1 /* 2 * mm/mmap.c 3 * 4 * Written by obz. 5 * 6 * Address space accounting code <alan@lxorguk.ukuu.org.uk> 7 */ 8 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/kernel.h> 12 #include <linux/slab.h> 13 #include <linux/backing-dev.h> 14 #include <linux/mm.h> 15 #include <linux/vmacache.h> 16 #include <linux/shm.h> 17 #include <linux/mman.h> 18 #include <linux/pagemap.h> 19 #include <linux/swap.h> 20 #include <linux/syscalls.h> 21 #include <linux/capability.h> 22 #include <linux/init.h> 23 #include <linux/file.h> 24 #include <linux/fs.h> 25 #include <linux/personality.h> 26 #include <linux/security.h> 27 #include <linux/hugetlb.h> 28 #include <linux/shmem_fs.h> 29 #include <linux/profile.h> 30 #include <linux/export.h> 31 #include <linux/mount.h> 32 #include <linux/mempolicy.h> 33 #include <linux/rmap.h> 34 #include <linux/mmu_notifier.h> 35 #include <linux/mmdebug.h> 36 #include <linux/perf_event.h> 37 #include <linux/audit.h> 38 #include <linux/khugepaged.h> 39 #include <linux/uprobes.h> 40 #include <linux/rbtree_augmented.h> 41 #include <linux/notifier.h> 42 #include <linux/memory.h> 43 #include <linux/printk.h> 44 #include <linux/userfaultfd_k.h> 45 #include <linux/moduleparam.h> 46 #include <linux/pkeys.h> 47 #include <linux/oom.h> 48 49 #include <linux/uaccess.h> 50 #include <asm/cacheflush.h> 51 #include <asm/tlb.h> 52 #include <asm/mmu_context.h> 53 54 #include "internal.h" 55 56 #ifndef arch_mmap_check 57 #define arch_mmap_check(addr, len, flags) (0) 58 #endif 59 60 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 61 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN; 62 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX; 63 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS; 64 #endif 65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 66 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN; 67 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX; 68 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS; 69 #endif 70 71 static bool ignore_rlimit_data; 72 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644); 73 74 static void unmap_region(struct mm_struct *mm, 75 struct vm_area_struct *vma, struct vm_area_struct *prev, 76 unsigned long start, unsigned long end); 77 78 /* description of effects of mapping type and prot in current implementation. 79 * this is due to the limited x86 page protection hardware. The expected 80 * behavior is in parens: 81 * 82 * map_type prot 83 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC 84 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes 85 * w: (no) no w: (no) no w: (yes) yes w: (no) no 86 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 87 * 88 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes 89 * w: (no) no w: (no) no w: (copy) copy w: (no) no 90 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 91 * 92 * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and 93 * MAP_PRIVATE: 94 * r: (no) no 95 * w: (no) no 96 * x: (yes) yes 97 */ 98 pgprot_t protection_map[16] __ro_after_init = { 99 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111, 100 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111 101 }; 102 103 pgprot_t vm_get_page_prot(unsigned long vm_flags) 104 { 105 return __pgprot(pgprot_val(protection_map[vm_flags & 106 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) | 107 pgprot_val(arch_vm_get_page_prot(vm_flags))); 108 } 109 EXPORT_SYMBOL(vm_get_page_prot); 110 111 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags) 112 { 113 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags)); 114 } 115 116 /* Update vma->vm_page_prot to reflect vma->vm_flags. */ 117 void vma_set_page_prot(struct vm_area_struct *vma) 118 { 119 unsigned long vm_flags = vma->vm_flags; 120 pgprot_t vm_page_prot; 121 122 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags); 123 if (vma_wants_writenotify(vma, vm_page_prot)) { 124 vm_flags &= ~VM_SHARED; 125 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags); 126 } 127 /* remove_protection_ptes reads vma->vm_page_prot without mmap_sem */ 128 WRITE_ONCE(vma->vm_page_prot, vm_page_prot); 129 } 130 131 /* 132 * Requires inode->i_mapping->i_mmap_rwsem 133 */ 134 static void __remove_shared_vm_struct(struct vm_area_struct *vma, 135 struct file *file, struct address_space *mapping) 136 { 137 if (vma->vm_flags & VM_DENYWRITE) 138 atomic_inc(&file_inode(file)->i_writecount); 139 if (vma->vm_flags & VM_SHARED) 140 mapping_unmap_writable(mapping); 141 142 flush_dcache_mmap_lock(mapping); 143 vma_interval_tree_remove(vma, &mapping->i_mmap); 144 flush_dcache_mmap_unlock(mapping); 145 } 146 147 /* 148 * Unlink a file-based vm structure from its interval tree, to hide 149 * vma from rmap and vmtruncate before freeing its page tables. 150 */ 151 void unlink_file_vma(struct vm_area_struct *vma) 152 { 153 struct file *file = vma->vm_file; 154 155 if (file) { 156 struct address_space *mapping = file->f_mapping; 157 i_mmap_lock_write(mapping); 158 __remove_shared_vm_struct(vma, file, mapping); 159 i_mmap_unlock_write(mapping); 160 } 161 } 162 163 /* 164 * Close a vm structure and free it, returning the next. 165 */ 166 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma) 167 { 168 struct vm_area_struct *next = vma->vm_next; 169 170 might_sleep(); 171 if (vma->vm_ops && vma->vm_ops->close) 172 vma->vm_ops->close(vma); 173 if (vma->vm_file) 174 fput(vma->vm_file); 175 mpol_put(vma_policy(vma)); 176 kmem_cache_free(vm_area_cachep, vma); 177 return next; 178 } 179 180 static int do_brk(unsigned long addr, unsigned long len, struct list_head *uf); 181 182 SYSCALL_DEFINE1(brk, unsigned long, brk) 183 { 184 unsigned long retval; 185 unsigned long newbrk, oldbrk; 186 struct mm_struct *mm = current->mm; 187 struct vm_area_struct *next; 188 unsigned long min_brk; 189 bool populate; 190 LIST_HEAD(uf); 191 192 if (down_write_killable(&mm->mmap_sem)) 193 return -EINTR; 194 195 #ifdef CONFIG_COMPAT_BRK 196 /* 197 * CONFIG_COMPAT_BRK can still be overridden by setting 198 * randomize_va_space to 2, which will still cause mm->start_brk 199 * to be arbitrarily shifted 200 */ 201 if (current->brk_randomized) 202 min_brk = mm->start_brk; 203 else 204 min_brk = mm->end_data; 205 #else 206 min_brk = mm->start_brk; 207 #endif 208 if (brk < min_brk) 209 goto out; 210 211 /* 212 * Check against rlimit here. If this check is done later after the test 213 * of oldbrk with newbrk then it can escape the test and let the data 214 * segment grow beyond its set limit the in case where the limit is 215 * not page aligned -Ram Gupta 216 */ 217 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk, 218 mm->end_data, mm->start_data)) 219 goto out; 220 221 newbrk = PAGE_ALIGN(brk); 222 oldbrk = PAGE_ALIGN(mm->brk); 223 if (oldbrk == newbrk) 224 goto set_brk; 225 226 /* Always allow shrinking brk. */ 227 if (brk <= mm->brk) { 228 if (!do_munmap(mm, newbrk, oldbrk-newbrk, &uf)) 229 goto set_brk; 230 goto out; 231 } 232 233 /* Check against existing mmap mappings. */ 234 next = find_vma(mm, oldbrk); 235 if (next && newbrk + PAGE_SIZE > vm_start_gap(next)) 236 goto out; 237 238 /* Ok, looks good - let it rip. */ 239 if (do_brk(oldbrk, newbrk-oldbrk, &uf) < 0) 240 goto out; 241 242 set_brk: 243 mm->brk = brk; 244 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0; 245 up_write(&mm->mmap_sem); 246 userfaultfd_unmap_complete(mm, &uf); 247 if (populate) 248 mm_populate(oldbrk, newbrk - oldbrk); 249 return brk; 250 251 out: 252 retval = mm->brk; 253 up_write(&mm->mmap_sem); 254 return retval; 255 } 256 257 static long vma_compute_subtree_gap(struct vm_area_struct *vma) 258 { 259 unsigned long max, prev_end, subtree_gap; 260 261 /* 262 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we 263 * allow two stack_guard_gaps between them here, and when choosing 264 * an unmapped area; whereas when expanding we only require one. 265 * That's a little inconsistent, but keeps the code here simpler. 266 */ 267 max = vm_start_gap(vma); 268 if (vma->vm_prev) { 269 prev_end = vm_end_gap(vma->vm_prev); 270 if (max > prev_end) 271 max -= prev_end; 272 else 273 max = 0; 274 } 275 if (vma->vm_rb.rb_left) { 276 subtree_gap = rb_entry(vma->vm_rb.rb_left, 277 struct vm_area_struct, vm_rb)->rb_subtree_gap; 278 if (subtree_gap > max) 279 max = subtree_gap; 280 } 281 if (vma->vm_rb.rb_right) { 282 subtree_gap = rb_entry(vma->vm_rb.rb_right, 283 struct vm_area_struct, vm_rb)->rb_subtree_gap; 284 if (subtree_gap > max) 285 max = subtree_gap; 286 } 287 return max; 288 } 289 290 #ifdef CONFIG_DEBUG_VM_RB 291 static int browse_rb(struct mm_struct *mm) 292 { 293 struct rb_root *root = &mm->mm_rb; 294 int i = 0, j, bug = 0; 295 struct rb_node *nd, *pn = NULL; 296 unsigned long prev = 0, pend = 0; 297 298 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 299 struct vm_area_struct *vma; 300 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 301 if (vma->vm_start < prev) { 302 pr_emerg("vm_start %lx < prev %lx\n", 303 vma->vm_start, prev); 304 bug = 1; 305 } 306 if (vma->vm_start < pend) { 307 pr_emerg("vm_start %lx < pend %lx\n", 308 vma->vm_start, pend); 309 bug = 1; 310 } 311 if (vma->vm_start > vma->vm_end) { 312 pr_emerg("vm_start %lx > vm_end %lx\n", 313 vma->vm_start, vma->vm_end); 314 bug = 1; 315 } 316 spin_lock(&mm->page_table_lock); 317 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) { 318 pr_emerg("free gap %lx, correct %lx\n", 319 vma->rb_subtree_gap, 320 vma_compute_subtree_gap(vma)); 321 bug = 1; 322 } 323 spin_unlock(&mm->page_table_lock); 324 i++; 325 pn = nd; 326 prev = vma->vm_start; 327 pend = vma->vm_end; 328 } 329 j = 0; 330 for (nd = pn; nd; nd = rb_prev(nd)) 331 j++; 332 if (i != j) { 333 pr_emerg("backwards %d, forwards %d\n", j, i); 334 bug = 1; 335 } 336 return bug ? -1 : i; 337 } 338 339 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore) 340 { 341 struct rb_node *nd; 342 343 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 344 struct vm_area_struct *vma; 345 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 346 VM_BUG_ON_VMA(vma != ignore && 347 vma->rb_subtree_gap != vma_compute_subtree_gap(vma), 348 vma); 349 } 350 } 351 352 static void validate_mm(struct mm_struct *mm) 353 { 354 int bug = 0; 355 int i = 0; 356 unsigned long highest_address = 0; 357 struct vm_area_struct *vma = mm->mmap; 358 359 while (vma) { 360 struct anon_vma *anon_vma = vma->anon_vma; 361 struct anon_vma_chain *avc; 362 363 if (anon_vma) { 364 anon_vma_lock_read(anon_vma); 365 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 366 anon_vma_interval_tree_verify(avc); 367 anon_vma_unlock_read(anon_vma); 368 } 369 370 highest_address = vm_end_gap(vma); 371 vma = vma->vm_next; 372 i++; 373 } 374 if (i != mm->map_count) { 375 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i); 376 bug = 1; 377 } 378 if (highest_address != mm->highest_vm_end) { 379 pr_emerg("mm->highest_vm_end %lx, found %lx\n", 380 mm->highest_vm_end, highest_address); 381 bug = 1; 382 } 383 i = browse_rb(mm); 384 if (i != mm->map_count) { 385 if (i != -1) 386 pr_emerg("map_count %d rb %d\n", mm->map_count, i); 387 bug = 1; 388 } 389 VM_BUG_ON_MM(bug, mm); 390 } 391 #else 392 #define validate_mm_rb(root, ignore) do { } while (0) 393 #define validate_mm(mm) do { } while (0) 394 #endif 395 396 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb, 397 unsigned long, rb_subtree_gap, vma_compute_subtree_gap) 398 399 /* 400 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or 401 * vma->vm_prev->vm_end values changed, without modifying the vma's position 402 * in the rbtree. 403 */ 404 static void vma_gap_update(struct vm_area_struct *vma) 405 { 406 /* 407 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback 408 * function that does exacltly what we want. 409 */ 410 vma_gap_callbacks_propagate(&vma->vm_rb, NULL); 411 } 412 413 static inline void vma_rb_insert(struct vm_area_struct *vma, 414 struct rb_root *root) 415 { 416 /* All rb_subtree_gap values must be consistent prior to insertion */ 417 validate_mm_rb(root, NULL); 418 419 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks); 420 } 421 422 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root) 423 { 424 /* 425 * Note rb_erase_augmented is a fairly large inline function, 426 * so make sure we instantiate it only once with our desired 427 * augmented rbtree callbacks. 428 */ 429 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks); 430 } 431 432 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma, 433 struct rb_root *root, 434 struct vm_area_struct *ignore) 435 { 436 /* 437 * All rb_subtree_gap values must be consistent prior to erase, 438 * with the possible exception of the "next" vma being erased if 439 * next->vm_start was reduced. 440 */ 441 validate_mm_rb(root, ignore); 442 443 __vma_rb_erase(vma, root); 444 } 445 446 static __always_inline void vma_rb_erase(struct vm_area_struct *vma, 447 struct rb_root *root) 448 { 449 /* 450 * All rb_subtree_gap values must be consistent prior to erase, 451 * with the possible exception of the vma being erased. 452 */ 453 validate_mm_rb(root, vma); 454 455 __vma_rb_erase(vma, root); 456 } 457 458 /* 459 * vma has some anon_vma assigned, and is already inserted on that 460 * anon_vma's interval trees. 461 * 462 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the 463 * vma must be removed from the anon_vma's interval trees using 464 * anon_vma_interval_tree_pre_update_vma(). 465 * 466 * After the update, the vma will be reinserted using 467 * anon_vma_interval_tree_post_update_vma(). 468 * 469 * The entire update must be protected by exclusive mmap_sem and by 470 * the root anon_vma's mutex. 471 */ 472 static inline void 473 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma) 474 { 475 struct anon_vma_chain *avc; 476 477 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 478 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root); 479 } 480 481 static inline void 482 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma) 483 { 484 struct anon_vma_chain *avc; 485 486 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 487 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root); 488 } 489 490 static int find_vma_links(struct mm_struct *mm, unsigned long addr, 491 unsigned long end, struct vm_area_struct **pprev, 492 struct rb_node ***rb_link, struct rb_node **rb_parent) 493 { 494 struct rb_node **__rb_link, *__rb_parent, *rb_prev; 495 496 __rb_link = &mm->mm_rb.rb_node; 497 rb_prev = __rb_parent = NULL; 498 499 while (*__rb_link) { 500 struct vm_area_struct *vma_tmp; 501 502 __rb_parent = *__rb_link; 503 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb); 504 505 if (vma_tmp->vm_end > addr) { 506 /* Fail if an existing vma overlaps the area */ 507 if (vma_tmp->vm_start < end) 508 return -ENOMEM; 509 __rb_link = &__rb_parent->rb_left; 510 } else { 511 rb_prev = __rb_parent; 512 __rb_link = &__rb_parent->rb_right; 513 } 514 } 515 516 *pprev = NULL; 517 if (rb_prev) 518 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); 519 *rb_link = __rb_link; 520 *rb_parent = __rb_parent; 521 return 0; 522 } 523 524 static unsigned long count_vma_pages_range(struct mm_struct *mm, 525 unsigned long addr, unsigned long end) 526 { 527 unsigned long nr_pages = 0; 528 struct vm_area_struct *vma; 529 530 /* Find first overlaping mapping */ 531 vma = find_vma_intersection(mm, addr, end); 532 if (!vma) 533 return 0; 534 535 nr_pages = (min(end, vma->vm_end) - 536 max(addr, vma->vm_start)) >> PAGE_SHIFT; 537 538 /* Iterate over the rest of the overlaps */ 539 for (vma = vma->vm_next; vma; vma = vma->vm_next) { 540 unsigned long overlap_len; 541 542 if (vma->vm_start > end) 543 break; 544 545 overlap_len = min(end, vma->vm_end) - vma->vm_start; 546 nr_pages += overlap_len >> PAGE_SHIFT; 547 } 548 549 return nr_pages; 550 } 551 552 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma, 553 struct rb_node **rb_link, struct rb_node *rb_parent) 554 { 555 /* Update tracking information for the gap following the new vma. */ 556 if (vma->vm_next) 557 vma_gap_update(vma->vm_next); 558 else 559 mm->highest_vm_end = vm_end_gap(vma); 560 561 /* 562 * vma->vm_prev wasn't known when we followed the rbtree to find the 563 * correct insertion point for that vma. As a result, we could not 564 * update the vma vm_rb parents rb_subtree_gap values on the way down. 565 * So, we first insert the vma with a zero rb_subtree_gap value 566 * (to be consistent with what we did on the way down), and then 567 * immediately update the gap to the correct value. Finally we 568 * rebalance the rbtree after all augmented values have been set. 569 */ 570 rb_link_node(&vma->vm_rb, rb_parent, rb_link); 571 vma->rb_subtree_gap = 0; 572 vma_gap_update(vma); 573 vma_rb_insert(vma, &mm->mm_rb); 574 } 575 576 static void __vma_link_file(struct vm_area_struct *vma) 577 { 578 struct file *file; 579 580 file = vma->vm_file; 581 if (file) { 582 struct address_space *mapping = file->f_mapping; 583 584 if (vma->vm_flags & VM_DENYWRITE) 585 atomic_dec(&file_inode(file)->i_writecount); 586 if (vma->vm_flags & VM_SHARED) 587 atomic_inc(&mapping->i_mmap_writable); 588 589 flush_dcache_mmap_lock(mapping); 590 vma_interval_tree_insert(vma, &mapping->i_mmap); 591 flush_dcache_mmap_unlock(mapping); 592 } 593 } 594 595 static void 596 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 597 struct vm_area_struct *prev, struct rb_node **rb_link, 598 struct rb_node *rb_parent) 599 { 600 __vma_link_list(mm, vma, prev, rb_parent); 601 __vma_link_rb(mm, vma, rb_link, rb_parent); 602 } 603 604 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 605 struct vm_area_struct *prev, struct rb_node **rb_link, 606 struct rb_node *rb_parent) 607 { 608 struct address_space *mapping = NULL; 609 610 if (vma->vm_file) { 611 mapping = vma->vm_file->f_mapping; 612 i_mmap_lock_write(mapping); 613 } 614 615 __vma_link(mm, vma, prev, rb_link, rb_parent); 616 __vma_link_file(vma); 617 618 if (mapping) 619 i_mmap_unlock_write(mapping); 620 621 mm->map_count++; 622 validate_mm(mm); 623 } 624 625 /* 626 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the 627 * mm's list and rbtree. It has already been inserted into the interval tree. 628 */ 629 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 630 { 631 struct vm_area_struct *prev; 632 struct rb_node **rb_link, *rb_parent; 633 634 if (find_vma_links(mm, vma->vm_start, vma->vm_end, 635 &prev, &rb_link, &rb_parent)) 636 BUG(); 637 __vma_link(mm, vma, prev, rb_link, rb_parent); 638 mm->map_count++; 639 } 640 641 static __always_inline void __vma_unlink_common(struct mm_struct *mm, 642 struct vm_area_struct *vma, 643 struct vm_area_struct *prev, 644 bool has_prev, 645 struct vm_area_struct *ignore) 646 { 647 struct vm_area_struct *next; 648 649 vma_rb_erase_ignore(vma, &mm->mm_rb, ignore); 650 next = vma->vm_next; 651 if (has_prev) 652 prev->vm_next = next; 653 else { 654 prev = vma->vm_prev; 655 if (prev) 656 prev->vm_next = next; 657 else 658 mm->mmap = next; 659 } 660 if (next) 661 next->vm_prev = prev; 662 663 /* Kill the cache */ 664 vmacache_invalidate(mm); 665 } 666 667 static inline void __vma_unlink_prev(struct mm_struct *mm, 668 struct vm_area_struct *vma, 669 struct vm_area_struct *prev) 670 { 671 __vma_unlink_common(mm, vma, prev, true, vma); 672 } 673 674 /* 675 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that 676 * is already present in an i_mmap tree without adjusting the tree. 677 * The following helper function should be used when such adjustments 678 * are necessary. The "insert" vma (if any) is to be inserted 679 * before we drop the necessary locks. 680 */ 681 int __vma_adjust(struct vm_area_struct *vma, unsigned long start, 682 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, 683 struct vm_area_struct *expand) 684 { 685 struct mm_struct *mm = vma->vm_mm; 686 struct vm_area_struct *next = vma->vm_next, *orig_vma = vma; 687 struct address_space *mapping = NULL; 688 struct rb_root_cached *root = NULL; 689 struct anon_vma *anon_vma = NULL; 690 struct file *file = vma->vm_file; 691 bool start_changed = false, end_changed = false; 692 long adjust_next = 0; 693 int remove_next = 0; 694 695 if (next && !insert) { 696 struct vm_area_struct *exporter = NULL, *importer = NULL; 697 698 if (end >= next->vm_end) { 699 /* 700 * vma expands, overlapping all the next, and 701 * perhaps the one after too (mprotect case 6). 702 * The only other cases that gets here are 703 * case 1, case 7 and case 8. 704 */ 705 if (next == expand) { 706 /* 707 * The only case where we don't expand "vma" 708 * and we expand "next" instead is case 8. 709 */ 710 VM_WARN_ON(end != next->vm_end); 711 /* 712 * remove_next == 3 means we're 713 * removing "vma" and that to do so we 714 * swapped "vma" and "next". 715 */ 716 remove_next = 3; 717 VM_WARN_ON(file != next->vm_file); 718 swap(vma, next); 719 } else { 720 VM_WARN_ON(expand != vma); 721 /* 722 * case 1, 6, 7, remove_next == 2 is case 6, 723 * remove_next == 1 is case 1 or 7. 724 */ 725 remove_next = 1 + (end > next->vm_end); 726 VM_WARN_ON(remove_next == 2 && 727 end != next->vm_next->vm_end); 728 VM_WARN_ON(remove_next == 1 && 729 end != next->vm_end); 730 /* trim end to next, for case 6 first pass */ 731 end = next->vm_end; 732 } 733 734 exporter = next; 735 importer = vma; 736 737 /* 738 * If next doesn't have anon_vma, import from vma after 739 * next, if the vma overlaps with it. 740 */ 741 if (remove_next == 2 && !next->anon_vma) 742 exporter = next->vm_next; 743 744 } else if (end > next->vm_start) { 745 /* 746 * vma expands, overlapping part of the next: 747 * mprotect case 5 shifting the boundary up. 748 */ 749 adjust_next = (end - next->vm_start) >> PAGE_SHIFT; 750 exporter = next; 751 importer = vma; 752 VM_WARN_ON(expand != importer); 753 } else if (end < vma->vm_end) { 754 /* 755 * vma shrinks, and !insert tells it's not 756 * split_vma inserting another: so it must be 757 * mprotect case 4 shifting the boundary down. 758 */ 759 adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT); 760 exporter = vma; 761 importer = next; 762 VM_WARN_ON(expand != importer); 763 } 764 765 /* 766 * Easily overlooked: when mprotect shifts the boundary, 767 * make sure the expanding vma has anon_vma set if the 768 * shrinking vma had, to cover any anon pages imported. 769 */ 770 if (exporter && exporter->anon_vma && !importer->anon_vma) { 771 int error; 772 773 importer->anon_vma = exporter->anon_vma; 774 error = anon_vma_clone(importer, exporter); 775 if (error) 776 return error; 777 } 778 } 779 again: 780 vma_adjust_trans_huge(orig_vma, start, end, adjust_next); 781 782 if (file) { 783 mapping = file->f_mapping; 784 root = &mapping->i_mmap; 785 uprobe_munmap(vma, vma->vm_start, vma->vm_end); 786 787 if (adjust_next) 788 uprobe_munmap(next, next->vm_start, next->vm_end); 789 790 i_mmap_lock_write(mapping); 791 if (insert) { 792 /* 793 * Put into interval tree now, so instantiated pages 794 * are visible to arm/parisc __flush_dcache_page 795 * throughout; but we cannot insert into address 796 * space until vma start or end is updated. 797 */ 798 __vma_link_file(insert); 799 } 800 } 801 802 anon_vma = vma->anon_vma; 803 if (!anon_vma && adjust_next) 804 anon_vma = next->anon_vma; 805 if (anon_vma) { 806 VM_WARN_ON(adjust_next && next->anon_vma && 807 anon_vma != next->anon_vma); 808 anon_vma_lock_write(anon_vma); 809 anon_vma_interval_tree_pre_update_vma(vma); 810 if (adjust_next) 811 anon_vma_interval_tree_pre_update_vma(next); 812 } 813 814 if (root) { 815 flush_dcache_mmap_lock(mapping); 816 vma_interval_tree_remove(vma, root); 817 if (adjust_next) 818 vma_interval_tree_remove(next, root); 819 } 820 821 if (start != vma->vm_start) { 822 vma->vm_start = start; 823 start_changed = true; 824 } 825 if (end != vma->vm_end) { 826 vma->vm_end = end; 827 end_changed = true; 828 } 829 vma->vm_pgoff = pgoff; 830 if (adjust_next) { 831 next->vm_start += adjust_next << PAGE_SHIFT; 832 next->vm_pgoff += adjust_next; 833 } 834 835 if (root) { 836 if (adjust_next) 837 vma_interval_tree_insert(next, root); 838 vma_interval_tree_insert(vma, root); 839 flush_dcache_mmap_unlock(mapping); 840 } 841 842 if (remove_next) { 843 /* 844 * vma_merge has merged next into vma, and needs 845 * us to remove next before dropping the locks. 846 */ 847 if (remove_next != 3) 848 __vma_unlink_prev(mm, next, vma); 849 else 850 /* 851 * vma is not before next if they've been 852 * swapped. 853 * 854 * pre-swap() next->vm_start was reduced so 855 * tell validate_mm_rb to ignore pre-swap() 856 * "next" (which is stored in post-swap() 857 * "vma"). 858 */ 859 __vma_unlink_common(mm, next, NULL, false, vma); 860 if (file) 861 __remove_shared_vm_struct(next, file, mapping); 862 } else if (insert) { 863 /* 864 * split_vma has split insert from vma, and needs 865 * us to insert it before dropping the locks 866 * (it may either follow vma or precede it). 867 */ 868 __insert_vm_struct(mm, insert); 869 } else { 870 if (start_changed) 871 vma_gap_update(vma); 872 if (end_changed) { 873 if (!next) 874 mm->highest_vm_end = vm_end_gap(vma); 875 else if (!adjust_next) 876 vma_gap_update(next); 877 } 878 } 879 880 if (anon_vma) { 881 anon_vma_interval_tree_post_update_vma(vma); 882 if (adjust_next) 883 anon_vma_interval_tree_post_update_vma(next); 884 anon_vma_unlock_write(anon_vma); 885 } 886 if (mapping) 887 i_mmap_unlock_write(mapping); 888 889 if (root) { 890 uprobe_mmap(vma); 891 892 if (adjust_next) 893 uprobe_mmap(next); 894 } 895 896 if (remove_next) { 897 if (file) { 898 uprobe_munmap(next, next->vm_start, next->vm_end); 899 fput(file); 900 } 901 if (next->anon_vma) 902 anon_vma_merge(vma, next); 903 mm->map_count--; 904 mpol_put(vma_policy(next)); 905 kmem_cache_free(vm_area_cachep, next); 906 /* 907 * In mprotect's case 6 (see comments on vma_merge), 908 * we must remove another next too. It would clutter 909 * up the code too much to do both in one go. 910 */ 911 if (remove_next != 3) { 912 /* 913 * If "next" was removed and vma->vm_end was 914 * expanded (up) over it, in turn 915 * "next->vm_prev->vm_end" changed and the 916 * "vma->vm_next" gap must be updated. 917 */ 918 next = vma->vm_next; 919 } else { 920 /* 921 * For the scope of the comment "next" and 922 * "vma" considered pre-swap(): if "vma" was 923 * removed, next->vm_start was expanded (down) 924 * over it and the "next" gap must be updated. 925 * Because of the swap() the post-swap() "vma" 926 * actually points to pre-swap() "next" 927 * (post-swap() "next" as opposed is now a 928 * dangling pointer). 929 */ 930 next = vma; 931 } 932 if (remove_next == 2) { 933 remove_next = 1; 934 end = next->vm_end; 935 goto again; 936 } 937 else if (next) 938 vma_gap_update(next); 939 else { 940 /* 941 * If remove_next == 2 we obviously can't 942 * reach this path. 943 * 944 * If remove_next == 3 we can't reach this 945 * path because pre-swap() next is always not 946 * NULL. pre-swap() "next" is not being 947 * removed and its next->vm_end is not altered 948 * (and furthermore "end" already matches 949 * next->vm_end in remove_next == 3). 950 * 951 * We reach this only in the remove_next == 1 952 * case if the "next" vma that was removed was 953 * the highest vma of the mm. However in such 954 * case next->vm_end == "end" and the extended 955 * "vma" has vma->vm_end == next->vm_end so 956 * mm->highest_vm_end doesn't need any update 957 * in remove_next == 1 case. 958 */ 959 VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma)); 960 } 961 } 962 if (insert && file) 963 uprobe_mmap(insert); 964 965 validate_mm(mm); 966 967 return 0; 968 } 969 970 /* 971 * If the vma has a ->close operation then the driver probably needs to release 972 * per-vma resources, so we don't attempt to merge those. 973 */ 974 static inline int is_mergeable_vma(struct vm_area_struct *vma, 975 struct file *file, unsigned long vm_flags, 976 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 977 { 978 /* 979 * VM_SOFTDIRTY should not prevent from VMA merging, if we 980 * match the flags but dirty bit -- the caller should mark 981 * merged VMA as dirty. If dirty bit won't be excluded from 982 * comparison, we increase pressue on the memory system forcing 983 * the kernel to generate new VMAs when old one could be 984 * extended instead. 985 */ 986 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY) 987 return 0; 988 if (vma->vm_file != file) 989 return 0; 990 if (vma->vm_ops && vma->vm_ops->close) 991 return 0; 992 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx)) 993 return 0; 994 return 1; 995 } 996 997 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1, 998 struct anon_vma *anon_vma2, 999 struct vm_area_struct *vma) 1000 { 1001 /* 1002 * The list_is_singular() test is to avoid merging VMA cloned from 1003 * parents. This can improve scalability caused by anon_vma lock. 1004 */ 1005 if ((!anon_vma1 || !anon_vma2) && (!vma || 1006 list_is_singular(&vma->anon_vma_chain))) 1007 return 1; 1008 return anon_vma1 == anon_vma2; 1009 } 1010 1011 /* 1012 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 1013 * in front of (at a lower virtual address and file offset than) the vma. 1014 * 1015 * We cannot merge two vmas if they have differently assigned (non-NULL) 1016 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 1017 * 1018 * We don't check here for the merged mmap wrapping around the end of pagecache 1019 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which 1020 * wrap, nor mmaps which cover the final page at index -1UL. 1021 */ 1022 static int 1023 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags, 1024 struct anon_vma *anon_vma, struct file *file, 1025 pgoff_t vm_pgoff, 1026 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 1027 { 1028 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) && 1029 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 1030 if (vma->vm_pgoff == vm_pgoff) 1031 return 1; 1032 } 1033 return 0; 1034 } 1035 1036 /* 1037 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 1038 * beyond (at a higher virtual address and file offset than) the vma. 1039 * 1040 * We cannot merge two vmas if they have differently assigned (non-NULL) 1041 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 1042 */ 1043 static int 1044 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags, 1045 struct anon_vma *anon_vma, struct file *file, 1046 pgoff_t vm_pgoff, 1047 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 1048 { 1049 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) && 1050 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 1051 pgoff_t vm_pglen; 1052 vm_pglen = vma_pages(vma); 1053 if (vma->vm_pgoff + vm_pglen == vm_pgoff) 1054 return 1; 1055 } 1056 return 0; 1057 } 1058 1059 /* 1060 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out 1061 * whether that can be merged with its predecessor or its successor. 1062 * Or both (it neatly fills a hole). 1063 * 1064 * In most cases - when called for mmap, brk or mremap - [addr,end) is 1065 * certain not to be mapped by the time vma_merge is called; but when 1066 * called for mprotect, it is certain to be already mapped (either at 1067 * an offset within prev, or at the start of next), and the flags of 1068 * this area are about to be changed to vm_flags - and the no-change 1069 * case has already been eliminated. 1070 * 1071 * The following mprotect cases have to be considered, where AAAA is 1072 * the area passed down from mprotect_fixup, never extending beyond one 1073 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after: 1074 * 1075 * AAAA AAAA AAAA AAAA 1076 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX 1077 * cannot merge might become might become might become 1078 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or 1079 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or 1080 * mremap move: PPPPXXXXXXXX 8 1081 * AAAA 1082 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN 1083 * might become case 1 below case 2 below case 3 below 1084 * 1085 * It is important for case 8 that the the vma NNNN overlapping the 1086 * region AAAA is never going to extended over XXXX. Instead XXXX must 1087 * be extended in region AAAA and NNNN must be removed. This way in 1088 * all cases where vma_merge succeeds, the moment vma_adjust drops the 1089 * rmap_locks, the properties of the merged vma will be already 1090 * correct for the whole merged range. Some of those properties like 1091 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must 1092 * be correct for the whole merged range immediately after the 1093 * rmap_locks are released. Otherwise if XXXX would be removed and 1094 * NNNN would be extended over the XXXX range, remove_migration_ptes 1095 * or other rmap walkers (if working on addresses beyond the "end" 1096 * parameter) may establish ptes with the wrong permissions of NNNN 1097 * instead of the right permissions of XXXX. 1098 */ 1099 struct vm_area_struct *vma_merge(struct mm_struct *mm, 1100 struct vm_area_struct *prev, unsigned long addr, 1101 unsigned long end, unsigned long vm_flags, 1102 struct anon_vma *anon_vma, struct file *file, 1103 pgoff_t pgoff, struct mempolicy *policy, 1104 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 1105 { 1106 pgoff_t pglen = (end - addr) >> PAGE_SHIFT; 1107 struct vm_area_struct *area, *next; 1108 int err; 1109 1110 /* 1111 * We later require that vma->vm_flags == vm_flags, 1112 * so this tests vma->vm_flags & VM_SPECIAL, too. 1113 */ 1114 if (vm_flags & VM_SPECIAL) 1115 return NULL; 1116 1117 if (prev) 1118 next = prev->vm_next; 1119 else 1120 next = mm->mmap; 1121 area = next; 1122 if (area && area->vm_end == end) /* cases 6, 7, 8 */ 1123 next = next->vm_next; 1124 1125 /* verify some invariant that must be enforced by the caller */ 1126 VM_WARN_ON(prev && addr <= prev->vm_start); 1127 VM_WARN_ON(area && end > area->vm_end); 1128 VM_WARN_ON(addr >= end); 1129 1130 /* 1131 * Can it merge with the predecessor? 1132 */ 1133 if (prev && prev->vm_end == addr && 1134 mpol_equal(vma_policy(prev), policy) && 1135 can_vma_merge_after(prev, vm_flags, 1136 anon_vma, file, pgoff, 1137 vm_userfaultfd_ctx)) { 1138 /* 1139 * OK, it can. Can we now merge in the successor as well? 1140 */ 1141 if (next && end == next->vm_start && 1142 mpol_equal(policy, vma_policy(next)) && 1143 can_vma_merge_before(next, vm_flags, 1144 anon_vma, file, 1145 pgoff+pglen, 1146 vm_userfaultfd_ctx) && 1147 is_mergeable_anon_vma(prev->anon_vma, 1148 next->anon_vma, NULL)) { 1149 /* cases 1, 6 */ 1150 err = __vma_adjust(prev, prev->vm_start, 1151 next->vm_end, prev->vm_pgoff, NULL, 1152 prev); 1153 } else /* cases 2, 5, 7 */ 1154 err = __vma_adjust(prev, prev->vm_start, 1155 end, prev->vm_pgoff, NULL, prev); 1156 if (err) 1157 return NULL; 1158 khugepaged_enter_vma_merge(prev, vm_flags); 1159 return prev; 1160 } 1161 1162 /* 1163 * Can this new request be merged in front of next? 1164 */ 1165 if (next && end == next->vm_start && 1166 mpol_equal(policy, vma_policy(next)) && 1167 can_vma_merge_before(next, vm_flags, 1168 anon_vma, file, pgoff+pglen, 1169 vm_userfaultfd_ctx)) { 1170 if (prev && addr < prev->vm_end) /* case 4 */ 1171 err = __vma_adjust(prev, prev->vm_start, 1172 addr, prev->vm_pgoff, NULL, next); 1173 else { /* cases 3, 8 */ 1174 err = __vma_adjust(area, addr, next->vm_end, 1175 next->vm_pgoff - pglen, NULL, next); 1176 /* 1177 * In case 3 area is already equal to next and 1178 * this is a noop, but in case 8 "area" has 1179 * been removed and next was expanded over it. 1180 */ 1181 area = next; 1182 } 1183 if (err) 1184 return NULL; 1185 khugepaged_enter_vma_merge(area, vm_flags); 1186 return area; 1187 } 1188 1189 return NULL; 1190 } 1191 1192 /* 1193 * Rough compatbility check to quickly see if it's even worth looking 1194 * at sharing an anon_vma. 1195 * 1196 * They need to have the same vm_file, and the flags can only differ 1197 * in things that mprotect may change. 1198 * 1199 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that 1200 * we can merge the two vma's. For example, we refuse to merge a vma if 1201 * there is a vm_ops->close() function, because that indicates that the 1202 * driver is doing some kind of reference counting. But that doesn't 1203 * really matter for the anon_vma sharing case. 1204 */ 1205 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b) 1206 { 1207 return a->vm_end == b->vm_start && 1208 mpol_equal(vma_policy(a), vma_policy(b)) && 1209 a->vm_file == b->vm_file && 1210 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) && 1211 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT); 1212 } 1213 1214 /* 1215 * Do some basic sanity checking to see if we can re-use the anon_vma 1216 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be 1217 * the same as 'old', the other will be the new one that is trying 1218 * to share the anon_vma. 1219 * 1220 * NOTE! This runs with mm_sem held for reading, so it is possible that 1221 * the anon_vma of 'old' is concurrently in the process of being set up 1222 * by another page fault trying to merge _that_. But that's ok: if it 1223 * is being set up, that automatically means that it will be a singleton 1224 * acceptable for merging, so we can do all of this optimistically. But 1225 * we do that READ_ONCE() to make sure that we never re-load the pointer. 1226 * 1227 * IOW: that the "list_is_singular()" test on the anon_vma_chain only 1228 * matters for the 'stable anon_vma' case (ie the thing we want to avoid 1229 * is to return an anon_vma that is "complex" due to having gone through 1230 * a fork). 1231 * 1232 * We also make sure that the two vma's are compatible (adjacent, 1233 * and with the same memory policies). That's all stable, even with just 1234 * a read lock on the mm_sem. 1235 */ 1236 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b) 1237 { 1238 if (anon_vma_compatible(a, b)) { 1239 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma); 1240 1241 if (anon_vma && list_is_singular(&old->anon_vma_chain)) 1242 return anon_vma; 1243 } 1244 return NULL; 1245 } 1246 1247 /* 1248 * find_mergeable_anon_vma is used by anon_vma_prepare, to check 1249 * neighbouring vmas for a suitable anon_vma, before it goes off 1250 * to allocate a new anon_vma. It checks because a repetitive 1251 * sequence of mprotects and faults may otherwise lead to distinct 1252 * anon_vmas being allocated, preventing vma merge in subsequent 1253 * mprotect. 1254 */ 1255 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) 1256 { 1257 struct anon_vma *anon_vma; 1258 struct vm_area_struct *near; 1259 1260 near = vma->vm_next; 1261 if (!near) 1262 goto try_prev; 1263 1264 anon_vma = reusable_anon_vma(near, vma, near); 1265 if (anon_vma) 1266 return anon_vma; 1267 try_prev: 1268 near = vma->vm_prev; 1269 if (!near) 1270 goto none; 1271 1272 anon_vma = reusable_anon_vma(near, near, vma); 1273 if (anon_vma) 1274 return anon_vma; 1275 none: 1276 /* 1277 * There's no absolute need to look only at touching neighbours: 1278 * we could search further afield for "compatible" anon_vmas. 1279 * But it would probably just be a waste of time searching, 1280 * or lead to too many vmas hanging off the same anon_vma. 1281 * We're trying to allow mprotect remerging later on, 1282 * not trying to minimize memory used for anon_vmas. 1283 */ 1284 return NULL; 1285 } 1286 1287 /* 1288 * If a hint addr is less than mmap_min_addr change hint to be as 1289 * low as possible but still greater than mmap_min_addr 1290 */ 1291 static inline unsigned long round_hint_to_min(unsigned long hint) 1292 { 1293 hint &= PAGE_MASK; 1294 if (((void *)hint != NULL) && 1295 (hint < mmap_min_addr)) 1296 return PAGE_ALIGN(mmap_min_addr); 1297 return hint; 1298 } 1299 1300 static inline int mlock_future_check(struct mm_struct *mm, 1301 unsigned long flags, 1302 unsigned long len) 1303 { 1304 unsigned long locked, lock_limit; 1305 1306 /* mlock MCL_FUTURE? */ 1307 if (flags & VM_LOCKED) { 1308 locked = len >> PAGE_SHIFT; 1309 locked += mm->locked_vm; 1310 lock_limit = rlimit(RLIMIT_MEMLOCK); 1311 lock_limit >>= PAGE_SHIFT; 1312 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 1313 return -EAGAIN; 1314 } 1315 return 0; 1316 } 1317 1318 /* 1319 * The caller must hold down_write(¤t->mm->mmap_sem). 1320 */ 1321 unsigned long do_mmap(struct file *file, unsigned long addr, 1322 unsigned long len, unsigned long prot, 1323 unsigned long flags, vm_flags_t vm_flags, 1324 unsigned long pgoff, unsigned long *populate, 1325 struct list_head *uf) 1326 { 1327 struct mm_struct *mm = current->mm; 1328 int pkey = 0; 1329 1330 *populate = 0; 1331 1332 if (!len) 1333 return -EINVAL; 1334 1335 /* 1336 * Does the application expect PROT_READ to imply PROT_EXEC? 1337 * 1338 * (the exception is when the underlying filesystem is noexec 1339 * mounted, in which case we dont add PROT_EXEC.) 1340 */ 1341 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC)) 1342 if (!(file && path_noexec(&file->f_path))) 1343 prot |= PROT_EXEC; 1344 1345 if (!(flags & MAP_FIXED)) 1346 addr = round_hint_to_min(addr); 1347 1348 /* Careful about overflows.. */ 1349 len = PAGE_ALIGN(len); 1350 if (!len) 1351 return -ENOMEM; 1352 1353 /* offset overflow? */ 1354 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff) 1355 return -EOVERFLOW; 1356 1357 /* Too many mappings? */ 1358 if (mm->map_count > sysctl_max_map_count) 1359 return -ENOMEM; 1360 1361 /* Obtain the address to map to. we verify (or select) it and ensure 1362 * that it represents a valid section of the address space. 1363 */ 1364 addr = get_unmapped_area(file, addr, len, pgoff, flags); 1365 if (offset_in_page(addr)) 1366 return addr; 1367 1368 if (prot == PROT_EXEC) { 1369 pkey = execute_only_pkey(mm); 1370 if (pkey < 0) 1371 pkey = 0; 1372 } 1373 1374 /* Do simple checking here so the lower-level routines won't have 1375 * to. we assume access permissions have been handled by the open 1376 * of the memory object, so we don't do any here. 1377 */ 1378 vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) | 1379 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 1380 1381 if (flags & MAP_LOCKED) 1382 if (!can_do_mlock()) 1383 return -EPERM; 1384 1385 if (mlock_future_check(mm, vm_flags, len)) 1386 return -EAGAIN; 1387 1388 if (file) { 1389 struct inode *inode = file_inode(file); 1390 1391 switch (flags & MAP_TYPE) { 1392 case MAP_SHARED: 1393 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE)) 1394 return -EACCES; 1395 1396 /* 1397 * Make sure we don't allow writing to an append-only 1398 * file.. 1399 */ 1400 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE)) 1401 return -EACCES; 1402 1403 /* 1404 * Make sure there are no mandatory locks on the file. 1405 */ 1406 if (locks_verify_locked(file)) 1407 return -EAGAIN; 1408 1409 vm_flags |= VM_SHARED | VM_MAYSHARE; 1410 if (!(file->f_mode & FMODE_WRITE)) 1411 vm_flags &= ~(VM_MAYWRITE | VM_SHARED); 1412 1413 /* fall through */ 1414 case MAP_PRIVATE: 1415 if (!(file->f_mode & FMODE_READ)) 1416 return -EACCES; 1417 if (path_noexec(&file->f_path)) { 1418 if (vm_flags & VM_EXEC) 1419 return -EPERM; 1420 vm_flags &= ~VM_MAYEXEC; 1421 } 1422 1423 if (!file->f_op->mmap) 1424 return -ENODEV; 1425 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1426 return -EINVAL; 1427 break; 1428 1429 default: 1430 return -EINVAL; 1431 } 1432 } else { 1433 switch (flags & MAP_TYPE) { 1434 case MAP_SHARED: 1435 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1436 return -EINVAL; 1437 /* 1438 * Ignore pgoff. 1439 */ 1440 pgoff = 0; 1441 vm_flags |= VM_SHARED | VM_MAYSHARE; 1442 break; 1443 case MAP_PRIVATE: 1444 /* 1445 * Set pgoff according to addr for anon_vma. 1446 */ 1447 pgoff = addr >> PAGE_SHIFT; 1448 break; 1449 default: 1450 return -EINVAL; 1451 } 1452 } 1453 1454 /* 1455 * Set 'VM_NORESERVE' if we should not account for the 1456 * memory use of this mapping. 1457 */ 1458 if (flags & MAP_NORESERVE) { 1459 /* We honor MAP_NORESERVE if allowed to overcommit */ 1460 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER) 1461 vm_flags |= VM_NORESERVE; 1462 1463 /* hugetlb applies strict overcommit unless MAP_NORESERVE */ 1464 if (file && is_file_hugepages(file)) 1465 vm_flags |= VM_NORESERVE; 1466 } 1467 1468 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf); 1469 if (!IS_ERR_VALUE(addr) && 1470 ((vm_flags & VM_LOCKED) || 1471 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE)) 1472 *populate = len; 1473 return addr; 1474 } 1475 1476 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1477 unsigned long, prot, unsigned long, flags, 1478 unsigned long, fd, unsigned long, pgoff) 1479 { 1480 struct file *file = NULL; 1481 unsigned long retval; 1482 1483 if (!(flags & MAP_ANONYMOUS)) { 1484 audit_mmap_fd(fd, flags); 1485 file = fget(fd); 1486 if (!file) 1487 return -EBADF; 1488 if (is_file_hugepages(file)) 1489 len = ALIGN(len, huge_page_size(hstate_file(file))); 1490 retval = -EINVAL; 1491 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file))) 1492 goto out_fput; 1493 } else if (flags & MAP_HUGETLB) { 1494 struct user_struct *user = NULL; 1495 struct hstate *hs; 1496 1497 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 1498 if (!hs) 1499 return -EINVAL; 1500 1501 len = ALIGN(len, huge_page_size(hs)); 1502 /* 1503 * VM_NORESERVE is used because the reservations will be 1504 * taken when vm_ops->mmap() is called 1505 * A dummy user value is used because we are not locking 1506 * memory so no accounting is necessary 1507 */ 1508 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, 1509 VM_NORESERVE, 1510 &user, HUGETLB_ANONHUGE_INODE, 1511 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 1512 if (IS_ERR(file)) 1513 return PTR_ERR(file); 1514 } 1515 1516 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE); 1517 1518 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1519 out_fput: 1520 if (file) 1521 fput(file); 1522 return retval; 1523 } 1524 1525 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1526 struct mmap_arg_struct { 1527 unsigned long addr; 1528 unsigned long len; 1529 unsigned long prot; 1530 unsigned long flags; 1531 unsigned long fd; 1532 unsigned long offset; 1533 }; 1534 1535 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1536 { 1537 struct mmap_arg_struct a; 1538 1539 if (copy_from_user(&a, arg, sizeof(a))) 1540 return -EFAULT; 1541 if (offset_in_page(a.offset)) 1542 return -EINVAL; 1543 1544 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1545 a.offset >> PAGE_SHIFT); 1546 } 1547 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1548 1549 /* 1550 * Some shared mappigns will want the pages marked read-only 1551 * to track write events. If so, we'll downgrade vm_page_prot 1552 * to the private version (using protection_map[] without the 1553 * VM_SHARED bit). 1554 */ 1555 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot) 1556 { 1557 vm_flags_t vm_flags = vma->vm_flags; 1558 const struct vm_operations_struct *vm_ops = vma->vm_ops; 1559 1560 /* If it was private or non-writable, the write bit is already clear */ 1561 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED))) 1562 return 0; 1563 1564 /* The backer wishes to know when pages are first written to? */ 1565 if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite)) 1566 return 1; 1567 1568 /* The open routine did something to the protections that pgprot_modify 1569 * won't preserve? */ 1570 if (pgprot_val(vm_page_prot) != 1571 pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags))) 1572 return 0; 1573 1574 /* Do we need to track softdirty? */ 1575 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY)) 1576 return 1; 1577 1578 /* Specialty mapping? */ 1579 if (vm_flags & VM_PFNMAP) 1580 return 0; 1581 1582 /* Can the mapping track the dirty pages? */ 1583 return vma->vm_file && vma->vm_file->f_mapping && 1584 mapping_cap_account_dirty(vma->vm_file->f_mapping); 1585 } 1586 1587 /* 1588 * We account for memory if it's a private writeable mapping, 1589 * not hugepages and VM_NORESERVE wasn't set. 1590 */ 1591 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags) 1592 { 1593 /* 1594 * hugetlb has its own accounting separate from the core VM 1595 * VM_HUGETLB may not be set yet so we cannot check for that flag. 1596 */ 1597 if (file && is_file_hugepages(file)) 1598 return 0; 1599 1600 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE; 1601 } 1602 1603 unsigned long mmap_region(struct file *file, unsigned long addr, 1604 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 1605 struct list_head *uf) 1606 { 1607 struct mm_struct *mm = current->mm; 1608 struct vm_area_struct *vma, *prev; 1609 int error; 1610 struct rb_node **rb_link, *rb_parent; 1611 unsigned long charged = 0; 1612 1613 /* Check against address space limit. */ 1614 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) { 1615 unsigned long nr_pages; 1616 1617 /* 1618 * MAP_FIXED may remove pages of mappings that intersects with 1619 * requested mapping. Account for the pages it would unmap. 1620 */ 1621 nr_pages = count_vma_pages_range(mm, addr, addr + len); 1622 1623 if (!may_expand_vm(mm, vm_flags, 1624 (len >> PAGE_SHIFT) - nr_pages)) 1625 return -ENOMEM; 1626 } 1627 1628 /* Clear old maps */ 1629 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link, 1630 &rb_parent)) { 1631 if (do_munmap(mm, addr, len, uf)) 1632 return -ENOMEM; 1633 } 1634 1635 /* 1636 * Private writable mapping: check memory availability 1637 */ 1638 if (accountable_mapping(file, vm_flags)) { 1639 charged = len >> PAGE_SHIFT; 1640 if (security_vm_enough_memory_mm(mm, charged)) 1641 return -ENOMEM; 1642 vm_flags |= VM_ACCOUNT; 1643 } 1644 1645 /* 1646 * Can we just expand an old mapping? 1647 */ 1648 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, 1649 NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX); 1650 if (vma) 1651 goto out; 1652 1653 /* 1654 * Determine the object being mapped and call the appropriate 1655 * specific mapper. the address has already been validated, but 1656 * not unmapped, but the maps are removed from the list. 1657 */ 1658 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 1659 if (!vma) { 1660 error = -ENOMEM; 1661 goto unacct_error; 1662 } 1663 1664 vma->vm_mm = mm; 1665 vma->vm_start = addr; 1666 vma->vm_end = addr + len; 1667 vma->vm_flags = vm_flags; 1668 vma->vm_page_prot = vm_get_page_prot(vm_flags); 1669 vma->vm_pgoff = pgoff; 1670 INIT_LIST_HEAD(&vma->anon_vma_chain); 1671 1672 if (file) { 1673 if (vm_flags & VM_DENYWRITE) { 1674 error = deny_write_access(file); 1675 if (error) 1676 goto free_vma; 1677 } 1678 if (vm_flags & VM_SHARED) { 1679 error = mapping_map_writable(file->f_mapping); 1680 if (error) 1681 goto allow_write_and_free_vma; 1682 } 1683 1684 /* ->mmap() can change vma->vm_file, but must guarantee that 1685 * vma_link() below can deny write-access if VM_DENYWRITE is set 1686 * and map writably if VM_SHARED is set. This usually means the 1687 * new file must not have been exposed to user-space, yet. 1688 */ 1689 vma->vm_file = get_file(file); 1690 error = call_mmap(file, vma); 1691 if (error) 1692 goto unmap_and_free_vma; 1693 1694 /* Can addr have changed?? 1695 * 1696 * Answer: Yes, several device drivers can do it in their 1697 * f_op->mmap method. -DaveM 1698 * Bug: If addr is changed, prev, rb_link, rb_parent should 1699 * be updated for vma_link() 1700 */ 1701 WARN_ON_ONCE(addr != vma->vm_start); 1702 1703 addr = vma->vm_start; 1704 vm_flags = vma->vm_flags; 1705 } else if (vm_flags & VM_SHARED) { 1706 error = shmem_zero_setup(vma); 1707 if (error) 1708 goto free_vma; 1709 } 1710 1711 vma_link(mm, vma, prev, rb_link, rb_parent); 1712 /* Once vma denies write, undo our temporary denial count */ 1713 if (file) { 1714 if (vm_flags & VM_SHARED) 1715 mapping_unmap_writable(file->f_mapping); 1716 if (vm_flags & VM_DENYWRITE) 1717 allow_write_access(file); 1718 } 1719 file = vma->vm_file; 1720 out: 1721 perf_event_mmap(vma); 1722 1723 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT); 1724 if (vm_flags & VM_LOCKED) { 1725 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) || 1726 vma == get_gate_vma(current->mm))) 1727 mm->locked_vm += (len >> PAGE_SHIFT); 1728 else 1729 vma->vm_flags &= VM_LOCKED_CLEAR_MASK; 1730 } 1731 1732 if (file) 1733 uprobe_mmap(vma); 1734 1735 /* 1736 * New (or expanded) vma always get soft dirty status. 1737 * Otherwise user-space soft-dirty page tracker won't 1738 * be able to distinguish situation when vma area unmapped, 1739 * then new mapped in-place (which must be aimed as 1740 * a completely new data area). 1741 */ 1742 vma->vm_flags |= VM_SOFTDIRTY; 1743 1744 vma_set_page_prot(vma); 1745 1746 return addr; 1747 1748 unmap_and_free_vma: 1749 vma->vm_file = NULL; 1750 fput(file); 1751 1752 /* Undo any partial mapping done by a device driver. */ 1753 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end); 1754 charged = 0; 1755 if (vm_flags & VM_SHARED) 1756 mapping_unmap_writable(file->f_mapping); 1757 allow_write_and_free_vma: 1758 if (vm_flags & VM_DENYWRITE) 1759 allow_write_access(file); 1760 free_vma: 1761 kmem_cache_free(vm_area_cachep, vma); 1762 unacct_error: 1763 if (charged) 1764 vm_unacct_memory(charged); 1765 return error; 1766 } 1767 1768 unsigned long unmapped_area(struct vm_unmapped_area_info *info) 1769 { 1770 /* 1771 * We implement the search by looking for an rbtree node that 1772 * immediately follows a suitable gap. That is, 1773 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length; 1774 * - gap_end = vma->vm_start >= info->low_limit + length; 1775 * - gap_end - gap_start >= length 1776 */ 1777 1778 struct mm_struct *mm = current->mm; 1779 struct vm_area_struct *vma; 1780 unsigned long length, low_limit, high_limit, gap_start, gap_end; 1781 1782 /* Adjust search length to account for worst case alignment overhead */ 1783 length = info->length + info->align_mask; 1784 if (length < info->length) 1785 return -ENOMEM; 1786 1787 /* Adjust search limits by the desired length */ 1788 if (info->high_limit < length) 1789 return -ENOMEM; 1790 high_limit = info->high_limit - length; 1791 1792 if (info->low_limit > high_limit) 1793 return -ENOMEM; 1794 low_limit = info->low_limit + length; 1795 1796 /* Check if rbtree root looks promising */ 1797 if (RB_EMPTY_ROOT(&mm->mm_rb)) 1798 goto check_highest; 1799 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb); 1800 if (vma->rb_subtree_gap < length) 1801 goto check_highest; 1802 1803 while (true) { 1804 /* Visit left subtree if it looks promising */ 1805 gap_end = vm_start_gap(vma); 1806 if (gap_end >= low_limit && vma->vm_rb.rb_left) { 1807 struct vm_area_struct *left = 1808 rb_entry(vma->vm_rb.rb_left, 1809 struct vm_area_struct, vm_rb); 1810 if (left->rb_subtree_gap >= length) { 1811 vma = left; 1812 continue; 1813 } 1814 } 1815 1816 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0; 1817 check_current: 1818 /* Check if current node has a suitable gap */ 1819 if (gap_start > high_limit) 1820 return -ENOMEM; 1821 if (gap_end >= low_limit && 1822 gap_end > gap_start && gap_end - gap_start >= length) 1823 goto found; 1824 1825 /* Visit right subtree if it looks promising */ 1826 if (vma->vm_rb.rb_right) { 1827 struct vm_area_struct *right = 1828 rb_entry(vma->vm_rb.rb_right, 1829 struct vm_area_struct, vm_rb); 1830 if (right->rb_subtree_gap >= length) { 1831 vma = right; 1832 continue; 1833 } 1834 } 1835 1836 /* Go back up the rbtree to find next candidate node */ 1837 while (true) { 1838 struct rb_node *prev = &vma->vm_rb; 1839 if (!rb_parent(prev)) 1840 goto check_highest; 1841 vma = rb_entry(rb_parent(prev), 1842 struct vm_area_struct, vm_rb); 1843 if (prev == vma->vm_rb.rb_left) { 1844 gap_start = vm_end_gap(vma->vm_prev); 1845 gap_end = vm_start_gap(vma); 1846 goto check_current; 1847 } 1848 } 1849 } 1850 1851 check_highest: 1852 /* Check highest gap, which does not precede any rbtree node */ 1853 gap_start = mm->highest_vm_end; 1854 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */ 1855 if (gap_start > high_limit) 1856 return -ENOMEM; 1857 1858 found: 1859 /* We found a suitable gap. Clip it with the original low_limit. */ 1860 if (gap_start < info->low_limit) 1861 gap_start = info->low_limit; 1862 1863 /* Adjust gap address to the desired alignment */ 1864 gap_start += (info->align_offset - gap_start) & info->align_mask; 1865 1866 VM_BUG_ON(gap_start + info->length > info->high_limit); 1867 VM_BUG_ON(gap_start + info->length > gap_end); 1868 return gap_start; 1869 } 1870 1871 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info) 1872 { 1873 struct mm_struct *mm = current->mm; 1874 struct vm_area_struct *vma; 1875 unsigned long length, low_limit, high_limit, gap_start, gap_end; 1876 1877 /* Adjust search length to account for worst case alignment overhead */ 1878 length = info->length + info->align_mask; 1879 if (length < info->length) 1880 return -ENOMEM; 1881 1882 /* 1883 * Adjust search limits by the desired length. 1884 * See implementation comment at top of unmapped_area(). 1885 */ 1886 gap_end = info->high_limit; 1887 if (gap_end < length) 1888 return -ENOMEM; 1889 high_limit = gap_end - length; 1890 1891 if (info->low_limit > high_limit) 1892 return -ENOMEM; 1893 low_limit = info->low_limit + length; 1894 1895 /* Check highest gap, which does not precede any rbtree node */ 1896 gap_start = mm->highest_vm_end; 1897 if (gap_start <= high_limit) 1898 goto found_highest; 1899 1900 /* Check if rbtree root looks promising */ 1901 if (RB_EMPTY_ROOT(&mm->mm_rb)) 1902 return -ENOMEM; 1903 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb); 1904 if (vma->rb_subtree_gap < length) 1905 return -ENOMEM; 1906 1907 while (true) { 1908 /* Visit right subtree if it looks promising */ 1909 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0; 1910 if (gap_start <= high_limit && vma->vm_rb.rb_right) { 1911 struct vm_area_struct *right = 1912 rb_entry(vma->vm_rb.rb_right, 1913 struct vm_area_struct, vm_rb); 1914 if (right->rb_subtree_gap >= length) { 1915 vma = right; 1916 continue; 1917 } 1918 } 1919 1920 check_current: 1921 /* Check if current node has a suitable gap */ 1922 gap_end = vm_start_gap(vma); 1923 if (gap_end < low_limit) 1924 return -ENOMEM; 1925 if (gap_start <= high_limit && 1926 gap_end > gap_start && gap_end - gap_start >= length) 1927 goto found; 1928 1929 /* Visit left subtree if it looks promising */ 1930 if (vma->vm_rb.rb_left) { 1931 struct vm_area_struct *left = 1932 rb_entry(vma->vm_rb.rb_left, 1933 struct vm_area_struct, vm_rb); 1934 if (left->rb_subtree_gap >= length) { 1935 vma = left; 1936 continue; 1937 } 1938 } 1939 1940 /* Go back up the rbtree to find next candidate node */ 1941 while (true) { 1942 struct rb_node *prev = &vma->vm_rb; 1943 if (!rb_parent(prev)) 1944 return -ENOMEM; 1945 vma = rb_entry(rb_parent(prev), 1946 struct vm_area_struct, vm_rb); 1947 if (prev == vma->vm_rb.rb_right) { 1948 gap_start = vma->vm_prev ? 1949 vm_end_gap(vma->vm_prev) : 0; 1950 goto check_current; 1951 } 1952 } 1953 } 1954 1955 found: 1956 /* We found a suitable gap. Clip it with the original high_limit. */ 1957 if (gap_end > info->high_limit) 1958 gap_end = info->high_limit; 1959 1960 found_highest: 1961 /* Compute highest gap address at the desired alignment */ 1962 gap_end -= info->length; 1963 gap_end -= (gap_end - info->align_offset) & info->align_mask; 1964 1965 VM_BUG_ON(gap_end < info->low_limit); 1966 VM_BUG_ON(gap_end < gap_start); 1967 return gap_end; 1968 } 1969 1970 /* Get an address range which is currently unmapped. 1971 * For shmat() with addr=0. 1972 * 1973 * Ugly calling convention alert: 1974 * Return value with the low bits set means error value, 1975 * ie 1976 * if (ret & ~PAGE_MASK) 1977 * error = ret; 1978 * 1979 * This function "knows" that -ENOMEM has the bits set. 1980 */ 1981 #ifndef HAVE_ARCH_UNMAPPED_AREA 1982 unsigned long 1983 arch_get_unmapped_area(struct file *filp, unsigned long addr, 1984 unsigned long len, unsigned long pgoff, unsigned long flags) 1985 { 1986 struct mm_struct *mm = current->mm; 1987 struct vm_area_struct *vma, *prev; 1988 struct vm_unmapped_area_info info; 1989 1990 if (len > TASK_SIZE - mmap_min_addr) 1991 return -ENOMEM; 1992 1993 if (flags & MAP_FIXED) 1994 return addr; 1995 1996 if (addr) { 1997 addr = PAGE_ALIGN(addr); 1998 vma = find_vma_prev(mm, addr, &prev); 1999 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr && 2000 (!vma || addr + len <= vm_start_gap(vma)) && 2001 (!prev || addr >= vm_end_gap(prev))) 2002 return addr; 2003 } 2004 2005 info.flags = 0; 2006 info.length = len; 2007 info.low_limit = mm->mmap_base; 2008 info.high_limit = TASK_SIZE; 2009 info.align_mask = 0; 2010 return vm_unmapped_area(&info); 2011 } 2012 #endif 2013 2014 /* 2015 * This mmap-allocator allocates new areas top-down from below the 2016 * stack's low limit (the base): 2017 */ 2018 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 2019 unsigned long 2020 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0, 2021 const unsigned long len, const unsigned long pgoff, 2022 const unsigned long flags) 2023 { 2024 struct vm_area_struct *vma, *prev; 2025 struct mm_struct *mm = current->mm; 2026 unsigned long addr = addr0; 2027 struct vm_unmapped_area_info info; 2028 2029 /* requested length too big for entire address space */ 2030 if (len > TASK_SIZE - mmap_min_addr) 2031 return -ENOMEM; 2032 2033 if (flags & MAP_FIXED) 2034 return addr; 2035 2036 /* requesting a specific address */ 2037 if (addr) { 2038 addr = PAGE_ALIGN(addr); 2039 vma = find_vma_prev(mm, addr, &prev); 2040 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr && 2041 (!vma || addr + len <= vm_start_gap(vma)) && 2042 (!prev || addr >= vm_end_gap(prev))) 2043 return addr; 2044 } 2045 2046 info.flags = VM_UNMAPPED_AREA_TOPDOWN; 2047 info.length = len; 2048 info.low_limit = max(PAGE_SIZE, mmap_min_addr); 2049 info.high_limit = mm->mmap_base; 2050 info.align_mask = 0; 2051 addr = vm_unmapped_area(&info); 2052 2053 /* 2054 * A failed mmap() very likely causes application failure, 2055 * so fall back to the bottom-up function here. This scenario 2056 * can happen with large stack limits and large mmap() 2057 * allocations. 2058 */ 2059 if (offset_in_page(addr)) { 2060 VM_BUG_ON(addr != -ENOMEM); 2061 info.flags = 0; 2062 info.low_limit = TASK_UNMAPPED_BASE; 2063 info.high_limit = TASK_SIZE; 2064 addr = vm_unmapped_area(&info); 2065 } 2066 2067 return addr; 2068 } 2069 #endif 2070 2071 unsigned long 2072 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 2073 unsigned long pgoff, unsigned long flags) 2074 { 2075 unsigned long (*get_area)(struct file *, unsigned long, 2076 unsigned long, unsigned long, unsigned long); 2077 2078 unsigned long error = arch_mmap_check(addr, len, flags); 2079 if (error) 2080 return error; 2081 2082 /* Careful about overflows.. */ 2083 if (len > TASK_SIZE) 2084 return -ENOMEM; 2085 2086 get_area = current->mm->get_unmapped_area; 2087 if (file) { 2088 if (file->f_op->get_unmapped_area) 2089 get_area = file->f_op->get_unmapped_area; 2090 } else if (flags & MAP_SHARED) { 2091 /* 2092 * mmap_region() will call shmem_zero_setup() to create a file, 2093 * so use shmem's get_unmapped_area in case it can be huge. 2094 * do_mmap_pgoff() will clear pgoff, so match alignment. 2095 */ 2096 pgoff = 0; 2097 get_area = shmem_get_unmapped_area; 2098 } 2099 2100 addr = get_area(file, addr, len, pgoff, flags); 2101 if (IS_ERR_VALUE(addr)) 2102 return addr; 2103 2104 if (addr > TASK_SIZE - len) 2105 return -ENOMEM; 2106 if (offset_in_page(addr)) 2107 return -EINVAL; 2108 2109 error = security_mmap_addr(addr); 2110 return error ? error : addr; 2111 } 2112 2113 EXPORT_SYMBOL(get_unmapped_area); 2114 2115 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2116 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 2117 { 2118 struct rb_node *rb_node; 2119 struct vm_area_struct *vma; 2120 2121 /* Check the cache first. */ 2122 vma = vmacache_find(mm, addr); 2123 if (likely(vma)) 2124 return vma; 2125 2126 rb_node = mm->mm_rb.rb_node; 2127 2128 while (rb_node) { 2129 struct vm_area_struct *tmp; 2130 2131 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb); 2132 2133 if (tmp->vm_end > addr) { 2134 vma = tmp; 2135 if (tmp->vm_start <= addr) 2136 break; 2137 rb_node = rb_node->rb_left; 2138 } else 2139 rb_node = rb_node->rb_right; 2140 } 2141 2142 if (vma) 2143 vmacache_update(addr, vma); 2144 return vma; 2145 } 2146 2147 EXPORT_SYMBOL(find_vma); 2148 2149 /* 2150 * Same as find_vma, but also return a pointer to the previous VMA in *pprev. 2151 */ 2152 struct vm_area_struct * 2153 find_vma_prev(struct mm_struct *mm, unsigned long addr, 2154 struct vm_area_struct **pprev) 2155 { 2156 struct vm_area_struct *vma; 2157 2158 vma = find_vma(mm, addr); 2159 if (vma) { 2160 *pprev = vma->vm_prev; 2161 } else { 2162 struct rb_node *rb_node = mm->mm_rb.rb_node; 2163 *pprev = NULL; 2164 while (rb_node) { 2165 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb); 2166 rb_node = rb_node->rb_right; 2167 } 2168 } 2169 return vma; 2170 } 2171 2172 /* 2173 * Verify that the stack growth is acceptable and 2174 * update accounting. This is shared with both the 2175 * grow-up and grow-down cases. 2176 */ 2177 static int acct_stack_growth(struct vm_area_struct *vma, 2178 unsigned long size, unsigned long grow) 2179 { 2180 struct mm_struct *mm = vma->vm_mm; 2181 unsigned long new_start; 2182 2183 /* address space limit tests */ 2184 if (!may_expand_vm(mm, vma->vm_flags, grow)) 2185 return -ENOMEM; 2186 2187 /* Stack limit test */ 2188 if (size > rlimit(RLIMIT_STACK)) 2189 return -ENOMEM; 2190 2191 /* mlock limit tests */ 2192 if (vma->vm_flags & VM_LOCKED) { 2193 unsigned long locked; 2194 unsigned long limit; 2195 locked = mm->locked_vm + grow; 2196 limit = rlimit(RLIMIT_MEMLOCK); 2197 limit >>= PAGE_SHIFT; 2198 if (locked > limit && !capable(CAP_IPC_LOCK)) 2199 return -ENOMEM; 2200 } 2201 2202 /* Check to ensure the stack will not grow into a hugetlb-only region */ 2203 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : 2204 vma->vm_end - size; 2205 if (is_hugepage_only_range(vma->vm_mm, new_start, size)) 2206 return -EFAULT; 2207 2208 /* 2209 * Overcommit.. This must be the final test, as it will 2210 * update security statistics. 2211 */ 2212 if (security_vm_enough_memory_mm(mm, grow)) 2213 return -ENOMEM; 2214 2215 return 0; 2216 } 2217 2218 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64) 2219 /* 2220 * PA-RISC uses this for its stack; IA64 for its Register Backing Store. 2221 * vma is the last one with address > vma->vm_end. Have to extend vma. 2222 */ 2223 int expand_upwards(struct vm_area_struct *vma, unsigned long address) 2224 { 2225 struct mm_struct *mm = vma->vm_mm; 2226 struct vm_area_struct *next; 2227 unsigned long gap_addr; 2228 int error = 0; 2229 2230 if (!(vma->vm_flags & VM_GROWSUP)) 2231 return -EFAULT; 2232 2233 /* Guard against exceeding limits of the address space. */ 2234 address &= PAGE_MASK; 2235 if (address >= (TASK_SIZE & PAGE_MASK)) 2236 return -ENOMEM; 2237 address += PAGE_SIZE; 2238 2239 /* Enforce stack_guard_gap */ 2240 gap_addr = address + stack_guard_gap; 2241 2242 /* Guard against overflow */ 2243 if (gap_addr < address || gap_addr > TASK_SIZE) 2244 gap_addr = TASK_SIZE; 2245 2246 next = vma->vm_next; 2247 if (next && next->vm_start < gap_addr && 2248 (next->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) { 2249 if (!(next->vm_flags & VM_GROWSUP)) 2250 return -ENOMEM; 2251 /* Check that both stack segments have the same anon_vma? */ 2252 } 2253 2254 /* We must make sure the anon_vma is allocated. */ 2255 if (unlikely(anon_vma_prepare(vma))) 2256 return -ENOMEM; 2257 2258 /* 2259 * vma->vm_start/vm_end cannot change under us because the caller 2260 * is required to hold the mmap_sem in read mode. We need the 2261 * anon_vma lock to serialize against concurrent expand_stacks. 2262 */ 2263 anon_vma_lock_write(vma->anon_vma); 2264 2265 /* Somebody else might have raced and expanded it already */ 2266 if (address > vma->vm_end) { 2267 unsigned long size, grow; 2268 2269 size = address - vma->vm_start; 2270 grow = (address - vma->vm_end) >> PAGE_SHIFT; 2271 2272 error = -ENOMEM; 2273 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) { 2274 error = acct_stack_growth(vma, size, grow); 2275 if (!error) { 2276 /* 2277 * vma_gap_update() doesn't support concurrent 2278 * updates, but we only hold a shared mmap_sem 2279 * lock here, so we need to protect against 2280 * concurrent vma expansions. 2281 * anon_vma_lock_write() doesn't help here, as 2282 * we don't guarantee that all growable vmas 2283 * in a mm share the same root anon vma. 2284 * So, we reuse mm->page_table_lock to guard 2285 * against concurrent vma expansions. 2286 */ 2287 spin_lock(&mm->page_table_lock); 2288 if (vma->vm_flags & VM_LOCKED) 2289 mm->locked_vm += grow; 2290 vm_stat_account(mm, vma->vm_flags, grow); 2291 anon_vma_interval_tree_pre_update_vma(vma); 2292 vma->vm_end = address; 2293 anon_vma_interval_tree_post_update_vma(vma); 2294 if (vma->vm_next) 2295 vma_gap_update(vma->vm_next); 2296 else 2297 mm->highest_vm_end = vm_end_gap(vma); 2298 spin_unlock(&mm->page_table_lock); 2299 2300 perf_event_mmap(vma); 2301 } 2302 } 2303 } 2304 anon_vma_unlock_write(vma->anon_vma); 2305 khugepaged_enter_vma_merge(vma, vma->vm_flags); 2306 validate_mm(mm); 2307 return error; 2308 } 2309 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */ 2310 2311 /* 2312 * vma is the first one with address < vma->vm_start. Have to extend vma. 2313 */ 2314 int expand_downwards(struct vm_area_struct *vma, 2315 unsigned long address) 2316 { 2317 struct mm_struct *mm = vma->vm_mm; 2318 struct vm_area_struct *prev; 2319 int error; 2320 2321 address &= PAGE_MASK; 2322 error = security_mmap_addr(address); 2323 if (error) 2324 return error; 2325 2326 /* Enforce stack_guard_gap */ 2327 prev = vma->vm_prev; 2328 /* Check that both stack segments have the same anon_vma? */ 2329 if (prev && !(prev->vm_flags & VM_GROWSDOWN) && 2330 (prev->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) { 2331 if (address - prev->vm_end < stack_guard_gap) 2332 return -ENOMEM; 2333 } 2334 2335 /* We must make sure the anon_vma is allocated. */ 2336 if (unlikely(anon_vma_prepare(vma))) 2337 return -ENOMEM; 2338 2339 /* 2340 * vma->vm_start/vm_end cannot change under us because the caller 2341 * is required to hold the mmap_sem in read mode. We need the 2342 * anon_vma lock to serialize against concurrent expand_stacks. 2343 */ 2344 anon_vma_lock_write(vma->anon_vma); 2345 2346 /* Somebody else might have raced and expanded it already */ 2347 if (address < vma->vm_start) { 2348 unsigned long size, grow; 2349 2350 size = vma->vm_end - address; 2351 grow = (vma->vm_start - address) >> PAGE_SHIFT; 2352 2353 error = -ENOMEM; 2354 if (grow <= vma->vm_pgoff) { 2355 error = acct_stack_growth(vma, size, grow); 2356 if (!error) { 2357 /* 2358 * vma_gap_update() doesn't support concurrent 2359 * updates, but we only hold a shared mmap_sem 2360 * lock here, so we need to protect against 2361 * concurrent vma expansions. 2362 * anon_vma_lock_write() doesn't help here, as 2363 * we don't guarantee that all growable vmas 2364 * in a mm share the same root anon vma. 2365 * So, we reuse mm->page_table_lock to guard 2366 * against concurrent vma expansions. 2367 */ 2368 spin_lock(&mm->page_table_lock); 2369 if (vma->vm_flags & VM_LOCKED) 2370 mm->locked_vm += grow; 2371 vm_stat_account(mm, vma->vm_flags, grow); 2372 anon_vma_interval_tree_pre_update_vma(vma); 2373 vma->vm_start = address; 2374 vma->vm_pgoff -= grow; 2375 anon_vma_interval_tree_post_update_vma(vma); 2376 vma_gap_update(vma); 2377 spin_unlock(&mm->page_table_lock); 2378 2379 perf_event_mmap(vma); 2380 } 2381 } 2382 } 2383 anon_vma_unlock_write(vma->anon_vma); 2384 khugepaged_enter_vma_merge(vma, vma->vm_flags); 2385 validate_mm(mm); 2386 return error; 2387 } 2388 2389 /* enforced gap between the expanding stack and other mappings. */ 2390 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT; 2391 2392 static int __init cmdline_parse_stack_guard_gap(char *p) 2393 { 2394 unsigned long val; 2395 char *endptr; 2396 2397 val = simple_strtoul(p, &endptr, 10); 2398 if (!*endptr) 2399 stack_guard_gap = val << PAGE_SHIFT; 2400 2401 return 0; 2402 } 2403 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap); 2404 2405 #ifdef CONFIG_STACK_GROWSUP 2406 int expand_stack(struct vm_area_struct *vma, unsigned long address) 2407 { 2408 return expand_upwards(vma, address); 2409 } 2410 2411 struct vm_area_struct * 2412 find_extend_vma(struct mm_struct *mm, unsigned long addr) 2413 { 2414 struct vm_area_struct *vma, *prev; 2415 2416 addr &= PAGE_MASK; 2417 vma = find_vma_prev(mm, addr, &prev); 2418 if (vma && (vma->vm_start <= addr)) 2419 return vma; 2420 if (!prev || expand_stack(prev, addr)) 2421 return NULL; 2422 if (prev->vm_flags & VM_LOCKED) 2423 populate_vma_page_range(prev, addr, prev->vm_end, NULL); 2424 return prev; 2425 } 2426 #else 2427 int expand_stack(struct vm_area_struct *vma, unsigned long address) 2428 { 2429 return expand_downwards(vma, address); 2430 } 2431 2432 struct vm_area_struct * 2433 find_extend_vma(struct mm_struct *mm, unsigned long addr) 2434 { 2435 struct vm_area_struct *vma; 2436 unsigned long start; 2437 2438 addr &= PAGE_MASK; 2439 vma = find_vma(mm, addr); 2440 if (!vma) 2441 return NULL; 2442 if (vma->vm_start <= addr) 2443 return vma; 2444 if (!(vma->vm_flags & VM_GROWSDOWN)) 2445 return NULL; 2446 start = vma->vm_start; 2447 if (expand_stack(vma, addr)) 2448 return NULL; 2449 if (vma->vm_flags & VM_LOCKED) 2450 populate_vma_page_range(vma, addr, start, NULL); 2451 return vma; 2452 } 2453 #endif 2454 2455 EXPORT_SYMBOL_GPL(find_extend_vma); 2456 2457 /* 2458 * Ok - we have the memory areas we should free on the vma list, 2459 * so release them, and do the vma updates. 2460 * 2461 * Called with the mm semaphore held. 2462 */ 2463 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma) 2464 { 2465 unsigned long nr_accounted = 0; 2466 2467 /* Update high watermark before we lower total_vm */ 2468 update_hiwater_vm(mm); 2469 do { 2470 long nrpages = vma_pages(vma); 2471 2472 if (vma->vm_flags & VM_ACCOUNT) 2473 nr_accounted += nrpages; 2474 vm_stat_account(mm, vma->vm_flags, -nrpages); 2475 vma = remove_vma(vma); 2476 } while (vma); 2477 vm_unacct_memory(nr_accounted); 2478 validate_mm(mm); 2479 } 2480 2481 /* 2482 * Get rid of page table information in the indicated region. 2483 * 2484 * Called with the mm semaphore held. 2485 */ 2486 static void unmap_region(struct mm_struct *mm, 2487 struct vm_area_struct *vma, struct vm_area_struct *prev, 2488 unsigned long start, unsigned long end) 2489 { 2490 struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap; 2491 struct mmu_gather tlb; 2492 2493 lru_add_drain(); 2494 tlb_gather_mmu(&tlb, mm, start, end); 2495 update_hiwater_rss(mm); 2496 unmap_vmas(&tlb, vma, start, end); 2497 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS, 2498 next ? next->vm_start : USER_PGTABLES_CEILING); 2499 tlb_finish_mmu(&tlb, start, end); 2500 } 2501 2502 /* 2503 * Create a list of vma's touched by the unmap, removing them from the mm's 2504 * vma list as we go.. 2505 */ 2506 static void 2507 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma, 2508 struct vm_area_struct *prev, unsigned long end) 2509 { 2510 struct vm_area_struct **insertion_point; 2511 struct vm_area_struct *tail_vma = NULL; 2512 2513 insertion_point = (prev ? &prev->vm_next : &mm->mmap); 2514 vma->vm_prev = NULL; 2515 do { 2516 vma_rb_erase(vma, &mm->mm_rb); 2517 mm->map_count--; 2518 tail_vma = vma; 2519 vma = vma->vm_next; 2520 } while (vma && vma->vm_start < end); 2521 *insertion_point = vma; 2522 if (vma) { 2523 vma->vm_prev = prev; 2524 vma_gap_update(vma); 2525 } else 2526 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0; 2527 tail_vma->vm_next = NULL; 2528 2529 /* Kill the cache */ 2530 vmacache_invalidate(mm); 2531 } 2532 2533 /* 2534 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it 2535 * has already been checked or doesn't make sense to fail. 2536 */ 2537 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 2538 unsigned long addr, int new_below) 2539 { 2540 struct vm_area_struct *new; 2541 int err; 2542 2543 if (is_vm_hugetlb_page(vma) && (addr & 2544 ~(huge_page_mask(hstate_vma(vma))))) 2545 return -EINVAL; 2546 2547 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 2548 if (!new) 2549 return -ENOMEM; 2550 2551 /* most fields are the same, copy all, and then fixup */ 2552 *new = *vma; 2553 2554 INIT_LIST_HEAD(&new->anon_vma_chain); 2555 2556 if (new_below) 2557 new->vm_end = addr; 2558 else { 2559 new->vm_start = addr; 2560 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); 2561 } 2562 2563 err = vma_dup_policy(vma, new); 2564 if (err) 2565 goto out_free_vma; 2566 2567 err = anon_vma_clone(new, vma); 2568 if (err) 2569 goto out_free_mpol; 2570 2571 if (new->vm_file) 2572 get_file(new->vm_file); 2573 2574 if (new->vm_ops && new->vm_ops->open) 2575 new->vm_ops->open(new); 2576 2577 if (new_below) 2578 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff + 2579 ((addr - new->vm_start) >> PAGE_SHIFT), new); 2580 else 2581 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new); 2582 2583 /* Success. */ 2584 if (!err) 2585 return 0; 2586 2587 /* Clean everything up if vma_adjust failed. */ 2588 if (new->vm_ops && new->vm_ops->close) 2589 new->vm_ops->close(new); 2590 if (new->vm_file) 2591 fput(new->vm_file); 2592 unlink_anon_vmas(new); 2593 out_free_mpol: 2594 mpol_put(vma_policy(new)); 2595 out_free_vma: 2596 kmem_cache_free(vm_area_cachep, new); 2597 return err; 2598 } 2599 2600 /* 2601 * Split a vma into two pieces at address 'addr', a new vma is allocated 2602 * either for the first part or the tail. 2603 */ 2604 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 2605 unsigned long addr, int new_below) 2606 { 2607 if (mm->map_count >= sysctl_max_map_count) 2608 return -ENOMEM; 2609 2610 return __split_vma(mm, vma, addr, new_below); 2611 } 2612 2613 /* Munmap is split into 2 main parts -- this part which finds 2614 * what needs doing, and the areas themselves, which do the 2615 * work. This now handles partial unmappings. 2616 * Jeremy Fitzhardinge <jeremy@goop.org> 2617 */ 2618 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, 2619 struct list_head *uf) 2620 { 2621 unsigned long end; 2622 struct vm_area_struct *vma, *prev, *last; 2623 2624 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start) 2625 return -EINVAL; 2626 2627 len = PAGE_ALIGN(len); 2628 if (len == 0) 2629 return -EINVAL; 2630 2631 /* Find the first overlapping VMA */ 2632 vma = find_vma(mm, start); 2633 if (!vma) 2634 return 0; 2635 prev = vma->vm_prev; 2636 /* we have start < vma->vm_end */ 2637 2638 /* if it doesn't overlap, we have nothing.. */ 2639 end = start + len; 2640 if (vma->vm_start >= end) 2641 return 0; 2642 2643 /* 2644 * If we need to split any vma, do it now to save pain later. 2645 * 2646 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially 2647 * unmapped vm_area_struct will remain in use: so lower split_vma 2648 * places tmp vma above, and higher split_vma places tmp vma below. 2649 */ 2650 if (start > vma->vm_start) { 2651 int error; 2652 2653 /* 2654 * Make sure that map_count on return from munmap() will 2655 * not exceed its limit; but let map_count go just above 2656 * its limit temporarily, to help free resources as expected. 2657 */ 2658 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count) 2659 return -ENOMEM; 2660 2661 error = __split_vma(mm, vma, start, 0); 2662 if (error) 2663 return error; 2664 prev = vma; 2665 } 2666 2667 /* Does it split the last one? */ 2668 last = find_vma(mm, end); 2669 if (last && end > last->vm_start) { 2670 int error = __split_vma(mm, last, end, 1); 2671 if (error) 2672 return error; 2673 } 2674 vma = prev ? prev->vm_next : mm->mmap; 2675 2676 if (unlikely(uf)) { 2677 /* 2678 * If userfaultfd_unmap_prep returns an error the vmas 2679 * will remain splitted, but userland will get a 2680 * highly unexpected error anyway. This is no 2681 * different than the case where the first of the two 2682 * __split_vma fails, but we don't undo the first 2683 * split, despite we could. This is unlikely enough 2684 * failure that it's not worth optimizing it for. 2685 */ 2686 int error = userfaultfd_unmap_prep(vma, start, end, uf); 2687 if (error) 2688 return error; 2689 } 2690 2691 /* 2692 * unlock any mlock()ed ranges before detaching vmas 2693 */ 2694 if (mm->locked_vm) { 2695 struct vm_area_struct *tmp = vma; 2696 while (tmp && tmp->vm_start < end) { 2697 if (tmp->vm_flags & VM_LOCKED) { 2698 mm->locked_vm -= vma_pages(tmp); 2699 munlock_vma_pages_all(tmp); 2700 } 2701 tmp = tmp->vm_next; 2702 } 2703 } 2704 2705 /* 2706 * Remove the vma's, and unmap the actual pages 2707 */ 2708 detach_vmas_to_be_unmapped(mm, vma, prev, end); 2709 unmap_region(mm, vma, prev, start, end); 2710 2711 arch_unmap(mm, vma, start, end); 2712 2713 /* Fix up all other VM information */ 2714 remove_vma_list(mm, vma); 2715 2716 return 0; 2717 } 2718 2719 int vm_munmap(unsigned long start, size_t len) 2720 { 2721 int ret; 2722 struct mm_struct *mm = current->mm; 2723 LIST_HEAD(uf); 2724 2725 if (down_write_killable(&mm->mmap_sem)) 2726 return -EINTR; 2727 2728 ret = do_munmap(mm, start, len, &uf); 2729 up_write(&mm->mmap_sem); 2730 userfaultfd_unmap_complete(mm, &uf); 2731 return ret; 2732 } 2733 EXPORT_SYMBOL(vm_munmap); 2734 2735 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 2736 { 2737 profile_munmap(addr); 2738 return vm_munmap(addr, len); 2739 } 2740 2741 2742 /* 2743 * Emulation of deprecated remap_file_pages() syscall. 2744 */ 2745 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size, 2746 unsigned long, prot, unsigned long, pgoff, unsigned long, flags) 2747 { 2748 2749 struct mm_struct *mm = current->mm; 2750 struct vm_area_struct *vma; 2751 unsigned long populate = 0; 2752 unsigned long ret = -EINVAL; 2753 struct file *file; 2754 2755 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.txt.\n", 2756 current->comm, current->pid); 2757 2758 if (prot) 2759 return ret; 2760 start = start & PAGE_MASK; 2761 size = size & PAGE_MASK; 2762 2763 if (start + size <= start) 2764 return ret; 2765 2766 /* Does pgoff wrap? */ 2767 if (pgoff + (size >> PAGE_SHIFT) < pgoff) 2768 return ret; 2769 2770 if (down_write_killable(&mm->mmap_sem)) 2771 return -EINTR; 2772 2773 vma = find_vma(mm, start); 2774 2775 if (!vma || !(vma->vm_flags & VM_SHARED)) 2776 goto out; 2777 2778 if (start < vma->vm_start) 2779 goto out; 2780 2781 if (start + size > vma->vm_end) { 2782 struct vm_area_struct *next; 2783 2784 for (next = vma->vm_next; next; next = next->vm_next) { 2785 /* hole between vmas ? */ 2786 if (next->vm_start != next->vm_prev->vm_end) 2787 goto out; 2788 2789 if (next->vm_file != vma->vm_file) 2790 goto out; 2791 2792 if (next->vm_flags != vma->vm_flags) 2793 goto out; 2794 2795 if (start + size <= next->vm_end) 2796 break; 2797 } 2798 2799 if (!next) 2800 goto out; 2801 } 2802 2803 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0; 2804 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0; 2805 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0; 2806 2807 flags &= MAP_NONBLOCK; 2808 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE; 2809 if (vma->vm_flags & VM_LOCKED) { 2810 struct vm_area_struct *tmp; 2811 flags |= MAP_LOCKED; 2812 2813 /* drop PG_Mlocked flag for over-mapped range */ 2814 for (tmp = vma; tmp->vm_start >= start + size; 2815 tmp = tmp->vm_next) { 2816 /* 2817 * Split pmd and munlock page on the border 2818 * of the range. 2819 */ 2820 vma_adjust_trans_huge(tmp, start, start + size, 0); 2821 2822 munlock_vma_pages_range(tmp, 2823 max(tmp->vm_start, start), 2824 min(tmp->vm_end, start + size)); 2825 } 2826 } 2827 2828 file = get_file(vma->vm_file); 2829 ret = do_mmap_pgoff(vma->vm_file, start, size, 2830 prot, flags, pgoff, &populate, NULL); 2831 fput(file); 2832 out: 2833 up_write(&mm->mmap_sem); 2834 if (populate) 2835 mm_populate(ret, populate); 2836 if (!IS_ERR_VALUE(ret)) 2837 ret = 0; 2838 return ret; 2839 } 2840 2841 static inline void verify_mm_writelocked(struct mm_struct *mm) 2842 { 2843 #ifdef CONFIG_DEBUG_VM 2844 if (unlikely(down_read_trylock(&mm->mmap_sem))) { 2845 WARN_ON(1); 2846 up_read(&mm->mmap_sem); 2847 } 2848 #endif 2849 } 2850 2851 /* 2852 * this is really a simplified "do_mmap". it only handles 2853 * anonymous maps. eventually we may be able to do some 2854 * brk-specific accounting here. 2855 */ 2856 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags, struct list_head *uf) 2857 { 2858 struct mm_struct *mm = current->mm; 2859 struct vm_area_struct *vma, *prev; 2860 unsigned long len; 2861 struct rb_node **rb_link, *rb_parent; 2862 pgoff_t pgoff = addr >> PAGE_SHIFT; 2863 int error; 2864 2865 len = PAGE_ALIGN(request); 2866 if (len < request) 2867 return -ENOMEM; 2868 if (!len) 2869 return 0; 2870 2871 /* Until we need other flags, refuse anything except VM_EXEC. */ 2872 if ((flags & (~VM_EXEC)) != 0) 2873 return -EINVAL; 2874 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; 2875 2876 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED); 2877 if (offset_in_page(error)) 2878 return error; 2879 2880 error = mlock_future_check(mm, mm->def_flags, len); 2881 if (error) 2882 return error; 2883 2884 /* 2885 * mm->mmap_sem is required to protect against another thread 2886 * changing the mappings in case we sleep. 2887 */ 2888 verify_mm_writelocked(mm); 2889 2890 /* 2891 * Clear old maps. this also does some error checking for us 2892 */ 2893 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link, 2894 &rb_parent)) { 2895 if (do_munmap(mm, addr, len, uf)) 2896 return -ENOMEM; 2897 } 2898 2899 /* Check against address space limits *after* clearing old maps... */ 2900 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT)) 2901 return -ENOMEM; 2902 2903 if (mm->map_count > sysctl_max_map_count) 2904 return -ENOMEM; 2905 2906 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT)) 2907 return -ENOMEM; 2908 2909 /* Can we just expand an old private anonymous mapping? */ 2910 vma = vma_merge(mm, prev, addr, addr + len, flags, 2911 NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX); 2912 if (vma) 2913 goto out; 2914 2915 /* 2916 * create a vma struct for an anonymous mapping 2917 */ 2918 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 2919 if (!vma) { 2920 vm_unacct_memory(len >> PAGE_SHIFT); 2921 return -ENOMEM; 2922 } 2923 2924 INIT_LIST_HEAD(&vma->anon_vma_chain); 2925 vma->vm_mm = mm; 2926 vma->vm_start = addr; 2927 vma->vm_end = addr + len; 2928 vma->vm_pgoff = pgoff; 2929 vma->vm_flags = flags; 2930 vma->vm_page_prot = vm_get_page_prot(flags); 2931 vma_link(mm, vma, prev, rb_link, rb_parent); 2932 out: 2933 perf_event_mmap(vma); 2934 mm->total_vm += len >> PAGE_SHIFT; 2935 mm->data_vm += len >> PAGE_SHIFT; 2936 if (flags & VM_LOCKED) 2937 mm->locked_vm += (len >> PAGE_SHIFT); 2938 vma->vm_flags |= VM_SOFTDIRTY; 2939 return 0; 2940 } 2941 2942 static int do_brk(unsigned long addr, unsigned long len, struct list_head *uf) 2943 { 2944 return do_brk_flags(addr, len, 0, uf); 2945 } 2946 2947 int vm_brk_flags(unsigned long addr, unsigned long len, unsigned long flags) 2948 { 2949 struct mm_struct *mm = current->mm; 2950 int ret; 2951 bool populate; 2952 LIST_HEAD(uf); 2953 2954 if (down_write_killable(&mm->mmap_sem)) 2955 return -EINTR; 2956 2957 ret = do_brk_flags(addr, len, flags, &uf); 2958 populate = ((mm->def_flags & VM_LOCKED) != 0); 2959 up_write(&mm->mmap_sem); 2960 userfaultfd_unmap_complete(mm, &uf); 2961 if (populate && !ret) 2962 mm_populate(addr, len); 2963 return ret; 2964 } 2965 EXPORT_SYMBOL(vm_brk_flags); 2966 2967 int vm_brk(unsigned long addr, unsigned long len) 2968 { 2969 return vm_brk_flags(addr, len, 0); 2970 } 2971 EXPORT_SYMBOL(vm_brk); 2972 2973 /* Release all mmaps. */ 2974 void exit_mmap(struct mm_struct *mm) 2975 { 2976 struct mmu_gather tlb; 2977 struct vm_area_struct *vma; 2978 unsigned long nr_accounted = 0; 2979 2980 /* mm's last user has gone, and its about to be pulled down */ 2981 mmu_notifier_release(mm); 2982 2983 if (mm->locked_vm) { 2984 vma = mm->mmap; 2985 while (vma) { 2986 if (vma->vm_flags & VM_LOCKED) 2987 munlock_vma_pages_all(vma); 2988 vma = vma->vm_next; 2989 } 2990 } 2991 2992 arch_exit_mmap(mm); 2993 2994 vma = mm->mmap; 2995 if (!vma) /* Can happen if dup_mmap() received an OOM */ 2996 return; 2997 2998 lru_add_drain(); 2999 flush_cache_mm(mm); 3000 tlb_gather_mmu(&tlb, mm, 0, -1); 3001 /* update_hiwater_rss(mm) here? but nobody should be looking */ 3002 /* Use -1 here to ensure all VMAs in the mm are unmapped */ 3003 unmap_vmas(&tlb, vma, 0, -1); 3004 3005 set_bit(MMF_OOM_SKIP, &mm->flags); 3006 if (unlikely(tsk_is_oom_victim(current))) { 3007 /* 3008 * Wait for oom_reap_task() to stop working on this 3009 * mm. Because MMF_OOM_SKIP is already set before 3010 * calling down_read(), oom_reap_task() will not run 3011 * on this "mm" post up_write(). 3012 * 3013 * tsk_is_oom_victim() cannot be set from under us 3014 * either because current->mm is already set to NULL 3015 * under task_lock before calling mmput and oom_mm is 3016 * set not NULL by the OOM killer only if current->mm 3017 * is found not NULL while holding the task_lock. 3018 */ 3019 down_write(&mm->mmap_sem); 3020 up_write(&mm->mmap_sem); 3021 } 3022 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING); 3023 tlb_finish_mmu(&tlb, 0, -1); 3024 3025 /* 3026 * Walk the list again, actually closing and freeing it, 3027 * with preemption enabled, without holding any MM locks. 3028 */ 3029 while (vma) { 3030 if (vma->vm_flags & VM_ACCOUNT) 3031 nr_accounted += vma_pages(vma); 3032 vma = remove_vma(vma); 3033 } 3034 vm_unacct_memory(nr_accounted); 3035 } 3036 3037 /* Insert vm structure into process list sorted by address 3038 * and into the inode's i_mmap tree. If vm_file is non-NULL 3039 * then i_mmap_rwsem is taken here. 3040 */ 3041 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 3042 { 3043 struct vm_area_struct *prev; 3044 struct rb_node **rb_link, *rb_parent; 3045 3046 if (find_vma_links(mm, vma->vm_start, vma->vm_end, 3047 &prev, &rb_link, &rb_parent)) 3048 return -ENOMEM; 3049 if ((vma->vm_flags & VM_ACCOUNT) && 3050 security_vm_enough_memory_mm(mm, vma_pages(vma))) 3051 return -ENOMEM; 3052 3053 /* 3054 * The vm_pgoff of a purely anonymous vma should be irrelevant 3055 * until its first write fault, when page's anon_vma and index 3056 * are set. But now set the vm_pgoff it will almost certainly 3057 * end up with (unless mremap moves it elsewhere before that 3058 * first wfault), so /proc/pid/maps tells a consistent story. 3059 * 3060 * By setting it to reflect the virtual start address of the 3061 * vma, merges and splits can happen in a seamless way, just 3062 * using the existing file pgoff checks and manipulations. 3063 * Similarly in do_mmap_pgoff and in do_brk. 3064 */ 3065 if (vma_is_anonymous(vma)) { 3066 BUG_ON(vma->anon_vma); 3067 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; 3068 } 3069 3070 vma_link(mm, vma, prev, rb_link, rb_parent); 3071 return 0; 3072 } 3073 3074 /* 3075 * Copy the vma structure to a new location in the same mm, 3076 * prior to moving page table entries, to effect an mremap move. 3077 */ 3078 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 3079 unsigned long addr, unsigned long len, pgoff_t pgoff, 3080 bool *need_rmap_locks) 3081 { 3082 struct vm_area_struct *vma = *vmap; 3083 unsigned long vma_start = vma->vm_start; 3084 struct mm_struct *mm = vma->vm_mm; 3085 struct vm_area_struct *new_vma, *prev; 3086 struct rb_node **rb_link, *rb_parent; 3087 bool faulted_in_anon_vma = true; 3088 3089 /* 3090 * If anonymous vma has not yet been faulted, update new pgoff 3091 * to match new location, to increase its chance of merging. 3092 */ 3093 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) { 3094 pgoff = addr >> PAGE_SHIFT; 3095 faulted_in_anon_vma = false; 3096 } 3097 3098 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) 3099 return NULL; /* should never get here */ 3100 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags, 3101 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma), 3102 vma->vm_userfaultfd_ctx); 3103 if (new_vma) { 3104 /* 3105 * Source vma may have been merged into new_vma 3106 */ 3107 if (unlikely(vma_start >= new_vma->vm_start && 3108 vma_start < new_vma->vm_end)) { 3109 /* 3110 * The only way we can get a vma_merge with 3111 * self during an mremap is if the vma hasn't 3112 * been faulted in yet and we were allowed to 3113 * reset the dst vma->vm_pgoff to the 3114 * destination address of the mremap to allow 3115 * the merge to happen. mremap must change the 3116 * vm_pgoff linearity between src and dst vmas 3117 * (in turn preventing a vma_merge) to be 3118 * safe. It is only safe to keep the vm_pgoff 3119 * linear if there are no pages mapped yet. 3120 */ 3121 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma); 3122 *vmap = vma = new_vma; 3123 } 3124 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff); 3125 } else { 3126 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 3127 if (!new_vma) 3128 goto out; 3129 *new_vma = *vma; 3130 new_vma->vm_start = addr; 3131 new_vma->vm_end = addr + len; 3132 new_vma->vm_pgoff = pgoff; 3133 if (vma_dup_policy(vma, new_vma)) 3134 goto out_free_vma; 3135 INIT_LIST_HEAD(&new_vma->anon_vma_chain); 3136 if (anon_vma_clone(new_vma, vma)) 3137 goto out_free_mempol; 3138 if (new_vma->vm_file) 3139 get_file(new_vma->vm_file); 3140 if (new_vma->vm_ops && new_vma->vm_ops->open) 3141 new_vma->vm_ops->open(new_vma); 3142 vma_link(mm, new_vma, prev, rb_link, rb_parent); 3143 *need_rmap_locks = false; 3144 } 3145 return new_vma; 3146 3147 out_free_mempol: 3148 mpol_put(vma_policy(new_vma)); 3149 out_free_vma: 3150 kmem_cache_free(vm_area_cachep, new_vma); 3151 out: 3152 return NULL; 3153 } 3154 3155 /* 3156 * Return true if the calling process may expand its vm space by the passed 3157 * number of pages 3158 */ 3159 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages) 3160 { 3161 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT) 3162 return false; 3163 3164 if (is_data_mapping(flags) && 3165 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) { 3166 /* Workaround for Valgrind */ 3167 if (rlimit(RLIMIT_DATA) == 0 && 3168 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT) 3169 return true; 3170 if (!ignore_rlimit_data) { 3171 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits or use boot option ignore_rlimit_data.\n", 3172 current->comm, current->pid, 3173 (mm->data_vm + npages) << PAGE_SHIFT, 3174 rlimit(RLIMIT_DATA)); 3175 return false; 3176 } 3177 } 3178 3179 return true; 3180 } 3181 3182 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages) 3183 { 3184 mm->total_vm += npages; 3185 3186 if (is_exec_mapping(flags)) 3187 mm->exec_vm += npages; 3188 else if (is_stack_mapping(flags)) 3189 mm->stack_vm += npages; 3190 else if (is_data_mapping(flags)) 3191 mm->data_vm += npages; 3192 } 3193 3194 static int special_mapping_fault(struct vm_fault *vmf); 3195 3196 /* 3197 * Having a close hook prevents vma merging regardless of flags. 3198 */ 3199 static void special_mapping_close(struct vm_area_struct *vma) 3200 { 3201 } 3202 3203 static const char *special_mapping_name(struct vm_area_struct *vma) 3204 { 3205 return ((struct vm_special_mapping *)vma->vm_private_data)->name; 3206 } 3207 3208 static int special_mapping_mremap(struct vm_area_struct *new_vma) 3209 { 3210 struct vm_special_mapping *sm = new_vma->vm_private_data; 3211 3212 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm)) 3213 return -EFAULT; 3214 3215 if (sm->mremap) 3216 return sm->mremap(sm, new_vma); 3217 3218 return 0; 3219 } 3220 3221 static const struct vm_operations_struct special_mapping_vmops = { 3222 .close = special_mapping_close, 3223 .fault = special_mapping_fault, 3224 .mremap = special_mapping_mremap, 3225 .name = special_mapping_name, 3226 }; 3227 3228 static const struct vm_operations_struct legacy_special_mapping_vmops = { 3229 .close = special_mapping_close, 3230 .fault = special_mapping_fault, 3231 }; 3232 3233 static int special_mapping_fault(struct vm_fault *vmf) 3234 { 3235 struct vm_area_struct *vma = vmf->vma; 3236 pgoff_t pgoff; 3237 struct page **pages; 3238 3239 if (vma->vm_ops == &legacy_special_mapping_vmops) { 3240 pages = vma->vm_private_data; 3241 } else { 3242 struct vm_special_mapping *sm = vma->vm_private_data; 3243 3244 if (sm->fault) 3245 return sm->fault(sm, vmf->vma, vmf); 3246 3247 pages = sm->pages; 3248 } 3249 3250 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages) 3251 pgoff--; 3252 3253 if (*pages) { 3254 struct page *page = *pages; 3255 get_page(page); 3256 vmf->page = page; 3257 return 0; 3258 } 3259 3260 return VM_FAULT_SIGBUS; 3261 } 3262 3263 static struct vm_area_struct *__install_special_mapping( 3264 struct mm_struct *mm, 3265 unsigned long addr, unsigned long len, 3266 unsigned long vm_flags, void *priv, 3267 const struct vm_operations_struct *ops) 3268 { 3269 int ret; 3270 struct vm_area_struct *vma; 3271 3272 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 3273 if (unlikely(vma == NULL)) 3274 return ERR_PTR(-ENOMEM); 3275 3276 INIT_LIST_HEAD(&vma->anon_vma_chain); 3277 vma->vm_mm = mm; 3278 vma->vm_start = addr; 3279 vma->vm_end = addr + len; 3280 3281 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY; 3282 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 3283 3284 vma->vm_ops = ops; 3285 vma->vm_private_data = priv; 3286 3287 ret = insert_vm_struct(mm, vma); 3288 if (ret) 3289 goto out; 3290 3291 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT); 3292 3293 perf_event_mmap(vma); 3294 3295 return vma; 3296 3297 out: 3298 kmem_cache_free(vm_area_cachep, vma); 3299 return ERR_PTR(ret); 3300 } 3301 3302 bool vma_is_special_mapping(const struct vm_area_struct *vma, 3303 const struct vm_special_mapping *sm) 3304 { 3305 return vma->vm_private_data == sm && 3306 (vma->vm_ops == &special_mapping_vmops || 3307 vma->vm_ops == &legacy_special_mapping_vmops); 3308 } 3309 3310 /* 3311 * Called with mm->mmap_sem held for writing. 3312 * Insert a new vma covering the given region, with the given flags. 3313 * Its pages are supplied by the given array of struct page *. 3314 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated. 3315 * The region past the last page supplied will always produce SIGBUS. 3316 * The array pointer and the pages it points to are assumed to stay alive 3317 * for as long as this mapping might exist. 3318 */ 3319 struct vm_area_struct *_install_special_mapping( 3320 struct mm_struct *mm, 3321 unsigned long addr, unsigned long len, 3322 unsigned long vm_flags, const struct vm_special_mapping *spec) 3323 { 3324 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec, 3325 &special_mapping_vmops); 3326 } 3327 3328 int install_special_mapping(struct mm_struct *mm, 3329 unsigned long addr, unsigned long len, 3330 unsigned long vm_flags, struct page **pages) 3331 { 3332 struct vm_area_struct *vma = __install_special_mapping( 3333 mm, addr, len, vm_flags, (void *)pages, 3334 &legacy_special_mapping_vmops); 3335 3336 return PTR_ERR_OR_ZERO(vma); 3337 } 3338 3339 static DEFINE_MUTEX(mm_all_locks_mutex); 3340 3341 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) 3342 { 3343 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 3344 /* 3345 * The LSB of head.next can't change from under us 3346 * because we hold the mm_all_locks_mutex. 3347 */ 3348 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem); 3349 /* 3350 * We can safely modify head.next after taking the 3351 * anon_vma->root->rwsem. If some other vma in this mm shares 3352 * the same anon_vma we won't take it again. 3353 * 3354 * No need of atomic instructions here, head.next 3355 * can't change from under us thanks to the 3356 * anon_vma->root->rwsem. 3357 */ 3358 if (__test_and_set_bit(0, (unsigned long *) 3359 &anon_vma->root->rb_root.rb_root.rb_node)) 3360 BUG(); 3361 } 3362 } 3363 3364 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) 3365 { 3366 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3367 /* 3368 * AS_MM_ALL_LOCKS can't change from under us because 3369 * we hold the mm_all_locks_mutex. 3370 * 3371 * Operations on ->flags have to be atomic because 3372 * even if AS_MM_ALL_LOCKS is stable thanks to the 3373 * mm_all_locks_mutex, there may be other cpus 3374 * changing other bitflags in parallel to us. 3375 */ 3376 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) 3377 BUG(); 3378 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem); 3379 } 3380 } 3381 3382 /* 3383 * This operation locks against the VM for all pte/vma/mm related 3384 * operations that could ever happen on a certain mm. This includes 3385 * vmtruncate, try_to_unmap, and all page faults. 3386 * 3387 * The caller must take the mmap_sem in write mode before calling 3388 * mm_take_all_locks(). The caller isn't allowed to release the 3389 * mmap_sem until mm_drop_all_locks() returns. 3390 * 3391 * mmap_sem in write mode is required in order to block all operations 3392 * that could modify pagetables and free pages without need of 3393 * altering the vma layout. It's also needed in write mode to avoid new 3394 * anon_vmas to be associated with existing vmas. 3395 * 3396 * A single task can't take more than one mm_take_all_locks() in a row 3397 * or it would deadlock. 3398 * 3399 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in 3400 * mapping->flags avoid to take the same lock twice, if more than one 3401 * vma in this mm is backed by the same anon_vma or address_space. 3402 * 3403 * We take locks in following order, accordingly to comment at beginning 3404 * of mm/rmap.c: 3405 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for 3406 * hugetlb mapping); 3407 * - all i_mmap_rwsem locks; 3408 * - all anon_vma->rwseml 3409 * 3410 * We can take all locks within these types randomly because the VM code 3411 * doesn't nest them and we protected from parallel mm_take_all_locks() by 3412 * mm_all_locks_mutex. 3413 * 3414 * mm_take_all_locks() and mm_drop_all_locks are expensive operations 3415 * that may have to take thousand of locks. 3416 * 3417 * mm_take_all_locks() can fail if it's interrupted by signals. 3418 */ 3419 int mm_take_all_locks(struct mm_struct *mm) 3420 { 3421 struct vm_area_struct *vma; 3422 struct anon_vma_chain *avc; 3423 3424 BUG_ON(down_read_trylock(&mm->mmap_sem)); 3425 3426 mutex_lock(&mm_all_locks_mutex); 3427 3428 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3429 if (signal_pending(current)) 3430 goto out_unlock; 3431 if (vma->vm_file && vma->vm_file->f_mapping && 3432 is_vm_hugetlb_page(vma)) 3433 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3434 } 3435 3436 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3437 if (signal_pending(current)) 3438 goto out_unlock; 3439 if (vma->vm_file && vma->vm_file->f_mapping && 3440 !is_vm_hugetlb_page(vma)) 3441 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3442 } 3443 3444 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3445 if (signal_pending(current)) 3446 goto out_unlock; 3447 if (vma->anon_vma) 3448 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3449 vm_lock_anon_vma(mm, avc->anon_vma); 3450 } 3451 3452 return 0; 3453 3454 out_unlock: 3455 mm_drop_all_locks(mm); 3456 return -EINTR; 3457 } 3458 3459 static void vm_unlock_anon_vma(struct anon_vma *anon_vma) 3460 { 3461 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 3462 /* 3463 * The LSB of head.next can't change to 0 from under 3464 * us because we hold the mm_all_locks_mutex. 3465 * 3466 * We must however clear the bitflag before unlocking 3467 * the vma so the users using the anon_vma->rb_root will 3468 * never see our bitflag. 3469 * 3470 * No need of atomic instructions here, head.next 3471 * can't change from under us until we release the 3472 * anon_vma->root->rwsem. 3473 */ 3474 if (!__test_and_clear_bit(0, (unsigned long *) 3475 &anon_vma->root->rb_root.rb_root.rb_node)) 3476 BUG(); 3477 anon_vma_unlock_write(anon_vma); 3478 } 3479 } 3480 3481 static void vm_unlock_mapping(struct address_space *mapping) 3482 { 3483 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3484 /* 3485 * AS_MM_ALL_LOCKS can't change to 0 from under us 3486 * because we hold the mm_all_locks_mutex. 3487 */ 3488 i_mmap_unlock_write(mapping); 3489 if (!test_and_clear_bit(AS_MM_ALL_LOCKS, 3490 &mapping->flags)) 3491 BUG(); 3492 } 3493 } 3494 3495 /* 3496 * The mmap_sem cannot be released by the caller until 3497 * mm_drop_all_locks() returns. 3498 */ 3499 void mm_drop_all_locks(struct mm_struct *mm) 3500 { 3501 struct vm_area_struct *vma; 3502 struct anon_vma_chain *avc; 3503 3504 BUG_ON(down_read_trylock(&mm->mmap_sem)); 3505 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); 3506 3507 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3508 if (vma->anon_vma) 3509 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3510 vm_unlock_anon_vma(avc->anon_vma); 3511 if (vma->vm_file && vma->vm_file->f_mapping) 3512 vm_unlock_mapping(vma->vm_file->f_mapping); 3513 } 3514 3515 mutex_unlock(&mm_all_locks_mutex); 3516 } 3517 3518 /* 3519 * initialise the percpu counter for VM 3520 */ 3521 void __init mmap_init(void) 3522 { 3523 int ret; 3524 3525 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL); 3526 VM_BUG_ON(ret); 3527 } 3528 3529 /* 3530 * Initialise sysctl_user_reserve_kbytes. 3531 * 3532 * This is intended to prevent a user from starting a single memory hogging 3533 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER 3534 * mode. 3535 * 3536 * The default value is min(3% of free memory, 128MB) 3537 * 128MB is enough to recover with sshd/login, bash, and top/kill. 3538 */ 3539 static int init_user_reserve(void) 3540 { 3541 unsigned long free_kbytes; 3542 3543 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3544 3545 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17); 3546 return 0; 3547 } 3548 subsys_initcall(init_user_reserve); 3549 3550 /* 3551 * Initialise sysctl_admin_reserve_kbytes. 3552 * 3553 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin 3554 * to log in and kill a memory hogging process. 3555 * 3556 * Systems with more than 256MB will reserve 8MB, enough to recover 3557 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will 3558 * only reserve 3% of free pages by default. 3559 */ 3560 static int init_admin_reserve(void) 3561 { 3562 unsigned long free_kbytes; 3563 3564 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3565 3566 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13); 3567 return 0; 3568 } 3569 subsys_initcall(init_admin_reserve); 3570 3571 /* 3572 * Reinititalise user and admin reserves if memory is added or removed. 3573 * 3574 * The default user reserve max is 128MB, and the default max for the 3575 * admin reserve is 8MB. These are usually, but not always, enough to 3576 * enable recovery from a memory hogging process using login/sshd, a shell, 3577 * and tools like top. It may make sense to increase or even disable the 3578 * reserve depending on the existence of swap or variations in the recovery 3579 * tools. So, the admin may have changed them. 3580 * 3581 * If memory is added and the reserves have been eliminated or increased above 3582 * the default max, then we'll trust the admin. 3583 * 3584 * If memory is removed and there isn't enough free memory, then we 3585 * need to reset the reserves. 3586 * 3587 * Otherwise keep the reserve set by the admin. 3588 */ 3589 static int reserve_mem_notifier(struct notifier_block *nb, 3590 unsigned long action, void *data) 3591 { 3592 unsigned long tmp, free_kbytes; 3593 3594 switch (action) { 3595 case MEM_ONLINE: 3596 /* Default max is 128MB. Leave alone if modified by operator. */ 3597 tmp = sysctl_user_reserve_kbytes; 3598 if (0 < tmp && tmp < (1UL << 17)) 3599 init_user_reserve(); 3600 3601 /* Default max is 8MB. Leave alone if modified by operator. */ 3602 tmp = sysctl_admin_reserve_kbytes; 3603 if (0 < tmp && tmp < (1UL << 13)) 3604 init_admin_reserve(); 3605 3606 break; 3607 case MEM_OFFLINE: 3608 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3609 3610 if (sysctl_user_reserve_kbytes > free_kbytes) { 3611 init_user_reserve(); 3612 pr_info("vm.user_reserve_kbytes reset to %lu\n", 3613 sysctl_user_reserve_kbytes); 3614 } 3615 3616 if (sysctl_admin_reserve_kbytes > free_kbytes) { 3617 init_admin_reserve(); 3618 pr_info("vm.admin_reserve_kbytes reset to %lu\n", 3619 sysctl_admin_reserve_kbytes); 3620 } 3621 break; 3622 default: 3623 break; 3624 } 3625 return NOTIFY_OK; 3626 } 3627 3628 static struct notifier_block reserve_mem_nb = { 3629 .notifier_call = reserve_mem_notifier, 3630 }; 3631 3632 static int __meminit init_reserve_notifier(void) 3633 { 3634 if (register_hotmemory_notifier(&reserve_mem_nb)) 3635 pr_err("Failed registering memory add/remove notifier for admin reserve\n"); 3636 3637 return 0; 3638 } 3639 subsys_initcall(init_reserve_notifier); 3640