t vm_pglen;
701 		vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
702 		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
703 			return 1;
704 	}
705 	return 0;
706 }
707 
708 /*
709  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
710  * whether that can be merged with its predecessor or its successor.
711  * Or both (it neatly fills a hole).
712  *
713  * In most cases - when called for mmap, brk or mremap - [addr,end) is
714  * certain not to be mapped by the time vma_merge is called; but when
715  * called for mprotect, it is certain to be already mapped (either at
716  * an offset within prev, or at the start of next), and the flags of
717  * this area are about to be changed to vm_flags - and the no-change
718  * case has already been eliminated.
719  *
720  * The following mprotect cases have to be considered, where AAAA is
721  * the area passed down from mprotect_fixup, never extending beyond one
722  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
723  *
724  *     AAAA             AAAA                AAAA          AAAA
725  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
726  *    cannot merge    might become    might become    might become
727  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
728  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
729  *    mremap move:                                    PPPPNNNNNNNN 8
730  *        AAAA
731  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
732  *    might become    case 1 below    case 2 below    case 3 below
733  *
734  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
735  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
736  */
737 struct vm_area_struct *vma_merge(struct mm_struct *mm,
738 			struct vm_area_struct *prev, unsigned long addr,
739 			unsigned long end, unsigned long vm_flags,
740 		     	struct anon_vma *anon_vma, struct file *file,
741 			pgoff_t pgoff, struct mempolicy *policy)
742 {
743 	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
744 	struct vm_area_struct *area, *next;
745 
746 	/*
747 	 * We later require that vma->vm_flags == vm_flags,
748 	 * so this tests vma->vm_flags & VM_SPECIAL, too.
749 	 */
750 	if (vm_flags & VM_SPECIAL)
751 		return NULL;
752 
753 	if (prev)
754 		next = prev->vm_next;
755 	else
756 		next = mm->mmap;
757 	area = next;
758 	if (next && next->vm_end == end)		/* cases 6, 7, 8 */
759 		next = next->vm_next;
760 
761 	/*
762 	 * Can it merge with the predecessor?
763 	 */
764 	if (prev && prev->vm_end == addr &&
765   			mpol_equal(vma_policy(prev), policy) &&
766 			can_vma_merge_after(prev, vm_flags,
767 						anon_vma, file, pgoff)) {
768 		/*
769 		 * OK, it can.  Can we now merge in the successor as well?
770 		 */
771 		if (next && end == next->vm_start &&
772 				mpol_equal(policy, vma_policy(next)) &&
773 				can_vma_merge_before(next, vm_flags,
774 					anon_vma, file, pgoff+pglen) &&
775 				is_mergeable_anon_vma(prev->anon_vma,
776 						      next->anon_vma)) {
777 							/* cases 1, 6 */
778 			vma_adjust(prev, prev->vm_start,
779 				next->vm_end, prev->vm_pgoff, NULL);
780 		} else					/* cases 2, 5, 7 */
781 			vma_adjust(prev, prev->vm_start,
782 				end, prev->vm_pgoff, NULL);
783 		return prev;
784 	}
785 
786 	/*
787 	 * Can this new request be merged in front of next?
788 	 */
789 	if (next && end == next->vm_start &&
790  			mpol_equal(policy, vma_policy(next)) &&
791 			can_vma_merge_before(next, vm_flags,
792 					anon_vma, file, pgoff+pglen)) {
793 		if (prev && addr < prev->vm_end)	/* case 4 */
794 			vma_adjust(prev, prev->vm_start,
795 				addr, prev->vm_pgoff, NULL);
796 		else					/* cases 3, 8 */
797 			vma_adjust(area, addr, next->vm_end,
798 				next->vm_pgoff - pglen, NULL);
799 		return area;
800 	}
801 
802 	return NULL;
803 }
804 
805 /*
806  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
807  * neighbouring vmas for a suitable anon_vma, before it goes off
808  * to allocate a new anon_vma.  It checks because a repetitive
809  * sequence of mprotects and faults may otherwise lead to distinct
810  * anon_vmas being allocated, preventing vma merge in subsequent
811  * mprotect.
812  */
813 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
814 {
815 	struct vm_area_struct *near;
816 	unsigned long vm_flags;
817 
818 	near = vma->vm_next;
819 	if (!near)
820 		goto try_prev;
821 
822 	/*
823 	 * Since only mprotect tries to remerge vmas, match flags
824 	 * which might be mprotected into each other later on.
825 	 * Neither mlock nor madvise tries to remerge at present,
826 	 * so leave their flags as obstructing a merge.
827 	 */
828 	vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
829 	vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
830 
831 	if (near->anon_vma && vma->vm_end == near->vm_start &&
832  			mpol_equal(vma_policy(vma), vma_policy(near)) &&
833 			can_vma_merge_before(near, vm_flags,
834 				NULL, vma->vm_file, vma->vm_pgoff +
835 				((vma->vm_end - vma->vm_start) >> PAGE_SHIFT)))
836 		return near->anon_vma;
837 try_prev:
838 	/*
839 	 * It is potentially slow to have to call find_vma_prev here.
840 	 * But it's only on the first write fault on the vma, not
841 	 * every time, and we could devise a way to avoid it later
842 	 * (e.g. stash info in next's anon_vma_node when assigning
843 	 * an anon_vma, or when trying vma_merge).  Another time.
844 	 */
845 	BUG_ON(find_vma_prev(vma->vm_mm, vma->vm_start, &near) != vma);
846 	if (!near)
847 		goto none;
848 
849 	vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
850 	vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
851 
852 	if (near->anon_vma && near->vm_end == vma->vm_start &&
853   			mpol_equal(vma_policy(near), vma_policy(vma)) &&
854 			can_vma_merge_after(near, vm_flags,
855 				NULL, vma->vm_file, vma->vm_pgoff))
856 		return near->anon_vma;
857 none:
858 	/*
859 	 * There's no absolute need to look only at touching neighbours:
860 	 * we could search further afield for "compatible" anon_vmas.
861 	 * But it would probably just be a waste of time searching,
862 	 * or lead to too many vmas hanging off the same anon_vma.
863 	 * We're trying to allow mprotect remerging later on,
864 	 * not trying to minimize memory used for anon_vmas.
865 	 */
866 	return NULL;
867 }
868 
869 #ifdef CONFIG_PROC_FS
870 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
871 						struct file *file, long pages)
872 {
873 	const unsigned long stack_flags
874 		= VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
875 
876 	if (file) {
877 		mm->shared_vm += pages;
878 		if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
879 			mm->exec_vm += pages;
880 	} else if (flags & stack_flags)
881 		mm->stack_vm += pages;
882 	if (flags & (VM_RESERVED|VM_IO))
883 		mm->reserved_vm += pages;
884 }
885 #endif /* CONFIG_PROC_FS */
886 
887 /*
888  * The caller must hold down_write(current->mm->mmap_sem).
889  */
890 
891 unsigned long do_mmap_pgoff(struct file * file, unsigned long addr,
892 			unsigned long len, unsigned long prot,
893 			unsigned long flags, unsigned long pgoff)
894 {
895 	struct mm_struct * mm = current->mm;
896 	struct vm_area_struct * vma, * prev;
897 	struct inode *inode;
898 	unsigned int vm_flags;
899 	int correct_wcount = 0;
900 	int error;
901 	struct rb_node ** rb_link, * rb_parent;
902 	int accountable = 1;
903 	unsigned long charged = 0, reqprot = prot;
904 
905 	/*
906 	 * Does the application expect PROT_READ to imply PROT_EXEC?
907 	 *
908 	 * (the exception is when the underlying filesystem is noexec
909 	 *  mounted, in which case we dont add PROT_EXEC.)
910 	 */
911 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
912 		if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
913 			prot |= PROT_EXEC;
914 
915 	if (!len)
916 		return -EINVAL;
917 
918 	error = arch_mmap_check(addr, len, flags);
919 	if (error)
920 		return error;
921 
922 	/* Careful about overflows.. */
923 	len = PAGE_ALIGN(len);
924 	if (!len || len > TASK_SIZE)
925 		return -ENOMEM;
926 
927 	/* offset overflow? */
928 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
929                return -EOVERFLOW;
930 
931 	/* Too many mappings? */
932 	if (mm->map_count > sysctl_max_map_count)
933 		return -ENOMEM;
934 
935 	/* Obtain the address to map to. we verify (or select) it and ensure
936 	 * that it represents a valid section of the address space.
937 	 */
938 	addr = get_unmapped_area(file, addr, len, pgoff, flags);
939 	if (addr & ~PAGE_MASK)
940 		return addr;
941 
942 	/* Do simple checking here so the lower-level routines won't have
943 	 * to. we assume access permissions have been handled by the open
944 	 * of the memory object, so we don't do any here.
945 	 */
946 	vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
947 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
948 
949 	if (flags & MAP_LOCKED) {
950 		if (!can_do_mlock())
951 			return -EPERM;
952 		vm_flags |= VM_LOCKED;
953 	}
954 	/* mlock MCL_FUTURE? */
955 	if (vm_flags & VM_LOCKED) {
956 		unsigned long locked, lock_limit;
957 		locked = len >> PAGE_SHIFT;
958 		locked += mm->locked_vm;
959 		lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
960 		lock_limit >>= PAGE_SHIFT;
961 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
962 			return -EAGAIN;
963 	}
964 
965 	inode = file ? file->f_path.dentry->d_inode : NULL;
966 
967 	if (file) {
968 		switch (flags & MAP_TYPE) {
969 		case MAP_SHARED:
970 			if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
971 				return -EACCES;
972 
973 			/*
974 			 * Make sure we don't allow writing to an append-only
975 			 * file..
976 			 */
977 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
978 				return -EACCES;
979 
980 			/*
981 			 * Make sure there are no mandatory locks on the file.
982 			 */
983 			if (locks_verify_locked(inode))
984 				return -EAGAIN;
985 
986 			vm_flags |= VM_SHARED | VM_MAYSHARE;
987 			if (!(file->f_mode & FMODE_WRITE))
988 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
989 
990 			/* fall through */
991 		case MAP_PRIVATE:
992 			if (!(file->f_mode & FMODE_READ))
993 				return -EACCES;
994 			if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
995 				if (vm_flags & VM_EXEC)
996 					return -EPERM;
997 				vm_flags &= ~VM_MAYEXEC;
998 			}
999 			if (is_file_hugepages(file))
1000 				accountable = 0;
1001 
1002 			if (!file->f_op || !file->f_op->mmap)
1003 				return -ENODEV;
1004 			break;
1005 
1006 		default:
1007 			return -EINVAL;
1008 		}
1009 	} else {
1010 		switch (flags & MAP_TYPE) {
1011 		case MAP_SHARED:
1012 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1013 			break;
1014 		case MAP_PRIVATE:
1015 			/*
1016 			 * Set pgoff according to addr for anon_vma.
1017 			 */
1018 			pgoff = addr >> PAGE_SHIFT;
1019 			break;
1020 		default:
1021 			return -EINVAL;
1022 		}
1023 	}
1024 
1025 	error = security_file_mmap(file, reqprot, prot, flags);
1026 	if (error)
1027 		return error;
1028 
1029 	/* Clear old maps */
1030 	error = -ENOMEM;
1031 munmap_back:
1032 	vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1033 	if (vma && vma->vm_start < addr + len) {
1034 		if (do_munmap(mm, addr, len))
1035 			return -ENOMEM;
1036 		goto munmap_back;
1037 	}
1038 
1039 	/* Check against address space limit. */
1040 	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1041 		return -ENOMEM;
1042 
1043 	if (accountable && (!(flags & MAP_NORESERVE) ||
1044 			    sysctl_overcommit_memory == OVERCOMMIT_NEVER)) {
1045 		if (vm_flags & VM_SHARED) {
1046 			/* Check memory availability in shmem_file_setup? */
1047 			vm_flags |= VM_ACCOUNT;
1048 		} else if (vm_flags & VM_WRITE) {
1049 			/*
1050 			 * Private writable mapping: check memory availability
1051 			 */
1052 			charged = len >> PAGE_SHIFT;
1053 			if (security_vm_enough_memory(charged))
1054 				return -ENOMEM;
1055 			vm_flags |= VM_ACCOUNT;
1056 		}
1057 	}
1058 
1059 	/*
1060 	 * Can we just expand an old private anonymous mapping?
1061 	 * The VM_SHARED test is necessary because shmem_zero_setup
1062 	 * will create the file object for a shared anonymous map below.
1063 	 */
1064 	if (!file && !(vm_flags & VM_SHARED) &&
1065 	    vma_merge(mm, prev, addr, addr + len, vm_flags,
1066 					NULL, NULL, pgoff, NULL))
1067 		goto out;
1068 
1069 	/*
1070 	 * Determine the object being mapped and call the appropriate
1071 	 * specific mapper. the address has already been validated, but
1072 	 * not unmapped, but the maps are removed from the list.
1073 	 */
1074 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1075 	if (!vma) {
1076 		error = -ENOMEM;
1077 		goto unacct_error;
1078 	}
1079 
1080 	vma->vm_mm = mm;
1081 	vma->vm_start = addr;
1082 	vma->vm_end = addr + len;
1083 	vma->vm_flags = vm_flags;
1084 	vma->vm_page_prot = protection_map[vm_flags &
1085 				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)];
1086 	vma->vm_pgoff = pgoff;
1087 
1088 	if (file) {
1089 		error = -EINVAL;
1090 		if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1091 			goto free_vma;
1092 		if (vm_flags & VM_DENYWRITE) {
1093 			error = deny_write_access(file);
1094 			if (error)
1095 				goto free_vma;
1096 			correct_wcount = 1;
1097 		}
1098 		vma->vm_file = file;
1099 		get_file(file);
1100 		error = file->f_op->mmap(file, vma);
1101 		if (error)
1102 			goto unmap_and_free_vma;
1103 	} else if (vm_flags & VM_SHARED) {
1104 		error = shmem_zero_setup(vma);
1105 		if (error)
1106 			goto free_vma;
1107 	}
1108 
1109 	/* We set VM_ACCOUNT in a shared mapping's vm_flags, to inform
1110 	 * shmem_zero_setup (perhaps called through /dev/zero's ->mmap)
1111 	 * that memory reservation must be checked; but that reservation
1112 	 * belongs to shared memory object, not to vma: so now clear it.
1113 	 */
1114 	if ((vm_flags & (VM_SHARED|VM_ACCOUNT)) == (VM_SHARED|VM_ACCOUNT))
1115 		vma->vm_flags &= ~VM_ACCOUNT;
1116 
1117 	/* Can addr have changed??
1118 	 *
1119 	 * Answer: Yes, several device drivers can do it in their
1120 	 *         f_op->mmap method. -DaveM
1121 	 */
1122 	addr = vma->vm_start;
1123 	pgoff = vma->vm_pgoff;
1124 	vm_flags = vma->vm_flags;
1125 
1126 	if (vma_wants_writenotify(vma))
1127 		vma->vm_page_prot =
1128 			protection_map[vm_flags & (VM_READ|VM_WRITE|VM_EXEC)];
1129 
1130 	if (!file || !vma_merge(mm, prev, addr, vma->vm_end,
1131 			vma->vm_flags, NULL, file, pgoff, vma_policy(vma))) {
1132 		file = vma->vm_file;
1133 		vma_link(mm, vma, prev, rb_link, rb_parent);
1134 		if (correct_wcount)
1135 			atomic_inc(&inode->i_writecount);
1136 	} else {
1137 		if (file) {
1138 			if (correct_wcount)
1139 				atomic_inc(&inode->i_writecount);
1140 			fput(file);
1141 		}
1142 		mpol_free(vma_policy(vma));
1143 		kmem_cache_free(vm_area_cachep, vma);
1144 	}
1145 out:
1146 	mm->total_vm += len >> PAGE_SHIFT;
1147 	vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1148 	if (vm_flags & VM_LOCKED) {
1149 		mm->locked_vm += len >> PAGE_SHIFT;
1150 		make_pages_present(addr, addr + len);
1151 	}
1152 	if (flags & MAP_POPULATE) {
1153 		up_write(&mm->mmap_sem);
1154 		sys_remap_file_pages(addr, len, 0,
1155 					pgoff, flags & MAP_NONBLOCK);
1156 		down_write(&mm->mmap_sem);
1157 	}
1158 	return addr;
1159 
1160 unmap_and_free_vma:
1161 	if (correct_wcount)
1162 		atomic_inc(&inode->i_writecount);
1163 	vma->vm_file = NULL;
1164 	fput(file);
1165 
1166 	/* Undo any partial mapping done by a device driver. */
1167 	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1168 	charged = 0;
1169 free_vma:
1170 	kmem_cache_free(vm_area_cachep, vma);
1171 unacct_error:
1172 	if (charged)
1173 		vm_unacct_memory(charged);
1174 	return error;
1175 }
1176 
1177 EXPORT_SYMBOL(do_mmap_pgoff);
1178 
1179 /* Get an address range which is currently unmapped.
1180  * For shmat() with addr=0.
1181  *
1182  * Ugly calling convention alert:
1183  * Return value with the low bits set means error value,
1184  * ie
1185  *	if (ret & ~PAGE_MASK)
1186  *		error = ret;
1187  *
1188  * This function "knows" that -ENOMEM has the bits set.
1189  */
1190 #ifndef HAVE_ARCH_UNMAPPED_AREA
1191 unsigned long
1192 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1193 		unsigned long len, unsigned long pgoff, unsigned long flags)
1194 {
1195 	struct mm_struct *mm = current->mm;
1196 	struct vm_area_struct *vma;
1197 	unsigned long start_addr;
1198 
1199 	if (len > TASK_SIZE)
1200 		return -ENOMEM;
1201 
1202 	if (addr) {
1203 		addr = PAGE_ALIGN(addr);
1204 		vma = find_vma(mm, addr);
1205 		if (TASK_SIZE - len >= addr &&
1206 		    (!vma || addr + len <= vma->vm_start))
1207 			return addr;
1208 	}
1209 	if (len > mm->cached_hole_size) {
1210 	        start_addr = addr = mm->free_area_cache;
1211 	} else {
1212 	        start_addr = addr = TASK_UNMAPPED_BASE;
1213 	        mm->cached_hole_size = 0;
1214 	}
1215 
1216 full_search:
1217 	for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1218 		/* At this point:  (!vma || addr < vma->vm_end). */
1219 		if (TASK_SIZE - len < addr) {
1220 			/*
1221 			 * Start a new search - just in case we missed
1222 			 * some holes.
1223 			 */
1224 			if (start_addr != TASK_UNMAPPED_BASE) {
1225 				addr = TASK_UNMAPPED_BASE;
1226 			        start_addr = addr;
1227 				mm->cached_hole_size = 0;
1228 				goto full_search;
1229 			}
1230 			return -ENOMEM;
1231 		}
1232 		if (!vma || addr + len <= vma->vm_start) {
1233 			/*
1234 			 * Remember the place where we stopped the search:
1235 			 */
1236 			mm->free_area_cache = addr + len;
1237 			return addr;
1238 		}
1239 		if (addr + mm->cached_hole_size < vma->vm_start)
1240 		        mm->cached_hole_size = vma->vm_start - addr;
1241 		addr = vma->vm_end;
1242 	}
1243 }
1244 #endif
1245 
1246 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1247 {
1248 	/*
1249 	 * Is this a new hole at the lowest possible address?
1250 	 */
1251 	if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) {
1252 		mm->free_area_cache = addr;
1253 		mm->cached_hole_size = ~0UL;
1254 	}
1255 }
1256 
1257 /*
1258  * This mmap-allocator allocates new areas top-down from below the
1259  * stack's low limit (the base):
1260  */
1261 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1262 unsigned long
1263 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1264 			  const unsigned long len, const unsigned long pgoff,
1265 			  const unsigned long flags)
1266 {
1267 	struct vm_area_struct *vma;
1268 	struct mm_struct *mm = current->mm;
1269 	unsigned long addr = addr0;
1270 
1271 	/* requested length too big for entire address space */
1272 	if (len > TASK_SIZE)
1273 		return -ENOMEM;
1274 
1275 	/* requesting a specific address */
1276 	if (addr) {
1277 		addr = PAGE_ALIGN(addr);
1278 		vma = find_vma(mm, addr);
1279 		if (TASK_SIZE - len >= addr &&
1280 				(!vma || addr + len <= vma->vm_start))
1281 			return addr;
1282 	}
1283 
1284 	/* check if free_area_cache is useful for us */
1285 	if (len <= mm->cached_hole_size) {
1286  	        mm->cached_hole_size = 0;
1287  		mm->free_area_cache = mm->mmap_base;
1288  	}
1289 
1290 	/* either no address requested or can't fit in requested address hole */
1291 	addr = mm->free_area_cache;
1292 
1293 	/* make sure it can fit in the remaining address space */
1294 	if (addr > len) {
1295 		vma = find_vma(mm, addr-len);
1296 		if (!vma || addr <= vma->vm_start)
1297 			/* remember the address as a hint for next time */
1298 			return (mm->free_area_cache = addr-len);
1299 	}
1300 
1301 	if (mm->mmap_base < len)
1302 		goto bottomup;
1303 
1304 	addr = mm->mmap_base-len;
1305 
1306 	do {
1307 		/*
1308 		 * Lookup failure means no vma is above this address,
1309 		 * else if new region fits below vma->vm_start,
1310 		 * return with success:
1311 		 */
1312 		vma = find_vma(mm, addr);
1313 		if (!vma || addr+len <= vma->vm_start)
1314 			/* remember the address as a hint for next time */
1315 			return (mm->free_area_cache = addr);
1316 
1317  		/* remember the largest hole we saw so far */
1318  		if (addr + mm->cached_hole_size < vma->vm_start)
1319  		        mm->cached_hole_size = vma->vm_start - addr;
1320 
1321 		/* try just below the current vma->vm_start */
1322 		addr = vma->vm_start-len;
1323 	} while (len < vma->vm_start);
1324 
1325 bottomup:
1326 	/*
1327 	 * A failed mmap() very likely causes application failure,
1328 	 * so fall back to the bottom-up function here. This scenario
1329 	 * can happen with large stack limits and large mmap()
1330 	 * allocations.
1331 	 */
1332 	mm->cached_hole_size = ~0UL;
1333   	mm->free_area_cache = TASK_UNMAPPED_BASE;
1334 	addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1335 	/*
1336 	 * Restore the topdown base:
1337 	 */
1338 	mm->free_area_cache = mm->mmap_base;
1339 	mm->cached_hole_size = ~0UL;
1340 
1341 	return addr;
1342 }
1343 #endif
1344 
1345 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1346 {
1347 	/*
1348 	 * Is this a new hole at the highest possible address?
1349 	 */
1350 	if (addr > mm->free_area_cache)
1351 		mm->free_area_cache = addr;
1352 
1353 	/* dont allow allocations above current base */
1354 	if (mm->free_area_cache > mm->mmap_base)
1355 		mm->free_area_cache = mm->mmap_base;
1356 }
1357 
1358 unsigned long
1359 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1360 		unsigned long pgoff, unsigned long flags)
1361 {
1362 	unsigned long ret;
1363 
1364 	if (!(flags & MAP_FIXED)) {
1365 		unsigned long (*get_area)(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1366 
1367 		get_area = current->mm->get_unmapped_area;
1368 		if (file && file->f_op && file->f_op->get_unmapped_area)
1369 			get_area = file->f_op->get_unmapped_area;
1370 		addr = get_area(file, addr, len, pgoff, flags);
1371 		if (IS_ERR_VALUE(addr))
1372 			return addr;
1373 	}
1374 
1375 	if (addr > TASK_SIZE - len)
1376 		return -ENOMEM;
1377 	if (addr & ~PAGE_MASK)
1378 		return -EINVAL;
1379 	if (file && is_file_hugepages(file))  {
1380 		/*
1381 		 * Check if the given range is hugepage aligned, and
1382 		 * can be made suitable for hugepages.
1383 		 */
1384 		ret = prepare_hugepage_range(addr, len, pgoff);
1385 	} else {
1386 		/*
1387 		 * Ensure that a normal request is not falling in a
1388 		 * reserved hugepage range.  For some archs like IA-64,
1389 		 * there is a separate region for hugepages.
1390 		 */
1391 		ret = is_hugepage_only_range(current->mm, addr, len);
1392 	}
1393 	if (ret)
1394 		return -EINVAL;
1395 	return addr;
1396 }
1397 
1398 EXPORT_SYMBOL(get_unmapped_area);
1399 
1400 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1401 struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr)
1402 {
1403 	struct vm_area_struct *vma = NULL;
1404 
1405 	if (mm) {
1406 		/* Check the cache first. */
1407 		/* (Cache hit rate is typically around 35%.) */
1408 		vma = mm->mmap_cache;
1409 		if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1410 			struct rb_node * rb_node;
1411 
1412 			rb_node = mm->mm_rb.rb_node;
1413 			vma = NULL;
1414 
1415 			while (rb_node) {
1416 				struct vm_area_struct * vma_tmp;
1417 
1418 				vma_tmp = rb_entry(rb_node,
1419 						struct vm_area_struct, vm_rb);
1420 
1421 				if (vma_tmp->vm_end > addr) {
1422 					vma = vma_tmp;
1423 					if (vma_tmp->vm_start <= addr)
1424 						break;
1425 					rb_node = rb_node->rb_left;
1426 				} else
1427 					rb_node = rb_node->rb_right;
1428 			}
1429 			if (vma)
1430 				mm->mmap_cache = vma;
1431 		}
1432 	}
1433 	return vma;
1434 }
1435 
1436 EXPORT_SYMBOL(find_vma);
1437 
1438 /* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */
1439 struct vm_area_struct *
1440 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1441 			struct vm_area_struct **pprev)
1442 {
1443 	struct vm_area_struct *vma = NULL, *prev = NULL;
1444 	struct rb_node * rb_node;
1445 	if (!mm)
1446 		goto out;
1447 
1448 	/* Guard against addr being lower than the first VMA */
1449 	vma = mm->mmap;
1450 
1451 	/* Go through the RB tree quickly. */
1452 	rb_node = mm->mm_rb.rb_node;
1453 
1454 	while (rb_node) {
1455 		struct vm_area_struct *vma_tmp;
1456 		vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1457 
1458 		if (addr < vma_tmp->vm_end) {
1459 			rb_node = rb_node->rb_left;
1460 		} else {
1461 			prev = vma_tmp;
1462 			if (!prev->vm_next || (addr < prev->vm_next->vm_end))
1463 				break;
1464 			rb_node = rb_node->rb_right;
1465 		}
1466 	}
1467 
1468 out:
1469 	*pprev = prev;
1470 	return prev ? prev->vm_next : vma;
1471 }
1472 
1473 /*
1474  * Verify that the stack growth is acceptable and
1475  * update accounting. This is shared with both the
1476  * grow-up and grow-down cases.
1477  */
1478 static int acct_stack_growth(struct vm_area_struct * vma, unsigned long size, unsigned long grow)
1479 {
1480 	struct mm_struct *mm = vma->vm_mm;
1481 	struct rlimit *rlim = current->signal->rlim;
1482 	unsigned long new_start;
1483 
1484 	/* address space limit tests */
1485 	if (!may_expand_vm(mm, grow))
1486 		return -ENOMEM;
1487 
1488 	/* Stack limit test */
1489 	if (size > rlim[RLIMIT_STACK].rlim_cur)
1490 		return -ENOMEM;
1491 
1492 	/* mlock limit tests */
1493 	if (vma->vm_flags & VM_LOCKED) {
1494 		unsigned long locked;
1495 		unsigned long limit;
1496 		locked = mm->locked_vm + grow;
1497 		limit = rlim[RLIMIT_MEMLOCK].rlim_cur >> PAGE_SHIFT;
1498 		if (locked > limit && !capable(CAP_IPC_LOCK))
1499 			return -ENOMEM;
1500 	}
1501 
1502 	/* Check to ensure the stack will not grow into a hugetlb-only region */
1503 	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1504 			vma->vm_end - size;
1505 	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1506 		return -EFAULT;
1507 
1508 	/*
1509 	 * Overcommit..  This must be the final test, as it will
1510 	 * update security statistics.
1511 	 */
1512 	if (security_vm_enough_memory(grow))
1513 		return -ENOMEM;
1514 
1515 	/* Ok, everything looks good - let it rip */
1516 	mm->total_vm += grow;
1517 	if (vma->vm_flags & VM_LOCKED)
1518 		mm->locked_vm += grow;
1519 	vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1520 	return 0;
1521 }
1522 
1523 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1524 /*
1525  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1526  * vma is the last one with address > vma->vm_end.  Have to extend vma.
1527  */
1528 #ifndef CONFIG_IA64
1529 static inline
1530 #endif
1531 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1532 {
1533 	int error;
1534 
1535 	if (!(vma->vm_flags & VM_GROWSUP))
1536 		return -EFAULT;
1537 
1538 	/*
1539 	 * We must make sure the anon_vma is allocated
1540 	 * so that the anon_vma locking is not a noop.
1541 	 */
1542 	if (unlikely(anon_vma_prepare(vma)))
1543 		return -ENOMEM;
1544 	anon_vma_lock(vma);
1545 
1546 	/*
1547 	 * vma->vm_start/vm_end cannot change under us because the caller
1548 	 * is required to hold the mmap_sem in read mode.  We need the
1549 	 * anon_vma lock to serialize against concurrent expand_stacks.
1550 	 */
1551 	address += 4 + PAGE_SIZE - 1;
1552 	address &= PAGE_MASK;
1553 	error = 0;
1554 
1555 	/* Somebody else might have raced and expanded it already */
1556 	if (address > vma->vm_end) {
1557 		unsigned long size, grow;
1558 
1559 		size = address - vma->vm_start;
1560 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
1561 
1562 		error = acct_stack_growth(vma, size, grow);
1563 		if (!error)
1564 			vma->vm_end = address;
1565 	}
1566 	anon_vma_unlock(vma);
1567 	return error;
1568 }
1569 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1570 
1571 #ifdef CONFIG_STACK_GROWSUP
1572 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1573 {
1574 	return expand_upwards(vma, address);
1575 }
1576 
1577 struct vm_area_struct *
1578 find_extend_vma(struct mm_struct *mm, unsigned long addr)
1579 {
1580 	struct vm_area_struct *vma, *prev;
1581 
1582 	addr &= PAGE_MASK;
1583 	vma = find_vma_prev(mm, addr, &prev);
1584 	if (vma && (vma->vm_start <= addr))
1585 		return vma;
1586 	if (!prev || expand_stack(prev, addr))
1587 		return NULL;
1588 	if (prev->vm_flags & VM_LOCKED) {
1589 		make_pages_present(addr, prev->vm_end);
1590 	}
1591 	return prev;
1592 }
1593 #else
1594 /*
1595  * vma is the first one with address < vma->vm_start.  Have to extend vma.
1596  */
1597 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1598 {
1599 	int error;
1600 
1601 	/*
1602 	 * We must make sure the anon_vma is allocated
1603 	 * so that the anon_vma locking is not a noop.
1604 	 */
1605 	if (unlikely(anon_vma_prepare(vma)))
1606 		return -ENOMEM;
1607 	anon_vma_lock(vma);
1608 
1609 	/*
1610 	 * vma->vm_start/vm_end cannot change under us because the caller
1611 	 * is required to hold the mmap_sem in read mode.  We need the
1612 	 * anon_vma lock to serialize against concurrent expand_stacks.
1613 	 */
1614 	address &= PAGE_MASK;
1615 	error = 0;
1616 
1617 	/* Somebody else might have raced and expanded it already */
1618 	if (address < vma->vm_start) {
1619 		unsigned long size, grow;
1620 
1621 		size = vma->vm_end - address;
1622 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
1623 
1624 		error = acct_stack_growth(vma, size, grow);
1625 		if (!error) {
1626 			vma->vm_start = address;
1627 			vma->vm_pgoff -= grow;
1628 		}
1629 	}
1630 	anon_vma_unlock(vma);
1631 	return error;
1632 }
1633 
1634 struct vm_area_struct *
1635 find_extend_vma(struct mm_struct * mm, unsigned long addr)
1636 {
1637 	struct vm_area_struct * vma;
1638 	unsigned long start;
1639 
1640 	addr &= PAGE_MASK;
1641 	vma = find_vma(mm,addr);
1642 	if (!vma)
1643 		return NULL;
1644 	if (vma->vm_start <= addr)
1645 		return vma;
1646 	if (!(vma->vm_flags & VM_GROWSDOWN))
1647 		return NULL;
1648 	start = vma->vm_start;
1649 	if (expand_stack(vma, addr))
1650 		return NULL;
1651 	if (vma->vm_flags & VM_LOCKED) {
1652 		make_pages_present(addr, start);
1653 	}
1654 	return vma;
1655 }
1656 #endif
1657 
1658 /*
1659  * Ok - we have the memory areas we should free on the vma list,
1660  * so release them, and do the vma updates.
1661  *
1662  * Called with the mm semaphore held.
1663  */
1664 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1665 {
1666 	/* Update high watermark before we lower total_vm */
1667 	update_hiwater_vm(mm);
1668 	do {
1669 		long nrpages = vma_pages(vma);
1670 
1671 		mm->total_vm -= nrpages;
1672 		if (vma->vm_flags & VM_LOCKED)
1673 			mm->locked_vm -= nrpages;
1674 		vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
1675 		vma = remove_vma(vma);
1676 	} while (vma);
1677 	validate_mm(mm);
1678 }
1679 
1680 /*
1681  * Get rid of page table information in the indicated region.
1682  *
1683  * Called with the mm semaphore held.
1684  */
1685 static void unmap_region(struct mm_struct *mm,
1686 		struct vm_area_struct *vma, struct vm_area_struct *prev,
1687 		unsigned long start, unsigned long end)
1688 {
1689 	struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1690 	struct mmu_gather *tlb;
1691 	unsigned long nr_accounted = 0;
1692 
1693 	lru_add_drain();
1694 	tlb = tlb_gather_mmu(mm, 0);
1695 	update_hiwater_rss(mm);
1696 	unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL);
1697 	vm_unacct_memory(nr_accounted);
1698 	free_pgtables(&tlb, vma, prev? prev->vm_end: FIRST_USER_ADDRESS,
1699 				 next? next->vm_start: 0);
1700 	tlb_finish_mmu(tlb, start, end);
1701 }
1702 
1703 /*
1704  * Create a list of vma's touched by the unmap, removing them from the mm's
1705  * vma list as we go..
1706  */
1707 static void
1708 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1709 	struct vm_area_struct *prev, unsigned long end)
1710 {
1711 	struct vm_area_struct **insertion_point;
1712 	struct vm_area_struct *tail_vma = NULL;
1713 	unsigned long addr;
1714 
1715 	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1716 	do {
1717 		rb_erase(&vma->vm_rb, &mm->mm_rb);
1718 		mm->map_count--;
1719 		tail_vma = vma;
1720 		vma = vma->vm_next;
1721 	} while (vma && vma->vm_start < end);
1722 	*insertion_point = vma;
1723 	tail_vma->vm_next = NULL;
1724 	if (mm->unmap_area == arch_unmap_area)
1725 		addr = prev ? prev->vm_end : mm->mmap_base;
1726 	else
1727 		addr = vma ?  vma->vm_start : mm->mmap_base;
1728 	mm->unmap_area(mm, addr);
1729 	mm->mmap_cache = NULL;		/* Kill the cache. */
1730 }
1731 
1732 /*
1733  * Split a vma into two pieces at address 'addr', a new vma is allocated
1734  * either for the first part or the the tail.
1735  */
1736 int split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1737 	      unsigned long addr, int new_below)
1738 {
1739 	struct mempolicy *pol;
1740 	struct vm_area_struct *new;
1741 
1742 	if (is_vm_hugetlb_page(vma) && (addr & ~HPAGE_MASK))
1743 		return -EINVAL;
1744 
1745 	if (mm->map_count >= sysctl_max_map_count)
1746 		return -ENOMEM;
1747 
1748 	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1749 	if (!new)
1750 		return -ENOMEM;
1751 
1752 	/* most fields are the same, copy all, and then fixup */
1753 	*new = *vma;
1754 
1755 	if (new_below)
1756 		new->vm_end = addr;
1757 	else {
1758 		new->vm_start = addr;
1759 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
1760 	}
1761 
1762 	pol = mpol_copy(vma_policy(vma));
1763 	if (IS_ERR(pol)) {
1764 		kmem_cache_free(vm_area_cachep, new);
1765 		return PTR_ERR(pol);
1766 	}
1767 	vma_set_policy(new, pol);
1768 
1769 	if (new->vm_file)
1770 		get_file(new->vm_file);
1771 
1772 	if (new->vm_ops && new->vm_ops->open)
1773 		new->vm_ops->open(new);
1774 
1775 	if (new_below)
1776 		vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
1777 			((addr - new->vm_start) >> PAGE_SHIFT), new);
1778 	else
1779 		vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
1780 
1781 	return 0;
1782 }
1783 
1784 /* Munmap is split into 2 main parts -- this part which finds
1785  * what needs doing, and the areas themselves, which do the
1786  * work.  This now handles partial unmappings.
1787  * Jeremy Fitzhardinge <jeremy@goop.org>
1788  */
1789 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1790 {
1791 	unsigned long end;
1792 	struct vm_area_struct *vma, *prev, *last;
1793 
1794 	if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
1795 		return -EINVAL;
1796 
1797 	if ((len = PAGE_ALIGN(len)) == 0)
1798 		return -EINVAL;
1799 
1800 	/* Find the first overlapping VMA */
1801 	vma = find_vma_prev(mm, start, &prev);
1802 	if (!vma)
1803 		return 0;
1804 	/* we have  start < vma->vm_end  */
1805 
1806 	/* if it doesn't overlap, we have nothing.. */
1807 	end = start + len;
1808 	if (vma->vm_start >= end)
1809 		return 0;
1810 
1811 	/*
1812 	 * If we need to split any vma, do it now to save pain later.
1813 	 *
1814 	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
1815 	 * unmapped vm_area_struct will remain in use: so lower split_vma
1816 	 * places tmp vma above, and higher split_vma places tmp vma below.
1817 	 */
1818 	if (start > vma->vm_start) {
1819 		int error = split_vma(mm, vma, start, 0);
1820 		if (error)
1821 			return error;
1822 		prev = vma;
1823 	}
1824 
1825 	/* Does it split the last one? */
1826 	last = find_vma(mm, end);
1827 	if (last && end > last->vm_start) {
1828 		int error = split_vma(mm, last, end, 1);
1829 		if (error)
1830 			return error;
1831 	}
1832 	vma = prev? prev->vm_next: mm->mmap;
1833 
1834 	/*
1835 	 * Remove the vma's, and unmap the actual pages
1836 	 */
1837 	detach_vmas_to_be_unmapped(mm, vma, prev, end);
1838 	unmap_region(mm, vma, prev, start, end);
1839 
1840 	/* Fix up all other VM information */
1841 	remove_vma_list(mm, vma);
1842 
1843 	return 0;
1844 }
1845 
1846 EXPORT_SYMBOL(do_munmap);
1847 
1848 asmlinkage long sys_munmap(unsigned long addr, size_t len)
1849 {
1850 	int ret;
1851 	struct mm_struct *mm = current->mm;
1852 
1853 	profile_munmap(addr);
1854 
1855 	down_write(&mm->mmap_sem);
1856 	ret = do_munmap(mm, addr, len);
1857 	up_write(&mm->mmap_sem);
1858 	return ret;
1859 }
1860 
1861 static inline void verify_mm_writelocked(struct mm_struct *mm)
1862 {
1863 #ifdef CONFIG_DEBUG_VM
1864 	if (unlikely(down_read_trylock(&mm->mmap_sem))) {
1865 		WARN_ON(1);
1866 		up_read(&mm->mmap_sem);
1867 	}
1868 #endif
1869 }
1870 
1871 /*
1872  *  this is really a simplified "do_mmap".  it only handles
1873  *  anonymous maps.  eventually we may be able to do some
1874  *  brk-specific accounting here.
1875  */
1876 unsigned long do_brk(unsigned long addr, unsigned long len)
1877 {
1878 	struct mm_struct * mm = current->mm;
1879 	struct vm_area_struct * vma, * prev;
1880 	unsigned long flags;
1881 	struct rb_node ** rb_link, * rb_parent;
1882 	pgoff_t pgoff = addr >> PAGE_SHIFT;
1883 	int error;
1884 
1885 	len = PAGE_ALIGN(len);
1886 	if (!len)
1887 		return addr;
1888 
1889 	if ((addr + len) > TASK_SIZE || (addr + len) < addr)
1890 		return -EINVAL;
1891 
1892 	if (is_hugepage_only_range(mm, addr, len))
1893 		return -EINVAL;
1894 
1895 	flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
1896 
1897 	error = arch_mmap_check(addr, len, flags);
1898 	if (error)
1899 		return error;
1900 
1901 	/*
1902 	 * mlock MCL_FUTURE?
1903 	 */
1904 	if (mm->def_flags & VM_LOCKED) {
1905 		unsigned long locked, lock_limit;
1906 		locked = len >> PAGE_SHIFT;
1907 		locked += mm->locked_vm;
1908 		lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
1909 		lock_limit >>= PAGE_SHIFT;
1910 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1911 			return -EAGAIN;
1912 	}
1913 
1914 	/*
1915 	 * mm->mmap_sem is required to protect against another thread
1916 	 * changing the mappings in case we sleep.
1917 	 */
1918 	verify_mm_writelocked(mm);
1919 
1920 	/*
1921 	 * Clear old maps.  this also does some error checking for us
1922 	 */
1923  munmap_back:
1924 	vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1925 	if (vma && vma->vm_start < addr + len) {
1926 		if (do_munmap(mm, addr, len))
1927 			return -ENOMEM;
1928 		goto munmap_back;
1929 	}
1930 
1931 	/* Check against address space limits *after* clearing old maps... */
1932 	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1933 		return -ENOMEM;
1934 
1935 	if (mm->map_count > sysctl_max_map_count)
1936 		return -ENOMEM;
1937 
1938 	if (security_vm_enough_memory(len >> PAGE_SHIFT))
1939 		return -ENOMEM;
1940 
1941 	/* Can we just expand an old private anonymous mapping? */
1942 	if (vma_merge(mm, prev, addr, addr + len, flags,
1943 					NULL, NULL, pgoff, NULL))
1944 		goto out;
1945 
1946 	/*
1947 	 * create a vma struct for an anonymous mapping
1948 	 */
1949 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1950 	if (!vma) {
1951 		vm_unacct_memory(len >> PAGE_SHIFT);
1952 		return -ENOMEM;
1953 	}
1954 
1955 	vma->vm_mm = mm;
1956 	vma->vm_start = addr;
1957 	vma->vm_end = addr + len;
1958 	vma->vm_pgoff = pgoff;
1959 	vma->vm_flags = flags;
1960 	vma->vm_page_prot = protection_map[flags &
1961 				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)];
1962 	vma_link(mm, vma, prev, rb_link, rb_parent);
1963 out:
1964 	mm->total_vm += len >> PAGE_SHIFT;
1965 	if (flags & VM_LOCKED) {
1966 		mm->locked_vm += len >> PAGE_SHIFT;
1967 		make_pages_present(addr, addr + len);
1968 	}
1969 	return addr;
1970 }
1971 
1972 EXPORT_SYMBOL(do_brk);
1973 
1974 /* Release all mmaps. */
1975 void exit_mmap(struct mm_struct *mm)
1976 {
1977 	struct mmu_gather *tlb;
1978 	struct vm_area_struct *vma = mm->mmap;
1979 	unsigned long nr_accounted = 0;
1980 	unsigned long end;
1981 
1982 	lru_add_drain();
1983 	flush_cache_mm(mm);
1984 	tlb = tlb_gather_mmu(mm, 1);
1985 	/* Don't update_hiwater_rss(mm) here, do_exit already did */
1986 	/* Use -1 here to ensure all VMAs in the mm are unmapped */
1987 	end = unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL);
1988 	vm_unacct_memory(nr_accounted);
1989 	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, 0);
1990 	tlb_finish_mmu(tlb, 0, end);
1991 
1992 	/*
1993 	 * Walk the list again, actually closing and freeing it,
1994 	 * with preemption enabled, without holding any MM locks.
1995 	 */
1996 	while (vma)
1997 		vma = remove_vma(vma);
1998 
1999 	BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2000 }
2001 
2002 /* Insert vm structure into process list sorted by address
2003  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2004  * then i_mmap_lock is taken here.
2005  */
2006 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
2007 {
2008 	struct vm_area_struct * __vma, * prev;
2009 	struct rb_node ** rb_link, * rb_parent;
2010 
2011 	/*
2012 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
2013 	 * until its first write fault, when page's anon_vma and index
2014 	 * are set.  But now set the vm_pgoff it will almost certainly
2015 	 * end up with (unless mremap moves it elsewhere before that
2016 	 * first wfault), so /proc/pid/maps tells a consistent story.
2017 	 *
2018 	 * By setting it to reflect the virtual start address of the
2019 	 * vma, merges and splits can happen in a seamless way, just
2020 	 * using the existing file pgoff checks and manipulations.
2021 	 * Similarly in do_mmap_pgoff and in do_brk.
2022 	 */
2023 	if (!vma->vm_file) {
2024 		BUG_ON(vma->anon_vma);
2025 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2026 	}
2027 	__vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent);
2028 	if (__vma && __vma->vm_start < vma->vm_end)
2029 		return -ENOMEM;
2030 	if ((vma->vm_flags & VM_ACCOUNT) &&
2031 	     security_vm_enough_memory(vma_pages(vma)))
2032 		return -ENOMEM;
2033 	vma_link(mm, vma, prev, rb_link, rb_parent);
2034 	return 0;
2035 }
2036 
2037 /*
2038  * Copy the vma structure to a new location in the same mm,
2039  * prior to moving page table entries, to effect an mremap move.
2040  */
2041 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2042 	unsigned long addr, unsigned long len, pgoff_t pgoff)
2043 {
2044 	struct vm_area_struct *vma = *vmap;
2045 	unsigned long vma_start = vma->vm_start;
2046 	struct mm_struct *mm = vma->vm_mm;
2047 	struct vm_area_struct *new_vma, *prev;
2048 	struct rb_node **rb_link, *rb_parent;
2049 	struct mempolicy *pol;
2050 
2051 	/*
2052 	 * If anonymous vma has not yet been faulted, update new pgoff
2053 	 * to match new location, to increase its chance of merging.
2054 	 */
2055 	if (!vma->vm_file && !vma->anon_vma)
2056 		pgoff = addr >> PAGE_SHIFT;
2057 
2058 	find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2059 	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2060 			vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2061 	if (new_vma) {
2062 		/*
2063 		 * Source vma may have been merged into new_vma
2064 		 */
2065 		if (vma_start >= new_vma->vm_start &&
2066 		    vma_start < new_vma->vm_end)
2067 			*vmap = new_vma;
2068 	} else {
2069 		new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2070 		if (new_vma) {
2071 			*new_vma = *vma;
2072 			pol = mpol_copy(vma_policy(vma));
2073 			if (IS_ERR(pol)) {
2074 				kmem_cache_free(vm_area_cachep, new_vma);
2075 				return NULL;
2076 			}
2077 			vma_set_policy(new_vma, pol);
2078 			new_vma->vm_start = addr;
2079 			new_vma->vm_end = addr + len;
2080 			new_vma->vm_pgoff = pgoff;
2081 			if (new_vma->vm_file)
2082 				get_file(new_vma->vm_file);
2083 			if (new_vma->vm_ops && new_vma->vm_ops->open)
2084 				new_vma->vm_ops->open(new_vma);
2085 			vma_link(mm, new_vma, prev, rb_link, rb_parent);
2086 		}
2087 	}
2088 	return new_vma;
2089 }
2090 
2091 /*
2092  * Return true if the calling process may expand its vm space by the passed
2093  * number of pages
2094  */
2095 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2096 {
2097 	unsigned long cur = mm->total_vm;	/* pages */
2098 	unsigned long lim;
2099 
2100 	lim = current->signal->rlim[RLIMIT_AS].rlim_cur >> PAGE_SHIFT;
2101 
2102 	if (cur + npages > lim)
2103 		return 0;
2104 	return 1;
2105 }
2106 
2107 
2108 static struct page *special_mapping_nopage(struct vm_area_struct *vma,
2109 					   unsigned long address, int *type)
2110 {
2111 	struct page **pages;
2112 
2113 	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
2114 
2115 	address -= vma->vm_start;
2116 	for (pages = vma->vm_private_data; address > 0 && *pages; ++pages)
2117 		address -= PAGE_SIZE;
2118 
2119 	if (*pages) {
2120 		struct page *page = *pages;
2121 		get_page(page);
2122 		return page;
2123 	}
2124 
2125 	return NOPAGE_SIGBUS;
2126 }
2127 
2128 /*
2129  * Having a close hook prevents vma merging regardless of flags.
2130  */
2131 static void special_mapping_close(struct vm_area_struct *vma)
2132 {
2133 }
2134 
2135 static struct vm_operations_struct special_mapping_vmops = {
2136 	.close = special_mapping_close,
2137 	.nopage	= special_mapping_nopage,
2138 };
2139 
2140 /*
2141  * Called with mm->mmap_sem held for writing.
2142  * Insert a new vma covering the given region, with the given flags.
2143  * Its pages are supplied by the given array of struct page *.
2144  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2145  * The region past the last page supplied will always produce SIGBUS.
2146  * The array pointer and the pages it points to are assumed to stay alive
2147  * for as long as this mapping might exist.
2148  */
2149 int install_special_mapping(struct mm_struct *mm,
2150 			    unsigned long addr, unsigned long len,
2151 			    unsigned long vm_flags, struct page **pages)
2152 {
2153 	struct vm_area_struct *vma;
2154 
2155 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2156 	if (unlikely(vma == NULL))
2157 		return -ENOMEM;
2158 
2159 	vma->vm_mm = mm;
2160 	vma->vm_start = addr;
2161 	vma->vm_end = addr + len;
2162 
2163 	vma->vm_flags = vm_flags | mm->def_flags;
2164 	vma->vm_page_prot = protection_map[vma->vm_flags & 7];
2165 
2166 	vma->vm_ops = &special_mapping_vmops;
2167 	vma->vm_private_data = pages;
2168 
2169 	if (unlikely(insert_vm_struct(mm, vma))) {
2170 		kmem_cache_free(vm_area_cachep, vma);
2171 		return -ENOMEM;
2172 	}
2173 
2174 	mm->total_vm += len >> PAGE_SHIFT;
2175 
2176 	return 0;
2177 }
2178