1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/mmap.c 4 * 5 * Written by obz. 6 * 7 * Address space accounting code <alan@lxorguk.ukuu.org.uk> 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/kernel.h> 13 #include <linux/slab.h> 14 #include <linux/backing-dev.h> 15 #include <linux/mm.h> 16 #include <linux/mm_inline.h> 17 #include <linux/shm.h> 18 #include <linux/mman.h> 19 #include <linux/pagemap.h> 20 #include <linux/swap.h> 21 #include <linux/syscalls.h> 22 #include <linux/capability.h> 23 #include <linux/init.h> 24 #include <linux/file.h> 25 #include <linux/fs.h> 26 #include <linux/personality.h> 27 #include <linux/security.h> 28 #include <linux/hugetlb.h> 29 #include <linux/shmem_fs.h> 30 #include <linux/profile.h> 31 #include <linux/export.h> 32 #include <linux/mount.h> 33 #include <linux/mempolicy.h> 34 #include <linux/rmap.h> 35 #include <linux/mmu_notifier.h> 36 #include <linux/mmdebug.h> 37 #include <linux/perf_event.h> 38 #include <linux/audit.h> 39 #include <linux/khugepaged.h> 40 #include <linux/uprobes.h> 41 #include <linux/notifier.h> 42 #include <linux/memory.h> 43 #include <linux/printk.h> 44 #include <linux/userfaultfd_k.h> 45 #include <linux/moduleparam.h> 46 #include <linux/pkeys.h> 47 #include <linux/oom.h> 48 #include <linux/sched/mm.h> 49 #include <linux/ksm.h> 50 51 #include <linux/uaccess.h> 52 #include <asm/cacheflush.h> 53 #include <asm/tlb.h> 54 #include <asm/mmu_context.h> 55 56 #define CREATE_TRACE_POINTS 57 #include <trace/events/mmap.h> 58 59 #include "internal.h" 60 61 #ifndef arch_mmap_check 62 #define arch_mmap_check(addr, len, flags) (0) 63 #endif 64 65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 66 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN; 67 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX; 68 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS; 69 #endif 70 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 71 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN; 72 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX; 73 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS; 74 #endif 75 76 static bool ignore_rlimit_data; 77 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644); 78 79 static void unmap_region(struct mm_struct *mm, struct ma_state *mas, 80 struct vm_area_struct *vma, struct vm_area_struct *prev, 81 struct vm_area_struct *next, unsigned long start, 82 unsigned long end, unsigned long tree_end, bool mm_wr_locked); 83 84 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags) 85 { 86 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags)); 87 } 88 89 /* Update vma->vm_page_prot to reflect vma->vm_flags. */ 90 void vma_set_page_prot(struct vm_area_struct *vma) 91 { 92 unsigned long vm_flags = vma->vm_flags; 93 pgprot_t vm_page_prot; 94 95 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags); 96 if (vma_wants_writenotify(vma, vm_page_prot)) { 97 vm_flags &= ~VM_SHARED; 98 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags); 99 } 100 /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */ 101 WRITE_ONCE(vma->vm_page_prot, vm_page_prot); 102 } 103 104 /* 105 * Requires inode->i_mapping->i_mmap_rwsem 106 */ 107 static void __remove_shared_vm_struct(struct vm_area_struct *vma, 108 struct file *file, struct address_space *mapping) 109 { 110 if (vma_is_shared_maywrite(vma)) 111 mapping_unmap_writable(mapping); 112 113 flush_dcache_mmap_lock(mapping); 114 vma_interval_tree_remove(vma, &mapping->i_mmap); 115 flush_dcache_mmap_unlock(mapping); 116 } 117 118 /* 119 * Unlink a file-based vm structure from its interval tree, to hide 120 * vma from rmap and vmtruncate before freeing its page tables. 121 */ 122 void unlink_file_vma(struct vm_area_struct *vma) 123 { 124 struct file *file = vma->vm_file; 125 126 if (file) { 127 struct address_space *mapping = file->f_mapping; 128 i_mmap_lock_write(mapping); 129 __remove_shared_vm_struct(vma, file, mapping); 130 i_mmap_unlock_write(mapping); 131 } 132 } 133 134 /* 135 * Close a vm structure and free it. 136 */ 137 static void remove_vma(struct vm_area_struct *vma, bool unreachable) 138 { 139 might_sleep(); 140 if (vma->vm_ops && vma->vm_ops->close) 141 vma->vm_ops->close(vma); 142 if (vma->vm_file) 143 fput(vma->vm_file); 144 mpol_put(vma_policy(vma)); 145 if (unreachable) 146 __vm_area_free(vma); 147 else 148 vm_area_free(vma); 149 } 150 151 static inline struct vm_area_struct *vma_prev_limit(struct vma_iterator *vmi, 152 unsigned long min) 153 { 154 return mas_prev(&vmi->mas, min); 155 } 156 157 /* 158 * check_brk_limits() - Use platform specific check of range & verify mlock 159 * limits. 160 * @addr: The address to check 161 * @len: The size of increase. 162 * 163 * Return: 0 on success. 164 */ 165 static int check_brk_limits(unsigned long addr, unsigned long len) 166 { 167 unsigned long mapped_addr; 168 169 mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED); 170 if (IS_ERR_VALUE(mapped_addr)) 171 return mapped_addr; 172 173 return mlock_future_ok(current->mm, current->mm->def_flags, len) 174 ? 0 : -EAGAIN; 175 } 176 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *brkvma, 177 unsigned long addr, unsigned long request, unsigned long flags); 178 SYSCALL_DEFINE1(brk, unsigned long, brk) 179 { 180 unsigned long newbrk, oldbrk, origbrk; 181 struct mm_struct *mm = current->mm; 182 struct vm_area_struct *brkvma, *next = NULL; 183 unsigned long min_brk; 184 bool populate = false; 185 LIST_HEAD(uf); 186 struct vma_iterator vmi; 187 188 if (mmap_write_lock_killable(mm)) 189 return -EINTR; 190 191 origbrk = mm->brk; 192 193 #ifdef CONFIG_COMPAT_BRK 194 /* 195 * CONFIG_COMPAT_BRK can still be overridden by setting 196 * randomize_va_space to 2, which will still cause mm->start_brk 197 * to be arbitrarily shifted 198 */ 199 if (current->brk_randomized) 200 min_brk = mm->start_brk; 201 else 202 min_brk = mm->end_data; 203 #else 204 min_brk = mm->start_brk; 205 #endif 206 if (brk < min_brk) 207 goto out; 208 209 /* 210 * Check against rlimit here. If this check is done later after the test 211 * of oldbrk with newbrk then it can escape the test and let the data 212 * segment grow beyond its set limit the in case where the limit is 213 * not page aligned -Ram Gupta 214 */ 215 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk, 216 mm->end_data, mm->start_data)) 217 goto out; 218 219 newbrk = PAGE_ALIGN(brk); 220 oldbrk = PAGE_ALIGN(mm->brk); 221 if (oldbrk == newbrk) { 222 mm->brk = brk; 223 goto success; 224 } 225 226 /* Always allow shrinking brk. */ 227 if (brk <= mm->brk) { 228 /* Search one past newbrk */ 229 vma_iter_init(&vmi, mm, newbrk); 230 brkvma = vma_find(&vmi, oldbrk); 231 if (!brkvma || brkvma->vm_start >= oldbrk) 232 goto out; /* mapping intersects with an existing non-brk vma. */ 233 /* 234 * mm->brk must be protected by write mmap_lock. 235 * do_vma_munmap() will drop the lock on success, so update it 236 * before calling do_vma_munmap(). 237 */ 238 mm->brk = brk; 239 if (do_vma_munmap(&vmi, brkvma, newbrk, oldbrk, &uf, true)) 240 goto out; 241 242 goto success_unlocked; 243 } 244 245 if (check_brk_limits(oldbrk, newbrk - oldbrk)) 246 goto out; 247 248 /* 249 * Only check if the next VMA is within the stack_guard_gap of the 250 * expansion area 251 */ 252 vma_iter_init(&vmi, mm, oldbrk); 253 next = vma_find(&vmi, newbrk + PAGE_SIZE + stack_guard_gap); 254 if (next && newbrk + PAGE_SIZE > vm_start_gap(next)) 255 goto out; 256 257 brkvma = vma_prev_limit(&vmi, mm->start_brk); 258 /* Ok, looks good - let it rip. */ 259 if (do_brk_flags(&vmi, brkvma, oldbrk, newbrk - oldbrk, 0) < 0) 260 goto out; 261 262 mm->brk = brk; 263 if (mm->def_flags & VM_LOCKED) 264 populate = true; 265 266 success: 267 mmap_write_unlock(mm); 268 success_unlocked: 269 userfaultfd_unmap_complete(mm, &uf); 270 if (populate) 271 mm_populate(oldbrk, newbrk - oldbrk); 272 return brk; 273 274 out: 275 mm->brk = origbrk; 276 mmap_write_unlock(mm); 277 return origbrk; 278 } 279 280 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE) 281 static void validate_mm(struct mm_struct *mm) 282 { 283 int bug = 0; 284 int i = 0; 285 struct vm_area_struct *vma; 286 VMA_ITERATOR(vmi, mm, 0); 287 288 mt_validate(&mm->mm_mt); 289 for_each_vma(vmi, vma) { 290 #ifdef CONFIG_DEBUG_VM_RB 291 struct anon_vma *anon_vma = vma->anon_vma; 292 struct anon_vma_chain *avc; 293 #endif 294 unsigned long vmi_start, vmi_end; 295 bool warn = 0; 296 297 vmi_start = vma_iter_addr(&vmi); 298 vmi_end = vma_iter_end(&vmi); 299 if (VM_WARN_ON_ONCE_MM(vma->vm_end != vmi_end, mm)) 300 warn = 1; 301 302 if (VM_WARN_ON_ONCE_MM(vma->vm_start != vmi_start, mm)) 303 warn = 1; 304 305 if (warn) { 306 pr_emerg("issue in %s\n", current->comm); 307 dump_stack(); 308 dump_vma(vma); 309 pr_emerg("tree range: %px start %lx end %lx\n", vma, 310 vmi_start, vmi_end - 1); 311 vma_iter_dump_tree(&vmi); 312 } 313 314 #ifdef CONFIG_DEBUG_VM_RB 315 if (anon_vma) { 316 anon_vma_lock_read(anon_vma); 317 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 318 anon_vma_interval_tree_verify(avc); 319 anon_vma_unlock_read(anon_vma); 320 } 321 #endif 322 i++; 323 } 324 if (i != mm->map_count) { 325 pr_emerg("map_count %d vma iterator %d\n", mm->map_count, i); 326 bug = 1; 327 } 328 VM_BUG_ON_MM(bug, mm); 329 } 330 331 #else /* !CONFIG_DEBUG_VM_MAPLE_TREE */ 332 #define validate_mm(mm) do { } while (0) 333 #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */ 334 335 /* 336 * vma has some anon_vma assigned, and is already inserted on that 337 * anon_vma's interval trees. 338 * 339 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the 340 * vma must be removed from the anon_vma's interval trees using 341 * anon_vma_interval_tree_pre_update_vma(). 342 * 343 * After the update, the vma will be reinserted using 344 * anon_vma_interval_tree_post_update_vma(). 345 * 346 * The entire update must be protected by exclusive mmap_lock and by 347 * the root anon_vma's mutex. 348 */ 349 static inline void 350 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma) 351 { 352 struct anon_vma_chain *avc; 353 354 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 355 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root); 356 } 357 358 static inline void 359 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma) 360 { 361 struct anon_vma_chain *avc; 362 363 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 364 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root); 365 } 366 367 static unsigned long count_vma_pages_range(struct mm_struct *mm, 368 unsigned long addr, unsigned long end) 369 { 370 VMA_ITERATOR(vmi, mm, addr); 371 struct vm_area_struct *vma; 372 unsigned long nr_pages = 0; 373 374 for_each_vma_range(vmi, vma, end) { 375 unsigned long vm_start = max(addr, vma->vm_start); 376 unsigned long vm_end = min(end, vma->vm_end); 377 378 nr_pages += PHYS_PFN(vm_end - vm_start); 379 } 380 381 return nr_pages; 382 } 383 384 static void __vma_link_file(struct vm_area_struct *vma, 385 struct address_space *mapping) 386 { 387 if (vma_is_shared_maywrite(vma)) 388 mapping_allow_writable(mapping); 389 390 flush_dcache_mmap_lock(mapping); 391 vma_interval_tree_insert(vma, &mapping->i_mmap); 392 flush_dcache_mmap_unlock(mapping); 393 } 394 395 static int vma_link(struct mm_struct *mm, struct vm_area_struct *vma) 396 { 397 VMA_ITERATOR(vmi, mm, 0); 398 struct address_space *mapping = NULL; 399 400 vma_iter_config(&vmi, vma->vm_start, vma->vm_end); 401 if (vma_iter_prealloc(&vmi, vma)) 402 return -ENOMEM; 403 404 vma_start_write(vma); 405 406 vma_iter_store(&vmi, vma); 407 408 if (vma->vm_file) { 409 mapping = vma->vm_file->f_mapping; 410 i_mmap_lock_write(mapping); 411 __vma_link_file(vma, mapping); 412 i_mmap_unlock_write(mapping); 413 } 414 415 mm->map_count++; 416 validate_mm(mm); 417 return 0; 418 } 419 420 /* 421 * init_multi_vma_prep() - Initializer for struct vma_prepare 422 * @vp: The vma_prepare struct 423 * @vma: The vma that will be altered once locked 424 * @next: The next vma if it is to be adjusted 425 * @remove: The first vma to be removed 426 * @remove2: The second vma to be removed 427 */ 428 static inline void init_multi_vma_prep(struct vma_prepare *vp, 429 struct vm_area_struct *vma, struct vm_area_struct *next, 430 struct vm_area_struct *remove, struct vm_area_struct *remove2) 431 { 432 memset(vp, 0, sizeof(struct vma_prepare)); 433 vp->vma = vma; 434 vp->anon_vma = vma->anon_vma; 435 vp->remove = remove; 436 vp->remove2 = remove2; 437 vp->adj_next = next; 438 if (!vp->anon_vma && next) 439 vp->anon_vma = next->anon_vma; 440 441 vp->file = vma->vm_file; 442 if (vp->file) 443 vp->mapping = vma->vm_file->f_mapping; 444 445 } 446 447 /* 448 * init_vma_prep() - Initializer wrapper for vma_prepare struct 449 * @vp: The vma_prepare struct 450 * @vma: The vma that will be altered once locked 451 */ 452 static inline void init_vma_prep(struct vma_prepare *vp, 453 struct vm_area_struct *vma) 454 { 455 init_multi_vma_prep(vp, vma, NULL, NULL, NULL); 456 } 457 458 459 /* 460 * vma_prepare() - Helper function for handling locking VMAs prior to altering 461 * @vp: The initialized vma_prepare struct 462 */ 463 static inline void vma_prepare(struct vma_prepare *vp) 464 { 465 if (vp->file) { 466 uprobe_munmap(vp->vma, vp->vma->vm_start, vp->vma->vm_end); 467 468 if (vp->adj_next) 469 uprobe_munmap(vp->adj_next, vp->adj_next->vm_start, 470 vp->adj_next->vm_end); 471 472 i_mmap_lock_write(vp->mapping); 473 if (vp->insert && vp->insert->vm_file) { 474 /* 475 * Put into interval tree now, so instantiated pages 476 * are visible to arm/parisc __flush_dcache_page 477 * throughout; but we cannot insert into address 478 * space until vma start or end is updated. 479 */ 480 __vma_link_file(vp->insert, 481 vp->insert->vm_file->f_mapping); 482 } 483 } 484 485 if (vp->anon_vma) { 486 anon_vma_lock_write(vp->anon_vma); 487 anon_vma_interval_tree_pre_update_vma(vp->vma); 488 if (vp->adj_next) 489 anon_vma_interval_tree_pre_update_vma(vp->adj_next); 490 } 491 492 if (vp->file) { 493 flush_dcache_mmap_lock(vp->mapping); 494 vma_interval_tree_remove(vp->vma, &vp->mapping->i_mmap); 495 if (vp->adj_next) 496 vma_interval_tree_remove(vp->adj_next, 497 &vp->mapping->i_mmap); 498 } 499 500 } 501 502 /* 503 * vma_complete- Helper function for handling the unlocking after altering VMAs, 504 * or for inserting a VMA. 505 * 506 * @vp: The vma_prepare struct 507 * @vmi: The vma iterator 508 * @mm: The mm_struct 509 */ 510 static inline void vma_complete(struct vma_prepare *vp, 511 struct vma_iterator *vmi, struct mm_struct *mm) 512 { 513 if (vp->file) { 514 if (vp->adj_next) 515 vma_interval_tree_insert(vp->adj_next, 516 &vp->mapping->i_mmap); 517 vma_interval_tree_insert(vp->vma, &vp->mapping->i_mmap); 518 flush_dcache_mmap_unlock(vp->mapping); 519 } 520 521 if (vp->remove && vp->file) { 522 __remove_shared_vm_struct(vp->remove, vp->file, vp->mapping); 523 if (vp->remove2) 524 __remove_shared_vm_struct(vp->remove2, vp->file, 525 vp->mapping); 526 } else if (vp->insert) { 527 /* 528 * split_vma has split insert from vma, and needs 529 * us to insert it before dropping the locks 530 * (it may either follow vma or precede it). 531 */ 532 vma_iter_store(vmi, vp->insert); 533 mm->map_count++; 534 } 535 536 if (vp->anon_vma) { 537 anon_vma_interval_tree_post_update_vma(vp->vma); 538 if (vp->adj_next) 539 anon_vma_interval_tree_post_update_vma(vp->adj_next); 540 anon_vma_unlock_write(vp->anon_vma); 541 } 542 543 if (vp->file) { 544 i_mmap_unlock_write(vp->mapping); 545 uprobe_mmap(vp->vma); 546 547 if (vp->adj_next) 548 uprobe_mmap(vp->adj_next); 549 } 550 551 if (vp->remove) { 552 again: 553 vma_mark_detached(vp->remove, true); 554 if (vp->file) { 555 uprobe_munmap(vp->remove, vp->remove->vm_start, 556 vp->remove->vm_end); 557 fput(vp->file); 558 } 559 if (vp->remove->anon_vma) 560 anon_vma_merge(vp->vma, vp->remove); 561 mm->map_count--; 562 mpol_put(vma_policy(vp->remove)); 563 if (!vp->remove2) 564 WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end); 565 vm_area_free(vp->remove); 566 567 /* 568 * In mprotect's case 6 (see comments on vma_merge), 569 * we are removing both mid and next vmas 570 */ 571 if (vp->remove2) { 572 vp->remove = vp->remove2; 573 vp->remove2 = NULL; 574 goto again; 575 } 576 } 577 if (vp->insert && vp->file) 578 uprobe_mmap(vp->insert); 579 validate_mm(mm); 580 } 581 582 /* 583 * dup_anon_vma() - Helper function to duplicate anon_vma 584 * @dst: The destination VMA 585 * @src: The source VMA 586 * @dup: Pointer to the destination VMA when successful. 587 * 588 * Returns: 0 on success. 589 */ 590 static inline int dup_anon_vma(struct vm_area_struct *dst, 591 struct vm_area_struct *src, struct vm_area_struct **dup) 592 { 593 /* 594 * Easily overlooked: when mprotect shifts the boundary, make sure the 595 * expanding vma has anon_vma set if the shrinking vma had, to cover any 596 * anon pages imported. 597 */ 598 if (src->anon_vma && !dst->anon_vma) { 599 int ret; 600 601 vma_assert_write_locked(dst); 602 dst->anon_vma = src->anon_vma; 603 ret = anon_vma_clone(dst, src); 604 if (ret) 605 return ret; 606 607 *dup = dst; 608 } 609 610 return 0; 611 } 612 613 /* 614 * vma_expand - Expand an existing VMA 615 * 616 * @vmi: The vma iterator 617 * @vma: The vma to expand 618 * @start: The start of the vma 619 * @end: The exclusive end of the vma 620 * @pgoff: The page offset of vma 621 * @next: The current of next vma. 622 * 623 * Expand @vma to @start and @end. Can expand off the start and end. Will 624 * expand over @next if it's different from @vma and @end == @next->vm_end. 625 * Checking if the @vma can expand and merge with @next needs to be handled by 626 * the caller. 627 * 628 * Returns: 0 on success 629 */ 630 int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma, 631 unsigned long start, unsigned long end, pgoff_t pgoff, 632 struct vm_area_struct *next) 633 { 634 struct vm_area_struct *anon_dup = NULL; 635 bool remove_next = false; 636 struct vma_prepare vp; 637 638 vma_start_write(vma); 639 if (next && (vma != next) && (end == next->vm_end)) { 640 int ret; 641 642 remove_next = true; 643 vma_start_write(next); 644 ret = dup_anon_vma(vma, next, &anon_dup); 645 if (ret) 646 return ret; 647 } 648 649 init_multi_vma_prep(&vp, vma, NULL, remove_next ? next : NULL, NULL); 650 /* Not merging but overwriting any part of next is not handled. */ 651 VM_WARN_ON(next && !vp.remove && 652 next != vma && end > next->vm_start); 653 /* Only handles expanding */ 654 VM_WARN_ON(vma->vm_start < start || vma->vm_end > end); 655 656 /* Note: vma iterator must be pointing to 'start' */ 657 vma_iter_config(vmi, start, end); 658 if (vma_iter_prealloc(vmi, vma)) 659 goto nomem; 660 661 vma_prepare(&vp); 662 vma_adjust_trans_huge(vma, start, end, 0); 663 vma->vm_start = start; 664 vma->vm_end = end; 665 vma->vm_pgoff = pgoff; 666 vma_iter_store(vmi, vma); 667 668 vma_complete(&vp, vmi, vma->vm_mm); 669 return 0; 670 671 nomem: 672 if (anon_dup) 673 unlink_anon_vmas(anon_dup); 674 return -ENOMEM; 675 } 676 677 /* 678 * vma_shrink() - Reduce an existing VMAs memory area 679 * @vmi: The vma iterator 680 * @vma: The VMA to modify 681 * @start: The new start 682 * @end: The new end 683 * 684 * Returns: 0 on success, -ENOMEM otherwise 685 */ 686 int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma, 687 unsigned long start, unsigned long end, pgoff_t pgoff) 688 { 689 struct vma_prepare vp; 690 691 WARN_ON((vma->vm_start != start) && (vma->vm_end != end)); 692 693 if (vma->vm_start < start) 694 vma_iter_config(vmi, vma->vm_start, start); 695 else 696 vma_iter_config(vmi, end, vma->vm_end); 697 698 if (vma_iter_prealloc(vmi, NULL)) 699 return -ENOMEM; 700 701 vma_start_write(vma); 702 703 init_vma_prep(&vp, vma); 704 vma_prepare(&vp); 705 vma_adjust_trans_huge(vma, start, end, 0); 706 707 vma_iter_clear(vmi); 708 vma->vm_start = start; 709 vma->vm_end = end; 710 vma->vm_pgoff = pgoff; 711 vma_complete(&vp, vmi, vma->vm_mm); 712 return 0; 713 } 714 715 /* 716 * If the vma has a ->close operation then the driver probably needs to release 717 * per-vma resources, so we don't attempt to merge those if the caller indicates 718 * the current vma may be removed as part of the merge. 719 */ 720 static inline bool is_mergeable_vma(struct vm_area_struct *vma, 721 struct file *file, unsigned long vm_flags, 722 struct vm_userfaultfd_ctx vm_userfaultfd_ctx, 723 struct anon_vma_name *anon_name, bool may_remove_vma) 724 { 725 /* 726 * VM_SOFTDIRTY should not prevent from VMA merging, if we 727 * match the flags but dirty bit -- the caller should mark 728 * merged VMA as dirty. If dirty bit won't be excluded from 729 * comparison, we increase pressure on the memory system forcing 730 * the kernel to generate new VMAs when old one could be 731 * extended instead. 732 */ 733 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY) 734 return false; 735 if (vma->vm_file != file) 736 return false; 737 if (may_remove_vma && vma->vm_ops && vma->vm_ops->close) 738 return false; 739 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx)) 740 return false; 741 if (!anon_vma_name_eq(anon_vma_name(vma), anon_name)) 742 return false; 743 return true; 744 } 745 746 static inline bool is_mergeable_anon_vma(struct anon_vma *anon_vma1, 747 struct anon_vma *anon_vma2, struct vm_area_struct *vma) 748 { 749 /* 750 * The list_is_singular() test is to avoid merging VMA cloned from 751 * parents. This can improve scalability caused by anon_vma lock. 752 */ 753 if ((!anon_vma1 || !anon_vma2) && (!vma || 754 list_is_singular(&vma->anon_vma_chain))) 755 return true; 756 return anon_vma1 == anon_vma2; 757 } 758 759 /* 760 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 761 * in front of (at a lower virtual address and file offset than) the vma. 762 * 763 * We cannot merge two vmas if they have differently assigned (non-NULL) 764 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 765 * 766 * We don't check here for the merged mmap wrapping around the end of pagecache 767 * indices (16TB on ia32) because do_mmap() does not permit mmap's which 768 * wrap, nor mmaps which cover the final page at index -1UL. 769 * 770 * We assume the vma may be removed as part of the merge. 771 */ 772 static bool 773 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags, 774 struct anon_vma *anon_vma, struct file *file, 775 pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx, 776 struct anon_vma_name *anon_name) 777 { 778 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, true) && 779 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 780 if (vma->vm_pgoff == vm_pgoff) 781 return true; 782 } 783 return false; 784 } 785 786 /* 787 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 788 * beyond (at a higher virtual address and file offset than) the vma. 789 * 790 * We cannot merge two vmas if they have differently assigned (non-NULL) 791 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 792 * 793 * We assume that vma is not removed as part of the merge. 794 */ 795 static bool 796 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags, 797 struct anon_vma *anon_vma, struct file *file, 798 pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx, 799 struct anon_vma_name *anon_name) 800 { 801 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, false) && 802 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 803 pgoff_t vm_pglen; 804 vm_pglen = vma_pages(vma); 805 if (vma->vm_pgoff + vm_pglen == vm_pgoff) 806 return true; 807 } 808 return false; 809 } 810 811 /* 812 * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name), 813 * figure out whether that can be merged with its predecessor or its 814 * successor. Or both (it neatly fills a hole). 815 * 816 * In most cases - when called for mmap, brk or mremap - [addr,end) is 817 * certain not to be mapped by the time vma_merge is called; but when 818 * called for mprotect, it is certain to be already mapped (either at 819 * an offset within prev, or at the start of next), and the flags of 820 * this area are about to be changed to vm_flags - and the no-change 821 * case has already been eliminated. 822 * 823 * The following mprotect cases have to be considered, where **** is 824 * the area passed down from mprotect_fixup, never extending beyond one 825 * vma, PPPP is the previous vma, CCCC is a concurrent vma that starts 826 * at the same address as **** and is of the same or larger span, and 827 * NNNN the next vma after ****: 828 * 829 * **** **** **** 830 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPCCCCCC 831 * cannot merge might become might become 832 * PPNNNNNNNNNN PPPPPPPPPPCC 833 * mmap, brk or case 4 below case 5 below 834 * mremap move: 835 * **** **** 836 * PPPP NNNN PPPPCCCCNNNN 837 * might become might become 838 * PPPPPPPPPPPP 1 or PPPPPPPPPPPP 6 or 839 * PPPPPPPPNNNN 2 or PPPPPPPPNNNN 7 or 840 * PPPPNNNNNNNN 3 PPPPNNNNNNNN 8 841 * 842 * It is important for case 8 that the vma CCCC overlapping the 843 * region **** is never going to extended over NNNN. Instead NNNN must 844 * be extended in region **** and CCCC must be removed. This way in 845 * all cases where vma_merge succeeds, the moment vma_merge drops the 846 * rmap_locks, the properties of the merged vma will be already 847 * correct for the whole merged range. Some of those properties like 848 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must 849 * be correct for the whole merged range immediately after the 850 * rmap_locks are released. Otherwise if NNNN would be removed and 851 * CCCC would be extended over the NNNN range, remove_migration_ptes 852 * or other rmap walkers (if working on addresses beyond the "end" 853 * parameter) may establish ptes with the wrong permissions of CCCC 854 * instead of the right permissions of NNNN. 855 * 856 * In the code below: 857 * PPPP is represented by *prev 858 * CCCC is represented by *curr or not represented at all (NULL) 859 * NNNN is represented by *next or not represented at all (NULL) 860 * **** is not represented - it will be merged and the vma containing the 861 * area is returned, or the function will return NULL 862 */ 863 static struct vm_area_struct 864 *vma_merge(struct vma_iterator *vmi, struct mm_struct *mm, 865 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 866 unsigned long vm_flags, struct anon_vma *anon_vma, struct file *file, 867 pgoff_t pgoff, struct mempolicy *policy, 868 struct vm_userfaultfd_ctx vm_userfaultfd_ctx, 869 struct anon_vma_name *anon_name) 870 { 871 struct vm_area_struct *curr, *next, *res; 872 struct vm_area_struct *vma, *adjust, *remove, *remove2; 873 struct vm_area_struct *anon_dup = NULL; 874 struct vma_prepare vp; 875 pgoff_t vma_pgoff; 876 int err = 0; 877 bool merge_prev = false; 878 bool merge_next = false; 879 bool vma_expanded = false; 880 unsigned long vma_start = addr; 881 unsigned long vma_end = end; 882 pgoff_t pglen = (end - addr) >> PAGE_SHIFT; 883 long adj_start = 0; 884 885 /* 886 * We later require that vma->vm_flags == vm_flags, 887 * so this tests vma->vm_flags & VM_SPECIAL, too. 888 */ 889 if (vm_flags & VM_SPECIAL) 890 return NULL; 891 892 /* Does the input range span an existing VMA? (cases 5 - 8) */ 893 curr = find_vma_intersection(mm, prev ? prev->vm_end : 0, end); 894 895 if (!curr || /* cases 1 - 4 */ 896 end == curr->vm_end) /* cases 6 - 8, adjacent VMA */ 897 next = vma_lookup(mm, end); 898 else 899 next = NULL; /* case 5 */ 900 901 if (prev) { 902 vma_start = prev->vm_start; 903 vma_pgoff = prev->vm_pgoff; 904 905 /* Can we merge the predecessor? */ 906 if (addr == prev->vm_end && mpol_equal(vma_policy(prev), policy) 907 && can_vma_merge_after(prev, vm_flags, anon_vma, file, 908 pgoff, vm_userfaultfd_ctx, anon_name)) { 909 merge_prev = true; 910 vma_prev(vmi); 911 } 912 } 913 914 /* Can we merge the successor? */ 915 if (next && mpol_equal(policy, vma_policy(next)) && 916 can_vma_merge_before(next, vm_flags, anon_vma, file, pgoff+pglen, 917 vm_userfaultfd_ctx, anon_name)) { 918 merge_next = true; 919 } 920 921 /* Verify some invariant that must be enforced by the caller. */ 922 VM_WARN_ON(prev && addr <= prev->vm_start); 923 VM_WARN_ON(curr && (addr != curr->vm_start || end > curr->vm_end)); 924 VM_WARN_ON(addr >= end); 925 926 if (!merge_prev && !merge_next) 927 return NULL; /* Not mergeable. */ 928 929 if (merge_prev) 930 vma_start_write(prev); 931 932 res = vma = prev; 933 remove = remove2 = adjust = NULL; 934 935 /* Can we merge both the predecessor and the successor? */ 936 if (merge_prev && merge_next && 937 is_mergeable_anon_vma(prev->anon_vma, next->anon_vma, NULL)) { 938 vma_start_write(next); 939 remove = next; /* case 1 */ 940 vma_end = next->vm_end; 941 err = dup_anon_vma(prev, next, &anon_dup); 942 if (curr) { /* case 6 */ 943 vma_start_write(curr); 944 remove = curr; 945 remove2 = next; 946 /* 947 * Note that the dup_anon_vma below cannot overwrite err 948 * since the first caller would do nothing unless next 949 * has an anon_vma. 950 */ 951 if (!next->anon_vma) 952 err = dup_anon_vma(prev, curr, &anon_dup); 953 } 954 } else if (merge_prev) { /* case 2 */ 955 if (curr) { 956 vma_start_write(curr); 957 if (end == curr->vm_end) { /* case 7 */ 958 /* 959 * can_vma_merge_after() assumed we would not be 960 * removing prev vma, so it skipped the check 961 * for vm_ops->close, but we are removing curr 962 */ 963 if (curr->vm_ops && curr->vm_ops->close) 964 err = -EINVAL; 965 remove = curr; 966 } else { /* case 5 */ 967 adjust = curr; 968 adj_start = (end - curr->vm_start); 969 } 970 if (!err) 971 err = dup_anon_vma(prev, curr, &anon_dup); 972 } 973 } else { /* merge_next */ 974 vma_start_write(next); 975 res = next; 976 if (prev && addr < prev->vm_end) { /* case 4 */ 977 vma_start_write(prev); 978 vma_end = addr; 979 adjust = next; 980 adj_start = -(prev->vm_end - addr); 981 err = dup_anon_vma(next, prev, &anon_dup); 982 } else { 983 /* 984 * Note that cases 3 and 8 are the ONLY ones where prev 985 * is permitted to be (but is not necessarily) NULL. 986 */ 987 vma = next; /* case 3 */ 988 vma_start = addr; 989 vma_end = next->vm_end; 990 vma_pgoff = next->vm_pgoff - pglen; 991 if (curr) { /* case 8 */ 992 vma_pgoff = curr->vm_pgoff; 993 vma_start_write(curr); 994 remove = curr; 995 err = dup_anon_vma(next, curr, &anon_dup); 996 } 997 } 998 } 999 1000 /* Error in anon_vma clone. */ 1001 if (err) 1002 goto anon_vma_fail; 1003 1004 if (vma_start < vma->vm_start || vma_end > vma->vm_end) 1005 vma_expanded = true; 1006 1007 if (vma_expanded) { 1008 vma_iter_config(vmi, vma_start, vma_end); 1009 } else { 1010 vma_iter_config(vmi, adjust->vm_start + adj_start, 1011 adjust->vm_end); 1012 } 1013 1014 if (vma_iter_prealloc(vmi, vma)) 1015 goto prealloc_fail; 1016 1017 init_multi_vma_prep(&vp, vma, adjust, remove, remove2); 1018 VM_WARN_ON(vp.anon_vma && adjust && adjust->anon_vma && 1019 vp.anon_vma != adjust->anon_vma); 1020 1021 vma_prepare(&vp); 1022 vma_adjust_trans_huge(vma, vma_start, vma_end, adj_start); 1023 1024 vma->vm_start = vma_start; 1025 vma->vm_end = vma_end; 1026 vma->vm_pgoff = vma_pgoff; 1027 1028 if (vma_expanded) 1029 vma_iter_store(vmi, vma); 1030 1031 if (adj_start) { 1032 adjust->vm_start += adj_start; 1033 adjust->vm_pgoff += adj_start >> PAGE_SHIFT; 1034 if (adj_start < 0) { 1035 WARN_ON(vma_expanded); 1036 vma_iter_store(vmi, next); 1037 } 1038 } 1039 1040 vma_complete(&vp, vmi, mm); 1041 khugepaged_enter_vma(res, vm_flags); 1042 return res; 1043 1044 prealloc_fail: 1045 if (anon_dup) 1046 unlink_anon_vmas(anon_dup); 1047 1048 anon_vma_fail: 1049 vma_iter_set(vmi, addr); 1050 vma_iter_load(vmi); 1051 return NULL; 1052 } 1053 1054 /* 1055 * Rough compatibility check to quickly see if it's even worth looking 1056 * at sharing an anon_vma. 1057 * 1058 * They need to have the same vm_file, and the flags can only differ 1059 * in things that mprotect may change. 1060 * 1061 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that 1062 * we can merge the two vma's. For example, we refuse to merge a vma if 1063 * there is a vm_ops->close() function, because that indicates that the 1064 * driver is doing some kind of reference counting. But that doesn't 1065 * really matter for the anon_vma sharing case. 1066 */ 1067 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b) 1068 { 1069 return a->vm_end == b->vm_start && 1070 mpol_equal(vma_policy(a), vma_policy(b)) && 1071 a->vm_file == b->vm_file && 1072 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) && 1073 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT); 1074 } 1075 1076 /* 1077 * Do some basic sanity checking to see if we can re-use the anon_vma 1078 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be 1079 * the same as 'old', the other will be the new one that is trying 1080 * to share the anon_vma. 1081 * 1082 * NOTE! This runs with mmap_lock held for reading, so it is possible that 1083 * the anon_vma of 'old' is concurrently in the process of being set up 1084 * by another page fault trying to merge _that_. But that's ok: if it 1085 * is being set up, that automatically means that it will be a singleton 1086 * acceptable for merging, so we can do all of this optimistically. But 1087 * we do that READ_ONCE() to make sure that we never re-load the pointer. 1088 * 1089 * IOW: that the "list_is_singular()" test on the anon_vma_chain only 1090 * matters for the 'stable anon_vma' case (ie the thing we want to avoid 1091 * is to return an anon_vma that is "complex" due to having gone through 1092 * a fork). 1093 * 1094 * We also make sure that the two vma's are compatible (adjacent, 1095 * and with the same memory policies). That's all stable, even with just 1096 * a read lock on the mmap_lock. 1097 */ 1098 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b) 1099 { 1100 if (anon_vma_compatible(a, b)) { 1101 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma); 1102 1103 if (anon_vma && list_is_singular(&old->anon_vma_chain)) 1104 return anon_vma; 1105 } 1106 return NULL; 1107 } 1108 1109 /* 1110 * find_mergeable_anon_vma is used by anon_vma_prepare, to check 1111 * neighbouring vmas for a suitable anon_vma, before it goes off 1112 * to allocate a new anon_vma. It checks because a repetitive 1113 * sequence of mprotects and faults may otherwise lead to distinct 1114 * anon_vmas being allocated, preventing vma merge in subsequent 1115 * mprotect. 1116 */ 1117 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) 1118 { 1119 MA_STATE(mas, &vma->vm_mm->mm_mt, vma->vm_end, vma->vm_end); 1120 struct anon_vma *anon_vma = NULL; 1121 struct vm_area_struct *prev, *next; 1122 1123 /* Try next first. */ 1124 next = mas_walk(&mas); 1125 if (next) { 1126 anon_vma = reusable_anon_vma(next, vma, next); 1127 if (anon_vma) 1128 return anon_vma; 1129 } 1130 1131 prev = mas_prev(&mas, 0); 1132 VM_BUG_ON_VMA(prev != vma, vma); 1133 prev = mas_prev(&mas, 0); 1134 /* Try prev next. */ 1135 if (prev) 1136 anon_vma = reusable_anon_vma(prev, prev, vma); 1137 1138 /* 1139 * We might reach here with anon_vma == NULL if we can't find 1140 * any reusable anon_vma. 1141 * There's no absolute need to look only at touching neighbours: 1142 * we could search further afield for "compatible" anon_vmas. 1143 * But it would probably just be a waste of time searching, 1144 * or lead to too many vmas hanging off the same anon_vma. 1145 * We're trying to allow mprotect remerging later on, 1146 * not trying to minimize memory used for anon_vmas. 1147 */ 1148 return anon_vma; 1149 } 1150 1151 /* 1152 * If a hint addr is less than mmap_min_addr change hint to be as 1153 * low as possible but still greater than mmap_min_addr 1154 */ 1155 static inline unsigned long round_hint_to_min(unsigned long hint) 1156 { 1157 hint &= PAGE_MASK; 1158 if (((void *)hint != NULL) && 1159 (hint < mmap_min_addr)) 1160 return PAGE_ALIGN(mmap_min_addr); 1161 return hint; 1162 } 1163 1164 bool mlock_future_ok(struct mm_struct *mm, unsigned long flags, 1165 unsigned long bytes) 1166 { 1167 unsigned long locked_pages, limit_pages; 1168 1169 if (!(flags & VM_LOCKED) || capable(CAP_IPC_LOCK)) 1170 return true; 1171 1172 locked_pages = bytes >> PAGE_SHIFT; 1173 locked_pages += mm->locked_vm; 1174 1175 limit_pages = rlimit(RLIMIT_MEMLOCK); 1176 limit_pages >>= PAGE_SHIFT; 1177 1178 return locked_pages <= limit_pages; 1179 } 1180 1181 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode) 1182 { 1183 if (S_ISREG(inode->i_mode)) 1184 return MAX_LFS_FILESIZE; 1185 1186 if (S_ISBLK(inode->i_mode)) 1187 return MAX_LFS_FILESIZE; 1188 1189 if (S_ISSOCK(inode->i_mode)) 1190 return MAX_LFS_FILESIZE; 1191 1192 /* Special "we do even unsigned file positions" case */ 1193 if (file->f_mode & FMODE_UNSIGNED_OFFSET) 1194 return 0; 1195 1196 /* Yes, random drivers might want more. But I'm tired of buggy drivers */ 1197 return ULONG_MAX; 1198 } 1199 1200 static inline bool file_mmap_ok(struct file *file, struct inode *inode, 1201 unsigned long pgoff, unsigned long len) 1202 { 1203 u64 maxsize = file_mmap_size_max(file, inode); 1204 1205 if (maxsize && len > maxsize) 1206 return false; 1207 maxsize -= len; 1208 if (pgoff > maxsize >> PAGE_SHIFT) 1209 return false; 1210 return true; 1211 } 1212 1213 /* 1214 * The caller must write-lock current->mm->mmap_lock. 1215 */ 1216 unsigned long do_mmap(struct file *file, unsigned long addr, 1217 unsigned long len, unsigned long prot, 1218 unsigned long flags, vm_flags_t vm_flags, 1219 unsigned long pgoff, unsigned long *populate, 1220 struct list_head *uf) 1221 { 1222 struct mm_struct *mm = current->mm; 1223 int pkey = 0; 1224 1225 *populate = 0; 1226 1227 if (!len) 1228 return -EINVAL; 1229 1230 /* 1231 * Does the application expect PROT_READ to imply PROT_EXEC? 1232 * 1233 * (the exception is when the underlying filesystem is noexec 1234 * mounted, in which case we don't add PROT_EXEC.) 1235 */ 1236 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC)) 1237 if (!(file && path_noexec(&file->f_path))) 1238 prot |= PROT_EXEC; 1239 1240 /* force arch specific MAP_FIXED handling in get_unmapped_area */ 1241 if (flags & MAP_FIXED_NOREPLACE) 1242 flags |= MAP_FIXED; 1243 1244 if (!(flags & MAP_FIXED)) 1245 addr = round_hint_to_min(addr); 1246 1247 /* Careful about overflows.. */ 1248 len = PAGE_ALIGN(len); 1249 if (!len) 1250 return -ENOMEM; 1251 1252 /* offset overflow? */ 1253 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff) 1254 return -EOVERFLOW; 1255 1256 /* Too many mappings? */ 1257 if (mm->map_count > sysctl_max_map_count) 1258 return -ENOMEM; 1259 1260 /* Obtain the address to map to. we verify (or select) it and ensure 1261 * that it represents a valid section of the address space. 1262 */ 1263 addr = get_unmapped_area(file, addr, len, pgoff, flags); 1264 if (IS_ERR_VALUE(addr)) 1265 return addr; 1266 1267 if (flags & MAP_FIXED_NOREPLACE) { 1268 if (find_vma_intersection(mm, addr, addr + len)) 1269 return -EEXIST; 1270 } 1271 1272 if (prot == PROT_EXEC) { 1273 pkey = execute_only_pkey(mm); 1274 if (pkey < 0) 1275 pkey = 0; 1276 } 1277 1278 /* Do simple checking here so the lower-level routines won't have 1279 * to. we assume access permissions have been handled by the open 1280 * of the memory object, so we don't do any here. 1281 */ 1282 vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) | 1283 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 1284 1285 if (flags & MAP_LOCKED) 1286 if (!can_do_mlock()) 1287 return -EPERM; 1288 1289 if (!mlock_future_ok(mm, vm_flags, len)) 1290 return -EAGAIN; 1291 1292 if (file) { 1293 struct inode *inode = file_inode(file); 1294 unsigned long flags_mask; 1295 1296 if (!file_mmap_ok(file, inode, pgoff, len)) 1297 return -EOVERFLOW; 1298 1299 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags; 1300 1301 switch (flags & MAP_TYPE) { 1302 case MAP_SHARED: 1303 /* 1304 * Force use of MAP_SHARED_VALIDATE with non-legacy 1305 * flags. E.g. MAP_SYNC is dangerous to use with 1306 * MAP_SHARED as you don't know which consistency model 1307 * you will get. We silently ignore unsupported flags 1308 * with MAP_SHARED to preserve backward compatibility. 1309 */ 1310 flags &= LEGACY_MAP_MASK; 1311 fallthrough; 1312 case MAP_SHARED_VALIDATE: 1313 if (flags & ~flags_mask) 1314 return -EOPNOTSUPP; 1315 if (prot & PROT_WRITE) { 1316 if (!(file->f_mode & FMODE_WRITE)) 1317 return -EACCES; 1318 if (IS_SWAPFILE(file->f_mapping->host)) 1319 return -ETXTBSY; 1320 } 1321 1322 /* 1323 * Make sure we don't allow writing to an append-only 1324 * file.. 1325 */ 1326 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE)) 1327 return -EACCES; 1328 1329 vm_flags |= VM_SHARED | VM_MAYSHARE; 1330 if (!(file->f_mode & FMODE_WRITE)) 1331 vm_flags &= ~(VM_MAYWRITE | VM_SHARED); 1332 fallthrough; 1333 case MAP_PRIVATE: 1334 if (!(file->f_mode & FMODE_READ)) 1335 return -EACCES; 1336 if (path_noexec(&file->f_path)) { 1337 if (vm_flags & VM_EXEC) 1338 return -EPERM; 1339 vm_flags &= ~VM_MAYEXEC; 1340 } 1341 1342 if (!file->f_op->mmap) 1343 return -ENODEV; 1344 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1345 return -EINVAL; 1346 break; 1347 1348 default: 1349 return -EINVAL; 1350 } 1351 } else { 1352 switch (flags & MAP_TYPE) { 1353 case MAP_SHARED: 1354 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1355 return -EINVAL; 1356 /* 1357 * Ignore pgoff. 1358 */ 1359 pgoff = 0; 1360 vm_flags |= VM_SHARED | VM_MAYSHARE; 1361 break; 1362 case MAP_PRIVATE: 1363 /* 1364 * Set pgoff according to addr for anon_vma. 1365 */ 1366 pgoff = addr >> PAGE_SHIFT; 1367 break; 1368 default: 1369 return -EINVAL; 1370 } 1371 } 1372 1373 /* 1374 * Set 'VM_NORESERVE' if we should not account for the 1375 * memory use of this mapping. 1376 */ 1377 if (flags & MAP_NORESERVE) { 1378 /* We honor MAP_NORESERVE if allowed to overcommit */ 1379 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER) 1380 vm_flags |= VM_NORESERVE; 1381 1382 /* hugetlb applies strict overcommit unless MAP_NORESERVE */ 1383 if (file && is_file_hugepages(file)) 1384 vm_flags |= VM_NORESERVE; 1385 } 1386 1387 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf); 1388 if (!IS_ERR_VALUE(addr) && 1389 ((vm_flags & VM_LOCKED) || 1390 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE)) 1391 *populate = len; 1392 return addr; 1393 } 1394 1395 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len, 1396 unsigned long prot, unsigned long flags, 1397 unsigned long fd, unsigned long pgoff) 1398 { 1399 struct file *file = NULL; 1400 unsigned long retval; 1401 1402 if (!(flags & MAP_ANONYMOUS)) { 1403 audit_mmap_fd(fd, flags); 1404 file = fget(fd); 1405 if (!file) 1406 return -EBADF; 1407 if (is_file_hugepages(file)) { 1408 len = ALIGN(len, huge_page_size(hstate_file(file))); 1409 } else if (unlikely(flags & MAP_HUGETLB)) { 1410 retval = -EINVAL; 1411 goto out_fput; 1412 } 1413 } else if (flags & MAP_HUGETLB) { 1414 struct hstate *hs; 1415 1416 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 1417 if (!hs) 1418 return -EINVAL; 1419 1420 len = ALIGN(len, huge_page_size(hs)); 1421 /* 1422 * VM_NORESERVE is used because the reservations will be 1423 * taken when vm_ops->mmap() is called 1424 */ 1425 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, 1426 VM_NORESERVE, 1427 HUGETLB_ANONHUGE_INODE, 1428 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 1429 if (IS_ERR(file)) 1430 return PTR_ERR(file); 1431 } 1432 1433 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1434 out_fput: 1435 if (file) 1436 fput(file); 1437 return retval; 1438 } 1439 1440 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1441 unsigned long, prot, unsigned long, flags, 1442 unsigned long, fd, unsigned long, pgoff) 1443 { 1444 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff); 1445 } 1446 1447 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1448 struct mmap_arg_struct { 1449 unsigned long addr; 1450 unsigned long len; 1451 unsigned long prot; 1452 unsigned long flags; 1453 unsigned long fd; 1454 unsigned long offset; 1455 }; 1456 1457 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1458 { 1459 struct mmap_arg_struct a; 1460 1461 if (copy_from_user(&a, arg, sizeof(a))) 1462 return -EFAULT; 1463 if (offset_in_page(a.offset)) 1464 return -EINVAL; 1465 1466 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1467 a.offset >> PAGE_SHIFT); 1468 } 1469 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1470 1471 static bool vm_ops_needs_writenotify(const struct vm_operations_struct *vm_ops) 1472 { 1473 return vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite); 1474 } 1475 1476 static bool vma_is_shared_writable(struct vm_area_struct *vma) 1477 { 1478 return (vma->vm_flags & (VM_WRITE | VM_SHARED)) == 1479 (VM_WRITE | VM_SHARED); 1480 } 1481 1482 static bool vma_fs_can_writeback(struct vm_area_struct *vma) 1483 { 1484 /* No managed pages to writeback. */ 1485 if (vma->vm_flags & VM_PFNMAP) 1486 return false; 1487 1488 return vma->vm_file && vma->vm_file->f_mapping && 1489 mapping_can_writeback(vma->vm_file->f_mapping); 1490 } 1491 1492 /* 1493 * Does this VMA require the underlying folios to have their dirty state 1494 * tracked? 1495 */ 1496 bool vma_needs_dirty_tracking(struct vm_area_struct *vma) 1497 { 1498 /* Only shared, writable VMAs require dirty tracking. */ 1499 if (!vma_is_shared_writable(vma)) 1500 return false; 1501 1502 /* Does the filesystem need to be notified? */ 1503 if (vm_ops_needs_writenotify(vma->vm_ops)) 1504 return true; 1505 1506 /* 1507 * Even if the filesystem doesn't indicate a need for writenotify, if it 1508 * can writeback, dirty tracking is still required. 1509 */ 1510 return vma_fs_can_writeback(vma); 1511 } 1512 1513 /* 1514 * Some shared mappings will want the pages marked read-only 1515 * to track write events. If so, we'll downgrade vm_page_prot 1516 * to the private version (using protection_map[] without the 1517 * VM_SHARED bit). 1518 */ 1519 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot) 1520 { 1521 /* If it was private or non-writable, the write bit is already clear */ 1522 if (!vma_is_shared_writable(vma)) 1523 return 0; 1524 1525 /* The backer wishes to know when pages are first written to? */ 1526 if (vm_ops_needs_writenotify(vma->vm_ops)) 1527 return 1; 1528 1529 /* The open routine did something to the protections that pgprot_modify 1530 * won't preserve? */ 1531 if (pgprot_val(vm_page_prot) != 1532 pgprot_val(vm_pgprot_modify(vm_page_prot, vma->vm_flags))) 1533 return 0; 1534 1535 /* 1536 * Do we need to track softdirty? hugetlb does not support softdirty 1537 * tracking yet. 1538 */ 1539 if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma)) 1540 return 1; 1541 1542 /* Do we need write faults for uffd-wp tracking? */ 1543 if (userfaultfd_wp(vma)) 1544 return 1; 1545 1546 /* Can the mapping track the dirty pages? */ 1547 return vma_fs_can_writeback(vma); 1548 } 1549 1550 /* 1551 * We account for memory if it's a private writeable mapping, 1552 * not hugepages and VM_NORESERVE wasn't set. 1553 */ 1554 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags) 1555 { 1556 /* 1557 * hugetlb has its own accounting separate from the core VM 1558 * VM_HUGETLB may not be set yet so we cannot check for that flag. 1559 */ 1560 if (file && is_file_hugepages(file)) 1561 return 0; 1562 1563 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE; 1564 } 1565 1566 /** 1567 * unmapped_area() - Find an area between the low_limit and the high_limit with 1568 * the correct alignment and offset, all from @info. Note: current->mm is used 1569 * for the search. 1570 * 1571 * @info: The unmapped area information including the range [low_limit - 1572 * high_limit), the alignment offset and mask. 1573 * 1574 * Return: A memory address or -ENOMEM. 1575 */ 1576 static unsigned long unmapped_area(struct vm_unmapped_area_info *info) 1577 { 1578 unsigned long length, gap; 1579 unsigned long low_limit, high_limit; 1580 struct vm_area_struct *tmp; 1581 1582 MA_STATE(mas, ¤t->mm->mm_mt, 0, 0); 1583 1584 /* Adjust search length to account for worst case alignment overhead */ 1585 length = info->length + info->align_mask; 1586 if (length < info->length) 1587 return -ENOMEM; 1588 1589 low_limit = info->low_limit; 1590 if (low_limit < mmap_min_addr) 1591 low_limit = mmap_min_addr; 1592 high_limit = info->high_limit; 1593 retry: 1594 if (mas_empty_area(&mas, low_limit, high_limit - 1, length)) 1595 return -ENOMEM; 1596 1597 gap = mas.index; 1598 gap += (info->align_offset - gap) & info->align_mask; 1599 tmp = mas_next(&mas, ULONG_MAX); 1600 if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */ 1601 if (vm_start_gap(tmp) < gap + length - 1) { 1602 low_limit = tmp->vm_end; 1603 mas_reset(&mas); 1604 goto retry; 1605 } 1606 } else { 1607 tmp = mas_prev(&mas, 0); 1608 if (tmp && vm_end_gap(tmp) > gap) { 1609 low_limit = vm_end_gap(tmp); 1610 mas_reset(&mas); 1611 goto retry; 1612 } 1613 } 1614 1615 return gap; 1616 } 1617 1618 /** 1619 * unmapped_area_topdown() - Find an area between the low_limit and the 1620 * high_limit with the correct alignment and offset at the highest available 1621 * address, all from @info. Note: current->mm is used for the search. 1622 * 1623 * @info: The unmapped area information including the range [low_limit - 1624 * high_limit), the alignment offset and mask. 1625 * 1626 * Return: A memory address or -ENOMEM. 1627 */ 1628 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info) 1629 { 1630 unsigned long length, gap, gap_end; 1631 unsigned long low_limit, high_limit; 1632 struct vm_area_struct *tmp; 1633 1634 MA_STATE(mas, ¤t->mm->mm_mt, 0, 0); 1635 /* Adjust search length to account for worst case alignment overhead */ 1636 length = info->length + info->align_mask; 1637 if (length < info->length) 1638 return -ENOMEM; 1639 1640 low_limit = info->low_limit; 1641 if (low_limit < mmap_min_addr) 1642 low_limit = mmap_min_addr; 1643 high_limit = info->high_limit; 1644 retry: 1645 if (mas_empty_area_rev(&mas, low_limit, high_limit - 1, length)) 1646 return -ENOMEM; 1647 1648 gap = mas.last + 1 - info->length; 1649 gap -= (gap - info->align_offset) & info->align_mask; 1650 gap_end = mas.last; 1651 tmp = mas_next(&mas, ULONG_MAX); 1652 if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */ 1653 if (vm_start_gap(tmp) <= gap_end) { 1654 high_limit = vm_start_gap(tmp); 1655 mas_reset(&mas); 1656 goto retry; 1657 } 1658 } else { 1659 tmp = mas_prev(&mas, 0); 1660 if (tmp && vm_end_gap(tmp) > gap) { 1661 high_limit = tmp->vm_start; 1662 mas_reset(&mas); 1663 goto retry; 1664 } 1665 } 1666 1667 return gap; 1668 } 1669 1670 /* 1671 * Search for an unmapped address range. 1672 * 1673 * We are looking for a range that: 1674 * - does not intersect with any VMA; 1675 * - is contained within the [low_limit, high_limit) interval; 1676 * - is at least the desired size. 1677 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) 1678 */ 1679 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info) 1680 { 1681 unsigned long addr; 1682 1683 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN) 1684 addr = unmapped_area_topdown(info); 1685 else 1686 addr = unmapped_area(info); 1687 1688 trace_vm_unmapped_area(addr, info); 1689 return addr; 1690 } 1691 1692 /* Get an address range which is currently unmapped. 1693 * For shmat() with addr=0. 1694 * 1695 * Ugly calling convention alert: 1696 * Return value with the low bits set means error value, 1697 * ie 1698 * if (ret & ~PAGE_MASK) 1699 * error = ret; 1700 * 1701 * This function "knows" that -ENOMEM has the bits set. 1702 */ 1703 unsigned long 1704 generic_get_unmapped_area(struct file *filp, unsigned long addr, 1705 unsigned long len, unsigned long pgoff, 1706 unsigned long flags) 1707 { 1708 struct mm_struct *mm = current->mm; 1709 struct vm_area_struct *vma, *prev; 1710 struct vm_unmapped_area_info info; 1711 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags); 1712 1713 if (len > mmap_end - mmap_min_addr) 1714 return -ENOMEM; 1715 1716 if (flags & MAP_FIXED) 1717 return addr; 1718 1719 if (addr) { 1720 addr = PAGE_ALIGN(addr); 1721 vma = find_vma_prev(mm, addr, &prev); 1722 if (mmap_end - len >= addr && addr >= mmap_min_addr && 1723 (!vma || addr + len <= vm_start_gap(vma)) && 1724 (!prev || addr >= vm_end_gap(prev))) 1725 return addr; 1726 } 1727 1728 info.flags = 0; 1729 info.length = len; 1730 info.low_limit = mm->mmap_base; 1731 info.high_limit = mmap_end; 1732 info.align_mask = 0; 1733 info.align_offset = 0; 1734 return vm_unmapped_area(&info); 1735 } 1736 1737 #ifndef HAVE_ARCH_UNMAPPED_AREA 1738 unsigned long 1739 arch_get_unmapped_area(struct file *filp, unsigned long addr, 1740 unsigned long len, unsigned long pgoff, 1741 unsigned long flags) 1742 { 1743 return generic_get_unmapped_area(filp, addr, len, pgoff, flags); 1744 } 1745 #endif 1746 1747 /* 1748 * This mmap-allocator allocates new areas top-down from below the 1749 * stack's low limit (the base): 1750 */ 1751 unsigned long 1752 generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 1753 unsigned long len, unsigned long pgoff, 1754 unsigned long flags) 1755 { 1756 struct vm_area_struct *vma, *prev; 1757 struct mm_struct *mm = current->mm; 1758 struct vm_unmapped_area_info info; 1759 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags); 1760 1761 /* requested length too big for entire address space */ 1762 if (len > mmap_end - mmap_min_addr) 1763 return -ENOMEM; 1764 1765 if (flags & MAP_FIXED) 1766 return addr; 1767 1768 /* requesting a specific address */ 1769 if (addr) { 1770 addr = PAGE_ALIGN(addr); 1771 vma = find_vma_prev(mm, addr, &prev); 1772 if (mmap_end - len >= addr && addr >= mmap_min_addr && 1773 (!vma || addr + len <= vm_start_gap(vma)) && 1774 (!prev || addr >= vm_end_gap(prev))) 1775 return addr; 1776 } 1777 1778 info.flags = VM_UNMAPPED_AREA_TOPDOWN; 1779 info.length = len; 1780 info.low_limit = PAGE_SIZE; 1781 info.high_limit = arch_get_mmap_base(addr, mm->mmap_base); 1782 info.align_mask = 0; 1783 info.align_offset = 0; 1784 addr = vm_unmapped_area(&info); 1785 1786 /* 1787 * A failed mmap() very likely causes application failure, 1788 * so fall back to the bottom-up function here. This scenario 1789 * can happen with large stack limits and large mmap() 1790 * allocations. 1791 */ 1792 if (offset_in_page(addr)) { 1793 VM_BUG_ON(addr != -ENOMEM); 1794 info.flags = 0; 1795 info.low_limit = TASK_UNMAPPED_BASE; 1796 info.high_limit = mmap_end; 1797 addr = vm_unmapped_area(&info); 1798 } 1799 1800 return addr; 1801 } 1802 1803 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 1804 unsigned long 1805 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 1806 unsigned long len, unsigned long pgoff, 1807 unsigned long flags) 1808 { 1809 return generic_get_unmapped_area_topdown(filp, addr, len, pgoff, flags); 1810 } 1811 #endif 1812 1813 unsigned long 1814 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 1815 unsigned long pgoff, unsigned long flags) 1816 { 1817 unsigned long (*get_area)(struct file *, unsigned long, 1818 unsigned long, unsigned long, unsigned long); 1819 1820 unsigned long error = arch_mmap_check(addr, len, flags); 1821 if (error) 1822 return error; 1823 1824 /* Careful about overflows.. */ 1825 if (len > TASK_SIZE) 1826 return -ENOMEM; 1827 1828 get_area = current->mm->get_unmapped_area; 1829 if (file) { 1830 if (file->f_op->get_unmapped_area) 1831 get_area = file->f_op->get_unmapped_area; 1832 } else if (flags & MAP_SHARED) { 1833 /* 1834 * mmap_region() will call shmem_zero_setup() to create a file, 1835 * so use shmem's get_unmapped_area in case it can be huge. 1836 */ 1837 get_area = shmem_get_unmapped_area; 1838 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { 1839 /* Ensures that larger anonymous mappings are THP aligned. */ 1840 get_area = thp_get_unmapped_area; 1841 } 1842 1843 /* Always treat pgoff as zero for anonymous memory. */ 1844 if (!file) 1845 pgoff = 0; 1846 1847 addr = get_area(file, addr, len, pgoff, flags); 1848 if (IS_ERR_VALUE(addr)) 1849 return addr; 1850 1851 if (addr > TASK_SIZE - len) 1852 return -ENOMEM; 1853 if (offset_in_page(addr)) 1854 return -EINVAL; 1855 1856 error = security_mmap_addr(addr); 1857 return error ? error : addr; 1858 } 1859 1860 EXPORT_SYMBOL(get_unmapped_area); 1861 1862 /** 1863 * find_vma_intersection() - Look up the first VMA which intersects the interval 1864 * @mm: The process address space. 1865 * @start_addr: The inclusive start user address. 1866 * @end_addr: The exclusive end user address. 1867 * 1868 * Returns: The first VMA within the provided range, %NULL otherwise. Assumes 1869 * start_addr < end_addr. 1870 */ 1871 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm, 1872 unsigned long start_addr, 1873 unsigned long end_addr) 1874 { 1875 unsigned long index = start_addr; 1876 1877 mmap_assert_locked(mm); 1878 return mt_find(&mm->mm_mt, &index, end_addr - 1); 1879 } 1880 EXPORT_SYMBOL(find_vma_intersection); 1881 1882 /** 1883 * find_vma() - Find the VMA for a given address, or the next VMA. 1884 * @mm: The mm_struct to check 1885 * @addr: The address 1886 * 1887 * Returns: The VMA associated with addr, or the next VMA. 1888 * May return %NULL in the case of no VMA at addr or above. 1889 */ 1890 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 1891 { 1892 unsigned long index = addr; 1893 1894 mmap_assert_locked(mm); 1895 return mt_find(&mm->mm_mt, &index, ULONG_MAX); 1896 } 1897 EXPORT_SYMBOL(find_vma); 1898 1899 /** 1900 * find_vma_prev() - Find the VMA for a given address, or the next vma and 1901 * set %pprev to the previous VMA, if any. 1902 * @mm: The mm_struct to check 1903 * @addr: The address 1904 * @pprev: The pointer to set to the previous VMA 1905 * 1906 * Note that RCU lock is missing here since the external mmap_lock() is used 1907 * instead. 1908 * 1909 * Returns: The VMA associated with @addr, or the next vma. 1910 * May return %NULL in the case of no vma at addr or above. 1911 */ 1912 struct vm_area_struct * 1913 find_vma_prev(struct mm_struct *mm, unsigned long addr, 1914 struct vm_area_struct **pprev) 1915 { 1916 struct vm_area_struct *vma; 1917 MA_STATE(mas, &mm->mm_mt, addr, addr); 1918 1919 vma = mas_walk(&mas); 1920 *pprev = mas_prev(&mas, 0); 1921 if (!vma) 1922 vma = mas_next(&mas, ULONG_MAX); 1923 return vma; 1924 } 1925 1926 /* 1927 * Verify that the stack growth is acceptable and 1928 * update accounting. This is shared with both the 1929 * grow-up and grow-down cases. 1930 */ 1931 static int acct_stack_growth(struct vm_area_struct *vma, 1932 unsigned long size, unsigned long grow) 1933 { 1934 struct mm_struct *mm = vma->vm_mm; 1935 unsigned long new_start; 1936 1937 /* address space limit tests */ 1938 if (!may_expand_vm(mm, vma->vm_flags, grow)) 1939 return -ENOMEM; 1940 1941 /* Stack limit test */ 1942 if (size > rlimit(RLIMIT_STACK)) 1943 return -ENOMEM; 1944 1945 /* mlock limit tests */ 1946 if (!mlock_future_ok(mm, vma->vm_flags, grow << PAGE_SHIFT)) 1947 return -ENOMEM; 1948 1949 /* Check to ensure the stack will not grow into a hugetlb-only region */ 1950 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : 1951 vma->vm_end - size; 1952 if (is_hugepage_only_range(vma->vm_mm, new_start, size)) 1953 return -EFAULT; 1954 1955 /* 1956 * Overcommit.. This must be the final test, as it will 1957 * update security statistics. 1958 */ 1959 if (security_vm_enough_memory_mm(mm, grow)) 1960 return -ENOMEM; 1961 1962 return 0; 1963 } 1964 1965 #if defined(CONFIG_STACK_GROWSUP) 1966 /* 1967 * PA-RISC uses this for its stack. 1968 * vma is the last one with address > vma->vm_end. Have to extend vma. 1969 */ 1970 static int expand_upwards(struct vm_area_struct *vma, unsigned long address) 1971 { 1972 struct mm_struct *mm = vma->vm_mm; 1973 struct vm_area_struct *next; 1974 unsigned long gap_addr; 1975 int error = 0; 1976 MA_STATE(mas, &mm->mm_mt, vma->vm_start, address); 1977 1978 if (!(vma->vm_flags & VM_GROWSUP)) 1979 return -EFAULT; 1980 1981 /* Guard against exceeding limits of the address space. */ 1982 address &= PAGE_MASK; 1983 if (address >= (TASK_SIZE & PAGE_MASK)) 1984 return -ENOMEM; 1985 address += PAGE_SIZE; 1986 1987 /* Enforce stack_guard_gap */ 1988 gap_addr = address + stack_guard_gap; 1989 1990 /* Guard against overflow */ 1991 if (gap_addr < address || gap_addr > TASK_SIZE) 1992 gap_addr = TASK_SIZE; 1993 1994 next = find_vma_intersection(mm, vma->vm_end, gap_addr); 1995 if (next && vma_is_accessible(next)) { 1996 if (!(next->vm_flags & VM_GROWSUP)) 1997 return -ENOMEM; 1998 /* Check that both stack segments have the same anon_vma? */ 1999 } 2000 2001 if (next) 2002 mas_prev_range(&mas, address); 2003 2004 __mas_set_range(&mas, vma->vm_start, address - 1); 2005 if (mas_preallocate(&mas, vma, GFP_KERNEL)) 2006 return -ENOMEM; 2007 2008 /* We must make sure the anon_vma is allocated. */ 2009 if (unlikely(anon_vma_prepare(vma))) { 2010 mas_destroy(&mas); 2011 return -ENOMEM; 2012 } 2013 2014 /* Lock the VMA before expanding to prevent concurrent page faults */ 2015 vma_start_write(vma); 2016 /* 2017 * vma->vm_start/vm_end cannot change under us because the caller 2018 * is required to hold the mmap_lock in read mode. We need the 2019 * anon_vma lock to serialize against concurrent expand_stacks. 2020 */ 2021 anon_vma_lock_write(vma->anon_vma); 2022 2023 /* Somebody else might have raced and expanded it already */ 2024 if (address > vma->vm_end) { 2025 unsigned long size, grow; 2026 2027 size = address - vma->vm_start; 2028 grow = (address - vma->vm_end) >> PAGE_SHIFT; 2029 2030 error = -ENOMEM; 2031 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) { 2032 error = acct_stack_growth(vma, size, grow); 2033 if (!error) { 2034 /* 2035 * We only hold a shared mmap_lock lock here, so 2036 * we need to protect against concurrent vma 2037 * expansions. anon_vma_lock_write() doesn't 2038 * help here, as we don't guarantee that all 2039 * growable vmas in a mm share the same root 2040 * anon vma. So, we reuse mm->page_table_lock 2041 * to guard against concurrent vma expansions. 2042 */ 2043 spin_lock(&mm->page_table_lock); 2044 if (vma->vm_flags & VM_LOCKED) 2045 mm->locked_vm += grow; 2046 vm_stat_account(mm, vma->vm_flags, grow); 2047 anon_vma_interval_tree_pre_update_vma(vma); 2048 vma->vm_end = address; 2049 /* Overwrite old entry in mtree. */ 2050 mas_store_prealloc(&mas, vma); 2051 anon_vma_interval_tree_post_update_vma(vma); 2052 spin_unlock(&mm->page_table_lock); 2053 2054 perf_event_mmap(vma); 2055 } 2056 } 2057 } 2058 anon_vma_unlock_write(vma->anon_vma); 2059 khugepaged_enter_vma(vma, vma->vm_flags); 2060 mas_destroy(&mas); 2061 validate_mm(mm); 2062 return error; 2063 } 2064 #endif /* CONFIG_STACK_GROWSUP */ 2065 2066 /* 2067 * vma is the first one with address < vma->vm_start. Have to extend vma. 2068 * mmap_lock held for writing. 2069 */ 2070 int expand_downwards(struct vm_area_struct *vma, unsigned long address) 2071 { 2072 struct mm_struct *mm = vma->vm_mm; 2073 MA_STATE(mas, &mm->mm_mt, vma->vm_start, vma->vm_start); 2074 struct vm_area_struct *prev; 2075 int error = 0; 2076 2077 if (!(vma->vm_flags & VM_GROWSDOWN)) 2078 return -EFAULT; 2079 2080 address &= PAGE_MASK; 2081 if (address < mmap_min_addr || address < FIRST_USER_ADDRESS) 2082 return -EPERM; 2083 2084 /* Enforce stack_guard_gap */ 2085 prev = mas_prev(&mas, 0); 2086 /* Check that both stack segments have the same anon_vma? */ 2087 if (prev) { 2088 if (!(prev->vm_flags & VM_GROWSDOWN) && 2089 vma_is_accessible(prev) && 2090 (address - prev->vm_end < stack_guard_gap)) 2091 return -ENOMEM; 2092 } 2093 2094 if (prev) 2095 mas_next_range(&mas, vma->vm_start); 2096 2097 __mas_set_range(&mas, address, vma->vm_end - 1); 2098 if (mas_preallocate(&mas, vma, GFP_KERNEL)) 2099 return -ENOMEM; 2100 2101 /* We must make sure the anon_vma is allocated. */ 2102 if (unlikely(anon_vma_prepare(vma))) { 2103 mas_destroy(&mas); 2104 return -ENOMEM; 2105 } 2106 2107 /* Lock the VMA before expanding to prevent concurrent page faults */ 2108 vma_start_write(vma); 2109 /* 2110 * vma->vm_start/vm_end cannot change under us because the caller 2111 * is required to hold the mmap_lock in read mode. We need the 2112 * anon_vma lock to serialize against concurrent expand_stacks. 2113 */ 2114 anon_vma_lock_write(vma->anon_vma); 2115 2116 /* Somebody else might have raced and expanded it already */ 2117 if (address < vma->vm_start) { 2118 unsigned long size, grow; 2119 2120 size = vma->vm_end - address; 2121 grow = (vma->vm_start - address) >> PAGE_SHIFT; 2122 2123 error = -ENOMEM; 2124 if (grow <= vma->vm_pgoff) { 2125 error = acct_stack_growth(vma, size, grow); 2126 if (!error) { 2127 /* 2128 * We only hold a shared mmap_lock lock here, so 2129 * we need to protect against concurrent vma 2130 * expansions. anon_vma_lock_write() doesn't 2131 * help here, as we don't guarantee that all 2132 * growable vmas in a mm share the same root 2133 * anon vma. So, we reuse mm->page_table_lock 2134 * to guard against concurrent vma expansions. 2135 */ 2136 spin_lock(&mm->page_table_lock); 2137 if (vma->vm_flags & VM_LOCKED) 2138 mm->locked_vm += grow; 2139 vm_stat_account(mm, vma->vm_flags, grow); 2140 anon_vma_interval_tree_pre_update_vma(vma); 2141 vma->vm_start = address; 2142 vma->vm_pgoff -= grow; 2143 /* Overwrite old entry in mtree. */ 2144 mas_store_prealloc(&mas, vma); 2145 anon_vma_interval_tree_post_update_vma(vma); 2146 spin_unlock(&mm->page_table_lock); 2147 2148 perf_event_mmap(vma); 2149 } 2150 } 2151 } 2152 anon_vma_unlock_write(vma->anon_vma); 2153 khugepaged_enter_vma(vma, vma->vm_flags); 2154 mas_destroy(&mas); 2155 validate_mm(mm); 2156 return error; 2157 } 2158 2159 /* enforced gap between the expanding stack and other mappings. */ 2160 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT; 2161 2162 static int __init cmdline_parse_stack_guard_gap(char *p) 2163 { 2164 unsigned long val; 2165 char *endptr; 2166 2167 val = simple_strtoul(p, &endptr, 10); 2168 if (!*endptr) 2169 stack_guard_gap = val << PAGE_SHIFT; 2170 2171 return 1; 2172 } 2173 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap); 2174 2175 #ifdef CONFIG_STACK_GROWSUP 2176 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address) 2177 { 2178 return expand_upwards(vma, address); 2179 } 2180 2181 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr) 2182 { 2183 struct vm_area_struct *vma, *prev; 2184 2185 addr &= PAGE_MASK; 2186 vma = find_vma_prev(mm, addr, &prev); 2187 if (vma && (vma->vm_start <= addr)) 2188 return vma; 2189 if (!prev) 2190 return NULL; 2191 if (expand_stack_locked(prev, addr)) 2192 return NULL; 2193 if (prev->vm_flags & VM_LOCKED) 2194 populate_vma_page_range(prev, addr, prev->vm_end, NULL); 2195 return prev; 2196 } 2197 #else 2198 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address) 2199 { 2200 return expand_downwards(vma, address); 2201 } 2202 2203 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr) 2204 { 2205 struct vm_area_struct *vma; 2206 unsigned long start; 2207 2208 addr &= PAGE_MASK; 2209 vma = find_vma(mm, addr); 2210 if (!vma) 2211 return NULL; 2212 if (vma->vm_start <= addr) 2213 return vma; 2214 start = vma->vm_start; 2215 if (expand_stack_locked(vma, addr)) 2216 return NULL; 2217 if (vma->vm_flags & VM_LOCKED) 2218 populate_vma_page_range(vma, addr, start, NULL); 2219 return vma; 2220 } 2221 #endif 2222 2223 #if defined(CONFIG_STACK_GROWSUP) 2224 2225 #define vma_expand_up(vma,addr) expand_upwards(vma, addr) 2226 #define vma_expand_down(vma, addr) (-EFAULT) 2227 2228 #else 2229 2230 #define vma_expand_up(vma,addr) (-EFAULT) 2231 #define vma_expand_down(vma, addr) expand_downwards(vma, addr) 2232 2233 #endif 2234 2235 /* 2236 * expand_stack(): legacy interface for page faulting. Don't use unless 2237 * you have to. 2238 * 2239 * This is called with the mm locked for reading, drops the lock, takes 2240 * the lock for writing, tries to look up a vma again, expands it if 2241 * necessary, and downgrades the lock to reading again. 2242 * 2243 * If no vma is found or it can't be expanded, it returns NULL and has 2244 * dropped the lock. 2245 */ 2246 struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr) 2247 { 2248 struct vm_area_struct *vma, *prev; 2249 2250 mmap_read_unlock(mm); 2251 if (mmap_write_lock_killable(mm)) 2252 return NULL; 2253 2254 vma = find_vma_prev(mm, addr, &prev); 2255 if (vma && vma->vm_start <= addr) 2256 goto success; 2257 2258 if (prev && !vma_expand_up(prev, addr)) { 2259 vma = prev; 2260 goto success; 2261 } 2262 2263 if (vma && !vma_expand_down(vma, addr)) 2264 goto success; 2265 2266 mmap_write_unlock(mm); 2267 return NULL; 2268 2269 success: 2270 mmap_write_downgrade(mm); 2271 return vma; 2272 } 2273 2274 /* 2275 * Ok - we have the memory areas we should free on a maple tree so release them, 2276 * and do the vma updates. 2277 * 2278 * Called with the mm semaphore held. 2279 */ 2280 static inline void remove_mt(struct mm_struct *mm, struct ma_state *mas) 2281 { 2282 unsigned long nr_accounted = 0; 2283 struct vm_area_struct *vma; 2284 2285 /* Update high watermark before we lower total_vm */ 2286 update_hiwater_vm(mm); 2287 mas_for_each(mas, vma, ULONG_MAX) { 2288 long nrpages = vma_pages(vma); 2289 2290 if (vma->vm_flags & VM_ACCOUNT) 2291 nr_accounted += nrpages; 2292 vm_stat_account(mm, vma->vm_flags, -nrpages); 2293 remove_vma(vma, false); 2294 } 2295 vm_unacct_memory(nr_accounted); 2296 } 2297 2298 /* 2299 * Get rid of page table information in the indicated region. 2300 * 2301 * Called with the mm semaphore held. 2302 */ 2303 static void unmap_region(struct mm_struct *mm, struct ma_state *mas, 2304 struct vm_area_struct *vma, struct vm_area_struct *prev, 2305 struct vm_area_struct *next, unsigned long start, 2306 unsigned long end, unsigned long tree_end, bool mm_wr_locked) 2307 { 2308 struct mmu_gather tlb; 2309 unsigned long mt_start = mas->index; 2310 2311 lru_add_drain(); 2312 tlb_gather_mmu(&tlb, mm); 2313 update_hiwater_rss(mm); 2314 unmap_vmas(&tlb, mas, vma, start, end, tree_end, mm_wr_locked); 2315 mas_set(mas, mt_start); 2316 free_pgtables(&tlb, mas, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS, 2317 next ? next->vm_start : USER_PGTABLES_CEILING, 2318 mm_wr_locked); 2319 tlb_finish_mmu(&tlb); 2320 } 2321 2322 /* 2323 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it 2324 * has already been checked or doesn't make sense to fail. 2325 * VMA Iterator will point to the end VMA. 2326 */ 2327 static int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma, 2328 unsigned long addr, int new_below) 2329 { 2330 struct vma_prepare vp; 2331 struct vm_area_struct *new; 2332 int err; 2333 2334 WARN_ON(vma->vm_start >= addr); 2335 WARN_ON(vma->vm_end <= addr); 2336 2337 if (vma->vm_ops && vma->vm_ops->may_split) { 2338 err = vma->vm_ops->may_split(vma, addr); 2339 if (err) 2340 return err; 2341 } 2342 2343 new = vm_area_dup(vma); 2344 if (!new) 2345 return -ENOMEM; 2346 2347 if (new_below) { 2348 new->vm_end = addr; 2349 } else { 2350 new->vm_start = addr; 2351 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); 2352 } 2353 2354 err = -ENOMEM; 2355 vma_iter_config(vmi, new->vm_start, new->vm_end); 2356 if (vma_iter_prealloc(vmi, new)) 2357 goto out_free_vma; 2358 2359 err = vma_dup_policy(vma, new); 2360 if (err) 2361 goto out_free_vmi; 2362 2363 err = anon_vma_clone(new, vma); 2364 if (err) 2365 goto out_free_mpol; 2366 2367 if (new->vm_file) 2368 get_file(new->vm_file); 2369 2370 if (new->vm_ops && new->vm_ops->open) 2371 new->vm_ops->open(new); 2372 2373 vma_start_write(vma); 2374 vma_start_write(new); 2375 2376 init_vma_prep(&vp, vma); 2377 vp.insert = new; 2378 vma_prepare(&vp); 2379 vma_adjust_trans_huge(vma, vma->vm_start, addr, 0); 2380 2381 if (new_below) { 2382 vma->vm_start = addr; 2383 vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT; 2384 } else { 2385 vma->vm_end = addr; 2386 } 2387 2388 /* vma_complete stores the new vma */ 2389 vma_complete(&vp, vmi, vma->vm_mm); 2390 2391 /* Success. */ 2392 if (new_below) 2393 vma_next(vmi); 2394 return 0; 2395 2396 out_free_mpol: 2397 mpol_put(vma_policy(new)); 2398 out_free_vmi: 2399 vma_iter_free(vmi); 2400 out_free_vma: 2401 vm_area_free(new); 2402 return err; 2403 } 2404 2405 /* 2406 * Split a vma into two pieces at address 'addr', a new vma is allocated 2407 * either for the first part or the tail. 2408 */ 2409 static int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma, 2410 unsigned long addr, int new_below) 2411 { 2412 if (vma->vm_mm->map_count >= sysctl_max_map_count) 2413 return -ENOMEM; 2414 2415 return __split_vma(vmi, vma, addr, new_below); 2416 } 2417 2418 /* 2419 * We are about to modify one or multiple of a VMA's flags, policy, userfaultfd 2420 * context and anonymous VMA name within the range [start, end). 2421 * 2422 * As a result, we might be able to merge the newly modified VMA range with an 2423 * adjacent VMA with identical properties. 2424 * 2425 * If no merge is possible and the range does not span the entirety of the VMA, 2426 * we then need to split the VMA to accommodate the change. 2427 * 2428 * The function returns either the merged VMA, the original VMA if a split was 2429 * required instead, or an error if the split failed. 2430 */ 2431 struct vm_area_struct *vma_modify(struct vma_iterator *vmi, 2432 struct vm_area_struct *prev, 2433 struct vm_area_struct *vma, 2434 unsigned long start, unsigned long end, 2435 unsigned long vm_flags, 2436 struct mempolicy *policy, 2437 struct vm_userfaultfd_ctx uffd_ctx, 2438 struct anon_vma_name *anon_name) 2439 { 2440 pgoff_t pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT); 2441 struct vm_area_struct *merged; 2442 2443 merged = vma_merge(vmi, vma->vm_mm, prev, start, end, vm_flags, 2444 vma->anon_vma, vma->vm_file, pgoff, policy, 2445 uffd_ctx, anon_name); 2446 if (merged) 2447 return merged; 2448 2449 if (vma->vm_start < start) { 2450 int err = split_vma(vmi, vma, start, 1); 2451 2452 if (err) 2453 return ERR_PTR(err); 2454 } 2455 2456 if (vma->vm_end > end) { 2457 int err = split_vma(vmi, vma, end, 0); 2458 2459 if (err) 2460 return ERR_PTR(err); 2461 } 2462 2463 return vma; 2464 } 2465 2466 /* 2467 * Attempt to merge a newly mapped VMA with those adjacent to it. The caller 2468 * must ensure that [start, end) does not overlap any existing VMA. 2469 */ 2470 static struct vm_area_struct 2471 *vma_merge_new_vma(struct vma_iterator *vmi, struct vm_area_struct *prev, 2472 struct vm_area_struct *vma, unsigned long start, 2473 unsigned long end, pgoff_t pgoff) 2474 { 2475 return vma_merge(vmi, vma->vm_mm, prev, start, end, vma->vm_flags, 2476 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma), 2477 vma->vm_userfaultfd_ctx, anon_vma_name(vma)); 2478 } 2479 2480 /* 2481 * Expand vma by delta bytes, potentially merging with an immediately adjacent 2482 * VMA with identical properties. 2483 */ 2484 struct vm_area_struct *vma_merge_extend(struct vma_iterator *vmi, 2485 struct vm_area_struct *vma, 2486 unsigned long delta) 2487 { 2488 pgoff_t pgoff = vma->vm_pgoff + vma_pages(vma); 2489 2490 /* vma is specified as prev, so case 1 or 2 will apply. */ 2491 return vma_merge(vmi, vma->vm_mm, vma, vma->vm_end, vma->vm_end + delta, 2492 vma->vm_flags, vma->anon_vma, vma->vm_file, pgoff, 2493 vma_policy(vma), vma->vm_userfaultfd_ctx, 2494 anon_vma_name(vma)); 2495 } 2496 2497 /* 2498 * do_vmi_align_munmap() - munmap the aligned region from @start to @end. 2499 * @vmi: The vma iterator 2500 * @vma: The starting vm_area_struct 2501 * @mm: The mm_struct 2502 * @start: The aligned start address to munmap. 2503 * @end: The aligned end address to munmap. 2504 * @uf: The userfaultfd list_head 2505 * @unlock: Set to true to drop the mmap_lock. unlocking only happens on 2506 * success. 2507 * 2508 * Return: 0 on success and drops the lock if so directed, error and leaves the 2509 * lock held otherwise. 2510 */ 2511 static int 2512 do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma, 2513 struct mm_struct *mm, unsigned long start, 2514 unsigned long end, struct list_head *uf, bool unlock) 2515 { 2516 struct vm_area_struct *prev, *next = NULL; 2517 struct maple_tree mt_detach; 2518 int count = 0; 2519 int error = -ENOMEM; 2520 unsigned long locked_vm = 0; 2521 MA_STATE(mas_detach, &mt_detach, 0, 0); 2522 mt_init_flags(&mt_detach, vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK); 2523 mt_on_stack(mt_detach); 2524 2525 /* 2526 * If we need to split any vma, do it now to save pain later. 2527 * 2528 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially 2529 * unmapped vm_area_struct will remain in use: so lower split_vma 2530 * places tmp vma above, and higher split_vma places tmp vma below. 2531 */ 2532 2533 /* Does it split the first one? */ 2534 if (start > vma->vm_start) { 2535 2536 /* 2537 * Make sure that map_count on return from munmap() will 2538 * not exceed its limit; but let map_count go just above 2539 * its limit temporarily, to help free resources as expected. 2540 */ 2541 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count) 2542 goto map_count_exceeded; 2543 2544 error = __split_vma(vmi, vma, start, 1); 2545 if (error) 2546 goto start_split_failed; 2547 } 2548 2549 /* 2550 * Detach a range of VMAs from the mm. Using next as a temp variable as 2551 * it is always overwritten. 2552 */ 2553 next = vma; 2554 do { 2555 /* Does it split the end? */ 2556 if (next->vm_end > end) { 2557 error = __split_vma(vmi, next, end, 0); 2558 if (error) 2559 goto end_split_failed; 2560 } 2561 vma_start_write(next); 2562 mas_set(&mas_detach, count); 2563 error = mas_store_gfp(&mas_detach, next, GFP_KERNEL); 2564 if (error) 2565 goto munmap_gather_failed; 2566 vma_mark_detached(next, true); 2567 if (next->vm_flags & VM_LOCKED) 2568 locked_vm += vma_pages(next); 2569 2570 count++; 2571 if (unlikely(uf)) { 2572 /* 2573 * If userfaultfd_unmap_prep returns an error the vmas 2574 * will remain split, but userland will get a 2575 * highly unexpected error anyway. This is no 2576 * different than the case where the first of the two 2577 * __split_vma fails, but we don't undo the first 2578 * split, despite we could. This is unlikely enough 2579 * failure that it's not worth optimizing it for. 2580 */ 2581 error = userfaultfd_unmap_prep(next, start, end, uf); 2582 2583 if (error) 2584 goto userfaultfd_error; 2585 } 2586 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE 2587 BUG_ON(next->vm_start < start); 2588 BUG_ON(next->vm_start > end); 2589 #endif 2590 } for_each_vma_range(*vmi, next, end); 2591 2592 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE) 2593 /* Make sure no VMAs are about to be lost. */ 2594 { 2595 MA_STATE(test, &mt_detach, 0, 0); 2596 struct vm_area_struct *vma_mas, *vma_test; 2597 int test_count = 0; 2598 2599 vma_iter_set(vmi, start); 2600 rcu_read_lock(); 2601 vma_test = mas_find(&test, count - 1); 2602 for_each_vma_range(*vmi, vma_mas, end) { 2603 BUG_ON(vma_mas != vma_test); 2604 test_count++; 2605 vma_test = mas_next(&test, count - 1); 2606 } 2607 rcu_read_unlock(); 2608 BUG_ON(count != test_count); 2609 } 2610 #endif 2611 2612 while (vma_iter_addr(vmi) > start) 2613 vma_iter_prev_range(vmi); 2614 2615 error = vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL); 2616 if (error) 2617 goto clear_tree_failed; 2618 2619 /* Point of no return */ 2620 mm->locked_vm -= locked_vm; 2621 mm->map_count -= count; 2622 if (unlock) 2623 mmap_write_downgrade(mm); 2624 2625 prev = vma_iter_prev_range(vmi); 2626 next = vma_next(vmi); 2627 if (next) 2628 vma_iter_prev_range(vmi); 2629 2630 /* 2631 * We can free page tables without write-locking mmap_lock because VMAs 2632 * were isolated before we downgraded mmap_lock. 2633 */ 2634 mas_set(&mas_detach, 1); 2635 unmap_region(mm, &mas_detach, vma, prev, next, start, end, count, 2636 !unlock); 2637 /* Statistics and freeing VMAs */ 2638 mas_set(&mas_detach, 0); 2639 remove_mt(mm, &mas_detach); 2640 validate_mm(mm); 2641 if (unlock) 2642 mmap_read_unlock(mm); 2643 2644 __mt_destroy(&mt_detach); 2645 return 0; 2646 2647 clear_tree_failed: 2648 userfaultfd_error: 2649 munmap_gather_failed: 2650 end_split_failed: 2651 mas_set(&mas_detach, 0); 2652 mas_for_each(&mas_detach, next, end) 2653 vma_mark_detached(next, false); 2654 2655 __mt_destroy(&mt_detach); 2656 start_split_failed: 2657 map_count_exceeded: 2658 validate_mm(mm); 2659 return error; 2660 } 2661 2662 /* 2663 * do_vmi_munmap() - munmap a given range. 2664 * @vmi: The vma iterator 2665 * @mm: The mm_struct 2666 * @start: The start address to munmap 2667 * @len: The length of the range to munmap 2668 * @uf: The userfaultfd list_head 2669 * @unlock: set to true if the user wants to drop the mmap_lock on success 2670 * 2671 * This function takes a @mas that is either pointing to the previous VMA or set 2672 * to MA_START and sets it up to remove the mapping(s). The @len will be 2673 * aligned and any arch_unmap work will be preformed. 2674 * 2675 * Return: 0 on success and drops the lock if so directed, error and leaves the 2676 * lock held otherwise. 2677 */ 2678 int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm, 2679 unsigned long start, size_t len, struct list_head *uf, 2680 bool unlock) 2681 { 2682 unsigned long end; 2683 struct vm_area_struct *vma; 2684 2685 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start) 2686 return -EINVAL; 2687 2688 end = start + PAGE_ALIGN(len); 2689 if (end == start) 2690 return -EINVAL; 2691 2692 /* arch_unmap() might do unmaps itself. */ 2693 arch_unmap(mm, start, end); 2694 2695 /* Find the first overlapping VMA */ 2696 vma = vma_find(vmi, end); 2697 if (!vma) { 2698 if (unlock) 2699 mmap_write_unlock(mm); 2700 return 0; 2701 } 2702 2703 return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock); 2704 } 2705 2706 /* do_munmap() - Wrapper function for non-maple tree aware do_munmap() calls. 2707 * @mm: The mm_struct 2708 * @start: The start address to munmap 2709 * @len: The length to be munmapped. 2710 * @uf: The userfaultfd list_head 2711 * 2712 * Return: 0 on success, error otherwise. 2713 */ 2714 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, 2715 struct list_head *uf) 2716 { 2717 VMA_ITERATOR(vmi, mm, start); 2718 2719 return do_vmi_munmap(&vmi, mm, start, len, uf, false); 2720 } 2721 2722 unsigned long mmap_region(struct file *file, unsigned long addr, 2723 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2724 struct list_head *uf) 2725 { 2726 struct mm_struct *mm = current->mm; 2727 struct vm_area_struct *vma = NULL; 2728 struct vm_area_struct *next, *prev, *merge; 2729 pgoff_t pglen = len >> PAGE_SHIFT; 2730 unsigned long charged = 0; 2731 unsigned long end = addr + len; 2732 unsigned long merge_start = addr, merge_end = end; 2733 bool writable_file_mapping = false; 2734 pgoff_t vm_pgoff; 2735 int error; 2736 VMA_ITERATOR(vmi, mm, addr); 2737 2738 /* Check against address space limit. */ 2739 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) { 2740 unsigned long nr_pages; 2741 2742 /* 2743 * MAP_FIXED may remove pages of mappings that intersects with 2744 * requested mapping. Account for the pages it would unmap. 2745 */ 2746 nr_pages = count_vma_pages_range(mm, addr, end); 2747 2748 if (!may_expand_vm(mm, vm_flags, 2749 (len >> PAGE_SHIFT) - nr_pages)) 2750 return -ENOMEM; 2751 } 2752 2753 /* Unmap any existing mapping in the area */ 2754 if (do_vmi_munmap(&vmi, mm, addr, len, uf, false)) 2755 return -ENOMEM; 2756 2757 /* 2758 * Private writable mapping: check memory availability 2759 */ 2760 if (accountable_mapping(file, vm_flags)) { 2761 charged = len >> PAGE_SHIFT; 2762 if (security_vm_enough_memory_mm(mm, charged)) 2763 return -ENOMEM; 2764 vm_flags |= VM_ACCOUNT; 2765 } 2766 2767 next = vma_next(&vmi); 2768 prev = vma_prev(&vmi); 2769 if (vm_flags & VM_SPECIAL) { 2770 if (prev) 2771 vma_iter_next_range(&vmi); 2772 goto cannot_expand; 2773 } 2774 2775 /* Attempt to expand an old mapping */ 2776 /* Check next */ 2777 if (next && next->vm_start == end && !vma_policy(next) && 2778 can_vma_merge_before(next, vm_flags, NULL, file, pgoff+pglen, 2779 NULL_VM_UFFD_CTX, NULL)) { 2780 merge_end = next->vm_end; 2781 vma = next; 2782 vm_pgoff = next->vm_pgoff - pglen; 2783 } 2784 2785 /* Check prev */ 2786 if (prev && prev->vm_end == addr && !vma_policy(prev) && 2787 (vma ? can_vma_merge_after(prev, vm_flags, vma->anon_vma, file, 2788 pgoff, vma->vm_userfaultfd_ctx, NULL) : 2789 can_vma_merge_after(prev, vm_flags, NULL, file, pgoff, 2790 NULL_VM_UFFD_CTX, NULL))) { 2791 merge_start = prev->vm_start; 2792 vma = prev; 2793 vm_pgoff = prev->vm_pgoff; 2794 } else if (prev) { 2795 vma_iter_next_range(&vmi); 2796 } 2797 2798 /* Actually expand, if possible */ 2799 if (vma && 2800 !vma_expand(&vmi, vma, merge_start, merge_end, vm_pgoff, next)) { 2801 khugepaged_enter_vma(vma, vm_flags); 2802 goto expanded; 2803 } 2804 2805 if (vma == prev) 2806 vma_iter_set(&vmi, addr); 2807 cannot_expand: 2808 2809 /* 2810 * Determine the object being mapped and call the appropriate 2811 * specific mapper. the address has already been validated, but 2812 * not unmapped, but the maps are removed from the list. 2813 */ 2814 vma = vm_area_alloc(mm); 2815 if (!vma) { 2816 error = -ENOMEM; 2817 goto unacct_error; 2818 } 2819 2820 vma_iter_config(&vmi, addr, end); 2821 vma->vm_start = addr; 2822 vma->vm_end = end; 2823 vm_flags_init(vma, vm_flags); 2824 vma->vm_page_prot = vm_get_page_prot(vm_flags); 2825 vma->vm_pgoff = pgoff; 2826 2827 if (file) { 2828 vma->vm_file = get_file(file); 2829 error = call_mmap(file, vma); 2830 if (error) 2831 goto unmap_and_free_vma; 2832 2833 if (vma_is_shared_maywrite(vma)) { 2834 error = mapping_map_writable(file->f_mapping); 2835 if (error) 2836 goto close_and_free_vma; 2837 2838 writable_file_mapping = true; 2839 } 2840 2841 /* 2842 * Expansion is handled above, merging is handled below. 2843 * Drivers should not alter the address of the VMA. 2844 */ 2845 error = -EINVAL; 2846 if (WARN_ON((addr != vma->vm_start))) 2847 goto close_and_free_vma; 2848 2849 vma_iter_config(&vmi, addr, end); 2850 /* 2851 * If vm_flags changed after call_mmap(), we should try merge 2852 * vma again as we may succeed this time. 2853 */ 2854 if (unlikely(vm_flags != vma->vm_flags && prev)) { 2855 merge = vma_merge_new_vma(&vmi, prev, vma, 2856 vma->vm_start, vma->vm_end, 2857 vma->vm_pgoff); 2858 if (merge) { 2859 /* 2860 * ->mmap() can change vma->vm_file and fput 2861 * the original file. So fput the vma->vm_file 2862 * here or we would add an extra fput for file 2863 * and cause general protection fault 2864 * ultimately. 2865 */ 2866 fput(vma->vm_file); 2867 vm_area_free(vma); 2868 vma = merge; 2869 /* Update vm_flags to pick up the change. */ 2870 vm_flags = vma->vm_flags; 2871 goto unmap_writable; 2872 } 2873 } 2874 2875 vm_flags = vma->vm_flags; 2876 } else if (vm_flags & VM_SHARED) { 2877 error = shmem_zero_setup(vma); 2878 if (error) 2879 goto free_vma; 2880 } else { 2881 vma_set_anonymous(vma); 2882 } 2883 2884 if (map_deny_write_exec(vma, vma->vm_flags)) { 2885 error = -EACCES; 2886 goto close_and_free_vma; 2887 } 2888 2889 /* Allow architectures to sanity-check the vm_flags */ 2890 error = -EINVAL; 2891 if (!arch_validate_flags(vma->vm_flags)) 2892 goto close_and_free_vma; 2893 2894 error = -ENOMEM; 2895 if (vma_iter_prealloc(&vmi, vma)) 2896 goto close_and_free_vma; 2897 2898 /* Lock the VMA since it is modified after insertion into VMA tree */ 2899 vma_start_write(vma); 2900 vma_iter_store(&vmi, vma); 2901 mm->map_count++; 2902 if (vma->vm_file) { 2903 i_mmap_lock_write(vma->vm_file->f_mapping); 2904 if (vma_is_shared_maywrite(vma)) 2905 mapping_allow_writable(vma->vm_file->f_mapping); 2906 2907 flush_dcache_mmap_lock(vma->vm_file->f_mapping); 2908 vma_interval_tree_insert(vma, &vma->vm_file->f_mapping->i_mmap); 2909 flush_dcache_mmap_unlock(vma->vm_file->f_mapping); 2910 i_mmap_unlock_write(vma->vm_file->f_mapping); 2911 } 2912 2913 /* 2914 * vma_merge() calls khugepaged_enter_vma() either, the below 2915 * call covers the non-merge case. 2916 */ 2917 khugepaged_enter_vma(vma, vma->vm_flags); 2918 2919 /* Once vma denies write, undo our temporary denial count */ 2920 unmap_writable: 2921 if (writable_file_mapping) 2922 mapping_unmap_writable(file->f_mapping); 2923 file = vma->vm_file; 2924 ksm_add_vma(vma); 2925 expanded: 2926 perf_event_mmap(vma); 2927 2928 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT); 2929 if (vm_flags & VM_LOCKED) { 2930 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) || 2931 is_vm_hugetlb_page(vma) || 2932 vma == get_gate_vma(current->mm)) 2933 vm_flags_clear(vma, VM_LOCKED_MASK); 2934 else 2935 mm->locked_vm += (len >> PAGE_SHIFT); 2936 } 2937 2938 if (file) 2939 uprobe_mmap(vma); 2940 2941 /* 2942 * New (or expanded) vma always get soft dirty status. 2943 * Otherwise user-space soft-dirty page tracker won't 2944 * be able to distinguish situation when vma area unmapped, 2945 * then new mapped in-place (which must be aimed as 2946 * a completely new data area). 2947 */ 2948 vm_flags_set(vma, VM_SOFTDIRTY); 2949 2950 vma_set_page_prot(vma); 2951 2952 validate_mm(mm); 2953 return addr; 2954 2955 close_and_free_vma: 2956 if (file && vma->vm_ops && vma->vm_ops->close) 2957 vma->vm_ops->close(vma); 2958 2959 if (file || vma->vm_file) { 2960 unmap_and_free_vma: 2961 fput(vma->vm_file); 2962 vma->vm_file = NULL; 2963 2964 vma_iter_set(&vmi, vma->vm_end); 2965 /* Undo any partial mapping done by a device driver. */ 2966 unmap_region(mm, &vmi.mas, vma, prev, next, vma->vm_start, 2967 vma->vm_end, vma->vm_end, true); 2968 } 2969 if (writable_file_mapping) 2970 mapping_unmap_writable(file->f_mapping); 2971 free_vma: 2972 vm_area_free(vma); 2973 unacct_error: 2974 if (charged) 2975 vm_unacct_memory(charged); 2976 validate_mm(mm); 2977 return error; 2978 } 2979 2980 static int __vm_munmap(unsigned long start, size_t len, bool unlock) 2981 { 2982 int ret; 2983 struct mm_struct *mm = current->mm; 2984 LIST_HEAD(uf); 2985 VMA_ITERATOR(vmi, mm, start); 2986 2987 if (mmap_write_lock_killable(mm)) 2988 return -EINTR; 2989 2990 ret = do_vmi_munmap(&vmi, mm, start, len, &uf, unlock); 2991 if (ret || !unlock) 2992 mmap_write_unlock(mm); 2993 2994 userfaultfd_unmap_complete(mm, &uf); 2995 return ret; 2996 } 2997 2998 int vm_munmap(unsigned long start, size_t len) 2999 { 3000 return __vm_munmap(start, len, false); 3001 } 3002 EXPORT_SYMBOL(vm_munmap); 3003 3004 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 3005 { 3006 addr = untagged_addr(addr); 3007 return __vm_munmap(addr, len, true); 3008 } 3009 3010 3011 /* 3012 * Emulation of deprecated remap_file_pages() syscall. 3013 */ 3014 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size, 3015 unsigned long, prot, unsigned long, pgoff, unsigned long, flags) 3016 { 3017 3018 struct mm_struct *mm = current->mm; 3019 struct vm_area_struct *vma; 3020 unsigned long populate = 0; 3021 unsigned long ret = -EINVAL; 3022 struct file *file; 3023 3024 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/mm/remap_file_pages.rst.\n", 3025 current->comm, current->pid); 3026 3027 if (prot) 3028 return ret; 3029 start = start & PAGE_MASK; 3030 size = size & PAGE_MASK; 3031 3032 if (start + size <= start) 3033 return ret; 3034 3035 /* Does pgoff wrap? */ 3036 if (pgoff + (size >> PAGE_SHIFT) < pgoff) 3037 return ret; 3038 3039 if (mmap_write_lock_killable(mm)) 3040 return -EINTR; 3041 3042 vma = vma_lookup(mm, start); 3043 3044 if (!vma || !(vma->vm_flags & VM_SHARED)) 3045 goto out; 3046 3047 if (start + size > vma->vm_end) { 3048 VMA_ITERATOR(vmi, mm, vma->vm_end); 3049 struct vm_area_struct *next, *prev = vma; 3050 3051 for_each_vma_range(vmi, next, start + size) { 3052 /* hole between vmas ? */ 3053 if (next->vm_start != prev->vm_end) 3054 goto out; 3055 3056 if (next->vm_file != vma->vm_file) 3057 goto out; 3058 3059 if (next->vm_flags != vma->vm_flags) 3060 goto out; 3061 3062 if (start + size <= next->vm_end) 3063 break; 3064 3065 prev = next; 3066 } 3067 3068 if (!next) 3069 goto out; 3070 } 3071 3072 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0; 3073 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0; 3074 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0; 3075 3076 flags &= MAP_NONBLOCK; 3077 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE; 3078 if (vma->vm_flags & VM_LOCKED) 3079 flags |= MAP_LOCKED; 3080 3081 file = get_file(vma->vm_file); 3082 ret = do_mmap(vma->vm_file, start, size, 3083 prot, flags, 0, pgoff, &populate, NULL); 3084 fput(file); 3085 out: 3086 mmap_write_unlock(mm); 3087 if (populate) 3088 mm_populate(ret, populate); 3089 if (!IS_ERR_VALUE(ret)) 3090 ret = 0; 3091 return ret; 3092 } 3093 3094 /* 3095 * do_vma_munmap() - Unmap a full or partial vma. 3096 * @vmi: The vma iterator pointing at the vma 3097 * @vma: The first vma to be munmapped 3098 * @start: the start of the address to unmap 3099 * @end: The end of the address to unmap 3100 * @uf: The userfaultfd list_head 3101 * @unlock: Drop the lock on success 3102 * 3103 * unmaps a VMA mapping when the vma iterator is already in position. 3104 * Does not handle alignment. 3105 * 3106 * Return: 0 on success drops the lock of so directed, error on failure and will 3107 * still hold the lock. 3108 */ 3109 int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma, 3110 unsigned long start, unsigned long end, struct list_head *uf, 3111 bool unlock) 3112 { 3113 struct mm_struct *mm = vma->vm_mm; 3114 3115 arch_unmap(mm, start, end); 3116 return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock); 3117 } 3118 3119 /* 3120 * do_brk_flags() - Increase the brk vma if the flags match. 3121 * @vmi: The vma iterator 3122 * @addr: The start address 3123 * @len: The length of the increase 3124 * @vma: The vma, 3125 * @flags: The VMA Flags 3126 * 3127 * Extend the brk VMA from addr to addr + len. If the VMA is NULL or the flags 3128 * do not match then create a new anonymous VMA. Eventually we may be able to 3129 * do some brk-specific accounting here. 3130 */ 3131 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma, 3132 unsigned long addr, unsigned long len, unsigned long flags) 3133 { 3134 struct mm_struct *mm = current->mm; 3135 struct vma_prepare vp; 3136 3137 /* 3138 * Check against address space limits by the changed size 3139 * Note: This happens *after* clearing old mappings in some code paths. 3140 */ 3141 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; 3142 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT)) 3143 return -ENOMEM; 3144 3145 if (mm->map_count > sysctl_max_map_count) 3146 return -ENOMEM; 3147 3148 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT)) 3149 return -ENOMEM; 3150 3151 /* 3152 * Expand the existing vma if possible; Note that singular lists do not 3153 * occur after forking, so the expand will only happen on new VMAs. 3154 */ 3155 if (vma && vma->vm_end == addr && !vma_policy(vma) && 3156 can_vma_merge_after(vma, flags, NULL, NULL, 3157 addr >> PAGE_SHIFT, NULL_VM_UFFD_CTX, NULL)) { 3158 vma_iter_config(vmi, vma->vm_start, addr + len); 3159 if (vma_iter_prealloc(vmi, vma)) 3160 goto unacct_fail; 3161 3162 vma_start_write(vma); 3163 3164 init_vma_prep(&vp, vma); 3165 vma_prepare(&vp); 3166 vma_adjust_trans_huge(vma, vma->vm_start, addr + len, 0); 3167 vma->vm_end = addr + len; 3168 vm_flags_set(vma, VM_SOFTDIRTY); 3169 vma_iter_store(vmi, vma); 3170 3171 vma_complete(&vp, vmi, mm); 3172 khugepaged_enter_vma(vma, flags); 3173 goto out; 3174 } 3175 3176 if (vma) 3177 vma_iter_next_range(vmi); 3178 /* create a vma struct for an anonymous mapping */ 3179 vma = vm_area_alloc(mm); 3180 if (!vma) 3181 goto unacct_fail; 3182 3183 vma_set_anonymous(vma); 3184 vma->vm_start = addr; 3185 vma->vm_end = addr + len; 3186 vma->vm_pgoff = addr >> PAGE_SHIFT; 3187 vm_flags_init(vma, flags); 3188 vma->vm_page_prot = vm_get_page_prot(flags); 3189 vma_start_write(vma); 3190 if (vma_iter_store_gfp(vmi, vma, GFP_KERNEL)) 3191 goto mas_store_fail; 3192 3193 mm->map_count++; 3194 validate_mm(mm); 3195 ksm_add_vma(vma); 3196 out: 3197 perf_event_mmap(vma); 3198 mm->total_vm += len >> PAGE_SHIFT; 3199 mm->data_vm += len >> PAGE_SHIFT; 3200 if (flags & VM_LOCKED) 3201 mm->locked_vm += (len >> PAGE_SHIFT); 3202 vm_flags_set(vma, VM_SOFTDIRTY); 3203 return 0; 3204 3205 mas_store_fail: 3206 vm_area_free(vma); 3207 unacct_fail: 3208 vm_unacct_memory(len >> PAGE_SHIFT); 3209 return -ENOMEM; 3210 } 3211 3212 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags) 3213 { 3214 struct mm_struct *mm = current->mm; 3215 struct vm_area_struct *vma = NULL; 3216 unsigned long len; 3217 int ret; 3218 bool populate; 3219 LIST_HEAD(uf); 3220 VMA_ITERATOR(vmi, mm, addr); 3221 3222 len = PAGE_ALIGN(request); 3223 if (len < request) 3224 return -ENOMEM; 3225 if (!len) 3226 return 0; 3227 3228 /* Until we need other flags, refuse anything except VM_EXEC. */ 3229 if ((flags & (~VM_EXEC)) != 0) 3230 return -EINVAL; 3231 3232 if (mmap_write_lock_killable(mm)) 3233 return -EINTR; 3234 3235 ret = check_brk_limits(addr, len); 3236 if (ret) 3237 goto limits_failed; 3238 3239 ret = do_vmi_munmap(&vmi, mm, addr, len, &uf, 0); 3240 if (ret) 3241 goto munmap_failed; 3242 3243 vma = vma_prev(&vmi); 3244 ret = do_brk_flags(&vmi, vma, addr, len, flags); 3245 populate = ((mm->def_flags & VM_LOCKED) != 0); 3246 mmap_write_unlock(mm); 3247 userfaultfd_unmap_complete(mm, &uf); 3248 if (populate && !ret) 3249 mm_populate(addr, len); 3250 return ret; 3251 3252 munmap_failed: 3253 limits_failed: 3254 mmap_write_unlock(mm); 3255 return ret; 3256 } 3257 EXPORT_SYMBOL(vm_brk_flags); 3258 3259 /* Release all mmaps. */ 3260 void exit_mmap(struct mm_struct *mm) 3261 { 3262 struct mmu_gather tlb; 3263 struct vm_area_struct *vma; 3264 unsigned long nr_accounted = 0; 3265 MA_STATE(mas, &mm->mm_mt, 0, 0); 3266 int count = 0; 3267 3268 /* mm's last user has gone, and its about to be pulled down */ 3269 mmu_notifier_release(mm); 3270 3271 mmap_read_lock(mm); 3272 arch_exit_mmap(mm); 3273 3274 vma = mas_find(&mas, ULONG_MAX); 3275 if (!vma || unlikely(xa_is_zero(vma))) { 3276 /* Can happen if dup_mmap() received an OOM */ 3277 mmap_read_unlock(mm); 3278 mmap_write_lock(mm); 3279 goto destroy; 3280 } 3281 3282 lru_add_drain(); 3283 flush_cache_mm(mm); 3284 tlb_gather_mmu_fullmm(&tlb, mm); 3285 /* update_hiwater_rss(mm) here? but nobody should be looking */ 3286 /* Use ULONG_MAX here to ensure all VMAs in the mm are unmapped */ 3287 unmap_vmas(&tlb, &mas, vma, 0, ULONG_MAX, ULONG_MAX, false); 3288 mmap_read_unlock(mm); 3289 3290 /* 3291 * Set MMF_OOM_SKIP to hide this task from the oom killer/reaper 3292 * because the memory has been already freed. 3293 */ 3294 set_bit(MMF_OOM_SKIP, &mm->flags); 3295 mmap_write_lock(mm); 3296 mt_clear_in_rcu(&mm->mm_mt); 3297 mas_set(&mas, vma->vm_end); 3298 free_pgtables(&tlb, &mas, vma, FIRST_USER_ADDRESS, 3299 USER_PGTABLES_CEILING, true); 3300 tlb_finish_mmu(&tlb); 3301 3302 /* 3303 * Walk the list again, actually closing and freeing it, with preemption 3304 * enabled, without holding any MM locks besides the unreachable 3305 * mmap_write_lock. 3306 */ 3307 mas_set(&mas, vma->vm_end); 3308 do { 3309 if (vma->vm_flags & VM_ACCOUNT) 3310 nr_accounted += vma_pages(vma); 3311 remove_vma(vma, true); 3312 count++; 3313 cond_resched(); 3314 vma = mas_find(&mas, ULONG_MAX); 3315 } while (vma && likely(!xa_is_zero(vma))); 3316 3317 BUG_ON(count != mm->map_count); 3318 3319 trace_exit_mmap(mm); 3320 destroy: 3321 __mt_destroy(&mm->mm_mt); 3322 mmap_write_unlock(mm); 3323 vm_unacct_memory(nr_accounted); 3324 } 3325 3326 /* Insert vm structure into process list sorted by address 3327 * and into the inode's i_mmap tree. If vm_file is non-NULL 3328 * then i_mmap_rwsem is taken here. 3329 */ 3330 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 3331 { 3332 unsigned long charged = vma_pages(vma); 3333 3334 3335 if (find_vma_intersection(mm, vma->vm_start, vma->vm_end)) 3336 return -ENOMEM; 3337 3338 if ((vma->vm_flags & VM_ACCOUNT) && 3339 security_vm_enough_memory_mm(mm, charged)) 3340 return -ENOMEM; 3341 3342 /* 3343 * The vm_pgoff of a purely anonymous vma should be irrelevant 3344 * until its first write fault, when page's anon_vma and index 3345 * are set. But now set the vm_pgoff it will almost certainly 3346 * end up with (unless mremap moves it elsewhere before that 3347 * first wfault), so /proc/pid/maps tells a consistent story. 3348 * 3349 * By setting it to reflect the virtual start address of the 3350 * vma, merges and splits can happen in a seamless way, just 3351 * using the existing file pgoff checks and manipulations. 3352 * Similarly in do_mmap and in do_brk_flags. 3353 */ 3354 if (vma_is_anonymous(vma)) { 3355 BUG_ON(vma->anon_vma); 3356 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; 3357 } 3358 3359 if (vma_link(mm, vma)) { 3360 if (vma->vm_flags & VM_ACCOUNT) 3361 vm_unacct_memory(charged); 3362 return -ENOMEM; 3363 } 3364 3365 return 0; 3366 } 3367 3368 /* 3369 * Copy the vma structure to a new location in the same mm, 3370 * prior to moving page table entries, to effect an mremap move. 3371 */ 3372 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 3373 unsigned long addr, unsigned long len, pgoff_t pgoff, 3374 bool *need_rmap_locks) 3375 { 3376 struct vm_area_struct *vma = *vmap; 3377 unsigned long vma_start = vma->vm_start; 3378 struct mm_struct *mm = vma->vm_mm; 3379 struct vm_area_struct *new_vma, *prev; 3380 bool faulted_in_anon_vma = true; 3381 VMA_ITERATOR(vmi, mm, addr); 3382 3383 /* 3384 * If anonymous vma has not yet been faulted, update new pgoff 3385 * to match new location, to increase its chance of merging. 3386 */ 3387 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) { 3388 pgoff = addr >> PAGE_SHIFT; 3389 faulted_in_anon_vma = false; 3390 } 3391 3392 new_vma = find_vma_prev(mm, addr, &prev); 3393 if (new_vma && new_vma->vm_start < addr + len) 3394 return NULL; /* should never get here */ 3395 3396 new_vma = vma_merge_new_vma(&vmi, prev, vma, addr, addr + len, pgoff); 3397 if (new_vma) { 3398 /* 3399 * Source vma may have been merged into new_vma 3400 */ 3401 if (unlikely(vma_start >= new_vma->vm_start && 3402 vma_start < new_vma->vm_end)) { 3403 /* 3404 * The only way we can get a vma_merge with 3405 * self during an mremap is if the vma hasn't 3406 * been faulted in yet and we were allowed to 3407 * reset the dst vma->vm_pgoff to the 3408 * destination address of the mremap to allow 3409 * the merge to happen. mremap must change the 3410 * vm_pgoff linearity between src and dst vmas 3411 * (in turn preventing a vma_merge) to be 3412 * safe. It is only safe to keep the vm_pgoff 3413 * linear if there are no pages mapped yet. 3414 */ 3415 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma); 3416 *vmap = vma = new_vma; 3417 } 3418 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff); 3419 } else { 3420 new_vma = vm_area_dup(vma); 3421 if (!new_vma) 3422 goto out; 3423 new_vma->vm_start = addr; 3424 new_vma->vm_end = addr + len; 3425 new_vma->vm_pgoff = pgoff; 3426 if (vma_dup_policy(vma, new_vma)) 3427 goto out_free_vma; 3428 if (anon_vma_clone(new_vma, vma)) 3429 goto out_free_mempol; 3430 if (new_vma->vm_file) 3431 get_file(new_vma->vm_file); 3432 if (new_vma->vm_ops && new_vma->vm_ops->open) 3433 new_vma->vm_ops->open(new_vma); 3434 if (vma_link(mm, new_vma)) 3435 goto out_vma_link; 3436 *need_rmap_locks = false; 3437 } 3438 return new_vma; 3439 3440 out_vma_link: 3441 if (new_vma->vm_ops && new_vma->vm_ops->close) 3442 new_vma->vm_ops->close(new_vma); 3443 3444 if (new_vma->vm_file) 3445 fput(new_vma->vm_file); 3446 3447 unlink_anon_vmas(new_vma); 3448 out_free_mempol: 3449 mpol_put(vma_policy(new_vma)); 3450 out_free_vma: 3451 vm_area_free(new_vma); 3452 out: 3453 return NULL; 3454 } 3455 3456 /* 3457 * Return true if the calling process may expand its vm space by the passed 3458 * number of pages 3459 */ 3460 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages) 3461 { 3462 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT) 3463 return false; 3464 3465 if (is_data_mapping(flags) && 3466 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) { 3467 /* Workaround for Valgrind */ 3468 if (rlimit(RLIMIT_DATA) == 0 && 3469 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT) 3470 return true; 3471 3472 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n", 3473 current->comm, current->pid, 3474 (mm->data_vm + npages) << PAGE_SHIFT, 3475 rlimit(RLIMIT_DATA), 3476 ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data"); 3477 3478 if (!ignore_rlimit_data) 3479 return false; 3480 } 3481 3482 return true; 3483 } 3484 3485 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages) 3486 { 3487 WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages); 3488 3489 if (is_exec_mapping(flags)) 3490 mm->exec_vm += npages; 3491 else if (is_stack_mapping(flags)) 3492 mm->stack_vm += npages; 3493 else if (is_data_mapping(flags)) 3494 mm->data_vm += npages; 3495 } 3496 3497 static vm_fault_t special_mapping_fault(struct vm_fault *vmf); 3498 3499 /* 3500 * Having a close hook prevents vma merging regardless of flags. 3501 */ 3502 static void special_mapping_close(struct vm_area_struct *vma) 3503 { 3504 } 3505 3506 static const char *special_mapping_name(struct vm_area_struct *vma) 3507 { 3508 return ((struct vm_special_mapping *)vma->vm_private_data)->name; 3509 } 3510 3511 static int special_mapping_mremap(struct vm_area_struct *new_vma) 3512 { 3513 struct vm_special_mapping *sm = new_vma->vm_private_data; 3514 3515 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm)) 3516 return -EFAULT; 3517 3518 if (sm->mremap) 3519 return sm->mremap(sm, new_vma); 3520 3521 return 0; 3522 } 3523 3524 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr) 3525 { 3526 /* 3527 * Forbid splitting special mappings - kernel has expectations over 3528 * the number of pages in mapping. Together with VM_DONTEXPAND 3529 * the size of vma should stay the same over the special mapping's 3530 * lifetime. 3531 */ 3532 return -EINVAL; 3533 } 3534 3535 static const struct vm_operations_struct special_mapping_vmops = { 3536 .close = special_mapping_close, 3537 .fault = special_mapping_fault, 3538 .mremap = special_mapping_mremap, 3539 .name = special_mapping_name, 3540 /* vDSO code relies that VVAR can't be accessed remotely */ 3541 .access = NULL, 3542 .may_split = special_mapping_split, 3543 }; 3544 3545 static const struct vm_operations_struct legacy_special_mapping_vmops = { 3546 .close = special_mapping_close, 3547 .fault = special_mapping_fault, 3548 }; 3549 3550 static vm_fault_t special_mapping_fault(struct vm_fault *vmf) 3551 { 3552 struct vm_area_struct *vma = vmf->vma; 3553 pgoff_t pgoff; 3554 struct page **pages; 3555 3556 if (vma->vm_ops == &legacy_special_mapping_vmops) { 3557 pages = vma->vm_private_data; 3558 } else { 3559 struct vm_special_mapping *sm = vma->vm_private_data; 3560 3561 if (sm->fault) 3562 return sm->fault(sm, vmf->vma, vmf); 3563 3564 pages = sm->pages; 3565 } 3566 3567 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages) 3568 pgoff--; 3569 3570 if (*pages) { 3571 struct page *page = *pages; 3572 get_page(page); 3573 vmf->page = page; 3574 return 0; 3575 } 3576 3577 return VM_FAULT_SIGBUS; 3578 } 3579 3580 static struct vm_area_struct *__install_special_mapping( 3581 struct mm_struct *mm, 3582 unsigned long addr, unsigned long len, 3583 unsigned long vm_flags, void *priv, 3584 const struct vm_operations_struct *ops) 3585 { 3586 int ret; 3587 struct vm_area_struct *vma; 3588 3589 vma = vm_area_alloc(mm); 3590 if (unlikely(vma == NULL)) 3591 return ERR_PTR(-ENOMEM); 3592 3593 vma->vm_start = addr; 3594 vma->vm_end = addr + len; 3595 3596 vm_flags_init(vma, (vm_flags | mm->def_flags | 3597 VM_DONTEXPAND | VM_SOFTDIRTY) & ~VM_LOCKED_MASK); 3598 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 3599 3600 vma->vm_ops = ops; 3601 vma->vm_private_data = priv; 3602 3603 ret = insert_vm_struct(mm, vma); 3604 if (ret) 3605 goto out; 3606 3607 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT); 3608 3609 perf_event_mmap(vma); 3610 3611 return vma; 3612 3613 out: 3614 vm_area_free(vma); 3615 return ERR_PTR(ret); 3616 } 3617 3618 bool vma_is_special_mapping(const struct vm_area_struct *vma, 3619 const struct vm_special_mapping *sm) 3620 { 3621 return vma->vm_private_data == sm && 3622 (vma->vm_ops == &special_mapping_vmops || 3623 vma->vm_ops == &legacy_special_mapping_vmops); 3624 } 3625 3626 /* 3627 * Called with mm->mmap_lock held for writing. 3628 * Insert a new vma covering the given region, with the given flags. 3629 * Its pages are supplied by the given array of struct page *. 3630 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated. 3631 * The region past the last page supplied will always produce SIGBUS. 3632 * The array pointer and the pages it points to are assumed to stay alive 3633 * for as long as this mapping might exist. 3634 */ 3635 struct vm_area_struct *_install_special_mapping( 3636 struct mm_struct *mm, 3637 unsigned long addr, unsigned long len, 3638 unsigned long vm_flags, const struct vm_special_mapping *spec) 3639 { 3640 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec, 3641 &special_mapping_vmops); 3642 } 3643 3644 int install_special_mapping(struct mm_struct *mm, 3645 unsigned long addr, unsigned long len, 3646 unsigned long vm_flags, struct page **pages) 3647 { 3648 struct vm_area_struct *vma = __install_special_mapping( 3649 mm, addr, len, vm_flags, (void *)pages, 3650 &legacy_special_mapping_vmops); 3651 3652 return PTR_ERR_OR_ZERO(vma); 3653 } 3654 3655 static DEFINE_MUTEX(mm_all_locks_mutex); 3656 3657 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) 3658 { 3659 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 3660 /* 3661 * The LSB of head.next can't change from under us 3662 * because we hold the mm_all_locks_mutex. 3663 */ 3664 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock); 3665 /* 3666 * We can safely modify head.next after taking the 3667 * anon_vma->root->rwsem. If some other vma in this mm shares 3668 * the same anon_vma we won't take it again. 3669 * 3670 * No need of atomic instructions here, head.next 3671 * can't change from under us thanks to the 3672 * anon_vma->root->rwsem. 3673 */ 3674 if (__test_and_set_bit(0, (unsigned long *) 3675 &anon_vma->root->rb_root.rb_root.rb_node)) 3676 BUG(); 3677 } 3678 } 3679 3680 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) 3681 { 3682 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3683 /* 3684 * AS_MM_ALL_LOCKS can't change from under us because 3685 * we hold the mm_all_locks_mutex. 3686 * 3687 * Operations on ->flags have to be atomic because 3688 * even if AS_MM_ALL_LOCKS is stable thanks to the 3689 * mm_all_locks_mutex, there may be other cpus 3690 * changing other bitflags in parallel to us. 3691 */ 3692 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) 3693 BUG(); 3694 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock); 3695 } 3696 } 3697 3698 /* 3699 * This operation locks against the VM for all pte/vma/mm related 3700 * operations that could ever happen on a certain mm. This includes 3701 * vmtruncate, try_to_unmap, and all page faults. 3702 * 3703 * The caller must take the mmap_lock in write mode before calling 3704 * mm_take_all_locks(). The caller isn't allowed to release the 3705 * mmap_lock until mm_drop_all_locks() returns. 3706 * 3707 * mmap_lock in write mode is required in order to block all operations 3708 * that could modify pagetables and free pages without need of 3709 * altering the vma layout. It's also needed in write mode to avoid new 3710 * anon_vmas to be associated with existing vmas. 3711 * 3712 * A single task can't take more than one mm_take_all_locks() in a row 3713 * or it would deadlock. 3714 * 3715 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in 3716 * mapping->flags avoid to take the same lock twice, if more than one 3717 * vma in this mm is backed by the same anon_vma or address_space. 3718 * 3719 * We take locks in following order, accordingly to comment at beginning 3720 * of mm/rmap.c: 3721 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for 3722 * hugetlb mapping); 3723 * - all vmas marked locked 3724 * - all i_mmap_rwsem locks; 3725 * - all anon_vma->rwseml 3726 * 3727 * We can take all locks within these types randomly because the VM code 3728 * doesn't nest them and we protected from parallel mm_take_all_locks() by 3729 * mm_all_locks_mutex. 3730 * 3731 * mm_take_all_locks() and mm_drop_all_locks are expensive operations 3732 * that may have to take thousand of locks. 3733 * 3734 * mm_take_all_locks() can fail if it's interrupted by signals. 3735 */ 3736 int mm_take_all_locks(struct mm_struct *mm) 3737 { 3738 struct vm_area_struct *vma; 3739 struct anon_vma_chain *avc; 3740 MA_STATE(mas, &mm->mm_mt, 0, 0); 3741 3742 mmap_assert_write_locked(mm); 3743 3744 mutex_lock(&mm_all_locks_mutex); 3745 3746 /* 3747 * vma_start_write() does not have a complement in mm_drop_all_locks() 3748 * because vma_start_write() is always asymmetrical; it marks a VMA as 3749 * being written to until mmap_write_unlock() or mmap_write_downgrade() 3750 * is reached. 3751 */ 3752 mas_for_each(&mas, vma, ULONG_MAX) { 3753 if (signal_pending(current)) 3754 goto out_unlock; 3755 vma_start_write(vma); 3756 } 3757 3758 mas_set(&mas, 0); 3759 mas_for_each(&mas, vma, ULONG_MAX) { 3760 if (signal_pending(current)) 3761 goto out_unlock; 3762 if (vma->vm_file && vma->vm_file->f_mapping && 3763 is_vm_hugetlb_page(vma)) 3764 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3765 } 3766 3767 mas_set(&mas, 0); 3768 mas_for_each(&mas, vma, ULONG_MAX) { 3769 if (signal_pending(current)) 3770 goto out_unlock; 3771 if (vma->vm_file && vma->vm_file->f_mapping && 3772 !is_vm_hugetlb_page(vma)) 3773 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3774 } 3775 3776 mas_set(&mas, 0); 3777 mas_for_each(&mas, vma, ULONG_MAX) { 3778 if (signal_pending(current)) 3779 goto out_unlock; 3780 if (vma->anon_vma) 3781 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3782 vm_lock_anon_vma(mm, avc->anon_vma); 3783 } 3784 3785 return 0; 3786 3787 out_unlock: 3788 mm_drop_all_locks(mm); 3789 return -EINTR; 3790 } 3791 3792 static void vm_unlock_anon_vma(struct anon_vma *anon_vma) 3793 { 3794 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 3795 /* 3796 * The LSB of head.next can't change to 0 from under 3797 * us because we hold the mm_all_locks_mutex. 3798 * 3799 * We must however clear the bitflag before unlocking 3800 * the vma so the users using the anon_vma->rb_root will 3801 * never see our bitflag. 3802 * 3803 * No need of atomic instructions here, head.next 3804 * can't change from under us until we release the 3805 * anon_vma->root->rwsem. 3806 */ 3807 if (!__test_and_clear_bit(0, (unsigned long *) 3808 &anon_vma->root->rb_root.rb_root.rb_node)) 3809 BUG(); 3810 anon_vma_unlock_write(anon_vma); 3811 } 3812 } 3813 3814 static void vm_unlock_mapping(struct address_space *mapping) 3815 { 3816 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3817 /* 3818 * AS_MM_ALL_LOCKS can't change to 0 from under us 3819 * because we hold the mm_all_locks_mutex. 3820 */ 3821 i_mmap_unlock_write(mapping); 3822 if (!test_and_clear_bit(AS_MM_ALL_LOCKS, 3823 &mapping->flags)) 3824 BUG(); 3825 } 3826 } 3827 3828 /* 3829 * The mmap_lock cannot be released by the caller until 3830 * mm_drop_all_locks() returns. 3831 */ 3832 void mm_drop_all_locks(struct mm_struct *mm) 3833 { 3834 struct vm_area_struct *vma; 3835 struct anon_vma_chain *avc; 3836 MA_STATE(mas, &mm->mm_mt, 0, 0); 3837 3838 mmap_assert_write_locked(mm); 3839 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); 3840 3841 mas_for_each(&mas, vma, ULONG_MAX) { 3842 if (vma->anon_vma) 3843 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3844 vm_unlock_anon_vma(avc->anon_vma); 3845 if (vma->vm_file && vma->vm_file->f_mapping) 3846 vm_unlock_mapping(vma->vm_file->f_mapping); 3847 } 3848 3849 mutex_unlock(&mm_all_locks_mutex); 3850 } 3851 3852 /* 3853 * initialise the percpu counter for VM 3854 */ 3855 void __init mmap_init(void) 3856 { 3857 int ret; 3858 3859 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL); 3860 VM_BUG_ON(ret); 3861 } 3862 3863 /* 3864 * Initialise sysctl_user_reserve_kbytes. 3865 * 3866 * This is intended to prevent a user from starting a single memory hogging 3867 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER 3868 * mode. 3869 * 3870 * The default value is min(3% of free memory, 128MB) 3871 * 128MB is enough to recover with sshd/login, bash, and top/kill. 3872 */ 3873 static int init_user_reserve(void) 3874 { 3875 unsigned long free_kbytes; 3876 3877 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES)); 3878 3879 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17); 3880 return 0; 3881 } 3882 subsys_initcall(init_user_reserve); 3883 3884 /* 3885 * Initialise sysctl_admin_reserve_kbytes. 3886 * 3887 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin 3888 * to log in and kill a memory hogging process. 3889 * 3890 * Systems with more than 256MB will reserve 8MB, enough to recover 3891 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will 3892 * only reserve 3% of free pages by default. 3893 */ 3894 static int init_admin_reserve(void) 3895 { 3896 unsigned long free_kbytes; 3897 3898 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES)); 3899 3900 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13); 3901 return 0; 3902 } 3903 subsys_initcall(init_admin_reserve); 3904 3905 /* 3906 * Reinititalise user and admin reserves if memory is added or removed. 3907 * 3908 * The default user reserve max is 128MB, and the default max for the 3909 * admin reserve is 8MB. These are usually, but not always, enough to 3910 * enable recovery from a memory hogging process using login/sshd, a shell, 3911 * and tools like top. It may make sense to increase or even disable the 3912 * reserve depending on the existence of swap or variations in the recovery 3913 * tools. So, the admin may have changed them. 3914 * 3915 * If memory is added and the reserves have been eliminated or increased above 3916 * the default max, then we'll trust the admin. 3917 * 3918 * If memory is removed and there isn't enough free memory, then we 3919 * need to reset the reserves. 3920 * 3921 * Otherwise keep the reserve set by the admin. 3922 */ 3923 static int reserve_mem_notifier(struct notifier_block *nb, 3924 unsigned long action, void *data) 3925 { 3926 unsigned long tmp, free_kbytes; 3927 3928 switch (action) { 3929 case MEM_ONLINE: 3930 /* Default max is 128MB. Leave alone if modified by operator. */ 3931 tmp = sysctl_user_reserve_kbytes; 3932 if (0 < tmp && tmp < (1UL << 17)) 3933 init_user_reserve(); 3934 3935 /* Default max is 8MB. Leave alone if modified by operator. */ 3936 tmp = sysctl_admin_reserve_kbytes; 3937 if (0 < tmp && tmp < (1UL << 13)) 3938 init_admin_reserve(); 3939 3940 break; 3941 case MEM_OFFLINE: 3942 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES)); 3943 3944 if (sysctl_user_reserve_kbytes > free_kbytes) { 3945 init_user_reserve(); 3946 pr_info("vm.user_reserve_kbytes reset to %lu\n", 3947 sysctl_user_reserve_kbytes); 3948 } 3949 3950 if (sysctl_admin_reserve_kbytes > free_kbytes) { 3951 init_admin_reserve(); 3952 pr_info("vm.admin_reserve_kbytes reset to %lu\n", 3953 sysctl_admin_reserve_kbytes); 3954 } 3955 break; 3956 default: 3957 break; 3958 } 3959 return NOTIFY_OK; 3960 } 3961 3962 static int __meminit init_reserve_notifier(void) 3963 { 3964 if (hotplug_memory_notifier(reserve_mem_notifier, DEFAULT_CALLBACK_PRI)) 3965 pr_err("Failed registering memory add/remove notifier for admin reserve\n"); 3966 3967 return 0; 3968 } 3969 subsys_initcall(init_reserve_notifier); 3970