1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/mmap.c 4 * 5 * Written by obz. 6 * 7 * Address space accounting code <alan@lxorguk.ukuu.org.uk> 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/kernel.h> 13 #include <linux/slab.h> 14 #include <linux/backing-dev.h> 15 #include <linux/mm.h> 16 #include <linux/mm_inline.h> 17 #include <linux/shm.h> 18 #include <linux/mman.h> 19 #include <linux/pagemap.h> 20 #include <linux/swap.h> 21 #include <linux/syscalls.h> 22 #include <linux/capability.h> 23 #include <linux/init.h> 24 #include <linux/file.h> 25 #include <linux/fs.h> 26 #include <linux/personality.h> 27 #include <linux/security.h> 28 #include <linux/hugetlb.h> 29 #include <linux/shmem_fs.h> 30 #include <linux/profile.h> 31 #include <linux/export.h> 32 #include <linux/mount.h> 33 #include <linux/mempolicy.h> 34 #include <linux/rmap.h> 35 #include <linux/mmu_notifier.h> 36 #include <linux/mmdebug.h> 37 #include <linux/perf_event.h> 38 #include <linux/audit.h> 39 #include <linux/khugepaged.h> 40 #include <linux/uprobes.h> 41 #include <linux/notifier.h> 42 #include <linux/memory.h> 43 #include <linux/printk.h> 44 #include <linux/userfaultfd_k.h> 45 #include <linux/moduleparam.h> 46 #include <linux/pkeys.h> 47 #include <linux/oom.h> 48 #include <linux/sched/mm.h> 49 #include <linux/ksm.h> 50 51 #include <linux/uaccess.h> 52 #include <asm/cacheflush.h> 53 #include <asm/tlb.h> 54 #include <asm/mmu_context.h> 55 56 #define CREATE_TRACE_POINTS 57 #include <trace/events/mmap.h> 58 59 #include "internal.h" 60 61 #ifndef arch_mmap_check 62 #define arch_mmap_check(addr, len, flags) (0) 63 #endif 64 65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 66 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN; 67 int mmap_rnd_bits_max __ro_after_init = CONFIG_ARCH_MMAP_RND_BITS_MAX; 68 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS; 69 #endif 70 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 71 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN; 72 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX; 73 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS; 74 #endif 75 76 static bool ignore_rlimit_data; 77 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644); 78 79 static void unmap_region(struct mm_struct *mm, struct ma_state *mas, 80 struct vm_area_struct *vma, struct vm_area_struct *prev, 81 struct vm_area_struct *next, unsigned long start, 82 unsigned long end, unsigned long tree_end, bool mm_wr_locked); 83 84 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags) 85 { 86 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags)); 87 } 88 89 /* Update vma->vm_page_prot to reflect vma->vm_flags. */ 90 void vma_set_page_prot(struct vm_area_struct *vma) 91 { 92 unsigned long vm_flags = vma->vm_flags; 93 pgprot_t vm_page_prot; 94 95 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags); 96 if (vma_wants_writenotify(vma, vm_page_prot)) { 97 vm_flags &= ~VM_SHARED; 98 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags); 99 } 100 /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */ 101 WRITE_ONCE(vma->vm_page_prot, vm_page_prot); 102 } 103 104 /* 105 * Requires inode->i_mapping->i_mmap_rwsem 106 */ 107 static void __remove_shared_vm_struct(struct vm_area_struct *vma, 108 struct address_space *mapping) 109 { 110 if (vma_is_shared_maywrite(vma)) 111 mapping_unmap_writable(mapping); 112 113 flush_dcache_mmap_lock(mapping); 114 vma_interval_tree_remove(vma, &mapping->i_mmap); 115 flush_dcache_mmap_unlock(mapping); 116 } 117 118 /* 119 * Unlink a file-based vm structure from its interval tree, to hide 120 * vma from rmap and vmtruncate before freeing its page tables. 121 */ 122 void unlink_file_vma(struct vm_area_struct *vma) 123 { 124 struct file *file = vma->vm_file; 125 126 if (file) { 127 struct address_space *mapping = file->f_mapping; 128 i_mmap_lock_write(mapping); 129 __remove_shared_vm_struct(vma, mapping); 130 i_mmap_unlock_write(mapping); 131 } 132 } 133 134 /* 135 * Close a vm structure and free it. 136 */ 137 static void remove_vma(struct vm_area_struct *vma, bool unreachable) 138 { 139 might_sleep(); 140 if (vma->vm_ops && vma->vm_ops->close) 141 vma->vm_ops->close(vma); 142 if (vma->vm_file) 143 fput(vma->vm_file); 144 mpol_put(vma_policy(vma)); 145 if (unreachable) 146 __vm_area_free(vma); 147 else 148 vm_area_free(vma); 149 } 150 151 static inline struct vm_area_struct *vma_prev_limit(struct vma_iterator *vmi, 152 unsigned long min) 153 { 154 return mas_prev(&vmi->mas, min); 155 } 156 157 /* 158 * check_brk_limits() - Use platform specific check of range & verify mlock 159 * limits. 160 * @addr: The address to check 161 * @len: The size of increase. 162 * 163 * Return: 0 on success. 164 */ 165 static int check_brk_limits(unsigned long addr, unsigned long len) 166 { 167 unsigned long mapped_addr; 168 169 mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED); 170 if (IS_ERR_VALUE(mapped_addr)) 171 return mapped_addr; 172 173 return mlock_future_ok(current->mm, current->mm->def_flags, len) 174 ? 0 : -EAGAIN; 175 } 176 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *brkvma, 177 unsigned long addr, unsigned long request, unsigned long flags); 178 SYSCALL_DEFINE1(brk, unsigned long, brk) 179 { 180 unsigned long newbrk, oldbrk, origbrk; 181 struct mm_struct *mm = current->mm; 182 struct vm_area_struct *brkvma, *next = NULL; 183 unsigned long min_brk; 184 bool populate = false; 185 LIST_HEAD(uf); 186 struct vma_iterator vmi; 187 188 if (mmap_write_lock_killable(mm)) 189 return -EINTR; 190 191 origbrk = mm->brk; 192 193 #ifdef CONFIG_COMPAT_BRK 194 /* 195 * CONFIG_COMPAT_BRK can still be overridden by setting 196 * randomize_va_space to 2, which will still cause mm->start_brk 197 * to be arbitrarily shifted 198 */ 199 if (current->brk_randomized) 200 min_brk = mm->start_brk; 201 else 202 min_brk = mm->end_data; 203 #else 204 min_brk = mm->start_brk; 205 #endif 206 if (brk < min_brk) 207 goto out; 208 209 /* 210 * Check against rlimit here. If this check is done later after the test 211 * of oldbrk with newbrk then it can escape the test and let the data 212 * segment grow beyond its set limit the in case where the limit is 213 * not page aligned -Ram Gupta 214 */ 215 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk, 216 mm->end_data, mm->start_data)) 217 goto out; 218 219 newbrk = PAGE_ALIGN(brk); 220 oldbrk = PAGE_ALIGN(mm->brk); 221 if (oldbrk == newbrk) { 222 mm->brk = brk; 223 goto success; 224 } 225 226 /* Always allow shrinking brk. */ 227 if (brk <= mm->brk) { 228 /* Search one past newbrk */ 229 vma_iter_init(&vmi, mm, newbrk); 230 brkvma = vma_find(&vmi, oldbrk); 231 if (!brkvma || brkvma->vm_start >= oldbrk) 232 goto out; /* mapping intersects with an existing non-brk vma. */ 233 /* 234 * mm->brk must be protected by write mmap_lock. 235 * do_vma_munmap() will drop the lock on success, so update it 236 * before calling do_vma_munmap(). 237 */ 238 mm->brk = brk; 239 if (do_vma_munmap(&vmi, brkvma, newbrk, oldbrk, &uf, true)) 240 goto out; 241 242 goto success_unlocked; 243 } 244 245 if (check_brk_limits(oldbrk, newbrk - oldbrk)) 246 goto out; 247 248 /* 249 * Only check if the next VMA is within the stack_guard_gap of the 250 * expansion area 251 */ 252 vma_iter_init(&vmi, mm, oldbrk); 253 next = vma_find(&vmi, newbrk + PAGE_SIZE + stack_guard_gap); 254 if (next && newbrk + PAGE_SIZE > vm_start_gap(next)) 255 goto out; 256 257 brkvma = vma_prev_limit(&vmi, mm->start_brk); 258 /* Ok, looks good - let it rip. */ 259 if (do_brk_flags(&vmi, brkvma, oldbrk, newbrk - oldbrk, 0) < 0) 260 goto out; 261 262 mm->brk = brk; 263 if (mm->def_flags & VM_LOCKED) 264 populate = true; 265 266 success: 267 mmap_write_unlock(mm); 268 success_unlocked: 269 userfaultfd_unmap_complete(mm, &uf); 270 if (populate) 271 mm_populate(oldbrk, newbrk - oldbrk); 272 return brk; 273 274 out: 275 mm->brk = origbrk; 276 mmap_write_unlock(mm); 277 return origbrk; 278 } 279 280 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE) 281 static void validate_mm(struct mm_struct *mm) 282 { 283 int bug = 0; 284 int i = 0; 285 struct vm_area_struct *vma; 286 VMA_ITERATOR(vmi, mm, 0); 287 288 mt_validate(&mm->mm_mt); 289 for_each_vma(vmi, vma) { 290 #ifdef CONFIG_DEBUG_VM_RB 291 struct anon_vma *anon_vma = vma->anon_vma; 292 struct anon_vma_chain *avc; 293 #endif 294 unsigned long vmi_start, vmi_end; 295 bool warn = 0; 296 297 vmi_start = vma_iter_addr(&vmi); 298 vmi_end = vma_iter_end(&vmi); 299 if (VM_WARN_ON_ONCE_MM(vma->vm_end != vmi_end, mm)) 300 warn = 1; 301 302 if (VM_WARN_ON_ONCE_MM(vma->vm_start != vmi_start, mm)) 303 warn = 1; 304 305 if (warn) { 306 pr_emerg("issue in %s\n", current->comm); 307 dump_stack(); 308 dump_vma(vma); 309 pr_emerg("tree range: %px start %lx end %lx\n", vma, 310 vmi_start, vmi_end - 1); 311 vma_iter_dump_tree(&vmi); 312 } 313 314 #ifdef CONFIG_DEBUG_VM_RB 315 if (anon_vma) { 316 anon_vma_lock_read(anon_vma); 317 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 318 anon_vma_interval_tree_verify(avc); 319 anon_vma_unlock_read(anon_vma); 320 } 321 #endif 322 i++; 323 } 324 if (i != mm->map_count) { 325 pr_emerg("map_count %d vma iterator %d\n", mm->map_count, i); 326 bug = 1; 327 } 328 VM_BUG_ON_MM(bug, mm); 329 } 330 331 #else /* !CONFIG_DEBUG_VM_MAPLE_TREE */ 332 #define validate_mm(mm) do { } while (0) 333 #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */ 334 335 /* 336 * vma has some anon_vma assigned, and is already inserted on that 337 * anon_vma's interval trees. 338 * 339 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the 340 * vma must be removed from the anon_vma's interval trees using 341 * anon_vma_interval_tree_pre_update_vma(). 342 * 343 * After the update, the vma will be reinserted using 344 * anon_vma_interval_tree_post_update_vma(). 345 * 346 * The entire update must be protected by exclusive mmap_lock and by 347 * the root anon_vma's mutex. 348 */ 349 static inline void 350 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma) 351 { 352 struct anon_vma_chain *avc; 353 354 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 355 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root); 356 } 357 358 static inline void 359 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma) 360 { 361 struct anon_vma_chain *avc; 362 363 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 364 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root); 365 } 366 367 static unsigned long count_vma_pages_range(struct mm_struct *mm, 368 unsigned long addr, unsigned long end) 369 { 370 VMA_ITERATOR(vmi, mm, addr); 371 struct vm_area_struct *vma; 372 unsigned long nr_pages = 0; 373 374 for_each_vma_range(vmi, vma, end) { 375 unsigned long vm_start = max(addr, vma->vm_start); 376 unsigned long vm_end = min(end, vma->vm_end); 377 378 nr_pages += PHYS_PFN(vm_end - vm_start); 379 } 380 381 return nr_pages; 382 } 383 384 static void __vma_link_file(struct vm_area_struct *vma, 385 struct address_space *mapping) 386 { 387 if (vma_is_shared_maywrite(vma)) 388 mapping_allow_writable(mapping); 389 390 flush_dcache_mmap_lock(mapping); 391 vma_interval_tree_insert(vma, &mapping->i_mmap); 392 flush_dcache_mmap_unlock(mapping); 393 } 394 395 static void vma_link_file(struct vm_area_struct *vma) 396 { 397 struct file *file = vma->vm_file; 398 struct address_space *mapping; 399 400 if (file) { 401 mapping = file->f_mapping; 402 i_mmap_lock_write(mapping); 403 __vma_link_file(vma, mapping); 404 i_mmap_unlock_write(mapping); 405 } 406 } 407 408 static int vma_link(struct mm_struct *mm, struct vm_area_struct *vma) 409 { 410 VMA_ITERATOR(vmi, mm, 0); 411 412 vma_iter_config(&vmi, vma->vm_start, vma->vm_end); 413 if (vma_iter_prealloc(&vmi, vma)) 414 return -ENOMEM; 415 416 vma_start_write(vma); 417 vma_iter_store(&vmi, vma); 418 vma_link_file(vma); 419 mm->map_count++; 420 validate_mm(mm); 421 return 0; 422 } 423 424 /* 425 * init_multi_vma_prep() - Initializer for struct vma_prepare 426 * @vp: The vma_prepare struct 427 * @vma: The vma that will be altered once locked 428 * @next: The next vma if it is to be adjusted 429 * @remove: The first vma to be removed 430 * @remove2: The second vma to be removed 431 */ 432 static inline void init_multi_vma_prep(struct vma_prepare *vp, 433 struct vm_area_struct *vma, struct vm_area_struct *next, 434 struct vm_area_struct *remove, struct vm_area_struct *remove2) 435 { 436 memset(vp, 0, sizeof(struct vma_prepare)); 437 vp->vma = vma; 438 vp->anon_vma = vma->anon_vma; 439 vp->remove = remove; 440 vp->remove2 = remove2; 441 vp->adj_next = next; 442 if (!vp->anon_vma && next) 443 vp->anon_vma = next->anon_vma; 444 445 vp->file = vma->vm_file; 446 if (vp->file) 447 vp->mapping = vma->vm_file->f_mapping; 448 449 } 450 451 /* 452 * init_vma_prep() - Initializer wrapper for vma_prepare struct 453 * @vp: The vma_prepare struct 454 * @vma: The vma that will be altered once locked 455 */ 456 static inline void init_vma_prep(struct vma_prepare *vp, 457 struct vm_area_struct *vma) 458 { 459 init_multi_vma_prep(vp, vma, NULL, NULL, NULL); 460 } 461 462 463 /* 464 * vma_prepare() - Helper function for handling locking VMAs prior to altering 465 * @vp: The initialized vma_prepare struct 466 */ 467 static inline void vma_prepare(struct vma_prepare *vp) 468 { 469 if (vp->file) { 470 uprobe_munmap(vp->vma, vp->vma->vm_start, vp->vma->vm_end); 471 472 if (vp->adj_next) 473 uprobe_munmap(vp->adj_next, vp->adj_next->vm_start, 474 vp->adj_next->vm_end); 475 476 i_mmap_lock_write(vp->mapping); 477 if (vp->insert && vp->insert->vm_file) { 478 /* 479 * Put into interval tree now, so instantiated pages 480 * are visible to arm/parisc __flush_dcache_page 481 * throughout; but we cannot insert into address 482 * space until vma start or end is updated. 483 */ 484 __vma_link_file(vp->insert, 485 vp->insert->vm_file->f_mapping); 486 } 487 } 488 489 if (vp->anon_vma) { 490 anon_vma_lock_write(vp->anon_vma); 491 anon_vma_interval_tree_pre_update_vma(vp->vma); 492 if (vp->adj_next) 493 anon_vma_interval_tree_pre_update_vma(vp->adj_next); 494 } 495 496 if (vp->file) { 497 flush_dcache_mmap_lock(vp->mapping); 498 vma_interval_tree_remove(vp->vma, &vp->mapping->i_mmap); 499 if (vp->adj_next) 500 vma_interval_tree_remove(vp->adj_next, 501 &vp->mapping->i_mmap); 502 } 503 504 } 505 506 /* 507 * vma_complete- Helper function for handling the unlocking after altering VMAs, 508 * or for inserting a VMA. 509 * 510 * @vp: The vma_prepare struct 511 * @vmi: The vma iterator 512 * @mm: The mm_struct 513 */ 514 static inline void vma_complete(struct vma_prepare *vp, 515 struct vma_iterator *vmi, struct mm_struct *mm) 516 { 517 if (vp->file) { 518 if (vp->adj_next) 519 vma_interval_tree_insert(vp->adj_next, 520 &vp->mapping->i_mmap); 521 vma_interval_tree_insert(vp->vma, &vp->mapping->i_mmap); 522 flush_dcache_mmap_unlock(vp->mapping); 523 } 524 525 if (vp->remove && vp->file) { 526 __remove_shared_vm_struct(vp->remove, vp->mapping); 527 if (vp->remove2) 528 __remove_shared_vm_struct(vp->remove2, vp->mapping); 529 } else if (vp->insert) { 530 /* 531 * split_vma has split insert from vma, and needs 532 * us to insert it before dropping the locks 533 * (it may either follow vma or precede it). 534 */ 535 vma_iter_store(vmi, vp->insert); 536 mm->map_count++; 537 } 538 539 if (vp->anon_vma) { 540 anon_vma_interval_tree_post_update_vma(vp->vma); 541 if (vp->adj_next) 542 anon_vma_interval_tree_post_update_vma(vp->adj_next); 543 anon_vma_unlock_write(vp->anon_vma); 544 } 545 546 if (vp->file) { 547 i_mmap_unlock_write(vp->mapping); 548 uprobe_mmap(vp->vma); 549 550 if (vp->adj_next) 551 uprobe_mmap(vp->adj_next); 552 } 553 554 if (vp->remove) { 555 again: 556 vma_mark_detached(vp->remove, true); 557 if (vp->file) { 558 uprobe_munmap(vp->remove, vp->remove->vm_start, 559 vp->remove->vm_end); 560 fput(vp->file); 561 } 562 if (vp->remove->anon_vma) 563 anon_vma_merge(vp->vma, vp->remove); 564 mm->map_count--; 565 mpol_put(vma_policy(vp->remove)); 566 if (!vp->remove2) 567 WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end); 568 vm_area_free(vp->remove); 569 570 /* 571 * In mprotect's case 6 (see comments on vma_merge), 572 * we are removing both mid and next vmas 573 */ 574 if (vp->remove2) { 575 vp->remove = vp->remove2; 576 vp->remove2 = NULL; 577 goto again; 578 } 579 } 580 if (vp->insert && vp->file) 581 uprobe_mmap(vp->insert); 582 validate_mm(mm); 583 } 584 585 /* 586 * dup_anon_vma() - Helper function to duplicate anon_vma 587 * @dst: The destination VMA 588 * @src: The source VMA 589 * @dup: Pointer to the destination VMA when successful. 590 * 591 * Returns: 0 on success. 592 */ 593 static inline int dup_anon_vma(struct vm_area_struct *dst, 594 struct vm_area_struct *src, struct vm_area_struct **dup) 595 { 596 /* 597 * Easily overlooked: when mprotect shifts the boundary, make sure the 598 * expanding vma has anon_vma set if the shrinking vma had, to cover any 599 * anon pages imported. 600 */ 601 if (src->anon_vma && !dst->anon_vma) { 602 int ret; 603 604 vma_assert_write_locked(dst); 605 dst->anon_vma = src->anon_vma; 606 ret = anon_vma_clone(dst, src); 607 if (ret) 608 return ret; 609 610 *dup = dst; 611 } 612 613 return 0; 614 } 615 616 /* 617 * vma_expand - Expand an existing VMA 618 * 619 * @vmi: The vma iterator 620 * @vma: The vma to expand 621 * @start: The start of the vma 622 * @end: The exclusive end of the vma 623 * @pgoff: The page offset of vma 624 * @next: The current of next vma. 625 * 626 * Expand @vma to @start and @end. Can expand off the start and end. Will 627 * expand over @next if it's different from @vma and @end == @next->vm_end. 628 * Checking if the @vma can expand and merge with @next needs to be handled by 629 * the caller. 630 * 631 * Returns: 0 on success 632 */ 633 int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma, 634 unsigned long start, unsigned long end, pgoff_t pgoff, 635 struct vm_area_struct *next) 636 { 637 struct vm_area_struct *anon_dup = NULL; 638 bool remove_next = false; 639 struct vma_prepare vp; 640 641 vma_start_write(vma); 642 if (next && (vma != next) && (end == next->vm_end)) { 643 int ret; 644 645 remove_next = true; 646 vma_start_write(next); 647 ret = dup_anon_vma(vma, next, &anon_dup); 648 if (ret) 649 return ret; 650 } 651 652 init_multi_vma_prep(&vp, vma, NULL, remove_next ? next : NULL, NULL); 653 /* Not merging but overwriting any part of next is not handled. */ 654 VM_WARN_ON(next && !vp.remove && 655 next != vma && end > next->vm_start); 656 /* Only handles expanding */ 657 VM_WARN_ON(vma->vm_start < start || vma->vm_end > end); 658 659 /* Note: vma iterator must be pointing to 'start' */ 660 vma_iter_config(vmi, start, end); 661 if (vma_iter_prealloc(vmi, vma)) 662 goto nomem; 663 664 vma_prepare(&vp); 665 vma_adjust_trans_huge(vma, start, end, 0); 666 vma_set_range(vma, start, end, pgoff); 667 vma_iter_store(vmi, vma); 668 669 vma_complete(&vp, vmi, vma->vm_mm); 670 return 0; 671 672 nomem: 673 if (anon_dup) 674 unlink_anon_vmas(anon_dup); 675 return -ENOMEM; 676 } 677 678 /* 679 * vma_shrink() - Reduce an existing VMAs memory area 680 * @vmi: The vma iterator 681 * @vma: The VMA to modify 682 * @start: The new start 683 * @end: The new end 684 * 685 * Returns: 0 on success, -ENOMEM otherwise 686 */ 687 int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma, 688 unsigned long start, unsigned long end, pgoff_t pgoff) 689 { 690 struct vma_prepare vp; 691 692 WARN_ON((vma->vm_start != start) && (vma->vm_end != end)); 693 694 if (vma->vm_start < start) 695 vma_iter_config(vmi, vma->vm_start, start); 696 else 697 vma_iter_config(vmi, end, vma->vm_end); 698 699 if (vma_iter_prealloc(vmi, NULL)) 700 return -ENOMEM; 701 702 vma_start_write(vma); 703 704 init_vma_prep(&vp, vma); 705 vma_prepare(&vp); 706 vma_adjust_trans_huge(vma, start, end, 0); 707 708 vma_iter_clear(vmi); 709 vma_set_range(vma, start, end, pgoff); 710 vma_complete(&vp, vmi, vma->vm_mm); 711 return 0; 712 } 713 714 /* 715 * If the vma has a ->close operation then the driver probably needs to release 716 * per-vma resources, so we don't attempt to merge those if the caller indicates 717 * the current vma may be removed as part of the merge. 718 */ 719 static inline bool is_mergeable_vma(struct vm_area_struct *vma, 720 struct file *file, unsigned long vm_flags, 721 struct vm_userfaultfd_ctx vm_userfaultfd_ctx, 722 struct anon_vma_name *anon_name, bool may_remove_vma) 723 { 724 /* 725 * VM_SOFTDIRTY should not prevent from VMA merging, if we 726 * match the flags but dirty bit -- the caller should mark 727 * merged VMA as dirty. If dirty bit won't be excluded from 728 * comparison, we increase pressure on the memory system forcing 729 * the kernel to generate new VMAs when old one could be 730 * extended instead. 731 */ 732 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY) 733 return false; 734 if (vma->vm_file != file) 735 return false; 736 if (may_remove_vma && vma->vm_ops && vma->vm_ops->close) 737 return false; 738 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx)) 739 return false; 740 if (!anon_vma_name_eq(anon_vma_name(vma), anon_name)) 741 return false; 742 return true; 743 } 744 745 static inline bool is_mergeable_anon_vma(struct anon_vma *anon_vma1, 746 struct anon_vma *anon_vma2, struct vm_area_struct *vma) 747 { 748 /* 749 * The list_is_singular() test is to avoid merging VMA cloned from 750 * parents. This can improve scalability caused by anon_vma lock. 751 */ 752 if ((!anon_vma1 || !anon_vma2) && (!vma || 753 list_is_singular(&vma->anon_vma_chain))) 754 return true; 755 return anon_vma1 == anon_vma2; 756 } 757 758 /* 759 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 760 * in front of (at a lower virtual address and file offset than) the vma. 761 * 762 * We cannot merge two vmas if they have differently assigned (non-NULL) 763 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 764 * 765 * We don't check here for the merged mmap wrapping around the end of pagecache 766 * indices (16TB on ia32) because do_mmap() does not permit mmap's which 767 * wrap, nor mmaps which cover the final page at index -1UL. 768 * 769 * We assume the vma may be removed as part of the merge. 770 */ 771 static bool 772 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags, 773 struct anon_vma *anon_vma, struct file *file, 774 pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx, 775 struct anon_vma_name *anon_name) 776 { 777 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, true) && 778 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 779 if (vma->vm_pgoff == vm_pgoff) 780 return true; 781 } 782 return false; 783 } 784 785 /* 786 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 787 * beyond (at a higher virtual address and file offset than) the vma. 788 * 789 * We cannot merge two vmas if they have differently assigned (non-NULL) 790 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 791 * 792 * We assume that vma is not removed as part of the merge. 793 */ 794 static bool 795 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags, 796 struct anon_vma *anon_vma, struct file *file, 797 pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx, 798 struct anon_vma_name *anon_name) 799 { 800 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, false) && 801 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 802 pgoff_t vm_pglen; 803 vm_pglen = vma_pages(vma); 804 if (vma->vm_pgoff + vm_pglen == vm_pgoff) 805 return true; 806 } 807 return false; 808 } 809 810 /* 811 * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name), 812 * figure out whether that can be merged with its predecessor or its 813 * successor. Or both (it neatly fills a hole). 814 * 815 * In most cases - when called for mmap, brk or mremap - [addr,end) is 816 * certain not to be mapped by the time vma_merge is called; but when 817 * called for mprotect, it is certain to be already mapped (either at 818 * an offset within prev, or at the start of next), and the flags of 819 * this area are about to be changed to vm_flags - and the no-change 820 * case has already been eliminated. 821 * 822 * The following mprotect cases have to be considered, where **** is 823 * the area passed down from mprotect_fixup, never extending beyond one 824 * vma, PPPP is the previous vma, CCCC is a concurrent vma that starts 825 * at the same address as **** and is of the same or larger span, and 826 * NNNN the next vma after ****: 827 * 828 * **** **** **** 829 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPCCCCCC 830 * cannot merge might become might become 831 * PPNNNNNNNNNN PPPPPPPPPPCC 832 * mmap, brk or case 4 below case 5 below 833 * mremap move: 834 * **** **** 835 * PPPP NNNN PPPPCCCCNNNN 836 * might become might become 837 * PPPPPPPPPPPP 1 or PPPPPPPPPPPP 6 or 838 * PPPPPPPPNNNN 2 or PPPPPPPPNNNN 7 or 839 * PPPPNNNNNNNN 3 PPPPNNNNNNNN 8 840 * 841 * It is important for case 8 that the vma CCCC overlapping the 842 * region **** is never going to extended over NNNN. Instead NNNN must 843 * be extended in region **** and CCCC must be removed. This way in 844 * all cases where vma_merge succeeds, the moment vma_merge drops the 845 * rmap_locks, the properties of the merged vma will be already 846 * correct for the whole merged range. Some of those properties like 847 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must 848 * be correct for the whole merged range immediately after the 849 * rmap_locks are released. Otherwise if NNNN would be removed and 850 * CCCC would be extended over the NNNN range, remove_migration_ptes 851 * or other rmap walkers (if working on addresses beyond the "end" 852 * parameter) may establish ptes with the wrong permissions of CCCC 853 * instead of the right permissions of NNNN. 854 * 855 * In the code below: 856 * PPPP is represented by *prev 857 * CCCC is represented by *curr or not represented at all (NULL) 858 * NNNN is represented by *next or not represented at all (NULL) 859 * **** is not represented - it will be merged and the vma containing the 860 * area is returned, or the function will return NULL 861 */ 862 static struct vm_area_struct 863 *vma_merge(struct vma_iterator *vmi, struct vm_area_struct *prev, 864 struct vm_area_struct *src, unsigned long addr, unsigned long end, 865 unsigned long vm_flags, pgoff_t pgoff, struct mempolicy *policy, 866 struct vm_userfaultfd_ctx vm_userfaultfd_ctx, 867 struct anon_vma_name *anon_name) 868 { 869 struct mm_struct *mm = src->vm_mm; 870 struct anon_vma *anon_vma = src->anon_vma; 871 struct file *file = src->vm_file; 872 struct vm_area_struct *curr, *next, *res; 873 struct vm_area_struct *vma, *adjust, *remove, *remove2; 874 struct vm_area_struct *anon_dup = NULL; 875 struct vma_prepare vp; 876 pgoff_t vma_pgoff; 877 int err = 0; 878 bool merge_prev = false; 879 bool merge_next = false; 880 bool vma_expanded = false; 881 unsigned long vma_start = addr; 882 unsigned long vma_end = end; 883 pgoff_t pglen = (end - addr) >> PAGE_SHIFT; 884 long adj_start = 0; 885 886 /* 887 * We later require that vma->vm_flags == vm_flags, 888 * so this tests vma->vm_flags & VM_SPECIAL, too. 889 */ 890 if (vm_flags & VM_SPECIAL) 891 return NULL; 892 893 /* Does the input range span an existing VMA? (cases 5 - 8) */ 894 curr = find_vma_intersection(mm, prev ? prev->vm_end : 0, end); 895 896 if (!curr || /* cases 1 - 4 */ 897 end == curr->vm_end) /* cases 6 - 8, adjacent VMA */ 898 next = vma_lookup(mm, end); 899 else 900 next = NULL; /* case 5 */ 901 902 if (prev) { 903 vma_start = prev->vm_start; 904 vma_pgoff = prev->vm_pgoff; 905 906 /* Can we merge the predecessor? */ 907 if (addr == prev->vm_end && mpol_equal(vma_policy(prev), policy) 908 && can_vma_merge_after(prev, vm_flags, anon_vma, file, 909 pgoff, vm_userfaultfd_ctx, anon_name)) { 910 merge_prev = true; 911 vma_prev(vmi); 912 } 913 } 914 915 /* Can we merge the successor? */ 916 if (next && mpol_equal(policy, vma_policy(next)) && 917 can_vma_merge_before(next, vm_flags, anon_vma, file, pgoff+pglen, 918 vm_userfaultfd_ctx, anon_name)) { 919 merge_next = true; 920 } 921 922 /* Verify some invariant that must be enforced by the caller. */ 923 VM_WARN_ON(prev && addr <= prev->vm_start); 924 VM_WARN_ON(curr && (addr != curr->vm_start || end > curr->vm_end)); 925 VM_WARN_ON(addr >= end); 926 927 if (!merge_prev && !merge_next) 928 return NULL; /* Not mergeable. */ 929 930 if (merge_prev) 931 vma_start_write(prev); 932 933 res = vma = prev; 934 remove = remove2 = adjust = NULL; 935 936 /* Can we merge both the predecessor and the successor? */ 937 if (merge_prev && merge_next && 938 is_mergeable_anon_vma(prev->anon_vma, next->anon_vma, NULL)) { 939 vma_start_write(next); 940 remove = next; /* case 1 */ 941 vma_end = next->vm_end; 942 err = dup_anon_vma(prev, next, &anon_dup); 943 if (curr) { /* case 6 */ 944 vma_start_write(curr); 945 remove = curr; 946 remove2 = next; 947 /* 948 * Note that the dup_anon_vma below cannot overwrite err 949 * since the first caller would do nothing unless next 950 * has an anon_vma. 951 */ 952 if (!next->anon_vma) 953 err = dup_anon_vma(prev, curr, &anon_dup); 954 } 955 } else if (merge_prev) { /* case 2 */ 956 if (curr) { 957 vma_start_write(curr); 958 if (end == curr->vm_end) { /* case 7 */ 959 /* 960 * can_vma_merge_after() assumed we would not be 961 * removing prev vma, so it skipped the check 962 * for vm_ops->close, but we are removing curr 963 */ 964 if (curr->vm_ops && curr->vm_ops->close) 965 err = -EINVAL; 966 remove = curr; 967 } else { /* case 5 */ 968 adjust = curr; 969 adj_start = (end - curr->vm_start); 970 } 971 if (!err) 972 err = dup_anon_vma(prev, curr, &anon_dup); 973 } 974 } else { /* merge_next */ 975 vma_start_write(next); 976 res = next; 977 if (prev && addr < prev->vm_end) { /* case 4 */ 978 vma_start_write(prev); 979 vma_end = addr; 980 adjust = next; 981 adj_start = -(prev->vm_end - addr); 982 err = dup_anon_vma(next, prev, &anon_dup); 983 } else { 984 /* 985 * Note that cases 3 and 8 are the ONLY ones where prev 986 * is permitted to be (but is not necessarily) NULL. 987 */ 988 vma = next; /* case 3 */ 989 vma_start = addr; 990 vma_end = next->vm_end; 991 vma_pgoff = next->vm_pgoff - pglen; 992 if (curr) { /* case 8 */ 993 vma_pgoff = curr->vm_pgoff; 994 vma_start_write(curr); 995 remove = curr; 996 err = dup_anon_vma(next, curr, &anon_dup); 997 } 998 } 999 } 1000 1001 /* Error in anon_vma clone. */ 1002 if (err) 1003 goto anon_vma_fail; 1004 1005 if (vma_start < vma->vm_start || vma_end > vma->vm_end) 1006 vma_expanded = true; 1007 1008 if (vma_expanded) { 1009 vma_iter_config(vmi, vma_start, vma_end); 1010 } else { 1011 vma_iter_config(vmi, adjust->vm_start + adj_start, 1012 adjust->vm_end); 1013 } 1014 1015 if (vma_iter_prealloc(vmi, vma)) 1016 goto prealloc_fail; 1017 1018 init_multi_vma_prep(&vp, vma, adjust, remove, remove2); 1019 VM_WARN_ON(vp.anon_vma && adjust && adjust->anon_vma && 1020 vp.anon_vma != adjust->anon_vma); 1021 1022 vma_prepare(&vp); 1023 vma_adjust_trans_huge(vma, vma_start, vma_end, adj_start); 1024 vma_set_range(vma, vma_start, vma_end, vma_pgoff); 1025 1026 if (vma_expanded) 1027 vma_iter_store(vmi, vma); 1028 1029 if (adj_start) { 1030 adjust->vm_start += adj_start; 1031 adjust->vm_pgoff += adj_start >> PAGE_SHIFT; 1032 if (adj_start < 0) { 1033 WARN_ON(vma_expanded); 1034 vma_iter_store(vmi, next); 1035 } 1036 } 1037 1038 vma_complete(&vp, vmi, mm); 1039 khugepaged_enter_vma(res, vm_flags); 1040 return res; 1041 1042 prealloc_fail: 1043 if (anon_dup) 1044 unlink_anon_vmas(anon_dup); 1045 1046 anon_vma_fail: 1047 vma_iter_set(vmi, addr); 1048 vma_iter_load(vmi); 1049 return NULL; 1050 } 1051 1052 /* 1053 * Rough compatibility check to quickly see if it's even worth looking 1054 * at sharing an anon_vma. 1055 * 1056 * They need to have the same vm_file, and the flags can only differ 1057 * in things that mprotect may change. 1058 * 1059 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that 1060 * we can merge the two vma's. For example, we refuse to merge a vma if 1061 * there is a vm_ops->close() function, because that indicates that the 1062 * driver is doing some kind of reference counting. But that doesn't 1063 * really matter for the anon_vma sharing case. 1064 */ 1065 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b) 1066 { 1067 return a->vm_end == b->vm_start && 1068 mpol_equal(vma_policy(a), vma_policy(b)) && 1069 a->vm_file == b->vm_file && 1070 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) && 1071 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT); 1072 } 1073 1074 /* 1075 * Do some basic sanity checking to see if we can re-use the anon_vma 1076 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be 1077 * the same as 'old', the other will be the new one that is trying 1078 * to share the anon_vma. 1079 * 1080 * NOTE! This runs with mmap_lock held for reading, so it is possible that 1081 * the anon_vma of 'old' is concurrently in the process of being set up 1082 * by another page fault trying to merge _that_. But that's ok: if it 1083 * is being set up, that automatically means that it will be a singleton 1084 * acceptable for merging, so we can do all of this optimistically. But 1085 * we do that READ_ONCE() to make sure that we never re-load the pointer. 1086 * 1087 * IOW: that the "list_is_singular()" test on the anon_vma_chain only 1088 * matters for the 'stable anon_vma' case (ie the thing we want to avoid 1089 * is to return an anon_vma that is "complex" due to having gone through 1090 * a fork). 1091 * 1092 * We also make sure that the two vma's are compatible (adjacent, 1093 * and with the same memory policies). That's all stable, even with just 1094 * a read lock on the mmap_lock. 1095 */ 1096 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b) 1097 { 1098 if (anon_vma_compatible(a, b)) { 1099 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma); 1100 1101 if (anon_vma && list_is_singular(&old->anon_vma_chain)) 1102 return anon_vma; 1103 } 1104 return NULL; 1105 } 1106 1107 /* 1108 * find_mergeable_anon_vma is used by anon_vma_prepare, to check 1109 * neighbouring vmas for a suitable anon_vma, before it goes off 1110 * to allocate a new anon_vma. It checks because a repetitive 1111 * sequence of mprotects and faults may otherwise lead to distinct 1112 * anon_vmas being allocated, preventing vma merge in subsequent 1113 * mprotect. 1114 */ 1115 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) 1116 { 1117 struct anon_vma *anon_vma = NULL; 1118 struct vm_area_struct *prev, *next; 1119 VMA_ITERATOR(vmi, vma->vm_mm, vma->vm_end); 1120 1121 /* Try next first. */ 1122 next = vma_iter_load(&vmi); 1123 if (next) { 1124 anon_vma = reusable_anon_vma(next, vma, next); 1125 if (anon_vma) 1126 return anon_vma; 1127 } 1128 1129 prev = vma_prev(&vmi); 1130 VM_BUG_ON_VMA(prev != vma, vma); 1131 prev = vma_prev(&vmi); 1132 /* Try prev next. */ 1133 if (prev) 1134 anon_vma = reusable_anon_vma(prev, prev, vma); 1135 1136 /* 1137 * We might reach here with anon_vma == NULL if we can't find 1138 * any reusable anon_vma. 1139 * There's no absolute need to look only at touching neighbours: 1140 * we could search further afield for "compatible" anon_vmas. 1141 * But it would probably just be a waste of time searching, 1142 * or lead to too many vmas hanging off the same anon_vma. 1143 * We're trying to allow mprotect remerging later on, 1144 * not trying to minimize memory used for anon_vmas. 1145 */ 1146 return anon_vma; 1147 } 1148 1149 /* 1150 * If a hint addr is less than mmap_min_addr change hint to be as 1151 * low as possible but still greater than mmap_min_addr 1152 */ 1153 static inline unsigned long round_hint_to_min(unsigned long hint) 1154 { 1155 hint &= PAGE_MASK; 1156 if (((void *)hint != NULL) && 1157 (hint < mmap_min_addr)) 1158 return PAGE_ALIGN(mmap_min_addr); 1159 return hint; 1160 } 1161 1162 bool mlock_future_ok(struct mm_struct *mm, unsigned long flags, 1163 unsigned long bytes) 1164 { 1165 unsigned long locked_pages, limit_pages; 1166 1167 if (!(flags & VM_LOCKED) || capable(CAP_IPC_LOCK)) 1168 return true; 1169 1170 locked_pages = bytes >> PAGE_SHIFT; 1171 locked_pages += mm->locked_vm; 1172 1173 limit_pages = rlimit(RLIMIT_MEMLOCK); 1174 limit_pages >>= PAGE_SHIFT; 1175 1176 return locked_pages <= limit_pages; 1177 } 1178 1179 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode) 1180 { 1181 if (S_ISREG(inode->i_mode)) 1182 return MAX_LFS_FILESIZE; 1183 1184 if (S_ISBLK(inode->i_mode)) 1185 return MAX_LFS_FILESIZE; 1186 1187 if (S_ISSOCK(inode->i_mode)) 1188 return MAX_LFS_FILESIZE; 1189 1190 /* Special "we do even unsigned file positions" case */ 1191 if (file->f_mode & FMODE_UNSIGNED_OFFSET) 1192 return 0; 1193 1194 /* Yes, random drivers might want more. But I'm tired of buggy drivers */ 1195 return ULONG_MAX; 1196 } 1197 1198 static inline bool file_mmap_ok(struct file *file, struct inode *inode, 1199 unsigned long pgoff, unsigned long len) 1200 { 1201 u64 maxsize = file_mmap_size_max(file, inode); 1202 1203 if (maxsize && len > maxsize) 1204 return false; 1205 maxsize -= len; 1206 if (pgoff > maxsize >> PAGE_SHIFT) 1207 return false; 1208 return true; 1209 } 1210 1211 /* 1212 * The caller must write-lock current->mm->mmap_lock. 1213 */ 1214 unsigned long do_mmap(struct file *file, unsigned long addr, 1215 unsigned long len, unsigned long prot, 1216 unsigned long flags, vm_flags_t vm_flags, 1217 unsigned long pgoff, unsigned long *populate, 1218 struct list_head *uf) 1219 { 1220 struct mm_struct *mm = current->mm; 1221 int pkey = 0; 1222 1223 *populate = 0; 1224 1225 if (!len) 1226 return -EINVAL; 1227 1228 /* 1229 * Does the application expect PROT_READ to imply PROT_EXEC? 1230 * 1231 * (the exception is when the underlying filesystem is noexec 1232 * mounted, in which case we don't add PROT_EXEC.) 1233 */ 1234 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC)) 1235 if (!(file && path_noexec(&file->f_path))) 1236 prot |= PROT_EXEC; 1237 1238 /* force arch specific MAP_FIXED handling in get_unmapped_area */ 1239 if (flags & MAP_FIXED_NOREPLACE) 1240 flags |= MAP_FIXED; 1241 1242 if (!(flags & MAP_FIXED)) 1243 addr = round_hint_to_min(addr); 1244 1245 /* Careful about overflows.. */ 1246 len = PAGE_ALIGN(len); 1247 if (!len) 1248 return -ENOMEM; 1249 1250 /* offset overflow? */ 1251 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff) 1252 return -EOVERFLOW; 1253 1254 /* Too many mappings? */ 1255 if (mm->map_count > sysctl_max_map_count) 1256 return -ENOMEM; 1257 1258 /* 1259 * addr is returned from get_unmapped_area, 1260 * There are two cases: 1261 * 1> MAP_FIXED == false 1262 * unallocated memory, no need to check sealing. 1263 * 1> MAP_FIXED == true 1264 * sealing is checked inside mmap_region when 1265 * do_vmi_munmap is called. 1266 */ 1267 1268 if (prot == PROT_EXEC) { 1269 pkey = execute_only_pkey(mm); 1270 if (pkey < 0) 1271 pkey = 0; 1272 } 1273 1274 /* Do simple checking here so the lower-level routines won't have 1275 * to. we assume access permissions have been handled by the open 1276 * of the memory object, so we don't do any here. 1277 */ 1278 vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) | 1279 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 1280 1281 /* Obtain the address to map to. we verify (or select) it and ensure 1282 * that it represents a valid section of the address space. 1283 */ 1284 addr = __get_unmapped_area(file, addr, len, pgoff, flags, vm_flags); 1285 if (IS_ERR_VALUE(addr)) 1286 return addr; 1287 1288 if (flags & MAP_FIXED_NOREPLACE) { 1289 if (find_vma_intersection(mm, addr, addr + len)) 1290 return -EEXIST; 1291 } 1292 1293 if (flags & MAP_LOCKED) 1294 if (!can_do_mlock()) 1295 return -EPERM; 1296 1297 if (!mlock_future_ok(mm, vm_flags, len)) 1298 return -EAGAIN; 1299 1300 if (file) { 1301 struct inode *inode = file_inode(file); 1302 unsigned long flags_mask; 1303 1304 if (!file_mmap_ok(file, inode, pgoff, len)) 1305 return -EOVERFLOW; 1306 1307 flags_mask = LEGACY_MAP_MASK; 1308 if (file->f_op->fop_flags & FOP_MMAP_SYNC) 1309 flags_mask |= MAP_SYNC; 1310 1311 switch (flags & MAP_TYPE) { 1312 case MAP_SHARED: 1313 /* 1314 * Force use of MAP_SHARED_VALIDATE with non-legacy 1315 * flags. E.g. MAP_SYNC is dangerous to use with 1316 * MAP_SHARED as you don't know which consistency model 1317 * you will get. We silently ignore unsupported flags 1318 * with MAP_SHARED to preserve backward compatibility. 1319 */ 1320 flags &= LEGACY_MAP_MASK; 1321 fallthrough; 1322 case MAP_SHARED_VALIDATE: 1323 if (flags & ~flags_mask) 1324 return -EOPNOTSUPP; 1325 if (prot & PROT_WRITE) { 1326 if (!(file->f_mode & FMODE_WRITE)) 1327 return -EACCES; 1328 if (IS_SWAPFILE(file->f_mapping->host)) 1329 return -ETXTBSY; 1330 } 1331 1332 /* 1333 * Make sure we don't allow writing to an append-only 1334 * file.. 1335 */ 1336 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE)) 1337 return -EACCES; 1338 1339 vm_flags |= VM_SHARED | VM_MAYSHARE; 1340 if (!(file->f_mode & FMODE_WRITE)) 1341 vm_flags &= ~(VM_MAYWRITE | VM_SHARED); 1342 fallthrough; 1343 case MAP_PRIVATE: 1344 if (!(file->f_mode & FMODE_READ)) 1345 return -EACCES; 1346 if (path_noexec(&file->f_path)) { 1347 if (vm_flags & VM_EXEC) 1348 return -EPERM; 1349 vm_flags &= ~VM_MAYEXEC; 1350 } 1351 1352 if (!file->f_op->mmap) 1353 return -ENODEV; 1354 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1355 return -EINVAL; 1356 break; 1357 1358 default: 1359 return -EINVAL; 1360 } 1361 } else { 1362 switch (flags & MAP_TYPE) { 1363 case MAP_SHARED: 1364 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1365 return -EINVAL; 1366 /* 1367 * Ignore pgoff. 1368 */ 1369 pgoff = 0; 1370 vm_flags |= VM_SHARED | VM_MAYSHARE; 1371 break; 1372 case MAP_PRIVATE: 1373 /* 1374 * Set pgoff according to addr for anon_vma. 1375 */ 1376 pgoff = addr >> PAGE_SHIFT; 1377 break; 1378 default: 1379 return -EINVAL; 1380 } 1381 } 1382 1383 /* 1384 * Set 'VM_NORESERVE' if we should not account for the 1385 * memory use of this mapping. 1386 */ 1387 if (flags & MAP_NORESERVE) { 1388 /* We honor MAP_NORESERVE if allowed to overcommit */ 1389 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER) 1390 vm_flags |= VM_NORESERVE; 1391 1392 /* hugetlb applies strict overcommit unless MAP_NORESERVE */ 1393 if (file && is_file_hugepages(file)) 1394 vm_flags |= VM_NORESERVE; 1395 } 1396 1397 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf); 1398 if (!IS_ERR_VALUE(addr) && 1399 ((vm_flags & VM_LOCKED) || 1400 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE)) 1401 *populate = len; 1402 return addr; 1403 } 1404 1405 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len, 1406 unsigned long prot, unsigned long flags, 1407 unsigned long fd, unsigned long pgoff) 1408 { 1409 struct file *file = NULL; 1410 unsigned long retval; 1411 1412 if (!(flags & MAP_ANONYMOUS)) { 1413 audit_mmap_fd(fd, flags); 1414 file = fget(fd); 1415 if (!file) 1416 return -EBADF; 1417 if (is_file_hugepages(file)) { 1418 len = ALIGN(len, huge_page_size(hstate_file(file))); 1419 } else if (unlikely(flags & MAP_HUGETLB)) { 1420 retval = -EINVAL; 1421 goto out_fput; 1422 } 1423 } else if (flags & MAP_HUGETLB) { 1424 struct hstate *hs; 1425 1426 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 1427 if (!hs) 1428 return -EINVAL; 1429 1430 len = ALIGN(len, huge_page_size(hs)); 1431 /* 1432 * VM_NORESERVE is used because the reservations will be 1433 * taken when vm_ops->mmap() is called 1434 */ 1435 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, 1436 VM_NORESERVE, 1437 HUGETLB_ANONHUGE_INODE, 1438 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 1439 if (IS_ERR(file)) 1440 return PTR_ERR(file); 1441 } 1442 1443 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1444 out_fput: 1445 if (file) 1446 fput(file); 1447 return retval; 1448 } 1449 1450 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1451 unsigned long, prot, unsigned long, flags, 1452 unsigned long, fd, unsigned long, pgoff) 1453 { 1454 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff); 1455 } 1456 1457 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1458 struct mmap_arg_struct { 1459 unsigned long addr; 1460 unsigned long len; 1461 unsigned long prot; 1462 unsigned long flags; 1463 unsigned long fd; 1464 unsigned long offset; 1465 }; 1466 1467 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1468 { 1469 struct mmap_arg_struct a; 1470 1471 if (copy_from_user(&a, arg, sizeof(a))) 1472 return -EFAULT; 1473 if (offset_in_page(a.offset)) 1474 return -EINVAL; 1475 1476 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1477 a.offset >> PAGE_SHIFT); 1478 } 1479 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1480 1481 static bool vm_ops_needs_writenotify(const struct vm_operations_struct *vm_ops) 1482 { 1483 return vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite); 1484 } 1485 1486 static bool vma_is_shared_writable(struct vm_area_struct *vma) 1487 { 1488 return (vma->vm_flags & (VM_WRITE | VM_SHARED)) == 1489 (VM_WRITE | VM_SHARED); 1490 } 1491 1492 static bool vma_fs_can_writeback(struct vm_area_struct *vma) 1493 { 1494 /* No managed pages to writeback. */ 1495 if (vma->vm_flags & VM_PFNMAP) 1496 return false; 1497 1498 return vma->vm_file && vma->vm_file->f_mapping && 1499 mapping_can_writeback(vma->vm_file->f_mapping); 1500 } 1501 1502 /* 1503 * Does this VMA require the underlying folios to have their dirty state 1504 * tracked? 1505 */ 1506 bool vma_needs_dirty_tracking(struct vm_area_struct *vma) 1507 { 1508 /* Only shared, writable VMAs require dirty tracking. */ 1509 if (!vma_is_shared_writable(vma)) 1510 return false; 1511 1512 /* Does the filesystem need to be notified? */ 1513 if (vm_ops_needs_writenotify(vma->vm_ops)) 1514 return true; 1515 1516 /* 1517 * Even if the filesystem doesn't indicate a need for writenotify, if it 1518 * can writeback, dirty tracking is still required. 1519 */ 1520 return vma_fs_can_writeback(vma); 1521 } 1522 1523 /* 1524 * Some shared mappings will want the pages marked read-only 1525 * to track write events. If so, we'll downgrade vm_page_prot 1526 * to the private version (using protection_map[] without the 1527 * VM_SHARED bit). 1528 */ 1529 bool vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot) 1530 { 1531 /* If it was private or non-writable, the write bit is already clear */ 1532 if (!vma_is_shared_writable(vma)) 1533 return false; 1534 1535 /* The backer wishes to know when pages are first written to? */ 1536 if (vm_ops_needs_writenotify(vma->vm_ops)) 1537 return true; 1538 1539 /* The open routine did something to the protections that pgprot_modify 1540 * won't preserve? */ 1541 if (pgprot_val(vm_page_prot) != 1542 pgprot_val(vm_pgprot_modify(vm_page_prot, vma->vm_flags))) 1543 return false; 1544 1545 /* 1546 * Do we need to track softdirty? hugetlb does not support softdirty 1547 * tracking yet. 1548 */ 1549 if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma)) 1550 return true; 1551 1552 /* Do we need write faults for uffd-wp tracking? */ 1553 if (userfaultfd_wp(vma)) 1554 return true; 1555 1556 /* Can the mapping track the dirty pages? */ 1557 return vma_fs_can_writeback(vma); 1558 } 1559 1560 /* 1561 * We account for memory if it's a private writeable mapping, 1562 * not hugepages and VM_NORESERVE wasn't set. 1563 */ 1564 static inline bool accountable_mapping(struct file *file, vm_flags_t vm_flags) 1565 { 1566 /* 1567 * hugetlb has its own accounting separate from the core VM 1568 * VM_HUGETLB may not be set yet so we cannot check for that flag. 1569 */ 1570 if (file && is_file_hugepages(file)) 1571 return false; 1572 1573 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE; 1574 } 1575 1576 /** 1577 * unmapped_area() - Find an area between the low_limit and the high_limit with 1578 * the correct alignment and offset, all from @info. Note: current->mm is used 1579 * for the search. 1580 * 1581 * @info: The unmapped area information including the range [low_limit - 1582 * high_limit), the alignment offset and mask. 1583 * 1584 * Return: A memory address or -ENOMEM. 1585 */ 1586 static unsigned long unmapped_area(struct vm_unmapped_area_info *info) 1587 { 1588 unsigned long length, gap; 1589 unsigned long low_limit, high_limit; 1590 struct vm_area_struct *tmp; 1591 VMA_ITERATOR(vmi, current->mm, 0); 1592 1593 /* Adjust search length to account for worst case alignment overhead */ 1594 length = info->length + info->align_mask + info->start_gap; 1595 if (length < info->length) 1596 return -ENOMEM; 1597 1598 low_limit = info->low_limit; 1599 if (low_limit < mmap_min_addr) 1600 low_limit = mmap_min_addr; 1601 high_limit = info->high_limit; 1602 retry: 1603 if (vma_iter_area_lowest(&vmi, low_limit, high_limit, length)) 1604 return -ENOMEM; 1605 1606 /* 1607 * Adjust for the gap first so it doesn't interfere with the 1608 * later alignment. The first step is the minimum needed to 1609 * fulill the start gap, the next steps is the minimum to align 1610 * that. It is the minimum needed to fulill both. 1611 */ 1612 gap = vma_iter_addr(&vmi) + info->start_gap; 1613 gap += (info->align_offset - gap) & info->align_mask; 1614 tmp = vma_next(&vmi); 1615 if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */ 1616 if (vm_start_gap(tmp) < gap + length - 1) { 1617 low_limit = tmp->vm_end; 1618 vma_iter_reset(&vmi); 1619 goto retry; 1620 } 1621 } else { 1622 tmp = vma_prev(&vmi); 1623 if (tmp && vm_end_gap(tmp) > gap) { 1624 low_limit = vm_end_gap(tmp); 1625 vma_iter_reset(&vmi); 1626 goto retry; 1627 } 1628 } 1629 1630 return gap; 1631 } 1632 1633 /** 1634 * unmapped_area_topdown() - Find an area between the low_limit and the 1635 * high_limit with the correct alignment and offset at the highest available 1636 * address, all from @info. Note: current->mm is used for the search. 1637 * 1638 * @info: The unmapped area information including the range [low_limit - 1639 * high_limit), the alignment offset and mask. 1640 * 1641 * Return: A memory address or -ENOMEM. 1642 */ 1643 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info) 1644 { 1645 unsigned long length, gap, gap_end; 1646 unsigned long low_limit, high_limit; 1647 struct vm_area_struct *tmp; 1648 VMA_ITERATOR(vmi, current->mm, 0); 1649 1650 /* Adjust search length to account for worst case alignment overhead */ 1651 length = info->length + info->align_mask + info->start_gap; 1652 if (length < info->length) 1653 return -ENOMEM; 1654 1655 low_limit = info->low_limit; 1656 if (low_limit < mmap_min_addr) 1657 low_limit = mmap_min_addr; 1658 high_limit = info->high_limit; 1659 retry: 1660 if (vma_iter_area_highest(&vmi, low_limit, high_limit, length)) 1661 return -ENOMEM; 1662 1663 gap = vma_iter_end(&vmi) - info->length; 1664 gap -= (gap - info->align_offset) & info->align_mask; 1665 gap_end = vma_iter_end(&vmi); 1666 tmp = vma_next(&vmi); 1667 if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */ 1668 if (vm_start_gap(tmp) < gap_end) { 1669 high_limit = vm_start_gap(tmp); 1670 vma_iter_reset(&vmi); 1671 goto retry; 1672 } 1673 } else { 1674 tmp = vma_prev(&vmi); 1675 if (tmp && vm_end_gap(tmp) > gap) { 1676 high_limit = tmp->vm_start; 1677 vma_iter_reset(&vmi); 1678 goto retry; 1679 } 1680 } 1681 1682 return gap; 1683 } 1684 1685 /* 1686 * Search for an unmapped address range. 1687 * 1688 * We are looking for a range that: 1689 * - does not intersect with any VMA; 1690 * - is contained within the [low_limit, high_limit) interval; 1691 * - is at least the desired size. 1692 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) 1693 */ 1694 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info) 1695 { 1696 unsigned long addr; 1697 1698 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN) 1699 addr = unmapped_area_topdown(info); 1700 else 1701 addr = unmapped_area(info); 1702 1703 trace_vm_unmapped_area(addr, info); 1704 return addr; 1705 } 1706 1707 /* Get an address range which is currently unmapped. 1708 * For shmat() with addr=0. 1709 * 1710 * Ugly calling convention alert: 1711 * Return value with the low bits set means error value, 1712 * ie 1713 * if (ret & ~PAGE_MASK) 1714 * error = ret; 1715 * 1716 * This function "knows" that -ENOMEM has the bits set. 1717 */ 1718 unsigned long 1719 generic_get_unmapped_area(struct file *filp, unsigned long addr, 1720 unsigned long len, unsigned long pgoff, 1721 unsigned long flags) 1722 { 1723 struct mm_struct *mm = current->mm; 1724 struct vm_area_struct *vma, *prev; 1725 struct vm_unmapped_area_info info = {}; 1726 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags); 1727 1728 if (len > mmap_end - mmap_min_addr) 1729 return -ENOMEM; 1730 1731 if (flags & MAP_FIXED) 1732 return addr; 1733 1734 if (addr) { 1735 addr = PAGE_ALIGN(addr); 1736 vma = find_vma_prev(mm, addr, &prev); 1737 if (mmap_end - len >= addr && addr >= mmap_min_addr && 1738 (!vma || addr + len <= vm_start_gap(vma)) && 1739 (!prev || addr >= vm_end_gap(prev))) 1740 return addr; 1741 } 1742 1743 info.length = len; 1744 info.low_limit = mm->mmap_base; 1745 info.high_limit = mmap_end; 1746 return vm_unmapped_area(&info); 1747 } 1748 1749 #ifndef HAVE_ARCH_UNMAPPED_AREA 1750 unsigned long 1751 arch_get_unmapped_area(struct file *filp, unsigned long addr, 1752 unsigned long len, unsigned long pgoff, 1753 unsigned long flags) 1754 { 1755 return generic_get_unmapped_area(filp, addr, len, pgoff, flags); 1756 } 1757 #endif 1758 1759 /* 1760 * This mmap-allocator allocates new areas top-down from below the 1761 * stack's low limit (the base): 1762 */ 1763 unsigned long 1764 generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 1765 unsigned long len, unsigned long pgoff, 1766 unsigned long flags) 1767 { 1768 struct vm_area_struct *vma, *prev; 1769 struct mm_struct *mm = current->mm; 1770 struct vm_unmapped_area_info info = {}; 1771 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags); 1772 1773 /* requested length too big for entire address space */ 1774 if (len > mmap_end - mmap_min_addr) 1775 return -ENOMEM; 1776 1777 if (flags & MAP_FIXED) 1778 return addr; 1779 1780 /* requesting a specific address */ 1781 if (addr) { 1782 addr = PAGE_ALIGN(addr); 1783 vma = find_vma_prev(mm, addr, &prev); 1784 if (mmap_end - len >= addr && addr >= mmap_min_addr && 1785 (!vma || addr + len <= vm_start_gap(vma)) && 1786 (!prev || addr >= vm_end_gap(prev))) 1787 return addr; 1788 } 1789 1790 info.flags = VM_UNMAPPED_AREA_TOPDOWN; 1791 info.length = len; 1792 info.low_limit = PAGE_SIZE; 1793 info.high_limit = arch_get_mmap_base(addr, mm->mmap_base); 1794 addr = vm_unmapped_area(&info); 1795 1796 /* 1797 * A failed mmap() very likely causes application failure, 1798 * so fall back to the bottom-up function here. This scenario 1799 * can happen with large stack limits and large mmap() 1800 * allocations. 1801 */ 1802 if (offset_in_page(addr)) { 1803 VM_BUG_ON(addr != -ENOMEM); 1804 info.flags = 0; 1805 info.low_limit = TASK_UNMAPPED_BASE; 1806 info.high_limit = mmap_end; 1807 addr = vm_unmapped_area(&info); 1808 } 1809 1810 return addr; 1811 } 1812 1813 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 1814 unsigned long 1815 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 1816 unsigned long len, unsigned long pgoff, 1817 unsigned long flags) 1818 { 1819 return generic_get_unmapped_area_topdown(filp, addr, len, pgoff, flags); 1820 } 1821 #endif 1822 1823 #ifndef HAVE_ARCH_UNMAPPED_AREA_VMFLAGS 1824 unsigned long 1825 arch_get_unmapped_area_vmflags(struct file *filp, unsigned long addr, unsigned long len, 1826 unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags) 1827 { 1828 return arch_get_unmapped_area(filp, addr, len, pgoff, flags); 1829 } 1830 1831 unsigned long 1832 arch_get_unmapped_area_topdown_vmflags(struct file *filp, unsigned long addr, 1833 unsigned long len, unsigned long pgoff, 1834 unsigned long flags, vm_flags_t vm_flags) 1835 { 1836 return arch_get_unmapped_area_topdown(filp, addr, len, pgoff, flags); 1837 } 1838 #endif 1839 1840 unsigned long mm_get_unmapped_area_vmflags(struct mm_struct *mm, struct file *filp, 1841 unsigned long addr, unsigned long len, 1842 unsigned long pgoff, unsigned long flags, 1843 vm_flags_t vm_flags) 1844 { 1845 if (test_bit(MMF_TOPDOWN, &mm->flags)) 1846 return arch_get_unmapped_area_topdown_vmflags(filp, addr, len, pgoff, 1847 flags, vm_flags); 1848 return arch_get_unmapped_area_vmflags(filp, addr, len, pgoff, flags, vm_flags); 1849 } 1850 1851 unsigned long 1852 __get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 1853 unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags) 1854 { 1855 unsigned long (*get_area)(struct file *, unsigned long, 1856 unsigned long, unsigned long, unsigned long) 1857 = NULL; 1858 1859 unsigned long error = arch_mmap_check(addr, len, flags); 1860 if (error) 1861 return error; 1862 1863 /* Careful about overflows.. */ 1864 if (len > TASK_SIZE) 1865 return -ENOMEM; 1866 1867 if (file) { 1868 if (file->f_op->get_unmapped_area) 1869 get_area = file->f_op->get_unmapped_area; 1870 } else if (flags & MAP_SHARED) { 1871 /* 1872 * mmap_region() will call shmem_zero_setup() to create a file, 1873 * so use shmem's get_unmapped_area in case it can be huge. 1874 */ 1875 get_area = shmem_get_unmapped_area; 1876 } 1877 1878 /* Always treat pgoff as zero for anonymous memory. */ 1879 if (!file) 1880 pgoff = 0; 1881 1882 if (get_area) { 1883 addr = get_area(file, addr, len, pgoff, flags); 1884 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { 1885 /* Ensures that larger anonymous mappings are THP aligned. */ 1886 addr = thp_get_unmapped_area_vmflags(file, addr, len, 1887 pgoff, flags, vm_flags); 1888 } else { 1889 addr = mm_get_unmapped_area_vmflags(current->mm, file, addr, len, 1890 pgoff, flags, vm_flags); 1891 } 1892 if (IS_ERR_VALUE(addr)) 1893 return addr; 1894 1895 if (addr > TASK_SIZE - len) 1896 return -ENOMEM; 1897 if (offset_in_page(addr)) 1898 return -EINVAL; 1899 1900 error = security_mmap_addr(addr); 1901 return error ? error : addr; 1902 } 1903 1904 unsigned long 1905 mm_get_unmapped_area(struct mm_struct *mm, struct file *file, 1906 unsigned long addr, unsigned long len, 1907 unsigned long pgoff, unsigned long flags) 1908 { 1909 if (test_bit(MMF_TOPDOWN, &mm->flags)) 1910 return arch_get_unmapped_area_topdown(file, addr, len, pgoff, flags); 1911 return arch_get_unmapped_area(file, addr, len, pgoff, flags); 1912 } 1913 EXPORT_SYMBOL(mm_get_unmapped_area); 1914 1915 /** 1916 * find_vma_intersection() - Look up the first VMA which intersects the interval 1917 * @mm: The process address space. 1918 * @start_addr: The inclusive start user address. 1919 * @end_addr: The exclusive end user address. 1920 * 1921 * Returns: The first VMA within the provided range, %NULL otherwise. Assumes 1922 * start_addr < end_addr. 1923 */ 1924 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm, 1925 unsigned long start_addr, 1926 unsigned long end_addr) 1927 { 1928 unsigned long index = start_addr; 1929 1930 mmap_assert_locked(mm); 1931 return mt_find(&mm->mm_mt, &index, end_addr - 1); 1932 } 1933 EXPORT_SYMBOL(find_vma_intersection); 1934 1935 /** 1936 * find_vma() - Find the VMA for a given address, or the next VMA. 1937 * @mm: The mm_struct to check 1938 * @addr: The address 1939 * 1940 * Returns: The VMA associated with addr, or the next VMA. 1941 * May return %NULL in the case of no VMA at addr or above. 1942 */ 1943 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 1944 { 1945 unsigned long index = addr; 1946 1947 mmap_assert_locked(mm); 1948 return mt_find(&mm->mm_mt, &index, ULONG_MAX); 1949 } 1950 EXPORT_SYMBOL(find_vma); 1951 1952 /** 1953 * find_vma_prev() - Find the VMA for a given address, or the next vma and 1954 * set %pprev to the previous VMA, if any. 1955 * @mm: The mm_struct to check 1956 * @addr: The address 1957 * @pprev: The pointer to set to the previous VMA 1958 * 1959 * Note that RCU lock is missing here since the external mmap_lock() is used 1960 * instead. 1961 * 1962 * Returns: The VMA associated with @addr, or the next vma. 1963 * May return %NULL in the case of no vma at addr or above. 1964 */ 1965 struct vm_area_struct * 1966 find_vma_prev(struct mm_struct *mm, unsigned long addr, 1967 struct vm_area_struct **pprev) 1968 { 1969 struct vm_area_struct *vma; 1970 VMA_ITERATOR(vmi, mm, addr); 1971 1972 vma = vma_iter_load(&vmi); 1973 *pprev = vma_prev(&vmi); 1974 if (!vma) 1975 vma = vma_next(&vmi); 1976 return vma; 1977 } 1978 1979 /* 1980 * Verify that the stack growth is acceptable and 1981 * update accounting. This is shared with both the 1982 * grow-up and grow-down cases. 1983 */ 1984 static int acct_stack_growth(struct vm_area_struct *vma, 1985 unsigned long size, unsigned long grow) 1986 { 1987 struct mm_struct *mm = vma->vm_mm; 1988 unsigned long new_start; 1989 1990 /* address space limit tests */ 1991 if (!may_expand_vm(mm, vma->vm_flags, grow)) 1992 return -ENOMEM; 1993 1994 /* Stack limit test */ 1995 if (size > rlimit(RLIMIT_STACK)) 1996 return -ENOMEM; 1997 1998 /* mlock limit tests */ 1999 if (!mlock_future_ok(mm, vma->vm_flags, grow << PAGE_SHIFT)) 2000 return -ENOMEM; 2001 2002 /* Check to ensure the stack will not grow into a hugetlb-only region */ 2003 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : 2004 vma->vm_end - size; 2005 if (is_hugepage_only_range(vma->vm_mm, new_start, size)) 2006 return -EFAULT; 2007 2008 /* 2009 * Overcommit.. This must be the final test, as it will 2010 * update security statistics. 2011 */ 2012 if (security_vm_enough_memory_mm(mm, grow)) 2013 return -ENOMEM; 2014 2015 return 0; 2016 } 2017 2018 #if defined(CONFIG_STACK_GROWSUP) 2019 /* 2020 * PA-RISC uses this for its stack. 2021 * vma is the last one with address > vma->vm_end. Have to extend vma. 2022 */ 2023 static int expand_upwards(struct vm_area_struct *vma, unsigned long address) 2024 { 2025 struct mm_struct *mm = vma->vm_mm; 2026 struct vm_area_struct *next; 2027 unsigned long gap_addr; 2028 int error = 0; 2029 VMA_ITERATOR(vmi, mm, vma->vm_start); 2030 2031 if (!(vma->vm_flags & VM_GROWSUP)) 2032 return -EFAULT; 2033 2034 /* Guard against exceeding limits of the address space. */ 2035 address &= PAGE_MASK; 2036 if (address >= (TASK_SIZE & PAGE_MASK)) 2037 return -ENOMEM; 2038 address += PAGE_SIZE; 2039 2040 /* Enforce stack_guard_gap */ 2041 gap_addr = address + stack_guard_gap; 2042 2043 /* Guard against overflow */ 2044 if (gap_addr < address || gap_addr > TASK_SIZE) 2045 gap_addr = TASK_SIZE; 2046 2047 next = find_vma_intersection(mm, vma->vm_end, gap_addr); 2048 if (next && vma_is_accessible(next)) { 2049 if (!(next->vm_flags & VM_GROWSUP)) 2050 return -ENOMEM; 2051 /* Check that both stack segments have the same anon_vma? */ 2052 } 2053 2054 if (next) 2055 vma_iter_prev_range_limit(&vmi, address); 2056 2057 vma_iter_config(&vmi, vma->vm_start, address); 2058 if (vma_iter_prealloc(&vmi, vma)) 2059 return -ENOMEM; 2060 2061 /* We must make sure the anon_vma is allocated. */ 2062 if (unlikely(anon_vma_prepare(vma))) { 2063 vma_iter_free(&vmi); 2064 return -ENOMEM; 2065 } 2066 2067 /* Lock the VMA before expanding to prevent concurrent page faults */ 2068 vma_start_write(vma); 2069 /* 2070 * vma->vm_start/vm_end cannot change under us because the caller 2071 * is required to hold the mmap_lock in read mode. We need the 2072 * anon_vma lock to serialize against concurrent expand_stacks. 2073 */ 2074 anon_vma_lock_write(vma->anon_vma); 2075 2076 /* Somebody else might have raced and expanded it already */ 2077 if (address > vma->vm_end) { 2078 unsigned long size, grow; 2079 2080 size = address - vma->vm_start; 2081 grow = (address - vma->vm_end) >> PAGE_SHIFT; 2082 2083 error = -ENOMEM; 2084 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) { 2085 error = acct_stack_growth(vma, size, grow); 2086 if (!error) { 2087 /* 2088 * We only hold a shared mmap_lock lock here, so 2089 * we need to protect against concurrent vma 2090 * expansions. anon_vma_lock_write() doesn't 2091 * help here, as we don't guarantee that all 2092 * growable vmas in a mm share the same root 2093 * anon vma. So, we reuse mm->page_table_lock 2094 * to guard against concurrent vma expansions. 2095 */ 2096 spin_lock(&mm->page_table_lock); 2097 if (vma->vm_flags & VM_LOCKED) 2098 mm->locked_vm += grow; 2099 vm_stat_account(mm, vma->vm_flags, grow); 2100 anon_vma_interval_tree_pre_update_vma(vma); 2101 vma->vm_end = address; 2102 /* Overwrite old entry in mtree. */ 2103 vma_iter_store(&vmi, vma); 2104 anon_vma_interval_tree_post_update_vma(vma); 2105 spin_unlock(&mm->page_table_lock); 2106 2107 perf_event_mmap(vma); 2108 } 2109 } 2110 } 2111 anon_vma_unlock_write(vma->anon_vma); 2112 vma_iter_free(&vmi); 2113 validate_mm(mm); 2114 return error; 2115 } 2116 #endif /* CONFIG_STACK_GROWSUP */ 2117 2118 /* 2119 * vma is the first one with address < vma->vm_start. Have to extend vma. 2120 * mmap_lock held for writing. 2121 */ 2122 int expand_downwards(struct vm_area_struct *vma, unsigned long address) 2123 { 2124 struct mm_struct *mm = vma->vm_mm; 2125 struct vm_area_struct *prev; 2126 int error = 0; 2127 VMA_ITERATOR(vmi, mm, vma->vm_start); 2128 2129 if (!(vma->vm_flags & VM_GROWSDOWN)) 2130 return -EFAULT; 2131 2132 address &= PAGE_MASK; 2133 if (address < mmap_min_addr || address < FIRST_USER_ADDRESS) 2134 return -EPERM; 2135 2136 /* Enforce stack_guard_gap */ 2137 prev = vma_prev(&vmi); 2138 /* Check that both stack segments have the same anon_vma? */ 2139 if (prev) { 2140 if (!(prev->vm_flags & VM_GROWSDOWN) && 2141 vma_is_accessible(prev) && 2142 (address - prev->vm_end < stack_guard_gap)) 2143 return -ENOMEM; 2144 } 2145 2146 if (prev) 2147 vma_iter_next_range_limit(&vmi, vma->vm_start); 2148 2149 vma_iter_config(&vmi, address, vma->vm_end); 2150 if (vma_iter_prealloc(&vmi, vma)) 2151 return -ENOMEM; 2152 2153 /* We must make sure the anon_vma is allocated. */ 2154 if (unlikely(anon_vma_prepare(vma))) { 2155 vma_iter_free(&vmi); 2156 return -ENOMEM; 2157 } 2158 2159 /* Lock the VMA before expanding to prevent concurrent page faults */ 2160 vma_start_write(vma); 2161 /* 2162 * vma->vm_start/vm_end cannot change under us because the caller 2163 * is required to hold the mmap_lock in read mode. We need the 2164 * anon_vma lock to serialize against concurrent expand_stacks. 2165 */ 2166 anon_vma_lock_write(vma->anon_vma); 2167 2168 /* Somebody else might have raced and expanded it already */ 2169 if (address < vma->vm_start) { 2170 unsigned long size, grow; 2171 2172 size = vma->vm_end - address; 2173 grow = (vma->vm_start - address) >> PAGE_SHIFT; 2174 2175 error = -ENOMEM; 2176 if (grow <= vma->vm_pgoff) { 2177 error = acct_stack_growth(vma, size, grow); 2178 if (!error) { 2179 /* 2180 * We only hold a shared mmap_lock lock here, so 2181 * we need to protect against concurrent vma 2182 * expansions. anon_vma_lock_write() doesn't 2183 * help here, as we don't guarantee that all 2184 * growable vmas in a mm share the same root 2185 * anon vma. So, we reuse mm->page_table_lock 2186 * to guard against concurrent vma expansions. 2187 */ 2188 spin_lock(&mm->page_table_lock); 2189 if (vma->vm_flags & VM_LOCKED) 2190 mm->locked_vm += grow; 2191 vm_stat_account(mm, vma->vm_flags, grow); 2192 anon_vma_interval_tree_pre_update_vma(vma); 2193 vma->vm_start = address; 2194 vma->vm_pgoff -= grow; 2195 /* Overwrite old entry in mtree. */ 2196 vma_iter_store(&vmi, vma); 2197 anon_vma_interval_tree_post_update_vma(vma); 2198 spin_unlock(&mm->page_table_lock); 2199 2200 perf_event_mmap(vma); 2201 } 2202 } 2203 } 2204 anon_vma_unlock_write(vma->anon_vma); 2205 vma_iter_free(&vmi); 2206 validate_mm(mm); 2207 return error; 2208 } 2209 2210 /* enforced gap between the expanding stack and other mappings. */ 2211 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT; 2212 2213 static int __init cmdline_parse_stack_guard_gap(char *p) 2214 { 2215 unsigned long val; 2216 char *endptr; 2217 2218 val = simple_strtoul(p, &endptr, 10); 2219 if (!*endptr) 2220 stack_guard_gap = val << PAGE_SHIFT; 2221 2222 return 1; 2223 } 2224 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap); 2225 2226 #ifdef CONFIG_STACK_GROWSUP 2227 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address) 2228 { 2229 return expand_upwards(vma, address); 2230 } 2231 2232 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr) 2233 { 2234 struct vm_area_struct *vma, *prev; 2235 2236 addr &= PAGE_MASK; 2237 vma = find_vma_prev(mm, addr, &prev); 2238 if (vma && (vma->vm_start <= addr)) 2239 return vma; 2240 if (!prev) 2241 return NULL; 2242 if (expand_stack_locked(prev, addr)) 2243 return NULL; 2244 if (prev->vm_flags & VM_LOCKED) 2245 populate_vma_page_range(prev, addr, prev->vm_end, NULL); 2246 return prev; 2247 } 2248 #else 2249 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address) 2250 { 2251 return expand_downwards(vma, address); 2252 } 2253 2254 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr) 2255 { 2256 struct vm_area_struct *vma; 2257 unsigned long start; 2258 2259 addr &= PAGE_MASK; 2260 vma = find_vma(mm, addr); 2261 if (!vma) 2262 return NULL; 2263 if (vma->vm_start <= addr) 2264 return vma; 2265 start = vma->vm_start; 2266 if (expand_stack_locked(vma, addr)) 2267 return NULL; 2268 if (vma->vm_flags & VM_LOCKED) 2269 populate_vma_page_range(vma, addr, start, NULL); 2270 return vma; 2271 } 2272 #endif 2273 2274 #if defined(CONFIG_STACK_GROWSUP) 2275 2276 #define vma_expand_up(vma,addr) expand_upwards(vma, addr) 2277 #define vma_expand_down(vma, addr) (-EFAULT) 2278 2279 #else 2280 2281 #define vma_expand_up(vma,addr) (-EFAULT) 2282 #define vma_expand_down(vma, addr) expand_downwards(vma, addr) 2283 2284 #endif 2285 2286 /* 2287 * expand_stack(): legacy interface for page faulting. Don't use unless 2288 * you have to. 2289 * 2290 * This is called with the mm locked for reading, drops the lock, takes 2291 * the lock for writing, tries to look up a vma again, expands it if 2292 * necessary, and downgrades the lock to reading again. 2293 * 2294 * If no vma is found or it can't be expanded, it returns NULL and has 2295 * dropped the lock. 2296 */ 2297 struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr) 2298 { 2299 struct vm_area_struct *vma, *prev; 2300 2301 mmap_read_unlock(mm); 2302 if (mmap_write_lock_killable(mm)) 2303 return NULL; 2304 2305 vma = find_vma_prev(mm, addr, &prev); 2306 if (vma && vma->vm_start <= addr) 2307 goto success; 2308 2309 if (prev && !vma_expand_up(prev, addr)) { 2310 vma = prev; 2311 goto success; 2312 } 2313 2314 if (vma && !vma_expand_down(vma, addr)) 2315 goto success; 2316 2317 mmap_write_unlock(mm); 2318 return NULL; 2319 2320 success: 2321 mmap_write_downgrade(mm); 2322 return vma; 2323 } 2324 2325 /* 2326 * Ok - we have the memory areas we should free on a maple tree so release them, 2327 * and do the vma updates. 2328 * 2329 * Called with the mm semaphore held. 2330 */ 2331 static inline void remove_mt(struct mm_struct *mm, struct ma_state *mas) 2332 { 2333 unsigned long nr_accounted = 0; 2334 struct vm_area_struct *vma; 2335 2336 /* Update high watermark before we lower total_vm */ 2337 update_hiwater_vm(mm); 2338 mas_for_each(mas, vma, ULONG_MAX) { 2339 long nrpages = vma_pages(vma); 2340 2341 if (vma->vm_flags & VM_ACCOUNT) 2342 nr_accounted += nrpages; 2343 vm_stat_account(mm, vma->vm_flags, -nrpages); 2344 remove_vma(vma, false); 2345 } 2346 vm_unacct_memory(nr_accounted); 2347 } 2348 2349 /* 2350 * Get rid of page table information in the indicated region. 2351 * 2352 * Called with the mm semaphore held. 2353 */ 2354 static void unmap_region(struct mm_struct *mm, struct ma_state *mas, 2355 struct vm_area_struct *vma, struct vm_area_struct *prev, 2356 struct vm_area_struct *next, unsigned long start, 2357 unsigned long end, unsigned long tree_end, bool mm_wr_locked) 2358 { 2359 struct mmu_gather tlb; 2360 unsigned long mt_start = mas->index; 2361 2362 lru_add_drain(); 2363 tlb_gather_mmu(&tlb, mm); 2364 update_hiwater_rss(mm); 2365 unmap_vmas(&tlb, mas, vma, start, end, tree_end, mm_wr_locked); 2366 mas_set(mas, mt_start); 2367 free_pgtables(&tlb, mas, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS, 2368 next ? next->vm_start : USER_PGTABLES_CEILING, 2369 mm_wr_locked); 2370 tlb_finish_mmu(&tlb); 2371 } 2372 2373 /* 2374 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it 2375 * has already been checked or doesn't make sense to fail. 2376 * VMA Iterator will point to the end VMA. 2377 */ 2378 static int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma, 2379 unsigned long addr, int new_below) 2380 { 2381 struct vma_prepare vp; 2382 struct vm_area_struct *new; 2383 int err; 2384 2385 WARN_ON(vma->vm_start >= addr); 2386 WARN_ON(vma->vm_end <= addr); 2387 2388 if (vma->vm_ops && vma->vm_ops->may_split) { 2389 err = vma->vm_ops->may_split(vma, addr); 2390 if (err) 2391 return err; 2392 } 2393 2394 new = vm_area_dup(vma); 2395 if (!new) 2396 return -ENOMEM; 2397 2398 if (new_below) { 2399 new->vm_end = addr; 2400 } else { 2401 new->vm_start = addr; 2402 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); 2403 } 2404 2405 err = -ENOMEM; 2406 vma_iter_config(vmi, new->vm_start, new->vm_end); 2407 if (vma_iter_prealloc(vmi, new)) 2408 goto out_free_vma; 2409 2410 err = vma_dup_policy(vma, new); 2411 if (err) 2412 goto out_free_vmi; 2413 2414 err = anon_vma_clone(new, vma); 2415 if (err) 2416 goto out_free_mpol; 2417 2418 if (new->vm_file) 2419 get_file(new->vm_file); 2420 2421 if (new->vm_ops && new->vm_ops->open) 2422 new->vm_ops->open(new); 2423 2424 vma_start_write(vma); 2425 vma_start_write(new); 2426 2427 init_vma_prep(&vp, vma); 2428 vp.insert = new; 2429 vma_prepare(&vp); 2430 vma_adjust_trans_huge(vma, vma->vm_start, addr, 0); 2431 2432 if (new_below) { 2433 vma->vm_start = addr; 2434 vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT; 2435 } else { 2436 vma->vm_end = addr; 2437 } 2438 2439 /* vma_complete stores the new vma */ 2440 vma_complete(&vp, vmi, vma->vm_mm); 2441 2442 /* Success. */ 2443 if (new_below) 2444 vma_next(vmi); 2445 return 0; 2446 2447 out_free_mpol: 2448 mpol_put(vma_policy(new)); 2449 out_free_vmi: 2450 vma_iter_free(vmi); 2451 out_free_vma: 2452 vm_area_free(new); 2453 return err; 2454 } 2455 2456 /* 2457 * Split a vma into two pieces at address 'addr', a new vma is allocated 2458 * either for the first part or the tail. 2459 */ 2460 static int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma, 2461 unsigned long addr, int new_below) 2462 { 2463 if (vma->vm_mm->map_count >= sysctl_max_map_count) 2464 return -ENOMEM; 2465 2466 return __split_vma(vmi, vma, addr, new_below); 2467 } 2468 2469 /* 2470 * We are about to modify one or multiple of a VMA's flags, policy, userfaultfd 2471 * context and anonymous VMA name within the range [start, end). 2472 * 2473 * As a result, we might be able to merge the newly modified VMA range with an 2474 * adjacent VMA with identical properties. 2475 * 2476 * If no merge is possible and the range does not span the entirety of the VMA, 2477 * we then need to split the VMA to accommodate the change. 2478 * 2479 * The function returns either the merged VMA, the original VMA if a split was 2480 * required instead, or an error if the split failed. 2481 */ 2482 struct vm_area_struct *vma_modify(struct vma_iterator *vmi, 2483 struct vm_area_struct *prev, 2484 struct vm_area_struct *vma, 2485 unsigned long start, unsigned long end, 2486 unsigned long vm_flags, 2487 struct mempolicy *policy, 2488 struct vm_userfaultfd_ctx uffd_ctx, 2489 struct anon_vma_name *anon_name) 2490 { 2491 pgoff_t pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT); 2492 struct vm_area_struct *merged; 2493 2494 merged = vma_merge(vmi, prev, vma, start, end, vm_flags, 2495 pgoff, policy, uffd_ctx, anon_name); 2496 if (merged) 2497 return merged; 2498 2499 if (vma->vm_start < start) { 2500 int err = split_vma(vmi, vma, start, 1); 2501 2502 if (err) 2503 return ERR_PTR(err); 2504 } 2505 2506 if (vma->vm_end > end) { 2507 int err = split_vma(vmi, vma, end, 0); 2508 2509 if (err) 2510 return ERR_PTR(err); 2511 } 2512 2513 return vma; 2514 } 2515 2516 /* 2517 * Attempt to merge a newly mapped VMA with those adjacent to it. The caller 2518 * must ensure that [start, end) does not overlap any existing VMA. 2519 */ 2520 static struct vm_area_struct 2521 *vma_merge_new_vma(struct vma_iterator *vmi, struct vm_area_struct *prev, 2522 struct vm_area_struct *vma, unsigned long start, 2523 unsigned long end, pgoff_t pgoff) 2524 { 2525 return vma_merge(vmi, prev, vma, start, end, vma->vm_flags, pgoff, 2526 vma_policy(vma), vma->vm_userfaultfd_ctx, anon_vma_name(vma)); 2527 } 2528 2529 /* 2530 * Expand vma by delta bytes, potentially merging with an immediately adjacent 2531 * VMA with identical properties. 2532 */ 2533 struct vm_area_struct *vma_merge_extend(struct vma_iterator *vmi, 2534 struct vm_area_struct *vma, 2535 unsigned long delta) 2536 { 2537 pgoff_t pgoff = vma->vm_pgoff + vma_pages(vma); 2538 2539 /* vma is specified as prev, so case 1 or 2 will apply. */ 2540 return vma_merge(vmi, vma, vma, vma->vm_end, vma->vm_end + delta, 2541 vma->vm_flags, pgoff, vma_policy(vma), 2542 vma->vm_userfaultfd_ctx, anon_vma_name(vma)); 2543 } 2544 2545 /* 2546 * do_vmi_align_munmap() - munmap the aligned region from @start to @end. 2547 * @vmi: The vma iterator 2548 * @vma: The starting vm_area_struct 2549 * @mm: The mm_struct 2550 * @start: The aligned start address to munmap. 2551 * @end: The aligned end address to munmap. 2552 * @uf: The userfaultfd list_head 2553 * @unlock: Set to true to drop the mmap_lock. unlocking only happens on 2554 * success. 2555 * 2556 * Return: 0 on success and drops the lock if so directed, error and leaves the 2557 * lock held otherwise. 2558 */ 2559 static int 2560 do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma, 2561 struct mm_struct *mm, unsigned long start, 2562 unsigned long end, struct list_head *uf, bool unlock) 2563 { 2564 struct vm_area_struct *prev, *next = NULL; 2565 struct maple_tree mt_detach; 2566 int count = 0; 2567 int error = -ENOMEM; 2568 unsigned long locked_vm = 0; 2569 MA_STATE(mas_detach, &mt_detach, 0, 0); 2570 mt_init_flags(&mt_detach, vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK); 2571 mt_on_stack(mt_detach); 2572 2573 /* 2574 * If we need to split any vma, do it now to save pain later. 2575 * 2576 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially 2577 * unmapped vm_area_struct will remain in use: so lower split_vma 2578 * places tmp vma above, and higher split_vma places tmp vma below. 2579 */ 2580 2581 /* Does it split the first one? */ 2582 if (start > vma->vm_start) { 2583 2584 /* 2585 * Make sure that map_count on return from munmap() will 2586 * not exceed its limit; but let map_count go just above 2587 * its limit temporarily, to help free resources as expected. 2588 */ 2589 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count) 2590 goto map_count_exceeded; 2591 2592 error = __split_vma(vmi, vma, start, 1); 2593 if (error) 2594 goto start_split_failed; 2595 } 2596 2597 /* 2598 * Detach a range of VMAs from the mm. Using next as a temp variable as 2599 * it is always overwritten. 2600 */ 2601 next = vma; 2602 do { 2603 /* Does it split the end? */ 2604 if (next->vm_end > end) { 2605 error = __split_vma(vmi, next, end, 0); 2606 if (error) 2607 goto end_split_failed; 2608 } 2609 vma_start_write(next); 2610 mas_set(&mas_detach, count); 2611 error = mas_store_gfp(&mas_detach, next, GFP_KERNEL); 2612 if (error) 2613 goto munmap_gather_failed; 2614 vma_mark_detached(next, true); 2615 if (next->vm_flags & VM_LOCKED) 2616 locked_vm += vma_pages(next); 2617 2618 count++; 2619 if (unlikely(uf)) { 2620 /* 2621 * If userfaultfd_unmap_prep returns an error the vmas 2622 * will remain split, but userland will get a 2623 * highly unexpected error anyway. This is no 2624 * different than the case where the first of the two 2625 * __split_vma fails, but we don't undo the first 2626 * split, despite we could. This is unlikely enough 2627 * failure that it's not worth optimizing it for. 2628 */ 2629 error = userfaultfd_unmap_prep(next, start, end, uf); 2630 2631 if (error) 2632 goto userfaultfd_error; 2633 } 2634 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE 2635 BUG_ON(next->vm_start < start); 2636 BUG_ON(next->vm_start > end); 2637 #endif 2638 } for_each_vma_range(*vmi, next, end); 2639 2640 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE) 2641 /* Make sure no VMAs are about to be lost. */ 2642 { 2643 MA_STATE(test, &mt_detach, 0, 0); 2644 struct vm_area_struct *vma_mas, *vma_test; 2645 int test_count = 0; 2646 2647 vma_iter_set(vmi, start); 2648 rcu_read_lock(); 2649 vma_test = mas_find(&test, count - 1); 2650 for_each_vma_range(*vmi, vma_mas, end) { 2651 BUG_ON(vma_mas != vma_test); 2652 test_count++; 2653 vma_test = mas_next(&test, count - 1); 2654 } 2655 rcu_read_unlock(); 2656 BUG_ON(count != test_count); 2657 } 2658 #endif 2659 2660 while (vma_iter_addr(vmi) > start) 2661 vma_iter_prev_range(vmi); 2662 2663 error = vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL); 2664 if (error) 2665 goto clear_tree_failed; 2666 2667 /* Point of no return */ 2668 mm->locked_vm -= locked_vm; 2669 mm->map_count -= count; 2670 if (unlock) 2671 mmap_write_downgrade(mm); 2672 2673 prev = vma_iter_prev_range(vmi); 2674 next = vma_next(vmi); 2675 if (next) 2676 vma_iter_prev_range(vmi); 2677 2678 /* 2679 * We can free page tables without write-locking mmap_lock because VMAs 2680 * were isolated before we downgraded mmap_lock. 2681 */ 2682 mas_set(&mas_detach, 1); 2683 unmap_region(mm, &mas_detach, vma, prev, next, start, end, count, 2684 !unlock); 2685 /* Statistics and freeing VMAs */ 2686 mas_set(&mas_detach, 0); 2687 remove_mt(mm, &mas_detach); 2688 validate_mm(mm); 2689 if (unlock) 2690 mmap_read_unlock(mm); 2691 2692 __mt_destroy(&mt_detach); 2693 return 0; 2694 2695 clear_tree_failed: 2696 userfaultfd_error: 2697 munmap_gather_failed: 2698 end_split_failed: 2699 mas_set(&mas_detach, 0); 2700 mas_for_each(&mas_detach, next, end) 2701 vma_mark_detached(next, false); 2702 2703 __mt_destroy(&mt_detach); 2704 start_split_failed: 2705 map_count_exceeded: 2706 validate_mm(mm); 2707 return error; 2708 } 2709 2710 /* 2711 * do_vmi_munmap() - munmap a given range. 2712 * @vmi: The vma iterator 2713 * @mm: The mm_struct 2714 * @start: The start address to munmap 2715 * @len: The length of the range to munmap 2716 * @uf: The userfaultfd list_head 2717 * @unlock: set to true if the user wants to drop the mmap_lock on success 2718 * 2719 * This function takes a @mas that is either pointing to the previous VMA or set 2720 * to MA_START and sets it up to remove the mapping(s). The @len will be 2721 * aligned and any arch_unmap work will be preformed. 2722 * 2723 * Return: 0 on success and drops the lock if so directed, error and leaves the 2724 * lock held otherwise. 2725 */ 2726 int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm, 2727 unsigned long start, size_t len, struct list_head *uf, 2728 bool unlock) 2729 { 2730 unsigned long end; 2731 struct vm_area_struct *vma; 2732 2733 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start) 2734 return -EINVAL; 2735 2736 end = start + PAGE_ALIGN(len); 2737 if (end == start) 2738 return -EINVAL; 2739 2740 /* 2741 * Check if memory is sealed before arch_unmap. 2742 * Prevent unmapping a sealed VMA. 2743 * can_modify_mm assumes we have acquired the lock on MM. 2744 */ 2745 if (unlikely(!can_modify_mm(mm, start, end))) 2746 return -EPERM; 2747 2748 /* arch_unmap() might do unmaps itself. */ 2749 arch_unmap(mm, start, end); 2750 2751 /* Find the first overlapping VMA */ 2752 vma = vma_find(vmi, end); 2753 if (!vma) { 2754 if (unlock) 2755 mmap_write_unlock(mm); 2756 return 0; 2757 } 2758 2759 return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock); 2760 } 2761 2762 /* do_munmap() - Wrapper function for non-maple tree aware do_munmap() calls. 2763 * @mm: The mm_struct 2764 * @start: The start address to munmap 2765 * @len: The length to be munmapped. 2766 * @uf: The userfaultfd list_head 2767 * 2768 * Return: 0 on success, error otherwise. 2769 */ 2770 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, 2771 struct list_head *uf) 2772 { 2773 VMA_ITERATOR(vmi, mm, start); 2774 2775 return do_vmi_munmap(&vmi, mm, start, len, uf, false); 2776 } 2777 2778 unsigned long mmap_region(struct file *file, unsigned long addr, 2779 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2780 struct list_head *uf) 2781 { 2782 struct mm_struct *mm = current->mm; 2783 struct vm_area_struct *vma = NULL; 2784 struct vm_area_struct *next, *prev, *merge; 2785 pgoff_t pglen = len >> PAGE_SHIFT; 2786 unsigned long charged = 0; 2787 unsigned long end = addr + len; 2788 unsigned long merge_start = addr, merge_end = end; 2789 bool writable_file_mapping = false; 2790 pgoff_t vm_pgoff; 2791 int error; 2792 VMA_ITERATOR(vmi, mm, addr); 2793 2794 /* Check against address space limit. */ 2795 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) { 2796 unsigned long nr_pages; 2797 2798 /* 2799 * MAP_FIXED may remove pages of mappings that intersects with 2800 * requested mapping. Account for the pages it would unmap. 2801 */ 2802 nr_pages = count_vma_pages_range(mm, addr, end); 2803 2804 if (!may_expand_vm(mm, vm_flags, 2805 (len >> PAGE_SHIFT) - nr_pages)) 2806 return -ENOMEM; 2807 } 2808 2809 /* Unmap any existing mapping in the area */ 2810 error = do_vmi_munmap(&vmi, mm, addr, len, uf, false); 2811 if (error == -EPERM) 2812 return error; 2813 else if (error) 2814 return -ENOMEM; 2815 2816 /* 2817 * Private writable mapping: check memory availability 2818 */ 2819 if (accountable_mapping(file, vm_flags)) { 2820 charged = len >> PAGE_SHIFT; 2821 if (security_vm_enough_memory_mm(mm, charged)) 2822 return -ENOMEM; 2823 vm_flags |= VM_ACCOUNT; 2824 } 2825 2826 next = vma_next(&vmi); 2827 prev = vma_prev(&vmi); 2828 if (vm_flags & VM_SPECIAL) { 2829 if (prev) 2830 vma_iter_next_range(&vmi); 2831 goto cannot_expand; 2832 } 2833 2834 /* Attempt to expand an old mapping */ 2835 /* Check next */ 2836 if (next && next->vm_start == end && !vma_policy(next) && 2837 can_vma_merge_before(next, vm_flags, NULL, file, pgoff+pglen, 2838 NULL_VM_UFFD_CTX, NULL)) { 2839 merge_end = next->vm_end; 2840 vma = next; 2841 vm_pgoff = next->vm_pgoff - pglen; 2842 } 2843 2844 /* Check prev */ 2845 if (prev && prev->vm_end == addr && !vma_policy(prev) && 2846 (vma ? can_vma_merge_after(prev, vm_flags, vma->anon_vma, file, 2847 pgoff, vma->vm_userfaultfd_ctx, NULL) : 2848 can_vma_merge_after(prev, vm_flags, NULL, file, pgoff, 2849 NULL_VM_UFFD_CTX, NULL))) { 2850 merge_start = prev->vm_start; 2851 vma = prev; 2852 vm_pgoff = prev->vm_pgoff; 2853 } else if (prev) { 2854 vma_iter_next_range(&vmi); 2855 } 2856 2857 /* Actually expand, if possible */ 2858 if (vma && 2859 !vma_expand(&vmi, vma, merge_start, merge_end, vm_pgoff, next)) { 2860 khugepaged_enter_vma(vma, vm_flags); 2861 goto expanded; 2862 } 2863 2864 if (vma == prev) 2865 vma_iter_set(&vmi, addr); 2866 cannot_expand: 2867 2868 /* 2869 * Determine the object being mapped and call the appropriate 2870 * specific mapper. the address has already been validated, but 2871 * not unmapped, but the maps are removed from the list. 2872 */ 2873 vma = vm_area_alloc(mm); 2874 if (!vma) { 2875 error = -ENOMEM; 2876 goto unacct_error; 2877 } 2878 2879 vma_iter_config(&vmi, addr, end); 2880 vma_set_range(vma, addr, end, pgoff); 2881 vm_flags_init(vma, vm_flags); 2882 vma->vm_page_prot = vm_get_page_prot(vm_flags); 2883 2884 if (file) { 2885 vma->vm_file = get_file(file); 2886 error = call_mmap(file, vma); 2887 if (error) 2888 goto unmap_and_free_vma; 2889 2890 if (vma_is_shared_maywrite(vma)) { 2891 error = mapping_map_writable(file->f_mapping); 2892 if (error) 2893 goto close_and_free_vma; 2894 2895 writable_file_mapping = true; 2896 } 2897 2898 /* 2899 * Expansion is handled above, merging is handled below. 2900 * Drivers should not alter the address of the VMA. 2901 */ 2902 error = -EINVAL; 2903 if (WARN_ON((addr != vma->vm_start))) 2904 goto close_and_free_vma; 2905 2906 vma_iter_config(&vmi, addr, end); 2907 /* 2908 * If vm_flags changed after call_mmap(), we should try merge 2909 * vma again as we may succeed this time. 2910 */ 2911 if (unlikely(vm_flags != vma->vm_flags && prev)) { 2912 merge = vma_merge_new_vma(&vmi, prev, vma, 2913 vma->vm_start, vma->vm_end, 2914 vma->vm_pgoff); 2915 if (merge) { 2916 /* 2917 * ->mmap() can change vma->vm_file and fput 2918 * the original file. So fput the vma->vm_file 2919 * here or we would add an extra fput for file 2920 * and cause general protection fault 2921 * ultimately. 2922 */ 2923 fput(vma->vm_file); 2924 vm_area_free(vma); 2925 vma = merge; 2926 /* Update vm_flags to pick up the change. */ 2927 vm_flags = vma->vm_flags; 2928 goto unmap_writable; 2929 } 2930 } 2931 2932 vm_flags = vma->vm_flags; 2933 } else if (vm_flags & VM_SHARED) { 2934 error = shmem_zero_setup(vma); 2935 if (error) 2936 goto free_vma; 2937 } else { 2938 vma_set_anonymous(vma); 2939 } 2940 2941 if (map_deny_write_exec(vma, vma->vm_flags)) { 2942 error = -EACCES; 2943 goto close_and_free_vma; 2944 } 2945 2946 /* Allow architectures to sanity-check the vm_flags */ 2947 error = -EINVAL; 2948 if (!arch_validate_flags(vma->vm_flags)) 2949 goto close_and_free_vma; 2950 2951 error = -ENOMEM; 2952 if (vma_iter_prealloc(&vmi, vma)) 2953 goto close_and_free_vma; 2954 2955 /* Lock the VMA since it is modified after insertion into VMA tree */ 2956 vma_start_write(vma); 2957 vma_iter_store(&vmi, vma); 2958 mm->map_count++; 2959 vma_link_file(vma); 2960 2961 /* 2962 * vma_merge() calls khugepaged_enter_vma() either, the below 2963 * call covers the non-merge case. 2964 */ 2965 khugepaged_enter_vma(vma, vma->vm_flags); 2966 2967 /* Once vma denies write, undo our temporary denial count */ 2968 unmap_writable: 2969 if (writable_file_mapping) 2970 mapping_unmap_writable(file->f_mapping); 2971 file = vma->vm_file; 2972 ksm_add_vma(vma); 2973 expanded: 2974 perf_event_mmap(vma); 2975 2976 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT); 2977 if (vm_flags & VM_LOCKED) { 2978 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) || 2979 is_vm_hugetlb_page(vma) || 2980 vma == get_gate_vma(current->mm)) 2981 vm_flags_clear(vma, VM_LOCKED_MASK); 2982 else 2983 mm->locked_vm += (len >> PAGE_SHIFT); 2984 } 2985 2986 if (file) 2987 uprobe_mmap(vma); 2988 2989 /* 2990 * New (or expanded) vma always get soft dirty status. 2991 * Otherwise user-space soft-dirty page tracker won't 2992 * be able to distinguish situation when vma area unmapped, 2993 * then new mapped in-place (which must be aimed as 2994 * a completely new data area). 2995 */ 2996 vm_flags_set(vma, VM_SOFTDIRTY); 2997 2998 vma_set_page_prot(vma); 2999 3000 validate_mm(mm); 3001 return addr; 3002 3003 close_and_free_vma: 3004 if (file && vma->vm_ops && vma->vm_ops->close) 3005 vma->vm_ops->close(vma); 3006 3007 if (file || vma->vm_file) { 3008 unmap_and_free_vma: 3009 fput(vma->vm_file); 3010 vma->vm_file = NULL; 3011 3012 vma_iter_set(&vmi, vma->vm_end); 3013 /* Undo any partial mapping done by a device driver. */ 3014 unmap_region(mm, &vmi.mas, vma, prev, next, vma->vm_start, 3015 vma->vm_end, vma->vm_end, true); 3016 } 3017 if (writable_file_mapping) 3018 mapping_unmap_writable(file->f_mapping); 3019 free_vma: 3020 vm_area_free(vma); 3021 unacct_error: 3022 if (charged) 3023 vm_unacct_memory(charged); 3024 validate_mm(mm); 3025 return error; 3026 } 3027 3028 static int __vm_munmap(unsigned long start, size_t len, bool unlock) 3029 { 3030 int ret; 3031 struct mm_struct *mm = current->mm; 3032 LIST_HEAD(uf); 3033 VMA_ITERATOR(vmi, mm, start); 3034 3035 if (mmap_write_lock_killable(mm)) 3036 return -EINTR; 3037 3038 ret = do_vmi_munmap(&vmi, mm, start, len, &uf, unlock); 3039 if (ret || !unlock) 3040 mmap_write_unlock(mm); 3041 3042 userfaultfd_unmap_complete(mm, &uf); 3043 return ret; 3044 } 3045 3046 int vm_munmap(unsigned long start, size_t len) 3047 { 3048 return __vm_munmap(start, len, false); 3049 } 3050 EXPORT_SYMBOL(vm_munmap); 3051 3052 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 3053 { 3054 addr = untagged_addr(addr); 3055 return __vm_munmap(addr, len, true); 3056 } 3057 3058 3059 /* 3060 * Emulation of deprecated remap_file_pages() syscall. 3061 */ 3062 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size, 3063 unsigned long, prot, unsigned long, pgoff, unsigned long, flags) 3064 { 3065 3066 struct mm_struct *mm = current->mm; 3067 struct vm_area_struct *vma; 3068 unsigned long populate = 0; 3069 unsigned long ret = -EINVAL; 3070 struct file *file; 3071 3072 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/mm/remap_file_pages.rst.\n", 3073 current->comm, current->pid); 3074 3075 if (prot) 3076 return ret; 3077 start = start & PAGE_MASK; 3078 size = size & PAGE_MASK; 3079 3080 if (start + size <= start) 3081 return ret; 3082 3083 /* Does pgoff wrap? */ 3084 if (pgoff + (size >> PAGE_SHIFT) < pgoff) 3085 return ret; 3086 3087 if (mmap_write_lock_killable(mm)) 3088 return -EINTR; 3089 3090 vma = vma_lookup(mm, start); 3091 3092 if (!vma || !(vma->vm_flags & VM_SHARED)) 3093 goto out; 3094 3095 if (start + size > vma->vm_end) { 3096 VMA_ITERATOR(vmi, mm, vma->vm_end); 3097 struct vm_area_struct *next, *prev = vma; 3098 3099 for_each_vma_range(vmi, next, start + size) { 3100 /* hole between vmas ? */ 3101 if (next->vm_start != prev->vm_end) 3102 goto out; 3103 3104 if (next->vm_file != vma->vm_file) 3105 goto out; 3106 3107 if (next->vm_flags != vma->vm_flags) 3108 goto out; 3109 3110 if (start + size <= next->vm_end) 3111 break; 3112 3113 prev = next; 3114 } 3115 3116 if (!next) 3117 goto out; 3118 } 3119 3120 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0; 3121 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0; 3122 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0; 3123 3124 flags &= MAP_NONBLOCK; 3125 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE; 3126 if (vma->vm_flags & VM_LOCKED) 3127 flags |= MAP_LOCKED; 3128 3129 file = get_file(vma->vm_file); 3130 ret = do_mmap(vma->vm_file, start, size, 3131 prot, flags, 0, pgoff, &populate, NULL); 3132 fput(file); 3133 out: 3134 mmap_write_unlock(mm); 3135 if (populate) 3136 mm_populate(ret, populate); 3137 if (!IS_ERR_VALUE(ret)) 3138 ret = 0; 3139 return ret; 3140 } 3141 3142 /* 3143 * do_vma_munmap() - Unmap a full or partial vma. 3144 * @vmi: The vma iterator pointing at the vma 3145 * @vma: The first vma to be munmapped 3146 * @start: the start of the address to unmap 3147 * @end: The end of the address to unmap 3148 * @uf: The userfaultfd list_head 3149 * @unlock: Drop the lock on success 3150 * 3151 * unmaps a VMA mapping when the vma iterator is already in position. 3152 * Does not handle alignment. 3153 * 3154 * Return: 0 on success drops the lock of so directed, error on failure and will 3155 * still hold the lock. 3156 */ 3157 int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma, 3158 unsigned long start, unsigned long end, struct list_head *uf, 3159 bool unlock) 3160 { 3161 struct mm_struct *mm = vma->vm_mm; 3162 3163 /* 3164 * Check if memory is sealed before arch_unmap. 3165 * Prevent unmapping a sealed VMA. 3166 * can_modify_mm assumes we have acquired the lock on MM. 3167 */ 3168 if (unlikely(!can_modify_mm(mm, start, end))) 3169 return -EPERM; 3170 3171 arch_unmap(mm, start, end); 3172 return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock); 3173 } 3174 3175 /* 3176 * do_brk_flags() - Increase the brk vma if the flags match. 3177 * @vmi: The vma iterator 3178 * @addr: The start address 3179 * @len: The length of the increase 3180 * @vma: The vma, 3181 * @flags: The VMA Flags 3182 * 3183 * Extend the brk VMA from addr to addr + len. If the VMA is NULL or the flags 3184 * do not match then create a new anonymous VMA. Eventually we may be able to 3185 * do some brk-specific accounting here. 3186 */ 3187 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma, 3188 unsigned long addr, unsigned long len, unsigned long flags) 3189 { 3190 struct mm_struct *mm = current->mm; 3191 struct vma_prepare vp; 3192 3193 /* 3194 * Check against address space limits by the changed size 3195 * Note: This happens *after* clearing old mappings in some code paths. 3196 */ 3197 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; 3198 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT)) 3199 return -ENOMEM; 3200 3201 if (mm->map_count > sysctl_max_map_count) 3202 return -ENOMEM; 3203 3204 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT)) 3205 return -ENOMEM; 3206 3207 /* 3208 * Expand the existing vma if possible; Note that singular lists do not 3209 * occur after forking, so the expand will only happen on new VMAs. 3210 */ 3211 if (vma && vma->vm_end == addr && !vma_policy(vma) && 3212 can_vma_merge_after(vma, flags, NULL, NULL, 3213 addr >> PAGE_SHIFT, NULL_VM_UFFD_CTX, NULL)) { 3214 vma_iter_config(vmi, vma->vm_start, addr + len); 3215 if (vma_iter_prealloc(vmi, vma)) 3216 goto unacct_fail; 3217 3218 vma_start_write(vma); 3219 3220 init_vma_prep(&vp, vma); 3221 vma_prepare(&vp); 3222 vma_adjust_trans_huge(vma, vma->vm_start, addr + len, 0); 3223 vma->vm_end = addr + len; 3224 vm_flags_set(vma, VM_SOFTDIRTY); 3225 vma_iter_store(vmi, vma); 3226 3227 vma_complete(&vp, vmi, mm); 3228 khugepaged_enter_vma(vma, flags); 3229 goto out; 3230 } 3231 3232 if (vma) 3233 vma_iter_next_range(vmi); 3234 /* create a vma struct for an anonymous mapping */ 3235 vma = vm_area_alloc(mm); 3236 if (!vma) 3237 goto unacct_fail; 3238 3239 vma_set_anonymous(vma); 3240 vma_set_range(vma, addr, addr + len, addr >> PAGE_SHIFT); 3241 vm_flags_init(vma, flags); 3242 vma->vm_page_prot = vm_get_page_prot(flags); 3243 vma_start_write(vma); 3244 if (vma_iter_store_gfp(vmi, vma, GFP_KERNEL)) 3245 goto mas_store_fail; 3246 3247 mm->map_count++; 3248 validate_mm(mm); 3249 ksm_add_vma(vma); 3250 out: 3251 perf_event_mmap(vma); 3252 mm->total_vm += len >> PAGE_SHIFT; 3253 mm->data_vm += len >> PAGE_SHIFT; 3254 if (flags & VM_LOCKED) 3255 mm->locked_vm += (len >> PAGE_SHIFT); 3256 vm_flags_set(vma, VM_SOFTDIRTY); 3257 return 0; 3258 3259 mas_store_fail: 3260 vm_area_free(vma); 3261 unacct_fail: 3262 vm_unacct_memory(len >> PAGE_SHIFT); 3263 return -ENOMEM; 3264 } 3265 3266 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags) 3267 { 3268 struct mm_struct *mm = current->mm; 3269 struct vm_area_struct *vma = NULL; 3270 unsigned long len; 3271 int ret; 3272 bool populate; 3273 LIST_HEAD(uf); 3274 VMA_ITERATOR(vmi, mm, addr); 3275 3276 len = PAGE_ALIGN(request); 3277 if (len < request) 3278 return -ENOMEM; 3279 if (!len) 3280 return 0; 3281 3282 /* Until we need other flags, refuse anything except VM_EXEC. */ 3283 if ((flags & (~VM_EXEC)) != 0) 3284 return -EINVAL; 3285 3286 if (mmap_write_lock_killable(mm)) 3287 return -EINTR; 3288 3289 ret = check_brk_limits(addr, len); 3290 if (ret) 3291 goto limits_failed; 3292 3293 ret = do_vmi_munmap(&vmi, mm, addr, len, &uf, 0); 3294 if (ret) 3295 goto munmap_failed; 3296 3297 vma = vma_prev(&vmi); 3298 ret = do_brk_flags(&vmi, vma, addr, len, flags); 3299 populate = ((mm->def_flags & VM_LOCKED) != 0); 3300 mmap_write_unlock(mm); 3301 userfaultfd_unmap_complete(mm, &uf); 3302 if (populate && !ret) 3303 mm_populate(addr, len); 3304 return ret; 3305 3306 munmap_failed: 3307 limits_failed: 3308 mmap_write_unlock(mm); 3309 return ret; 3310 } 3311 EXPORT_SYMBOL(vm_brk_flags); 3312 3313 /* Release all mmaps. */ 3314 void exit_mmap(struct mm_struct *mm) 3315 { 3316 struct mmu_gather tlb; 3317 struct vm_area_struct *vma; 3318 unsigned long nr_accounted = 0; 3319 VMA_ITERATOR(vmi, mm, 0); 3320 int count = 0; 3321 3322 /* mm's last user has gone, and its about to be pulled down */ 3323 mmu_notifier_release(mm); 3324 3325 mmap_read_lock(mm); 3326 arch_exit_mmap(mm); 3327 3328 vma = vma_next(&vmi); 3329 if (!vma || unlikely(xa_is_zero(vma))) { 3330 /* Can happen if dup_mmap() received an OOM */ 3331 mmap_read_unlock(mm); 3332 mmap_write_lock(mm); 3333 goto destroy; 3334 } 3335 3336 lru_add_drain(); 3337 flush_cache_mm(mm); 3338 tlb_gather_mmu_fullmm(&tlb, mm); 3339 /* update_hiwater_rss(mm) here? but nobody should be looking */ 3340 /* Use ULONG_MAX here to ensure all VMAs in the mm are unmapped */ 3341 unmap_vmas(&tlb, &vmi.mas, vma, 0, ULONG_MAX, ULONG_MAX, false); 3342 mmap_read_unlock(mm); 3343 3344 /* 3345 * Set MMF_OOM_SKIP to hide this task from the oom killer/reaper 3346 * because the memory has been already freed. 3347 */ 3348 set_bit(MMF_OOM_SKIP, &mm->flags); 3349 mmap_write_lock(mm); 3350 mt_clear_in_rcu(&mm->mm_mt); 3351 vma_iter_set(&vmi, vma->vm_end); 3352 free_pgtables(&tlb, &vmi.mas, vma, FIRST_USER_ADDRESS, 3353 USER_PGTABLES_CEILING, true); 3354 tlb_finish_mmu(&tlb); 3355 3356 /* 3357 * Walk the list again, actually closing and freeing it, with preemption 3358 * enabled, without holding any MM locks besides the unreachable 3359 * mmap_write_lock. 3360 */ 3361 vma_iter_set(&vmi, vma->vm_end); 3362 do { 3363 if (vma->vm_flags & VM_ACCOUNT) 3364 nr_accounted += vma_pages(vma); 3365 remove_vma(vma, true); 3366 count++; 3367 cond_resched(); 3368 vma = vma_next(&vmi); 3369 } while (vma && likely(!xa_is_zero(vma))); 3370 3371 BUG_ON(count != mm->map_count); 3372 3373 trace_exit_mmap(mm); 3374 destroy: 3375 __mt_destroy(&mm->mm_mt); 3376 mmap_write_unlock(mm); 3377 vm_unacct_memory(nr_accounted); 3378 } 3379 3380 /* Insert vm structure into process list sorted by address 3381 * and into the inode's i_mmap tree. If vm_file is non-NULL 3382 * then i_mmap_rwsem is taken here. 3383 */ 3384 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 3385 { 3386 unsigned long charged = vma_pages(vma); 3387 3388 3389 if (find_vma_intersection(mm, vma->vm_start, vma->vm_end)) 3390 return -ENOMEM; 3391 3392 if ((vma->vm_flags & VM_ACCOUNT) && 3393 security_vm_enough_memory_mm(mm, charged)) 3394 return -ENOMEM; 3395 3396 /* 3397 * The vm_pgoff of a purely anonymous vma should be irrelevant 3398 * until its first write fault, when page's anon_vma and index 3399 * are set. But now set the vm_pgoff it will almost certainly 3400 * end up with (unless mremap moves it elsewhere before that 3401 * first wfault), so /proc/pid/maps tells a consistent story. 3402 * 3403 * By setting it to reflect the virtual start address of the 3404 * vma, merges and splits can happen in a seamless way, just 3405 * using the existing file pgoff checks and manipulations. 3406 * Similarly in do_mmap and in do_brk_flags. 3407 */ 3408 if (vma_is_anonymous(vma)) { 3409 BUG_ON(vma->anon_vma); 3410 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; 3411 } 3412 3413 if (vma_link(mm, vma)) { 3414 if (vma->vm_flags & VM_ACCOUNT) 3415 vm_unacct_memory(charged); 3416 return -ENOMEM; 3417 } 3418 3419 return 0; 3420 } 3421 3422 /* 3423 * Copy the vma structure to a new location in the same mm, 3424 * prior to moving page table entries, to effect an mremap move. 3425 */ 3426 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 3427 unsigned long addr, unsigned long len, pgoff_t pgoff, 3428 bool *need_rmap_locks) 3429 { 3430 struct vm_area_struct *vma = *vmap; 3431 unsigned long vma_start = vma->vm_start; 3432 struct mm_struct *mm = vma->vm_mm; 3433 struct vm_area_struct *new_vma, *prev; 3434 bool faulted_in_anon_vma = true; 3435 VMA_ITERATOR(vmi, mm, addr); 3436 3437 /* 3438 * If anonymous vma has not yet been faulted, update new pgoff 3439 * to match new location, to increase its chance of merging. 3440 */ 3441 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) { 3442 pgoff = addr >> PAGE_SHIFT; 3443 faulted_in_anon_vma = false; 3444 } 3445 3446 new_vma = find_vma_prev(mm, addr, &prev); 3447 if (new_vma && new_vma->vm_start < addr + len) 3448 return NULL; /* should never get here */ 3449 3450 new_vma = vma_merge_new_vma(&vmi, prev, vma, addr, addr + len, pgoff); 3451 if (new_vma) { 3452 /* 3453 * Source vma may have been merged into new_vma 3454 */ 3455 if (unlikely(vma_start >= new_vma->vm_start && 3456 vma_start < new_vma->vm_end)) { 3457 /* 3458 * The only way we can get a vma_merge with 3459 * self during an mremap is if the vma hasn't 3460 * been faulted in yet and we were allowed to 3461 * reset the dst vma->vm_pgoff to the 3462 * destination address of the mremap to allow 3463 * the merge to happen. mremap must change the 3464 * vm_pgoff linearity between src and dst vmas 3465 * (in turn preventing a vma_merge) to be 3466 * safe. It is only safe to keep the vm_pgoff 3467 * linear if there are no pages mapped yet. 3468 */ 3469 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma); 3470 *vmap = vma = new_vma; 3471 } 3472 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff); 3473 } else { 3474 new_vma = vm_area_dup(vma); 3475 if (!new_vma) 3476 goto out; 3477 vma_set_range(new_vma, addr, addr + len, pgoff); 3478 if (vma_dup_policy(vma, new_vma)) 3479 goto out_free_vma; 3480 if (anon_vma_clone(new_vma, vma)) 3481 goto out_free_mempol; 3482 if (new_vma->vm_file) 3483 get_file(new_vma->vm_file); 3484 if (new_vma->vm_ops && new_vma->vm_ops->open) 3485 new_vma->vm_ops->open(new_vma); 3486 if (vma_link(mm, new_vma)) 3487 goto out_vma_link; 3488 *need_rmap_locks = false; 3489 } 3490 return new_vma; 3491 3492 out_vma_link: 3493 if (new_vma->vm_ops && new_vma->vm_ops->close) 3494 new_vma->vm_ops->close(new_vma); 3495 3496 if (new_vma->vm_file) 3497 fput(new_vma->vm_file); 3498 3499 unlink_anon_vmas(new_vma); 3500 out_free_mempol: 3501 mpol_put(vma_policy(new_vma)); 3502 out_free_vma: 3503 vm_area_free(new_vma); 3504 out: 3505 return NULL; 3506 } 3507 3508 /* 3509 * Return true if the calling process may expand its vm space by the passed 3510 * number of pages 3511 */ 3512 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages) 3513 { 3514 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT) 3515 return false; 3516 3517 if (is_data_mapping(flags) && 3518 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) { 3519 /* Workaround for Valgrind */ 3520 if (rlimit(RLIMIT_DATA) == 0 && 3521 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT) 3522 return true; 3523 3524 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n", 3525 current->comm, current->pid, 3526 (mm->data_vm + npages) << PAGE_SHIFT, 3527 rlimit(RLIMIT_DATA), 3528 ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data"); 3529 3530 if (!ignore_rlimit_data) 3531 return false; 3532 } 3533 3534 return true; 3535 } 3536 3537 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages) 3538 { 3539 WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages); 3540 3541 if (is_exec_mapping(flags)) 3542 mm->exec_vm += npages; 3543 else if (is_stack_mapping(flags)) 3544 mm->stack_vm += npages; 3545 else if (is_data_mapping(flags)) 3546 mm->data_vm += npages; 3547 } 3548 3549 static vm_fault_t special_mapping_fault(struct vm_fault *vmf); 3550 3551 /* 3552 * Having a close hook prevents vma merging regardless of flags. 3553 */ 3554 static void special_mapping_close(struct vm_area_struct *vma) 3555 { 3556 } 3557 3558 static const char *special_mapping_name(struct vm_area_struct *vma) 3559 { 3560 return ((struct vm_special_mapping *)vma->vm_private_data)->name; 3561 } 3562 3563 static int special_mapping_mremap(struct vm_area_struct *new_vma) 3564 { 3565 struct vm_special_mapping *sm = new_vma->vm_private_data; 3566 3567 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm)) 3568 return -EFAULT; 3569 3570 if (sm->mremap) 3571 return sm->mremap(sm, new_vma); 3572 3573 return 0; 3574 } 3575 3576 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr) 3577 { 3578 /* 3579 * Forbid splitting special mappings - kernel has expectations over 3580 * the number of pages in mapping. Together with VM_DONTEXPAND 3581 * the size of vma should stay the same over the special mapping's 3582 * lifetime. 3583 */ 3584 return -EINVAL; 3585 } 3586 3587 static const struct vm_operations_struct special_mapping_vmops = { 3588 .close = special_mapping_close, 3589 .fault = special_mapping_fault, 3590 .mremap = special_mapping_mremap, 3591 .name = special_mapping_name, 3592 /* vDSO code relies that VVAR can't be accessed remotely */ 3593 .access = NULL, 3594 .may_split = special_mapping_split, 3595 }; 3596 3597 static const struct vm_operations_struct legacy_special_mapping_vmops = { 3598 .close = special_mapping_close, 3599 .fault = special_mapping_fault, 3600 }; 3601 3602 static vm_fault_t special_mapping_fault(struct vm_fault *vmf) 3603 { 3604 struct vm_area_struct *vma = vmf->vma; 3605 pgoff_t pgoff; 3606 struct page **pages; 3607 3608 if (vma->vm_ops == &legacy_special_mapping_vmops) { 3609 pages = vma->vm_private_data; 3610 } else { 3611 struct vm_special_mapping *sm = vma->vm_private_data; 3612 3613 if (sm->fault) 3614 return sm->fault(sm, vmf->vma, vmf); 3615 3616 pages = sm->pages; 3617 } 3618 3619 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages) 3620 pgoff--; 3621 3622 if (*pages) { 3623 struct page *page = *pages; 3624 get_page(page); 3625 vmf->page = page; 3626 return 0; 3627 } 3628 3629 return VM_FAULT_SIGBUS; 3630 } 3631 3632 static struct vm_area_struct *__install_special_mapping( 3633 struct mm_struct *mm, 3634 unsigned long addr, unsigned long len, 3635 unsigned long vm_flags, void *priv, 3636 const struct vm_operations_struct *ops) 3637 { 3638 int ret; 3639 struct vm_area_struct *vma; 3640 3641 vma = vm_area_alloc(mm); 3642 if (unlikely(vma == NULL)) 3643 return ERR_PTR(-ENOMEM); 3644 3645 vma_set_range(vma, addr, addr + len, 0); 3646 vm_flags_init(vma, (vm_flags | mm->def_flags | 3647 VM_DONTEXPAND | VM_SOFTDIRTY) & ~VM_LOCKED_MASK); 3648 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 3649 3650 vma->vm_ops = ops; 3651 vma->vm_private_data = priv; 3652 3653 ret = insert_vm_struct(mm, vma); 3654 if (ret) 3655 goto out; 3656 3657 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT); 3658 3659 perf_event_mmap(vma); 3660 3661 return vma; 3662 3663 out: 3664 vm_area_free(vma); 3665 return ERR_PTR(ret); 3666 } 3667 3668 bool vma_is_special_mapping(const struct vm_area_struct *vma, 3669 const struct vm_special_mapping *sm) 3670 { 3671 return vma->vm_private_data == sm && 3672 (vma->vm_ops == &special_mapping_vmops || 3673 vma->vm_ops == &legacy_special_mapping_vmops); 3674 } 3675 3676 /* 3677 * Called with mm->mmap_lock held for writing. 3678 * Insert a new vma covering the given region, with the given flags. 3679 * Its pages are supplied by the given array of struct page *. 3680 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated. 3681 * The region past the last page supplied will always produce SIGBUS. 3682 * The array pointer and the pages it points to are assumed to stay alive 3683 * for as long as this mapping might exist. 3684 */ 3685 struct vm_area_struct *_install_special_mapping( 3686 struct mm_struct *mm, 3687 unsigned long addr, unsigned long len, 3688 unsigned long vm_flags, const struct vm_special_mapping *spec) 3689 { 3690 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec, 3691 &special_mapping_vmops); 3692 } 3693 3694 int install_special_mapping(struct mm_struct *mm, 3695 unsigned long addr, unsigned long len, 3696 unsigned long vm_flags, struct page **pages) 3697 { 3698 struct vm_area_struct *vma = __install_special_mapping( 3699 mm, addr, len, vm_flags, (void *)pages, 3700 &legacy_special_mapping_vmops); 3701 3702 return PTR_ERR_OR_ZERO(vma); 3703 } 3704 3705 static DEFINE_MUTEX(mm_all_locks_mutex); 3706 3707 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) 3708 { 3709 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 3710 /* 3711 * The LSB of head.next can't change from under us 3712 * because we hold the mm_all_locks_mutex. 3713 */ 3714 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock); 3715 /* 3716 * We can safely modify head.next after taking the 3717 * anon_vma->root->rwsem. If some other vma in this mm shares 3718 * the same anon_vma we won't take it again. 3719 * 3720 * No need of atomic instructions here, head.next 3721 * can't change from under us thanks to the 3722 * anon_vma->root->rwsem. 3723 */ 3724 if (__test_and_set_bit(0, (unsigned long *) 3725 &anon_vma->root->rb_root.rb_root.rb_node)) 3726 BUG(); 3727 } 3728 } 3729 3730 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) 3731 { 3732 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3733 /* 3734 * AS_MM_ALL_LOCKS can't change from under us because 3735 * we hold the mm_all_locks_mutex. 3736 * 3737 * Operations on ->flags have to be atomic because 3738 * even if AS_MM_ALL_LOCKS is stable thanks to the 3739 * mm_all_locks_mutex, there may be other cpus 3740 * changing other bitflags in parallel to us. 3741 */ 3742 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) 3743 BUG(); 3744 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock); 3745 } 3746 } 3747 3748 /* 3749 * This operation locks against the VM for all pte/vma/mm related 3750 * operations that could ever happen on a certain mm. This includes 3751 * vmtruncate, try_to_unmap, and all page faults. 3752 * 3753 * The caller must take the mmap_lock in write mode before calling 3754 * mm_take_all_locks(). The caller isn't allowed to release the 3755 * mmap_lock until mm_drop_all_locks() returns. 3756 * 3757 * mmap_lock in write mode is required in order to block all operations 3758 * that could modify pagetables and free pages without need of 3759 * altering the vma layout. It's also needed in write mode to avoid new 3760 * anon_vmas to be associated with existing vmas. 3761 * 3762 * A single task can't take more than one mm_take_all_locks() in a row 3763 * or it would deadlock. 3764 * 3765 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in 3766 * mapping->flags avoid to take the same lock twice, if more than one 3767 * vma in this mm is backed by the same anon_vma or address_space. 3768 * 3769 * We take locks in following order, accordingly to comment at beginning 3770 * of mm/rmap.c: 3771 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for 3772 * hugetlb mapping); 3773 * - all vmas marked locked 3774 * - all i_mmap_rwsem locks; 3775 * - all anon_vma->rwseml 3776 * 3777 * We can take all locks within these types randomly because the VM code 3778 * doesn't nest them and we protected from parallel mm_take_all_locks() by 3779 * mm_all_locks_mutex. 3780 * 3781 * mm_take_all_locks() and mm_drop_all_locks are expensive operations 3782 * that may have to take thousand of locks. 3783 * 3784 * mm_take_all_locks() can fail if it's interrupted by signals. 3785 */ 3786 int mm_take_all_locks(struct mm_struct *mm) 3787 { 3788 struct vm_area_struct *vma; 3789 struct anon_vma_chain *avc; 3790 VMA_ITERATOR(vmi, mm, 0); 3791 3792 mmap_assert_write_locked(mm); 3793 3794 mutex_lock(&mm_all_locks_mutex); 3795 3796 /* 3797 * vma_start_write() does not have a complement in mm_drop_all_locks() 3798 * because vma_start_write() is always asymmetrical; it marks a VMA as 3799 * being written to until mmap_write_unlock() or mmap_write_downgrade() 3800 * is reached. 3801 */ 3802 for_each_vma(vmi, vma) { 3803 if (signal_pending(current)) 3804 goto out_unlock; 3805 vma_start_write(vma); 3806 } 3807 3808 vma_iter_init(&vmi, mm, 0); 3809 for_each_vma(vmi, vma) { 3810 if (signal_pending(current)) 3811 goto out_unlock; 3812 if (vma->vm_file && vma->vm_file->f_mapping && 3813 is_vm_hugetlb_page(vma)) 3814 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3815 } 3816 3817 vma_iter_init(&vmi, mm, 0); 3818 for_each_vma(vmi, vma) { 3819 if (signal_pending(current)) 3820 goto out_unlock; 3821 if (vma->vm_file && vma->vm_file->f_mapping && 3822 !is_vm_hugetlb_page(vma)) 3823 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3824 } 3825 3826 vma_iter_init(&vmi, mm, 0); 3827 for_each_vma(vmi, vma) { 3828 if (signal_pending(current)) 3829 goto out_unlock; 3830 if (vma->anon_vma) 3831 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3832 vm_lock_anon_vma(mm, avc->anon_vma); 3833 } 3834 3835 return 0; 3836 3837 out_unlock: 3838 mm_drop_all_locks(mm); 3839 return -EINTR; 3840 } 3841 3842 static void vm_unlock_anon_vma(struct anon_vma *anon_vma) 3843 { 3844 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 3845 /* 3846 * The LSB of head.next can't change to 0 from under 3847 * us because we hold the mm_all_locks_mutex. 3848 * 3849 * We must however clear the bitflag before unlocking 3850 * the vma so the users using the anon_vma->rb_root will 3851 * never see our bitflag. 3852 * 3853 * No need of atomic instructions here, head.next 3854 * can't change from under us until we release the 3855 * anon_vma->root->rwsem. 3856 */ 3857 if (!__test_and_clear_bit(0, (unsigned long *) 3858 &anon_vma->root->rb_root.rb_root.rb_node)) 3859 BUG(); 3860 anon_vma_unlock_write(anon_vma); 3861 } 3862 } 3863 3864 static void vm_unlock_mapping(struct address_space *mapping) 3865 { 3866 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3867 /* 3868 * AS_MM_ALL_LOCKS can't change to 0 from under us 3869 * because we hold the mm_all_locks_mutex. 3870 */ 3871 i_mmap_unlock_write(mapping); 3872 if (!test_and_clear_bit(AS_MM_ALL_LOCKS, 3873 &mapping->flags)) 3874 BUG(); 3875 } 3876 } 3877 3878 /* 3879 * The mmap_lock cannot be released by the caller until 3880 * mm_drop_all_locks() returns. 3881 */ 3882 void mm_drop_all_locks(struct mm_struct *mm) 3883 { 3884 struct vm_area_struct *vma; 3885 struct anon_vma_chain *avc; 3886 VMA_ITERATOR(vmi, mm, 0); 3887 3888 mmap_assert_write_locked(mm); 3889 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); 3890 3891 for_each_vma(vmi, vma) { 3892 if (vma->anon_vma) 3893 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3894 vm_unlock_anon_vma(avc->anon_vma); 3895 if (vma->vm_file && vma->vm_file->f_mapping) 3896 vm_unlock_mapping(vma->vm_file->f_mapping); 3897 } 3898 3899 mutex_unlock(&mm_all_locks_mutex); 3900 } 3901 3902 /* 3903 * initialise the percpu counter for VM 3904 */ 3905 void __init mmap_init(void) 3906 { 3907 int ret; 3908 3909 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL); 3910 VM_BUG_ON(ret); 3911 } 3912 3913 /* 3914 * Initialise sysctl_user_reserve_kbytes. 3915 * 3916 * This is intended to prevent a user from starting a single memory hogging 3917 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER 3918 * mode. 3919 * 3920 * The default value is min(3% of free memory, 128MB) 3921 * 128MB is enough to recover with sshd/login, bash, and top/kill. 3922 */ 3923 static int init_user_reserve(void) 3924 { 3925 unsigned long free_kbytes; 3926 3927 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES)); 3928 3929 sysctl_user_reserve_kbytes = min(free_kbytes / 32, SZ_128K); 3930 return 0; 3931 } 3932 subsys_initcall(init_user_reserve); 3933 3934 /* 3935 * Initialise sysctl_admin_reserve_kbytes. 3936 * 3937 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin 3938 * to log in and kill a memory hogging process. 3939 * 3940 * Systems with more than 256MB will reserve 8MB, enough to recover 3941 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will 3942 * only reserve 3% of free pages by default. 3943 */ 3944 static int init_admin_reserve(void) 3945 { 3946 unsigned long free_kbytes; 3947 3948 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES)); 3949 3950 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, SZ_8K); 3951 return 0; 3952 } 3953 subsys_initcall(init_admin_reserve); 3954 3955 /* 3956 * Reinititalise user and admin reserves if memory is added or removed. 3957 * 3958 * The default user reserve max is 128MB, and the default max for the 3959 * admin reserve is 8MB. These are usually, but not always, enough to 3960 * enable recovery from a memory hogging process using login/sshd, a shell, 3961 * and tools like top. It may make sense to increase or even disable the 3962 * reserve depending on the existence of swap or variations in the recovery 3963 * tools. So, the admin may have changed them. 3964 * 3965 * If memory is added and the reserves have been eliminated or increased above 3966 * the default max, then we'll trust the admin. 3967 * 3968 * If memory is removed and there isn't enough free memory, then we 3969 * need to reset the reserves. 3970 * 3971 * Otherwise keep the reserve set by the admin. 3972 */ 3973 static int reserve_mem_notifier(struct notifier_block *nb, 3974 unsigned long action, void *data) 3975 { 3976 unsigned long tmp, free_kbytes; 3977 3978 switch (action) { 3979 case MEM_ONLINE: 3980 /* Default max is 128MB. Leave alone if modified by operator. */ 3981 tmp = sysctl_user_reserve_kbytes; 3982 if (tmp > 0 && tmp < SZ_128K) 3983 init_user_reserve(); 3984 3985 /* Default max is 8MB. Leave alone if modified by operator. */ 3986 tmp = sysctl_admin_reserve_kbytes; 3987 if (tmp > 0 && tmp < SZ_8K) 3988 init_admin_reserve(); 3989 3990 break; 3991 case MEM_OFFLINE: 3992 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES)); 3993 3994 if (sysctl_user_reserve_kbytes > free_kbytes) { 3995 init_user_reserve(); 3996 pr_info("vm.user_reserve_kbytes reset to %lu\n", 3997 sysctl_user_reserve_kbytes); 3998 } 3999 4000 if (sysctl_admin_reserve_kbytes > free_kbytes) { 4001 init_admin_reserve(); 4002 pr_info("vm.admin_reserve_kbytes reset to %lu\n", 4003 sysctl_admin_reserve_kbytes); 4004 } 4005 break; 4006 default: 4007 break; 4008 } 4009 return NOTIFY_OK; 4010 } 4011 4012 static int __meminit init_reserve_notifier(void) 4013 { 4014 if (hotplug_memory_notifier(reserve_mem_notifier, DEFAULT_CALLBACK_PRI)) 4015 pr_err("Failed registering memory add/remove notifier for admin reserve\n"); 4016 4017 return 0; 4018 } 4019 subsys_initcall(init_reserve_notifier); 4020