xref: /linux/mm/mmap.c (revision c2a96b7f187fb6a455836d4a6e113947ff11de97)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/mmap.c
4  *
5  * Written by obz.
6  *
7  * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/mm_inline.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
47 #include <linux/oom.h>
48 #include <linux/sched/mm.h>
49 #include <linux/ksm.h>
50 
51 #include <linux/uaccess.h>
52 #include <asm/cacheflush.h>
53 #include <asm/tlb.h>
54 #include <asm/mmu_context.h>
55 
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/mmap.h>
58 
59 #include "internal.h"
60 
61 #ifndef arch_mmap_check
62 #define arch_mmap_check(addr, len, flags)	(0)
63 #endif
64 
65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
66 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
67 int mmap_rnd_bits_max __ro_after_init = CONFIG_ARCH_MMAP_RND_BITS_MAX;
68 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
69 #endif
70 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
71 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
72 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
73 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
74 #endif
75 
76 static bool ignore_rlimit_data;
77 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
78 
79 static void unmap_region(struct mm_struct *mm, struct ma_state *mas,
80 		struct vm_area_struct *vma, struct vm_area_struct *prev,
81 		struct vm_area_struct *next, unsigned long start,
82 		unsigned long end, unsigned long tree_end, bool mm_wr_locked);
83 
84 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
85 {
86 	return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
87 }
88 
89 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
90 void vma_set_page_prot(struct vm_area_struct *vma)
91 {
92 	unsigned long vm_flags = vma->vm_flags;
93 	pgprot_t vm_page_prot;
94 
95 	vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
96 	if (vma_wants_writenotify(vma, vm_page_prot)) {
97 		vm_flags &= ~VM_SHARED;
98 		vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
99 	}
100 	/* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
101 	WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
102 }
103 
104 /*
105  * Requires inode->i_mapping->i_mmap_rwsem
106  */
107 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
108 				      struct address_space *mapping)
109 {
110 	if (vma_is_shared_maywrite(vma))
111 		mapping_unmap_writable(mapping);
112 
113 	flush_dcache_mmap_lock(mapping);
114 	vma_interval_tree_remove(vma, &mapping->i_mmap);
115 	flush_dcache_mmap_unlock(mapping);
116 }
117 
118 /*
119  * Unlink a file-based vm structure from its interval tree, to hide
120  * vma from rmap and vmtruncate before freeing its page tables.
121  */
122 void unlink_file_vma(struct vm_area_struct *vma)
123 {
124 	struct file *file = vma->vm_file;
125 
126 	if (file) {
127 		struct address_space *mapping = file->f_mapping;
128 		i_mmap_lock_write(mapping);
129 		__remove_shared_vm_struct(vma, mapping);
130 		i_mmap_unlock_write(mapping);
131 	}
132 }
133 
134 void unlink_file_vma_batch_init(struct unlink_vma_file_batch *vb)
135 {
136 	vb->count = 0;
137 }
138 
139 static void unlink_file_vma_batch_process(struct unlink_vma_file_batch *vb)
140 {
141 	struct address_space *mapping;
142 	int i;
143 
144 	mapping = vb->vmas[0]->vm_file->f_mapping;
145 	i_mmap_lock_write(mapping);
146 	for (i = 0; i < vb->count; i++) {
147 		VM_WARN_ON_ONCE(vb->vmas[i]->vm_file->f_mapping != mapping);
148 		__remove_shared_vm_struct(vb->vmas[i], mapping);
149 	}
150 	i_mmap_unlock_write(mapping);
151 
152 	unlink_file_vma_batch_init(vb);
153 }
154 
155 void unlink_file_vma_batch_add(struct unlink_vma_file_batch *vb,
156 			       struct vm_area_struct *vma)
157 {
158 	if (vma->vm_file == NULL)
159 		return;
160 
161 	if ((vb->count > 0 && vb->vmas[0]->vm_file != vma->vm_file) ||
162 	    vb->count == ARRAY_SIZE(vb->vmas))
163 		unlink_file_vma_batch_process(vb);
164 
165 	vb->vmas[vb->count] = vma;
166 	vb->count++;
167 }
168 
169 void unlink_file_vma_batch_final(struct unlink_vma_file_batch *vb)
170 {
171 	if (vb->count > 0)
172 		unlink_file_vma_batch_process(vb);
173 }
174 
175 /*
176  * Close a vm structure and free it.
177  */
178 static void remove_vma(struct vm_area_struct *vma, bool unreachable)
179 {
180 	might_sleep();
181 	if (vma->vm_ops && vma->vm_ops->close)
182 		vma->vm_ops->close(vma);
183 	if (vma->vm_file)
184 		fput(vma->vm_file);
185 	mpol_put(vma_policy(vma));
186 	if (unreachable)
187 		__vm_area_free(vma);
188 	else
189 		vm_area_free(vma);
190 }
191 
192 static inline struct vm_area_struct *vma_prev_limit(struct vma_iterator *vmi,
193 						    unsigned long min)
194 {
195 	return mas_prev(&vmi->mas, min);
196 }
197 
198 /*
199  * check_brk_limits() - Use platform specific check of range & verify mlock
200  * limits.
201  * @addr: The address to check
202  * @len: The size of increase.
203  *
204  * Return: 0 on success.
205  */
206 static int check_brk_limits(unsigned long addr, unsigned long len)
207 {
208 	unsigned long mapped_addr;
209 
210 	mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
211 	if (IS_ERR_VALUE(mapped_addr))
212 		return mapped_addr;
213 
214 	return mlock_future_ok(current->mm, current->mm->def_flags, len)
215 		? 0 : -EAGAIN;
216 }
217 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *brkvma,
218 		unsigned long addr, unsigned long request, unsigned long flags);
219 SYSCALL_DEFINE1(brk, unsigned long, brk)
220 {
221 	unsigned long newbrk, oldbrk, origbrk;
222 	struct mm_struct *mm = current->mm;
223 	struct vm_area_struct *brkvma, *next = NULL;
224 	unsigned long min_brk;
225 	bool populate = false;
226 	LIST_HEAD(uf);
227 	struct vma_iterator vmi;
228 
229 	if (mmap_write_lock_killable(mm))
230 		return -EINTR;
231 
232 	origbrk = mm->brk;
233 
234 #ifdef CONFIG_COMPAT_BRK
235 	/*
236 	 * CONFIG_COMPAT_BRK can still be overridden by setting
237 	 * randomize_va_space to 2, which will still cause mm->start_brk
238 	 * to be arbitrarily shifted
239 	 */
240 	if (current->brk_randomized)
241 		min_brk = mm->start_brk;
242 	else
243 		min_brk = mm->end_data;
244 #else
245 	min_brk = mm->start_brk;
246 #endif
247 	if (brk < min_brk)
248 		goto out;
249 
250 	/*
251 	 * Check against rlimit here. If this check is done later after the test
252 	 * of oldbrk with newbrk then it can escape the test and let the data
253 	 * segment grow beyond its set limit the in case where the limit is
254 	 * not page aligned -Ram Gupta
255 	 */
256 	if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
257 			      mm->end_data, mm->start_data))
258 		goto out;
259 
260 	newbrk = PAGE_ALIGN(brk);
261 	oldbrk = PAGE_ALIGN(mm->brk);
262 	if (oldbrk == newbrk) {
263 		mm->brk = brk;
264 		goto success;
265 	}
266 
267 	/* Always allow shrinking brk. */
268 	if (brk <= mm->brk) {
269 		/* Search one past newbrk */
270 		vma_iter_init(&vmi, mm, newbrk);
271 		brkvma = vma_find(&vmi, oldbrk);
272 		if (!brkvma || brkvma->vm_start >= oldbrk)
273 			goto out; /* mapping intersects with an existing non-brk vma. */
274 		/*
275 		 * mm->brk must be protected by write mmap_lock.
276 		 * do_vma_munmap() will drop the lock on success,  so update it
277 		 * before calling do_vma_munmap().
278 		 */
279 		mm->brk = brk;
280 		if (do_vma_munmap(&vmi, brkvma, newbrk, oldbrk, &uf, true))
281 			goto out;
282 
283 		goto success_unlocked;
284 	}
285 
286 	if (check_brk_limits(oldbrk, newbrk - oldbrk))
287 		goto out;
288 
289 	/*
290 	 * Only check if the next VMA is within the stack_guard_gap of the
291 	 * expansion area
292 	 */
293 	vma_iter_init(&vmi, mm, oldbrk);
294 	next = vma_find(&vmi, newbrk + PAGE_SIZE + stack_guard_gap);
295 	if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
296 		goto out;
297 
298 	brkvma = vma_prev_limit(&vmi, mm->start_brk);
299 	/* Ok, looks good - let it rip. */
300 	if (do_brk_flags(&vmi, brkvma, oldbrk, newbrk - oldbrk, 0) < 0)
301 		goto out;
302 
303 	mm->brk = brk;
304 	if (mm->def_flags & VM_LOCKED)
305 		populate = true;
306 
307 success:
308 	mmap_write_unlock(mm);
309 success_unlocked:
310 	userfaultfd_unmap_complete(mm, &uf);
311 	if (populate)
312 		mm_populate(oldbrk, newbrk - oldbrk);
313 	return brk;
314 
315 out:
316 	mm->brk = origbrk;
317 	mmap_write_unlock(mm);
318 	return origbrk;
319 }
320 
321 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
322 static void validate_mm(struct mm_struct *mm)
323 {
324 	int bug = 0;
325 	int i = 0;
326 	struct vm_area_struct *vma;
327 	VMA_ITERATOR(vmi, mm, 0);
328 
329 	mt_validate(&mm->mm_mt);
330 	for_each_vma(vmi, vma) {
331 #ifdef CONFIG_DEBUG_VM_RB
332 		struct anon_vma *anon_vma = vma->anon_vma;
333 		struct anon_vma_chain *avc;
334 #endif
335 		unsigned long vmi_start, vmi_end;
336 		bool warn = 0;
337 
338 		vmi_start = vma_iter_addr(&vmi);
339 		vmi_end = vma_iter_end(&vmi);
340 		if (VM_WARN_ON_ONCE_MM(vma->vm_end != vmi_end, mm))
341 			warn = 1;
342 
343 		if (VM_WARN_ON_ONCE_MM(vma->vm_start != vmi_start, mm))
344 			warn = 1;
345 
346 		if (warn) {
347 			pr_emerg("issue in %s\n", current->comm);
348 			dump_stack();
349 			dump_vma(vma);
350 			pr_emerg("tree range: %px start %lx end %lx\n", vma,
351 				 vmi_start, vmi_end - 1);
352 			vma_iter_dump_tree(&vmi);
353 		}
354 
355 #ifdef CONFIG_DEBUG_VM_RB
356 		if (anon_vma) {
357 			anon_vma_lock_read(anon_vma);
358 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
359 				anon_vma_interval_tree_verify(avc);
360 			anon_vma_unlock_read(anon_vma);
361 		}
362 #endif
363 		i++;
364 	}
365 	if (i != mm->map_count) {
366 		pr_emerg("map_count %d vma iterator %d\n", mm->map_count, i);
367 		bug = 1;
368 	}
369 	VM_BUG_ON_MM(bug, mm);
370 }
371 
372 #else /* !CONFIG_DEBUG_VM_MAPLE_TREE */
373 #define validate_mm(mm) do { } while (0)
374 #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */
375 
376 /*
377  * vma has some anon_vma assigned, and is already inserted on that
378  * anon_vma's interval trees.
379  *
380  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
381  * vma must be removed from the anon_vma's interval trees using
382  * anon_vma_interval_tree_pre_update_vma().
383  *
384  * After the update, the vma will be reinserted using
385  * anon_vma_interval_tree_post_update_vma().
386  *
387  * The entire update must be protected by exclusive mmap_lock and by
388  * the root anon_vma's mutex.
389  */
390 static inline void
391 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
392 {
393 	struct anon_vma_chain *avc;
394 
395 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
396 		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
397 }
398 
399 static inline void
400 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
401 {
402 	struct anon_vma_chain *avc;
403 
404 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
405 		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
406 }
407 
408 static unsigned long count_vma_pages_range(struct mm_struct *mm,
409 		unsigned long addr, unsigned long end)
410 {
411 	VMA_ITERATOR(vmi, mm, addr);
412 	struct vm_area_struct *vma;
413 	unsigned long nr_pages = 0;
414 
415 	for_each_vma_range(vmi, vma, end) {
416 		unsigned long vm_start = max(addr, vma->vm_start);
417 		unsigned long vm_end = min(end, vma->vm_end);
418 
419 		nr_pages += PHYS_PFN(vm_end - vm_start);
420 	}
421 
422 	return nr_pages;
423 }
424 
425 static void __vma_link_file(struct vm_area_struct *vma,
426 			    struct address_space *mapping)
427 {
428 	if (vma_is_shared_maywrite(vma))
429 		mapping_allow_writable(mapping);
430 
431 	flush_dcache_mmap_lock(mapping);
432 	vma_interval_tree_insert(vma, &mapping->i_mmap);
433 	flush_dcache_mmap_unlock(mapping);
434 }
435 
436 static void vma_link_file(struct vm_area_struct *vma)
437 {
438 	struct file *file = vma->vm_file;
439 	struct address_space *mapping;
440 
441 	if (file) {
442 		mapping = file->f_mapping;
443 		i_mmap_lock_write(mapping);
444 		__vma_link_file(vma, mapping);
445 		i_mmap_unlock_write(mapping);
446 	}
447 }
448 
449 static int vma_link(struct mm_struct *mm, struct vm_area_struct *vma)
450 {
451 	VMA_ITERATOR(vmi, mm, 0);
452 
453 	vma_iter_config(&vmi, vma->vm_start, vma->vm_end);
454 	if (vma_iter_prealloc(&vmi, vma))
455 		return -ENOMEM;
456 
457 	vma_start_write(vma);
458 	vma_iter_store(&vmi, vma);
459 	vma_link_file(vma);
460 	mm->map_count++;
461 	validate_mm(mm);
462 	return 0;
463 }
464 
465 /*
466  * init_multi_vma_prep() - Initializer for struct vma_prepare
467  * @vp: The vma_prepare struct
468  * @vma: The vma that will be altered once locked
469  * @next: The next vma if it is to be adjusted
470  * @remove: The first vma to be removed
471  * @remove2: The second vma to be removed
472  */
473 static inline void init_multi_vma_prep(struct vma_prepare *vp,
474 		struct vm_area_struct *vma, struct vm_area_struct *next,
475 		struct vm_area_struct *remove, struct vm_area_struct *remove2)
476 {
477 	memset(vp, 0, sizeof(struct vma_prepare));
478 	vp->vma = vma;
479 	vp->anon_vma = vma->anon_vma;
480 	vp->remove = remove;
481 	vp->remove2 = remove2;
482 	vp->adj_next = next;
483 	if (!vp->anon_vma && next)
484 		vp->anon_vma = next->anon_vma;
485 
486 	vp->file = vma->vm_file;
487 	if (vp->file)
488 		vp->mapping = vma->vm_file->f_mapping;
489 
490 }
491 
492 /*
493  * init_vma_prep() - Initializer wrapper for vma_prepare struct
494  * @vp: The vma_prepare struct
495  * @vma: The vma that will be altered once locked
496  */
497 static inline void init_vma_prep(struct vma_prepare *vp,
498 				 struct vm_area_struct *vma)
499 {
500 	init_multi_vma_prep(vp, vma, NULL, NULL, NULL);
501 }
502 
503 
504 /*
505  * vma_prepare() - Helper function for handling locking VMAs prior to altering
506  * @vp: The initialized vma_prepare struct
507  */
508 static inline void vma_prepare(struct vma_prepare *vp)
509 {
510 	if (vp->file) {
511 		uprobe_munmap(vp->vma, vp->vma->vm_start, vp->vma->vm_end);
512 
513 		if (vp->adj_next)
514 			uprobe_munmap(vp->adj_next, vp->adj_next->vm_start,
515 				      vp->adj_next->vm_end);
516 
517 		i_mmap_lock_write(vp->mapping);
518 		if (vp->insert && vp->insert->vm_file) {
519 			/*
520 			 * Put into interval tree now, so instantiated pages
521 			 * are visible to arm/parisc __flush_dcache_page
522 			 * throughout; but we cannot insert into address
523 			 * space until vma start or end is updated.
524 			 */
525 			__vma_link_file(vp->insert,
526 					vp->insert->vm_file->f_mapping);
527 		}
528 	}
529 
530 	if (vp->anon_vma) {
531 		anon_vma_lock_write(vp->anon_vma);
532 		anon_vma_interval_tree_pre_update_vma(vp->vma);
533 		if (vp->adj_next)
534 			anon_vma_interval_tree_pre_update_vma(vp->adj_next);
535 	}
536 
537 	if (vp->file) {
538 		flush_dcache_mmap_lock(vp->mapping);
539 		vma_interval_tree_remove(vp->vma, &vp->mapping->i_mmap);
540 		if (vp->adj_next)
541 			vma_interval_tree_remove(vp->adj_next,
542 						 &vp->mapping->i_mmap);
543 	}
544 
545 }
546 
547 /*
548  * vma_complete- Helper function for handling the unlocking after altering VMAs,
549  * or for inserting a VMA.
550  *
551  * @vp: The vma_prepare struct
552  * @vmi: The vma iterator
553  * @mm: The mm_struct
554  */
555 static inline void vma_complete(struct vma_prepare *vp,
556 				struct vma_iterator *vmi, struct mm_struct *mm)
557 {
558 	if (vp->file) {
559 		if (vp->adj_next)
560 			vma_interval_tree_insert(vp->adj_next,
561 						 &vp->mapping->i_mmap);
562 		vma_interval_tree_insert(vp->vma, &vp->mapping->i_mmap);
563 		flush_dcache_mmap_unlock(vp->mapping);
564 	}
565 
566 	if (vp->remove && vp->file) {
567 		__remove_shared_vm_struct(vp->remove, vp->mapping);
568 		if (vp->remove2)
569 			__remove_shared_vm_struct(vp->remove2, vp->mapping);
570 	} else if (vp->insert) {
571 		/*
572 		 * split_vma has split insert from vma, and needs
573 		 * us to insert it before dropping the locks
574 		 * (it may either follow vma or precede it).
575 		 */
576 		vma_iter_store(vmi, vp->insert);
577 		mm->map_count++;
578 	}
579 
580 	if (vp->anon_vma) {
581 		anon_vma_interval_tree_post_update_vma(vp->vma);
582 		if (vp->adj_next)
583 			anon_vma_interval_tree_post_update_vma(vp->adj_next);
584 		anon_vma_unlock_write(vp->anon_vma);
585 	}
586 
587 	if (vp->file) {
588 		i_mmap_unlock_write(vp->mapping);
589 		uprobe_mmap(vp->vma);
590 
591 		if (vp->adj_next)
592 			uprobe_mmap(vp->adj_next);
593 	}
594 
595 	if (vp->remove) {
596 again:
597 		vma_mark_detached(vp->remove, true);
598 		if (vp->file) {
599 			uprobe_munmap(vp->remove, vp->remove->vm_start,
600 				      vp->remove->vm_end);
601 			fput(vp->file);
602 		}
603 		if (vp->remove->anon_vma)
604 			anon_vma_merge(vp->vma, vp->remove);
605 		mm->map_count--;
606 		mpol_put(vma_policy(vp->remove));
607 		if (!vp->remove2)
608 			WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end);
609 		vm_area_free(vp->remove);
610 
611 		/*
612 		 * In mprotect's case 6 (see comments on vma_merge),
613 		 * we are removing both mid and next vmas
614 		 */
615 		if (vp->remove2) {
616 			vp->remove = vp->remove2;
617 			vp->remove2 = NULL;
618 			goto again;
619 		}
620 	}
621 	if (vp->insert && vp->file)
622 		uprobe_mmap(vp->insert);
623 	validate_mm(mm);
624 }
625 
626 /*
627  * dup_anon_vma() - Helper function to duplicate anon_vma
628  * @dst: The destination VMA
629  * @src: The source VMA
630  * @dup: Pointer to the destination VMA when successful.
631  *
632  * Returns: 0 on success.
633  */
634 static inline int dup_anon_vma(struct vm_area_struct *dst,
635 		struct vm_area_struct *src, struct vm_area_struct **dup)
636 {
637 	/*
638 	 * Easily overlooked: when mprotect shifts the boundary, make sure the
639 	 * expanding vma has anon_vma set if the shrinking vma had, to cover any
640 	 * anon pages imported.
641 	 */
642 	if (src->anon_vma && !dst->anon_vma) {
643 		int ret;
644 
645 		vma_assert_write_locked(dst);
646 		dst->anon_vma = src->anon_vma;
647 		ret = anon_vma_clone(dst, src);
648 		if (ret)
649 			return ret;
650 
651 		*dup = dst;
652 	}
653 
654 	return 0;
655 }
656 
657 /*
658  * vma_expand - Expand an existing VMA
659  *
660  * @vmi: The vma iterator
661  * @vma: The vma to expand
662  * @start: The start of the vma
663  * @end: The exclusive end of the vma
664  * @pgoff: The page offset of vma
665  * @next: The current of next vma.
666  *
667  * Expand @vma to @start and @end.  Can expand off the start and end.  Will
668  * expand over @next if it's different from @vma and @end == @next->vm_end.
669  * Checking if the @vma can expand and merge with @next needs to be handled by
670  * the caller.
671  *
672  * Returns: 0 on success
673  */
674 int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
675 	       unsigned long start, unsigned long end, pgoff_t pgoff,
676 	       struct vm_area_struct *next)
677 {
678 	struct vm_area_struct *anon_dup = NULL;
679 	bool remove_next = false;
680 	struct vma_prepare vp;
681 
682 	vma_start_write(vma);
683 	if (next && (vma != next) && (end == next->vm_end)) {
684 		int ret;
685 
686 		remove_next = true;
687 		vma_start_write(next);
688 		ret = dup_anon_vma(vma, next, &anon_dup);
689 		if (ret)
690 			return ret;
691 	}
692 
693 	init_multi_vma_prep(&vp, vma, NULL, remove_next ? next : NULL, NULL);
694 	/* Not merging but overwriting any part of next is not handled. */
695 	VM_WARN_ON(next && !vp.remove &&
696 		  next != vma && end > next->vm_start);
697 	/* Only handles expanding */
698 	VM_WARN_ON(vma->vm_start < start || vma->vm_end > end);
699 
700 	/* Note: vma iterator must be pointing to 'start' */
701 	vma_iter_config(vmi, start, end);
702 	if (vma_iter_prealloc(vmi, vma))
703 		goto nomem;
704 
705 	vma_prepare(&vp);
706 	vma_adjust_trans_huge(vma, start, end, 0);
707 	vma_set_range(vma, start, end, pgoff);
708 	vma_iter_store(vmi, vma);
709 
710 	vma_complete(&vp, vmi, vma->vm_mm);
711 	return 0;
712 
713 nomem:
714 	if (anon_dup)
715 		unlink_anon_vmas(anon_dup);
716 	return -ENOMEM;
717 }
718 
719 /*
720  * vma_shrink() - Reduce an existing VMAs memory area
721  * @vmi: The vma iterator
722  * @vma: The VMA to modify
723  * @start: The new start
724  * @end: The new end
725  *
726  * Returns: 0 on success, -ENOMEM otherwise
727  */
728 int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
729 	       unsigned long start, unsigned long end, pgoff_t pgoff)
730 {
731 	struct vma_prepare vp;
732 
733 	WARN_ON((vma->vm_start != start) && (vma->vm_end != end));
734 
735 	if (vma->vm_start < start)
736 		vma_iter_config(vmi, vma->vm_start, start);
737 	else
738 		vma_iter_config(vmi, end, vma->vm_end);
739 
740 	if (vma_iter_prealloc(vmi, NULL))
741 		return -ENOMEM;
742 
743 	vma_start_write(vma);
744 
745 	init_vma_prep(&vp, vma);
746 	vma_prepare(&vp);
747 	vma_adjust_trans_huge(vma, start, end, 0);
748 
749 	vma_iter_clear(vmi);
750 	vma_set_range(vma, start, end, pgoff);
751 	vma_complete(&vp, vmi, vma->vm_mm);
752 	return 0;
753 }
754 
755 /*
756  * If the vma has a ->close operation then the driver probably needs to release
757  * per-vma resources, so we don't attempt to merge those if the caller indicates
758  * the current vma may be removed as part of the merge.
759  */
760 static inline bool is_mergeable_vma(struct vm_area_struct *vma,
761 		struct file *file, unsigned long vm_flags,
762 		struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
763 		struct anon_vma_name *anon_name, bool may_remove_vma)
764 {
765 	/*
766 	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
767 	 * match the flags but dirty bit -- the caller should mark
768 	 * merged VMA as dirty. If dirty bit won't be excluded from
769 	 * comparison, we increase pressure on the memory system forcing
770 	 * the kernel to generate new VMAs when old one could be
771 	 * extended instead.
772 	 */
773 	if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
774 		return false;
775 	if (vma->vm_file != file)
776 		return false;
777 	if (may_remove_vma && vma->vm_ops && vma->vm_ops->close)
778 		return false;
779 	if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
780 		return false;
781 	if (!anon_vma_name_eq(anon_vma_name(vma), anon_name))
782 		return false;
783 	return true;
784 }
785 
786 static inline bool is_mergeable_anon_vma(struct anon_vma *anon_vma1,
787 		 struct anon_vma *anon_vma2, struct vm_area_struct *vma)
788 {
789 	/*
790 	 * The list_is_singular() test is to avoid merging VMA cloned from
791 	 * parents. This can improve scalability caused by anon_vma lock.
792 	 */
793 	if ((!anon_vma1 || !anon_vma2) && (!vma ||
794 		list_is_singular(&vma->anon_vma_chain)))
795 		return true;
796 	return anon_vma1 == anon_vma2;
797 }
798 
799 /*
800  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
801  * in front of (at a lower virtual address and file offset than) the vma.
802  *
803  * We cannot merge two vmas if they have differently assigned (non-NULL)
804  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
805  *
806  * We don't check here for the merged mmap wrapping around the end of pagecache
807  * indices (16TB on ia32) because do_mmap() does not permit mmap's which
808  * wrap, nor mmaps which cover the final page at index -1UL.
809  *
810  * We assume the vma may be removed as part of the merge.
811  */
812 static bool
813 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
814 		struct anon_vma *anon_vma, struct file *file,
815 		pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
816 		struct anon_vma_name *anon_name)
817 {
818 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, true) &&
819 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
820 		if (vma->vm_pgoff == vm_pgoff)
821 			return true;
822 	}
823 	return false;
824 }
825 
826 /*
827  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
828  * beyond (at a higher virtual address and file offset than) the vma.
829  *
830  * We cannot merge two vmas if they have differently assigned (non-NULL)
831  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
832  *
833  * We assume that vma is not removed as part of the merge.
834  */
835 static bool
836 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
837 		struct anon_vma *anon_vma, struct file *file,
838 		pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
839 		struct anon_vma_name *anon_name)
840 {
841 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, false) &&
842 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
843 		pgoff_t vm_pglen;
844 		vm_pglen = vma_pages(vma);
845 		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
846 			return true;
847 	}
848 	return false;
849 }
850 
851 /*
852  * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name),
853  * figure out whether that can be merged with its predecessor or its
854  * successor.  Or both (it neatly fills a hole).
855  *
856  * In most cases - when called for mmap, brk or mremap - [addr,end) is
857  * certain not to be mapped by the time vma_merge is called; but when
858  * called for mprotect, it is certain to be already mapped (either at
859  * an offset within prev, or at the start of next), and the flags of
860  * this area are about to be changed to vm_flags - and the no-change
861  * case has already been eliminated.
862  *
863  * The following mprotect cases have to be considered, where **** is
864  * the area passed down from mprotect_fixup, never extending beyond one
865  * vma, PPPP is the previous vma, CCCC is a concurrent vma that starts
866  * at the same address as **** and is of the same or larger span, and
867  * NNNN the next vma after ****:
868  *
869  *     ****             ****                   ****
870  *    PPPPPPNNNNNN    PPPPPPNNNNNN       PPPPPPCCCCCC
871  *    cannot merge    might become       might become
872  *                    PPNNNNNNNNNN       PPPPPPPPPPCC
873  *    mmap, brk or    case 4 below       case 5 below
874  *    mremap move:
875  *                        ****               ****
876  *                    PPPP    NNNN       PPPPCCCCNNNN
877  *                    might become       might become
878  *                    PPPPPPPPPPPP 1 or  PPPPPPPPPPPP 6 or
879  *                    PPPPPPPPNNNN 2 or  PPPPPPPPNNNN 7 or
880  *                    PPPPNNNNNNNN 3     PPPPNNNNNNNN 8
881  *
882  * It is important for case 8 that the vma CCCC overlapping the
883  * region **** is never going to extended over NNNN. Instead NNNN must
884  * be extended in region **** and CCCC must be removed. This way in
885  * all cases where vma_merge succeeds, the moment vma_merge drops the
886  * rmap_locks, the properties of the merged vma will be already
887  * correct for the whole merged range. Some of those properties like
888  * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
889  * be correct for the whole merged range immediately after the
890  * rmap_locks are released. Otherwise if NNNN would be removed and
891  * CCCC would be extended over the NNNN range, remove_migration_ptes
892  * or other rmap walkers (if working on addresses beyond the "end"
893  * parameter) may establish ptes with the wrong permissions of CCCC
894  * instead of the right permissions of NNNN.
895  *
896  * In the code below:
897  * PPPP is represented by *prev
898  * CCCC is represented by *curr or not represented at all (NULL)
899  * NNNN is represented by *next or not represented at all (NULL)
900  * **** is not represented - it will be merged and the vma containing the
901  *      area is returned, or the function will return NULL
902  */
903 static struct vm_area_struct
904 *vma_merge(struct vma_iterator *vmi, struct vm_area_struct *prev,
905 	   struct vm_area_struct *src, unsigned long addr, unsigned long end,
906 	   unsigned long vm_flags, pgoff_t pgoff, struct mempolicy *policy,
907 	   struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
908 	   struct anon_vma_name *anon_name)
909 {
910 	struct mm_struct *mm = src->vm_mm;
911 	struct anon_vma *anon_vma = src->anon_vma;
912 	struct file *file = src->vm_file;
913 	struct vm_area_struct *curr, *next, *res;
914 	struct vm_area_struct *vma, *adjust, *remove, *remove2;
915 	struct vm_area_struct *anon_dup = NULL;
916 	struct vma_prepare vp;
917 	pgoff_t vma_pgoff;
918 	int err = 0;
919 	bool merge_prev = false;
920 	bool merge_next = false;
921 	bool vma_expanded = false;
922 	unsigned long vma_start = addr;
923 	unsigned long vma_end = end;
924 	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
925 	long adj_start = 0;
926 
927 	/*
928 	 * We later require that vma->vm_flags == vm_flags,
929 	 * so this tests vma->vm_flags & VM_SPECIAL, too.
930 	 */
931 	if (vm_flags & VM_SPECIAL)
932 		return NULL;
933 
934 	/* Does the input range span an existing VMA? (cases 5 - 8) */
935 	curr = find_vma_intersection(mm, prev ? prev->vm_end : 0, end);
936 
937 	if (!curr ||			/* cases 1 - 4 */
938 	    end == curr->vm_end)	/* cases 6 - 8, adjacent VMA */
939 		next = vma_lookup(mm, end);
940 	else
941 		next = NULL;		/* case 5 */
942 
943 	if (prev) {
944 		vma_start = prev->vm_start;
945 		vma_pgoff = prev->vm_pgoff;
946 
947 		/* Can we merge the predecessor? */
948 		if (addr == prev->vm_end && mpol_equal(vma_policy(prev), policy)
949 		    && can_vma_merge_after(prev, vm_flags, anon_vma, file,
950 					   pgoff, vm_userfaultfd_ctx, anon_name)) {
951 			merge_prev = true;
952 			vma_prev(vmi);
953 		}
954 	}
955 
956 	/* Can we merge the successor? */
957 	if (next && mpol_equal(policy, vma_policy(next)) &&
958 	    can_vma_merge_before(next, vm_flags, anon_vma, file, pgoff+pglen,
959 				 vm_userfaultfd_ctx, anon_name)) {
960 		merge_next = true;
961 	}
962 
963 	/* Verify some invariant that must be enforced by the caller. */
964 	VM_WARN_ON(prev && addr <= prev->vm_start);
965 	VM_WARN_ON(curr && (addr != curr->vm_start || end > curr->vm_end));
966 	VM_WARN_ON(addr >= end);
967 
968 	if (!merge_prev && !merge_next)
969 		return NULL; /* Not mergeable. */
970 
971 	if (merge_prev)
972 		vma_start_write(prev);
973 
974 	res = vma = prev;
975 	remove = remove2 = adjust = NULL;
976 
977 	/* Can we merge both the predecessor and the successor? */
978 	if (merge_prev && merge_next &&
979 	    is_mergeable_anon_vma(prev->anon_vma, next->anon_vma, NULL)) {
980 		vma_start_write(next);
981 		remove = next;				/* case 1 */
982 		vma_end = next->vm_end;
983 		err = dup_anon_vma(prev, next, &anon_dup);
984 		if (curr) {				/* case 6 */
985 			vma_start_write(curr);
986 			remove = curr;
987 			remove2 = next;
988 			/*
989 			 * Note that the dup_anon_vma below cannot overwrite err
990 			 * since the first caller would do nothing unless next
991 			 * has an anon_vma.
992 			 */
993 			if (!next->anon_vma)
994 				err = dup_anon_vma(prev, curr, &anon_dup);
995 		}
996 	} else if (merge_prev) {			/* case 2 */
997 		if (curr) {
998 			vma_start_write(curr);
999 			if (end == curr->vm_end) {	/* case 7 */
1000 				/*
1001 				 * can_vma_merge_after() assumed we would not be
1002 				 * removing prev vma, so it skipped the check
1003 				 * for vm_ops->close, but we are removing curr
1004 				 */
1005 				if (curr->vm_ops && curr->vm_ops->close)
1006 					err = -EINVAL;
1007 				remove = curr;
1008 			} else {			/* case 5 */
1009 				adjust = curr;
1010 				adj_start = (end - curr->vm_start);
1011 			}
1012 			if (!err)
1013 				err = dup_anon_vma(prev, curr, &anon_dup);
1014 		}
1015 	} else { /* merge_next */
1016 		vma_start_write(next);
1017 		res = next;
1018 		if (prev && addr < prev->vm_end) {	/* case 4 */
1019 			vma_start_write(prev);
1020 			vma_end = addr;
1021 			adjust = next;
1022 			adj_start = -(prev->vm_end - addr);
1023 			err = dup_anon_vma(next, prev, &anon_dup);
1024 		} else {
1025 			/*
1026 			 * Note that cases 3 and 8 are the ONLY ones where prev
1027 			 * is permitted to be (but is not necessarily) NULL.
1028 			 */
1029 			vma = next;			/* case 3 */
1030 			vma_start = addr;
1031 			vma_end = next->vm_end;
1032 			vma_pgoff = next->vm_pgoff - pglen;
1033 			if (curr) {			/* case 8 */
1034 				vma_pgoff = curr->vm_pgoff;
1035 				vma_start_write(curr);
1036 				remove = curr;
1037 				err = dup_anon_vma(next, curr, &anon_dup);
1038 			}
1039 		}
1040 	}
1041 
1042 	/* Error in anon_vma clone. */
1043 	if (err)
1044 		goto anon_vma_fail;
1045 
1046 	if (vma_start < vma->vm_start || vma_end > vma->vm_end)
1047 		vma_expanded = true;
1048 
1049 	if (vma_expanded) {
1050 		vma_iter_config(vmi, vma_start, vma_end);
1051 	} else {
1052 		vma_iter_config(vmi, adjust->vm_start + adj_start,
1053 				adjust->vm_end);
1054 	}
1055 
1056 	if (vma_iter_prealloc(vmi, vma))
1057 		goto prealloc_fail;
1058 
1059 	init_multi_vma_prep(&vp, vma, adjust, remove, remove2);
1060 	VM_WARN_ON(vp.anon_vma && adjust && adjust->anon_vma &&
1061 		   vp.anon_vma != adjust->anon_vma);
1062 
1063 	vma_prepare(&vp);
1064 	vma_adjust_trans_huge(vma, vma_start, vma_end, adj_start);
1065 	vma_set_range(vma, vma_start, vma_end, vma_pgoff);
1066 
1067 	if (vma_expanded)
1068 		vma_iter_store(vmi, vma);
1069 
1070 	if (adj_start) {
1071 		adjust->vm_start += adj_start;
1072 		adjust->vm_pgoff += adj_start >> PAGE_SHIFT;
1073 		if (adj_start < 0) {
1074 			WARN_ON(vma_expanded);
1075 			vma_iter_store(vmi, next);
1076 		}
1077 	}
1078 
1079 	vma_complete(&vp, vmi, mm);
1080 	khugepaged_enter_vma(res, vm_flags);
1081 	return res;
1082 
1083 prealloc_fail:
1084 	if (anon_dup)
1085 		unlink_anon_vmas(anon_dup);
1086 
1087 anon_vma_fail:
1088 	vma_iter_set(vmi, addr);
1089 	vma_iter_load(vmi);
1090 	return NULL;
1091 }
1092 
1093 /*
1094  * Rough compatibility check to quickly see if it's even worth looking
1095  * at sharing an anon_vma.
1096  *
1097  * They need to have the same vm_file, and the flags can only differ
1098  * in things that mprotect may change.
1099  *
1100  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1101  * we can merge the two vma's. For example, we refuse to merge a vma if
1102  * there is a vm_ops->close() function, because that indicates that the
1103  * driver is doing some kind of reference counting. But that doesn't
1104  * really matter for the anon_vma sharing case.
1105  */
1106 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1107 {
1108 	return a->vm_end == b->vm_start &&
1109 		mpol_equal(vma_policy(a), vma_policy(b)) &&
1110 		a->vm_file == b->vm_file &&
1111 		!((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1112 		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1113 }
1114 
1115 /*
1116  * Do some basic sanity checking to see if we can re-use the anon_vma
1117  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1118  * the same as 'old', the other will be the new one that is trying
1119  * to share the anon_vma.
1120  *
1121  * NOTE! This runs with mmap_lock held for reading, so it is possible that
1122  * the anon_vma of 'old' is concurrently in the process of being set up
1123  * by another page fault trying to merge _that_. But that's ok: if it
1124  * is being set up, that automatically means that it will be a singleton
1125  * acceptable for merging, so we can do all of this optimistically. But
1126  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1127  *
1128  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1129  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1130  * is to return an anon_vma that is "complex" due to having gone through
1131  * a fork).
1132  *
1133  * We also make sure that the two vma's are compatible (adjacent,
1134  * and with the same memory policies). That's all stable, even with just
1135  * a read lock on the mmap_lock.
1136  */
1137 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1138 {
1139 	if (anon_vma_compatible(a, b)) {
1140 		struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1141 
1142 		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1143 			return anon_vma;
1144 	}
1145 	return NULL;
1146 }
1147 
1148 /*
1149  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1150  * neighbouring vmas for a suitable anon_vma, before it goes off
1151  * to allocate a new anon_vma.  It checks because a repetitive
1152  * sequence of mprotects and faults may otherwise lead to distinct
1153  * anon_vmas being allocated, preventing vma merge in subsequent
1154  * mprotect.
1155  */
1156 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1157 {
1158 	struct anon_vma *anon_vma = NULL;
1159 	struct vm_area_struct *prev, *next;
1160 	VMA_ITERATOR(vmi, vma->vm_mm, vma->vm_end);
1161 
1162 	/* Try next first. */
1163 	next = vma_iter_load(&vmi);
1164 	if (next) {
1165 		anon_vma = reusable_anon_vma(next, vma, next);
1166 		if (anon_vma)
1167 			return anon_vma;
1168 	}
1169 
1170 	prev = vma_prev(&vmi);
1171 	VM_BUG_ON_VMA(prev != vma, vma);
1172 	prev = vma_prev(&vmi);
1173 	/* Try prev next. */
1174 	if (prev)
1175 		anon_vma = reusable_anon_vma(prev, prev, vma);
1176 
1177 	/*
1178 	 * We might reach here with anon_vma == NULL if we can't find
1179 	 * any reusable anon_vma.
1180 	 * There's no absolute need to look only at touching neighbours:
1181 	 * we could search further afield for "compatible" anon_vmas.
1182 	 * But it would probably just be a waste of time searching,
1183 	 * or lead to too many vmas hanging off the same anon_vma.
1184 	 * We're trying to allow mprotect remerging later on,
1185 	 * not trying to minimize memory used for anon_vmas.
1186 	 */
1187 	return anon_vma;
1188 }
1189 
1190 /*
1191  * If a hint addr is less than mmap_min_addr change hint to be as
1192  * low as possible but still greater than mmap_min_addr
1193  */
1194 static inline unsigned long round_hint_to_min(unsigned long hint)
1195 {
1196 	hint &= PAGE_MASK;
1197 	if (((void *)hint != NULL) &&
1198 	    (hint < mmap_min_addr))
1199 		return PAGE_ALIGN(mmap_min_addr);
1200 	return hint;
1201 }
1202 
1203 bool mlock_future_ok(struct mm_struct *mm, unsigned long flags,
1204 			unsigned long bytes)
1205 {
1206 	unsigned long locked_pages, limit_pages;
1207 
1208 	if (!(flags & VM_LOCKED) || capable(CAP_IPC_LOCK))
1209 		return true;
1210 
1211 	locked_pages = bytes >> PAGE_SHIFT;
1212 	locked_pages += mm->locked_vm;
1213 
1214 	limit_pages = rlimit(RLIMIT_MEMLOCK);
1215 	limit_pages >>= PAGE_SHIFT;
1216 
1217 	return locked_pages <= limit_pages;
1218 }
1219 
1220 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1221 {
1222 	if (S_ISREG(inode->i_mode))
1223 		return MAX_LFS_FILESIZE;
1224 
1225 	if (S_ISBLK(inode->i_mode))
1226 		return MAX_LFS_FILESIZE;
1227 
1228 	if (S_ISSOCK(inode->i_mode))
1229 		return MAX_LFS_FILESIZE;
1230 
1231 	/* Special "we do even unsigned file positions" case */
1232 	if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1233 		return 0;
1234 
1235 	/* Yes, random drivers might want more. But I'm tired of buggy drivers */
1236 	return ULONG_MAX;
1237 }
1238 
1239 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1240 				unsigned long pgoff, unsigned long len)
1241 {
1242 	u64 maxsize = file_mmap_size_max(file, inode);
1243 
1244 	if (maxsize && len > maxsize)
1245 		return false;
1246 	maxsize -= len;
1247 	if (pgoff > maxsize >> PAGE_SHIFT)
1248 		return false;
1249 	return true;
1250 }
1251 
1252 /*
1253  * The caller must write-lock current->mm->mmap_lock.
1254  */
1255 unsigned long do_mmap(struct file *file, unsigned long addr,
1256 			unsigned long len, unsigned long prot,
1257 			unsigned long flags, vm_flags_t vm_flags,
1258 			unsigned long pgoff, unsigned long *populate,
1259 			struct list_head *uf)
1260 {
1261 	struct mm_struct *mm = current->mm;
1262 	int pkey = 0;
1263 
1264 	*populate = 0;
1265 
1266 	if (!len)
1267 		return -EINVAL;
1268 
1269 	/*
1270 	 * Does the application expect PROT_READ to imply PROT_EXEC?
1271 	 *
1272 	 * (the exception is when the underlying filesystem is noexec
1273 	 *  mounted, in which case we don't add PROT_EXEC.)
1274 	 */
1275 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1276 		if (!(file && path_noexec(&file->f_path)))
1277 			prot |= PROT_EXEC;
1278 
1279 	/* force arch specific MAP_FIXED handling in get_unmapped_area */
1280 	if (flags & MAP_FIXED_NOREPLACE)
1281 		flags |= MAP_FIXED;
1282 
1283 	if (!(flags & MAP_FIXED))
1284 		addr = round_hint_to_min(addr);
1285 
1286 	/* Careful about overflows.. */
1287 	len = PAGE_ALIGN(len);
1288 	if (!len)
1289 		return -ENOMEM;
1290 
1291 	/* offset overflow? */
1292 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1293 		return -EOVERFLOW;
1294 
1295 	/* Too many mappings? */
1296 	if (mm->map_count > sysctl_max_map_count)
1297 		return -ENOMEM;
1298 
1299 	/*
1300 	 * addr is returned from get_unmapped_area,
1301 	 * There are two cases:
1302 	 * 1> MAP_FIXED == false
1303 	 *	unallocated memory, no need to check sealing.
1304 	 * 1> MAP_FIXED == true
1305 	 *	sealing is checked inside mmap_region when
1306 	 *	do_vmi_munmap is called.
1307 	 */
1308 
1309 	if (prot == PROT_EXEC) {
1310 		pkey = execute_only_pkey(mm);
1311 		if (pkey < 0)
1312 			pkey = 0;
1313 	}
1314 
1315 	/* Do simple checking here so the lower-level routines won't have
1316 	 * to. we assume access permissions have been handled by the open
1317 	 * of the memory object, so we don't do any here.
1318 	 */
1319 	vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1320 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1321 
1322 	/* Obtain the address to map to. we verify (or select) it and ensure
1323 	 * that it represents a valid section of the address space.
1324 	 */
1325 	addr = __get_unmapped_area(file, addr, len, pgoff, flags, vm_flags);
1326 	if (IS_ERR_VALUE(addr))
1327 		return addr;
1328 
1329 	if (flags & MAP_FIXED_NOREPLACE) {
1330 		if (find_vma_intersection(mm, addr, addr + len))
1331 			return -EEXIST;
1332 	}
1333 
1334 	if (flags & MAP_LOCKED)
1335 		if (!can_do_mlock())
1336 			return -EPERM;
1337 
1338 	if (!mlock_future_ok(mm, vm_flags, len))
1339 		return -EAGAIN;
1340 
1341 	if (file) {
1342 		struct inode *inode = file_inode(file);
1343 		unsigned long flags_mask;
1344 
1345 		if (!file_mmap_ok(file, inode, pgoff, len))
1346 			return -EOVERFLOW;
1347 
1348 		flags_mask = LEGACY_MAP_MASK;
1349 		if (file->f_op->fop_flags & FOP_MMAP_SYNC)
1350 			flags_mask |= MAP_SYNC;
1351 
1352 		switch (flags & MAP_TYPE) {
1353 		case MAP_SHARED:
1354 			/*
1355 			 * Force use of MAP_SHARED_VALIDATE with non-legacy
1356 			 * flags. E.g. MAP_SYNC is dangerous to use with
1357 			 * MAP_SHARED as you don't know which consistency model
1358 			 * you will get. We silently ignore unsupported flags
1359 			 * with MAP_SHARED to preserve backward compatibility.
1360 			 */
1361 			flags &= LEGACY_MAP_MASK;
1362 			fallthrough;
1363 		case MAP_SHARED_VALIDATE:
1364 			if (flags & ~flags_mask)
1365 				return -EOPNOTSUPP;
1366 			if (prot & PROT_WRITE) {
1367 				if (!(file->f_mode & FMODE_WRITE))
1368 					return -EACCES;
1369 				if (IS_SWAPFILE(file->f_mapping->host))
1370 					return -ETXTBSY;
1371 			}
1372 
1373 			/*
1374 			 * Make sure we don't allow writing to an append-only
1375 			 * file..
1376 			 */
1377 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1378 				return -EACCES;
1379 
1380 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1381 			if (!(file->f_mode & FMODE_WRITE))
1382 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1383 			fallthrough;
1384 		case MAP_PRIVATE:
1385 			if (!(file->f_mode & FMODE_READ))
1386 				return -EACCES;
1387 			if (path_noexec(&file->f_path)) {
1388 				if (vm_flags & VM_EXEC)
1389 					return -EPERM;
1390 				vm_flags &= ~VM_MAYEXEC;
1391 			}
1392 
1393 			if (!file->f_op->mmap)
1394 				return -ENODEV;
1395 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1396 				return -EINVAL;
1397 			break;
1398 
1399 		default:
1400 			return -EINVAL;
1401 		}
1402 	} else {
1403 		switch (flags & MAP_TYPE) {
1404 		case MAP_SHARED:
1405 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1406 				return -EINVAL;
1407 			/*
1408 			 * Ignore pgoff.
1409 			 */
1410 			pgoff = 0;
1411 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1412 			break;
1413 		case MAP_DROPPABLE:
1414 			if (VM_DROPPABLE == VM_NONE)
1415 				return -ENOTSUPP;
1416 			/*
1417 			 * A locked or stack area makes no sense to be droppable.
1418 			 *
1419 			 * Also, since droppable pages can just go away at any time
1420 			 * it makes no sense to copy them on fork or dump them.
1421 			 *
1422 			 * And don't attempt to combine with hugetlb for now.
1423 			 */
1424 			if (flags & (MAP_LOCKED | MAP_HUGETLB))
1425 			        return -EINVAL;
1426 			if (vm_flags & (VM_GROWSDOWN | VM_GROWSUP))
1427 			        return -EINVAL;
1428 
1429 			vm_flags |= VM_DROPPABLE;
1430 
1431 			/*
1432 			 * If the pages can be dropped, then it doesn't make
1433 			 * sense to reserve them.
1434 			 */
1435 			vm_flags |= VM_NORESERVE;
1436 
1437 			/*
1438 			 * Likewise, they're volatile enough that they
1439 			 * shouldn't survive forks or coredumps.
1440 			 */
1441 			vm_flags |= VM_WIPEONFORK | VM_DONTDUMP;
1442 			fallthrough;
1443 		case MAP_PRIVATE:
1444 			/*
1445 			 * Set pgoff according to addr for anon_vma.
1446 			 */
1447 			pgoff = addr >> PAGE_SHIFT;
1448 			break;
1449 		default:
1450 			return -EINVAL;
1451 		}
1452 	}
1453 
1454 	/*
1455 	 * Set 'VM_NORESERVE' if we should not account for the
1456 	 * memory use of this mapping.
1457 	 */
1458 	if (flags & MAP_NORESERVE) {
1459 		/* We honor MAP_NORESERVE if allowed to overcommit */
1460 		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1461 			vm_flags |= VM_NORESERVE;
1462 
1463 		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1464 		if (file && is_file_hugepages(file))
1465 			vm_flags |= VM_NORESERVE;
1466 	}
1467 
1468 	addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1469 	if (!IS_ERR_VALUE(addr) &&
1470 	    ((vm_flags & VM_LOCKED) ||
1471 	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1472 		*populate = len;
1473 	return addr;
1474 }
1475 
1476 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1477 			      unsigned long prot, unsigned long flags,
1478 			      unsigned long fd, unsigned long pgoff)
1479 {
1480 	struct file *file = NULL;
1481 	unsigned long retval;
1482 
1483 	if (!(flags & MAP_ANONYMOUS)) {
1484 		audit_mmap_fd(fd, flags);
1485 		file = fget(fd);
1486 		if (!file)
1487 			return -EBADF;
1488 		if (is_file_hugepages(file)) {
1489 			len = ALIGN(len, huge_page_size(hstate_file(file)));
1490 		} else if (unlikely(flags & MAP_HUGETLB)) {
1491 			retval = -EINVAL;
1492 			goto out_fput;
1493 		}
1494 	} else if (flags & MAP_HUGETLB) {
1495 		struct hstate *hs;
1496 
1497 		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1498 		if (!hs)
1499 			return -EINVAL;
1500 
1501 		len = ALIGN(len, huge_page_size(hs));
1502 		/*
1503 		 * VM_NORESERVE is used because the reservations will be
1504 		 * taken when vm_ops->mmap() is called
1505 		 */
1506 		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1507 				VM_NORESERVE,
1508 				HUGETLB_ANONHUGE_INODE,
1509 				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1510 		if (IS_ERR(file))
1511 			return PTR_ERR(file);
1512 	}
1513 
1514 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1515 out_fput:
1516 	if (file)
1517 		fput(file);
1518 	return retval;
1519 }
1520 
1521 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1522 		unsigned long, prot, unsigned long, flags,
1523 		unsigned long, fd, unsigned long, pgoff)
1524 {
1525 	return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1526 }
1527 
1528 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1529 struct mmap_arg_struct {
1530 	unsigned long addr;
1531 	unsigned long len;
1532 	unsigned long prot;
1533 	unsigned long flags;
1534 	unsigned long fd;
1535 	unsigned long offset;
1536 };
1537 
1538 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1539 {
1540 	struct mmap_arg_struct a;
1541 
1542 	if (copy_from_user(&a, arg, sizeof(a)))
1543 		return -EFAULT;
1544 	if (offset_in_page(a.offset))
1545 		return -EINVAL;
1546 
1547 	return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1548 			       a.offset >> PAGE_SHIFT);
1549 }
1550 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1551 
1552 static bool vm_ops_needs_writenotify(const struct vm_operations_struct *vm_ops)
1553 {
1554 	return vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite);
1555 }
1556 
1557 static bool vma_is_shared_writable(struct vm_area_struct *vma)
1558 {
1559 	return (vma->vm_flags & (VM_WRITE | VM_SHARED)) ==
1560 		(VM_WRITE | VM_SHARED);
1561 }
1562 
1563 static bool vma_fs_can_writeback(struct vm_area_struct *vma)
1564 {
1565 	/* No managed pages to writeback. */
1566 	if (vma->vm_flags & VM_PFNMAP)
1567 		return false;
1568 
1569 	return vma->vm_file && vma->vm_file->f_mapping &&
1570 		mapping_can_writeback(vma->vm_file->f_mapping);
1571 }
1572 
1573 /*
1574  * Does this VMA require the underlying folios to have their dirty state
1575  * tracked?
1576  */
1577 bool vma_needs_dirty_tracking(struct vm_area_struct *vma)
1578 {
1579 	/* Only shared, writable VMAs require dirty tracking. */
1580 	if (!vma_is_shared_writable(vma))
1581 		return false;
1582 
1583 	/* Does the filesystem need to be notified? */
1584 	if (vm_ops_needs_writenotify(vma->vm_ops))
1585 		return true;
1586 
1587 	/*
1588 	 * Even if the filesystem doesn't indicate a need for writenotify, if it
1589 	 * can writeback, dirty tracking is still required.
1590 	 */
1591 	return vma_fs_can_writeback(vma);
1592 }
1593 
1594 /*
1595  * Some shared mappings will want the pages marked read-only
1596  * to track write events. If so, we'll downgrade vm_page_prot
1597  * to the private version (using protection_map[] without the
1598  * VM_SHARED bit).
1599  */
1600 bool vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1601 {
1602 	/* If it was private or non-writable, the write bit is already clear */
1603 	if (!vma_is_shared_writable(vma))
1604 		return false;
1605 
1606 	/* The backer wishes to know when pages are first written to? */
1607 	if (vm_ops_needs_writenotify(vma->vm_ops))
1608 		return true;
1609 
1610 	/* The open routine did something to the protections that pgprot_modify
1611 	 * won't preserve? */
1612 	if (pgprot_val(vm_page_prot) !=
1613 	    pgprot_val(vm_pgprot_modify(vm_page_prot, vma->vm_flags)))
1614 		return false;
1615 
1616 	/*
1617 	 * Do we need to track softdirty? hugetlb does not support softdirty
1618 	 * tracking yet.
1619 	 */
1620 	if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma))
1621 		return true;
1622 
1623 	/* Do we need write faults for uffd-wp tracking? */
1624 	if (userfaultfd_wp(vma))
1625 		return true;
1626 
1627 	/* Can the mapping track the dirty pages? */
1628 	return vma_fs_can_writeback(vma);
1629 }
1630 
1631 /*
1632  * We account for memory if it's a private writeable mapping,
1633  * not hugepages and VM_NORESERVE wasn't set.
1634  */
1635 static inline bool accountable_mapping(struct file *file, vm_flags_t vm_flags)
1636 {
1637 	/*
1638 	 * hugetlb has its own accounting separate from the core VM
1639 	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1640 	 */
1641 	if (file && is_file_hugepages(file))
1642 		return false;
1643 
1644 	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1645 }
1646 
1647 /**
1648  * unmapped_area() - Find an area between the low_limit and the high_limit with
1649  * the correct alignment and offset, all from @info. Note: current->mm is used
1650  * for the search.
1651  *
1652  * @info: The unmapped area information including the range [low_limit -
1653  * high_limit), the alignment offset and mask.
1654  *
1655  * Return: A memory address or -ENOMEM.
1656  */
1657 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1658 {
1659 	unsigned long length, gap;
1660 	unsigned long low_limit, high_limit;
1661 	struct vm_area_struct *tmp;
1662 	VMA_ITERATOR(vmi, current->mm, 0);
1663 
1664 	/* Adjust search length to account for worst case alignment overhead */
1665 	length = info->length + info->align_mask + info->start_gap;
1666 	if (length < info->length)
1667 		return -ENOMEM;
1668 
1669 	low_limit = info->low_limit;
1670 	if (low_limit < mmap_min_addr)
1671 		low_limit = mmap_min_addr;
1672 	high_limit = info->high_limit;
1673 retry:
1674 	if (vma_iter_area_lowest(&vmi, low_limit, high_limit, length))
1675 		return -ENOMEM;
1676 
1677 	/*
1678 	 * Adjust for the gap first so it doesn't interfere with the
1679 	 * later alignment. The first step is the minimum needed to
1680 	 * fulill the start gap, the next steps is the minimum to align
1681 	 * that. It is the minimum needed to fulill both.
1682 	 */
1683 	gap = vma_iter_addr(&vmi) + info->start_gap;
1684 	gap += (info->align_offset - gap) & info->align_mask;
1685 	tmp = vma_next(&vmi);
1686 	if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
1687 		if (vm_start_gap(tmp) < gap + length - 1) {
1688 			low_limit = tmp->vm_end;
1689 			vma_iter_reset(&vmi);
1690 			goto retry;
1691 		}
1692 	} else {
1693 		tmp = vma_prev(&vmi);
1694 		if (tmp && vm_end_gap(tmp) > gap) {
1695 			low_limit = vm_end_gap(tmp);
1696 			vma_iter_reset(&vmi);
1697 			goto retry;
1698 		}
1699 	}
1700 
1701 	return gap;
1702 }
1703 
1704 /**
1705  * unmapped_area_topdown() - Find an area between the low_limit and the
1706  * high_limit with the correct alignment and offset at the highest available
1707  * address, all from @info. Note: current->mm is used for the search.
1708  *
1709  * @info: The unmapped area information including the range [low_limit -
1710  * high_limit), the alignment offset and mask.
1711  *
1712  * Return: A memory address or -ENOMEM.
1713  */
1714 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1715 {
1716 	unsigned long length, gap, gap_end;
1717 	unsigned long low_limit, high_limit;
1718 	struct vm_area_struct *tmp;
1719 	VMA_ITERATOR(vmi, current->mm, 0);
1720 
1721 	/* Adjust search length to account for worst case alignment overhead */
1722 	length = info->length + info->align_mask + info->start_gap;
1723 	if (length < info->length)
1724 		return -ENOMEM;
1725 
1726 	low_limit = info->low_limit;
1727 	if (low_limit < mmap_min_addr)
1728 		low_limit = mmap_min_addr;
1729 	high_limit = info->high_limit;
1730 retry:
1731 	if (vma_iter_area_highest(&vmi, low_limit, high_limit, length))
1732 		return -ENOMEM;
1733 
1734 	gap = vma_iter_end(&vmi) - info->length;
1735 	gap -= (gap - info->align_offset) & info->align_mask;
1736 	gap_end = vma_iter_end(&vmi);
1737 	tmp = vma_next(&vmi);
1738 	if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
1739 		if (vm_start_gap(tmp) < gap_end) {
1740 			high_limit = vm_start_gap(tmp);
1741 			vma_iter_reset(&vmi);
1742 			goto retry;
1743 		}
1744 	} else {
1745 		tmp = vma_prev(&vmi);
1746 		if (tmp && vm_end_gap(tmp) > gap) {
1747 			high_limit = tmp->vm_start;
1748 			vma_iter_reset(&vmi);
1749 			goto retry;
1750 		}
1751 	}
1752 
1753 	return gap;
1754 }
1755 
1756 /*
1757  * Search for an unmapped address range.
1758  *
1759  * We are looking for a range that:
1760  * - does not intersect with any VMA;
1761  * - is contained within the [low_limit, high_limit) interval;
1762  * - is at least the desired size.
1763  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1764  */
1765 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
1766 {
1767 	unsigned long addr;
1768 
1769 	if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
1770 		addr = unmapped_area_topdown(info);
1771 	else
1772 		addr = unmapped_area(info);
1773 
1774 	trace_vm_unmapped_area(addr, info);
1775 	return addr;
1776 }
1777 
1778 /* Get an address range which is currently unmapped.
1779  * For shmat() with addr=0.
1780  *
1781  * Ugly calling convention alert:
1782  * Return value with the low bits set means error value,
1783  * ie
1784  *	if (ret & ~PAGE_MASK)
1785  *		error = ret;
1786  *
1787  * This function "knows" that -ENOMEM has the bits set.
1788  */
1789 unsigned long
1790 generic_get_unmapped_area(struct file *filp, unsigned long addr,
1791 			  unsigned long len, unsigned long pgoff,
1792 			  unsigned long flags)
1793 {
1794 	struct mm_struct *mm = current->mm;
1795 	struct vm_area_struct *vma, *prev;
1796 	struct vm_unmapped_area_info info = {};
1797 	const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1798 
1799 	if (len > mmap_end - mmap_min_addr)
1800 		return -ENOMEM;
1801 
1802 	if (flags & MAP_FIXED)
1803 		return addr;
1804 
1805 	if (addr) {
1806 		addr = PAGE_ALIGN(addr);
1807 		vma = find_vma_prev(mm, addr, &prev);
1808 		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1809 		    (!vma || addr + len <= vm_start_gap(vma)) &&
1810 		    (!prev || addr >= vm_end_gap(prev)))
1811 			return addr;
1812 	}
1813 
1814 	info.length = len;
1815 	info.low_limit = mm->mmap_base;
1816 	info.high_limit = mmap_end;
1817 	return vm_unmapped_area(&info);
1818 }
1819 
1820 #ifndef HAVE_ARCH_UNMAPPED_AREA
1821 unsigned long
1822 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1823 		       unsigned long len, unsigned long pgoff,
1824 		       unsigned long flags)
1825 {
1826 	return generic_get_unmapped_area(filp, addr, len, pgoff, flags);
1827 }
1828 #endif
1829 
1830 /*
1831  * This mmap-allocator allocates new areas top-down from below the
1832  * stack's low limit (the base):
1833  */
1834 unsigned long
1835 generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1836 				  unsigned long len, unsigned long pgoff,
1837 				  unsigned long flags)
1838 {
1839 	struct vm_area_struct *vma, *prev;
1840 	struct mm_struct *mm = current->mm;
1841 	struct vm_unmapped_area_info info = {};
1842 	const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1843 
1844 	/* requested length too big for entire address space */
1845 	if (len > mmap_end - mmap_min_addr)
1846 		return -ENOMEM;
1847 
1848 	if (flags & MAP_FIXED)
1849 		return addr;
1850 
1851 	/* requesting a specific address */
1852 	if (addr) {
1853 		addr = PAGE_ALIGN(addr);
1854 		vma = find_vma_prev(mm, addr, &prev);
1855 		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1856 				(!vma || addr + len <= vm_start_gap(vma)) &&
1857 				(!prev || addr >= vm_end_gap(prev)))
1858 			return addr;
1859 	}
1860 
1861 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1862 	info.length = len;
1863 	info.low_limit = PAGE_SIZE;
1864 	info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
1865 	addr = vm_unmapped_area(&info);
1866 
1867 	/*
1868 	 * A failed mmap() very likely causes application failure,
1869 	 * so fall back to the bottom-up function here. This scenario
1870 	 * can happen with large stack limits and large mmap()
1871 	 * allocations.
1872 	 */
1873 	if (offset_in_page(addr)) {
1874 		VM_BUG_ON(addr != -ENOMEM);
1875 		info.flags = 0;
1876 		info.low_limit = TASK_UNMAPPED_BASE;
1877 		info.high_limit = mmap_end;
1878 		addr = vm_unmapped_area(&info);
1879 	}
1880 
1881 	return addr;
1882 }
1883 
1884 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1885 unsigned long
1886 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1887 			       unsigned long len, unsigned long pgoff,
1888 			       unsigned long flags)
1889 {
1890 	return generic_get_unmapped_area_topdown(filp, addr, len, pgoff, flags);
1891 }
1892 #endif
1893 
1894 #ifndef HAVE_ARCH_UNMAPPED_AREA_VMFLAGS
1895 unsigned long
1896 arch_get_unmapped_area_vmflags(struct file *filp, unsigned long addr, unsigned long len,
1897 			       unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags)
1898 {
1899 	return arch_get_unmapped_area(filp, addr, len, pgoff, flags);
1900 }
1901 
1902 unsigned long
1903 arch_get_unmapped_area_topdown_vmflags(struct file *filp, unsigned long addr,
1904 				       unsigned long len, unsigned long pgoff,
1905 				       unsigned long flags, vm_flags_t vm_flags)
1906 {
1907 	return arch_get_unmapped_area_topdown(filp, addr, len, pgoff, flags);
1908 }
1909 #endif
1910 
1911 unsigned long mm_get_unmapped_area_vmflags(struct mm_struct *mm, struct file *filp,
1912 					   unsigned long addr, unsigned long len,
1913 					   unsigned long pgoff, unsigned long flags,
1914 					   vm_flags_t vm_flags)
1915 {
1916 	if (test_bit(MMF_TOPDOWN, &mm->flags))
1917 		return arch_get_unmapped_area_topdown_vmflags(filp, addr, len, pgoff,
1918 							      flags, vm_flags);
1919 	return arch_get_unmapped_area_vmflags(filp, addr, len, pgoff, flags, vm_flags);
1920 }
1921 
1922 unsigned long
1923 __get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1924 		unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags)
1925 {
1926 	unsigned long (*get_area)(struct file *, unsigned long,
1927 				  unsigned long, unsigned long, unsigned long)
1928 				  = NULL;
1929 
1930 	unsigned long error = arch_mmap_check(addr, len, flags);
1931 	if (error)
1932 		return error;
1933 
1934 	/* Careful about overflows.. */
1935 	if (len > TASK_SIZE)
1936 		return -ENOMEM;
1937 
1938 	if (file) {
1939 		if (file->f_op->get_unmapped_area)
1940 			get_area = file->f_op->get_unmapped_area;
1941 	} else if (flags & MAP_SHARED) {
1942 		/*
1943 		 * mmap_region() will call shmem_zero_setup() to create a file,
1944 		 * so use shmem's get_unmapped_area in case it can be huge.
1945 		 */
1946 		get_area = shmem_get_unmapped_area;
1947 	}
1948 
1949 	/* Always treat pgoff as zero for anonymous memory. */
1950 	if (!file)
1951 		pgoff = 0;
1952 
1953 	if (get_area) {
1954 		addr = get_area(file, addr, len, pgoff, flags);
1955 	} else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1956 		/* Ensures that larger anonymous mappings are THP aligned. */
1957 		addr = thp_get_unmapped_area_vmflags(file, addr, len,
1958 						     pgoff, flags, vm_flags);
1959 	} else {
1960 		addr = mm_get_unmapped_area_vmflags(current->mm, file, addr, len,
1961 						    pgoff, flags, vm_flags);
1962 	}
1963 	if (IS_ERR_VALUE(addr))
1964 		return addr;
1965 
1966 	if (addr > TASK_SIZE - len)
1967 		return -ENOMEM;
1968 	if (offset_in_page(addr))
1969 		return -EINVAL;
1970 
1971 	error = security_mmap_addr(addr);
1972 	return error ? error : addr;
1973 }
1974 
1975 unsigned long
1976 mm_get_unmapped_area(struct mm_struct *mm, struct file *file,
1977 		     unsigned long addr, unsigned long len,
1978 		     unsigned long pgoff, unsigned long flags)
1979 {
1980 	if (test_bit(MMF_TOPDOWN, &mm->flags))
1981 		return arch_get_unmapped_area_topdown(file, addr, len, pgoff, flags);
1982 	return arch_get_unmapped_area(file, addr, len, pgoff, flags);
1983 }
1984 EXPORT_SYMBOL(mm_get_unmapped_area);
1985 
1986 /**
1987  * find_vma_intersection() - Look up the first VMA which intersects the interval
1988  * @mm: The process address space.
1989  * @start_addr: The inclusive start user address.
1990  * @end_addr: The exclusive end user address.
1991  *
1992  * Returns: The first VMA within the provided range, %NULL otherwise.  Assumes
1993  * start_addr < end_addr.
1994  */
1995 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
1996 					     unsigned long start_addr,
1997 					     unsigned long end_addr)
1998 {
1999 	unsigned long index = start_addr;
2000 
2001 	mmap_assert_locked(mm);
2002 	return mt_find(&mm->mm_mt, &index, end_addr - 1);
2003 }
2004 EXPORT_SYMBOL(find_vma_intersection);
2005 
2006 /**
2007  * find_vma() - Find the VMA for a given address, or the next VMA.
2008  * @mm: The mm_struct to check
2009  * @addr: The address
2010  *
2011  * Returns: The VMA associated with addr, or the next VMA.
2012  * May return %NULL in the case of no VMA at addr or above.
2013  */
2014 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2015 {
2016 	unsigned long index = addr;
2017 
2018 	mmap_assert_locked(mm);
2019 	return mt_find(&mm->mm_mt, &index, ULONG_MAX);
2020 }
2021 EXPORT_SYMBOL(find_vma);
2022 
2023 /**
2024  * find_vma_prev() - Find the VMA for a given address, or the next vma and
2025  * set %pprev to the previous VMA, if any.
2026  * @mm: The mm_struct to check
2027  * @addr: The address
2028  * @pprev: The pointer to set to the previous VMA
2029  *
2030  * Note that RCU lock is missing here since the external mmap_lock() is used
2031  * instead.
2032  *
2033  * Returns: The VMA associated with @addr, or the next vma.
2034  * May return %NULL in the case of no vma at addr or above.
2035  */
2036 struct vm_area_struct *
2037 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2038 			struct vm_area_struct **pprev)
2039 {
2040 	struct vm_area_struct *vma;
2041 	VMA_ITERATOR(vmi, mm, addr);
2042 
2043 	vma = vma_iter_load(&vmi);
2044 	*pprev = vma_prev(&vmi);
2045 	if (!vma)
2046 		vma = vma_next(&vmi);
2047 	return vma;
2048 }
2049 
2050 /*
2051  * Verify that the stack growth is acceptable and
2052  * update accounting. This is shared with both the
2053  * grow-up and grow-down cases.
2054  */
2055 static int acct_stack_growth(struct vm_area_struct *vma,
2056 			     unsigned long size, unsigned long grow)
2057 {
2058 	struct mm_struct *mm = vma->vm_mm;
2059 	unsigned long new_start;
2060 
2061 	/* address space limit tests */
2062 	if (!may_expand_vm(mm, vma->vm_flags, grow))
2063 		return -ENOMEM;
2064 
2065 	/* Stack limit test */
2066 	if (size > rlimit(RLIMIT_STACK))
2067 		return -ENOMEM;
2068 
2069 	/* mlock limit tests */
2070 	if (!mlock_future_ok(mm, vma->vm_flags, grow << PAGE_SHIFT))
2071 		return -ENOMEM;
2072 
2073 	/* Check to ensure the stack will not grow into a hugetlb-only region */
2074 	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2075 			vma->vm_end - size;
2076 	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2077 		return -EFAULT;
2078 
2079 	/*
2080 	 * Overcommit..  This must be the final test, as it will
2081 	 * update security statistics.
2082 	 */
2083 	if (security_vm_enough_memory_mm(mm, grow))
2084 		return -ENOMEM;
2085 
2086 	return 0;
2087 }
2088 
2089 #if defined(CONFIG_STACK_GROWSUP)
2090 /*
2091  * PA-RISC uses this for its stack.
2092  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2093  */
2094 static int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2095 {
2096 	struct mm_struct *mm = vma->vm_mm;
2097 	struct vm_area_struct *next;
2098 	unsigned long gap_addr;
2099 	int error = 0;
2100 	VMA_ITERATOR(vmi, mm, vma->vm_start);
2101 
2102 	if (!(vma->vm_flags & VM_GROWSUP))
2103 		return -EFAULT;
2104 
2105 	/* Guard against exceeding limits of the address space. */
2106 	address &= PAGE_MASK;
2107 	if (address >= (TASK_SIZE & PAGE_MASK))
2108 		return -ENOMEM;
2109 	address += PAGE_SIZE;
2110 
2111 	/* Enforce stack_guard_gap */
2112 	gap_addr = address + stack_guard_gap;
2113 
2114 	/* Guard against overflow */
2115 	if (gap_addr < address || gap_addr > TASK_SIZE)
2116 		gap_addr = TASK_SIZE;
2117 
2118 	next = find_vma_intersection(mm, vma->vm_end, gap_addr);
2119 	if (next && vma_is_accessible(next)) {
2120 		if (!(next->vm_flags & VM_GROWSUP))
2121 			return -ENOMEM;
2122 		/* Check that both stack segments have the same anon_vma? */
2123 	}
2124 
2125 	if (next)
2126 		vma_iter_prev_range_limit(&vmi, address);
2127 
2128 	vma_iter_config(&vmi, vma->vm_start, address);
2129 	if (vma_iter_prealloc(&vmi, vma))
2130 		return -ENOMEM;
2131 
2132 	/* We must make sure the anon_vma is allocated. */
2133 	if (unlikely(anon_vma_prepare(vma))) {
2134 		vma_iter_free(&vmi);
2135 		return -ENOMEM;
2136 	}
2137 
2138 	/* Lock the VMA before expanding to prevent concurrent page faults */
2139 	vma_start_write(vma);
2140 	/*
2141 	 * vma->vm_start/vm_end cannot change under us because the caller
2142 	 * is required to hold the mmap_lock in read mode.  We need the
2143 	 * anon_vma lock to serialize against concurrent expand_stacks.
2144 	 */
2145 	anon_vma_lock_write(vma->anon_vma);
2146 
2147 	/* Somebody else might have raced and expanded it already */
2148 	if (address > vma->vm_end) {
2149 		unsigned long size, grow;
2150 
2151 		size = address - vma->vm_start;
2152 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
2153 
2154 		error = -ENOMEM;
2155 		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2156 			error = acct_stack_growth(vma, size, grow);
2157 			if (!error) {
2158 				/*
2159 				 * We only hold a shared mmap_lock lock here, so
2160 				 * we need to protect against concurrent vma
2161 				 * expansions.  anon_vma_lock_write() doesn't
2162 				 * help here, as we don't guarantee that all
2163 				 * growable vmas in a mm share the same root
2164 				 * anon vma.  So, we reuse mm->page_table_lock
2165 				 * to guard against concurrent vma expansions.
2166 				 */
2167 				spin_lock(&mm->page_table_lock);
2168 				if (vma->vm_flags & VM_LOCKED)
2169 					mm->locked_vm += grow;
2170 				vm_stat_account(mm, vma->vm_flags, grow);
2171 				anon_vma_interval_tree_pre_update_vma(vma);
2172 				vma->vm_end = address;
2173 				/* Overwrite old entry in mtree. */
2174 				vma_iter_store(&vmi, vma);
2175 				anon_vma_interval_tree_post_update_vma(vma);
2176 				spin_unlock(&mm->page_table_lock);
2177 
2178 				perf_event_mmap(vma);
2179 			}
2180 		}
2181 	}
2182 	anon_vma_unlock_write(vma->anon_vma);
2183 	vma_iter_free(&vmi);
2184 	validate_mm(mm);
2185 	return error;
2186 }
2187 #endif /* CONFIG_STACK_GROWSUP */
2188 
2189 /*
2190  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2191  * mmap_lock held for writing.
2192  */
2193 int expand_downwards(struct vm_area_struct *vma, unsigned long address)
2194 {
2195 	struct mm_struct *mm = vma->vm_mm;
2196 	struct vm_area_struct *prev;
2197 	int error = 0;
2198 	VMA_ITERATOR(vmi, mm, vma->vm_start);
2199 
2200 	if (!(vma->vm_flags & VM_GROWSDOWN))
2201 		return -EFAULT;
2202 
2203 	address &= PAGE_MASK;
2204 	if (address < mmap_min_addr || address < FIRST_USER_ADDRESS)
2205 		return -EPERM;
2206 
2207 	/* Enforce stack_guard_gap */
2208 	prev = vma_prev(&vmi);
2209 	/* Check that both stack segments have the same anon_vma? */
2210 	if (prev) {
2211 		if (!(prev->vm_flags & VM_GROWSDOWN) &&
2212 		    vma_is_accessible(prev) &&
2213 		    (address - prev->vm_end < stack_guard_gap))
2214 			return -ENOMEM;
2215 	}
2216 
2217 	if (prev)
2218 		vma_iter_next_range_limit(&vmi, vma->vm_start);
2219 
2220 	vma_iter_config(&vmi, address, vma->vm_end);
2221 	if (vma_iter_prealloc(&vmi, vma))
2222 		return -ENOMEM;
2223 
2224 	/* We must make sure the anon_vma is allocated. */
2225 	if (unlikely(anon_vma_prepare(vma))) {
2226 		vma_iter_free(&vmi);
2227 		return -ENOMEM;
2228 	}
2229 
2230 	/* Lock the VMA before expanding to prevent concurrent page faults */
2231 	vma_start_write(vma);
2232 	/*
2233 	 * vma->vm_start/vm_end cannot change under us because the caller
2234 	 * is required to hold the mmap_lock in read mode.  We need the
2235 	 * anon_vma lock to serialize against concurrent expand_stacks.
2236 	 */
2237 	anon_vma_lock_write(vma->anon_vma);
2238 
2239 	/* Somebody else might have raced and expanded it already */
2240 	if (address < vma->vm_start) {
2241 		unsigned long size, grow;
2242 
2243 		size = vma->vm_end - address;
2244 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
2245 
2246 		error = -ENOMEM;
2247 		if (grow <= vma->vm_pgoff) {
2248 			error = acct_stack_growth(vma, size, grow);
2249 			if (!error) {
2250 				/*
2251 				 * We only hold a shared mmap_lock lock here, so
2252 				 * we need to protect against concurrent vma
2253 				 * expansions.  anon_vma_lock_write() doesn't
2254 				 * help here, as we don't guarantee that all
2255 				 * growable vmas in a mm share the same root
2256 				 * anon vma.  So, we reuse mm->page_table_lock
2257 				 * to guard against concurrent vma expansions.
2258 				 */
2259 				spin_lock(&mm->page_table_lock);
2260 				if (vma->vm_flags & VM_LOCKED)
2261 					mm->locked_vm += grow;
2262 				vm_stat_account(mm, vma->vm_flags, grow);
2263 				anon_vma_interval_tree_pre_update_vma(vma);
2264 				vma->vm_start = address;
2265 				vma->vm_pgoff -= grow;
2266 				/* Overwrite old entry in mtree. */
2267 				vma_iter_store(&vmi, vma);
2268 				anon_vma_interval_tree_post_update_vma(vma);
2269 				spin_unlock(&mm->page_table_lock);
2270 
2271 				perf_event_mmap(vma);
2272 			}
2273 		}
2274 	}
2275 	anon_vma_unlock_write(vma->anon_vma);
2276 	vma_iter_free(&vmi);
2277 	validate_mm(mm);
2278 	return error;
2279 }
2280 
2281 /* enforced gap between the expanding stack and other mappings. */
2282 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2283 
2284 static int __init cmdline_parse_stack_guard_gap(char *p)
2285 {
2286 	unsigned long val;
2287 	char *endptr;
2288 
2289 	val = simple_strtoul(p, &endptr, 10);
2290 	if (!*endptr)
2291 		stack_guard_gap = val << PAGE_SHIFT;
2292 
2293 	return 1;
2294 }
2295 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2296 
2297 #ifdef CONFIG_STACK_GROWSUP
2298 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
2299 {
2300 	return expand_upwards(vma, address);
2301 }
2302 
2303 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
2304 {
2305 	struct vm_area_struct *vma, *prev;
2306 
2307 	addr &= PAGE_MASK;
2308 	vma = find_vma_prev(mm, addr, &prev);
2309 	if (vma && (vma->vm_start <= addr))
2310 		return vma;
2311 	if (!prev)
2312 		return NULL;
2313 	if (expand_stack_locked(prev, addr))
2314 		return NULL;
2315 	if (prev->vm_flags & VM_LOCKED)
2316 		populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2317 	return prev;
2318 }
2319 #else
2320 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
2321 {
2322 	return expand_downwards(vma, address);
2323 }
2324 
2325 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
2326 {
2327 	struct vm_area_struct *vma;
2328 	unsigned long start;
2329 
2330 	addr &= PAGE_MASK;
2331 	vma = find_vma(mm, addr);
2332 	if (!vma)
2333 		return NULL;
2334 	if (vma->vm_start <= addr)
2335 		return vma;
2336 	start = vma->vm_start;
2337 	if (expand_stack_locked(vma, addr))
2338 		return NULL;
2339 	if (vma->vm_flags & VM_LOCKED)
2340 		populate_vma_page_range(vma, addr, start, NULL);
2341 	return vma;
2342 }
2343 #endif
2344 
2345 #if defined(CONFIG_STACK_GROWSUP)
2346 
2347 #define vma_expand_up(vma,addr) expand_upwards(vma, addr)
2348 #define vma_expand_down(vma, addr) (-EFAULT)
2349 
2350 #else
2351 
2352 #define vma_expand_up(vma,addr) (-EFAULT)
2353 #define vma_expand_down(vma, addr) expand_downwards(vma, addr)
2354 
2355 #endif
2356 
2357 /*
2358  * expand_stack(): legacy interface for page faulting. Don't use unless
2359  * you have to.
2360  *
2361  * This is called with the mm locked for reading, drops the lock, takes
2362  * the lock for writing, tries to look up a vma again, expands it if
2363  * necessary, and downgrades the lock to reading again.
2364  *
2365  * If no vma is found or it can't be expanded, it returns NULL and has
2366  * dropped the lock.
2367  */
2368 struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr)
2369 {
2370 	struct vm_area_struct *vma, *prev;
2371 
2372 	mmap_read_unlock(mm);
2373 	if (mmap_write_lock_killable(mm))
2374 		return NULL;
2375 
2376 	vma = find_vma_prev(mm, addr, &prev);
2377 	if (vma && vma->vm_start <= addr)
2378 		goto success;
2379 
2380 	if (prev && !vma_expand_up(prev, addr)) {
2381 		vma = prev;
2382 		goto success;
2383 	}
2384 
2385 	if (vma && !vma_expand_down(vma, addr))
2386 		goto success;
2387 
2388 	mmap_write_unlock(mm);
2389 	return NULL;
2390 
2391 success:
2392 	mmap_write_downgrade(mm);
2393 	return vma;
2394 }
2395 
2396 /*
2397  * Ok - we have the memory areas we should free on a maple tree so release them,
2398  * and do the vma updates.
2399  *
2400  * Called with the mm semaphore held.
2401  */
2402 static inline void remove_mt(struct mm_struct *mm, struct ma_state *mas)
2403 {
2404 	unsigned long nr_accounted = 0;
2405 	struct vm_area_struct *vma;
2406 
2407 	/* Update high watermark before we lower total_vm */
2408 	update_hiwater_vm(mm);
2409 	mas_for_each(mas, vma, ULONG_MAX) {
2410 		long nrpages = vma_pages(vma);
2411 
2412 		if (vma->vm_flags & VM_ACCOUNT)
2413 			nr_accounted += nrpages;
2414 		vm_stat_account(mm, vma->vm_flags, -nrpages);
2415 		remove_vma(vma, false);
2416 	}
2417 	vm_unacct_memory(nr_accounted);
2418 }
2419 
2420 /*
2421  * Get rid of page table information in the indicated region.
2422  *
2423  * Called with the mm semaphore held.
2424  */
2425 static void unmap_region(struct mm_struct *mm, struct ma_state *mas,
2426 		struct vm_area_struct *vma, struct vm_area_struct *prev,
2427 		struct vm_area_struct *next, unsigned long start,
2428 		unsigned long end, unsigned long tree_end, bool mm_wr_locked)
2429 {
2430 	struct mmu_gather tlb;
2431 	unsigned long mt_start = mas->index;
2432 
2433 	lru_add_drain();
2434 	tlb_gather_mmu(&tlb, mm);
2435 	update_hiwater_rss(mm);
2436 	unmap_vmas(&tlb, mas, vma, start, end, tree_end, mm_wr_locked);
2437 	mas_set(mas, mt_start);
2438 	free_pgtables(&tlb, mas, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2439 				 next ? next->vm_start : USER_PGTABLES_CEILING,
2440 				 mm_wr_locked);
2441 	tlb_finish_mmu(&tlb);
2442 }
2443 
2444 /*
2445  * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2446  * has already been checked or doesn't make sense to fail.
2447  * VMA Iterator will point to the end VMA.
2448  */
2449 static int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
2450 		       unsigned long addr, int new_below)
2451 {
2452 	struct vma_prepare vp;
2453 	struct vm_area_struct *new;
2454 	int err;
2455 
2456 	WARN_ON(vma->vm_start >= addr);
2457 	WARN_ON(vma->vm_end <= addr);
2458 
2459 	if (vma->vm_ops && vma->vm_ops->may_split) {
2460 		err = vma->vm_ops->may_split(vma, addr);
2461 		if (err)
2462 			return err;
2463 	}
2464 
2465 	new = vm_area_dup(vma);
2466 	if (!new)
2467 		return -ENOMEM;
2468 
2469 	if (new_below) {
2470 		new->vm_end = addr;
2471 	} else {
2472 		new->vm_start = addr;
2473 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2474 	}
2475 
2476 	err = -ENOMEM;
2477 	vma_iter_config(vmi, new->vm_start, new->vm_end);
2478 	if (vma_iter_prealloc(vmi, new))
2479 		goto out_free_vma;
2480 
2481 	err = vma_dup_policy(vma, new);
2482 	if (err)
2483 		goto out_free_vmi;
2484 
2485 	err = anon_vma_clone(new, vma);
2486 	if (err)
2487 		goto out_free_mpol;
2488 
2489 	if (new->vm_file)
2490 		get_file(new->vm_file);
2491 
2492 	if (new->vm_ops && new->vm_ops->open)
2493 		new->vm_ops->open(new);
2494 
2495 	vma_start_write(vma);
2496 	vma_start_write(new);
2497 
2498 	init_vma_prep(&vp, vma);
2499 	vp.insert = new;
2500 	vma_prepare(&vp);
2501 	vma_adjust_trans_huge(vma, vma->vm_start, addr, 0);
2502 
2503 	if (new_below) {
2504 		vma->vm_start = addr;
2505 		vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT;
2506 	} else {
2507 		vma->vm_end = addr;
2508 	}
2509 
2510 	/* vma_complete stores the new vma */
2511 	vma_complete(&vp, vmi, vma->vm_mm);
2512 
2513 	/* Success. */
2514 	if (new_below)
2515 		vma_next(vmi);
2516 	return 0;
2517 
2518 out_free_mpol:
2519 	mpol_put(vma_policy(new));
2520 out_free_vmi:
2521 	vma_iter_free(vmi);
2522 out_free_vma:
2523 	vm_area_free(new);
2524 	return err;
2525 }
2526 
2527 /*
2528  * Split a vma into two pieces at address 'addr', a new vma is allocated
2529  * either for the first part or the tail.
2530  */
2531 static int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
2532 		     unsigned long addr, int new_below)
2533 {
2534 	if (vma->vm_mm->map_count >= sysctl_max_map_count)
2535 		return -ENOMEM;
2536 
2537 	return __split_vma(vmi, vma, addr, new_below);
2538 }
2539 
2540 /*
2541  * We are about to modify one or multiple of a VMA's flags, policy, userfaultfd
2542  * context and anonymous VMA name within the range [start, end).
2543  *
2544  * As a result, we might be able to merge the newly modified VMA range with an
2545  * adjacent VMA with identical properties.
2546  *
2547  * If no merge is possible and the range does not span the entirety of the VMA,
2548  * we then need to split the VMA to accommodate the change.
2549  *
2550  * The function returns either the merged VMA, the original VMA if a split was
2551  * required instead, or an error if the split failed.
2552  */
2553 struct vm_area_struct *vma_modify(struct vma_iterator *vmi,
2554 				  struct vm_area_struct *prev,
2555 				  struct vm_area_struct *vma,
2556 				  unsigned long start, unsigned long end,
2557 				  unsigned long vm_flags,
2558 				  struct mempolicy *policy,
2559 				  struct vm_userfaultfd_ctx uffd_ctx,
2560 				  struct anon_vma_name *anon_name)
2561 {
2562 	pgoff_t pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
2563 	struct vm_area_struct *merged;
2564 
2565 	merged = vma_merge(vmi, prev, vma, start, end, vm_flags,
2566 			   pgoff, policy, uffd_ctx, anon_name);
2567 	if (merged)
2568 		return merged;
2569 
2570 	if (vma->vm_start < start) {
2571 		int err = split_vma(vmi, vma, start, 1);
2572 
2573 		if (err)
2574 			return ERR_PTR(err);
2575 	}
2576 
2577 	if (vma->vm_end > end) {
2578 		int err = split_vma(vmi, vma, end, 0);
2579 
2580 		if (err)
2581 			return ERR_PTR(err);
2582 	}
2583 
2584 	return vma;
2585 }
2586 
2587 /*
2588  * Attempt to merge a newly mapped VMA with those adjacent to it. The caller
2589  * must ensure that [start, end) does not overlap any existing VMA.
2590  */
2591 static struct vm_area_struct
2592 *vma_merge_new_vma(struct vma_iterator *vmi, struct vm_area_struct *prev,
2593 		   struct vm_area_struct *vma, unsigned long start,
2594 		   unsigned long end, pgoff_t pgoff)
2595 {
2596 	return vma_merge(vmi, prev, vma, start, end, vma->vm_flags, pgoff,
2597 			 vma_policy(vma), vma->vm_userfaultfd_ctx, anon_vma_name(vma));
2598 }
2599 
2600 /*
2601  * Expand vma by delta bytes, potentially merging with an immediately adjacent
2602  * VMA with identical properties.
2603  */
2604 struct vm_area_struct *vma_merge_extend(struct vma_iterator *vmi,
2605 					struct vm_area_struct *vma,
2606 					unsigned long delta)
2607 {
2608 	pgoff_t pgoff = vma->vm_pgoff + vma_pages(vma);
2609 
2610 	/* vma is specified as prev, so case 1 or 2 will apply. */
2611 	return vma_merge(vmi, vma, vma, vma->vm_end, vma->vm_end + delta,
2612 			 vma->vm_flags, pgoff, vma_policy(vma),
2613 			 vma->vm_userfaultfd_ctx, anon_vma_name(vma));
2614 }
2615 
2616 /*
2617  * do_vmi_align_munmap() - munmap the aligned region from @start to @end.
2618  * @vmi: The vma iterator
2619  * @vma: The starting vm_area_struct
2620  * @mm: The mm_struct
2621  * @start: The aligned start address to munmap.
2622  * @end: The aligned end address to munmap.
2623  * @uf: The userfaultfd list_head
2624  * @unlock: Set to true to drop the mmap_lock.  unlocking only happens on
2625  * success.
2626  *
2627  * Return: 0 on success and drops the lock if so directed, error and leaves the
2628  * lock held otherwise.
2629  */
2630 static int
2631 do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
2632 		    struct mm_struct *mm, unsigned long start,
2633 		    unsigned long end, struct list_head *uf, bool unlock)
2634 {
2635 	struct vm_area_struct *prev, *next = NULL;
2636 	struct maple_tree mt_detach;
2637 	int count = 0;
2638 	int error = -ENOMEM;
2639 	unsigned long locked_vm = 0;
2640 	MA_STATE(mas_detach, &mt_detach, 0, 0);
2641 	mt_init_flags(&mt_detach, vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK);
2642 	mt_on_stack(mt_detach);
2643 
2644 	/*
2645 	 * If we need to split any vma, do it now to save pain later.
2646 	 *
2647 	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2648 	 * unmapped vm_area_struct will remain in use: so lower split_vma
2649 	 * places tmp vma above, and higher split_vma places tmp vma below.
2650 	 */
2651 
2652 	/* Does it split the first one? */
2653 	if (start > vma->vm_start) {
2654 
2655 		/*
2656 		 * Make sure that map_count on return from munmap() will
2657 		 * not exceed its limit; but let map_count go just above
2658 		 * its limit temporarily, to help free resources as expected.
2659 		 */
2660 		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2661 			goto map_count_exceeded;
2662 
2663 		error = __split_vma(vmi, vma, start, 1);
2664 		if (error)
2665 			goto start_split_failed;
2666 	}
2667 
2668 	/*
2669 	 * Detach a range of VMAs from the mm. Using next as a temp variable as
2670 	 * it is always overwritten.
2671 	 */
2672 	next = vma;
2673 	do {
2674 		/* Does it split the end? */
2675 		if (next->vm_end > end) {
2676 			error = __split_vma(vmi, next, end, 0);
2677 			if (error)
2678 				goto end_split_failed;
2679 		}
2680 		vma_start_write(next);
2681 		mas_set(&mas_detach, count);
2682 		error = mas_store_gfp(&mas_detach, next, GFP_KERNEL);
2683 		if (error)
2684 			goto munmap_gather_failed;
2685 		vma_mark_detached(next, true);
2686 		if (next->vm_flags & VM_LOCKED)
2687 			locked_vm += vma_pages(next);
2688 
2689 		count++;
2690 		if (unlikely(uf)) {
2691 			/*
2692 			 * If userfaultfd_unmap_prep returns an error the vmas
2693 			 * will remain split, but userland will get a
2694 			 * highly unexpected error anyway. This is no
2695 			 * different than the case where the first of the two
2696 			 * __split_vma fails, but we don't undo the first
2697 			 * split, despite we could. This is unlikely enough
2698 			 * failure that it's not worth optimizing it for.
2699 			 */
2700 			error = userfaultfd_unmap_prep(next, start, end, uf);
2701 
2702 			if (error)
2703 				goto userfaultfd_error;
2704 		}
2705 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE
2706 		BUG_ON(next->vm_start < start);
2707 		BUG_ON(next->vm_start > end);
2708 #endif
2709 	} for_each_vma_range(*vmi, next, end);
2710 
2711 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
2712 	/* Make sure no VMAs are about to be lost. */
2713 	{
2714 		MA_STATE(test, &mt_detach, 0, 0);
2715 		struct vm_area_struct *vma_mas, *vma_test;
2716 		int test_count = 0;
2717 
2718 		vma_iter_set(vmi, start);
2719 		rcu_read_lock();
2720 		vma_test = mas_find(&test, count - 1);
2721 		for_each_vma_range(*vmi, vma_mas, end) {
2722 			BUG_ON(vma_mas != vma_test);
2723 			test_count++;
2724 			vma_test = mas_next(&test, count - 1);
2725 		}
2726 		rcu_read_unlock();
2727 		BUG_ON(count != test_count);
2728 	}
2729 #endif
2730 
2731 	while (vma_iter_addr(vmi) > start)
2732 		vma_iter_prev_range(vmi);
2733 
2734 	error = vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL);
2735 	if (error)
2736 		goto clear_tree_failed;
2737 
2738 	/* Point of no return */
2739 	mm->locked_vm -= locked_vm;
2740 	mm->map_count -= count;
2741 	if (unlock)
2742 		mmap_write_downgrade(mm);
2743 
2744 	prev = vma_iter_prev_range(vmi);
2745 	next = vma_next(vmi);
2746 	if (next)
2747 		vma_iter_prev_range(vmi);
2748 
2749 	/*
2750 	 * We can free page tables without write-locking mmap_lock because VMAs
2751 	 * were isolated before we downgraded mmap_lock.
2752 	 */
2753 	mas_set(&mas_detach, 1);
2754 	unmap_region(mm, &mas_detach, vma, prev, next, start, end, count,
2755 		     !unlock);
2756 	/* Statistics and freeing VMAs */
2757 	mas_set(&mas_detach, 0);
2758 	remove_mt(mm, &mas_detach);
2759 	validate_mm(mm);
2760 	if (unlock)
2761 		mmap_read_unlock(mm);
2762 
2763 	__mt_destroy(&mt_detach);
2764 	return 0;
2765 
2766 clear_tree_failed:
2767 userfaultfd_error:
2768 munmap_gather_failed:
2769 end_split_failed:
2770 	mas_set(&mas_detach, 0);
2771 	mas_for_each(&mas_detach, next, end)
2772 		vma_mark_detached(next, false);
2773 
2774 	__mt_destroy(&mt_detach);
2775 start_split_failed:
2776 map_count_exceeded:
2777 	validate_mm(mm);
2778 	return error;
2779 }
2780 
2781 /*
2782  * do_vmi_munmap() - munmap a given range.
2783  * @vmi: The vma iterator
2784  * @mm: The mm_struct
2785  * @start: The start address to munmap
2786  * @len: The length of the range to munmap
2787  * @uf: The userfaultfd list_head
2788  * @unlock: set to true if the user wants to drop the mmap_lock on success
2789  *
2790  * This function takes a @mas that is either pointing to the previous VMA or set
2791  * to MA_START and sets it up to remove the mapping(s).  The @len will be
2792  * aligned and any arch_unmap work will be preformed.
2793  *
2794  * Return: 0 on success and drops the lock if so directed, error and leaves the
2795  * lock held otherwise.
2796  */
2797 int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
2798 		  unsigned long start, size_t len, struct list_head *uf,
2799 		  bool unlock)
2800 {
2801 	unsigned long end;
2802 	struct vm_area_struct *vma;
2803 
2804 	if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2805 		return -EINVAL;
2806 
2807 	end = start + PAGE_ALIGN(len);
2808 	if (end == start)
2809 		return -EINVAL;
2810 
2811 	/*
2812 	 * Check if memory is sealed before arch_unmap.
2813 	 * Prevent unmapping a sealed VMA.
2814 	 * can_modify_mm assumes we have acquired the lock on MM.
2815 	 */
2816 	if (unlikely(!can_modify_mm(mm, start, end)))
2817 		return -EPERM;
2818 
2819 	 /* arch_unmap() might do unmaps itself.  */
2820 	arch_unmap(mm, start, end);
2821 
2822 	/* Find the first overlapping VMA */
2823 	vma = vma_find(vmi, end);
2824 	if (!vma) {
2825 		if (unlock)
2826 			mmap_write_unlock(mm);
2827 		return 0;
2828 	}
2829 
2830 	return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock);
2831 }
2832 
2833 /* do_munmap() - Wrapper function for non-maple tree aware do_munmap() calls.
2834  * @mm: The mm_struct
2835  * @start: The start address to munmap
2836  * @len: The length to be munmapped.
2837  * @uf: The userfaultfd list_head
2838  *
2839  * Return: 0 on success, error otherwise.
2840  */
2841 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2842 	      struct list_head *uf)
2843 {
2844 	VMA_ITERATOR(vmi, mm, start);
2845 
2846 	return do_vmi_munmap(&vmi, mm, start, len, uf, false);
2847 }
2848 
2849 unsigned long mmap_region(struct file *file, unsigned long addr,
2850 		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2851 		struct list_head *uf)
2852 {
2853 	struct mm_struct *mm = current->mm;
2854 	struct vm_area_struct *vma = NULL;
2855 	struct vm_area_struct *next, *prev, *merge;
2856 	pgoff_t pglen = len >> PAGE_SHIFT;
2857 	unsigned long charged = 0;
2858 	unsigned long end = addr + len;
2859 	unsigned long merge_start = addr, merge_end = end;
2860 	bool writable_file_mapping = false;
2861 	pgoff_t vm_pgoff;
2862 	int error;
2863 	VMA_ITERATOR(vmi, mm, addr);
2864 
2865 	/* Check against address space limit. */
2866 	if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
2867 		unsigned long nr_pages;
2868 
2869 		/*
2870 		 * MAP_FIXED may remove pages of mappings that intersects with
2871 		 * requested mapping. Account for the pages it would unmap.
2872 		 */
2873 		nr_pages = count_vma_pages_range(mm, addr, end);
2874 
2875 		if (!may_expand_vm(mm, vm_flags,
2876 					(len >> PAGE_SHIFT) - nr_pages))
2877 			return -ENOMEM;
2878 	}
2879 
2880 	/* Unmap any existing mapping in the area */
2881 	error = do_vmi_munmap(&vmi, mm, addr, len, uf, false);
2882 	if (error == -EPERM)
2883 		return error;
2884 	else if (error)
2885 		return -ENOMEM;
2886 
2887 	/*
2888 	 * Private writable mapping: check memory availability
2889 	 */
2890 	if (accountable_mapping(file, vm_flags)) {
2891 		charged = len >> PAGE_SHIFT;
2892 		if (security_vm_enough_memory_mm(mm, charged))
2893 			return -ENOMEM;
2894 		vm_flags |= VM_ACCOUNT;
2895 	}
2896 
2897 	next = vma_next(&vmi);
2898 	prev = vma_prev(&vmi);
2899 	if (vm_flags & VM_SPECIAL) {
2900 		if (prev)
2901 			vma_iter_next_range(&vmi);
2902 		goto cannot_expand;
2903 	}
2904 
2905 	/* Attempt to expand an old mapping */
2906 	/* Check next */
2907 	if (next && next->vm_start == end && !vma_policy(next) &&
2908 	    can_vma_merge_before(next, vm_flags, NULL, file, pgoff+pglen,
2909 				 NULL_VM_UFFD_CTX, NULL)) {
2910 		merge_end = next->vm_end;
2911 		vma = next;
2912 		vm_pgoff = next->vm_pgoff - pglen;
2913 	}
2914 
2915 	/* Check prev */
2916 	if (prev && prev->vm_end == addr && !vma_policy(prev) &&
2917 	    (vma ? can_vma_merge_after(prev, vm_flags, vma->anon_vma, file,
2918 				       pgoff, vma->vm_userfaultfd_ctx, NULL) :
2919 		   can_vma_merge_after(prev, vm_flags, NULL, file, pgoff,
2920 				       NULL_VM_UFFD_CTX, NULL))) {
2921 		merge_start = prev->vm_start;
2922 		vma = prev;
2923 		vm_pgoff = prev->vm_pgoff;
2924 	} else if (prev) {
2925 		vma_iter_next_range(&vmi);
2926 	}
2927 
2928 	/* Actually expand, if possible */
2929 	if (vma &&
2930 	    !vma_expand(&vmi, vma, merge_start, merge_end, vm_pgoff, next)) {
2931 		khugepaged_enter_vma(vma, vm_flags);
2932 		goto expanded;
2933 	}
2934 
2935 	if (vma == prev)
2936 		vma_iter_set(&vmi, addr);
2937 cannot_expand:
2938 
2939 	/*
2940 	 * Determine the object being mapped and call the appropriate
2941 	 * specific mapper. the address has already been validated, but
2942 	 * not unmapped, but the maps are removed from the list.
2943 	 */
2944 	vma = vm_area_alloc(mm);
2945 	if (!vma) {
2946 		error = -ENOMEM;
2947 		goto unacct_error;
2948 	}
2949 
2950 	vma_iter_config(&vmi, addr, end);
2951 	vma_set_range(vma, addr, end, pgoff);
2952 	vm_flags_init(vma, vm_flags);
2953 	vma->vm_page_prot = vm_get_page_prot(vm_flags);
2954 
2955 	if (file) {
2956 		vma->vm_file = get_file(file);
2957 		error = call_mmap(file, vma);
2958 		if (error)
2959 			goto unmap_and_free_vma;
2960 
2961 		if (vma_is_shared_maywrite(vma)) {
2962 			error = mapping_map_writable(file->f_mapping);
2963 			if (error)
2964 				goto close_and_free_vma;
2965 
2966 			writable_file_mapping = true;
2967 		}
2968 
2969 		/*
2970 		 * Expansion is handled above, merging is handled below.
2971 		 * Drivers should not alter the address of the VMA.
2972 		 */
2973 		error = -EINVAL;
2974 		if (WARN_ON((addr != vma->vm_start)))
2975 			goto close_and_free_vma;
2976 
2977 		vma_iter_config(&vmi, addr, end);
2978 		/*
2979 		 * If vm_flags changed after call_mmap(), we should try merge
2980 		 * vma again as we may succeed this time.
2981 		 */
2982 		if (unlikely(vm_flags != vma->vm_flags && prev)) {
2983 			merge = vma_merge_new_vma(&vmi, prev, vma,
2984 						  vma->vm_start, vma->vm_end,
2985 						  vma->vm_pgoff);
2986 			if (merge) {
2987 				/*
2988 				 * ->mmap() can change vma->vm_file and fput
2989 				 * the original file. So fput the vma->vm_file
2990 				 * here or we would add an extra fput for file
2991 				 * and cause general protection fault
2992 				 * ultimately.
2993 				 */
2994 				fput(vma->vm_file);
2995 				vm_area_free(vma);
2996 				vma = merge;
2997 				/* Update vm_flags to pick up the change. */
2998 				vm_flags = vma->vm_flags;
2999 				goto unmap_writable;
3000 			}
3001 		}
3002 
3003 		vm_flags = vma->vm_flags;
3004 	} else if (vm_flags & VM_SHARED) {
3005 		error = shmem_zero_setup(vma);
3006 		if (error)
3007 			goto free_vma;
3008 	} else {
3009 		vma_set_anonymous(vma);
3010 	}
3011 
3012 	if (map_deny_write_exec(vma, vma->vm_flags)) {
3013 		error = -EACCES;
3014 		goto close_and_free_vma;
3015 	}
3016 
3017 	/* Allow architectures to sanity-check the vm_flags */
3018 	error = -EINVAL;
3019 	if (!arch_validate_flags(vma->vm_flags))
3020 		goto close_and_free_vma;
3021 
3022 	error = -ENOMEM;
3023 	if (vma_iter_prealloc(&vmi, vma))
3024 		goto close_and_free_vma;
3025 
3026 	/* Lock the VMA since it is modified after insertion into VMA tree */
3027 	vma_start_write(vma);
3028 	vma_iter_store(&vmi, vma);
3029 	mm->map_count++;
3030 	vma_link_file(vma);
3031 
3032 	/*
3033 	 * vma_merge() calls khugepaged_enter_vma() either, the below
3034 	 * call covers the non-merge case.
3035 	 */
3036 	khugepaged_enter_vma(vma, vma->vm_flags);
3037 
3038 	/* Once vma denies write, undo our temporary denial count */
3039 unmap_writable:
3040 	if (writable_file_mapping)
3041 		mapping_unmap_writable(file->f_mapping);
3042 	file = vma->vm_file;
3043 	ksm_add_vma(vma);
3044 expanded:
3045 	perf_event_mmap(vma);
3046 
3047 	vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
3048 	if (vm_flags & VM_LOCKED) {
3049 		if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
3050 					is_vm_hugetlb_page(vma) ||
3051 					vma == get_gate_vma(current->mm))
3052 			vm_flags_clear(vma, VM_LOCKED_MASK);
3053 		else
3054 			mm->locked_vm += (len >> PAGE_SHIFT);
3055 	}
3056 
3057 	if (file)
3058 		uprobe_mmap(vma);
3059 
3060 	/*
3061 	 * New (or expanded) vma always get soft dirty status.
3062 	 * Otherwise user-space soft-dirty page tracker won't
3063 	 * be able to distinguish situation when vma area unmapped,
3064 	 * then new mapped in-place (which must be aimed as
3065 	 * a completely new data area).
3066 	 */
3067 	vm_flags_set(vma, VM_SOFTDIRTY);
3068 
3069 	vma_set_page_prot(vma);
3070 
3071 	validate_mm(mm);
3072 	return addr;
3073 
3074 close_and_free_vma:
3075 	if (file && vma->vm_ops && vma->vm_ops->close)
3076 		vma->vm_ops->close(vma);
3077 
3078 	if (file || vma->vm_file) {
3079 unmap_and_free_vma:
3080 		fput(vma->vm_file);
3081 		vma->vm_file = NULL;
3082 
3083 		vma_iter_set(&vmi, vma->vm_end);
3084 		/* Undo any partial mapping done by a device driver. */
3085 		unmap_region(mm, &vmi.mas, vma, prev, next, vma->vm_start,
3086 			     vma->vm_end, vma->vm_end, true);
3087 	}
3088 	if (writable_file_mapping)
3089 		mapping_unmap_writable(file->f_mapping);
3090 free_vma:
3091 	vm_area_free(vma);
3092 unacct_error:
3093 	if (charged)
3094 		vm_unacct_memory(charged);
3095 	validate_mm(mm);
3096 	return error;
3097 }
3098 
3099 static int __vm_munmap(unsigned long start, size_t len, bool unlock)
3100 {
3101 	int ret;
3102 	struct mm_struct *mm = current->mm;
3103 	LIST_HEAD(uf);
3104 	VMA_ITERATOR(vmi, mm, start);
3105 
3106 	if (mmap_write_lock_killable(mm))
3107 		return -EINTR;
3108 
3109 	ret = do_vmi_munmap(&vmi, mm, start, len, &uf, unlock);
3110 	if (ret || !unlock)
3111 		mmap_write_unlock(mm);
3112 
3113 	userfaultfd_unmap_complete(mm, &uf);
3114 	return ret;
3115 }
3116 
3117 int vm_munmap(unsigned long start, size_t len)
3118 {
3119 	return __vm_munmap(start, len, false);
3120 }
3121 EXPORT_SYMBOL(vm_munmap);
3122 
3123 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
3124 {
3125 	addr = untagged_addr(addr);
3126 	return __vm_munmap(addr, len, true);
3127 }
3128 
3129 
3130 /*
3131  * Emulation of deprecated remap_file_pages() syscall.
3132  */
3133 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
3134 		unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
3135 {
3136 
3137 	struct mm_struct *mm = current->mm;
3138 	struct vm_area_struct *vma;
3139 	unsigned long populate = 0;
3140 	unsigned long ret = -EINVAL;
3141 	struct file *file;
3142 
3143 	pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/mm/remap_file_pages.rst.\n",
3144 		     current->comm, current->pid);
3145 
3146 	if (prot)
3147 		return ret;
3148 	start = start & PAGE_MASK;
3149 	size = size & PAGE_MASK;
3150 
3151 	if (start + size <= start)
3152 		return ret;
3153 
3154 	/* Does pgoff wrap? */
3155 	if (pgoff + (size >> PAGE_SHIFT) < pgoff)
3156 		return ret;
3157 
3158 	if (mmap_write_lock_killable(mm))
3159 		return -EINTR;
3160 
3161 	vma = vma_lookup(mm, start);
3162 
3163 	if (!vma || !(vma->vm_flags & VM_SHARED))
3164 		goto out;
3165 
3166 	if (start + size > vma->vm_end) {
3167 		VMA_ITERATOR(vmi, mm, vma->vm_end);
3168 		struct vm_area_struct *next, *prev = vma;
3169 
3170 		for_each_vma_range(vmi, next, start + size) {
3171 			/* hole between vmas ? */
3172 			if (next->vm_start != prev->vm_end)
3173 				goto out;
3174 
3175 			if (next->vm_file != vma->vm_file)
3176 				goto out;
3177 
3178 			if (next->vm_flags != vma->vm_flags)
3179 				goto out;
3180 
3181 			if (start + size <= next->vm_end)
3182 				break;
3183 
3184 			prev = next;
3185 		}
3186 
3187 		if (!next)
3188 			goto out;
3189 	}
3190 
3191 	prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
3192 	prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
3193 	prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
3194 
3195 	flags &= MAP_NONBLOCK;
3196 	flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
3197 	if (vma->vm_flags & VM_LOCKED)
3198 		flags |= MAP_LOCKED;
3199 
3200 	file = get_file(vma->vm_file);
3201 	ret = do_mmap(vma->vm_file, start, size,
3202 			prot, flags, 0, pgoff, &populate, NULL);
3203 	fput(file);
3204 out:
3205 	mmap_write_unlock(mm);
3206 	if (populate)
3207 		mm_populate(ret, populate);
3208 	if (!IS_ERR_VALUE(ret))
3209 		ret = 0;
3210 	return ret;
3211 }
3212 
3213 /*
3214  * do_vma_munmap() - Unmap a full or partial vma.
3215  * @vmi: The vma iterator pointing at the vma
3216  * @vma: The first vma to be munmapped
3217  * @start: the start of the address to unmap
3218  * @end: The end of the address to unmap
3219  * @uf: The userfaultfd list_head
3220  * @unlock: Drop the lock on success
3221  *
3222  * unmaps a VMA mapping when the vma iterator is already in position.
3223  * Does not handle alignment.
3224  *
3225  * Return: 0 on success drops the lock of so directed, error on failure and will
3226  * still hold the lock.
3227  */
3228 int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3229 		unsigned long start, unsigned long end, struct list_head *uf,
3230 		bool unlock)
3231 {
3232 	struct mm_struct *mm = vma->vm_mm;
3233 
3234 	/*
3235 	 * Check if memory is sealed before arch_unmap.
3236 	 * Prevent unmapping a sealed VMA.
3237 	 * can_modify_mm assumes we have acquired the lock on MM.
3238 	 */
3239 	if (unlikely(!can_modify_mm(mm, start, end)))
3240 		return -EPERM;
3241 
3242 	arch_unmap(mm, start, end);
3243 	return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock);
3244 }
3245 
3246 /*
3247  * do_brk_flags() - Increase the brk vma if the flags match.
3248  * @vmi: The vma iterator
3249  * @addr: The start address
3250  * @len: The length of the increase
3251  * @vma: The vma,
3252  * @flags: The VMA Flags
3253  *
3254  * Extend the brk VMA from addr to addr + len.  If the VMA is NULL or the flags
3255  * do not match then create a new anonymous VMA.  Eventually we may be able to
3256  * do some brk-specific accounting here.
3257  */
3258 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma,
3259 		unsigned long addr, unsigned long len, unsigned long flags)
3260 {
3261 	struct mm_struct *mm = current->mm;
3262 	struct vma_prepare vp;
3263 
3264 	/*
3265 	 * Check against address space limits by the changed size
3266 	 * Note: This happens *after* clearing old mappings in some code paths.
3267 	 */
3268 	flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
3269 	if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3270 		return -ENOMEM;
3271 
3272 	if (mm->map_count > sysctl_max_map_count)
3273 		return -ENOMEM;
3274 
3275 	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3276 		return -ENOMEM;
3277 
3278 	/*
3279 	 * Expand the existing vma if possible; Note that singular lists do not
3280 	 * occur after forking, so the expand will only happen on new VMAs.
3281 	 */
3282 	if (vma && vma->vm_end == addr && !vma_policy(vma) &&
3283 	    can_vma_merge_after(vma, flags, NULL, NULL,
3284 				addr >> PAGE_SHIFT, NULL_VM_UFFD_CTX, NULL)) {
3285 		vma_iter_config(vmi, vma->vm_start, addr + len);
3286 		if (vma_iter_prealloc(vmi, vma))
3287 			goto unacct_fail;
3288 
3289 		vma_start_write(vma);
3290 
3291 		init_vma_prep(&vp, vma);
3292 		vma_prepare(&vp);
3293 		vma_adjust_trans_huge(vma, vma->vm_start, addr + len, 0);
3294 		vma->vm_end = addr + len;
3295 		vm_flags_set(vma, VM_SOFTDIRTY);
3296 		vma_iter_store(vmi, vma);
3297 
3298 		vma_complete(&vp, vmi, mm);
3299 		khugepaged_enter_vma(vma, flags);
3300 		goto out;
3301 	}
3302 
3303 	if (vma)
3304 		vma_iter_next_range(vmi);
3305 	/* create a vma struct for an anonymous mapping */
3306 	vma = vm_area_alloc(mm);
3307 	if (!vma)
3308 		goto unacct_fail;
3309 
3310 	vma_set_anonymous(vma);
3311 	vma_set_range(vma, addr, addr + len, addr >> PAGE_SHIFT);
3312 	vm_flags_init(vma, flags);
3313 	vma->vm_page_prot = vm_get_page_prot(flags);
3314 	vma_start_write(vma);
3315 	if (vma_iter_store_gfp(vmi, vma, GFP_KERNEL))
3316 		goto mas_store_fail;
3317 
3318 	mm->map_count++;
3319 	validate_mm(mm);
3320 	ksm_add_vma(vma);
3321 out:
3322 	perf_event_mmap(vma);
3323 	mm->total_vm += len >> PAGE_SHIFT;
3324 	mm->data_vm += len >> PAGE_SHIFT;
3325 	if (flags & VM_LOCKED)
3326 		mm->locked_vm += (len >> PAGE_SHIFT);
3327 	vm_flags_set(vma, VM_SOFTDIRTY);
3328 	return 0;
3329 
3330 mas_store_fail:
3331 	vm_area_free(vma);
3332 unacct_fail:
3333 	vm_unacct_memory(len >> PAGE_SHIFT);
3334 	return -ENOMEM;
3335 }
3336 
3337 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3338 {
3339 	struct mm_struct *mm = current->mm;
3340 	struct vm_area_struct *vma = NULL;
3341 	unsigned long len;
3342 	int ret;
3343 	bool populate;
3344 	LIST_HEAD(uf);
3345 	VMA_ITERATOR(vmi, mm, addr);
3346 
3347 	len = PAGE_ALIGN(request);
3348 	if (len < request)
3349 		return -ENOMEM;
3350 	if (!len)
3351 		return 0;
3352 
3353 	/* Until we need other flags, refuse anything except VM_EXEC. */
3354 	if ((flags & (~VM_EXEC)) != 0)
3355 		return -EINVAL;
3356 
3357 	if (mmap_write_lock_killable(mm))
3358 		return -EINTR;
3359 
3360 	ret = check_brk_limits(addr, len);
3361 	if (ret)
3362 		goto limits_failed;
3363 
3364 	ret = do_vmi_munmap(&vmi, mm, addr, len, &uf, 0);
3365 	if (ret)
3366 		goto munmap_failed;
3367 
3368 	vma = vma_prev(&vmi);
3369 	ret = do_brk_flags(&vmi, vma, addr, len, flags);
3370 	populate = ((mm->def_flags & VM_LOCKED) != 0);
3371 	mmap_write_unlock(mm);
3372 	userfaultfd_unmap_complete(mm, &uf);
3373 	if (populate && !ret)
3374 		mm_populate(addr, len);
3375 	return ret;
3376 
3377 munmap_failed:
3378 limits_failed:
3379 	mmap_write_unlock(mm);
3380 	return ret;
3381 }
3382 EXPORT_SYMBOL(vm_brk_flags);
3383 
3384 /* Release all mmaps. */
3385 void exit_mmap(struct mm_struct *mm)
3386 {
3387 	struct mmu_gather tlb;
3388 	struct vm_area_struct *vma;
3389 	unsigned long nr_accounted = 0;
3390 	VMA_ITERATOR(vmi, mm, 0);
3391 	int count = 0;
3392 
3393 	/* mm's last user has gone, and its about to be pulled down */
3394 	mmu_notifier_release(mm);
3395 
3396 	mmap_read_lock(mm);
3397 	arch_exit_mmap(mm);
3398 
3399 	vma = vma_next(&vmi);
3400 	if (!vma || unlikely(xa_is_zero(vma))) {
3401 		/* Can happen if dup_mmap() received an OOM */
3402 		mmap_read_unlock(mm);
3403 		mmap_write_lock(mm);
3404 		goto destroy;
3405 	}
3406 
3407 	lru_add_drain();
3408 	flush_cache_mm(mm);
3409 	tlb_gather_mmu_fullmm(&tlb, mm);
3410 	/* update_hiwater_rss(mm) here? but nobody should be looking */
3411 	/* Use ULONG_MAX here to ensure all VMAs in the mm are unmapped */
3412 	unmap_vmas(&tlb, &vmi.mas, vma, 0, ULONG_MAX, ULONG_MAX, false);
3413 	mmap_read_unlock(mm);
3414 
3415 	/*
3416 	 * Set MMF_OOM_SKIP to hide this task from the oom killer/reaper
3417 	 * because the memory has been already freed.
3418 	 */
3419 	set_bit(MMF_OOM_SKIP, &mm->flags);
3420 	mmap_write_lock(mm);
3421 	mt_clear_in_rcu(&mm->mm_mt);
3422 	vma_iter_set(&vmi, vma->vm_end);
3423 	free_pgtables(&tlb, &vmi.mas, vma, FIRST_USER_ADDRESS,
3424 		      USER_PGTABLES_CEILING, true);
3425 	tlb_finish_mmu(&tlb);
3426 
3427 	/*
3428 	 * Walk the list again, actually closing and freeing it, with preemption
3429 	 * enabled, without holding any MM locks besides the unreachable
3430 	 * mmap_write_lock.
3431 	 */
3432 	vma_iter_set(&vmi, vma->vm_end);
3433 	do {
3434 		if (vma->vm_flags & VM_ACCOUNT)
3435 			nr_accounted += vma_pages(vma);
3436 		remove_vma(vma, true);
3437 		count++;
3438 		cond_resched();
3439 		vma = vma_next(&vmi);
3440 	} while (vma && likely(!xa_is_zero(vma)));
3441 
3442 	BUG_ON(count != mm->map_count);
3443 
3444 	trace_exit_mmap(mm);
3445 destroy:
3446 	__mt_destroy(&mm->mm_mt);
3447 	mmap_write_unlock(mm);
3448 	vm_unacct_memory(nr_accounted);
3449 }
3450 
3451 /* Insert vm structure into process list sorted by address
3452  * and into the inode's i_mmap tree.  If vm_file is non-NULL
3453  * then i_mmap_rwsem is taken here.
3454  */
3455 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3456 {
3457 	unsigned long charged = vma_pages(vma);
3458 
3459 
3460 	if (find_vma_intersection(mm, vma->vm_start, vma->vm_end))
3461 		return -ENOMEM;
3462 
3463 	if ((vma->vm_flags & VM_ACCOUNT) &&
3464 	     security_vm_enough_memory_mm(mm, charged))
3465 		return -ENOMEM;
3466 
3467 	/*
3468 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
3469 	 * until its first write fault, when page's anon_vma and index
3470 	 * are set.  But now set the vm_pgoff it will almost certainly
3471 	 * end up with (unless mremap moves it elsewhere before that
3472 	 * first wfault), so /proc/pid/maps tells a consistent story.
3473 	 *
3474 	 * By setting it to reflect the virtual start address of the
3475 	 * vma, merges and splits can happen in a seamless way, just
3476 	 * using the existing file pgoff checks and manipulations.
3477 	 * Similarly in do_mmap and in do_brk_flags.
3478 	 */
3479 	if (vma_is_anonymous(vma)) {
3480 		BUG_ON(vma->anon_vma);
3481 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3482 	}
3483 
3484 	if (vma_link(mm, vma)) {
3485 		if (vma->vm_flags & VM_ACCOUNT)
3486 			vm_unacct_memory(charged);
3487 		return -ENOMEM;
3488 	}
3489 
3490 	return 0;
3491 }
3492 
3493 /*
3494  * Copy the vma structure to a new location in the same mm,
3495  * prior to moving page table entries, to effect an mremap move.
3496  */
3497 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3498 	unsigned long addr, unsigned long len, pgoff_t pgoff,
3499 	bool *need_rmap_locks)
3500 {
3501 	struct vm_area_struct *vma = *vmap;
3502 	unsigned long vma_start = vma->vm_start;
3503 	struct mm_struct *mm = vma->vm_mm;
3504 	struct vm_area_struct *new_vma, *prev;
3505 	bool faulted_in_anon_vma = true;
3506 	VMA_ITERATOR(vmi, mm, addr);
3507 
3508 	/*
3509 	 * If anonymous vma has not yet been faulted, update new pgoff
3510 	 * to match new location, to increase its chance of merging.
3511 	 */
3512 	if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3513 		pgoff = addr >> PAGE_SHIFT;
3514 		faulted_in_anon_vma = false;
3515 	}
3516 
3517 	new_vma = find_vma_prev(mm, addr, &prev);
3518 	if (new_vma && new_vma->vm_start < addr + len)
3519 		return NULL;	/* should never get here */
3520 
3521 	new_vma = vma_merge_new_vma(&vmi, prev, vma, addr, addr + len, pgoff);
3522 	if (new_vma) {
3523 		/*
3524 		 * Source vma may have been merged into new_vma
3525 		 */
3526 		if (unlikely(vma_start >= new_vma->vm_start &&
3527 			     vma_start < new_vma->vm_end)) {
3528 			/*
3529 			 * The only way we can get a vma_merge with
3530 			 * self during an mremap is if the vma hasn't
3531 			 * been faulted in yet and we were allowed to
3532 			 * reset the dst vma->vm_pgoff to the
3533 			 * destination address of the mremap to allow
3534 			 * the merge to happen. mremap must change the
3535 			 * vm_pgoff linearity between src and dst vmas
3536 			 * (in turn preventing a vma_merge) to be
3537 			 * safe. It is only safe to keep the vm_pgoff
3538 			 * linear if there are no pages mapped yet.
3539 			 */
3540 			VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3541 			*vmap = vma = new_vma;
3542 		}
3543 		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3544 	} else {
3545 		new_vma = vm_area_dup(vma);
3546 		if (!new_vma)
3547 			goto out;
3548 		vma_set_range(new_vma, addr, addr + len, pgoff);
3549 		if (vma_dup_policy(vma, new_vma))
3550 			goto out_free_vma;
3551 		if (anon_vma_clone(new_vma, vma))
3552 			goto out_free_mempol;
3553 		if (new_vma->vm_file)
3554 			get_file(new_vma->vm_file);
3555 		if (new_vma->vm_ops && new_vma->vm_ops->open)
3556 			new_vma->vm_ops->open(new_vma);
3557 		if (vma_link(mm, new_vma))
3558 			goto out_vma_link;
3559 		*need_rmap_locks = false;
3560 	}
3561 	return new_vma;
3562 
3563 out_vma_link:
3564 	if (new_vma->vm_ops && new_vma->vm_ops->close)
3565 		new_vma->vm_ops->close(new_vma);
3566 
3567 	if (new_vma->vm_file)
3568 		fput(new_vma->vm_file);
3569 
3570 	unlink_anon_vmas(new_vma);
3571 out_free_mempol:
3572 	mpol_put(vma_policy(new_vma));
3573 out_free_vma:
3574 	vm_area_free(new_vma);
3575 out:
3576 	return NULL;
3577 }
3578 
3579 /*
3580  * Return true if the calling process may expand its vm space by the passed
3581  * number of pages
3582  */
3583 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3584 {
3585 	if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3586 		return false;
3587 
3588 	if (is_data_mapping(flags) &&
3589 	    mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3590 		/* Workaround for Valgrind */
3591 		if (rlimit(RLIMIT_DATA) == 0 &&
3592 		    mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3593 			return true;
3594 
3595 		pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3596 			     current->comm, current->pid,
3597 			     (mm->data_vm + npages) << PAGE_SHIFT,
3598 			     rlimit(RLIMIT_DATA),
3599 			     ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3600 
3601 		if (!ignore_rlimit_data)
3602 			return false;
3603 	}
3604 
3605 	return true;
3606 }
3607 
3608 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3609 {
3610 	WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages);
3611 
3612 	if (is_exec_mapping(flags))
3613 		mm->exec_vm += npages;
3614 	else if (is_stack_mapping(flags))
3615 		mm->stack_vm += npages;
3616 	else if (is_data_mapping(flags))
3617 		mm->data_vm += npages;
3618 }
3619 
3620 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3621 
3622 /*
3623  * Having a close hook prevents vma merging regardless of flags.
3624  */
3625 static void special_mapping_close(struct vm_area_struct *vma)
3626 {
3627 }
3628 
3629 static const char *special_mapping_name(struct vm_area_struct *vma)
3630 {
3631 	return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3632 }
3633 
3634 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3635 {
3636 	struct vm_special_mapping *sm = new_vma->vm_private_data;
3637 
3638 	if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3639 		return -EFAULT;
3640 
3641 	if (sm->mremap)
3642 		return sm->mremap(sm, new_vma);
3643 
3644 	return 0;
3645 }
3646 
3647 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
3648 {
3649 	/*
3650 	 * Forbid splitting special mappings - kernel has expectations over
3651 	 * the number of pages in mapping. Together with VM_DONTEXPAND
3652 	 * the size of vma should stay the same over the special mapping's
3653 	 * lifetime.
3654 	 */
3655 	return -EINVAL;
3656 }
3657 
3658 static const struct vm_operations_struct special_mapping_vmops = {
3659 	.close = special_mapping_close,
3660 	.fault = special_mapping_fault,
3661 	.mremap = special_mapping_mremap,
3662 	.name = special_mapping_name,
3663 	/* vDSO code relies that VVAR can't be accessed remotely */
3664 	.access = NULL,
3665 	.may_split = special_mapping_split,
3666 };
3667 
3668 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3669 	.close = special_mapping_close,
3670 	.fault = special_mapping_fault,
3671 };
3672 
3673 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3674 {
3675 	struct vm_area_struct *vma = vmf->vma;
3676 	pgoff_t pgoff;
3677 	struct page **pages;
3678 
3679 	if (vma->vm_ops == &legacy_special_mapping_vmops) {
3680 		pages = vma->vm_private_data;
3681 	} else {
3682 		struct vm_special_mapping *sm = vma->vm_private_data;
3683 
3684 		if (sm->fault)
3685 			return sm->fault(sm, vmf->vma, vmf);
3686 
3687 		pages = sm->pages;
3688 	}
3689 
3690 	for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3691 		pgoff--;
3692 
3693 	if (*pages) {
3694 		struct page *page = *pages;
3695 		get_page(page);
3696 		vmf->page = page;
3697 		return 0;
3698 	}
3699 
3700 	return VM_FAULT_SIGBUS;
3701 }
3702 
3703 static struct vm_area_struct *__install_special_mapping(
3704 	struct mm_struct *mm,
3705 	unsigned long addr, unsigned long len,
3706 	unsigned long vm_flags, void *priv,
3707 	const struct vm_operations_struct *ops)
3708 {
3709 	int ret;
3710 	struct vm_area_struct *vma;
3711 
3712 	vma = vm_area_alloc(mm);
3713 	if (unlikely(vma == NULL))
3714 		return ERR_PTR(-ENOMEM);
3715 
3716 	vma_set_range(vma, addr, addr + len, 0);
3717 	vm_flags_init(vma, (vm_flags | mm->def_flags |
3718 		      VM_DONTEXPAND | VM_SOFTDIRTY) & ~VM_LOCKED_MASK);
3719 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3720 
3721 	vma->vm_ops = ops;
3722 	vma->vm_private_data = priv;
3723 
3724 	ret = insert_vm_struct(mm, vma);
3725 	if (ret)
3726 		goto out;
3727 
3728 	vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3729 
3730 	perf_event_mmap(vma);
3731 
3732 	return vma;
3733 
3734 out:
3735 	vm_area_free(vma);
3736 	return ERR_PTR(ret);
3737 }
3738 
3739 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3740 	const struct vm_special_mapping *sm)
3741 {
3742 	return vma->vm_private_data == sm &&
3743 		(vma->vm_ops == &special_mapping_vmops ||
3744 		 vma->vm_ops == &legacy_special_mapping_vmops);
3745 }
3746 
3747 /*
3748  * Called with mm->mmap_lock held for writing.
3749  * Insert a new vma covering the given region, with the given flags.
3750  * Its pages are supplied by the given array of struct page *.
3751  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3752  * The region past the last page supplied will always produce SIGBUS.
3753  * The array pointer and the pages it points to are assumed to stay alive
3754  * for as long as this mapping might exist.
3755  */
3756 struct vm_area_struct *_install_special_mapping(
3757 	struct mm_struct *mm,
3758 	unsigned long addr, unsigned long len,
3759 	unsigned long vm_flags, const struct vm_special_mapping *spec)
3760 {
3761 	return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3762 					&special_mapping_vmops);
3763 }
3764 
3765 int install_special_mapping(struct mm_struct *mm,
3766 			    unsigned long addr, unsigned long len,
3767 			    unsigned long vm_flags, struct page **pages)
3768 {
3769 	struct vm_area_struct *vma = __install_special_mapping(
3770 		mm, addr, len, vm_flags, (void *)pages,
3771 		&legacy_special_mapping_vmops);
3772 
3773 	return PTR_ERR_OR_ZERO(vma);
3774 }
3775 
3776 static DEFINE_MUTEX(mm_all_locks_mutex);
3777 
3778 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3779 {
3780 	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3781 		/*
3782 		 * The LSB of head.next can't change from under us
3783 		 * because we hold the mm_all_locks_mutex.
3784 		 */
3785 		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3786 		/*
3787 		 * We can safely modify head.next after taking the
3788 		 * anon_vma->root->rwsem. If some other vma in this mm shares
3789 		 * the same anon_vma we won't take it again.
3790 		 *
3791 		 * No need of atomic instructions here, head.next
3792 		 * can't change from under us thanks to the
3793 		 * anon_vma->root->rwsem.
3794 		 */
3795 		if (__test_and_set_bit(0, (unsigned long *)
3796 				       &anon_vma->root->rb_root.rb_root.rb_node))
3797 			BUG();
3798 	}
3799 }
3800 
3801 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3802 {
3803 	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3804 		/*
3805 		 * AS_MM_ALL_LOCKS can't change from under us because
3806 		 * we hold the mm_all_locks_mutex.
3807 		 *
3808 		 * Operations on ->flags have to be atomic because
3809 		 * even if AS_MM_ALL_LOCKS is stable thanks to the
3810 		 * mm_all_locks_mutex, there may be other cpus
3811 		 * changing other bitflags in parallel to us.
3812 		 */
3813 		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3814 			BUG();
3815 		down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3816 	}
3817 }
3818 
3819 /*
3820  * This operation locks against the VM for all pte/vma/mm related
3821  * operations that could ever happen on a certain mm. This includes
3822  * vmtruncate, try_to_unmap, and all page faults.
3823  *
3824  * The caller must take the mmap_lock in write mode before calling
3825  * mm_take_all_locks(). The caller isn't allowed to release the
3826  * mmap_lock until mm_drop_all_locks() returns.
3827  *
3828  * mmap_lock in write mode is required in order to block all operations
3829  * that could modify pagetables and free pages without need of
3830  * altering the vma layout. It's also needed in write mode to avoid new
3831  * anon_vmas to be associated with existing vmas.
3832  *
3833  * A single task can't take more than one mm_take_all_locks() in a row
3834  * or it would deadlock.
3835  *
3836  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3837  * mapping->flags avoid to take the same lock twice, if more than one
3838  * vma in this mm is backed by the same anon_vma or address_space.
3839  *
3840  * We take locks in following order, accordingly to comment at beginning
3841  * of mm/rmap.c:
3842  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3843  *     hugetlb mapping);
3844  *   - all vmas marked locked
3845  *   - all i_mmap_rwsem locks;
3846  *   - all anon_vma->rwseml
3847  *
3848  * We can take all locks within these types randomly because the VM code
3849  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3850  * mm_all_locks_mutex.
3851  *
3852  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3853  * that may have to take thousand of locks.
3854  *
3855  * mm_take_all_locks() can fail if it's interrupted by signals.
3856  */
3857 int mm_take_all_locks(struct mm_struct *mm)
3858 {
3859 	struct vm_area_struct *vma;
3860 	struct anon_vma_chain *avc;
3861 	VMA_ITERATOR(vmi, mm, 0);
3862 
3863 	mmap_assert_write_locked(mm);
3864 
3865 	mutex_lock(&mm_all_locks_mutex);
3866 
3867 	/*
3868 	 * vma_start_write() does not have a complement in mm_drop_all_locks()
3869 	 * because vma_start_write() is always asymmetrical; it marks a VMA as
3870 	 * being written to until mmap_write_unlock() or mmap_write_downgrade()
3871 	 * is reached.
3872 	 */
3873 	for_each_vma(vmi, vma) {
3874 		if (signal_pending(current))
3875 			goto out_unlock;
3876 		vma_start_write(vma);
3877 	}
3878 
3879 	vma_iter_init(&vmi, mm, 0);
3880 	for_each_vma(vmi, vma) {
3881 		if (signal_pending(current))
3882 			goto out_unlock;
3883 		if (vma->vm_file && vma->vm_file->f_mapping &&
3884 				is_vm_hugetlb_page(vma))
3885 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3886 	}
3887 
3888 	vma_iter_init(&vmi, mm, 0);
3889 	for_each_vma(vmi, vma) {
3890 		if (signal_pending(current))
3891 			goto out_unlock;
3892 		if (vma->vm_file && vma->vm_file->f_mapping &&
3893 				!is_vm_hugetlb_page(vma))
3894 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3895 	}
3896 
3897 	vma_iter_init(&vmi, mm, 0);
3898 	for_each_vma(vmi, vma) {
3899 		if (signal_pending(current))
3900 			goto out_unlock;
3901 		if (vma->anon_vma)
3902 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3903 				vm_lock_anon_vma(mm, avc->anon_vma);
3904 	}
3905 
3906 	return 0;
3907 
3908 out_unlock:
3909 	mm_drop_all_locks(mm);
3910 	return -EINTR;
3911 }
3912 
3913 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3914 {
3915 	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3916 		/*
3917 		 * The LSB of head.next can't change to 0 from under
3918 		 * us because we hold the mm_all_locks_mutex.
3919 		 *
3920 		 * We must however clear the bitflag before unlocking
3921 		 * the vma so the users using the anon_vma->rb_root will
3922 		 * never see our bitflag.
3923 		 *
3924 		 * No need of atomic instructions here, head.next
3925 		 * can't change from under us until we release the
3926 		 * anon_vma->root->rwsem.
3927 		 */
3928 		if (!__test_and_clear_bit(0, (unsigned long *)
3929 					  &anon_vma->root->rb_root.rb_root.rb_node))
3930 			BUG();
3931 		anon_vma_unlock_write(anon_vma);
3932 	}
3933 }
3934 
3935 static void vm_unlock_mapping(struct address_space *mapping)
3936 {
3937 	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3938 		/*
3939 		 * AS_MM_ALL_LOCKS can't change to 0 from under us
3940 		 * because we hold the mm_all_locks_mutex.
3941 		 */
3942 		i_mmap_unlock_write(mapping);
3943 		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3944 					&mapping->flags))
3945 			BUG();
3946 	}
3947 }
3948 
3949 /*
3950  * The mmap_lock cannot be released by the caller until
3951  * mm_drop_all_locks() returns.
3952  */
3953 void mm_drop_all_locks(struct mm_struct *mm)
3954 {
3955 	struct vm_area_struct *vma;
3956 	struct anon_vma_chain *avc;
3957 	VMA_ITERATOR(vmi, mm, 0);
3958 
3959 	mmap_assert_write_locked(mm);
3960 	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3961 
3962 	for_each_vma(vmi, vma) {
3963 		if (vma->anon_vma)
3964 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3965 				vm_unlock_anon_vma(avc->anon_vma);
3966 		if (vma->vm_file && vma->vm_file->f_mapping)
3967 			vm_unlock_mapping(vma->vm_file->f_mapping);
3968 	}
3969 
3970 	mutex_unlock(&mm_all_locks_mutex);
3971 }
3972 
3973 /*
3974  * initialise the percpu counter for VM
3975  */
3976 void __init mmap_init(void)
3977 {
3978 	int ret;
3979 
3980 	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3981 	VM_BUG_ON(ret);
3982 }
3983 
3984 /*
3985  * Initialise sysctl_user_reserve_kbytes.
3986  *
3987  * This is intended to prevent a user from starting a single memory hogging
3988  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3989  * mode.
3990  *
3991  * The default value is min(3% of free memory, 128MB)
3992  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3993  */
3994 static int init_user_reserve(void)
3995 {
3996 	unsigned long free_kbytes;
3997 
3998 	free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
3999 
4000 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, SZ_128K);
4001 	return 0;
4002 }
4003 subsys_initcall(init_user_reserve);
4004 
4005 /*
4006  * Initialise sysctl_admin_reserve_kbytes.
4007  *
4008  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
4009  * to log in and kill a memory hogging process.
4010  *
4011  * Systems with more than 256MB will reserve 8MB, enough to recover
4012  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
4013  * only reserve 3% of free pages by default.
4014  */
4015 static int init_admin_reserve(void)
4016 {
4017 	unsigned long free_kbytes;
4018 
4019 	free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
4020 
4021 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, SZ_8K);
4022 	return 0;
4023 }
4024 subsys_initcall(init_admin_reserve);
4025 
4026 /*
4027  * Reinititalise user and admin reserves if memory is added or removed.
4028  *
4029  * The default user reserve max is 128MB, and the default max for the
4030  * admin reserve is 8MB. These are usually, but not always, enough to
4031  * enable recovery from a memory hogging process using login/sshd, a shell,
4032  * and tools like top. It may make sense to increase or even disable the
4033  * reserve depending on the existence of swap or variations in the recovery
4034  * tools. So, the admin may have changed them.
4035  *
4036  * If memory is added and the reserves have been eliminated or increased above
4037  * the default max, then we'll trust the admin.
4038  *
4039  * If memory is removed and there isn't enough free memory, then we
4040  * need to reset the reserves.
4041  *
4042  * Otherwise keep the reserve set by the admin.
4043  */
4044 static int reserve_mem_notifier(struct notifier_block *nb,
4045 			     unsigned long action, void *data)
4046 {
4047 	unsigned long tmp, free_kbytes;
4048 
4049 	switch (action) {
4050 	case MEM_ONLINE:
4051 		/* Default max is 128MB. Leave alone if modified by operator. */
4052 		tmp = sysctl_user_reserve_kbytes;
4053 		if (tmp > 0 && tmp < SZ_128K)
4054 			init_user_reserve();
4055 
4056 		/* Default max is 8MB.  Leave alone if modified by operator. */
4057 		tmp = sysctl_admin_reserve_kbytes;
4058 		if (tmp > 0 && tmp < SZ_8K)
4059 			init_admin_reserve();
4060 
4061 		break;
4062 	case MEM_OFFLINE:
4063 		free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
4064 
4065 		if (sysctl_user_reserve_kbytes > free_kbytes) {
4066 			init_user_reserve();
4067 			pr_info("vm.user_reserve_kbytes reset to %lu\n",
4068 				sysctl_user_reserve_kbytes);
4069 		}
4070 
4071 		if (sysctl_admin_reserve_kbytes > free_kbytes) {
4072 			init_admin_reserve();
4073 			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
4074 				sysctl_admin_reserve_kbytes);
4075 		}
4076 		break;
4077 	default:
4078 		break;
4079 	}
4080 	return NOTIFY_OK;
4081 }
4082 
4083 static int __meminit init_reserve_notifier(void)
4084 {
4085 	if (hotplug_memory_notifier(reserve_mem_notifier, DEFAULT_CALLBACK_PRI))
4086 		pr_err("Failed registering memory add/remove notifier for admin reserve\n");
4087 
4088 	return 0;
4089 }
4090 subsys_initcall(init_reserve_notifier);
4091