xref: /linux/mm/mmap.c (revision c435bce6af9b2a277662698875a689c389358f17)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/mmap.c
4  *
5  * Written by obz.
6  *
7  * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/mm_inline.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
47 #include <linux/oom.h>
48 #include <linux/sched/mm.h>
49 #include <linux/ksm.h>
50 
51 #include <linux/uaccess.h>
52 #include <asm/cacheflush.h>
53 #include <asm/tlb.h>
54 #include <asm/mmu_context.h>
55 
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/mmap.h>
58 
59 #include "internal.h"
60 
61 #ifndef arch_mmap_check
62 #define arch_mmap_check(addr, len, flags)	(0)
63 #endif
64 
65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
66 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
67 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
68 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
69 #endif
70 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
71 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
72 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
73 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
74 #endif
75 
76 static bool ignore_rlimit_data;
77 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
78 
79 static void unmap_region(struct mm_struct *mm, struct ma_state *mas,
80 		struct vm_area_struct *vma, struct vm_area_struct *prev,
81 		struct vm_area_struct *next, unsigned long start,
82 		unsigned long end, unsigned long tree_end, bool mm_wr_locked);
83 
84 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
85 {
86 	return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
87 }
88 
89 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
90 void vma_set_page_prot(struct vm_area_struct *vma)
91 {
92 	unsigned long vm_flags = vma->vm_flags;
93 	pgprot_t vm_page_prot;
94 
95 	vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
96 	if (vma_wants_writenotify(vma, vm_page_prot)) {
97 		vm_flags &= ~VM_SHARED;
98 		vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
99 	}
100 	/* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
101 	WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
102 }
103 
104 /*
105  * Requires inode->i_mapping->i_mmap_rwsem
106  */
107 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
108 		struct file *file, struct address_space *mapping)
109 {
110 	if (vma_is_shared_maywrite(vma))
111 		mapping_unmap_writable(mapping);
112 
113 	flush_dcache_mmap_lock(mapping);
114 	vma_interval_tree_remove(vma, &mapping->i_mmap);
115 	flush_dcache_mmap_unlock(mapping);
116 }
117 
118 /*
119  * Unlink a file-based vm structure from its interval tree, to hide
120  * vma from rmap and vmtruncate before freeing its page tables.
121  */
122 void unlink_file_vma(struct vm_area_struct *vma)
123 {
124 	struct file *file = vma->vm_file;
125 
126 	if (file) {
127 		struct address_space *mapping = file->f_mapping;
128 		i_mmap_lock_write(mapping);
129 		__remove_shared_vm_struct(vma, file, mapping);
130 		i_mmap_unlock_write(mapping);
131 	}
132 }
133 
134 /*
135  * Close a vm structure and free it.
136  */
137 static void remove_vma(struct vm_area_struct *vma, bool unreachable)
138 {
139 	might_sleep();
140 	if (vma->vm_ops && vma->vm_ops->close)
141 		vma->vm_ops->close(vma);
142 	if (vma->vm_file)
143 		fput(vma->vm_file);
144 	mpol_put(vma_policy(vma));
145 	if (unreachable)
146 		__vm_area_free(vma);
147 	else
148 		vm_area_free(vma);
149 }
150 
151 static inline struct vm_area_struct *vma_prev_limit(struct vma_iterator *vmi,
152 						    unsigned long min)
153 {
154 	return mas_prev(&vmi->mas, min);
155 }
156 
157 /*
158  * check_brk_limits() - Use platform specific check of range & verify mlock
159  * limits.
160  * @addr: The address to check
161  * @len: The size of increase.
162  *
163  * Return: 0 on success.
164  */
165 static int check_brk_limits(unsigned long addr, unsigned long len)
166 {
167 	unsigned long mapped_addr;
168 
169 	mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
170 	if (IS_ERR_VALUE(mapped_addr))
171 		return mapped_addr;
172 
173 	return mlock_future_ok(current->mm, current->mm->def_flags, len)
174 		? 0 : -EAGAIN;
175 }
176 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *brkvma,
177 		unsigned long addr, unsigned long request, unsigned long flags);
178 SYSCALL_DEFINE1(brk, unsigned long, brk)
179 {
180 	unsigned long newbrk, oldbrk, origbrk;
181 	struct mm_struct *mm = current->mm;
182 	struct vm_area_struct *brkvma, *next = NULL;
183 	unsigned long min_brk;
184 	bool populate = false;
185 	LIST_HEAD(uf);
186 	struct vma_iterator vmi;
187 
188 	if (mmap_write_lock_killable(mm))
189 		return -EINTR;
190 
191 	origbrk = mm->brk;
192 
193 #ifdef CONFIG_COMPAT_BRK
194 	/*
195 	 * CONFIG_COMPAT_BRK can still be overridden by setting
196 	 * randomize_va_space to 2, which will still cause mm->start_brk
197 	 * to be arbitrarily shifted
198 	 */
199 	if (current->brk_randomized)
200 		min_brk = mm->start_brk;
201 	else
202 		min_brk = mm->end_data;
203 #else
204 	min_brk = mm->start_brk;
205 #endif
206 	if (brk < min_brk)
207 		goto out;
208 
209 	/*
210 	 * Check against rlimit here. If this check is done later after the test
211 	 * of oldbrk with newbrk then it can escape the test and let the data
212 	 * segment grow beyond its set limit the in case where the limit is
213 	 * not page aligned -Ram Gupta
214 	 */
215 	if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
216 			      mm->end_data, mm->start_data))
217 		goto out;
218 
219 	newbrk = PAGE_ALIGN(brk);
220 	oldbrk = PAGE_ALIGN(mm->brk);
221 	if (oldbrk == newbrk) {
222 		mm->brk = brk;
223 		goto success;
224 	}
225 
226 	/* Always allow shrinking brk. */
227 	if (brk <= mm->brk) {
228 		/* Search one past newbrk */
229 		vma_iter_init(&vmi, mm, newbrk);
230 		brkvma = vma_find(&vmi, oldbrk);
231 		if (!brkvma || brkvma->vm_start >= oldbrk)
232 			goto out; /* mapping intersects with an existing non-brk vma. */
233 		/*
234 		 * mm->brk must be protected by write mmap_lock.
235 		 * do_vma_munmap() will drop the lock on success,  so update it
236 		 * before calling do_vma_munmap().
237 		 */
238 		mm->brk = brk;
239 		if (do_vma_munmap(&vmi, brkvma, newbrk, oldbrk, &uf, true))
240 			goto out;
241 
242 		goto success_unlocked;
243 	}
244 
245 	if (check_brk_limits(oldbrk, newbrk - oldbrk))
246 		goto out;
247 
248 	/*
249 	 * Only check if the next VMA is within the stack_guard_gap of the
250 	 * expansion area
251 	 */
252 	vma_iter_init(&vmi, mm, oldbrk);
253 	next = vma_find(&vmi, newbrk + PAGE_SIZE + stack_guard_gap);
254 	if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
255 		goto out;
256 
257 	brkvma = vma_prev_limit(&vmi, mm->start_brk);
258 	/* Ok, looks good - let it rip. */
259 	if (do_brk_flags(&vmi, brkvma, oldbrk, newbrk - oldbrk, 0) < 0)
260 		goto out;
261 
262 	mm->brk = brk;
263 	if (mm->def_flags & VM_LOCKED)
264 		populate = true;
265 
266 success:
267 	mmap_write_unlock(mm);
268 success_unlocked:
269 	userfaultfd_unmap_complete(mm, &uf);
270 	if (populate)
271 		mm_populate(oldbrk, newbrk - oldbrk);
272 	return brk;
273 
274 out:
275 	mm->brk = origbrk;
276 	mmap_write_unlock(mm);
277 	return origbrk;
278 }
279 
280 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
281 static void validate_mm(struct mm_struct *mm)
282 {
283 	int bug = 0;
284 	int i = 0;
285 	struct vm_area_struct *vma;
286 	VMA_ITERATOR(vmi, mm, 0);
287 
288 	mt_validate(&mm->mm_mt);
289 	for_each_vma(vmi, vma) {
290 #ifdef CONFIG_DEBUG_VM_RB
291 		struct anon_vma *anon_vma = vma->anon_vma;
292 		struct anon_vma_chain *avc;
293 #endif
294 		unsigned long vmi_start, vmi_end;
295 		bool warn = 0;
296 
297 		vmi_start = vma_iter_addr(&vmi);
298 		vmi_end = vma_iter_end(&vmi);
299 		if (VM_WARN_ON_ONCE_MM(vma->vm_end != vmi_end, mm))
300 			warn = 1;
301 
302 		if (VM_WARN_ON_ONCE_MM(vma->vm_start != vmi_start, mm))
303 			warn = 1;
304 
305 		if (warn) {
306 			pr_emerg("issue in %s\n", current->comm);
307 			dump_stack();
308 			dump_vma(vma);
309 			pr_emerg("tree range: %px start %lx end %lx\n", vma,
310 				 vmi_start, vmi_end - 1);
311 			vma_iter_dump_tree(&vmi);
312 		}
313 
314 #ifdef CONFIG_DEBUG_VM_RB
315 		if (anon_vma) {
316 			anon_vma_lock_read(anon_vma);
317 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
318 				anon_vma_interval_tree_verify(avc);
319 			anon_vma_unlock_read(anon_vma);
320 		}
321 #endif
322 		i++;
323 	}
324 	if (i != mm->map_count) {
325 		pr_emerg("map_count %d vma iterator %d\n", mm->map_count, i);
326 		bug = 1;
327 	}
328 	VM_BUG_ON_MM(bug, mm);
329 }
330 
331 #else /* !CONFIG_DEBUG_VM_MAPLE_TREE */
332 #define validate_mm(mm) do { } while (0)
333 #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */
334 
335 /*
336  * vma has some anon_vma assigned, and is already inserted on that
337  * anon_vma's interval trees.
338  *
339  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
340  * vma must be removed from the anon_vma's interval trees using
341  * anon_vma_interval_tree_pre_update_vma().
342  *
343  * After the update, the vma will be reinserted using
344  * anon_vma_interval_tree_post_update_vma().
345  *
346  * The entire update must be protected by exclusive mmap_lock and by
347  * the root anon_vma's mutex.
348  */
349 static inline void
350 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
351 {
352 	struct anon_vma_chain *avc;
353 
354 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
355 		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
356 }
357 
358 static inline void
359 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
360 {
361 	struct anon_vma_chain *avc;
362 
363 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
364 		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
365 }
366 
367 static unsigned long count_vma_pages_range(struct mm_struct *mm,
368 		unsigned long addr, unsigned long end)
369 {
370 	VMA_ITERATOR(vmi, mm, addr);
371 	struct vm_area_struct *vma;
372 	unsigned long nr_pages = 0;
373 
374 	for_each_vma_range(vmi, vma, end) {
375 		unsigned long vm_start = max(addr, vma->vm_start);
376 		unsigned long vm_end = min(end, vma->vm_end);
377 
378 		nr_pages += PHYS_PFN(vm_end - vm_start);
379 	}
380 
381 	return nr_pages;
382 }
383 
384 static void __vma_link_file(struct vm_area_struct *vma,
385 			    struct address_space *mapping)
386 {
387 	if (vma_is_shared_maywrite(vma))
388 		mapping_allow_writable(mapping);
389 
390 	flush_dcache_mmap_lock(mapping);
391 	vma_interval_tree_insert(vma, &mapping->i_mmap);
392 	flush_dcache_mmap_unlock(mapping);
393 }
394 
395 static int vma_link(struct mm_struct *mm, struct vm_area_struct *vma)
396 {
397 	VMA_ITERATOR(vmi, mm, 0);
398 	struct address_space *mapping = NULL;
399 
400 	vma_iter_config(&vmi, vma->vm_start, vma->vm_end);
401 	if (vma_iter_prealloc(&vmi, vma))
402 		return -ENOMEM;
403 
404 	vma_start_write(vma);
405 
406 	vma_iter_store(&vmi, vma);
407 
408 	if (vma->vm_file) {
409 		mapping = vma->vm_file->f_mapping;
410 		i_mmap_lock_write(mapping);
411 		__vma_link_file(vma, mapping);
412 		i_mmap_unlock_write(mapping);
413 	}
414 
415 	mm->map_count++;
416 	validate_mm(mm);
417 	return 0;
418 }
419 
420 /*
421  * init_multi_vma_prep() - Initializer for struct vma_prepare
422  * @vp: The vma_prepare struct
423  * @vma: The vma that will be altered once locked
424  * @next: The next vma if it is to be adjusted
425  * @remove: The first vma to be removed
426  * @remove2: The second vma to be removed
427  */
428 static inline void init_multi_vma_prep(struct vma_prepare *vp,
429 		struct vm_area_struct *vma, struct vm_area_struct *next,
430 		struct vm_area_struct *remove, struct vm_area_struct *remove2)
431 {
432 	memset(vp, 0, sizeof(struct vma_prepare));
433 	vp->vma = vma;
434 	vp->anon_vma = vma->anon_vma;
435 	vp->remove = remove;
436 	vp->remove2 = remove2;
437 	vp->adj_next = next;
438 	if (!vp->anon_vma && next)
439 		vp->anon_vma = next->anon_vma;
440 
441 	vp->file = vma->vm_file;
442 	if (vp->file)
443 		vp->mapping = vma->vm_file->f_mapping;
444 
445 }
446 
447 /*
448  * init_vma_prep() - Initializer wrapper for vma_prepare struct
449  * @vp: The vma_prepare struct
450  * @vma: The vma that will be altered once locked
451  */
452 static inline void init_vma_prep(struct vma_prepare *vp,
453 				 struct vm_area_struct *vma)
454 {
455 	init_multi_vma_prep(vp, vma, NULL, NULL, NULL);
456 }
457 
458 
459 /*
460  * vma_prepare() - Helper function for handling locking VMAs prior to altering
461  * @vp: The initialized vma_prepare struct
462  */
463 static inline void vma_prepare(struct vma_prepare *vp)
464 {
465 	if (vp->file) {
466 		uprobe_munmap(vp->vma, vp->vma->vm_start, vp->vma->vm_end);
467 
468 		if (vp->adj_next)
469 			uprobe_munmap(vp->adj_next, vp->adj_next->vm_start,
470 				      vp->adj_next->vm_end);
471 
472 		i_mmap_lock_write(vp->mapping);
473 		if (vp->insert && vp->insert->vm_file) {
474 			/*
475 			 * Put into interval tree now, so instantiated pages
476 			 * are visible to arm/parisc __flush_dcache_page
477 			 * throughout; but we cannot insert into address
478 			 * space until vma start or end is updated.
479 			 */
480 			__vma_link_file(vp->insert,
481 					vp->insert->vm_file->f_mapping);
482 		}
483 	}
484 
485 	if (vp->anon_vma) {
486 		anon_vma_lock_write(vp->anon_vma);
487 		anon_vma_interval_tree_pre_update_vma(vp->vma);
488 		if (vp->adj_next)
489 			anon_vma_interval_tree_pre_update_vma(vp->adj_next);
490 	}
491 
492 	if (vp->file) {
493 		flush_dcache_mmap_lock(vp->mapping);
494 		vma_interval_tree_remove(vp->vma, &vp->mapping->i_mmap);
495 		if (vp->adj_next)
496 			vma_interval_tree_remove(vp->adj_next,
497 						 &vp->mapping->i_mmap);
498 	}
499 
500 }
501 
502 /*
503  * vma_complete- Helper function for handling the unlocking after altering VMAs,
504  * or for inserting a VMA.
505  *
506  * @vp: The vma_prepare struct
507  * @vmi: The vma iterator
508  * @mm: The mm_struct
509  */
510 static inline void vma_complete(struct vma_prepare *vp,
511 				struct vma_iterator *vmi, struct mm_struct *mm)
512 {
513 	if (vp->file) {
514 		if (vp->adj_next)
515 			vma_interval_tree_insert(vp->adj_next,
516 						 &vp->mapping->i_mmap);
517 		vma_interval_tree_insert(vp->vma, &vp->mapping->i_mmap);
518 		flush_dcache_mmap_unlock(vp->mapping);
519 	}
520 
521 	if (vp->remove && vp->file) {
522 		__remove_shared_vm_struct(vp->remove, vp->file, vp->mapping);
523 		if (vp->remove2)
524 			__remove_shared_vm_struct(vp->remove2, vp->file,
525 						  vp->mapping);
526 	} else if (vp->insert) {
527 		/*
528 		 * split_vma has split insert from vma, and needs
529 		 * us to insert it before dropping the locks
530 		 * (it may either follow vma or precede it).
531 		 */
532 		vma_iter_store(vmi, vp->insert);
533 		mm->map_count++;
534 	}
535 
536 	if (vp->anon_vma) {
537 		anon_vma_interval_tree_post_update_vma(vp->vma);
538 		if (vp->adj_next)
539 			anon_vma_interval_tree_post_update_vma(vp->adj_next);
540 		anon_vma_unlock_write(vp->anon_vma);
541 	}
542 
543 	if (vp->file) {
544 		i_mmap_unlock_write(vp->mapping);
545 		uprobe_mmap(vp->vma);
546 
547 		if (vp->adj_next)
548 			uprobe_mmap(vp->adj_next);
549 	}
550 
551 	if (vp->remove) {
552 again:
553 		vma_mark_detached(vp->remove, true);
554 		if (vp->file) {
555 			uprobe_munmap(vp->remove, vp->remove->vm_start,
556 				      vp->remove->vm_end);
557 			fput(vp->file);
558 		}
559 		if (vp->remove->anon_vma)
560 			anon_vma_merge(vp->vma, vp->remove);
561 		mm->map_count--;
562 		mpol_put(vma_policy(vp->remove));
563 		if (!vp->remove2)
564 			WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end);
565 		vm_area_free(vp->remove);
566 
567 		/*
568 		 * In mprotect's case 6 (see comments on vma_merge),
569 		 * we are removing both mid and next vmas
570 		 */
571 		if (vp->remove2) {
572 			vp->remove = vp->remove2;
573 			vp->remove2 = NULL;
574 			goto again;
575 		}
576 	}
577 	if (vp->insert && vp->file)
578 		uprobe_mmap(vp->insert);
579 	validate_mm(mm);
580 }
581 
582 /*
583  * dup_anon_vma() - Helper function to duplicate anon_vma
584  * @dst: The destination VMA
585  * @src: The source VMA
586  * @dup: Pointer to the destination VMA when successful.
587  *
588  * Returns: 0 on success.
589  */
590 static inline int dup_anon_vma(struct vm_area_struct *dst,
591 		struct vm_area_struct *src, struct vm_area_struct **dup)
592 {
593 	/*
594 	 * Easily overlooked: when mprotect shifts the boundary, make sure the
595 	 * expanding vma has anon_vma set if the shrinking vma had, to cover any
596 	 * anon pages imported.
597 	 */
598 	if (src->anon_vma && !dst->anon_vma) {
599 		int ret;
600 
601 		vma_assert_write_locked(dst);
602 		dst->anon_vma = src->anon_vma;
603 		ret = anon_vma_clone(dst, src);
604 		if (ret)
605 			return ret;
606 
607 		*dup = dst;
608 	}
609 
610 	return 0;
611 }
612 
613 /*
614  * vma_expand - Expand an existing VMA
615  *
616  * @vmi: The vma iterator
617  * @vma: The vma to expand
618  * @start: The start of the vma
619  * @end: The exclusive end of the vma
620  * @pgoff: The page offset of vma
621  * @next: The current of next vma.
622  *
623  * Expand @vma to @start and @end.  Can expand off the start and end.  Will
624  * expand over @next if it's different from @vma and @end == @next->vm_end.
625  * Checking if the @vma can expand and merge with @next needs to be handled by
626  * the caller.
627  *
628  * Returns: 0 on success
629  */
630 int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
631 	       unsigned long start, unsigned long end, pgoff_t pgoff,
632 	       struct vm_area_struct *next)
633 {
634 	struct vm_area_struct *anon_dup = NULL;
635 	bool remove_next = false;
636 	struct vma_prepare vp;
637 
638 	vma_start_write(vma);
639 	if (next && (vma != next) && (end == next->vm_end)) {
640 		int ret;
641 
642 		remove_next = true;
643 		vma_start_write(next);
644 		ret = dup_anon_vma(vma, next, &anon_dup);
645 		if (ret)
646 			return ret;
647 	}
648 
649 	init_multi_vma_prep(&vp, vma, NULL, remove_next ? next : NULL, NULL);
650 	/* Not merging but overwriting any part of next is not handled. */
651 	VM_WARN_ON(next && !vp.remove &&
652 		  next != vma && end > next->vm_start);
653 	/* Only handles expanding */
654 	VM_WARN_ON(vma->vm_start < start || vma->vm_end > end);
655 
656 	/* Note: vma iterator must be pointing to 'start' */
657 	vma_iter_config(vmi, start, end);
658 	if (vma_iter_prealloc(vmi, vma))
659 		goto nomem;
660 
661 	vma_prepare(&vp);
662 	vma_adjust_trans_huge(vma, start, end, 0);
663 	vma->vm_start = start;
664 	vma->vm_end = end;
665 	vma->vm_pgoff = pgoff;
666 	vma_iter_store(vmi, vma);
667 
668 	vma_complete(&vp, vmi, vma->vm_mm);
669 	return 0;
670 
671 nomem:
672 	if (anon_dup)
673 		unlink_anon_vmas(anon_dup);
674 	return -ENOMEM;
675 }
676 
677 /*
678  * vma_shrink() - Reduce an existing VMAs memory area
679  * @vmi: The vma iterator
680  * @vma: The VMA to modify
681  * @start: The new start
682  * @end: The new end
683  *
684  * Returns: 0 on success, -ENOMEM otherwise
685  */
686 int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
687 	       unsigned long start, unsigned long end, pgoff_t pgoff)
688 {
689 	struct vma_prepare vp;
690 
691 	WARN_ON((vma->vm_start != start) && (vma->vm_end != end));
692 
693 	if (vma->vm_start < start)
694 		vma_iter_config(vmi, vma->vm_start, start);
695 	else
696 		vma_iter_config(vmi, end, vma->vm_end);
697 
698 	if (vma_iter_prealloc(vmi, NULL))
699 		return -ENOMEM;
700 
701 	vma_start_write(vma);
702 
703 	init_vma_prep(&vp, vma);
704 	vma_prepare(&vp);
705 	vma_adjust_trans_huge(vma, start, end, 0);
706 
707 	vma_iter_clear(vmi);
708 	vma->vm_start = start;
709 	vma->vm_end = end;
710 	vma->vm_pgoff = pgoff;
711 	vma_complete(&vp, vmi, vma->vm_mm);
712 	return 0;
713 }
714 
715 /*
716  * If the vma has a ->close operation then the driver probably needs to release
717  * per-vma resources, so we don't attempt to merge those if the caller indicates
718  * the current vma may be removed as part of the merge.
719  */
720 static inline bool is_mergeable_vma(struct vm_area_struct *vma,
721 		struct file *file, unsigned long vm_flags,
722 		struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
723 		struct anon_vma_name *anon_name, bool may_remove_vma)
724 {
725 	/*
726 	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
727 	 * match the flags but dirty bit -- the caller should mark
728 	 * merged VMA as dirty. If dirty bit won't be excluded from
729 	 * comparison, we increase pressure on the memory system forcing
730 	 * the kernel to generate new VMAs when old one could be
731 	 * extended instead.
732 	 */
733 	if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
734 		return false;
735 	if (vma->vm_file != file)
736 		return false;
737 	if (may_remove_vma && vma->vm_ops && vma->vm_ops->close)
738 		return false;
739 	if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
740 		return false;
741 	if (!anon_vma_name_eq(anon_vma_name(vma), anon_name))
742 		return false;
743 	return true;
744 }
745 
746 static inline bool is_mergeable_anon_vma(struct anon_vma *anon_vma1,
747 		 struct anon_vma *anon_vma2, struct vm_area_struct *vma)
748 {
749 	/*
750 	 * The list_is_singular() test is to avoid merging VMA cloned from
751 	 * parents. This can improve scalability caused by anon_vma lock.
752 	 */
753 	if ((!anon_vma1 || !anon_vma2) && (!vma ||
754 		list_is_singular(&vma->anon_vma_chain)))
755 		return true;
756 	return anon_vma1 == anon_vma2;
757 }
758 
759 /*
760  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
761  * in front of (at a lower virtual address and file offset than) the vma.
762  *
763  * We cannot merge two vmas if they have differently assigned (non-NULL)
764  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
765  *
766  * We don't check here for the merged mmap wrapping around the end of pagecache
767  * indices (16TB on ia32) because do_mmap() does not permit mmap's which
768  * wrap, nor mmaps which cover the final page at index -1UL.
769  *
770  * We assume the vma may be removed as part of the merge.
771  */
772 static bool
773 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
774 		struct anon_vma *anon_vma, struct file *file,
775 		pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
776 		struct anon_vma_name *anon_name)
777 {
778 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, true) &&
779 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
780 		if (vma->vm_pgoff == vm_pgoff)
781 			return true;
782 	}
783 	return false;
784 }
785 
786 /*
787  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
788  * beyond (at a higher virtual address and file offset than) the vma.
789  *
790  * We cannot merge two vmas if they have differently assigned (non-NULL)
791  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
792  *
793  * We assume that vma is not removed as part of the merge.
794  */
795 static bool
796 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
797 		struct anon_vma *anon_vma, struct file *file,
798 		pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
799 		struct anon_vma_name *anon_name)
800 {
801 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, false) &&
802 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
803 		pgoff_t vm_pglen;
804 		vm_pglen = vma_pages(vma);
805 		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
806 			return true;
807 	}
808 	return false;
809 }
810 
811 /*
812  * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name),
813  * figure out whether that can be merged with its predecessor or its
814  * successor.  Or both (it neatly fills a hole).
815  *
816  * In most cases - when called for mmap, brk or mremap - [addr,end) is
817  * certain not to be mapped by the time vma_merge is called; but when
818  * called for mprotect, it is certain to be already mapped (either at
819  * an offset within prev, or at the start of next), and the flags of
820  * this area are about to be changed to vm_flags - and the no-change
821  * case has already been eliminated.
822  *
823  * The following mprotect cases have to be considered, where **** is
824  * the area passed down from mprotect_fixup, never extending beyond one
825  * vma, PPPP is the previous vma, CCCC is a concurrent vma that starts
826  * at the same address as **** and is of the same or larger span, and
827  * NNNN the next vma after ****:
828  *
829  *     ****             ****                   ****
830  *    PPPPPPNNNNNN    PPPPPPNNNNNN       PPPPPPCCCCCC
831  *    cannot merge    might become       might become
832  *                    PPNNNNNNNNNN       PPPPPPPPPPCC
833  *    mmap, brk or    case 4 below       case 5 below
834  *    mremap move:
835  *                        ****               ****
836  *                    PPPP    NNNN       PPPPCCCCNNNN
837  *                    might become       might become
838  *                    PPPPPPPPPPPP 1 or  PPPPPPPPPPPP 6 or
839  *                    PPPPPPPPNNNN 2 or  PPPPPPPPNNNN 7 or
840  *                    PPPPNNNNNNNN 3     PPPPNNNNNNNN 8
841  *
842  * It is important for case 8 that the vma CCCC overlapping the
843  * region **** is never going to extended over NNNN. Instead NNNN must
844  * be extended in region **** and CCCC must be removed. This way in
845  * all cases where vma_merge succeeds, the moment vma_merge drops the
846  * rmap_locks, the properties of the merged vma will be already
847  * correct for the whole merged range. Some of those properties like
848  * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
849  * be correct for the whole merged range immediately after the
850  * rmap_locks are released. Otherwise if NNNN would be removed and
851  * CCCC would be extended over the NNNN range, remove_migration_ptes
852  * or other rmap walkers (if working on addresses beyond the "end"
853  * parameter) may establish ptes with the wrong permissions of CCCC
854  * instead of the right permissions of NNNN.
855  *
856  * In the code below:
857  * PPPP is represented by *prev
858  * CCCC is represented by *curr or not represented at all (NULL)
859  * NNNN is represented by *next or not represented at all (NULL)
860  * **** is not represented - it will be merged and the vma containing the
861  *      area is returned, or the function will return NULL
862  */
863 static struct vm_area_struct
864 *vma_merge(struct vma_iterator *vmi, struct mm_struct *mm,
865 	   struct vm_area_struct *prev, unsigned long addr, unsigned long end,
866 	   unsigned long vm_flags, struct anon_vma *anon_vma, struct file *file,
867 	   pgoff_t pgoff, struct mempolicy *policy,
868 	   struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
869 	   struct anon_vma_name *anon_name)
870 {
871 	struct vm_area_struct *curr, *next, *res;
872 	struct vm_area_struct *vma, *adjust, *remove, *remove2;
873 	struct vm_area_struct *anon_dup = NULL;
874 	struct vma_prepare vp;
875 	pgoff_t vma_pgoff;
876 	int err = 0;
877 	bool merge_prev = false;
878 	bool merge_next = false;
879 	bool vma_expanded = false;
880 	unsigned long vma_start = addr;
881 	unsigned long vma_end = end;
882 	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
883 	long adj_start = 0;
884 
885 	/*
886 	 * We later require that vma->vm_flags == vm_flags,
887 	 * so this tests vma->vm_flags & VM_SPECIAL, too.
888 	 */
889 	if (vm_flags & VM_SPECIAL)
890 		return NULL;
891 
892 	/* Does the input range span an existing VMA? (cases 5 - 8) */
893 	curr = find_vma_intersection(mm, prev ? prev->vm_end : 0, end);
894 
895 	if (!curr ||			/* cases 1 - 4 */
896 	    end == curr->vm_end)	/* cases 6 - 8, adjacent VMA */
897 		next = vma_lookup(mm, end);
898 	else
899 		next = NULL;		/* case 5 */
900 
901 	if (prev) {
902 		vma_start = prev->vm_start;
903 		vma_pgoff = prev->vm_pgoff;
904 
905 		/* Can we merge the predecessor? */
906 		if (addr == prev->vm_end && mpol_equal(vma_policy(prev), policy)
907 		    && can_vma_merge_after(prev, vm_flags, anon_vma, file,
908 					   pgoff, vm_userfaultfd_ctx, anon_name)) {
909 			merge_prev = true;
910 			vma_prev(vmi);
911 		}
912 	}
913 
914 	/* Can we merge the successor? */
915 	if (next && mpol_equal(policy, vma_policy(next)) &&
916 	    can_vma_merge_before(next, vm_flags, anon_vma, file, pgoff+pglen,
917 				 vm_userfaultfd_ctx, anon_name)) {
918 		merge_next = true;
919 	}
920 
921 	/* Verify some invariant that must be enforced by the caller. */
922 	VM_WARN_ON(prev && addr <= prev->vm_start);
923 	VM_WARN_ON(curr && (addr != curr->vm_start || end > curr->vm_end));
924 	VM_WARN_ON(addr >= end);
925 
926 	if (!merge_prev && !merge_next)
927 		return NULL; /* Not mergeable. */
928 
929 	if (merge_prev)
930 		vma_start_write(prev);
931 
932 	res = vma = prev;
933 	remove = remove2 = adjust = NULL;
934 
935 	/* Can we merge both the predecessor and the successor? */
936 	if (merge_prev && merge_next &&
937 	    is_mergeable_anon_vma(prev->anon_vma, next->anon_vma, NULL)) {
938 		vma_start_write(next);
939 		remove = next;				/* case 1 */
940 		vma_end = next->vm_end;
941 		err = dup_anon_vma(prev, next, &anon_dup);
942 		if (curr) {				/* case 6 */
943 			vma_start_write(curr);
944 			remove = curr;
945 			remove2 = next;
946 			/*
947 			 * Note that the dup_anon_vma below cannot overwrite err
948 			 * since the first caller would do nothing unless next
949 			 * has an anon_vma.
950 			 */
951 			if (!next->anon_vma)
952 				err = dup_anon_vma(prev, curr, &anon_dup);
953 		}
954 	} else if (merge_prev) {			/* case 2 */
955 		if (curr) {
956 			vma_start_write(curr);
957 			err = dup_anon_vma(prev, curr, &anon_dup);
958 			if (end == curr->vm_end) {	/* case 7 */
959 				remove = curr;
960 			} else {			/* case 5 */
961 				adjust = curr;
962 				adj_start = (end - curr->vm_start);
963 			}
964 		}
965 	} else { /* merge_next */
966 		vma_start_write(next);
967 		res = next;
968 		if (prev && addr < prev->vm_end) {	/* case 4 */
969 			vma_start_write(prev);
970 			vma_end = addr;
971 			adjust = next;
972 			adj_start = -(prev->vm_end - addr);
973 			err = dup_anon_vma(next, prev, &anon_dup);
974 		} else {
975 			/*
976 			 * Note that cases 3 and 8 are the ONLY ones where prev
977 			 * is permitted to be (but is not necessarily) NULL.
978 			 */
979 			vma = next;			/* case 3 */
980 			vma_start = addr;
981 			vma_end = next->vm_end;
982 			vma_pgoff = next->vm_pgoff - pglen;
983 			if (curr) {			/* case 8 */
984 				vma_pgoff = curr->vm_pgoff;
985 				vma_start_write(curr);
986 				remove = curr;
987 				err = dup_anon_vma(next, curr, &anon_dup);
988 			}
989 		}
990 	}
991 
992 	/* Error in anon_vma clone. */
993 	if (err)
994 		goto anon_vma_fail;
995 
996 	if (vma_start < vma->vm_start || vma_end > vma->vm_end)
997 		vma_expanded = true;
998 
999 	if (vma_expanded) {
1000 		vma_iter_config(vmi, vma_start, vma_end);
1001 	} else {
1002 		vma_iter_config(vmi, adjust->vm_start + adj_start,
1003 				adjust->vm_end);
1004 	}
1005 
1006 	if (vma_iter_prealloc(vmi, vma))
1007 		goto prealloc_fail;
1008 
1009 	init_multi_vma_prep(&vp, vma, adjust, remove, remove2);
1010 	VM_WARN_ON(vp.anon_vma && adjust && adjust->anon_vma &&
1011 		   vp.anon_vma != adjust->anon_vma);
1012 
1013 	vma_prepare(&vp);
1014 	vma_adjust_trans_huge(vma, vma_start, vma_end, adj_start);
1015 
1016 	vma->vm_start = vma_start;
1017 	vma->vm_end = vma_end;
1018 	vma->vm_pgoff = vma_pgoff;
1019 
1020 	if (vma_expanded)
1021 		vma_iter_store(vmi, vma);
1022 
1023 	if (adj_start) {
1024 		adjust->vm_start += adj_start;
1025 		adjust->vm_pgoff += adj_start >> PAGE_SHIFT;
1026 		if (adj_start < 0) {
1027 			WARN_ON(vma_expanded);
1028 			vma_iter_store(vmi, next);
1029 		}
1030 	}
1031 
1032 	vma_complete(&vp, vmi, mm);
1033 	khugepaged_enter_vma(res, vm_flags);
1034 	return res;
1035 
1036 prealloc_fail:
1037 	if (anon_dup)
1038 		unlink_anon_vmas(anon_dup);
1039 
1040 anon_vma_fail:
1041 	vma_iter_set(vmi, addr);
1042 	vma_iter_load(vmi);
1043 	return NULL;
1044 }
1045 
1046 /*
1047  * Rough compatibility check to quickly see if it's even worth looking
1048  * at sharing an anon_vma.
1049  *
1050  * They need to have the same vm_file, and the flags can only differ
1051  * in things that mprotect may change.
1052  *
1053  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1054  * we can merge the two vma's. For example, we refuse to merge a vma if
1055  * there is a vm_ops->close() function, because that indicates that the
1056  * driver is doing some kind of reference counting. But that doesn't
1057  * really matter for the anon_vma sharing case.
1058  */
1059 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1060 {
1061 	return a->vm_end == b->vm_start &&
1062 		mpol_equal(vma_policy(a), vma_policy(b)) &&
1063 		a->vm_file == b->vm_file &&
1064 		!((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1065 		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1066 }
1067 
1068 /*
1069  * Do some basic sanity checking to see if we can re-use the anon_vma
1070  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1071  * the same as 'old', the other will be the new one that is trying
1072  * to share the anon_vma.
1073  *
1074  * NOTE! This runs with mmap_lock held for reading, so it is possible that
1075  * the anon_vma of 'old' is concurrently in the process of being set up
1076  * by another page fault trying to merge _that_. But that's ok: if it
1077  * is being set up, that automatically means that it will be a singleton
1078  * acceptable for merging, so we can do all of this optimistically. But
1079  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1080  *
1081  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1082  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1083  * is to return an anon_vma that is "complex" due to having gone through
1084  * a fork).
1085  *
1086  * We also make sure that the two vma's are compatible (adjacent,
1087  * and with the same memory policies). That's all stable, even with just
1088  * a read lock on the mmap_lock.
1089  */
1090 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1091 {
1092 	if (anon_vma_compatible(a, b)) {
1093 		struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1094 
1095 		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1096 			return anon_vma;
1097 	}
1098 	return NULL;
1099 }
1100 
1101 /*
1102  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1103  * neighbouring vmas for a suitable anon_vma, before it goes off
1104  * to allocate a new anon_vma.  It checks because a repetitive
1105  * sequence of mprotects and faults may otherwise lead to distinct
1106  * anon_vmas being allocated, preventing vma merge in subsequent
1107  * mprotect.
1108  */
1109 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1110 {
1111 	MA_STATE(mas, &vma->vm_mm->mm_mt, vma->vm_end, vma->vm_end);
1112 	struct anon_vma *anon_vma = NULL;
1113 	struct vm_area_struct *prev, *next;
1114 
1115 	/* Try next first. */
1116 	next = mas_walk(&mas);
1117 	if (next) {
1118 		anon_vma = reusable_anon_vma(next, vma, next);
1119 		if (anon_vma)
1120 			return anon_vma;
1121 	}
1122 
1123 	prev = mas_prev(&mas, 0);
1124 	VM_BUG_ON_VMA(prev != vma, vma);
1125 	prev = mas_prev(&mas, 0);
1126 	/* Try prev next. */
1127 	if (prev)
1128 		anon_vma = reusable_anon_vma(prev, prev, vma);
1129 
1130 	/*
1131 	 * We might reach here with anon_vma == NULL if we can't find
1132 	 * any reusable anon_vma.
1133 	 * There's no absolute need to look only at touching neighbours:
1134 	 * we could search further afield for "compatible" anon_vmas.
1135 	 * But it would probably just be a waste of time searching,
1136 	 * or lead to too many vmas hanging off the same anon_vma.
1137 	 * We're trying to allow mprotect remerging later on,
1138 	 * not trying to minimize memory used for anon_vmas.
1139 	 */
1140 	return anon_vma;
1141 }
1142 
1143 /*
1144  * If a hint addr is less than mmap_min_addr change hint to be as
1145  * low as possible but still greater than mmap_min_addr
1146  */
1147 static inline unsigned long round_hint_to_min(unsigned long hint)
1148 {
1149 	hint &= PAGE_MASK;
1150 	if (((void *)hint != NULL) &&
1151 	    (hint < mmap_min_addr))
1152 		return PAGE_ALIGN(mmap_min_addr);
1153 	return hint;
1154 }
1155 
1156 bool mlock_future_ok(struct mm_struct *mm, unsigned long flags,
1157 			unsigned long bytes)
1158 {
1159 	unsigned long locked_pages, limit_pages;
1160 
1161 	if (!(flags & VM_LOCKED) || capable(CAP_IPC_LOCK))
1162 		return true;
1163 
1164 	locked_pages = bytes >> PAGE_SHIFT;
1165 	locked_pages += mm->locked_vm;
1166 
1167 	limit_pages = rlimit(RLIMIT_MEMLOCK);
1168 	limit_pages >>= PAGE_SHIFT;
1169 
1170 	return locked_pages <= limit_pages;
1171 }
1172 
1173 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1174 {
1175 	if (S_ISREG(inode->i_mode))
1176 		return MAX_LFS_FILESIZE;
1177 
1178 	if (S_ISBLK(inode->i_mode))
1179 		return MAX_LFS_FILESIZE;
1180 
1181 	if (S_ISSOCK(inode->i_mode))
1182 		return MAX_LFS_FILESIZE;
1183 
1184 	/* Special "we do even unsigned file positions" case */
1185 	if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1186 		return 0;
1187 
1188 	/* Yes, random drivers might want more. But I'm tired of buggy drivers */
1189 	return ULONG_MAX;
1190 }
1191 
1192 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1193 				unsigned long pgoff, unsigned long len)
1194 {
1195 	u64 maxsize = file_mmap_size_max(file, inode);
1196 
1197 	if (maxsize && len > maxsize)
1198 		return false;
1199 	maxsize -= len;
1200 	if (pgoff > maxsize >> PAGE_SHIFT)
1201 		return false;
1202 	return true;
1203 }
1204 
1205 /*
1206  * The caller must write-lock current->mm->mmap_lock.
1207  */
1208 unsigned long do_mmap(struct file *file, unsigned long addr,
1209 			unsigned long len, unsigned long prot,
1210 			unsigned long flags, vm_flags_t vm_flags,
1211 			unsigned long pgoff, unsigned long *populate,
1212 			struct list_head *uf)
1213 {
1214 	struct mm_struct *mm = current->mm;
1215 	int pkey = 0;
1216 
1217 	*populate = 0;
1218 
1219 	if (!len)
1220 		return -EINVAL;
1221 
1222 	/*
1223 	 * Does the application expect PROT_READ to imply PROT_EXEC?
1224 	 *
1225 	 * (the exception is when the underlying filesystem is noexec
1226 	 *  mounted, in which case we don't add PROT_EXEC.)
1227 	 */
1228 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1229 		if (!(file && path_noexec(&file->f_path)))
1230 			prot |= PROT_EXEC;
1231 
1232 	/* force arch specific MAP_FIXED handling in get_unmapped_area */
1233 	if (flags & MAP_FIXED_NOREPLACE)
1234 		flags |= MAP_FIXED;
1235 
1236 	if (!(flags & MAP_FIXED))
1237 		addr = round_hint_to_min(addr);
1238 
1239 	/* Careful about overflows.. */
1240 	len = PAGE_ALIGN(len);
1241 	if (!len)
1242 		return -ENOMEM;
1243 
1244 	/* offset overflow? */
1245 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1246 		return -EOVERFLOW;
1247 
1248 	/* Too many mappings? */
1249 	if (mm->map_count > sysctl_max_map_count)
1250 		return -ENOMEM;
1251 
1252 	/* Obtain the address to map to. we verify (or select) it and ensure
1253 	 * that it represents a valid section of the address space.
1254 	 */
1255 	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1256 	if (IS_ERR_VALUE(addr))
1257 		return addr;
1258 
1259 	if (flags & MAP_FIXED_NOREPLACE) {
1260 		if (find_vma_intersection(mm, addr, addr + len))
1261 			return -EEXIST;
1262 	}
1263 
1264 	if (prot == PROT_EXEC) {
1265 		pkey = execute_only_pkey(mm);
1266 		if (pkey < 0)
1267 			pkey = 0;
1268 	}
1269 
1270 	/* Do simple checking here so the lower-level routines won't have
1271 	 * to. we assume access permissions have been handled by the open
1272 	 * of the memory object, so we don't do any here.
1273 	 */
1274 	vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1275 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1276 
1277 	if (flags & MAP_LOCKED)
1278 		if (!can_do_mlock())
1279 			return -EPERM;
1280 
1281 	if (!mlock_future_ok(mm, vm_flags, len))
1282 		return -EAGAIN;
1283 
1284 	if (file) {
1285 		struct inode *inode = file_inode(file);
1286 		unsigned long flags_mask;
1287 
1288 		if (!file_mmap_ok(file, inode, pgoff, len))
1289 			return -EOVERFLOW;
1290 
1291 		flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1292 
1293 		switch (flags & MAP_TYPE) {
1294 		case MAP_SHARED:
1295 			/*
1296 			 * Force use of MAP_SHARED_VALIDATE with non-legacy
1297 			 * flags. E.g. MAP_SYNC is dangerous to use with
1298 			 * MAP_SHARED as you don't know which consistency model
1299 			 * you will get. We silently ignore unsupported flags
1300 			 * with MAP_SHARED to preserve backward compatibility.
1301 			 */
1302 			flags &= LEGACY_MAP_MASK;
1303 			fallthrough;
1304 		case MAP_SHARED_VALIDATE:
1305 			if (flags & ~flags_mask)
1306 				return -EOPNOTSUPP;
1307 			if (prot & PROT_WRITE) {
1308 				if (!(file->f_mode & FMODE_WRITE))
1309 					return -EACCES;
1310 				if (IS_SWAPFILE(file->f_mapping->host))
1311 					return -ETXTBSY;
1312 			}
1313 
1314 			/*
1315 			 * Make sure we don't allow writing to an append-only
1316 			 * file..
1317 			 */
1318 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1319 				return -EACCES;
1320 
1321 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1322 			if (!(file->f_mode & FMODE_WRITE))
1323 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1324 			fallthrough;
1325 		case MAP_PRIVATE:
1326 			if (!(file->f_mode & FMODE_READ))
1327 				return -EACCES;
1328 			if (path_noexec(&file->f_path)) {
1329 				if (vm_flags & VM_EXEC)
1330 					return -EPERM;
1331 				vm_flags &= ~VM_MAYEXEC;
1332 			}
1333 
1334 			if (!file->f_op->mmap)
1335 				return -ENODEV;
1336 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1337 				return -EINVAL;
1338 			break;
1339 
1340 		default:
1341 			return -EINVAL;
1342 		}
1343 	} else {
1344 		switch (flags & MAP_TYPE) {
1345 		case MAP_SHARED:
1346 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1347 				return -EINVAL;
1348 			/*
1349 			 * Ignore pgoff.
1350 			 */
1351 			pgoff = 0;
1352 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1353 			break;
1354 		case MAP_PRIVATE:
1355 			/*
1356 			 * Set pgoff according to addr for anon_vma.
1357 			 */
1358 			pgoff = addr >> PAGE_SHIFT;
1359 			break;
1360 		default:
1361 			return -EINVAL;
1362 		}
1363 	}
1364 
1365 	/*
1366 	 * Set 'VM_NORESERVE' if we should not account for the
1367 	 * memory use of this mapping.
1368 	 */
1369 	if (flags & MAP_NORESERVE) {
1370 		/* We honor MAP_NORESERVE if allowed to overcommit */
1371 		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1372 			vm_flags |= VM_NORESERVE;
1373 
1374 		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1375 		if (file && is_file_hugepages(file))
1376 			vm_flags |= VM_NORESERVE;
1377 	}
1378 
1379 	addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1380 	if (!IS_ERR_VALUE(addr) &&
1381 	    ((vm_flags & VM_LOCKED) ||
1382 	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1383 		*populate = len;
1384 	return addr;
1385 }
1386 
1387 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1388 			      unsigned long prot, unsigned long flags,
1389 			      unsigned long fd, unsigned long pgoff)
1390 {
1391 	struct file *file = NULL;
1392 	unsigned long retval;
1393 
1394 	if (!(flags & MAP_ANONYMOUS)) {
1395 		audit_mmap_fd(fd, flags);
1396 		file = fget(fd);
1397 		if (!file)
1398 			return -EBADF;
1399 		if (is_file_hugepages(file)) {
1400 			len = ALIGN(len, huge_page_size(hstate_file(file)));
1401 		} else if (unlikely(flags & MAP_HUGETLB)) {
1402 			retval = -EINVAL;
1403 			goto out_fput;
1404 		}
1405 	} else if (flags & MAP_HUGETLB) {
1406 		struct hstate *hs;
1407 
1408 		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1409 		if (!hs)
1410 			return -EINVAL;
1411 
1412 		len = ALIGN(len, huge_page_size(hs));
1413 		/*
1414 		 * VM_NORESERVE is used because the reservations will be
1415 		 * taken when vm_ops->mmap() is called
1416 		 */
1417 		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1418 				VM_NORESERVE,
1419 				HUGETLB_ANONHUGE_INODE,
1420 				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1421 		if (IS_ERR(file))
1422 			return PTR_ERR(file);
1423 	}
1424 
1425 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1426 out_fput:
1427 	if (file)
1428 		fput(file);
1429 	return retval;
1430 }
1431 
1432 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1433 		unsigned long, prot, unsigned long, flags,
1434 		unsigned long, fd, unsigned long, pgoff)
1435 {
1436 	return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1437 }
1438 
1439 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1440 struct mmap_arg_struct {
1441 	unsigned long addr;
1442 	unsigned long len;
1443 	unsigned long prot;
1444 	unsigned long flags;
1445 	unsigned long fd;
1446 	unsigned long offset;
1447 };
1448 
1449 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1450 {
1451 	struct mmap_arg_struct a;
1452 
1453 	if (copy_from_user(&a, arg, sizeof(a)))
1454 		return -EFAULT;
1455 	if (offset_in_page(a.offset))
1456 		return -EINVAL;
1457 
1458 	return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1459 			       a.offset >> PAGE_SHIFT);
1460 }
1461 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1462 
1463 static bool vm_ops_needs_writenotify(const struct vm_operations_struct *vm_ops)
1464 {
1465 	return vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite);
1466 }
1467 
1468 static bool vma_is_shared_writable(struct vm_area_struct *vma)
1469 {
1470 	return (vma->vm_flags & (VM_WRITE | VM_SHARED)) ==
1471 		(VM_WRITE | VM_SHARED);
1472 }
1473 
1474 static bool vma_fs_can_writeback(struct vm_area_struct *vma)
1475 {
1476 	/* No managed pages to writeback. */
1477 	if (vma->vm_flags & VM_PFNMAP)
1478 		return false;
1479 
1480 	return vma->vm_file && vma->vm_file->f_mapping &&
1481 		mapping_can_writeback(vma->vm_file->f_mapping);
1482 }
1483 
1484 /*
1485  * Does this VMA require the underlying folios to have their dirty state
1486  * tracked?
1487  */
1488 bool vma_needs_dirty_tracking(struct vm_area_struct *vma)
1489 {
1490 	/* Only shared, writable VMAs require dirty tracking. */
1491 	if (!vma_is_shared_writable(vma))
1492 		return false;
1493 
1494 	/* Does the filesystem need to be notified? */
1495 	if (vm_ops_needs_writenotify(vma->vm_ops))
1496 		return true;
1497 
1498 	/*
1499 	 * Even if the filesystem doesn't indicate a need for writenotify, if it
1500 	 * can writeback, dirty tracking is still required.
1501 	 */
1502 	return vma_fs_can_writeback(vma);
1503 }
1504 
1505 /*
1506  * Some shared mappings will want the pages marked read-only
1507  * to track write events. If so, we'll downgrade vm_page_prot
1508  * to the private version (using protection_map[] without the
1509  * VM_SHARED bit).
1510  */
1511 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1512 {
1513 	/* If it was private or non-writable, the write bit is already clear */
1514 	if (!vma_is_shared_writable(vma))
1515 		return 0;
1516 
1517 	/* The backer wishes to know when pages are first written to? */
1518 	if (vm_ops_needs_writenotify(vma->vm_ops))
1519 		return 1;
1520 
1521 	/* The open routine did something to the protections that pgprot_modify
1522 	 * won't preserve? */
1523 	if (pgprot_val(vm_page_prot) !=
1524 	    pgprot_val(vm_pgprot_modify(vm_page_prot, vma->vm_flags)))
1525 		return 0;
1526 
1527 	/*
1528 	 * Do we need to track softdirty? hugetlb does not support softdirty
1529 	 * tracking yet.
1530 	 */
1531 	if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma))
1532 		return 1;
1533 
1534 	/* Do we need write faults for uffd-wp tracking? */
1535 	if (userfaultfd_wp(vma))
1536 		return 1;
1537 
1538 	/* Can the mapping track the dirty pages? */
1539 	return vma_fs_can_writeback(vma);
1540 }
1541 
1542 /*
1543  * We account for memory if it's a private writeable mapping,
1544  * not hugepages and VM_NORESERVE wasn't set.
1545  */
1546 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1547 {
1548 	/*
1549 	 * hugetlb has its own accounting separate from the core VM
1550 	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1551 	 */
1552 	if (file && is_file_hugepages(file))
1553 		return 0;
1554 
1555 	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1556 }
1557 
1558 /**
1559  * unmapped_area() - Find an area between the low_limit and the high_limit with
1560  * the correct alignment and offset, all from @info. Note: current->mm is used
1561  * for the search.
1562  *
1563  * @info: The unmapped area information including the range [low_limit -
1564  * high_limit), the alignment offset and mask.
1565  *
1566  * Return: A memory address or -ENOMEM.
1567  */
1568 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1569 {
1570 	unsigned long length, gap;
1571 	unsigned long low_limit, high_limit;
1572 	struct vm_area_struct *tmp;
1573 
1574 	MA_STATE(mas, &current->mm->mm_mt, 0, 0);
1575 
1576 	/* Adjust search length to account for worst case alignment overhead */
1577 	length = info->length + info->align_mask;
1578 	if (length < info->length)
1579 		return -ENOMEM;
1580 
1581 	low_limit = info->low_limit;
1582 	if (low_limit < mmap_min_addr)
1583 		low_limit = mmap_min_addr;
1584 	high_limit = info->high_limit;
1585 retry:
1586 	if (mas_empty_area(&mas, low_limit, high_limit - 1, length))
1587 		return -ENOMEM;
1588 
1589 	gap = mas.index;
1590 	gap += (info->align_offset - gap) & info->align_mask;
1591 	tmp = mas_next(&mas, ULONG_MAX);
1592 	if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
1593 		if (vm_start_gap(tmp) < gap + length - 1) {
1594 			low_limit = tmp->vm_end;
1595 			mas_reset(&mas);
1596 			goto retry;
1597 		}
1598 	} else {
1599 		tmp = mas_prev(&mas, 0);
1600 		if (tmp && vm_end_gap(tmp) > gap) {
1601 			low_limit = vm_end_gap(tmp);
1602 			mas_reset(&mas);
1603 			goto retry;
1604 		}
1605 	}
1606 
1607 	return gap;
1608 }
1609 
1610 /**
1611  * unmapped_area_topdown() - Find an area between the low_limit and the
1612  * high_limit with the correct alignment and offset at the highest available
1613  * address, all from @info. Note: current->mm is used for the search.
1614  *
1615  * @info: The unmapped area information including the range [low_limit -
1616  * high_limit), the alignment offset and mask.
1617  *
1618  * Return: A memory address or -ENOMEM.
1619  */
1620 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1621 {
1622 	unsigned long length, gap, gap_end;
1623 	unsigned long low_limit, high_limit;
1624 	struct vm_area_struct *tmp;
1625 
1626 	MA_STATE(mas, &current->mm->mm_mt, 0, 0);
1627 	/* Adjust search length to account for worst case alignment overhead */
1628 	length = info->length + info->align_mask;
1629 	if (length < info->length)
1630 		return -ENOMEM;
1631 
1632 	low_limit = info->low_limit;
1633 	if (low_limit < mmap_min_addr)
1634 		low_limit = mmap_min_addr;
1635 	high_limit = info->high_limit;
1636 retry:
1637 	if (mas_empty_area_rev(&mas, low_limit, high_limit - 1, length))
1638 		return -ENOMEM;
1639 
1640 	gap = mas.last + 1 - info->length;
1641 	gap -= (gap - info->align_offset) & info->align_mask;
1642 	gap_end = mas.last;
1643 	tmp = mas_next(&mas, ULONG_MAX);
1644 	if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
1645 		if (vm_start_gap(tmp) <= gap_end) {
1646 			high_limit = vm_start_gap(tmp);
1647 			mas_reset(&mas);
1648 			goto retry;
1649 		}
1650 	} else {
1651 		tmp = mas_prev(&mas, 0);
1652 		if (tmp && vm_end_gap(tmp) > gap) {
1653 			high_limit = tmp->vm_start;
1654 			mas_reset(&mas);
1655 			goto retry;
1656 		}
1657 	}
1658 
1659 	return gap;
1660 }
1661 
1662 /*
1663  * Search for an unmapped address range.
1664  *
1665  * We are looking for a range that:
1666  * - does not intersect with any VMA;
1667  * - is contained within the [low_limit, high_limit) interval;
1668  * - is at least the desired size.
1669  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1670  */
1671 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
1672 {
1673 	unsigned long addr;
1674 
1675 	if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
1676 		addr = unmapped_area_topdown(info);
1677 	else
1678 		addr = unmapped_area(info);
1679 
1680 	trace_vm_unmapped_area(addr, info);
1681 	return addr;
1682 }
1683 
1684 /* Get an address range which is currently unmapped.
1685  * For shmat() with addr=0.
1686  *
1687  * Ugly calling convention alert:
1688  * Return value with the low bits set means error value,
1689  * ie
1690  *	if (ret & ~PAGE_MASK)
1691  *		error = ret;
1692  *
1693  * This function "knows" that -ENOMEM has the bits set.
1694  */
1695 unsigned long
1696 generic_get_unmapped_area(struct file *filp, unsigned long addr,
1697 			  unsigned long len, unsigned long pgoff,
1698 			  unsigned long flags)
1699 {
1700 	struct mm_struct *mm = current->mm;
1701 	struct vm_area_struct *vma, *prev;
1702 	struct vm_unmapped_area_info info;
1703 	const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1704 
1705 	if (len > mmap_end - mmap_min_addr)
1706 		return -ENOMEM;
1707 
1708 	if (flags & MAP_FIXED)
1709 		return addr;
1710 
1711 	if (addr) {
1712 		addr = PAGE_ALIGN(addr);
1713 		vma = find_vma_prev(mm, addr, &prev);
1714 		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1715 		    (!vma || addr + len <= vm_start_gap(vma)) &&
1716 		    (!prev || addr >= vm_end_gap(prev)))
1717 			return addr;
1718 	}
1719 
1720 	info.flags = 0;
1721 	info.length = len;
1722 	info.low_limit = mm->mmap_base;
1723 	info.high_limit = mmap_end;
1724 	info.align_mask = 0;
1725 	info.align_offset = 0;
1726 	return vm_unmapped_area(&info);
1727 }
1728 
1729 #ifndef HAVE_ARCH_UNMAPPED_AREA
1730 unsigned long
1731 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1732 		       unsigned long len, unsigned long pgoff,
1733 		       unsigned long flags)
1734 {
1735 	return generic_get_unmapped_area(filp, addr, len, pgoff, flags);
1736 }
1737 #endif
1738 
1739 /*
1740  * This mmap-allocator allocates new areas top-down from below the
1741  * stack's low limit (the base):
1742  */
1743 unsigned long
1744 generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1745 				  unsigned long len, unsigned long pgoff,
1746 				  unsigned long flags)
1747 {
1748 	struct vm_area_struct *vma, *prev;
1749 	struct mm_struct *mm = current->mm;
1750 	struct vm_unmapped_area_info info;
1751 	const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1752 
1753 	/* requested length too big for entire address space */
1754 	if (len > mmap_end - mmap_min_addr)
1755 		return -ENOMEM;
1756 
1757 	if (flags & MAP_FIXED)
1758 		return addr;
1759 
1760 	/* requesting a specific address */
1761 	if (addr) {
1762 		addr = PAGE_ALIGN(addr);
1763 		vma = find_vma_prev(mm, addr, &prev);
1764 		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1765 				(!vma || addr + len <= vm_start_gap(vma)) &&
1766 				(!prev || addr >= vm_end_gap(prev)))
1767 			return addr;
1768 	}
1769 
1770 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1771 	info.length = len;
1772 	info.low_limit = PAGE_SIZE;
1773 	info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
1774 	info.align_mask = 0;
1775 	info.align_offset = 0;
1776 	addr = vm_unmapped_area(&info);
1777 
1778 	/*
1779 	 * A failed mmap() very likely causes application failure,
1780 	 * so fall back to the bottom-up function here. This scenario
1781 	 * can happen with large stack limits and large mmap()
1782 	 * allocations.
1783 	 */
1784 	if (offset_in_page(addr)) {
1785 		VM_BUG_ON(addr != -ENOMEM);
1786 		info.flags = 0;
1787 		info.low_limit = TASK_UNMAPPED_BASE;
1788 		info.high_limit = mmap_end;
1789 		addr = vm_unmapped_area(&info);
1790 	}
1791 
1792 	return addr;
1793 }
1794 
1795 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1796 unsigned long
1797 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1798 			       unsigned long len, unsigned long pgoff,
1799 			       unsigned long flags)
1800 {
1801 	return generic_get_unmapped_area_topdown(filp, addr, len, pgoff, flags);
1802 }
1803 #endif
1804 
1805 unsigned long
1806 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1807 		unsigned long pgoff, unsigned long flags)
1808 {
1809 	unsigned long (*get_area)(struct file *, unsigned long,
1810 				  unsigned long, unsigned long, unsigned long);
1811 
1812 	unsigned long error = arch_mmap_check(addr, len, flags);
1813 	if (error)
1814 		return error;
1815 
1816 	/* Careful about overflows.. */
1817 	if (len > TASK_SIZE)
1818 		return -ENOMEM;
1819 
1820 	get_area = current->mm->get_unmapped_area;
1821 	if (file) {
1822 		if (file->f_op->get_unmapped_area)
1823 			get_area = file->f_op->get_unmapped_area;
1824 	} else if (flags & MAP_SHARED) {
1825 		/*
1826 		 * mmap_region() will call shmem_zero_setup() to create a file,
1827 		 * so use shmem's get_unmapped_area in case it can be huge.
1828 		 */
1829 		get_area = shmem_get_unmapped_area;
1830 	} else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1831 		/* Ensures that larger anonymous mappings are THP aligned. */
1832 		get_area = thp_get_unmapped_area;
1833 	}
1834 
1835 	/* Always treat pgoff as zero for anonymous memory. */
1836 	if (!file)
1837 		pgoff = 0;
1838 
1839 	addr = get_area(file, addr, len, pgoff, flags);
1840 	if (IS_ERR_VALUE(addr))
1841 		return addr;
1842 
1843 	if (addr > TASK_SIZE - len)
1844 		return -ENOMEM;
1845 	if (offset_in_page(addr))
1846 		return -EINVAL;
1847 
1848 	error = security_mmap_addr(addr);
1849 	return error ? error : addr;
1850 }
1851 
1852 EXPORT_SYMBOL(get_unmapped_area);
1853 
1854 /**
1855  * find_vma_intersection() - Look up the first VMA which intersects the interval
1856  * @mm: The process address space.
1857  * @start_addr: The inclusive start user address.
1858  * @end_addr: The exclusive end user address.
1859  *
1860  * Returns: The first VMA within the provided range, %NULL otherwise.  Assumes
1861  * start_addr < end_addr.
1862  */
1863 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
1864 					     unsigned long start_addr,
1865 					     unsigned long end_addr)
1866 {
1867 	unsigned long index = start_addr;
1868 
1869 	mmap_assert_locked(mm);
1870 	return mt_find(&mm->mm_mt, &index, end_addr - 1);
1871 }
1872 EXPORT_SYMBOL(find_vma_intersection);
1873 
1874 /**
1875  * find_vma() - Find the VMA for a given address, or the next VMA.
1876  * @mm: The mm_struct to check
1877  * @addr: The address
1878  *
1879  * Returns: The VMA associated with addr, or the next VMA.
1880  * May return %NULL in the case of no VMA at addr or above.
1881  */
1882 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1883 {
1884 	unsigned long index = addr;
1885 
1886 	mmap_assert_locked(mm);
1887 	return mt_find(&mm->mm_mt, &index, ULONG_MAX);
1888 }
1889 EXPORT_SYMBOL(find_vma);
1890 
1891 /**
1892  * find_vma_prev() - Find the VMA for a given address, or the next vma and
1893  * set %pprev to the previous VMA, if any.
1894  * @mm: The mm_struct to check
1895  * @addr: The address
1896  * @pprev: The pointer to set to the previous VMA
1897  *
1898  * Note that RCU lock is missing here since the external mmap_lock() is used
1899  * instead.
1900  *
1901  * Returns: The VMA associated with @addr, or the next vma.
1902  * May return %NULL in the case of no vma at addr or above.
1903  */
1904 struct vm_area_struct *
1905 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1906 			struct vm_area_struct **pprev)
1907 {
1908 	struct vm_area_struct *vma;
1909 	MA_STATE(mas, &mm->mm_mt, addr, addr);
1910 
1911 	vma = mas_walk(&mas);
1912 	*pprev = mas_prev(&mas, 0);
1913 	if (!vma)
1914 		vma = mas_next(&mas, ULONG_MAX);
1915 	return vma;
1916 }
1917 
1918 /*
1919  * Verify that the stack growth is acceptable and
1920  * update accounting. This is shared with both the
1921  * grow-up and grow-down cases.
1922  */
1923 static int acct_stack_growth(struct vm_area_struct *vma,
1924 			     unsigned long size, unsigned long grow)
1925 {
1926 	struct mm_struct *mm = vma->vm_mm;
1927 	unsigned long new_start;
1928 
1929 	/* address space limit tests */
1930 	if (!may_expand_vm(mm, vma->vm_flags, grow))
1931 		return -ENOMEM;
1932 
1933 	/* Stack limit test */
1934 	if (size > rlimit(RLIMIT_STACK))
1935 		return -ENOMEM;
1936 
1937 	/* mlock limit tests */
1938 	if (!mlock_future_ok(mm, vma->vm_flags, grow << PAGE_SHIFT))
1939 		return -ENOMEM;
1940 
1941 	/* Check to ensure the stack will not grow into a hugetlb-only region */
1942 	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1943 			vma->vm_end - size;
1944 	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1945 		return -EFAULT;
1946 
1947 	/*
1948 	 * Overcommit..  This must be the final test, as it will
1949 	 * update security statistics.
1950 	 */
1951 	if (security_vm_enough_memory_mm(mm, grow))
1952 		return -ENOMEM;
1953 
1954 	return 0;
1955 }
1956 
1957 #if defined(CONFIG_STACK_GROWSUP)
1958 /*
1959  * PA-RISC uses this for its stack.
1960  * vma is the last one with address > vma->vm_end.  Have to extend vma.
1961  */
1962 static int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1963 {
1964 	struct mm_struct *mm = vma->vm_mm;
1965 	struct vm_area_struct *next;
1966 	unsigned long gap_addr;
1967 	int error = 0;
1968 	MA_STATE(mas, &mm->mm_mt, vma->vm_start, address);
1969 
1970 	if (!(vma->vm_flags & VM_GROWSUP))
1971 		return -EFAULT;
1972 
1973 	/* Guard against exceeding limits of the address space. */
1974 	address &= PAGE_MASK;
1975 	if (address >= (TASK_SIZE & PAGE_MASK))
1976 		return -ENOMEM;
1977 	address += PAGE_SIZE;
1978 
1979 	/* Enforce stack_guard_gap */
1980 	gap_addr = address + stack_guard_gap;
1981 
1982 	/* Guard against overflow */
1983 	if (gap_addr < address || gap_addr > TASK_SIZE)
1984 		gap_addr = TASK_SIZE;
1985 
1986 	next = find_vma_intersection(mm, vma->vm_end, gap_addr);
1987 	if (next && vma_is_accessible(next)) {
1988 		if (!(next->vm_flags & VM_GROWSUP))
1989 			return -ENOMEM;
1990 		/* Check that both stack segments have the same anon_vma? */
1991 	}
1992 
1993 	if (next)
1994 		mas_prev_range(&mas, address);
1995 
1996 	__mas_set_range(&mas, vma->vm_start, address - 1);
1997 	if (mas_preallocate(&mas, vma, GFP_KERNEL))
1998 		return -ENOMEM;
1999 
2000 	/* We must make sure the anon_vma is allocated. */
2001 	if (unlikely(anon_vma_prepare(vma))) {
2002 		mas_destroy(&mas);
2003 		return -ENOMEM;
2004 	}
2005 
2006 	/* Lock the VMA before expanding to prevent concurrent page faults */
2007 	vma_start_write(vma);
2008 	/*
2009 	 * vma->vm_start/vm_end cannot change under us because the caller
2010 	 * is required to hold the mmap_lock in read mode.  We need the
2011 	 * anon_vma lock to serialize against concurrent expand_stacks.
2012 	 */
2013 	anon_vma_lock_write(vma->anon_vma);
2014 
2015 	/* Somebody else might have raced and expanded it already */
2016 	if (address > vma->vm_end) {
2017 		unsigned long size, grow;
2018 
2019 		size = address - vma->vm_start;
2020 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
2021 
2022 		error = -ENOMEM;
2023 		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2024 			error = acct_stack_growth(vma, size, grow);
2025 			if (!error) {
2026 				/*
2027 				 * We only hold a shared mmap_lock lock here, so
2028 				 * we need to protect against concurrent vma
2029 				 * expansions.  anon_vma_lock_write() doesn't
2030 				 * help here, as we don't guarantee that all
2031 				 * growable vmas in a mm share the same root
2032 				 * anon vma.  So, we reuse mm->page_table_lock
2033 				 * to guard against concurrent vma expansions.
2034 				 */
2035 				spin_lock(&mm->page_table_lock);
2036 				if (vma->vm_flags & VM_LOCKED)
2037 					mm->locked_vm += grow;
2038 				vm_stat_account(mm, vma->vm_flags, grow);
2039 				anon_vma_interval_tree_pre_update_vma(vma);
2040 				vma->vm_end = address;
2041 				/* Overwrite old entry in mtree. */
2042 				mas_store_prealloc(&mas, vma);
2043 				anon_vma_interval_tree_post_update_vma(vma);
2044 				spin_unlock(&mm->page_table_lock);
2045 
2046 				perf_event_mmap(vma);
2047 			}
2048 		}
2049 	}
2050 	anon_vma_unlock_write(vma->anon_vma);
2051 	khugepaged_enter_vma(vma, vma->vm_flags);
2052 	mas_destroy(&mas);
2053 	validate_mm(mm);
2054 	return error;
2055 }
2056 #endif /* CONFIG_STACK_GROWSUP */
2057 
2058 /*
2059  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2060  * mmap_lock held for writing.
2061  */
2062 int expand_downwards(struct vm_area_struct *vma, unsigned long address)
2063 {
2064 	struct mm_struct *mm = vma->vm_mm;
2065 	MA_STATE(mas, &mm->mm_mt, vma->vm_start, vma->vm_start);
2066 	struct vm_area_struct *prev;
2067 	int error = 0;
2068 
2069 	if (!(vma->vm_flags & VM_GROWSDOWN))
2070 		return -EFAULT;
2071 
2072 	address &= PAGE_MASK;
2073 	if (address < mmap_min_addr || address < FIRST_USER_ADDRESS)
2074 		return -EPERM;
2075 
2076 	/* Enforce stack_guard_gap */
2077 	prev = mas_prev(&mas, 0);
2078 	/* Check that both stack segments have the same anon_vma? */
2079 	if (prev) {
2080 		if (!(prev->vm_flags & VM_GROWSDOWN) &&
2081 		    vma_is_accessible(prev) &&
2082 		    (address - prev->vm_end < stack_guard_gap))
2083 			return -ENOMEM;
2084 	}
2085 
2086 	if (prev)
2087 		mas_next_range(&mas, vma->vm_start);
2088 
2089 	__mas_set_range(&mas, address, vma->vm_end - 1);
2090 	if (mas_preallocate(&mas, vma, GFP_KERNEL))
2091 		return -ENOMEM;
2092 
2093 	/* We must make sure the anon_vma is allocated. */
2094 	if (unlikely(anon_vma_prepare(vma))) {
2095 		mas_destroy(&mas);
2096 		return -ENOMEM;
2097 	}
2098 
2099 	/* Lock the VMA before expanding to prevent concurrent page faults */
2100 	vma_start_write(vma);
2101 	/*
2102 	 * vma->vm_start/vm_end cannot change under us because the caller
2103 	 * is required to hold the mmap_lock in read mode.  We need the
2104 	 * anon_vma lock to serialize against concurrent expand_stacks.
2105 	 */
2106 	anon_vma_lock_write(vma->anon_vma);
2107 
2108 	/* Somebody else might have raced and expanded it already */
2109 	if (address < vma->vm_start) {
2110 		unsigned long size, grow;
2111 
2112 		size = vma->vm_end - address;
2113 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
2114 
2115 		error = -ENOMEM;
2116 		if (grow <= vma->vm_pgoff) {
2117 			error = acct_stack_growth(vma, size, grow);
2118 			if (!error) {
2119 				/*
2120 				 * We only hold a shared mmap_lock lock here, so
2121 				 * we need to protect against concurrent vma
2122 				 * expansions.  anon_vma_lock_write() doesn't
2123 				 * help here, as we don't guarantee that all
2124 				 * growable vmas in a mm share the same root
2125 				 * anon vma.  So, we reuse mm->page_table_lock
2126 				 * to guard against concurrent vma expansions.
2127 				 */
2128 				spin_lock(&mm->page_table_lock);
2129 				if (vma->vm_flags & VM_LOCKED)
2130 					mm->locked_vm += grow;
2131 				vm_stat_account(mm, vma->vm_flags, grow);
2132 				anon_vma_interval_tree_pre_update_vma(vma);
2133 				vma->vm_start = address;
2134 				vma->vm_pgoff -= grow;
2135 				/* Overwrite old entry in mtree. */
2136 				mas_store_prealloc(&mas, vma);
2137 				anon_vma_interval_tree_post_update_vma(vma);
2138 				spin_unlock(&mm->page_table_lock);
2139 
2140 				perf_event_mmap(vma);
2141 			}
2142 		}
2143 	}
2144 	anon_vma_unlock_write(vma->anon_vma);
2145 	khugepaged_enter_vma(vma, vma->vm_flags);
2146 	mas_destroy(&mas);
2147 	validate_mm(mm);
2148 	return error;
2149 }
2150 
2151 /* enforced gap between the expanding stack and other mappings. */
2152 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2153 
2154 static int __init cmdline_parse_stack_guard_gap(char *p)
2155 {
2156 	unsigned long val;
2157 	char *endptr;
2158 
2159 	val = simple_strtoul(p, &endptr, 10);
2160 	if (!*endptr)
2161 		stack_guard_gap = val << PAGE_SHIFT;
2162 
2163 	return 1;
2164 }
2165 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2166 
2167 #ifdef CONFIG_STACK_GROWSUP
2168 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
2169 {
2170 	return expand_upwards(vma, address);
2171 }
2172 
2173 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
2174 {
2175 	struct vm_area_struct *vma, *prev;
2176 
2177 	addr &= PAGE_MASK;
2178 	vma = find_vma_prev(mm, addr, &prev);
2179 	if (vma && (vma->vm_start <= addr))
2180 		return vma;
2181 	if (!prev)
2182 		return NULL;
2183 	if (expand_stack_locked(prev, addr))
2184 		return NULL;
2185 	if (prev->vm_flags & VM_LOCKED)
2186 		populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2187 	return prev;
2188 }
2189 #else
2190 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
2191 {
2192 	return expand_downwards(vma, address);
2193 }
2194 
2195 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
2196 {
2197 	struct vm_area_struct *vma;
2198 	unsigned long start;
2199 
2200 	addr &= PAGE_MASK;
2201 	vma = find_vma(mm, addr);
2202 	if (!vma)
2203 		return NULL;
2204 	if (vma->vm_start <= addr)
2205 		return vma;
2206 	start = vma->vm_start;
2207 	if (expand_stack_locked(vma, addr))
2208 		return NULL;
2209 	if (vma->vm_flags & VM_LOCKED)
2210 		populate_vma_page_range(vma, addr, start, NULL);
2211 	return vma;
2212 }
2213 #endif
2214 
2215 #if defined(CONFIG_STACK_GROWSUP)
2216 
2217 #define vma_expand_up(vma,addr) expand_upwards(vma, addr)
2218 #define vma_expand_down(vma, addr) (-EFAULT)
2219 
2220 #else
2221 
2222 #define vma_expand_up(vma,addr) (-EFAULT)
2223 #define vma_expand_down(vma, addr) expand_downwards(vma, addr)
2224 
2225 #endif
2226 
2227 /*
2228  * expand_stack(): legacy interface for page faulting. Don't use unless
2229  * you have to.
2230  *
2231  * This is called with the mm locked for reading, drops the lock, takes
2232  * the lock for writing, tries to look up a vma again, expands it if
2233  * necessary, and downgrades the lock to reading again.
2234  *
2235  * If no vma is found or it can't be expanded, it returns NULL and has
2236  * dropped the lock.
2237  */
2238 struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr)
2239 {
2240 	struct vm_area_struct *vma, *prev;
2241 
2242 	mmap_read_unlock(mm);
2243 	if (mmap_write_lock_killable(mm))
2244 		return NULL;
2245 
2246 	vma = find_vma_prev(mm, addr, &prev);
2247 	if (vma && vma->vm_start <= addr)
2248 		goto success;
2249 
2250 	if (prev && !vma_expand_up(prev, addr)) {
2251 		vma = prev;
2252 		goto success;
2253 	}
2254 
2255 	if (vma && !vma_expand_down(vma, addr))
2256 		goto success;
2257 
2258 	mmap_write_unlock(mm);
2259 	return NULL;
2260 
2261 success:
2262 	mmap_write_downgrade(mm);
2263 	return vma;
2264 }
2265 
2266 /*
2267  * Ok - we have the memory areas we should free on a maple tree so release them,
2268  * and do the vma updates.
2269  *
2270  * Called with the mm semaphore held.
2271  */
2272 static inline void remove_mt(struct mm_struct *mm, struct ma_state *mas)
2273 {
2274 	unsigned long nr_accounted = 0;
2275 	struct vm_area_struct *vma;
2276 
2277 	/* Update high watermark before we lower total_vm */
2278 	update_hiwater_vm(mm);
2279 	mas_for_each(mas, vma, ULONG_MAX) {
2280 		long nrpages = vma_pages(vma);
2281 
2282 		if (vma->vm_flags & VM_ACCOUNT)
2283 			nr_accounted += nrpages;
2284 		vm_stat_account(mm, vma->vm_flags, -nrpages);
2285 		remove_vma(vma, false);
2286 	}
2287 	vm_unacct_memory(nr_accounted);
2288 }
2289 
2290 /*
2291  * Get rid of page table information in the indicated region.
2292  *
2293  * Called with the mm semaphore held.
2294  */
2295 static void unmap_region(struct mm_struct *mm, struct ma_state *mas,
2296 		struct vm_area_struct *vma, struct vm_area_struct *prev,
2297 		struct vm_area_struct *next, unsigned long start,
2298 		unsigned long end, unsigned long tree_end, bool mm_wr_locked)
2299 {
2300 	struct mmu_gather tlb;
2301 	unsigned long mt_start = mas->index;
2302 
2303 	lru_add_drain();
2304 	tlb_gather_mmu(&tlb, mm);
2305 	update_hiwater_rss(mm);
2306 	unmap_vmas(&tlb, mas, vma, start, end, tree_end, mm_wr_locked);
2307 	mas_set(mas, mt_start);
2308 	free_pgtables(&tlb, mas, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2309 				 next ? next->vm_start : USER_PGTABLES_CEILING,
2310 				 mm_wr_locked);
2311 	tlb_finish_mmu(&tlb);
2312 }
2313 
2314 /*
2315  * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2316  * has already been checked or doesn't make sense to fail.
2317  * VMA Iterator will point to the end VMA.
2318  */
2319 static int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
2320 		       unsigned long addr, int new_below)
2321 {
2322 	struct vma_prepare vp;
2323 	struct vm_area_struct *new;
2324 	int err;
2325 
2326 	WARN_ON(vma->vm_start >= addr);
2327 	WARN_ON(vma->vm_end <= addr);
2328 
2329 	if (vma->vm_ops && vma->vm_ops->may_split) {
2330 		err = vma->vm_ops->may_split(vma, addr);
2331 		if (err)
2332 			return err;
2333 	}
2334 
2335 	new = vm_area_dup(vma);
2336 	if (!new)
2337 		return -ENOMEM;
2338 
2339 	if (new_below) {
2340 		new->vm_end = addr;
2341 	} else {
2342 		new->vm_start = addr;
2343 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2344 	}
2345 
2346 	err = -ENOMEM;
2347 	vma_iter_config(vmi, new->vm_start, new->vm_end);
2348 	if (vma_iter_prealloc(vmi, new))
2349 		goto out_free_vma;
2350 
2351 	err = vma_dup_policy(vma, new);
2352 	if (err)
2353 		goto out_free_vmi;
2354 
2355 	err = anon_vma_clone(new, vma);
2356 	if (err)
2357 		goto out_free_mpol;
2358 
2359 	if (new->vm_file)
2360 		get_file(new->vm_file);
2361 
2362 	if (new->vm_ops && new->vm_ops->open)
2363 		new->vm_ops->open(new);
2364 
2365 	vma_start_write(vma);
2366 	vma_start_write(new);
2367 
2368 	init_vma_prep(&vp, vma);
2369 	vp.insert = new;
2370 	vma_prepare(&vp);
2371 	vma_adjust_trans_huge(vma, vma->vm_start, addr, 0);
2372 
2373 	if (new_below) {
2374 		vma->vm_start = addr;
2375 		vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT;
2376 	} else {
2377 		vma->vm_end = addr;
2378 	}
2379 
2380 	/* vma_complete stores the new vma */
2381 	vma_complete(&vp, vmi, vma->vm_mm);
2382 
2383 	/* Success. */
2384 	if (new_below)
2385 		vma_next(vmi);
2386 	return 0;
2387 
2388 out_free_mpol:
2389 	mpol_put(vma_policy(new));
2390 out_free_vmi:
2391 	vma_iter_free(vmi);
2392 out_free_vma:
2393 	vm_area_free(new);
2394 	return err;
2395 }
2396 
2397 /*
2398  * Split a vma into two pieces at address 'addr', a new vma is allocated
2399  * either for the first part or the tail.
2400  */
2401 static int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
2402 		     unsigned long addr, int new_below)
2403 {
2404 	if (vma->vm_mm->map_count >= sysctl_max_map_count)
2405 		return -ENOMEM;
2406 
2407 	return __split_vma(vmi, vma, addr, new_below);
2408 }
2409 
2410 /*
2411  * We are about to modify one or multiple of a VMA's flags, policy, userfaultfd
2412  * context and anonymous VMA name within the range [start, end).
2413  *
2414  * As a result, we might be able to merge the newly modified VMA range with an
2415  * adjacent VMA with identical properties.
2416  *
2417  * If no merge is possible and the range does not span the entirety of the VMA,
2418  * we then need to split the VMA to accommodate the change.
2419  *
2420  * The function returns either the merged VMA, the original VMA if a split was
2421  * required instead, or an error if the split failed.
2422  */
2423 struct vm_area_struct *vma_modify(struct vma_iterator *vmi,
2424 				  struct vm_area_struct *prev,
2425 				  struct vm_area_struct *vma,
2426 				  unsigned long start, unsigned long end,
2427 				  unsigned long vm_flags,
2428 				  struct mempolicy *policy,
2429 				  struct vm_userfaultfd_ctx uffd_ctx,
2430 				  struct anon_vma_name *anon_name)
2431 {
2432 	pgoff_t pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
2433 	struct vm_area_struct *merged;
2434 
2435 	merged = vma_merge(vmi, vma->vm_mm, prev, start, end, vm_flags,
2436 			   vma->anon_vma, vma->vm_file, pgoff, policy,
2437 			   uffd_ctx, anon_name);
2438 	if (merged)
2439 		return merged;
2440 
2441 	if (vma->vm_start < start) {
2442 		int err = split_vma(vmi, vma, start, 1);
2443 
2444 		if (err)
2445 			return ERR_PTR(err);
2446 	}
2447 
2448 	if (vma->vm_end > end) {
2449 		int err = split_vma(vmi, vma, end, 0);
2450 
2451 		if (err)
2452 			return ERR_PTR(err);
2453 	}
2454 
2455 	return vma;
2456 }
2457 
2458 /*
2459  * Attempt to merge a newly mapped VMA with those adjacent to it. The caller
2460  * must ensure that [start, end) does not overlap any existing VMA.
2461  */
2462 static struct vm_area_struct
2463 *vma_merge_new_vma(struct vma_iterator *vmi, struct vm_area_struct *prev,
2464 		   struct vm_area_struct *vma, unsigned long start,
2465 		   unsigned long end, pgoff_t pgoff)
2466 {
2467 	return vma_merge(vmi, vma->vm_mm, prev, start, end, vma->vm_flags,
2468 			 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
2469 			 vma->vm_userfaultfd_ctx, anon_vma_name(vma));
2470 }
2471 
2472 /*
2473  * Expand vma by delta bytes, potentially merging with an immediately adjacent
2474  * VMA with identical properties.
2475  */
2476 struct vm_area_struct *vma_merge_extend(struct vma_iterator *vmi,
2477 					struct vm_area_struct *vma,
2478 					unsigned long delta)
2479 {
2480 	pgoff_t pgoff = vma->vm_pgoff + vma_pages(vma);
2481 
2482 	/* vma is specified as prev, so case 1 or 2 will apply. */
2483 	return vma_merge(vmi, vma->vm_mm, vma, vma->vm_end, vma->vm_end + delta,
2484 			 vma->vm_flags, vma->anon_vma, vma->vm_file, pgoff,
2485 			 vma_policy(vma), vma->vm_userfaultfd_ctx,
2486 			 anon_vma_name(vma));
2487 }
2488 
2489 /*
2490  * do_vmi_align_munmap() - munmap the aligned region from @start to @end.
2491  * @vmi: The vma iterator
2492  * @vma: The starting vm_area_struct
2493  * @mm: The mm_struct
2494  * @start: The aligned start address to munmap.
2495  * @end: The aligned end address to munmap.
2496  * @uf: The userfaultfd list_head
2497  * @unlock: Set to true to drop the mmap_lock.  unlocking only happens on
2498  * success.
2499  *
2500  * Return: 0 on success and drops the lock if so directed, error and leaves the
2501  * lock held otherwise.
2502  */
2503 static int
2504 do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
2505 		    struct mm_struct *mm, unsigned long start,
2506 		    unsigned long end, struct list_head *uf, bool unlock)
2507 {
2508 	struct vm_area_struct *prev, *next = NULL;
2509 	struct maple_tree mt_detach;
2510 	int count = 0;
2511 	int error = -ENOMEM;
2512 	unsigned long locked_vm = 0;
2513 	MA_STATE(mas_detach, &mt_detach, 0, 0);
2514 	mt_init_flags(&mt_detach, vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK);
2515 	mt_on_stack(mt_detach);
2516 
2517 	/*
2518 	 * If we need to split any vma, do it now to save pain later.
2519 	 *
2520 	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2521 	 * unmapped vm_area_struct will remain in use: so lower split_vma
2522 	 * places tmp vma above, and higher split_vma places tmp vma below.
2523 	 */
2524 
2525 	/* Does it split the first one? */
2526 	if (start > vma->vm_start) {
2527 
2528 		/*
2529 		 * Make sure that map_count on return from munmap() will
2530 		 * not exceed its limit; but let map_count go just above
2531 		 * its limit temporarily, to help free resources as expected.
2532 		 */
2533 		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2534 			goto map_count_exceeded;
2535 
2536 		error = __split_vma(vmi, vma, start, 1);
2537 		if (error)
2538 			goto start_split_failed;
2539 	}
2540 
2541 	/*
2542 	 * Detach a range of VMAs from the mm. Using next as a temp variable as
2543 	 * it is always overwritten.
2544 	 */
2545 	next = vma;
2546 	do {
2547 		/* Does it split the end? */
2548 		if (next->vm_end > end) {
2549 			error = __split_vma(vmi, next, end, 0);
2550 			if (error)
2551 				goto end_split_failed;
2552 		}
2553 		vma_start_write(next);
2554 		mas_set(&mas_detach, count);
2555 		error = mas_store_gfp(&mas_detach, next, GFP_KERNEL);
2556 		if (error)
2557 			goto munmap_gather_failed;
2558 		vma_mark_detached(next, true);
2559 		if (next->vm_flags & VM_LOCKED)
2560 			locked_vm += vma_pages(next);
2561 
2562 		count++;
2563 		if (unlikely(uf)) {
2564 			/*
2565 			 * If userfaultfd_unmap_prep returns an error the vmas
2566 			 * will remain split, but userland will get a
2567 			 * highly unexpected error anyway. This is no
2568 			 * different than the case where the first of the two
2569 			 * __split_vma fails, but we don't undo the first
2570 			 * split, despite we could. This is unlikely enough
2571 			 * failure that it's not worth optimizing it for.
2572 			 */
2573 			error = userfaultfd_unmap_prep(next, start, end, uf);
2574 
2575 			if (error)
2576 				goto userfaultfd_error;
2577 		}
2578 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE
2579 		BUG_ON(next->vm_start < start);
2580 		BUG_ON(next->vm_start > end);
2581 #endif
2582 	} for_each_vma_range(*vmi, next, end);
2583 
2584 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
2585 	/* Make sure no VMAs are about to be lost. */
2586 	{
2587 		MA_STATE(test, &mt_detach, 0, 0);
2588 		struct vm_area_struct *vma_mas, *vma_test;
2589 		int test_count = 0;
2590 
2591 		vma_iter_set(vmi, start);
2592 		rcu_read_lock();
2593 		vma_test = mas_find(&test, count - 1);
2594 		for_each_vma_range(*vmi, vma_mas, end) {
2595 			BUG_ON(vma_mas != vma_test);
2596 			test_count++;
2597 			vma_test = mas_next(&test, count - 1);
2598 		}
2599 		rcu_read_unlock();
2600 		BUG_ON(count != test_count);
2601 	}
2602 #endif
2603 
2604 	while (vma_iter_addr(vmi) > start)
2605 		vma_iter_prev_range(vmi);
2606 
2607 	error = vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL);
2608 	if (error)
2609 		goto clear_tree_failed;
2610 
2611 	/* Point of no return */
2612 	mm->locked_vm -= locked_vm;
2613 	mm->map_count -= count;
2614 	if (unlock)
2615 		mmap_write_downgrade(mm);
2616 
2617 	prev = vma_iter_prev_range(vmi);
2618 	next = vma_next(vmi);
2619 	if (next)
2620 		vma_iter_prev_range(vmi);
2621 
2622 	/*
2623 	 * We can free page tables without write-locking mmap_lock because VMAs
2624 	 * were isolated before we downgraded mmap_lock.
2625 	 */
2626 	mas_set(&mas_detach, 1);
2627 	unmap_region(mm, &mas_detach, vma, prev, next, start, end, count,
2628 		     !unlock);
2629 	/* Statistics and freeing VMAs */
2630 	mas_set(&mas_detach, 0);
2631 	remove_mt(mm, &mas_detach);
2632 	validate_mm(mm);
2633 	if (unlock)
2634 		mmap_read_unlock(mm);
2635 
2636 	__mt_destroy(&mt_detach);
2637 	return 0;
2638 
2639 clear_tree_failed:
2640 userfaultfd_error:
2641 munmap_gather_failed:
2642 end_split_failed:
2643 	mas_set(&mas_detach, 0);
2644 	mas_for_each(&mas_detach, next, end)
2645 		vma_mark_detached(next, false);
2646 
2647 	__mt_destroy(&mt_detach);
2648 start_split_failed:
2649 map_count_exceeded:
2650 	validate_mm(mm);
2651 	return error;
2652 }
2653 
2654 /*
2655  * do_vmi_munmap() - munmap a given range.
2656  * @vmi: The vma iterator
2657  * @mm: The mm_struct
2658  * @start: The start address to munmap
2659  * @len: The length of the range to munmap
2660  * @uf: The userfaultfd list_head
2661  * @unlock: set to true if the user wants to drop the mmap_lock on success
2662  *
2663  * This function takes a @mas that is either pointing to the previous VMA or set
2664  * to MA_START and sets it up to remove the mapping(s).  The @len will be
2665  * aligned and any arch_unmap work will be preformed.
2666  *
2667  * Return: 0 on success and drops the lock if so directed, error and leaves the
2668  * lock held otherwise.
2669  */
2670 int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
2671 		  unsigned long start, size_t len, struct list_head *uf,
2672 		  bool unlock)
2673 {
2674 	unsigned long end;
2675 	struct vm_area_struct *vma;
2676 
2677 	if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2678 		return -EINVAL;
2679 
2680 	end = start + PAGE_ALIGN(len);
2681 	if (end == start)
2682 		return -EINVAL;
2683 
2684 	 /* arch_unmap() might do unmaps itself.  */
2685 	arch_unmap(mm, start, end);
2686 
2687 	/* Find the first overlapping VMA */
2688 	vma = vma_find(vmi, end);
2689 	if (!vma) {
2690 		if (unlock)
2691 			mmap_write_unlock(mm);
2692 		return 0;
2693 	}
2694 
2695 	return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock);
2696 }
2697 
2698 /* do_munmap() - Wrapper function for non-maple tree aware do_munmap() calls.
2699  * @mm: The mm_struct
2700  * @start: The start address to munmap
2701  * @len: The length to be munmapped.
2702  * @uf: The userfaultfd list_head
2703  *
2704  * Return: 0 on success, error otherwise.
2705  */
2706 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2707 	      struct list_head *uf)
2708 {
2709 	VMA_ITERATOR(vmi, mm, start);
2710 
2711 	return do_vmi_munmap(&vmi, mm, start, len, uf, false);
2712 }
2713 
2714 unsigned long mmap_region(struct file *file, unsigned long addr,
2715 		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2716 		struct list_head *uf)
2717 {
2718 	struct mm_struct *mm = current->mm;
2719 	struct vm_area_struct *vma = NULL;
2720 	struct vm_area_struct *next, *prev, *merge;
2721 	pgoff_t pglen = len >> PAGE_SHIFT;
2722 	unsigned long charged = 0;
2723 	unsigned long end = addr + len;
2724 	unsigned long merge_start = addr, merge_end = end;
2725 	bool writable_file_mapping = false;
2726 	pgoff_t vm_pgoff;
2727 	int error;
2728 	VMA_ITERATOR(vmi, mm, addr);
2729 
2730 	/* Check against address space limit. */
2731 	if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
2732 		unsigned long nr_pages;
2733 
2734 		/*
2735 		 * MAP_FIXED may remove pages of mappings that intersects with
2736 		 * requested mapping. Account for the pages it would unmap.
2737 		 */
2738 		nr_pages = count_vma_pages_range(mm, addr, end);
2739 
2740 		if (!may_expand_vm(mm, vm_flags,
2741 					(len >> PAGE_SHIFT) - nr_pages))
2742 			return -ENOMEM;
2743 	}
2744 
2745 	/* Unmap any existing mapping in the area */
2746 	if (do_vmi_munmap(&vmi, mm, addr, len, uf, false))
2747 		return -ENOMEM;
2748 
2749 	/*
2750 	 * Private writable mapping: check memory availability
2751 	 */
2752 	if (accountable_mapping(file, vm_flags)) {
2753 		charged = len >> PAGE_SHIFT;
2754 		if (security_vm_enough_memory_mm(mm, charged))
2755 			return -ENOMEM;
2756 		vm_flags |= VM_ACCOUNT;
2757 	}
2758 
2759 	next = vma_next(&vmi);
2760 	prev = vma_prev(&vmi);
2761 	if (vm_flags & VM_SPECIAL) {
2762 		if (prev)
2763 			vma_iter_next_range(&vmi);
2764 		goto cannot_expand;
2765 	}
2766 
2767 	/* Attempt to expand an old mapping */
2768 	/* Check next */
2769 	if (next && next->vm_start == end && !vma_policy(next) &&
2770 	    can_vma_merge_before(next, vm_flags, NULL, file, pgoff+pglen,
2771 				 NULL_VM_UFFD_CTX, NULL)) {
2772 		merge_end = next->vm_end;
2773 		vma = next;
2774 		vm_pgoff = next->vm_pgoff - pglen;
2775 	}
2776 
2777 	/* Check prev */
2778 	if (prev && prev->vm_end == addr && !vma_policy(prev) &&
2779 	    (vma ? can_vma_merge_after(prev, vm_flags, vma->anon_vma, file,
2780 				       pgoff, vma->vm_userfaultfd_ctx, NULL) :
2781 		   can_vma_merge_after(prev, vm_flags, NULL, file, pgoff,
2782 				       NULL_VM_UFFD_CTX, NULL))) {
2783 		merge_start = prev->vm_start;
2784 		vma = prev;
2785 		vm_pgoff = prev->vm_pgoff;
2786 	} else if (prev) {
2787 		vma_iter_next_range(&vmi);
2788 	}
2789 
2790 	/* Actually expand, if possible */
2791 	if (vma &&
2792 	    !vma_expand(&vmi, vma, merge_start, merge_end, vm_pgoff, next)) {
2793 		khugepaged_enter_vma(vma, vm_flags);
2794 		goto expanded;
2795 	}
2796 
2797 	if (vma == prev)
2798 		vma_iter_set(&vmi, addr);
2799 cannot_expand:
2800 
2801 	/*
2802 	 * Determine the object being mapped and call the appropriate
2803 	 * specific mapper. the address has already been validated, but
2804 	 * not unmapped, but the maps are removed from the list.
2805 	 */
2806 	vma = vm_area_alloc(mm);
2807 	if (!vma) {
2808 		error = -ENOMEM;
2809 		goto unacct_error;
2810 	}
2811 
2812 	vma_iter_config(&vmi, addr, end);
2813 	vma->vm_start = addr;
2814 	vma->vm_end = end;
2815 	vm_flags_init(vma, vm_flags);
2816 	vma->vm_page_prot = vm_get_page_prot(vm_flags);
2817 	vma->vm_pgoff = pgoff;
2818 
2819 	if (file) {
2820 		vma->vm_file = get_file(file);
2821 		error = call_mmap(file, vma);
2822 		if (error)
2823 			goto unmap_and_free_vma;
2824 
2825 		if (vma_is_shared_maywrite(vma)) {
2826 			error = mapping_map_writable(file->f_mapping);
2827 			if (error)
2828 				goto close_and_free_vma;
2829 
2830 			writable_file_mapping = true;
2831 		}
2832 
2833 		/*
2834 		 * Expansion is handled above, merging is handled below.
2835 		 * Drivers should not alter the address of the VMA.
2836 		 */
2837 		error = -EINVAL;
2838 		if (WARN_ON((addr != vma->vm_start)))
2839 			goto close_and_free_vma;
2840 
2841 		vma_iter_config(&vmi, addr, end);
2842 		/*
2843 		 * If vm_flags changed after call_mmap(), we should try merge
2844 		 * vma again as we may succeed this time.
2845 		 */
2846 		if (unlikely(vm_flags != vma->vm_flags && prev)) {
2847 			merge = vma_merge_new_vma(&vmi, prev, vma,
2848 						  vma->vm_start, vma->vm_end,
2849 						  vma->vm_pgoff);
2850 			if (merge) {
2851 				/*
2852 				 * ->mmap() can change vma->vm_file and fput
2853 				 * the original file. So fput the vma->vm_file
2854 				 * here or we would add an extra fput for file
2855 				 * and cause general protection fault
2856 				 * ultimately.
2857 				 */
2858 				fput(vma->vm_file);
2859 				vm_area_free(vma);
2860 				vma = merge;
2861 				/* Update vm_flags to pick up the change. */
2862 				vm_flags = vma->vm_flags;
2863 				goto unmap_writable;
2864 			}
2865 		}
2866 
2867 		vm_flags = vma->vm_flags;
2868 	} else if (vm_flags & VM_SHARED) {
2869 		error = shmem_zero_setup(vma);
2870 		if (error)
2871 			goto free_vma;
2872 	} else {
2873 		vma_set_anonymous(vma);
2874 	}
2875 
2876 	if (map_deny_write_exec(vma, vma->vm_flags)) {
2877 		error = -EACCES;
2878 		goto close_and_free_vma;
2879 	}
2880 
2881 	/* Allow architectures to sanity-check the vm_flags */
2882 	error = -EINVAL;
2883 	if (!arch_validate_flags(vma->vm_flags))
2884 		goto close_and_free_vma;
2885 
2886 	error = -ENOMEM;
2887 	if (vma_iter_prealloc(&vmi, vma))
2888 		goto close_and_free_vma;
2889 
2890 	/* Lock the VMA since it is modified after insertion into VMA tree */
2891 	vma_start_write(vma);
2892 	vma_iter_store(&vmi, vma);
2893 	mm->map_count++;
2894 	if (vma->vm_file) {
2895 		i_mmap_lock_write(vma->vm_file->f_mapping);
2896 		if (vma_is_shared_maywrite(vma))
2897 			mapping_allow_writable(vma->vm_file->f_mapping);
2898 
2899 		flush_dcache_mmap_lock(vma->vm_file->f_mapping);
2900 		vma_interval_tree_insert(vma, &vma->vm_file->f_mapping->i_mmap);
2901 		flush_dcache_mmap_unlock(vma->vm_file->f_mapping);
2902 		i_mmap_unlock_write(vma->vm_file->f_mapping);
2903 	}
2904 
2905 	/*
2906 	 * vma_merge() calls khugepaged_enter_vma() either, the below
2907 	 * call covers the non-merge case.
2908 	 */
2909 	khugepaged_enter_vma(vma, vma->vm_flags);
2910 
2911 	/* Once vma denies write, undo our temporary denial count */
2912 unmap_writable:
2913 	if (writable_file_mapping)
2914 		mapping_unmap_writable(file->f_mapping);
2915 	file = vma->vm_file;
2916 	ksm_add_vma(vma);
2917 expanded:
2918 	perf_event_mmap(vma);
2919 
2920 	vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
2921 	if (vm_flags & VM_LOCKED) {
2922 		if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
2923 					is_vm_hugetlb_page(vma) ||
2924 					vma == get_gate_vma(current->mm))
2925 			vm_flags_clear(vma, VM_LOCKED_MASK);
2926 		else
2927 			mm->locked_vm += (len >> PAGE_SHIFT);
2928 	}
2929 
2930 	if (file)
2931 		uprobe_mmap(vma);
2932 
2933 	/*
2934 	 * New (or expanded) vma always get soft dirty status.
2935 	 * Otherwise user-space soft-dirty page tracker won't
2936 	 * be able to distinguish situation when vma area unmapped,
2937 	 * then new mapped in-place (which must be aimed as
2938 	 * a completely new data area).
2939 	 */
2940 	vm_flags_set(vma, VM_SOFTDIRTY);
2941 
2942 	vma_set_page_prot(vma);
2943 
2944 	validate_mm(mm);
2945 	return addr;
2946 
2947 close_and_free_vma:
2948 	if (file && vma->vm_ops && vma->vm_ops->close)
2949 		vma->vm_ops->close(vma);
2950 
2951 	if (file || vma->vm_file) {
2952 unmap_and_free_vma:
2953 		fput(vma->vm_file);
2954 		vma->vm_file = NULL;
2955 
2956 		vma_iter_set(&vmi, vma->vm_end);
2957 		/* Undo any partial mapping done by a device driver. */
2958 		unmap_region(mm, &vmi.mas, vma, prev, next, vma->vm_start,
2959 			     vma->vm_end, vma->vm_end, true);
2960 	}
2961 	if (writable_file_mapping)
2962 		mapping_unmap_writable(file->f_mapping);
2963 free_vma:
2964 	vm_area_free(vma);
2965 unacct_error:
2966 	if (charged)
2967 		vm_unacct_memory(charged);
2968 	validate_mm(mm);
2969 	return error;
2970 }
2971 
2972 static int __vm_munmap(unsigned long start, size_t len, bool unlock)
2973 {
2974 	int ret;
2975 	struct mm_struct *mm = current->mm;
2976 	LIST_HEAD(uf);
2977 	VMA_ITERATOR(vmi, mm, start);
2978 
2979 	if (mmap_write_lock_killable(mm))
2980 		return -EINTR;
2981 
2982 	ret = do_vmi_munmap(&vmi, mm, start, len, &uf, unlock);
2983 	if (ret || !unlock)
2984 		mmap_write_unlock(mm);
2985 
2986 	userfaultfd_unmap_complete(mm, &uf);
2987 	return ret;
2988 }
2989 
2990 int vm_munmap(unsigned long start, size_t len)
2991 {
2992 	return __vm_munmap(start, len, false);
2993 }
2994 EXPORT_SYMBOL(vm_munmap);
2995 
2996 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2997 {
2998 	addr = untagged_addr(addr);
2999 	return __vm_munmap(addr, len, true);
3000 }
3001 
3002 
3003 /*
3004  * Emulation of deprecated remap_file_pages() syscall.
3005  */
3006 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
3007 		unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
3008 {
3009 
3010 	struct mm_struct *mm = current->mm;
3011 	struct vm_area_struct *vma;
3012 	unsigned long populate = 0;
3013 	unsigned long ret = -EINVAL;
3014 	struct file *file;
3015 
3016 	pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/mm/remap_file_pages.rst.\n",
3017 		     current->comm, current->pid);
3018 
3019 	if (prot)
3020 		return ret;
3021 	start = start & PAGE_MASK;
3022 	size = size & PAGE_MASK;
3023 
3024 	if (start + size <= start)
3025 		return ret;
3026 
3027 	/* Does pgoff wrap? */
3028 	if (pgoff + (size >> PAGE_SHIFT) < pgoff)
3029 		return ret;
3030 
3031 	if (mmap_write_lock_killable(mm))
3032 		return -EINTR;
3033 
3034 	vma = vma_lookup(mm, start);
3035 
3036 	if (!vma || !(vma->vm_flags & VM_SHARED))
3037 		goto out;
3038 
3039 	if (start + size > vma->vm_end) {
3040 		VMA_ITERATOR(vmi, mm, vma->vm_end);
3041 		struct vm_area_struct *next, *prev = vma;
3042 
3043 		for_each_vma_range(vmi, next, start + size) {
3044 			/* hole between vmas ? */
3045 			if (next->vm_start != prev->vm_end)
3046 				goto out;
3047 
3048 			if (next->vm_file != vma->vm_file)
3049 				goto out;
3050 
3051 			if (next->vm_flags != vma->vm_flags)
3052 				goto out;
3053 
3054 			if (start + size <= next->vm_end)
3055 				break;
3056 
3057 			prev = next;
3058 		}
3059 
3060 		if (!next)
3061 			goto out;
3062 	}
3063 
3064 	prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
3065 	prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
3066 	prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
3067 
3068 	flags &= MAP_NONBLOCK;
3069 	flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
3070 	if (vma->vm_flags & VM_LOCKED)
3071 		flags |= MAP_LOCKED;
3072 
3073 	file = get_file(vma->vm_file);
3074 	ret = do_mmap(vma->vm_file, start, size,
3075 			prot, flags, 0, pgoff, &populate, NULL);
3076 	fput(file);
3077 out:
3078 	mmap_write_unlock(mm);
3079 	if (populate)
3080 		mm_populate(ret, populate);
3081 	if (!IS_ERR_VALUE(ret))
3082 		ret = 0;
3083 	return ret;
3084 }
3085 
3086 /*
3087  * do_vma_munmap() - Unmap a full or partial vma.
3088  * @vmi: The vma iterator pointing at the vma
3089  * @vma: The first vma to be munmapped
3090  * @start: the start of the address to unmap
3091  * @end: The end of the address to unmap
3092  * @uf: The userfaultfd list_head
3093  * @unlock: Drop the lock on success
3094  *
3095  * unmaps a VMA mapping when the vma iterator is already in position.
3096  * Does not handle alignment.
3097  *
3098  * Return: 0 on success drops the lock of so directed, error on failure and will
3099  * still hold the lock.
3100  */
3101 int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3102 		unsigned long start, unsigned long end, struct list_head *uf,
3103 		bool unlock)
3104 {
3105 	struct mm_struct *mm = vma->vm_mm;
3106 
3107 	arch_unmap(mm, start, end);
3108 	return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock);
3109 }
3110 
3111 /*
3112  * do_brk_flags() - Increase the brk vma if the flags match.
3113  * @vmi: The vma iterator
3114  * @addr: The start address
3115  * @len: The length of the increase
3116  * @vma: The vma,
3117  * @flags: The VMA Flags
3118  *
3119  * Extend the brk VMA from addr to addr + len.  If the VMA is NULL or the flags
3120  * do not match then create a new anonymous VMA.  Eventually we may be able to
3121  * do some brk-specific accounting here.
3122  */
3123 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma,
3124 		unsigned long addr, unsigned long len, unsigned long flags)
3125 {
3126 	struct mm_struct *mm = current->mm;
3127 	struct vma_prepare vp;
3128 
3129 	/*
3130 	 * Check against address space limits by the changed size
3131 	 * Note: This happens *after* clearing old mappings in some code paths.
3132 	 */
3133 	flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
3134 	if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3135 		return -ENOMEM;
3136 
3137 	if (mm->map_count > sysctl_max_map_count)
3138 		return -ENOMEM;
3139 
3140 	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3141 		return -ENOMEM;
3142 
3143 	/*
3144 	 * Expand the existing vma if possible; Note that singular lists do not
3145 	 * occur after forking, so the expand will only happen on new VMAs.
3146 	 */
3147 	if (vma && vma->vm_end == addr && !vma_policy(vma) &&
3148 	    can_vma_merge_after(vma, flags, NULL, NULL,
3149 				addr >> PAGE_SHIFT, NULL_VM_UFFD_CTX, NULL)) {
3150 		vma_iter_config(vmi, vma->vm_start, addr + len);
3151 		if (vma_iter_prealloc(vmi, vma))
3152 			goto unacct_fail;
3153 
3154 		vma_start_write(vma);
3155 
3156 		init_vma_prep(&vp, vma);
3157 		vma_prepare(&vp);
3158 		vma_adjust_trans_huge(vma, vma->vm_start, addr + len, 0);
3159 		vma->vm_end = addr + len;
3160 		vm_flags_set(vma, VM_SOFTDIRTY);
3161 		vma_iter_store(vmi, vma);
3162 
3163 		vma_complete(&vp, vmi, mm);
3164 		khugepaged_enter_vma(vma, flags);
3165 		goto out;
3166 	}
3167 
3168 	if (vma)
3169 		vma_iter_next_range(vmi);
3170 	/* create a vma struct for an anonymous mapping */
3171 	vma = vm_area_alloc(mm);
3172 	if (!vma)
3173 		goto unacct_fail;
3174 
3175 	vma_set_anonymous(vma);
3176 	vma->vm_start = addr;
3177 	vma->vm_end = addr + len;
3178 	vma->vm_pgoff = addr >> PAGE_SHIFT;
3179 	vm_flags_init(vma, flags);
3180 	vma->vm_page_prot = vm_get_page_prot(flags);
3181 	vma_start_write(vma);
3182 	if (vma_iter_store_gfp(vmi, vma, GFP_KERNEL))
3183 		goto mas_store_fail;
3184 
3185 	mm->map_count++;
3186 	validate_mm(mm);
3187 	ksm_add_vma(vma);
3188 out:
3189 	perf_event_mmap(vma);
3190 	mm->total_vm += len >> PAGE_SHIFT;
3191 	mm->data_vm += len >> PAGE_SHIFT;
3192 	if (flags & VM_LOCKED)
3193 		mm->locked_vm += (len >> PAGE_SHIFT);
3194 	vm_flags_set(vma, VM_SOFTDIRTY);
3195 	return 0;
3196 
3197 mas_store_fail:
3198 	vm_area_free(vma);
3199 unacct_fail:
3200 	vm_unacct_memory(len >> PAGE_SHIFT);
3201 	return -ENOMEM;
3202 }
3203 
3204 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3205 {
3206 	struct mm_struct *mm = current->mm;
3207 	struct vm_area_struct *vma = NULL;
3208 	unsigned long len;
3209 	int ret;
3210 	bool populate;
3211 	LIST_HEAD(uf);
3212 	VMA_ITERATOR(vmi, mm, addr);
3213 
3214 	len = PAGE_ALIGN(request);
3215 	if (len < request)
3216 		return -ENOMEM;
3217 	if (!len)
3218 		return 0;
3219 
3220 	/* Until we need other flags, refuse anything except VM_EXEC. */
3221 	if ((flags & (~VM_EXEC)) != 0)
3222 		return -EINVAL;
3223 
3224 	if (mmap_write_lock_killable(mm))
3225 		return -EINTR;
3226 
3227 	ret = check_brk_limits(addr, len);
3228 	if (ret)
3229 		goto limits_failed;
3230 
3231 	ret = do_vmi_munmap(&vmi, mm, addr, len, &uf, 0);
3232 	if (ret)
3233 		goto munmap_failed;
3234 
3235 	vma = vma_prev(&vmi);
3236 	ret = do_brk_flags(&vmi, vma, addr, len, flags);
3237 	populate = ((mm->def_flags & VM_LOCKED) != 0);
3238 	mmap_write_unlock(mm);
3239 	userfaultfd_unmap_complete(mm, &uf);
3240 	if (populate && !ret)
3241 		mm_populate(addr, len);
3242 	return ret;
3243 
3244 munmap_failed:
3245 limits_failed:
3246 	mmap_write_unlock(mm);
3247 	return ret;
3248 }
3249 EXPORT_SYMBOL(vm_brk_flags);
3250 
3251 /* Release all mmaps. */
3252 void exit_mmap(struct mm_struct *mm)
3253 {
3254 	struct mmu_gather tlb;
3255 	struct vm_area_struct *vma;
3256 	unsigned long nr_accounted = 0;
3257 	MA_STATE(mas, &mm->mm_mt, 0, 0);
3258 	int count = 0;
3259 
3260 	/* mm's last user has gone, and its about to be pulled down */
3261 	mmu_notifier_release(mm);
3262 
3263 	mmap_read_lock(mm);
3264 	arch_exit_mmap(mm);
3265 
3266 	vma = mas_find(&mas, ULONG_MAX);
3267 	if (!vma || unlikely(xa_is_zero(vma))) {
3268 		/* Can happen if dup_mmap() received an OOM */
3269 		mmap_read_unlock(mm);
3270 		mmap_write_lock(mm);
3271 		goto destroy;
3272 	}
3273 
3274 	lru_add_drain();
3275 	flush_cache_mm(mm);
3276 	tlb_gather_mmu_fullmm(&tlb, mm);
3277 	/* update_hiwater_rss(mm) here? but nobody should be looking */
3278 	/* Use ULONG_MAX here to ensure all VMAs in the mm are unmapped */
3279 	unmap_vmas(&tlb, &mas, vma, 0, ULONG_MAX, ULONG_MAX, false);
3280 	mmap_read_unlock(mm);
3281 
3282 	/*
3283 	 * Set MMF_OOM_SKIP to hide this task from the oom killer/reaper
3284 	 * because the memory has been already freed.
3285 	 */
3286 	set_bit(MMF_OOM_SKIP, &mm->flags);
3287 	mmap_write_lock(mm);
3288 	mt_clear_in_rcu(&mm->mm_mt);
3289 	mas_set(&mas, vma->vm_end);
3290 	free_pgtables(&tlb, &mas, vma, FIRST_USER_ADDRESS,
3291 		      USER_PGTABLES_CEILING, true);
3292 	tlb_finish_mmu(&tlb);
3293 
3294 	/*
3295 	 * Walk the list again, actually closing and freeing it, with preemption
3296 	 * enabled, without holding any MM locks besides the unreachable
3297 	 * mmap_write_lock.
3298 	 */
3299 	mas_set(&mas, vma->vm_end);
3300 	do {
3301 		if (vma->vm_flags & VM_ACCOUNT)
3302 			nr_accounted += vma_pages(vma);
3303 		remove_vma(vma, true);
3304 		count++;
3305 		cond_resched();
3306 		vma = mas_find(&mas, ULONG_MAX);
3307 	} while (vma && likely(!xa_is_zero(vma)));
3308 
3309 	BUG_ON(count != mm->map_count);
3310 
3311 	trace_exit_mmap(mm);
3312 destroy:
3313 	__mt_destroy(&mm->mm_mt);
3314 	mmap_write_unlock(mm);
3315 	vm_unacct_memory(nr_accounted);
3316 }
3317 
3318 /* Insert vm structure into process list sorted by address
3319  * and into the inode's i_mmap tree.  If vm_file is non-NULL
3320  * then i_mmap_rwsem is taken here.
3321  */
3322 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3323 {
3324 	unsigned long charged = vma_pages(vma);
3325 
3326 
3327 	if (find_vma_intersection(mm, vma->vm_start, vma->vm_end))
3328 		return -ENOMEM;
3329 
3330 	if ((vma->vm_flags & VM_ACCOUNT) &&
3331 	     security_vm_enough_memory_mm(mm, charged))
3332 		return -ENOMEM;
3333 
3334 	/*
3335 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
3336 	 * until its first write fault, when page's anon_vma and index
3337 	 * are set.  But now set the vm_pgoff it will almost certainly
3338 	 * end up with (unless mremap moves it elsewhere before that
3339 	 * first wfault), so /proc/pid/maps tells a consistent story.
3340 	 *
3341 	 * By setting it to reflect the virtual start address of the
3342 	 * vma, merges and splits can happen in a seamless way, just
3343 	 * using the existing file pgoff checks and manipulations.
3344 	 * Similarly in do_mmap and in do_brk_flags.
3345 	 */
3346 	if (vma_is_anonymous(vma)) {
3347 		BUG_ON(vma->anon_vma);
3348 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3349 	}
3350 
3351 	if (vma_link(mm, vma)) {
3352 		if (vma->vm_flags & VM_ACCOUNT)
3353 			vm_unacct_memory(charged);
3354 		return -ENOMEM;
3355 	}
3356 
3357 	return 0;
3358 }
3359 
3360 /*
3361  * Copy the vma structure to a new location in the same mm,
3362  * prior to moving page table entries, to effect an mremap move.
3363  */
3364 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3365 	unsigned long addr, unsigned long len, pgoff_t pgoff,
3366 	bool *need_rmap_locks)
3367 {
3368 	struct vm_area_struct *vma = *vmap;
3369 	unsigned long vma_start = vma->vm_start;
3370 	struct mm_struct *mm = vma->vm_mm;
3371 	struct vm_area_struct *new_vma, *prev;
3372 	bool faulted_in_anon_vma = true;
3373 	VMA_ITERATOR(vmi, mm, addr);
3374 
3375 	/*
3376 	 * If anonymous vma has not yet been faulted, update new pgoff
3377 	 * to match new location, to increase its chance of merging.
3378 	 */
3379 	if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3380 		pgoff = addr >> PAGE_SHIFT;
3381 		faulted_in_anon_vma = false;
3382 	}
3383 
3384 	new_vma = find_vma_prev(mm, addr, &prev);
3385 	if (new_vma && new_vma->vm_start < addr + len)
3386 		return NULL;	/* should never get here */
3387 
3388 	new_vma = vma_merge_new_vma(&vmi, prev, vma, addr, addr + len, pgoff);
3389 	if (new_vma) {
3390 		/*
3391 		 * Source vma may have been merged into new_vma
3392 		 */
3393 		if (unlikely(vma_start >= new_vma->vm_start &&
3394 			     vma_start < new_vma->vm_end)) {
3395 			/*
3396 			 * The only way we can get a vma_merge with
3397 			 * self during an mremap is if the vma hasn't
3398 			 * been faulted in yet and we were allowed to
3399 			 * reset the dst vma->vm_pgoff to the
3400 			 * destination address of the mremap to allow
3401 			 * the merge to happen. mremap must change the
3402 			 * vm_pgoff linearity between src and dst vmas
3403 			 * (in turn preventing a vma_merge) to be
3404 			 * safe. It is only safe to keep the vm_pgoff
3405 			 * linear if there are no pages mapped yet.
3406 			 */
3407 			VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3408 			*vmap = vma = new_vma;
3409 		}
3410 		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3411 	} else {
3412 		new_vma = vm_area_dup(vma);
3413 		if (!new_vma)
3414 			goto out;
3415 		new_vma->vm_start = addr;
3416 		new_vma->vm_end = addr + len;
3417 		new_vma->vm_pgoff = pgoff;
3418 		if (vma_dup_policy(vma, new_vma))
3419 			goto out_free_vma;
3420 		if (anon_vma_clone(new_vma, vma))
3421 			goto out_free_mempol;
3422 		if (new_vma->vm_file)
3423 			get_file(new_vma->vm_file);
3424 		if (new_vma->vm_ops && new_vma->vm_ops->open)
3425 			new_vma->vm_ops->open(new_vma);
3426 		if (vma_link(mm, new_vma))
3427 			goto out_vma_link;
3428 		*need_rmap_locks = false;
3429 	}
3430 	return new_vma;
3431 
3432 out_vma_link:
3433 	if (new_vma->vm_ops && new_vma->vm_ops->close)
3434 		new_vma->vm_ops->close(new_vma);
3435 
3436 	if (new_vma->vm_file)
3437 		fput(new_vma->vm_file);
3438 
3439 	unlink_anon_vmas(new_vma);
3440 out_free_mempol:
3441 	mpol_put(vma_policy(new_vma));
3442 out_free_vma:
3443 	vm_area_free(new_vma);
3444 out:
3445 	return NULL;
3446 }
3447 
3448 /*
3449  * Return true if the calling process may expand its vm space by the passed
3450  * number of pages
3451  */
3452 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3453 {
3454 	if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3455 		return false;
3456 
3457 	if (is_data_mapping(flags) &&
3458 	    mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3459 		/* Workaround for Valgrind */
3460 		if (rlimit(RLIMIT_DATA) == 0 &&
3461 		    mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3462 			return true;
3463 
3464 		pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3465 			     current->comm, current->pid,
3466 			     (mm->data_vm + npages) << PAGE_SHIFT,
3467 			     rlimit(RLIMIT_DATA),
3468 			     ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3469 
3470 		if (!ignore_rlimit_data)
3471 			return false;
3472 	}
3473 
3474 	return true;
3475 }
3476 
3477 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3478 {
3479 	WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages);
3480 
3481 	if (is_exec_mapping(flags))
3482 		mm->exec_vm += npages;
3483 	else if (is_stack_mapping(flags))
3484 		mm->stack_vm += npages;
3485 	else if (is_data_mapping(flags))
3486 		mm->data_vm += npages;
3487 }
3488 
3489 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3490 
3491 /*
3492  * Having a close hook prevents vma merging regardless of flags.
3493  */
3494 static void special_mapping_close(struct vm_area_struct *vma)
3495 {
3496 }
3497 
3498 static const char *special_mapping_name(struct vm_area_struct *vma)
3499 {
3500 	return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3501 }
3502 
3503 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3504 {
3505 	struct vm_special_mapping *sm = new_vma->vm_private_data;
3506 
3507 	if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3508 		return -EFAULT;
3509 
3510 	if (sm->mremap)
3511 		return sm->mremap(sm, new_vma);
3512 
3513 	return 0;
3514 }
3515 
3516 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
3517 {
3518 	/*
3519 	 * Forbid splitting special mappings - kernel has expectations over
3520 	 * the number of pages in mapping. Together with VM_DONTEXPAND
3521 	 * the size of vma should stay the same over the special mapping's
3522 	 * lifetime.
3523 	 */
3524 	return -EINVAL;
3525 }
3526 
3527 static const struct vm_operations_struct special_mapping_vmops = {
3528 	.close = special_mapping_close,
3529 	.fault = special_mapping_fault,
3530 	.mremap = special_mapping_mremap,
3531 	.name = special_mapping_name,
3532 	/* vDSO code relies that VVAR can't be accessed remotely */
3533 	.access = NULL,
3534 	.may_split = special_mapping_split,
3535 };
3536 
3537 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3538 	.close = special_mapping_close,
3539 	.fault = special_mapping_fault,
3540 };
3541 
3542 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3543 {
3544 	struct vm_area_struct *vma = vmf->vma;
3545 	pgoff_t pgoff;
3546 	struct page **pages;
3547 
3548 	if (vma->vm_ops == &legacy_special_mapping_vmops) {
3549 		pages = vma->vm_private_data;
3550 	} else {
3551 		struct vm_special_mapping *sm = vma->vm_private_data;
3552 
3553 		if (sm->fault)
3554 			return sm->fault(sm, vmf->vma, vmf);
3555 
3556 		pages = sm->pages;
3557 	}
3558 
3559 	for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3560 		pgoff--;
3561 
3562 	if (*pages) {
3563 		struct page *page = *pages;
3564 		get_page(page);
3565 		vmf->page = page;
3566 		return 0;
3567 	}
3568 
3569 	return VM_FAULT_SIGBUS;
3570 }
3571 
3572 static struct vm_area_struct *__install_special_mapping(
3573 	struct mm_struct *mm,
3574 	unsigned long addr, unsigned long len,
3575 	unsigned long vm_flags, void *priv,
3576 	const struct vm_operations_struct *ops)
3577 {
3578 	int ret;
3579 	struct vm_area_struct *vma;
3580 
3581 	vma = vm_area_alloc(mm);
3582 	if (unlikely(vma == NULL))
3583 		return ERR_PTR(-ENOMEM);
3584 
3585 	vma->vm_start = addr;
3586 	vma->vm_end = addr + len;
3587 
3588 	vm_flags_init(vma, (vm_flags | mm->def_flags |
3589 		      VM_DONTEXPAND | VM_SOFTDIRTY) & ~VM_LOCKED_MASK);
3590 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3591 
3592 	vma->vm_ops = ops;
3593 	vma->vm_private_data = priv;
3594 
3595 	ret = insert_vm_struct(mm, vma);
3596 	if (ret)
3597 		goto out;
3598 
3599 	vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3600 
3601 	perf_event_mmap(vma);
3602 
3603 	return vma;
3604 
3605 out:
3606 	vm_area_free(vma);
3607 	return ERR_PTR(ret);
3608 }
3609 
3610 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3611 	const struct vm_special_mapping *sm)
3612 {
3613 	return vma->vm_private_data == sm &&
3614 		(vma->vm_ops == &special_mapping_vmops ||
3615 		 vma->vm_ops == &legacy_special_mapping_vmops);
3616 }
3617 
3618 /*
3619  * Called with mm->mmap_lock held for writing.
3620  * Insert a new vma covering the given region, with the given flags.
3621  * Its pages are supplied by the given array of struct page *.
3622  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3623  * The region past the last page supplied will always produce SIGBUS.
3624  * The array pointer and the pages it points to are assumed to stay alive
3625  * for as long as this mapping might exist.
3626  */
3627 struct vm_area_struct *_install_special_mapping(
3628 	struct mm_struct *mm,
3629 	unsigned long addr, unsigned long len,
3630 	unsigned long vm_flags, const struct vm_special_mapping *spec)
3631 {
3632 	return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3633 					&special_mapping_vmops);
3634 }
3635 
3636 int install_special_mapping(struct mm_struct *mm,
3637 			    unsigned long addr, unsigned long len,
3638 			    unsigned long vm_flags, struct page **pages)
3639 {
3640 	struct vm_area_struct *vma = __install_special_mapping(
3641 		mm, addr, len, vm_flags, (void *)pages,
3642 		&legacy_special_mapping_vmops);
3643 
3644 	return PTR_ERR_OR_ZERO(vma);
3645 }
3646 
3647 static DEFINE_MUTEX(mm_all_locks_mutex);
3648 
3649 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3650 {
3651 	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3652 		/*
3653 		 * The LSB of head.next can't change from under us
3654 		 * because we hold the mm_all_locks_mutex.
3655 		 */
3656 		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3657 		/*
3658 		 * We can safely modify head.next after taking the
3659 		 * anon_vma->root->rwsem. If some other vma in this mm shares
3660 		 * the same anon_vma we won't take it again.
3661 		 *
3662 		 * No need of atomic instructions here, head.next
3663 		 * can't change from under us thanks to the
3664 		 * anon_vma->root->rwsem.
3665 		 */
3666 		if (__test_and_set_bit(0, (unsigned long *)
3667 				       &anon_vma->root->rb_root.rb_root.rb_node))
3668 			BUG();
3669 	}
3670 }
3671 
3672 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3673 {
3674 	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3675 		/*
3676 		 * AS_MM_ALL_LOCKS can't change from under us because
3677 		 * we hold the mm_all_locks_mutex.
3678 		 *
3679 		 * Operations on ->flags have to be atomic because
3680 		 * even if AS_MM_ALL_LOCKS is stable thanks to the
3681 		 * mm_all_locks_mutex, there may be other cpus
3682 		 * changing other bitflags in parallel to us.
3683 		 */
3684 		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3685 			BUG();
3686 		down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3687 	}
3688 }
3689 
3690 /*
3691  * This operation locks against the VM for all pte/vma/mm related
3692  * operations that could ever happen on a certain mm. This includes
3693  * vmtruncate, try_to_unmap, and all page faults.
3694  *
3695  * The caller must take the mmap_lock in write mode before calling
3696  * mm_take_all_locks(). The caller isn't allowed to release the
3697  * mmap_lock until mm_drop_all_locks() returns.
3698  *
3699  * mmap_lock in write mode is required in order to block all operations
3700  * that could modify pagetables and free pages without need of
3701  * altering the vma layout. It's also needed in write mode to avoid new
3702  * anon_vmas to be associated with existing vmas.
3703  *
3704  * A single task can't take more than one mm_take_all_locks() in a row
3705  * or it would deadlock.
3706  *
3707  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3708  * mapping->flags avoid to take the same lock twice, if more than one
3709  * vma in this mm is backed by the same anon_vma or address_space.
3710  *
3711  * We take locks in following order, accordingly to comment at beginning
3712  * of mm/rmap.c:
3713  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3714  *     hugetlb mapping);
3715  *   - all vmas marked locked
3716  *   - all i_mmap_rwsem locks;
3717  *   - all anon_vma->rwseml
3718  *
3719  * We can take all locks within these types randomly because the VM code
3720  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3721  * mm_all_locks_mutex.
3722  *
3723  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3724  * that may have to take thousand of locks.
3725  *
3726  * mm_take_all_locks() can fail if it's interrupted by signals.
3727  */
3728 int mm_take_all_locks(struct mm_struct *mm)
3729 {
3730 	struct vm_area_struct *vma;
3731 	struct anon_vma_chain *avc;
3732 	MA_STATE(mas, &mm->mm_mt, 0, 0);
3733 
3734 	mmap_assert_write_locked(mm);
3735 
3736 	mutex_lock(&mm_all_locks_mutex);
3737 
3738 	/*
3739 	 * vma_start_write() does not have a complement in mm_drop_all_locks()
3740 	 * because vma_start_write() is always asymmetrical; it marks a VMA as
3741 	 * being written to until mmap_write_unlock() or mmap_write_downgrade()
3742 	 * is reached.
3743 	 */
3744 	mas_for_each(&mas, vma, ULONG_MAX) {
3745 		if (signal_pending(current))
3746 			goto out_unlock;
3747 		vma_start_write(vma);
3748 	}
3749 
3750 	mas_set(&mas, 0);
3751 	mas_for_each(&mas, vma, ULONG_MAX) {
3752 		if (signal_pending(current))
3753 			goto out_unlock;
3754 		if (vma->vm_file && vma->vm_file->f_mapping &&
3755 				is_vm_hugetlb_page(vma))
3756 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3757 	}
3758 
3759 	mas_set(&mas, 0);
3760 	mas_for_each(&mas, vma, ULONG_MAX) {
3761 		if (signal_pending(current))
3762 			goto out_unlock;
3763 		if (vma->vm_file && vma->vm_file->f_mapping &&
3764 				!is_vm_hugetlb_page(vma))
3765 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3766 	}
3767 
3768 	mas_set(&mas, 0);
3769 	mas_for_each(&mas, vma, ULONG_MAX) {
3770 		if (signal_pending(current))
3771 			goto out_unlock;
3772 		if (vma->anon_vma)
3773 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3774 				vm_lock_anon_vma(mm, avc->anon_vma);
3775 	}
3776 
3777 	return 0;
3778 
3779 out_unlock:
3780 	mm_drop_all_locks(mm);
3781 	return -EINTR;
3782 }
3783 
3784 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3785 {
3786 	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3787 		/*
3788 		 * The LSB of head.next can't change to 0 from under
3789 		 * us because we hold the mm_all_locks_mutex.
3790 		 *
3791 		 * We must however clear the bitflag before unlocking
3792 		 * the vma so the users using the anon_vma->rb_root will
3793 		 * never see our bitflag.
3794 		 *
3795 		 * No need of atomic instructions here, head.next
3796 		 * can't change from under us until we release the
3797 		 * anon_vma->root->rwsem.
3798 		 */
3799 		if (!__test_and_clear_bit(0, (unsigned long *)
3800 					  &anon_vma->root->rb_root.rb_root.rb_node))
3801 			BUG();
3802 		anon_vma_unlock_write(anon_vma);
3803 	}
3804 }
3805 
3806 static void vm_unlock_mapping(struct address_space *mapping)
3807 {
3808 	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3809 		/*
3810 		 * AS_MM_ALL_LOCKS can't change to 0 from under us
3811 		 * because we hold the mm_all_locks_mutex.
3812 		 */
3813 		i_mmap_unlock_write(mapping);
3814 		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3815 					&mapping->flags))
3816 			BUG();
3817 	}
3818 }
3819 
3820 /*
3821  * The mmap_lock cannot be released by the caller until
3822  * mm_drop_all_locks() returns.
3823  */
3824 void mm_drop_all_locks(struct mm_struct *mm)
3825 {
3826 	struct vm_area_struct *vma;
3827 	struct anon_vma_chain *avc;
3828 	MA_STATE(mas, &mm->mm_mt, 0, 0);
3829 
3830 	mmap_assert_write_locked(mm);
3831 	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3832 
3833 	mas_for_each(&mas, vma, ULONG_MAX) {
3834 		if (vma->anon_vma)
3835 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3836 				vm_unlock_anon_vma(avc->anon_vma);
3837 		if (vma->vm_file && vma->vm_file->f_mapping)
3838 			vm_unlock_mapping(vma->vm_file->f_mapping);
3839 	}
3840 
3841 	mutex_unlock(&mm_all_locks_mutex);
3842 }
3843 
3844 /*
3845  * initialise the percpu counter for VM
3846  */
3847 void __init mmap_init(void)
3848 {
3849 	int ret;
3850 
3851 	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3852 	VM_BUG_ON(ret);
3853 }
3854 
3855 /*
3856  * Initialise sysctl_user_reserve_kbytes.
3857  *
3858  * This is intended to prevent a user from starting a single memory hogging
3859  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3860  * mode.
3861  *
3862  * The default value is min(3% of free memory, 128MB)
3863  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3864  */
3865 static int init_user_reserve(void)
3866 {
3867 	unsigned long free_kbytes;
3868 
3869 	free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
3870 
3871 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3872 	return 0;
3873 }
3874 subsys_initcall(init_user_reserve);
3875 
3876 /*
3877  * Initialise sysctl_admin_reserve_kbytes.
3878  *
3879  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3880  * to log in and kill a memory hogging process.
3881  *
3882  * Systems with more than 256MB will reserve 8MB, enough to recover
3883  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3884  * only reserve 3% of free pages by default.
3885  */
3886 static int init_admin_reserve(void)
3887 {
3888 	unsigned long free_kbytes;
3889 
3890 	free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
3891 
3892 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3893 	return 0;
3894 }
3895 subsys_initcall(init_admin_reserve);
3896 
3897 /*
3898  * Reinititalise user and admin reserves if memory is added or removed.
3899  *
3900  * The default user reserve max is 128MB, and the default max for the
3901  * admin reserve is 8MB. These are usually, but not always, enough to
3902  * enable recovery from a memory hogging process using login/sshd, a shell,
3903  * and tools like top. It may make sense to increase or even disable the
3904  * reserve depending on the existence of swap or variations in the recovery
3905  * tools. So, the admin may have changed them.
3906  *
3907  * If memory is added and the reserves have been eliminated or increased above
3908  * the default max, then we'll trust the admin.
3909  *
3910  * If memory is removed and there isn't enough free memory, then we
3911  * need to reset the reserves.
3912  *
3913  * Otherwise keep the reserve set by the admin.
3914  */
3915 static int reserve_mem_notifier(struct notifier_block *nb,
3916 			     unsigned long action, void *data)
3917 {
3918 	unsigned long tmp, free_kbytes;
3919 
3920 	switch (action) {
3921 	case MEM_ONLINE:
3922 		/* Default max is 128MB. Leave alone if modified by operator. */
3923 		tmp = sysctl_user_reserve_kbytes;
3924 		if (0 < tmp && tmp < (1UL << 17))
3925 			init_user_reserve();
3926 
3927 		/* Default max is 8MB.  Leave alone if modified by operator. */
3928 		tmp = sysctl_admin_reserve_kbytes;
3929 		if (0 < tmp && tmp < (1UL << 13))
3930 			init_admin_reserve();
3931 
3932 		break;
3933 	case MEM_OFFLINE:
3934 		free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
3935 
3936 		if (sysctl_user_reserve_kbytes > free_kbytes) {
3937 			init_user_reserve();
3938 			pr_info("vm.user_reserve_kbytes reset to %lu\n",
3939 				sysctl_user_reserve_kbytes);
3940 		}
3941 
3942 		if (sysctl_admin_reserve_kbytes > free_kbytes) {
3943 			init_admin_reserve();
3944 			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3945 				sysctl_admin_reserve_kbytes);
3946 		}
3947 		break;
3948 	default:
3949 		break;
3950 	}
3951 	return NOTIFY_OK;
3952 }
3953 
3954 static int __meminit init_reserve_notifier(void)
3955 {
3956 	if (hotplug_memory_notifier(reserve_mem_notifier, DEFAULT_CALLBACK_PRI))
3957 		pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3958 
3959 	return 0;
3960 }
3961 subsys_initcall(init_reserve_notifier);
3962