xref: /linux/mm/mmap.c (revision a97f9c8fcc6ed16f956346368fde3b1198163f6c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/mmap.c
4  *
5  * Written by obz.
6  *
7  * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/mm_inline.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
47 #include <linux/oom.h>
48 #include <linux/sched/mm.h>
49 #include <linux/ksm.h>
50 
51 #include <linux/uaccess.h>
52 #include <asm/cacheflush.h>
53 #include <asm/tlb.h>
54 #include <asm/mmu_context.h>
55 
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/mmap.h>
58 
59 #include "internal.h"
60 
61 #ifndef arch_mmap_check
62 #define arch_mmap_check(addr, len, flags)	(0)
63 #endif
64 
65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
66 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
67 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
68 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
69 #endif
70 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
71 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
72 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
73 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
74 #endif
75 
76 static bool ignore_rlimit_data;
77 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
78 
79 static void unmap_region(struct mm_struct *mm, struct ma_state *mas,
80 		struct vm_area_struct *vma, struct vm_area_struct *prev,
81 		struct vm_area_struct *next, unsigned long start,
82 		unsigned long end, unsigned long tree_end, bool mm_wr_locked);
83 
84 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
85 {
86 	return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
87 }
88 
89 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
90 void vma_set_page_prot(struct vm_area_struct *vma)
91 {
92 	unsigned long vm_flags = vma->vm_flags;
93 	pgprot_t vm_page_prot;
94 
95 	vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
96 	if (vma_wants_writenotify(vma, vm_page_prot)) {
97 		vm_flags &= ~VM_SHARED;
98 		vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
99 	}
100 	/* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
101 	WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
102 }
103 
104 /*
105  * Requires inode->i_mapping->i_mmap_rwsem
106  */
107 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
108 		struct file *file, struct address_space *mapping)
109 {
110 	if (vma_is_shared_maywrite(vma))
111 		mapping_unmap_writable(mapping);
112 
113 	flush_dcache_mmap_lock(mapping);
114 	vma_interval_tree_remove(vma, &mapping->i_mmap);
115 	flush_dcache_mmap_unlock(mapping);
116 }
117 
118 /*
119  * Unlink a file-based vm structure from its interval tree, to hide
120  * vma from rmap and vmtruncate before freeing its page tables.
121  */
122 void unlink_file_vma(struct vm_area_struct *vma)
123 {
124 	struct file *file = vma->vm_file;
125 
126 	if (file) {
127 		struct address_space *mapping = file->f_mapping;
128 		i_mmap_lock_write(mapping);
129 		__remove_shared_vm_struct(vma, file, mapping);
130 		i_mmap_unlock_write(mapping);
131 	}
132 }
133 
134 /*
135  * Close a vm structure and free it.
136  */
137 static void remove_vma(struct vm_area_struct *vma, bool unreachable)
138 {
139 	might_sleep();
140 	if (vma->vm_ops && vma->vm_ops->close)
141 		vma->vm_ops->close(vma);
142 	if (vma->vm_file)
143 		fput(vma->vm_file);
144 	mpol_put(vma_policy(vma));
145 	if (unreachable)
146 		__vm_area_free(vma);
147 	else
148 		vm_area_free(vma);
149 }
150 
151 static inline struct vm_area_struct *vma_prev_limit(struct vma_iterator *vmi,
152 						    unsigned long min)
153 {
154 	return mas_prev(&vmi->mas, min);
155 }
156 
157 /*
158  * check_brk_limits() - Use platform specific check of range & verify mlock
159  * limits.
160  * @addr: The address to check
161  * @len: The size of increase.
162  *
163  * Return: 0 on success.
164  */
165 static int check_brk_limits(unsigned long addr, unsigned long len)
166 {
167 	unsigned long mapped_addr;
168 
169 	mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
170 	if (IS_ERR_VALUE(mapped_addr))
171 		return mapped_addr;
172 
173 	return mlock_future_ok(current->mm, current->mm->def_flags, len)
174 		? 0 : -EAGAIN;
175 }
176 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *brkvma,
177 		unsigned long addr, unsigned long request, unsigned long flags);
178 SYSCALL_DEFINE1(brk, unsigned long, brk)
179 {
180 	unsigned long newbrk, oldbrk, origbrk;
181 	struct mm_struct *mm = current->mm;
182 	struct vm_area_struct *brkvma, *next = NULL;
183 	unsigned long min_brk;
184 	bool populate = false;
185 	LIST_HEAD(uf);
186 	struct vma_iterator vmi;
187 
188 	if (mmap_write_lock_killable(mm))
189 		return -EINTR;
190 
191 	origbrk = mm->brk;
192 
193 #ifdef CONFIG_COMPAT_BRK
194 	/*
195 	 * CONFIG_COMPAT_BRK can still be overridden by setting
196 	 * randomize_va_space to 2, which will still cause mm->start_brk
197 	 * to be arbitrarily shifted
198 	 */
199 	if (current->brk_randomized)
200 		min_brk = mm->start_brk;
201 	else
202 		min_brk = mm->end_data;
203 #else
204 	min_brk = mm->start_brk;
205 #endif
206 	if (brk < min_brk)
207 		goto out;
208 
209 	/*
210 	 * Check against rlimit here. If this check is done later after the test
211 	 * of oldbrk with newbrk then it can escape the test and let the data
212 	 * segment grow beyond its set limit the in case where the limit is
213 	 * not page aligned -Ram Gupta
214 	 */
215 	if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
216 			      mm->end_data, mm->start_data))
217 		goto out;
218 
219 	newbrk = PAGE_ALIGN(brk);
220 	oldbrk = PAGE_ALIGN(mm->brk);
221 	if (oldbrk == newbrk) {
222 		mm->brk = brk;
223 		goto success;
224 	}
225 
226 	/* Always allow shrinking brk. */
227 	if (brk <= mm->brk) {
228 		/* Search one past newbrk */
229 		vma_iter_init(&vmi, mm, newbrk);
230 		brkvma = vma_find(&vmi, oldbrk);
231 		if (!brkvma || brkvma->vm_start >= oldbrk)
232 			goto out; /* mapping intersects with an existing non-brk vma. */
233 		/*
234 		 * mm->brk must be protected by write mmap_lock.
235 		 * do_vma_munmap() will drop the lock on success,  so update it
236 		 * before calling do_vma_munmap().
237 		 */
238 		mm->brk = brk;
239 		if (do_vma_munmap(&vmi, brkvma, newbrk, oldbrk, &uf, true))
240 			goto out;
241 
242 		goto success_unlocked;
243 	}
244 
245 	if (check_brk_limits(oldbrk, newbrk - oldbrk))
246 		goto out;
247 
248 	/*
249 	 * Only check if the next VMA is within the stack_guard_gap of the
250 	 * expansion area
251 	 */
252 	vma_iter_init(&vmi, mm, oldbrk);
253 	next = vma_find(&vmi, newbrk + PAGE_SIZE + stack_guard_gap);
254 	if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
255 		goto out;
256 
257 	brkvma = vma_prev_limit(&vmi, mm->start_brk);
258 	/* Ok, looks good - let it rip. */
259 	if (do_brk_flags(&vmi, brkvma, oldbrk, newbrk - oldbrk, 0) < 0)
260 		goto out;
261 
262 	mm->brk = brk;
263 	if (mm->def_flags & VM_LOCKED)
264 		populate = true;
265 
266 success:
267 	mmap_write_unlock(mm);
268 success_unlocked:
269 	userfaultfd_unmap_complete(mm, &uf);
270 	if (populate)
271 		mm_populate(oldbrk, newbrk - oldbrk);
272 	return brk;
273 
274 out:
275 	mm->brk = origbrk;
276 	mmap_write_unlock(mm);
277 	return origbrk;
278 }
279 
280 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
281 static void validate_mm(struct mm_struct *mm)
282 {
283 	int bug = 0;
284 	int i = 0;
285 	struct vm_area_struct *vma;
286 	VMA_ITERATOR(vmi, mm, 0);
287 
288 	mt_validate(&mm->mm_mt);
289 	for_each_vma(vmi, vma) {
290 #ifdef CONFIG_DEBUG_VM_RB
291 		struct anon_vma *anon_vma = vma->anon_vma;
292 		struct anon_vma_chain *avc;
293 #endif
294 		unsigned long vmi_start, vmi_end;
295 		bool warn = 0;
296 
297 		vmi_start = vma_iter_addr(&vmi);
298 		vmi_end = vma_iter_end(&vmi);
299 		if (VM_WARN_ON_ONCE_MM(vma->vm_end != vmi_end, mm))
300 			warn = 1;
301 
302 		if (VM_WARN_ON_ONCE_MM(vma->vm_start != vmi_start, mm))
303 			warn = 1;
304 
305 		if (warn) {
306 			pr_emerg("issue in %s\n", current->comm);
307 			dump_stack();
308 			dump_vma(vma);
309 			pr_emerg("tree range: %px start %lx end %lx\n", vma,
310 				 vmi_start, vmi_end - 1);
311 			vma_iter_dump_tree(&vmi);
312 		}
313 
314 #ifdef CONFIG_DEBUG_VM_RB
315 		if (anon_vma) {
316 			anon_vma_lock_read(anon_vma);
317 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
318 				anon_vma_interval_tree_verify(avc);
319 			anon_vma_unlock_read(anon_vma);
320 		}
321 #endif
322 		i++;
323 	}
324 	if (i != mm->map_count) {
325 		pr_emerg("map_count %d vma iterator %d\n", mm->map_count, i);
326 		bug = 1;
327 	}
328 	VM_BUG_ON_MM(bug, mm);
329 }
330 
331 #else /* !CONFIG_DEBUG_VM_MAPLE_TREE */
332 #define validate_mm(mm) do { } while (0)
333 #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */
334 
335 /*
336  * vma has some anon_vma assigned, and is already inserted on that
337  * anon_vma's interval trees.
338  *
339  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
340  * vma must be removed from the anon_vma's interval trees using
341  * anon_vma_interval_tree_pre_update_vma().
342  *
343  * After the update, the vma will be reinserted using
344  * anon_vma_interval_tree_post_update_vma().
345  *
346  * The entire update must be protected by exclusive mmap_lock and by
347  * the root anon_vma's mutex.
348  */
349 static inline void
350 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
351 {
352 	struct anon_vma_chain *avc;
353 
354 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
355 		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
356 }
357 
358 static inline void
359 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
360 {
361 	struct anon_vma_chain *avc;
362 
363 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
364 		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
365 }
366 
367 static unsigned long count_vma_pages_range(struct mm_struct *mm,
368 		unsigned long addr, unsigned long end)
369 {
370 	VMA_ITERATOR(vmi, mm, addr);
371 	struct vm_area_struct *vma;
372 	unsigned long nr_pages = 0;
373 
374 	for_each_vma_range(vmi, vma, end) {
375 		unsigned long vm_start = max(addr, vma->vm_start);
376 		unsigned long vm_end = min(end, vma->vm_end);
377 
378 		nr_pages += PHYS_PFN(vm_end - vm_start);
379 	}
380 
381 	return nr_pages;
382 }
383 
384 static void __vma_link_file(struct vm_area_struct *vma,
385 			    struct address_space *mapping)
386 {
387 	if (vma_is_shared_maywrite(vma))
388 		mapping_allow_writable(mapping);
389 
390 	flush_dcache_mmap_lock(mapping);
391 	vma_interval_tree_insert(vma, &mapping->i_mmap);
392 	flush_dcache_mmap_unlock(mapping);
393 }
394 
395 static int vma_link(struct mm_struct *mm, struct vm_area_struct *vma)
396 {
397 	VMA_ITERATOR(vmi, mm, 0);
398 	struct address_space *mapping = NULL;
399 
400 	vma_iter_config(&vmi, vma->vm_start, vma->vm_end);
401 	if (vma_iter_prealloc(&vmi, vma))
402 		return -ENOMEM;
403 
404 	vma_start_write(vma);
405 
406 	vma_iter_store(&vmi, vma);
407 
408 	if (vma->vm_file) {
409 		mapping = vma->vm_file->f_mapping;
410 		i_mmap_lock_write(mapping);
411 		__vma_link_file(vma, mapping);
412 		i_mmap_unlock_write(mapping);
413 	}
414 
415 	mm->map_count++;
416 	validate_mm(mm);
417 	return 0;
418 }
419 
420 /*
421  * init_multi_vma_prep() - Initializer for struct vma_prepare
422  * @vp: The vma_prepare struct
423  * @vma: The vma that will be altered once locked
424  * @next: The next vma if it is to be adjusted
425  * @remove: The first vma to be removed
426  * @remove2: The second vma to be removed
427  */
428 static inline void init_multi_vma_prep(struct vma_prepare *vp,
429 		struct vm_area_struct *vma, struct vm_area_struct *next,
430 		struct vm_area_struct *remove, struct vm_area_struct *remove2)
431 {
432 	memset(vp, 0, sizeof(struct vma_prepare));
433 	vp->vma = vma;
434 	vp->anon_vma = vma->anon_vma;
435 	vp->remove = remove;
436 	vp->remove2 = remove2;
437 	vp->adj_next = next;
438 	if (!vp->anon_vma && next)
439 		vp->anon_vma = next->anon_vma;
440 
441 	vp->file = vma->vm_file;
442 	if (vp->file)
443 		vp->mapping = vma->vm_file->f_mapping;
444 
445 }
446 
447 /*
448  * init_vma_prep() - Initializer wrapper for vma_prepare struct
449  * @vp: The vma_prepare struct
450  * @vma: The vma that will be altered once locked
451  */
452 static inline void init_vma_prep(struct vma_prepare *vp,
453 				 struct vm_area_struct *vma)
454 {
455 	init_multi_vma_prep(vp, vma, NULL, NULL, NULL);
456 }
457 
458 
459 /*
460  * vma_prepare() - Helper function for handling locking VMAs prior to altering
461  * @vp: The initialized vma_prepare struct
462  */
463 static inline void vma_prepare(struct vma_prepare *vp)
464 {
465 	if (vp->file) {
466 		uprobe_munmap(vp->vma, vp->vma->vm_start, vp->vma->vm_end);
467 
468 		if (vp->adj_next)
469 			uprobe_munmap(vp->adj_next, vp->adj_next->vm_start,
470 				      vp->adj_next->vm_end);
471 
472 		i_mmap_lock_write(vp->mapping);
473 		if (vp->insert && vp->insert->vm_file) {
474 			/*
475 			 * Put into interval tree now, so instantiated pages
476 			 * are visible to arm/parisc __flush_dcache_page
477 			 * throughout; but we cannot insert into address
478 			 * space until vma start or end is updated.
479 			 */
480 			__vma_link_file(vp->insert,
481 					vp->insert->vm_file->f_mapping);
482 		}
483 	}
484 
485 	if (vp->anon_vma) {
486 		anon_vma_lock_write(vp->anon_vma);
487 		anon_vma_interval_tree_pre_update_vma(vp->vma);
488 		if (vp->adj_next)
489 			anon_vma_interval_tree_pre_update_vma(vp->adj_next);
490 	}
491 
492 	if (vp->file) {
493 		flush_dcache_mmap_lock(vp->mapping);
494 		vma_interval_tree_remove(vp->vma, &vp->mapping->i_mmap);
495 		if (vp->adj_next)
496 			vma_interval_tree_remove(vp->adj_next,
497 						 &vp->mapping->i_mmap);
498 	}
499 
500 }
501 
502 /*
503  * vma_complete- Helper function for handling the unlocking after altering VMAs,
504  * or for inserting a VMA.
505  *
506  * @vp: The vma_prepare struct
507  * @vmi: The vma iterator
508  * @mm: The mm_struct
509  */
510 static inline void vma_complete(struct vma_prepare *vp,
511 				struct vma_iterator *vmi, struct mm_struct *mm)
512 {
513 	if (vp->file) {
514 		if (vp->adj_next)
515 			vma_interval_tree_insert(vp->adj_next,
516 						 &vp->mapping->i_mmap);
517 		vma_interval_tree_insert(vp->vma, &vp->mapping->i_mmap);
518 		flush_dcache_mmap_unlock(vp->mapping);
519 	}
520 
521 	if (vp->remove && vp->file) {
522 		__remove_shared_vm_struct(vp->remove, vp->file, vp->mapping);
523 		if (vp->remove2)
524 			__remove_shared_vm_struct(vp->remove2, vp->file,
525 						  vp->mapping);
526 	} else if (vp->insert) {
527 		/*
528 		 * split_vma has split insert from vma, and needs
529 		 * us to insert it before dropping the locks
530 		 * (it may either follow vma or precede it).
531 		 */
532 		vma_iter_store(vmi, vp->insert);
533 		mm->map_count++;
534 	}
535 
536 	if (vp->anon_vma) {
537 		anon_vma_interval_tree_post_update_vma(vp->vma);
538 		if (vp->adj_next)
539 			anon_vma_interval_tree_post_update_vma(vp->adj_next);
540 		anon_vma_unlock_write(vp->anon_vma);
541 	}
542 
543 	if (vp->file) {
544 		i_mmap_unlock_write(vp->mapping);
545 		uprobe_mmap(vp->vma);
546 
547 		if (vp->adj_next)
548 			uprobe_mmap(vp->adj_next);
549 	}
550 
551 	if (vp->remove) {
552 again:
553 		vma_mark_detached(vp->remove, true);
554 		if (vp->file) {
555 			uprobe_munmap(vp->remove, vp->remove->vm_start,
556 				      vp->remove->vm_end);
557 			fput(vp->file);
558 		}
559 		if (vp->remove->anon_vma)
560 			anon_vma_merge(vp->vma, vp->remove);
561 		mm->map_count--;
562 		mpol_put(vma_policy(vp->remove));
563 		if (!vp->remove2)
564 			WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end);
565 		vm_area_free(vp->remove);
566 
567 		/*
568 		 * In mprotect's case 6 (see comments on vma_merge),
569 		 * we are removing both mid and next vmas
570 		 */
571 		if (vp->remove2) {
572 			vp->remove = vp->remove2;
573 			vp->remove2 = NULL;
574 			goto again;
575 		}
576 	}
577 	if (vp->insert && vp->file)
578 		uprobe_mmap(vp->insert);
579 	validate_mm(mm);
580 }
581 
582 /*
583  * dup_anon_vma() - Helper function to duplicate anon_vma
584  * @dst: The destination VMA
585  * @src: The source VMA
586  * @dup: Pointer to the destination VMA when successful.
587  *
588  * Returns: 0 on success.
589  */
590 static inline int dup_anon_vma(struct vm_area_struct *dst,
591 		struct vm_area_struct *src, struct vm_area_struct **dup)
592 {
593 	/*
594 	 * Easily overlooked: when mprotect shifts the boundary, make sure the
595 	 * expanding vma has anon_vma set if the shrinking vma had, to cover any
596 	 * anon pages imported.
597 	 */
598 	if (src->anon_vma && !dst->anon_vma) {
599 		int ret;
600 
601 		vma_assert_write_locked(dst);
602 		dst->anon_vma = src->anon_vma;
603 		ret = anon_vma_clone(dst, src);
604 		if (ret)
605 			return ret;
606 
607 		*dup = dst;
608 	}
609 
610 	return 0;
611 }
612 
613 /*
614  * vma_expand - Expand an existing VMA
615  *
616  * @vmi: The vma iterator
617  * @vma: The vma to expand
618  * @start: The start of the vma
619  * @end: The exclusive end of the vma
620  * @pgoff: The page offset of vma
621  * @next: The current of next vma.
622  *
623  * Expand @vma to @start and @end.  Can expand off the start and end.  Will
624  * expand over @next if it's different from @vma and @end == @next->vm_end.
625  * Checking if the @vma can expand and merge with @next needs to be handled by
626  * the caller.
627  *
628  * Returns: 0 on success
629  */
630 int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
631 	       unsigned long start, unsigned long end, pgoff_t pgoff,
632 	       struct vm_area_struct *next)
633 {
634 	struct vm_area_struct *anon_dup = NULL;
635 	bool remove_next = false;
636 	struct vma_prepare vp;
637 
638 	vma_start_write(vma);
639 	if (next && (vma != next) && (end == next->vm_end)) {
640 		int ret;
641 
642 		remove_next = true;
643 		vma_start_write(next);
644 		ret = dup_anon_vma(vma, next, &anon_dup);
645 		if (ret)
646 			return ret;
647 	}
648 
649 	init_multi_vma_prep(&vp, vma, NULL, remove_next ? next : NULL, NULL);
650 	/* Not merging but overwriting any part of next is not handled. */
651 	VM_WARN_ON(next && !vp.remove &&
652 		  next != vma && end > next->vm_start);
653 	/* Only handles expanding */
654 	VM_WARN_ON(vma->vm_start < start || vma->vm_end > end);
655 
656 	/* Note: vma iterator must be pointing to 'start' */
657 	vma_iter_config(vmi, start, end);
658 	if (vma_iter_prealloc(vmi, vma))
659 		goto nomem;
660 
661 	vma_prepare(&vp);
662 	vma_adjust_trans_huge(vma, start, end, 0);
663 	vma->vm_start = start;
664 	vma->vm_end = end;
665 	vma->vm_pgoff = pgoff;
666 	vma_iter_store(vmi, vma);
667 
668 	vma_complete(&vp, vmi, vma->vm_mm);
669 	return 0;
670 
671 nomem:
672 	if (anon_dup)
673 		unlink_anon_vmas(anon_dup);
674 	return -ENOMEM;
675 }
676 
677 /*
678  * vma_shrink() - Reduce an existing VMAs memory area
679  * @vmi: The vma iterator
680  * @vma: The VMA to modify
681  * @start: The new start
682  * @end: The new end
683  *
684  * Returns: 0 on success, -ENOMEM otherwise
685  */
686 int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
687 	       unsigned long start, unsigned long end, pgoff_t pgoff)
688 {
689 	struct vma_prepare vp;
690 
691 	WARN_ON((vma->vm_start != start) && (vma->vm_end != end));
692 
693 	if (vma->vm_start < start)
694 		vma_iter_config(vmi, vma->vm_start, start);
695 	else
696 		vma_iter_config(vmi, end, vma->vm_end);
697 
698 	if (vma_iter_prealloc(vmi, NULL))
699 		return -ENOMEM;
700 
701 	vma_start_write(vma);
702 
703 	init_vma_prep(&vp, vma);
704 	vma_prepare(&vp);
705 	vma_adjust_trans_huge(vma, start, end, 0);
706 
707 	vma_iter_clear(vmi);
708 	vma->vm_start = start;
709 	vma->vm_end = end;
710 	vma->vm_pgoff = pgoff;
711 	vma_complete(&vp, vmi, vma->vm_mm);
712 	return 0;
713 }
714 
715 /*
716  * If the vma has a ->close operation then the driver probably needs to release
717  * per-vma resources, so we don't attempt to merge those if the caller indicates
718  * the current vma may be removed as part of the merge.
719  */
720 static inline bool is_mergeable_vma(struct vm_area_struct *vma,
721 		struct file *file, unsigned long vm_flags,
722 		struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
723 		struct anon_vma_name *anon_name, bool may_remove_vma)
724 {
725 	/*
726 	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
727 	 * match the flags but dirty bit -- the caller should mark
728 	 * merged VMA as dirty. If dirty bit won't be excluded from
729 	 * comparison, we increase pressure on the memory system forcing
730 	 * the kernel to generate new VMAs when old one could be
731 	 * extended instead.
732 	 */
733 	if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
734 		return false;
735 	if (vma->vm_file != file)
736 		return false;
737 	if (may_remove_vma && vma->vm_ops && vma->vm_ops->close)
738 		return false;
739 	if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
740 		return false;
741 	if (!anon_vma_name_eq(anon_vma_name(vma), anon_name))
742 		return false;
743 	return true;
744 }
745 
746 static inline bool is_mergeable_anon_vma(struct anon_vma *anon_vma1,
747 		 struct anon_vma *anon_vma2, struct vm_area_struct *vma)
748 {
749 	/*
750 	 * The list_is_singular() test is to avoid merging VMA cloned from
751 	 * parents. This can improve scalability caused by anon_vma lock.
752 	 */
753 	if ((!anon_vma1 || !anon_vma2) && (!vma ||
754 		list_is_singular(&vma->anon_vma_chain)))
755 		return true;
756 	return anon_vma1 == anon_vma2;
757 }
758 
759 /*
760  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
761  * in front of (at a lower virtual address and file offset than) the vma.
762  *
763  * We cannot merge two vmas if they have differently assigned (non-NULL)
764  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
765  *
766  * We don't check here for the merged mmap wrapping around the end of pagecache
767  * indices (16TB on ia32) because do_mmap() does not permit mmap's which
768  * wrap, nor mmaps which cover the final page at index -1UL.
769  *
770  * We assume the vma may be removed as part of the merge.
771  */
772 static bool
773 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
774 		struct anon_vma *anon_vma, struct file *file,
775 		pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
776 		struct anon_vma_name *anon_name)
777 {
778 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, true) &&
779 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
780 		if (vma->vm_pgoff == vm_pgoff)
781 			return true;
782 	}
783 	return false;
784 }
785 
786 /*
787  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
788  * beyond (at a higher virtual address and file offset than) the vma.
789  *
790  * We cannot merge two vmas if they have differently assigned (non-NULL)
791  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
792  *
793  * We assume that vma is not removed as part of the merge.
794  */
795 static bool
796 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
797 		struct anon_vma *anon_vma, struct file *file,
798 		pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
799 		struct anon_vma_name *anon_name)
800 {
801 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, false) &&
802 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
803 		pgoff_t vm_pglen;
804 		vm_pglen = vma_pages(vma);
805 		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
806 			return true;
807 	}
808 	return false;
809 }
810 
811 /*
812  * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name),
813  * figure out whether that can be merged with its predecessor or its
814  * successor.  Or both (it neatly fills a hole).
815  *
816  * In most cases - when called for mmap, brk or mremap - [addr,end) is
817  * certain not to be mapped by the time vma_merge is called; but when
818  * called for mprotect, it is certain to be already mapped (either at
819  * an offset within prev, or at the start of next), and the flags of
820  * this area are about to be changed to vm_flags - and the no-change
821  * case has already been eliminated.
822  *
823  * The following mprotect cases have to be considered, where **** is
824  * the area passed down from mprotect_fixup, never extending beyond one
825  * vma, PPPP is the previous vma, CCCC is a concurrent vma that starts
826  * at the same address as **** and is of the same or larger span, and
827  * NNNN the next vma after ****:
828  *
829  *     ****             ****                   ****
830  *    PPPPPPNNNNNN    PPPPPPNNNNNN       PPPPPPCCCCCC
831  *    cannot merge    might become       might become
832  *                    PPNNNNNNNNNN       PPPPPPPPPPCC
833  *    mmap, brk or    case 4 below       case 5 below
834  *    mremap move:
835  *                        ****               ****
836  *                    PPPP    NNNN       PPPPCCCCNNNN
837  *                    might become       might become
838  *                    PPPPPPPPPPPP 1 or  PPPPPPPPPPPP 6 or
839  *                    PPPPPPPPNNNN 2 or  PPPPPPPPNNNN 7 or
840  *                    PPPPNNNNNNNN 3     PPPPNNNNNNNN 8
841  *
842  * It is important for case 8 that the vma CCCC overlapping the
843  * region **** is never going to extended over NNNN. Instead NNNN must
844  * be extended in region **** and CCCC must be removed. This way in
845  * all cases where vma_merge succeeds, the moment vma_merge drops the
846  * rmap_locks, the properties of the merged vma will be already
847  * correct for the whole merged range. Some of those properties like
848  * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
849  * be correct for the whole merged range immediately after the
850  * rmap_locks are released. Otherwise if NNNN would be removed and
851  * CCCC would be extended over the NNNN range, remove_migration_ptes
852  * or other rmap walkers (if working on addresses beyond the "end"
853  * parameter) may establish ptes with the wrong permissions of CCCC
854  * instead of the right permissions of NNNN.
855  *
856  * In the code below:
857  * PPPP is represented by *prev
858  * CCCC is represented by *curr or not represented at all (NULL)
859  * NNNN is represented by *next or not represented at all (NULL)
860  * **** is not represented - it will be merged and the vma containing the
861  *      area is returned, or the function will return NULL
862  */
863 static struct vm_area_struct
864 *vma_merge(struct vma_iterator *vmi, struct mm_struct *mm,
865 	   struct vm_area_struct *prev, unsigned long addr, unsigned long end,
866 	   unsigned long vm_flags, struct anon_vma *anon_vma, struct file *file,
867 	   pgoff_t pgoff, struct mempolicy *policy,
868 	   struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
869 	   struct anon_vma_name *anon_name)
870 {
871 	struct vm_area_struct *curr, *next, *res;
872 	struct vm_area_struct *vma, *adjust, *remove, *remove2;
873 	struct vm_area_struct *anon_dup = NULL;
874 	struct vma_prepare vp;
875 	pgoff_t vma_pgoff;
876 	int err = 0;
877 	bool merge_prev = false;
878 	bool merge_next = false;
879 	bool vma_expanded = false;
880 	unsigned long vma_start = addr;
881 	unsigned long vma_end = end;
882 	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
883 	long adj_start = 0;
884 
885 	/*
886 	 * We later require that vma->vm_flags == vm_flags,
887 	 * so this tests vma->vm_flags & VM_SPECIAL, too.
888 	 */
889 	if (vm_flags & VM_SPECIAL)
890 		return NULL;
891 
892 	/* Does the input range span an existing VMA? (cases 5 - 8) */
893 	curr = find_vma_intersection(mm, prev ? prev->vm_end : 0, end);
894 
895 	if (!curr ||			/* cases 1 - 4 */
896 	    end == curr->vm_end)	/* cases 6 - 8, adjacent VMA */
897 		next = vma_lookup(mm, end);
898 	else
899 		next = NULL;		/* case 5 */
900 
901 	if (prev) {
902 		vma_start = prev->vm_start;
903 		vma_pgoff = prev->vm_pgoff;
904 
905 		/* Can we merge the predecessor? */
906 		if (addr == prev->vm_end && mpol_equal(vma_policy(prev), policy)
907 		    && can_vma_merge_after(prev, vm_flags, anon_vma, file,
908 					   pgoff, vm_userfaultfd_ctx, anon_name)) {
909 			merge_prev = true;
910 			vma_prev(vmi);
911 		}
912 	}
913 
914 	/* Can we merge the successor? */
915 	if (next && mpol_equal(policy, vma_policy(next)) &&
916 	    can_vma_merge_before(next, vm_flags, anon_vma, file, pgoff+pglen,
917 				 vm_userfaultfd_ctx, anon_name)) {
918 		merge_next = true;
919 	}
920 
921 	/* Verify some invariant that must be enforced by the caller. */
922 	VM_WARN_ON(prev && addr <= prev->vm_start);
923 	VM_WARN_ON(curr && (addr != curr->vm_start || end > curr->vm_end));
924 	VM_WARN_ON(addr >= end);
925 
926 	if (!merge_prev && !merge_next)
927 		return NULL; /* Not mergeable. */
928 
929 	if (merge_prev)
930 		vma_start_write(prev);
931 
932 	res = vma = prev;
933 	remove = remove2 = adjust = NULL;
934 
935 	/* Can we merge both the predecessor and the successor? */
936 	if (merge_prev && merge_next &&
937 	    is_mergeable_anon_vma(prev->anon_vma, next->anon_vma, NULL)) {
938 		vma_start_write(next);
939 		remove = next;				/* case 1 */
940 		vma_end = next->vm_end;
941 		err = dup_anon_vma(prev, next, &anon_dup);
942 		if (curr) {				/* case 6 */
943 			vma_start_write(curr);
944 			remove = curr;
945 			remove2 = next;
946 			/*
947 			 * Note that the dup_anon_vma below cannot overwrite err
948 			 * since the first caller would do nothing unless next
949 			 * has an anon_vma.
950 			 */
951 			if (!next->anon_vma)
952 				err = dup_anon_vma(prev, curr, &anon_dup);
953 		}
954 	} else if (merge_prev) {			/* case 2 */
955 		if (curr) {
956 			vma_start_write(curr);
957 			if (end == curr->vm_end) {	/* case 7 */
958 				/*
959 				 * can_vma_merge_after() assumed we would not be
960 				 * removing prev vma, so it skipped the check
961 				 * for vm_ops->close, but we are removing curr
962 				 */
963 				if (curr->vm_ops && curr->vm_ops->close)
964 					err = -EINVAL;
965 				remove = curr;
966 			} else {			/* case 5 */
967 				adjust = curr;
968 				adj_start = (end - curr->vm_start);
969 			}
970 			if (!err)
971 				err = dup_anon_vma(prev, curr, &anon_dup);
972 		}
973 	} else { /* merge_next */
974 		vma_start_write(next);
975 		res = next;
976 		if (prev && addr < prev->vm_end) {	/* case 4 */
977 			vma_start_write(prev);
978 			vma_end = addr;
979 			adjust = next;
980 			adj_start = -(prev->vm_end - addr);
981 			err = dup_anon_vma(next, prev, &anon_dup);
982 		} else {
983 			/*
984 			 * Note that cases 3 and 8 are the ONLY ones where prev
985 			 * is permitted to be (but is not necessarily) NULL.
986 			 */
987 			vma = next;			/* case 3 */
988 			vma_start = addr;
989 			vma_end = next->vm_end;
990 			vma_pgoff = next->vm_pgoff - pglen;
991 			if (curr) {			/* case 8 */
992 				vma_pgoff = curr->vm_pgoff;
993 				vma_start_write(curr);
994 				remove = curr;
995 				err = dup_anon_vma(next, curr, &anon_dup);
996 			}
997 		}
998 	}
999 
1000 	/* Error in anon_vma clone. */
1001 	if (err)
1002 		goto anon_vma_fail;
1003 
1004 	if (vma_start < vma->vm_start || vma_end > vma->vm_end)
1005 		vma_expanded = true;
1006 
1007 	if (vma_expanded) {
1008 		vma_iter_config(vmi, vma_start, vma_end);
1009 	} else {
1010 		vma_iter_config(vmi, adjust->vm_start + adj_start,
1011 				adjust->vm_end);
1012 	}
1013 
1014 	if (vma_iter_prealloc(vmi, vma))
1015 		goto prealloc_fail;
1016 
1017 	init_multi_vma_prep(&vp, vma, adjust, remove, remove2);
1018 	VM_WARN_ON(vp.anon_vma && adjust && adjust->anon_vma &&
1019 		   vp.anon_vma != adjust->anon_vma);
1020 
1021 	vma_prepare(&vp);
1022 	vma_adjust_trans_huge(vma, vma_start, vma_end, adj_start);
1023 
1024 	vma->vm_start = vma_start;
1025 	vma->vm_end = vma_end;
1026 	vma->vm_pgoff = vma_pgoff;
1027 
1028 	if (vma_expanded)
1029 		vma_iter_store(vmi, vma);
1030 
1031 	if (adj_start) {
1032 		adjust->vm_start += adj_start;
1033 		adjust->vm_pgoff += adj_start >> PAGE_SHIFT;
1034 		if (adj_start < 0) {
1035 			WARN_ON(vma_expanded);
1036 			vma_iter_store(vmi, next);
1037 		}
1038 	}
1039 
1040 	vma_complete(&vp, vmi, mm);
1041 	khugepaged_enter_vma(res, vm_flags);
1042 	return res;
1043 
1044 prealloc_fail:
1045 	if (anon_dup)
1046 		unlink_anon_vmas(anon_dup);
1047 
1048 anon_vma_fail:
1049 	vma_iter_set(vmi, addr);
1050 	vma_iter_load(vmi);
1051 	return NULL;
1052 }
1053 
1054 /*
1055  * Rough compatibility check to quickly see if it's even worth looking
1056  * at sharing an anon_vma.
1057  *
1058  * They need to have the same vm_file, and the flags can only differ
1059  * in things that mprotect may change.
1060  *
1061  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1062  * we can merge the two vma's. For example, we refuse to merge a vma if
1063  * there is a vm_ops->close() function, because that indicates that the
1064  * driver is doing some kind of reference counting. But that doesn't
1065  * really matter for the anon_vma sharing case.
1066  */
1067 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1068 {
1069 	return a->vm_end == b->vm_start &&
1070 		mpol_equal(vma_policy(a), vma_policy(b)) &&
1071 		a->vm_file == b->vm_file &&
1072 		!((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1073 		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1074 }
1075 
1076 /*
1077  * Do some basic sanity checking to see if we can re-use the anon_vma
1078  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1079  * the same as 'old', the other will be the new one that is trying
1080  * to share the anon_vma.
1081  *
1082  * NOTE! This runs with mmap_lock held for reading, so it is possible that
1083  * the anon_vma of 'old' is concurrently in the process of being set up
1084  * by another page fault trying to merge _that_. But that's ok: if it
1085  * is being set up, that automatically means that it will be a singleton
1086  * acceptable for merging, so we can do all of this optimistically. But
1087  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1088  *
1089  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1090  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1091  * is to return an anon_vma that is "complex" due to having gone through
1092  * a fork).
1093  *
1094  * We also make sure that the two vma's are compatible (adjacent,
1095  * and with the same memory policies). That's all stable, even with just
1096  * a read lock on the mmap_lock.
1097  */
1098 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1099 {
1100 	if (anon_vma_compatible(a, b)) {
1101 		struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1102 
1103 		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1104 			return anon_vma;
1105 	}
1106 	return NULL;
1107 }
1108 
1109 /*
1110  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1111  * neighbouring vmas for a suitable anon_vma, before it goes off
1112  * to allocate a new anon_vma.  It checks because a repetitive
1113  * sequence of mprotects and faults may otherwise lead to distinct
1114  * anon_vmas being allocated, preventing vma merge in subsequent
1115  * mprotect.
1116  */
1117 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1118 {
1119 	MA_STATE(mas, &vma->vm_mm->mm_mt, vma->vm_end, vma->vm_end);
1120 	struct anon_vma *anon_vma = NULL;
1121 	struct vm_area_struct *prev, *next;
1122 
1123 	/* Try next first. */
1124 	next = mas_walk(&mas);
1125 	if (next) {
1126 		anon_vma = reusable_anon_vma(next, vma, next);
1127 		if (anon_vma)
1128 			return anon_vma;
1129 	}
1130 
1131 	prev = mas_prev(&mas, 0);
1132 	VM_BUG_ON_VMA(prev != vma, vma);
1133 	prev = mas_prev(&mas, 0);
1134 	/* Try prev next. */
1135 	if (prev)
1136 		anon_vma = reusable_anon_vma(prev, prev, vma);
1137 
1138 	/*
1139 	 * We might reach here with anon_vma == NULL if we can't find
1140 	 * any reusable anon_vma.
1141 	 * There's no absolute need to look only at touching neighbours:
1142 	 * we could search further afield for "compatible" anon_vmas.
1143 	 * But it would probably just be a waste of time searching,
1144 	 * or lead to too many vmas hanging off the same anon_vma.
1145 	 * We're trying to allow mprotect remerging later on,
1146 	 * not trying to minimize memory used for anon_vmas.
1147 	 */
1148 	return anon_vma;
1149 }
1150 
1151 /*
1152  * If a hint addr is less than mmap_min_addr change hint to be as
1153  * low as possible but still greater than mmap_min_addr
1154  */
1155 static inline unsigned long round_hint_to_min(unsigned long hint)
1156 {
1157 	hint &= PAGE_MASK;
1158 	if (((void *)hint != NULL) &&
1159 	    (hint < mmap_min_addr))
1160 		return PAGE_ALIGN(mmap_min_addr);
1161 	return hint;
1162 }
1163 
1164 bool mlock_future_ok(struct mm_struct *mm, unsigned long flags,
1165 			unsigned long bytes)
1166 {
1167 	unsigned long locked_pages, limit_pages;
1168 
1169 	if (!(flags & VM_LOCKED) || capable(CAP_IPC_LOCK))
1170 		return true;
1171 
1172 	locked_pages = bytes >> PAGE_SHIFT;
1173 	locked_pages += mm->locked_vm;
1174 
1175 	limit_pages = rlimit(RLIMIT_MEMLOCK);
1176 	limit_pages >>= PAGE_SHIFT;
1177 
1178 	return locked_pages <= limit_pages;
1179 }
1180 
1181 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1182 {
1183 	if (S_ISREG(inode->i_mode))
1184 		return MAX_LFS_FILESIZE;
1185 
1186 	if (S_ISBLK(inode->i_mode))
1187 		return MAX_LFS_FILESIZE;
1188 
1189 	if (S_ISSOCK(inode->i_mode))
1190 		return MAX_LFS_FILESIZE;
1191 
1192 	/* Special "we do even unsigned file positions" case */
1193 	if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1194 		return 0;
1195 
1196 	/* Yes, random drivers might want more. But I'm tired of buggy drivers */
1197 	return ULONG_MAX;
1198 }
1199 
1200 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1201 				unsigned long pgoff, unsigned long len)
1202 {
1203 	u64 maxsize = file_mmap_size_max(file, inode);
1204 
1205 	if (maxsize && len > maxsize)
1206 		return false;
1207 	maxsize -= len;
1208 	if (pgoff > maxsize >> PAGE_SHIFT)
1209 		return false;
1210 	return true;
1211 }
1212 
1213 /*
1214  * The caller must write-lock current->mm->mmap_lock.
1215  */
1216 unsigned long do_mmap(struct file *file, unsigned long addr,
1217 			unsigned long len, unsigned long prot,
1218 			unsigned long flags, vm_flags_t vm_flags,
1219 			unsigned long pgoff, unsigned long *populate,
1220 			struct list_head *uf)
1221 {
1222 	struct mm_struct *mm = current->mm;
1223 	int pkey = 0;
1224 
1225 	*populate = 0;
1226 
1227 	if (!len)
1228 		return -EINVAL;
1229 
1230 	/*
1231 	 * Does the application expect PROT_READ to imply PROT_EXEC?
1232 	 *
1233 	 * (the exception is when the underlying filesystem is noexec
1234 	 *  mounted, in which case we don't add PROT_EXEC.)
1235 	 */
1236 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1237 		if (!(file && path_noexec(&file->f_path)))
1238 			prot |= PROT_EXEC;
1239 
1240 	/* force arch specific MAP_FIXED handling in get_unmapped_area */
1241 	if (flags & MAP_FIXED_NOREPLACE)
1242 		flags |= MAP_FIXED;
1243 
1244 	if (!(flags & MAP_FIXED))
1245 		addr = round_hint_to_min(addr);
1246 
1247 	/* Careful about overflows.. */
1248 	len = PAGE_ALIGN(len);
1249 	if (!len)
1250 		return -ENOMEM;
1251 
1252 	/* offset overflow? */
1253 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1254 		return -EOVERFLOW;
1255 
1256 	/* Too many mappings? */
1257 	if (mm->map_count > sysctl_max_map_count)
1258 		return -ENOMEM;
1259 
1260 	/* Obtain the address to map to. we verify (or select) it and ensure
1261 	 * that it represents a valid section of the address space.
1262 	 */
1263 	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1264 	if (IS_ERR_VALUE(addr))
1265 		return addr;
1266 
1267 	if (flags & MAP_FIXED_NOREPLACE) {
1268 		if (find_vma_intersection(mm, addr, addr + len))
1269 			return -EEXIST;
1270 	}
1271 
1272 	if (prot == PROT_EXEC) {
1273 		pkey = execute_only_pkey(mm);
1274 		if (pkey < 0)
1275 			pkey = 0;
1276 	}
1277 
1278 	/* Do simple checking here so the lower-level routines won't have
1279 	 * to. we assume access permissions have been handled by the open
1280 	 * of the memory object, so we don't do any here.
1281 	 */
1282 	vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1283 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1284 
1285 	if (flags & MAP_LOCKED)
1286 		if (!can_do_mlock())
1287 			return -EPERM;
1288 
1289 	if (!mlock_future_ok(mm, vm_flags, len))
1290 		return -EAGAIN;
1291 
1292 	if (file) {
1293 		struct inode *inode = file_inode(file);
1294 		unsigned long flags_mask;
1295 
1296 		if (!file_mmap_ok(file, inode, pgoff, len))
1297 			return -EOVERFLOW;
1298 
1299 		flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1300 
1301 		switch (flags & MAP_TYPE) {
1302 		case MAP_SHARED:
1303 			/*
1304 			 * Force use of MAP_SHARED_VALIDATE with non-legacy
1305 			 * flags. E.g. MAP_SYNC is dangerous to use with
1306 			 * MAP_SHARED as you don't know which consistency model
1307 			 * you will get. We silently ignore unsupported flags
1308 			 * with MAP_SHARED to preserve backward compatibility.
1309 			 */
1310 			flags &= LEGACY_MAP_MASK;
1311 			fallthrough;
1312 		case MAP_SHARED_VALIDATE:
1313 			if (flags & ~flags_mask)
1314 				return -EOPNOTSUPP;
1315 			if (prot & PROT_WRITE) {
1316 				if (!(file->f_mode & FMODE_WRITE))
1317 					return -EACCES;
1318 				if (IS_SWAPFILE(file->f_mapping->host))
1319 					return -ETXTBSY;
1320 			}
1321 
1322 			/*
1323 			 * Make sure we don't allow writing to an append-only
1324 			 * file..
1325 			 */
1326 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1327 				return -EACCES;
1328 
1329 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1330 			if (!(file->f_mode & FMODE_WRITE))
1331 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1332 			fallthrough;
1333 		case MAP_PRIVATE:
1334 			if (!(file->f_mode & FMODE_READ))
1335 				return -EACCES;
1336 			if (path_noexec(&file->f_path)) {
1337 				if (vm_flags & VM_EXEC)
1338 					return -EPERM;
1339 				vm_flags &= ~VM_MAYEXEC;
1340 			}
1341 
1342 			if (!file->f_op->mmap)
1343 				return -ENODEV;
1344 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1345 				return -EINVAL;
1346 			break;
1347 
1348 		default:
1349 			return -EINVAL;
1350 		}
1351 	} else {
1352 		switch (flags & MAP_TYPE) {
1353 		case MAP_SHARED:
1354 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1355 				return -EINVAL;
1356 			/*
1357 			 * Ignore pgoff.
1358 			 */
1359 			pgoff = 0;
1360 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1361 			break;
1362 		case MAP_PRIVATE:
1363 			/*
1364 			 * Set pgoff according to addr for anon_vma.
1365 			 */
1366 			pgoff = addr >> PAGE_SHIFT;
1367 			break;
1368 		default:
1369 			return -EINVAL;
1370 		}
1371 	}
1372 
1373 	/*
1374 	 * Set 'VM_NORESERVE' if we should not account for the
1375 	 * memory use of this mapping.
1376 	 */
1377 	if (flags & MAP_NORESERVE) {
1378 		/* We honor MAP_NORESERVE if allowed to overcommit */
1379 		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1380 			vm_flags |= VM_NORESERVE;
1381 
1382 		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1383 		if (file && is_file_hugepages(file))
1384 			vm_flags |= VM_NORESERVE;
1385 	}
1386 
1387 	addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1388 	if (!IS_ERR_VALUE(addr) &&
1389 	    ((vm_flags & VM_LOCKED) ||
1390 	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1391 		*populate = len;
1392 	return addr;
1393 }
1394 
1395 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1396 			      unsigned long prot, unsigned long flags,
1397 			      unsigned long fd, unsigned long pgoff)
1398 {
1399 	struct file *file = NULL;
1400 	unsigned long retval;
1401 
1402 	if (!(flags & MAP_ANONYMOUS)) {
1403 		audit_mmap_fd(fd, flags);
1404 		file = fget(fd);
1405 		if (!file)
1406 			return -EBADF;
1407 		if (is_file_hugepages(file)) {
1408 			len = ALIGN(len, huge_page_size(hstate_file(file)));
1409 		} else if (unlikely(flags & MAP_HUGETLB)) {
1410 			retval = -EINVAL;
1411 			goto out_fput;
1412 		}
1413 	} else if (flags & MAP_HUGETLB) {
1414 		struct hstate *hs;
1415 
1416 		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1417 		if (!hs)
1418 			return -EINVAL;
1419 
1420 		len = ALIGN(len, huge_page_size(hs));
1421 		/*
1422 		 * VM_NORESERVE is used because the reservations will be
1423 		 * taken when vm_ops->mmap() is called
1424 		 */
1425 		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1426 				VM_NORESERVE,
1427 				HUGETLB_ANONHUGE_INODE,
1428 				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1429 		if (IS_ERR(file))
1430 			return PTR_ERR(file);
1431 	}
1432 
1433 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1434 out_fput:
1435 	if (file)
1436 		fput(file);
1437 	return retval;
1438 }
1439 
1440 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1441 		unsigned long, prot, unsigned long, flags,
1442 		unsigned long, fd, unsigned long, pgoff)
1443 {
1444 	return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1445 }
1446 
1447 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1448 struct mmap_arg_struct {
1449 	unsigned long addr;
1450 	unsigned long len;
1451 	unsigned long prot;
1452 	unsigned long flags;
1453 	unsigned long fd;
1454 	unsigned long offset;
1455 };
1456 
1457 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1458 {
1459 	struct mmap_arg_struct a;
1460 
1461 	if (copy_from_user(&a, arg, sizeof(a)))
1462 		return -EFAULT;
1463 	if (offset_in_page(a.offset))
1464 		return -EINVAL;
1465 
1466 	return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1467 			       a.offset >> PAGE_SHIFT);
1468 }
1469 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1470 
1471 static bool vm_ops_needs_writenotify(const struct vm_operations_struct *vm_ops)
1472 {
1473 	return vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite);
1474 }
1475 
1476 static bool vma_is_shared_writable(struct vm_area_struct *vma)
1477 {
1478 	return (vma->vm_flags & (VM_WRITE | VM_SHARED)) ==
1479 		(VM_WRITE | VM_SHARED);
1480 }
1481 
1482 static bool vma_fs_can_writeback(struct vm_area_struct *vma)
1483 {
1484 	/* No managed pages to writeback. */
1485 	if (vma->vm_flags & VM_PFNMAP)
1486 		return false;
1487 
1488 	return vma->vm_file && vma->vm_file->f_mapping &&
1489 		mapping_can_writeback(vma->vm_file->f_mapping);
1490 }
1491 
1492 /*
1493  * Does this VMA require the underlying folios to have their dirty state
1494  * tracked?
1495  */
1496 bool vma_needs_dirty_tracking(struct vm_area_struct *vma)
1497 {
1498 	/* Only shared, writable VMAs require dirty tracking. */
1499 	if (!vma_is_shared_writable(vma))
1500 		return false;
1501 
1502 	/* Does the filesystem need to be notified? */
1503 	if (vm_ops_needs_writenotify(vma->vm_ops))
1504 		return true;
1505 
1506 	/*
1507 	 * Even if the filesystem doesn't indicate a need for writenotify, if it
1508 	 * can writeback, dirty tracking is still required.
1509 	 */
1510 	return vma_fs_can_writeback(vma);
1511 }
1512 
1513 /*
1514  * Some shared mappings will want the pages marked read-only
1515  * to track write events. If so, we'll downgrade vm_page_prot
1516  * to the private version (using protection_map[] without the
1517  * VM_SHARED bit).
1518  */
1519 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1520 {
1521 	/* If it was private or non-writable, the write bit is already clear */
1522 	if (!vma_is_shared_writable(vma))
1523 		return 0;
1524 
1525 	/* The backer wishes to know when pages are first written to? */
1526 	if (vm_ops_needs_writenotify(vma->vm_ops))
1527 		return 1;
1528 
1529 	/* The open routine did something to the protections that pgprot_modify
1530 	 * won't preserve? */
1531 	if (pgprot_val(vm_page_prot) !=
1532 	    pgprot_val(vm_pgprot_modify(vm_page_prot, vma->vm_flags)))
1533 		return 0;
1534 
1535 	/*
1536 	 * Do we need to track softdirty? hugetlb does not support softdirty
1537 	 * tracking yet.
1538 	 */
1539 	if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma))
1540 		return 1;
1541 
1542 	/* Do we need write faults for uffd-wp tracking? */
1543 	if (userfaultfd_wp(vma))
1544 		return 1;
1545 
1546 	/* Can the mapping track the dirty pages? */
1547 	return vma_fs_can_writeback(vma);
1548 }
1549 
1550 /*
1551  * We account for memory if it's a private writeable mapping,
1552  * not hugepages and VM_NORESERVE wasn't set.
1553  */
1554 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1555 {
1556 	/*
1557 	 * hugetlb has its own accounting separate from the core VM
1558 	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1559 	 */
1560 	if (file && is_file_hugepages(file))
1561 		return 0;
1562 
1563 	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1564 }
1565 
1566 /**
1567  * unmapped_area() - Find an area between the low_limit and the high_limit with
1568  * the correct alignment and offset, all from @info. Note: current->mm is used
1569  * for the search.
1570  *
1571  * @info: The unmapped area information including the range [low_limit -
1572  * high_limit), the alignment offset and mask.
1573  *
1574  * Return: A memory address or -ENOMEM.
1575  */
1576 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1577 {
1578 	unsigned long length, gap;
1579 	unsigned long low_limit, high_limit;
1580 	struct vm_area_struct *tmp;
1581 
1582 	MA_STATE(mas, &current->mm->mm_mt, 0, 0);
1583 
1584 	/* Adjust search length to account for worst case alignment overhead */
1585 	length = info->length + info->align_mask;
1586 	if (length < info->length)
1587 		return -ENOMEM;
1588 
1589 	low_limit = info->low_limit;
1590 	if (low_limit < mmap_min_addr)
1591 		low_limit = mmap_min_addr;
1592 	high_limit = info->high_limit;
1593 retry:
1594 	if (mas_empty_area(&mas, low_limit, high_limit - 1, length))
1595 		return -ENOMEM;
1596 
1597 	gap = mas.index;
1598 	gap += (info->align_offset - gap) & info->align_mask;
1599 	tmp = mas_next(&mas, ULONG_MAX);
1600 	if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
1601 		if (vm_start_gap(tmp) < gap + length - 1) {
1602 			low_limit = tmp->vm_end;
1603 			mas_reset(&mas);
1604 			goto retry;
1605 		}
1606 	} else {
1607 		tmp = mas_prev(&mas, 0);
1608 		if (tmp && vm_end_gap(tmp) > gap) {
1609 			low_limit = vm_end_gap(tmp);
1610 			mas_reset(&mas);
1611 			goto retry;
1612 		}
1613 	}
1614 
1615 	return gap;
1616 }
1617 
1618 /**
1619  * unmapped_area_topdown() - Find an area between the low_limit and the
1620  * high_limit with the correct alignment and offset at the highest available
1621  * address, all from @info. Note: current->mm is used for the search.
1622  *
1623  * @info: The unmapped area information including the range [low_limit -
1624  * high_limit), the alignment offset and mask.
1625  *
1626  * Return: A memory address or -ENOMEM.
1627  */
1628 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1629 {
1630 	unsigned long length, gap, gap_end;
1631 	unsigned long low_limit, high_limit;
1632 	struct vm_area_struct *tmp;
1633 
1634 	MA_STATE(mas, &current->mm->mm_mt, 0, 0);
1635 	/* Adjust search length to account for worst case alignment overhead */
1636 	length = info->length + info->align_mask;
1637 	if (length < info->length)
1638 		return -ENOMEM;
1639 
1640 	low_limit = info->low_limit;
1641 	if (low_limit < mmap_min_addr)
1642 		low_limit = mmap_min_addr;
1643 	high_limit = info->high_limit;
1644 retry:
1645 	if (mas_empty_area_rev(&mas, low_limit, high_limit - 1, length))
1646 		return -ENOMEM;
1647 
1648 	gap = mas.last + 1 - info->length;
1649 	gap -= (gap - info->align_offset) & info->align_mask;
1650 	gap_end = mas.last;
1651 	tmp = mas_next(&mas, ULONG_MAX);
1652 	if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
1653 		if (vm_start_gap(tmp) <= gap_end) {
1654 			high_limit = vm_start_gap(tmp);
1655 			mas_reset(&mas);
1656 			goto retry;
1657 		}
1658 	} else {
1659 		tmp = mas_prev(&mas, 0);
1660 		if (tmp && vm_end_gap(tmp) > gap) {
1661 			high_limit = tmp->vm_start;
1662 			mas_reset(&mas);
1663 			goto retry;
1664 		}
1665 	}
1666 
1667 	return gap;
1668 }
1669 
1670 /*
1671  * Search for an unmapped address range.
1672  *
1673  * We are looking for a range that:
1674  * - does not intersect with any VMA;
1675  * - is contained within the [low_limit, high_limit) interval;
1676  * - is at least the desired size.
1677  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1678  */
1679 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
1680 {
1681 	unsigned long addr;
1682 
1683 	if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
1684 		addr = unmapped_area_topdown(info);
1685 	else
1686 		addr = unmapped_area(info);
1687 
1688 	trace_vm_unmapped_area(addr, info);
1689 	return addr;
1690 }
1691 
1692 /* Get an address range which is currently unmapped.
1693  * For shmat() with addr=0.
1694  *
1695  * Ugly calling convention alert:
1696  * Return value with the low bits set means error value,
1697  * ie
1698  *	if (ret & ~PAGE_MASK)
1699  *		error = ret;
1700  *
1701  * This function "knows" that -ENOMEM has the bits set.
1702  */
1703 unsigned long
1704 generic_get_unmapped_area(struct file *filp, unsigned long addr,
1705 			  unsigned long len, unsigned long pgoff,
1706 			  unsigned long flags)
1707 {
1708 	struct mm_struct *mm = current->mm;
1709 	struct vm_area_struct *vma, *prev;
1710 	struct vm_unmapped_area_info info;
1711 	const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1712 
1713 	if (len > mmap_end - mmap_min_addr)
1714 		return -ENOMEM;
1715 
1716 	if (flags & MAP_FIXED)
1717 		return addr;
1718 
1719 	if (addr) {
1720 		addr = PAGE_ALIGN(addr);
1721 		vma = find_vma_prev(mm, addr, &prev);
1722 		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1723 		    (!vma || addr + len <= vm_start_gap(vma)) &&
1724 		    (!prev || addr >= vm_end_gap(prev)))
1725 			return addr;
1726 	}
1727 
1728 	info.flags = 0;
1729 	info.length = len;
1730 	info.low_limit = mm->mmap_base;
1731 	info.high_limit = mmap_end;
1732 	info.align_mask = 0;
1733 	info.align_offset = 0;
1734 	return vm_unmapped_area(&info);
1735 }
1736 
1737 #ifndef HAVE_ARCH_UNMAPPED_AREA
1738 unsigned long
1739 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1740 		       unsigned long len, unsigned long pgoff,
1741 		       unsigned long flags)
1742 {
1743 	return generic_get_unmapped_area(filp, addr, len, pgoff, flags);
1744 }
1745 #endif
1746 
1747 /*
1748  * This mmap-allocator allocates new areas top-down from below the
1749  * stack's low limit (the base):
1750  */
1751 unsigned long
1752 generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1753 				  unsigned long len, unsigned long pgoff,
1754 				  unsigned long flags)
1755 {
1756 	struct vm_area_struct *vma, *prev;
1757 	struct mm_struct *mm = current->mm;
1758 	struct vm_unmapped_area_info info;
1759 	const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1760 
1761 	/* requested length too big for entire address space */
1762 	if (len > mmap_end - mmap_min_addr)
1763 		return -ENOMEM;
1764 
1765 	if (flags & MAP_FIXED)
1766 		return addr;
1767 
1768 	/* requesting a specific address */
1769 	if (addr) {
1770 		addr = PAGE_ALIGN(addr);
1771 		vma = find_vma_prev(mm, addr, &prev);
1772 		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1773 				(!vma || addr + len <= vm_start_gap(vma)) &&
1774 				(!prev || addr >= vm_end_gap(prev)))
1775 			return addr;
1776 	}
1777 
1778 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1779 	info.length = len;
1780 	info.low_limit = PAGE_SIZE;
1781 	info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
1782 	info.align_mask = 0;
1783 	info.align_offset = 0;
1784 	addr = vm_unmapped_area(&info);
1785 
1786 	/*
1787 	 * A failed mmap() very likely causes application failure,
1788 	 * so fall back to the bottom-up function here. This scenario
1789 	 * can happen with large stack limits and large mmap()
1790 	 * allocations.
1791 	 */
1792 	if (offset_in_page(addr)) {
1793 		VM_BUG_ON(addr != -ENOMEM);
1794 		info.flags = 0;
1795 		info.low_limit = TASK_UNMAPPED_BASE;
1796 		info.high_limit = mmap_end;
1797 		addr = vm_unmapped_area(&info);
1798 	}
1799 
1800 	return addr;
1801 }
1802 
1803 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1804 unsigned long
1805 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1806 			       unsigned long len, unsigned long pgoff,
1807 			       unsigned long flags)
1808 {
1809 	return generic_get_unmapped_area_topdown(filp, addr, len, pgoff, flags);
1810 }
1811 #endif
1812 
1813 unsigned long
1814 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1815 		unsigned long pgoff, unsigned long flags)
1816 {
1817 	unsigned long (*get_area)(struct file *, unsigned long,
1818 				  unsigned long, unsigned long, unsigned long);
1819 
1820 	unsigned long error = arch_mmap_check(addr, len, flags);
1821 	if (error)
1822 		return error;
1823 
1824 	/* Careful about overflows.. */
1825 	if (len > TASK_SIZE)
1826 		return -ENOMEM;
1827 
1828 	get_area = current->mm->get_unmapped_area;
1829 	if (file) {
1830 		if (file->f_op->get_unmapped_area)
1831 			get_area = file->f_op->get_unmapped_area;
1832 	} else if (flags & MAP_SHARED) {
1833 		/*
1834 		 * mmap_region() will call shmem_zero_setup() to create a file,
1835 		 * so use shmem's get_unmapped_area in case it can be huge.
1836 		 */
1837 		get_area = shmem_get_unmapped_area;
1838 	} else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1839 		/* Ensures that larger anonymous mappings are THP aligned. */
1840 		get_area = thp_get_unmapped_area;
1841 	}
1842 
1843 	/* Always treat pgoff as zero for anonymous memory. */
1844 	if (!file)
1845 		pgoff = 0;
1846 
1847 	addr = get_area(file, addr, len, pgoff, flags);
1848 	if (IS_ERR_VALUE(addr))
1849 		return addr;
1850 
1851 	if (addr > TASK_SIZE - len)
1852 		return -ENOMEM;
1853 	if (offset_in_page(addr))
1854 		return -EINVAL;
1855 
1856 	error = security_mmap_addr(addr);
1857 	return error ? error : addr;
1858 }
1859 
1860 EXPORT_SYMBOL(get_unmapped_area);
1861 
1862 /**
1863  * find_vma_intersection() - Look up the first VMA which intersects the interval
1864  * @mm: The process address space.
1865  * @start_addr: The inclusive start user address.
1866  * @end_addr: The exclusive end user address.
1867  *
1868  * Returns: The first VMA within the provided range, %NULL otherwise.  Assumes
1869  * start_addr < end_addr.
1870  */
1871 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
1872 					     unsigned long start_addr,
1873 					     unsigned long end_addr)
1874 {
1875 	unsigned long index = start_addr;
1876 
1877 	mmap_assert_locked(mm);
1878 	return mt_find(&mm->mm_mt, &index, end_addr - 1);
1879 }
1880 EXPORT_SYMBOL(find_vma_intersection);
1881 
1882 /**
1883  * find_vma() - Find the VMA for a given address, or the next VMA.
1884  * @mm: The mm_struct to check
1885  * @addr: The address
1886  *
1887  * Returns: The VMA associated with addr, or the next VMA.
1888  * May return %NULL in the case of no VMA at addr or above.
1889  */
1890 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1891 {
1892 	unsigned long index = addr;
1893 
1894 	mmap_assert_locked(mm);
1895 	return mt_find(&mm->mm_mt, &index, ULONG_MAX);
1896 }
1897 EXPORT_SYMBOL(find_vma);
1898 
1899 /**
1900  * find_vma_prev() - Find the VMA for a given address, or the next vma and
1901  * set %pprev to the previous VMA, if any.
1902  * @mm: The mm_struct to check
1903  * @addr: The address
1904  * @pprev: The pointer to set to the previous VMA
1905  *
1906  * Note that RCU lock is missing here since the external mmap_lock() is used
1907  * instead.
1908  *
1909  * Returns: The VMA associated with @addr, or the next vma.
1910  * May return %NULL in the case of no vma at addr or above.
1911  */
1912 struct vm_area_struct *
1913 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1914 			struct vm_area_struct **pprev)
1915 {
1916 	struct vm_area_struct *vma;
1917 	MA_STATE(mas, &mm->mm_mt, addr, addr);
1918 
1919 	vma = mas_walk(&mas);
1920 	*pprev = mas_prev(&mas, 0);
1921 	if (!vma)
1922 		vma = mas_next(&mas, ULONG_MAX);
1923 	return vma;
1924 }
1925 
1926 /*
1927  * Verify that the stack growth is acceptable and
1928  * update accounting. This is shared with both the
1929  * grow-up and grow-down cases.
1930  */
1931 static int acct_stack_growth(struct vm_area_struct *vma,
1932 			     unsigned long size, unsigned long grow)
1933 {
1934 	struct mm_struct *mm = vma->vm_mm;
1935 	unsigned long new_start;
1936 
1937 	/* address space limit tests */
1938 	if (!may_expand_vm(mm, vma->vm_flags, grow))
1939 		return -ENOMEM;
1940 
1941 	/* Stack limit test */
1942 	if (size > rlimit(RLIMIT_STACK))
1943 		return -ENOMEM;
1944 
1945 	/* mlock limit tests */
1946 	if (!mlock_future_ok(mm, vma->vm_flags, grow << PAGE_SHIFT))
1947 		return -ENOMEM;
1948 
1949 	/* Check to ensure the stack will not grow into a hugetlb-only region */
1950 	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1951 			vma->vm_end - size;
1952 	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1953 		return -EFAULT;
1954 
1955 	/*
1956 	 * Overcommit..  This must be the final test, as it will
1957 	 * update security statistics.
1958 	 */
1959 	if (security_vm_enough_memory_mm(mm, grow))
1960 		return -ENOMEM;
1961 
1962 	return 0;
1963 }
1964 
1965 #if defined(CONFIG_STACK_GROWSUP)
1966 /*
1967  * PA-RISC uses this for its stack.
1968  * vma is the last one with address > vma->vm_end.  Have to extend vma.
1969  */
1970 static int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1971 {
1972 	struct mm_struct *mm = vma->vm_mm;
1973 	struct vm_area_struct *next;
1974 	unsigned long gap_addr;
1975 	int error = 0;
1976 	MA_STATE(mas, &mm->mm_mt, vma->vm_start, address);
1977 
1978 	if (!(vma->vm_flags & VM_GROWSUP))
1979 		return -EFAULT;
1980 
1981 	/* Guard against exceeding limits of the address space. */
1982 	address &= PAGE_MASK;
1983 	if (address >= (TASK_SIZE & PAGE_MASK))
1984 		return -ENOMEM;
1985 	address += PAGE_SIZE;
1986 
1987 	/* Enforce stack_guard_gap */
1988 	gap_addr = address + stack_guard_gap;
1989 
1990 	/* Guard against overflow */
1991 	if (gap_addr < address || gap_addr > TASK_SIZE)
1992 		gap_addr = TASK_SIZE;
1993 
1994 	next = find_vma_intersection(mm, vma->vm_end, gap_addr);
1995 	if (next && vma_is_accessible(next)) {
1996 		if (!(next->vm_flags & VM_GROWSUP))
1997 			return -ENOMEM;
1998 		/* Check that both stack segments have the same anon_vma? */
1999 	}
2000 
2001 	if (next)
2002 		mas_prev_range(&mas, address);
2003 
2004 	__mas_set_range(&mas, vma->vm_start, address - 1);
2005 	if (mas_preallocate(&mas, vma, GFP_KERNEL))
2006 		return -ENOMEM;
2007 
2008 	/* We must make sure the anon_vma is allocated. */
2009 	if (unlikely(anon_vma_prepare(vma))) {
2010 		mas_destroy(&mas);
2011 		return -ENOMEM;
2012 	}
2013 
2014 	/* Lock the VMA before expanding to prevent concurrent page faults */
2015 	vma_start_write(vma);
2016 	/*
2017 	 * vma->vm_start/vm_end cannot change under us because the caller
2018 	 * is required to hold the mmap_lock in read mode.  We need the
2019 	 * anon_vma lock to serialize against concurrent expand_stacks.
2020 	 */
2021 	anon_vma_lock_write(vma->anon_vma);
2022 
2023 	/* Somebody else might have raced and expanded it already */
2024 	if (address > vma->vm_end) {
2025 		unsigned long size, grow;
2026 
2027 		size = address - vma->vm_start;
2028 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
2029 
2030 		error = -ENOMEM;
2031 		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2032 			error = acct_stack_growth(vma, size, grow);
2033 			if (!error) {
2034 				/*
2035 				 * We only hold a shared mmap_lock lock here, so
2036 				 * we need to protect against concurrent vma
2037 				 * expansions.  anon_vma_lock_write() doesn't
2038 				 * help here, as we don't guarantee that all
2039 				 * growable vmas in a mm share the same root
2040 				 * anon vma.  So, we reuse mm->page_table_lock
2041 				 * to guard against concurrent vma expansions.
2042 				 */
2043 				spin_lock(&mm->page_table_lock);
2044 				if (vma->vm_flags & VM_LOCKED)
2045 					mm->locked_vm += grow;
2046 				vm_stat_account(mm, vma->vm_flags, grow);
2047 				anon_vma_interval_tree_pre_update_vma(vma);
2048 				vma->vm_end = address;
2049 				/* Overwrite old entry in mtree. */
2050 				mas_store_prealloc(&mas, vma);
2051 				anon_vma_interval_tree_post_update_vma(vma);
2052 				spin_unlock(&mm->page_table_lock);
2053 
2054 				perf_event_mmap(vma);
2055 			}
2056 		}
2057 	}
2058 	anon_vma_unlock_write(vma->anon_vma);
2059 	khugepaged_enter_vma(vma, vma->vm_flags);
2060 	mas_destroy(&mas);
2061 	validate_mm(mm);
2062 	return error;
2063 }
2064 #endif /* CONFIG_STACK_GROWSUP */
2065 
2066 /*
2067  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2068  * mmap_lock held for writing.
2069  */
2070 int expand_downwards(struct vm_area_struct *vma, unsigned long address)
2071 {
2072 	struct mm_struct *mm = vma->vm_mm;
2073 	MA_STATE(mas, &mm->mm_mt, vma->vm_start, vma->vm_start);
2074 	struct vm_area_struct *prev;
2075 	int error = 0;
2076 
2077 	if (!(vma->vm_flags & VM_GROWSDOWN))
2078 		return -EFAULT;
2079 
2080 	address &= PAGE_MASK;
2081 	if (address < mmap_min_addr || address < FIRST_USER_ADDRESS)
2082 		return -EPERM;
2083 
2084 	/* Enforce stack_guard_gap */
2085 	prev = mas_prev(&mas, 0);
2086 	/* Check that both stack segments have the same anon_vma? */
2087 	if (prev) {
2088 		if (!(prev->vm_flags & VM_GROWSDOWN) &&
2089 		    vma_is_accessible(prev) &&
2090 		    (address - prev->vm_end < stack_guard_gap))
2091 			return -ENOMEM;
2092 	}
2093 
2094 	if (prev)
2095 		mas_next_range(&mas, vma->vm_start);
2096 
2097 	__mas_set_range(&mas, address, vma->vm_end - 1);
2098 	if (mas_preallocate(&mas, vma, GFP_KERNEL))
2099 		return -ENOMEM;
2100 
2101 	/* We must make sure the anon_vma is allocated. */
2102 	if (unlikely(anon_vma_prepare(vma))) {
2103 		mas_destroy(&mas);
2104 		return -ENOMEM;
2105 	}
2106 
2107 	/* Lock the VMA before expanding to prevent concurrent page faults */
2108 	vma_start_write(vma);
2109 	/*
2110 	 * vma->vm_start/vm_end cannot change under us because the caller
2111 	 * is required to hold the mmap_lock in read mode.  We need the
2112 	 * anon_vma lock to serialize against concurrent expand_stacks.
2113 	 */
2114 	anon_vma_lock_write(vma->anon_vma);
2115 
2116 	/* Somebody else might have raced and expanded it already */
2117 	if (address < vma->vm_start) {
2118 		unsigned long size, grow;
2119 
2120 		size = vma->vm_end - address;
2121 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
2122 
2123 		error = -ENOMEM;
2124 		if (grow <= vma->vm_pgoff) {
2125 			error = acct_stack_growth(vma, size, grow);
2126 			if (!error) {
2127 				/*
2128 				 * We only hold a shared mmap_lock lock here, so
2129 				 * we need to protect against concurrent vma
2130 				 * expansions.  anon_vma_lock_write() doesn't
2131 				 * help here, as we don't guarantee that all
2132 				 * growable vmas in a mm share the same root
2133 				 * anon vma.  So, we reuse mm->page_table_lock
2134 				 * to guard against concurrent vma expansions.
2135 				 */
2136 				spin_lock(&mm->page_table_lock);
2137 				if (vma->vm_flags & VM_LOCKED)
2138 					mm->locked_vm += grow;
2139 				vm_stat_account(mm, vma->vm_flags, grow);
2140 				anon_vma_interval_tree_pre_update_vma(vma);
2141 				vma->vm_start = address;
2142 				vma->vm_pgoff -= grow;
2143 				/* Overwrite old entry in mtree. */
2144 				mas_store_prealloc(&mas, vma);
2145 				anon_vma_interval_tree_post_update_vma(vma);
2146 				spin_unlock(&mm->page_table_lock);
2147 
2148 				perf_event_mmap(vma);
2149 			}
2150 		}
2151 	}
2152 	anon_vma_unlock_write(vma->anon_vma);
2153 	khugepaged_enter_vma(vma, vma->vm_flags);
2154 	mas_destroy(&mas);
2155 	validate_mm(mm);
2156 	return error;
2157 }
2158 
2159 /* enforced gap between the expanding stack and other mappings. */
2160 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2161 
2162 static int __init cmdline_parse_stack_guard_gap(char *p)
2163 {
2164 	unsigned long val;
2165 	char *endptr;
2166 
2167 	val = simple_strtoul(p, &endptr, 10);
2168 	if (!*endptr)
2169 		stack_guard_gap = val << PAGE_SHIFT;
2170 
2171 	return 1;
2172 }
2173 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2174 
2175 #ifdef CONFIG_STACK_GROWSUP
2176 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
2177 {
2178 	return expand_upwards(vma, address);
2179 }
2180 
2181 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
2182 {
2183 	struct vm_area_struct *vma, *prev;
2184 
2185 	addr &= PAGE_MASK;
2186 	vma = find_vma_prev(mm, addr, &prev);
2187 	if (vma && (vma->vm_start <= addr))
2188 		return vma;
2189 	if (!prev)
2190 		return NULL;
2191 	if (expand_stack_locked(prev, addr))
2192 		return NULL;
2193 	if (prev->vm_flags & VM_LOCKED)
2194 		populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2195 	return prev;
2196 }
2197 #else
2198 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
2199 {
2200 	return expand_downwards(vma, address);
2201 }
2202 
2203 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
2204 {
2205 	struct vm_area_struct *vma;
2206 	unsigned long start;
2207 
2208 	addr &= PAGE_MASK;
2209 	vma = find_vma(mm, addr);
2210 	if (!vma)
2211 		return NULL;
2212 	if (vma->vm_start <= addr)
2213 		return vma;
2214 	start = vma->vm_start;
2215 	if (expand_stack_locked(vma, addr))
2216 		return NULL;
2217 	if (vma->vm_flags & VM_LOCKED)
2218 		populate_vma_page_range(vma, addr, start, NULL);
2219 	return vma;
2220 }
2221 #endif
2222 
2223 #if defined(CONFIG_STACK_GROWSUP)
2224 
2225 #define vma_expand_up(vma,addr) expand_upwards(vma, addr)
2226 #define vma_expand_down(vma, addr) (-EFAULT)
2227 
2228 #else
2229 
2230 #define vma_expand_up(vma,addr) (-EFAULT)
2231 #define vma_expand_down(vma, addr) expand_downwards(vma, addr)
2232 
2233 #endif
2234 
2235 /*
2236  * expand_stack(): legacy interface for page faulting. Don't use unless
2237  * you have to.
2238  *
2239  * This is called with the mm locked for reading, drops the lock, takes
2240  * the lock for writing, tries to look up a vma again, expands it if
2241  * necessary, and downgrades the lock to reading again.
2242  *
2243  * If no vma is found or it can't be expanded, it returns NULL and has
2244  * dropped the lock.
2245  */
2246 struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr)
2247 {
2248 	struct vm_area_struct *vma, *prev;
2249 
2250 	mmap_read_unlock(mm);
2251 	if (mmap_write_lock_killable(mm))
2252 		return NULL;
2253 
2254 	vma = find_vma_prev(mm, addr, &prev);
2255 	if (vma && vma->vm_start <= addr)
2256 		goto success;
2257 
2258 	if (prev && !vma_expand_up(prev, addr)) {
2259 		vma = prev;
2260 		goto success;
2261 	}
2262 
2263 	if (vma && !vma_expand_down(vma, addr))
2264 		goto success;
2265 
2266 	mmap_write_unlock(mm);
2267 	return NULL;
2268 
2269 success:
2270 	mmap_write_downgrade(mm);
2271 	return vma;
2272 }
2273 
2274 /*
2275  * Ok - we have the memory areas we should free on a maple tree so release them,
2276  * and do the vma updates.
2277  *
2278  * Called with the mm semaphore held.
2279  */
2280 static inline void remove_mt(struct mm_struct *mm, struct ma_state *mas)
2281 {
2282 	unsigned long nr_accounted = 0;
2283 	struct vm_area_struct *vma;
2284 
2285 	/* Update high watermark before we lower total_vm */
2286 	update_hiwater_vm(mm);
2287 	mas_for_each(mas, vma, ULONG_MAX) {
2288 		long nrpages = vma_pages(vma);
2289 
2290 		if (vma->vm_flags & VM_ACCOUNT)
2291 			nr_accounted += nrpages;
2292 		vm_stat_account(mm, vma->vm_flags, -nrpages);
2293 		remove_vma(vma, false);
2294 	}
2295 	vm_unacct_memory(nr_accounted);
2296 }
2297 
2298 /*
2299  * Get rid of page table information in the indicated region.
2300  *
2301  * Called with the mm semaphore held.
2302  */
2303 static void unmap_region(struct mm_struct *mm, struct ma_state *mas,
2304 		struct vm_area_struct *vma, struct vm_area_struct *prev,
2305 		struct vm_area_struct *next, unsigned long start,
2306 		unsigned long end, unsigned long tree_end, bool mm_wr_locked)
2307 {
2308 	struct mmu_gather tlb;
2309 	unsigned long mt_start = mas->index;
2310 
2311 	lru_add_drain();
2312 	tlb_gather_mmu(&tlb, mm);
2313 	update_hiwater_rss(mm);
2314 	unmap_vmas(&tlb, mas, vma, start, end, tree_end, mm_wr_locked);
2315 	mas_set(mas, mt_start);
2316 	free_pgtables(&tlb, mas, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2317 				 next ? next->vm_start : USER_PGTABLES_CEILING,
2318 				 mm_wr_locked);
2319 	tlb_finish_mmu(&tlb);
2320 }
2321 
2322 /*
2323  * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2324  * has already been checked or doesn't make sense to fail.
2325  * VMA Iterator will point to the end VMA.
2326  */
2327 static int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
2328 		       unsigned long addr, int new_below)
2329 {
2330 	struct vma_prepare vp;
2331 	struct vm_area_struct *new;
2332 	int err;
2333 
2334 	WARN_ON(vma->vm_start >= addr);
2335 	WARN_ON(vma->vm_end <= addr);
2336 
2337 	if (vma->vm_ops && vma->vm_ops->may_split) {
2338 		err = vma->vm_ops->may_split(vma, addr);
2339 		if (err)
2340 			return err;
2341 	}
2342 
2343 	new = vm_area_dup(vma);
2344 	if (!new)
2345 		return -ENOMEM;
2346 
2347 	if (new_below) {
2348 		new->vm_end = addr;
2349 	} else {
2350 		new->vm_start = addr;
2351 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2352 	}
2353 
2354 	err = -ENOMEM;
2355 	vma_iter_config(vmi, new->vm_start, new->vm_end);
2356 	if (vma_iter_prealloc(vmi, new))
2357 		goto out_free_vma;
2358 
2359 	err = vma_dup_policy(vma, new);
2360 	if (err)
2361 		goto out_free_vmi;
2362 
2363 	err = anon_vma_clone(new, vma);
2364 	if (err)
2365 		goto out_free_mpol;
2366 
2367 	if (new->vm_file)
2368 		get_file(new->vm_file);
2369 
2370 	if (new->vm_ops && new->vm_ops->open)
2371 		new->vm_ops->open(new);
2372 
2373 	vma_start_write(vma);
2374 	vma_start_write(new);
2375 
2376 	init_vma_prep(&vp, vma);
2377 	vp.insert = new;
2378 	vma_prepare(&vp);
2379 	vma_adjust_trans_huge(vma, vma->vm_start, addr, 0);
2380 
2381 	if (new_below) {
2382 		vma->vm_start = addr;
2383 		vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT;
2384 	} else {
2385 		vma->vm_end = addr;
2386 	}
2387 
2388 	/* vma_complete stores the new vma */
2389 	vma_complete(&vp, vmi, vma->vm_mm);
2390 
2391 	/* Success. */
2392 	if (new_below)
2393 		vma_next(vmi);
2394 	return 0;
2395 
2396 out_free_mpol:
2397 	mpol_put(vma_policy(new));
2398 out_free_vmi:
2399 	vma_iter_free(vmi);
2400 out_free_vma:
2401 	vm_area_free(new);
2402 	return err;
2403 }
2404 
2405 /*
2406  * Split a vma into two pieces at address 'addr', a new vma is allocated
2407  * either for the first part or the tail.
2408  */
2409 static int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
2410 		     unsigned long addr, int new_below)
2411 {
2412 	if (vma->vm_mm->map_count >= sysctl_max_map_count)
2413 		return -ENOMEM;
2414 
2415 	return __split_vma(vmi, vma, addr, new_below);
2416 }
2417 
2418 /*
2419  * We are about to modify one or multiple of a VMA's flags, policy, userfaultfd
2420  * context and anonymous VMA name within the range [start, end).
2421  *
2422  * As a result, we might be able to merge the newly modified VMA range with an
2423  * adjacent VMA with identical properties.
2424  *
2425  * If no merge is possible and the range does not span the entirety of the VMA,
2426  * we then need to split the VMA to accommodate the change.
2427  *
2428  * The function returns either the merged VMA, the original VMA if a split was
2429  * required instead, or an error if the split failed.
2430  */
2431 struct vm_area_struct *vma_modify(struct vma_iterator *vmi,
2432 				  struct vm_area_struct *prev,
2433 				  struct vm_area_struct *vma,
2434 				  unsigned long start, unsigned long end,
2435 				  unsigned long vm_flags,
2436 				  struct mempolicy *policy,
2437 				  struct vm_userfaultfd_ctx uffd_ctx,
2438 				  struct anon_vma_name *anon_name)
2439 {
2440 	pgoff_t pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
2441 	struct vm_area_struct *merged;
2442 
2443 	merged = vma_merge(vmi, vma->vm_mm, prev, start, end, vm_flags,
2444 			   vma->anon_vma, vma->vm_file, pgoff, policy,
2445 			   uffd_ctx, anon_name);
2446 	if (merged)
2447 		return merged;
2448 
2449 	if (vma->vm_start < start) {
2450 		int err = split_vma(vmi, vma, start, 1);
2451 
2452 		if (err)
2453 			return ERR_PTR(err);
2454 	}
2455 
2456 	if (vma->vm_end > end) {
2457 		int err = split_vma(vmi, vma, end, 0);
2458 
2459 		if (err)
2460 			return ERR_PTR(err);
2461 	}
2462 
2463 	return vma;
2464 }
2465 
2466 /*
2467  * Attempt to merge a newly mapped VMA with those adjacent to it. The caller
2468  * must ensure that [start, end) does not overlap any existing VMA.
2469  */
2470 static struct vm_area_struct
2471 *vma_merge_new_vma(struct vma_iterator *vmi, struct vm_area_struct *prev,
2472 		   struct vm_area_struct *vma, unsigned long start,
2473 		   unsigned long end, pgoff_t pgoff)
2474 {
2475 	return vma_merge(vmi, vma->vm_mm, prev, start, end, vma->vm_flags,
2476 			 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
2477 			 vma->vm_userfaultfd_ctx, anon_vma_name(vma));
2478 }
2479 
2480 /*
2481  * Expand vma by delta bytes, potentially merging with an immediately adjacent
2482  * VMA with identical properties.
2483  */
2484 struct vm_area_struct *vma_merge_extend(struct vma_iterator *vmi,
2485 					struct vm_area_struct *vma,
2486 					unsigned long delta)
2487 {
2488 	pgoff_t pgoff = vma->vm_pgoff + vma_pages(vma);
2489 
2490 	/* vma is specified as prev, so case 1 or 2 will apply. */
2491 	return vma_merge(vmi, vma->vm_mm, vma, vma->vm_end, vma->vm_end + delta,
2492 			 vma->vm_flags, vma->anon_vma, vma->vm_file, pgoff,
2493 			 vma_policy(vma), vma->vm_userfaultfd_ctx,
2494 			 anon_vma_name(vma));
2495 }
2496 
2497 /*
2498  * do_vmi_align_munmap() - munmap the aligned region from @start to @end.
2499  * @vmi: The vma iterator
2500  * @vma: The starting vm_area_struct
2501  * @mm: The mm_struct
2502  * @start: The aligned start address to munmap.
2503  * @end: The aligned end address to munmap.
2504  * @uf: The userfaultfd list_head
2505  * @unlock: Set to true to drop the mmap_lock.  unlocking only happens on
2506  * success.
2507  *
2508  * Return: 0 on success and drops the lock if so directed, error and leaves the
2509  * lock held otherwise.
2510  */
2511 static int
2512 do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
2513 		    struct mm_struct *mm, unsigned long start,
2514 		    unsigned long end, struct list_head *uf, bool unlock)
2515 {
2516 	struct vm_area_struct *prev, *next = NULL;
2517 	struct maple_tree mt_detach;
2518 	int count = 0;
2519 	int error = -ENOMEM;
2520 	unsigned long locked_vm = 0;
2521 	MA_STATE(mas_detach, &mt_detach, 0, 0);
2522 	mt_init_flags(&mt_detach, vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK);
2523 	mt_on_stack(mt_detach);
2524 
2525 	/*
2526 	 * If we need to split any vma, do it now to save pain later.
2527 	 *
2528 	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2529 	 * unmapped vm_area_struct will remain in use: so lower split_vma
2530 	 * places tmp vma above, and higher split_vma places tmp vma below.
2531 	 */
2532 
2533 	/* Does it split the first one? */
2534 	if (start > vma->vm_start) {
2535 
2536 		/*
2537 		 * Make sure that map_count on return from munmap() will
2538 		 * not exceed its limit; but let map_count go just above
2539 		 * its limit temporarily, to help free resources as expected.
2540 		 */
2541 		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2542 			goto map_count_exceeded;
2543 
2544 		error = __split_vma(vmi, vma, start, 1);
2545 		if (error)
2546 			goto start_split_failed;
2547 	}
2548 
2549 	/*
2550 	 * Detach a range of VMAs from the mm. Using next as a temp variable as
2551 	 * it is always overwritten.
2552 	 */
2553 	next = vma;
2554 	do {
2555 		/* Does it split the end? */
2556 		if (next->vm_end > end) {
2557 			error = __split_vma(vmi, next, end, 0);
2558 			if (error)
2559 				goto end_split_failed;
2560 		}
2561 		vma_start_write(next);
2562 		mas_set(&mas_detach, count);
2563 		error = mas_store_gfp(&mas_detach, next, GFP_KERNEL);
2564 		if (error)
2565 			goto munmap_gather_failed;
2566 		vma_mark_detached(next, true);
2567 		if (next->vm_flags & VM_LOCKED)
2568 			locked_vm += vma_pages(next);
2569 
2570 		count++;
2571 		if (unlikely(uf)) {
2572 			/*
2573 			 * If userfaultfd_unmap_prep returns an error the vmas
2574 			 * will remain split, but userland will get a
2575 			 * highly unexpected error anyway. This is no
2576 			 * different than the case where the first of the two
2577 			 * __split_vma fails, but we don't undo the first
2578 			 * split, despite we could. This is unlikely enough
2579 			 * failure that it's not worth optimizing it for.
2580 			 */
2581 			error = userfaultfd_unmap_prep(next, start, end, uf);
2582 
2583 			if (error)
2584 				goto userfaultfd_error;
2585 		}
2586 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE
2587 		BUG_ON(next->vm_start < start);
2588 		BUG_ON(next->vm_start > end);
2589 #endif
2590 	} for_each_vma_range(*vmi, next, end);
2591 
2592 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
2593 	/* Make sure no VMAs are about to be lost. */
2594 	{
2595 		MA_STATE(test, &mt_detach, 0, 0);
2596 		struct vm_area_struct *vma_mas, *vma_test;
2597 		int test_count = 0;
2598 
2599 		vma_iter_set(vmi, start);
2600 		rcu_read_lock();
2601 		vma_test = mas_find(&test, count - 1);
2602 		for_each_vma_range(*vmi, vma_mas, end) {
2603 			BUG_ON(vma_mas != vma_test);
2604 			test_count++;
2605 			vma_test = mas_next(&test, count - 1);
2606 		}
2607 		rcu_read_unlock();
2608 		BUG_ON(count != test_count);
2609 	}
2610 #endif
2611 
2612 	while (vma_iter_addr(vmi) > start)
2613 		vma_iter_prev_range(vmi);
2614 
2615 	error = vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL);
2616 	if (error)
2617 		goto clear_tree_failed;
2618 
2619 	/* Point of no return */
2620 	mm->locked_vm -= locked_vm;
2621 	mm->map_count -= count;
2622 	if (unlock)
2623 		mmap_write_downgrade(mm);
2624 
2625 	prev = vma_iter_prev_range(vmi);
2626 	next = vma_next(vmi);
2627 	if (next)
2628 		vma_iter_prev_range(vmi);
2629 
2630 	/*
2631 	 * We can free page tables without write-locking mmap_lock because VMAs
2632 	 * were isolated before we downgraded mmap_lock.
2633 	 */
2634 	mas_set(&mas_detach, 1);
2635 	unmap_region(mm, &mas_detach, vma, prev, next, start, end, count,
2636 		     !unlock);
2637 	/* Statistics and freeing VMAs */
2638 	mas_set(&mas_detach, 0);
2639 	remove_mt(mm, &mas_detach);
2640 	validate_mm(mm);
2641 	if (unlock)
2642 		mmap_read_unlock(mm);
2643 
2644 	__mt_destroy(&mt_detach);
2645 	return 0;
2646 
2647 clear_tree_failed:
2648 userfaultfd_error:
2649 munmap_gather_failed:
2650 end_split_failed:
2651 	mas_set(&mas_detach, 0);
2652 	mas_for_each(&mas_detach, next, end)
2653 		vma_mark_detached(next, false);
2654 
2655 	__mt_destroy(&mt_detach);
2656 start_split_failed:
2657 map_count_exceeded:
2658 	validate_mm(mm);
2659 	return error;
2660 }
2661 
2662 /*
2663  * do_vmi_munmap() - munmap a given range.
2664  * @vmi: The vma iterator
2665  * @mm: The mm_struct
2666  * @start: The start address to munmap
2667  * @len: The length of the range to munmap
2668  * @uf: The userfaultfd list_head
2669  * @unlock: set to true if the user wants to drop the mmap_lock on success
2670  *
2671  * This function takes a @mas that is either pointing to the previous VMA or set
2672  * to MA_START and sets it up to remove the mapping(s).  The @len will be
2673  * aligned and any arch_unmap work will be preformed.
2674  *
2675  * Return: 0 on success and drops the lock if so directed, error and leaves the
2676  * lock held otherwise.
2677  */
2678 int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
2679 		  unsigned long start, size_t len, struct list_head *uf,
2680 		  bool unlock)
2681 {
2682 	unsigned long end;
2683 	struct vm_area_struct *vma;
2684 
2685 	if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2686 		return -EINVAL;
2687 
2688 	end = start + PAGE_ALIGN(len);
2689 	if (end == start)
2690 		return -EINVAL;
2691 
2692 	 /* arch_unmap() might do unmaps itself.  */
2693 	arch_unmap(mm, start, end);
2694 
2695 	/* Find the first overlapping VMA */
2696 	vma = vma_find(vmi, end);
2697 	if (!vma) {
2698 		if (unlock)
2699 			mmap_write_unlock(mm);
2700 		return 0;
2701 	}
2702 
2703 	return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock);
2704 }
2705 
2706 /* do_munmap() - Wrapper function for non-maple tree aware do_munmap() calls.
2707  * @mm: The mm_struct
2708  * @start: The start address to munmap
2709  * @len: The length to be munmapped.
2710  * @uf: The userfaultfd list_head
2711  *
2712  * Return: 0 on success, error otherwise.
2713  */
2714 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2715 	      struct list_head *uf)
2716 {
2717 	VMA_ITERATOR(vmi, mm, start);
2718 
2719 	return do_vmi_munmap(&vmi, mm, start, len, uf, false);
2720 }
2721 
2722 unsigned long mmap_region(struct file *file, unsigned long addr,
2723 		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2724 		struct list_head *uf)
2725 {
2726 	struct mm_struct *mm = current->mm;
2727 	struct vm_area_struct *vma = NULL;
2728 	struct vm_area_struct *next, *prev, *merge;
2729 	pgoff_t pglen = len >> PAGE_SHIFT;
2730 	unsigned long charged = 0;
2731 	unsigned long end = addr + len;
2732 	unsigned long merge_start = addr, merge_end = end;
2733 	bool writable_file_mapping = false;
2734 	pgoff_t vm_pgoff;
2735 	int error;
2736 	VMA_ITERATOR(vmi, mm, addr);
2737 
2738 	/* Check against address space limit. */
2739 	if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
2740 		unsigned long nr_pages;
2741 
2742 		/*
2743 		 * MAP_FIXED may remove pages of mappings that intersects with
2744 		 * requested mapping. Account for the pages it would unmap.
2745 		 */
2746 		nr_pages = count_vma_pages_range(mm, addr, end);
2747 
2748 		if (!may_expand_vm(mm, vm_flags,
2749 					(len >> PAGE_SHIFT) - nr_pages))
2750 			return -ENOMEM;
2751 	}
2752 
2753 	/* Unmap any existing mapping in the area */
2754 	if (do_vmi_munmap(&vmi, mm, addr, len, uf, false))
2755 		return -ENOMEM;
2756 
2757 	/*
2758 	 * Private writable mapping: check memory availability
2759 	 */
2760 	if (accountable_mapping(file, vm_flags)) {
2761 		charged = len >> PAGE_SHIFT;
2762 		if (security_vm_enough_memory_mm(mm, charged))
2763 			return -ENOMEM;
2764 		vm_flags |= VM_ACCOUNT;
2765 	}
2766 
2767 	next = vma_next(&vmi);
2768 	prev = vma_prev(&vmi);
2769 	if (vm_flags & VM_SPECIAL) {
2770 		if (prev)
2771 			vma_iter_next_range(&vmi);
2772 		goto cannot_expand;
2773 	}
2774 
2775 	/* Attempt to expand an old mapping */
2776 	/* Check next */
2777 	if (next && next->vm_start == end && !vma_policy(next) &&
2778 	    can_vma_merge_before(next, vm_flags, NULL, file, pgoff+pglen,
2779 				 NULL_VM_UFFD_CTX, NULL)) {
2780 		merge_end = next->vm_end;
2781 		vma = next;
2782 		vm_pgoff = next->vm_pgoff - pglen;
2783 	}
2784 
2785 	/* Check prev */
2786 	if (prev && prev->vm_end == addr && !vma_policy(prev) &&
2787 	    (vma ? can_vma_merge_after(prev, vm_flags, vma->anon_vma, file,
2788 				       pgoff, vma->vm_userfaultfd_ctx, NULL) :
2789 		   can_vma_merge_after(prev, vm_flags, NULL, file, pgoff,
2790 				       NULL_VM_UFFD_CTX, NULL))) {
2791 		merge_start = prev->vm_start;
2792 		vma = prev;
2793 		vm_pgoff = prev->vm_pgoff;
2794 	} else if (prev) {
2795 		vma_iter_next_range(&vmi);
2796 	}
2797 
2798 	/* Actually expand, if possible */
2799 	if (vma &&
2800 	    !vma_expand(&vmi, vma, merge_start, merge_end, vm_pgoff, next)) {
2801 		khugepaged_enter_vma(vma, vm_flags);
2802 		goto expanded;
2803 	}
2804 
2805 	if (vma == prev)
2806 		vma_iter_set(&vmi, addr);
2807 cannot_expand:
2808 
2809 	/*
2810 	 * Determine the object being mapped and call the appropriate
2811 	 * specific mapper. the address has already been validated, but
2812 	 * not unmapped, but the maps are removed from the list.
2813 	 */
2814 	vma = vm_area_alloc(mm);
2815 	if (!vma) {
2816 		error = -ENOMEM;
2817 		goto unacct_error;
2818 	}
2819 
2820 	vma_iter_config(&vmi, addr, end);
2821 	vma->vm_start = addr;
2822 	vma->vm_end = end;
2823 	vm_flags_init(vma, vm_flags);
2824 	vma->vm_page_prot = vm_get_page_prot(vm_flags);
2825 	vma->vm_pgoff = pgoff;
2826 
2827 	if (file) {
2828 		vma->vm_file = get_file(file);
2829 		error = call_mmap(file, vma);
2830 		if (error)
2831 			goto unmap_and_free_vma;
2832 
2833 		if (vma_is_shared_maywrite(vma)) {
2834 			error = mapping_map_writable(file->f_mapping);
2835 			if (error)
2836 				goto close_and_free_vma;
2837 
2838 			writable_file_mapping = true;
2839 		}
2840 
2841 		/*
2842 		 * Expansion is handled above, merging is handled below.
2843 		 * Drivers should not alter the address of the VMA.
2844 		 */
2845 		error = -EINVAL;
2846 		if (WARN_ON((addr != vma->vm_start)))
2847 			goto close_and_free_vma;
2848 
2849 		vma_iter_config(&vmi, addr, end);
2850 		/*
2851 		 * If vm_flags changed after call_mmap(), we should try merge
2852 		 * vma again as we may succeed this time.
2853 		 */
2854 		if (unlikely(vm_flags != vma->vm_flags && prev)) {
2855 			merge = vma_merge_new_vma(&vmi, prev, vma,
2856 						  vma->vm_start, vma->vm_end,
2857 						  vma->vm_pgoff);
2858 			if (merge) {
2859 				/*
2860 				 * ->mmap() can change vma->vm_file and fput
2861 				 * the original file. So fput the vma->vm_file
2862 				 * here or we would add an extra fput for file
2863 				 * and cause general protection fault
2864 				 * ultimately.
2865 				 */
2866 				fput(vma->vm_file);
2867 				vm_area_free(vma);
2868 				vma = merge;
2869 				/* Update vm_flags to pick up the change. */
2870 				vm_flags = vma->vm_flags;
2871 				goto unmap_writable;
2872 			}
2873 		}
2874 
2875 		vm_flags = vma->vm_flags;
2876 	} else if (vm_flags & VM_SHARED) {
2877 		error = shmem_zero_setup(vma);
2878 		if (error)
2879 			goto free_vma;
2880 	} else {
2881 		vma_set_anonymous(vma);
2882 	}
2883 
2884 	if (map_deny_write_exec(vma, vma->vm_flags)) {
2885 		error = -EACCES;
2886 		goto close_and_free_vma;
2887 	}
2888 
2889 	/* Allow architectures to sanity-check the vm_flags */
2890 	error = -EINVAL;
2891 	if (!arch_validate_flags(vma->vm_flags))
2892 		goto close_and_free_vma;
2893 
2894 	error = -ENOMEM;
2895 	if (vma_iter_prealloc(&vmi, vma))
2896 		goto close_and_free_vma;
2897 
2898 	/* Lock the VMA since it is modified after insertion into VMA tree */
2899 	vma_start_write(vma);
2900 	vma_iter_store(&vmi, vma);
2901 	mm->map_count++;
2902 	if (vma->vm_file) {
2903 		i_mmap_lock_write(vma->vm_file->f_mapping);
2904 		if (vma_is_shared_maywrite(vma))
2905 			mapping_allow_writable(vma->vm_file->f_mapping);
2906 
2907 		flush_dcache_mmap_lock(vma->vm_file->f_mapping);
2908 		vma_interval_tree_insert(vma, &vma->vm_file->f_mapping->i_mmap);
2909 		flush_dcache_mmap_unlock(vma->vm_file->f_mapping);
2910 		i_mmap_unlock_write(vma->vm_file->f_mapping);
2911 	}
2912 
2913 	/*
2914 	 * vma_merge() calls khugepaged_enter_vma() either, the below
2915 	 * call covers the non-merge case.
2916 	 */
2917 	khugepaged_enter_vma(vma, vma->vm_flags);
2918 
2919 	/* Once vma denies write, undo our temporary denial count */
2920 unmap_writable:
2921 	if (writable_file_mapping)
2922 		mapping_unmap_writable(file->f_mapping);
2923 	file = vma->vm_file;
2924 	ksm_add_vma(vma);
2925 expanded:
2926 	perf_event_mmap(vma);
2927 
2928 	vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
2929 	if (vm_flags & VM_LOCKED) {
2930 		if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
2931 					is_vm_hugetlb_page(vma) ||
2932 					vma == get_gate_vma(current->mm))
2933 			vm_flags_clear(vma, VM_LOCKED_MASK);
2934 		else
2935 			mm->locked_vm += (len >> PAGE_SHIFT);
2936 	}
2937 
2938 	if (file)
2939 		uprobe_mmap(vma);
2940 
2941 	/*
2942 	 * New (or expanded) vma always get soft dirty status.
2943 	 * Otherwise user-space soft-dirty page tracker won't
2944 	 * be able to distinguish situation when vma area unmapped,
2945 	 * then new mapped in-place (which must be aimed as
2946 	 * a completely new data area).
2947 	 */
2948 	vm_flags_set(vma, VM_SOFTDIRTY);
2949 
2950 	vma_set_page_prot(vma);
2951 
2952 	validate_mm(mm);
2953 	return addr;
2954 
2955 close_and_free_vma:
2956 	if (file && vma->vm_ops && vma->vm_ops->close)
2957 		vma->vm_ops->close(vma);
2958 
2959 	if (file || vma->vm_file) {
2960 unmap_and_free_vma:
2961 		fput(vma->vm_file);
2962 		vma->vm_file = NULL;
2963 
2964 		vma_iter_set(&vmi, vma->vm_end);
2965 		/* Undo any partial mapping done by a device driver. */
2966 		unmap_region(mm, &vmi.mas, vma, prev, next, vma->vm_start,
2967 			     vma->vm_end, vma->vm_end, true);
2968 	}
2969 	if (writable_file_mapping)
2970 		mapping_unmap_writable(file->f_mapping);
2971 free_vma:
2972 	vm_area_free(vma);
2973 unacct_error:
2974 	if (charged)
2975 		vm_unacct_memory(charged);
2976 	validate_mm(mm);
2977 	return error;
2978 }
2979 
2980 static int __vm_munmap(unsigned long start, size_t len, bool unlock)
2981 {
2982 	int ret;
2983 	struct mm_struct *mm = current->mm;
2984 	LIST_HEAD(uf);
2985 	VMA_ITERATOR(vmi, mm, start);
2986 
2987 	if (mmap_write_lock_killable(mm))
2988 		return -EINTR;
2989 
2990 	ret = do_vmi_munmap(&vmi, mm, start, len, &uf, unlock);
2991 	if (ret || !unlock)
2992 		mmap_write_unlock(mm);
2993 
2994 	userfaultfd_unmap_complete(mm, &uf);
2995 	return ret;
2996 }
2997 
2998 int vm_munmap(unsigned long start, size_t len)
2999 {
3000 	return __vm_munmap(start, len, false);
3001 }
3002 EXPORT_SYMBOL(vm_munmap);
3003 
3004 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
3005 {
3006 	addr = untagged_addr(addr);
3007 	return __vm_munmap(addr, len, true);
3008 }
3009 
3010 
3011 /*
3012  * Emulation of deprecated remap_file_pages() syscall.
3013  */
3014 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
3015 		unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
3016 {
3017 
3018 	struct mm_struct *mm = current->mm;
3019 	struct vm_area_struct *vma;
3020 	unsigned long populate = 0;
3021 	unsigned long ret = -EINVAL;
3022 	struct file *file;
3023 
3024 	pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/mm/remap_file_pages.rst.\n",
3025 		     current->comm, current->pid);
3026 
3027 	if (prot)
3028 		return ret;
3029 	start = start & PAGE_MASK;
3030 	size = size & PAGE_MASK;
3031 
3032 	if (start + size <= start)
3033 		return ret;
3034 
3035 	/* Does pgoff wrap? */
3036 	if (pgoff + (size >> PAGE_SHIFT) < pgoff)
3037 		return ret;
3038 
3039 	if (mmap_write_lock_killable(mm))
3040 		return -EINTR;
3041 
3042 	vma = vma_lookup(mm, start);
3043 
3044 	if (!vma || !(vma->vm_flags & VM_SHARED))
3045 		goto out;
3046 
3047 	if (start + size > vma->vm_end) {
3048 		VMA_ITERATOR(vmi, mm, vma->vm_end);
3049 		struct vm_area_struct *next, *prev = vma;
3050 
3051 		for_each_vma_range(vmi, next, start + size) {
3052 			/* hole between vmas ? */
3053 			if (next->vm_start != prev->vm_end)
3054 				goto out;
3055 
3056 			if (next->vm_file != vma->vm_file)
3057 				goto out;
3058 
3059 			if (next->vm_flags != vma->vm_flags)
3060 				goto out;
3061 
3062 			if (start + size <= next->vm_end)
3063 				break;
3064 
3065 			prev = next;
3066 		}
3067 
3068 		if (!next)
3069 			goto out;
3070 	}
3071 
3072 	prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
3073 	prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
3074 	prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
3075 
3076 	flags &= MAP_NONBLOCK;
3077 	flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
3078 	if (vma->vm_flags & VM_LOCKED)
3079 		flags |= MAP_LOCKED;
3080 
3081 	file = get_file(vma->vm_file);
3082 	ret = do_mmap(vma->vm_file, start, size,
3083 			prot, flags, 0, pgoff, &populate, NULL);
3084 	fput(file);
3085 out:
3086 	mmap_write_unlock(mm);
3087 	if (populate)
3088 		mm_populate(ret, populate);
3089 	if (!IS_ERR_VALUE(ret))
3090 		ret = 0;
3091 	return ret;
3092 }
3093 
3094 /*
3095  * do_vma_munmap() - Unmap a full or partial vma.
3096  * @vmi: The vma iterator pointing at the vma
3097  * @vma: The first vma to be munmapped
3098  * @start: the start of the address to unmap
3099  * @end: The end of the address to unmap
3100  * @uf: The userfaultfd list_head
3101  * @unlock: Drop the lock on success
3102  *
3103  * unmaps a VMA mapping when the vma iterator is already in position.
3104  * Does not handle alignment.
3105  *
3106  * Return: 0 on success drops the lock of so directed, error on failure and will
3107  * still hold the lock.
3108  */
3109 int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3110 		unsigned long start, unsigned long end, struct list_head *uf,
3111 		bool unlock)
3112 {
3113 	struct mm_struct *mm = vma->vm_mm;
3114 
3115 	arch_unmap(mm, start, end);
3116 	return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock);
3117 }
3118 
3119 /*
3120  * do_brk_flags() - Increase the brk vma if the flags match.
3121  * @vmi: The vma iterator
3122  * @addr: The start address
3123  * @len: The length of the increase
3124  * @vma: The vma,
3125  * @flags: The VMA Flags
3126  *
3127  * Extend the brk VMA from addr to addr + len.  If the VMA is NULL or the flags
3128  * do not match then create a new anonymous VMA.  Eventually we may be able to
3129  * do some brk-specific accounting here.
3130  */
3131 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma,
3132 		unsigned long addr, unsigned long len, unsigned long flags)
3133 {
3134 	struct mm_struct *mm = current->mm;
3135 	struct vma_prepare vp;
3136 
3137 	/*
3138 	 * Check against address space limits by the changed size
3139 	 * Note: This happens *after* clearing old mappings in some code paths.
3140 	 */
3141 	flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
3142 	if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3143 		return -ENOMEM;
3144 
3145 	if (mm->map_count > sysctl_max_map_count)
3146 		return -ENOMEM;
3147 
3148 	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3149 		return -ENOMEM;
3150 
3151 	/*
3152 	 * Expand the existing vma if possible; Note that singular lists do not
3153 	 * occur after forking, so the expand will only happen on new VMAs.
3154 	 */
3155 	if (vma && vma->vm_end == addr && !vma_policy(vma) &&
3156 	    can_vma_merge_after(vma, flags, NULL, NULL,
3157 				addr >> PAGE_SHIFT, NULL_VM_UFFD_CTX, NULL)) {
3158 		vma_iter_config(vmi, vma->vm_start, addr + len);
3159 		if (vma_iter_prealloc(vmi, vma))
3160 			goto unacct_fail;
3161 
3162 		vma_start_write(vma);
3163 
3164 		init_vma_prep(&vp, vma);
3165 		vma_prepare(&vp);
3166 		vma_adjust_trans_huge(vma, vma->vm_start, addr + len, 0);
3167 		vma->vm_end = addr + len;
3168 		vm_flags_set(vma, VM_SOFTDIRTY);
3169 		vma_iter_store(vmi, vma);
3170 
3171 		vma_complete(&vp, vmi, mm);
3172 		khugepaged_enter_vma(vma, flags);
3173 		goto out;
3174 	}
3175 
3176 	if (vma)
3177 		vma_iter_next_range(vmi);
3178 	/* create a vma struct for an anonymous mapping */
3179 	vma = vm_area_alloc(mm);
3180 	if (!vma)
3181 		goto unacct_fail;
3182 
3183 	vma_set_anonymous(vma);
3184 	vma->vm_start = addr;
3185 	vma->vm_end = addr + len;
3186 	vma->vm_pgoff = addr >> PAGE_SHIFT;
3187 	vm_flags_init(vma, flags);
3188 	vma->vm_page_prot = vm_get_page_prot(flags);
3189 	vma_start_write(vma);
3190 	if (vma_iter_store_gfp(vmi, vma, GFP_KERNEL))
3191 		goto mas_store_fail;
3192 
3193 	mm->map_count++;
3194 	validate_mm(mm);
3195 	ksm_add_vma(vma);
3196 out:
3197 	perf_event_mmap(vma);
3198 	mm->total_vm += len >> PAGE_SHIFT;
3199 	mm->data_vm += len >> PAGE_SHIFT;
3200 	if (flags & VM_LOCKED)
3201 		mm->locked_vm += (len >> PAGE_SHIFT);
3202 	vm_flags_set(vma, VM_SOFTDIRTY);
3203 	return 0;
3204 
3205 mas_store_fail:
3206 	vm_area_free(vma);
3207 unacct_fail:
3208 	vm_unacct_memory(len >> PAGE_SHIFT);
3209 	return -ENOMEM;
3210 }
3211 
3212 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3213 {
3214 	struct mm_struct *mm = current->mm;
3215 	struct vm_area_struct *vma = NULL;
3216 	unsigned long len;
3217 	int ret;
3218 	bool populate;
3219 	LIST_HEAD(uf);
3220 	VMA_ITERATOR(vmi, mm, addr);
3221 
3222 	len = PAGE_ALIGN(request);
3223 	if (len < request)
3224 		return -ENOMEM;
3225 	if (!len)
3226 		return 0;
3227 
3228 	/* Until we need other flags, refuse anything except VM_EXEC. */
3229 	if ((flags & (~VM_EXEC)) != 0)
3230 		return -EINVAL;
3231 
3232 	if (mmap_write_lock_killable(mm))
3233 		return -EINTR;
3234 
3235 	ret = check_brk_limits(addr, len);
3236 	if (ret)
3237 		goto limits_failed;
3238 
3239 	ret = do_vmi_munmap(&vmi, mm, addr, len, &uf, 0);
3240 	if (ret)
3241 		goto munmap_failed;
3242 
3243 	vma = vma_prev(&vmi);
3244 	ret = do_brk_flags(&vmi, vma, addr, len, flags);
3245 	populate = ((mm->def_flags & VM_LOCKED) != 0);
3246 	mmap_write_unlock(mm);
3247 	userfaultfd_unmap_complete(mm, &uf);
3248 	if (populate && !ret)
3249 		mm_populate(addr, len);
3250 	return ret;
3251 
3252 munmap_failed:
3253 limits_failed:
3254 	mmap_write_unlock(mm);
3255 	return ret;
3256 }
3257 EXPORT_SYMBOL(vm_brk_flags);
3258 
3259 /* Release all mmaps. */
3260 void exit_mmap(struct mm_struct *mm)
3261 {
3262 	struct mmu_gather tlb;
3263 	struct vm_area_struct *vma;
3264 	unsigned long nr_accounted = 0;
3265 	MA_STATE(mas, &mm->mm_mt, 0, 0);
3266 	int count = 0;
3267 
3268 	/* mm's last user has gone, and its about to be pulled down */
3269 	mmu_notifier_release(mm);
3270 
3271 	mmap_read_lock(mm);
3272 	arch_exit_mmap(mm);
3273 
3274 	vma = mas_find(&mas, ULONG_MAX);
3275 	if (!vma || unlikely(xa_is_zero(vma))) {
3276 		/* Can happen if dup_mmap() received an OOM */
3277 		mmap_read_unlock(mm);
3278 		mmap_write_lock(mm);
3279 		goto destroy;
3280 	}
3281 
3282 	lru_add_drain();
3283 	flush_cache_mm(mm);
3284 	tlb_gather_mmu_fullmm(&tlb, mm);
3285 	/* update_hiwater_rss(mm) here? but nobody should be looking */
3286 	/* Use ULONG_MAX here to ensure all VMAs in the mm are unmapped */
3287 	unmap_vmas(&tlb, &mas, vma, 0, ULONG_MAX, ULONG_MAX, false);
3288 	mmap_read_unlock(mm);
3289 
3290 	/*
3291 	 * Set MMF_OOM_SKIP to hide this task from the oom killer/reaper
3292 	 * because the memory has been already freed.
3293 	 */
3294 	set_bit(MMF_OOM_SKIP, &mm->flags);
3295 	mmap_write_lock(mm);
3296 	mt_clear_in_rcu(&mm->mm_mt);
3297 	mas_set(&mas, vma->vm_end);
3298 	free_pgtables(&tlb, &mas, vma, FIRST_USER_ADDRESS,
3299 		      USER_PGTABLES_CEILING, true);
3300 	tlb_finish_mmu(&tlb);
3301 
3302 	/*
3303 	 * Walk the list again, actually closing and freeing it, with preemption
3304 	 * enabled, without holding any MM locks besides the unreachable
3305 	 * mmap_write_lock.
3306 	 */
3307 	mas_set(&mas, vma->vm_end);
3308 	do {
3309 		if (vma->vm_flags & VM_ACCOUNT)
3310 			nr_accounted += vma_pages(vma);
3311 		remove_vma(vma, true);
3312 		count++;
3313 		cond_resched();
3314 		vma = mas_find(&mas, ULONG_MAX);
3315 	} while (vma && likely(!xa_is_zero(vma)));
3316 
3317 	BUG_ON(count != mm->map_count);
3318 
3319 	trace_exit_mmap(mm);
3320 destroy:
3321 	__mt_destroy(&mm->mm_mt);
3322 	mmap_write_unlock(mm);
3323 	vm_unacct_memory(nr_accounted);
3324 }
3325 
3326 /* Insert vm structure into process list sorted by address
3327  * and into the inode's i_mmap tree.  If vm_file is non-NULL
3328  * then i_mmap_rwsem is taken here.
3329  */
3330 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3331 {
3332 	unsigned long charged = vma_pages(vma);
3333 
3334 
3335 	if (find_vma_intersection(mm, vma->vm_start, vma->vm_end))
3336 		return -ENOMEM;
3337 
3338 	if ((vma->vm_flags & VM_ACCOUNT) &&
3339 	     security_vm_enough_memory_mm(mm, charged))
3340 		return -ENOMEM;
3341 
3342 	/*
3343 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
3344 	 * until its first write fault, when page's anon_vma and index
3345 	 * are set.  But now set the vm_pgoff it will almost certainly
3346 	 * end up with (unless mremap moves it elsewhere before that
3347 	 * first wfault), so /proc/pid/maps tells a consistent story.
3348 	 *
3349 	 * By setting it to reflect the virtual start address of the
3350 	 * vma, merges and splits can happen in a seamless way, just
3351 	 * using the existing file pgoff checks and manipulations.
3352 	 * Similarly in do_mmap and in do_brk_flags.
3353 	 */
3354 	if (vma_is_anonymous(vma)) {
3355 		BUG_ON(vma->anon_vma);
3356 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3357 	}
3358 
3359 	if (vma_link(mm, vma)) {
3360 		if (vma->vm_flags & VM_ACCOUNT)
3361 			vm_unacct_memory(charged);
3362 		return -ENOMEM;
3363 	}
3364 
3365 	return 0;
3366 }
3367 
3368 /*
3369  * Copy the vma structure to a new location in the same mm,
3370  * prior to moving page table entries, to effect an mremap move.
3371  */
3372 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3373 	unsigned long addr, unsigned long len, pgoff_t pgoff,
3374 	bool *need_rmap_locks)
3375 {
3376 	struct vm_area_struct *vma = *vmap;
3377 	unsigned long vma_start = vma->vm_start;
3378 	struct mm_struct *mm = vma->vm_mm;
3379 	struct vm_area_struct *new_vma, *prev;
3380 	bool faulted_in_anon_vma = true;
3381 	VMA_ITERATOR(vmi, mm, addr);
3382 
3383 	/*
3384 	 * If anonymous vma has not yet been faulted, update new pgoff
3385 	 * to match new location, to increase its chance of merging.
3386 	 */
3387 	if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3388 		pgoff = addr >> PAGE_SHIFT;
3389 		faulted_in_anon_vma = false;
3390 	}
3391 
3392 	new_vma = find_vma_prev(mm, addr, &prev);
3393 	if (new_vma && new_vma->vm_start < addr + len)
3394 		return NULL;	/* should never get here */
3395 
3396 	new_vma = vma_merge_new_vma(&vmi, prev, vma, addr, addr + len, pgoff);
3397 	if (new_vma) {
3398 		/*
3399 		 * Source vma may have been merged into new_vma
3400 		 */
3401 		if (unlikely(vma_start >= new_vma->vm_start &&
3402 			     vma_start < new_vma->vm_end)) {
3403 			/*
3404 			 * The only way we can get a vma_merge with
3405 			 * self during an mremap is if the vma hasn't
3406 			 * been faulted in yet and we were allowed to
3407 			 * reset the dst vma->vm_pgoff to the
3408 			 * destination address of the mremap to allow
3409 			 * the merge to happen. mremap must change the
3410 			 * vm_pgoff linearity between src and dst vmas
3411 			 * (in turn preventing a vma_merge) to be
3412 			 * safe. It is only safe to keep the vm_pgoff
3413 			 * linear if there are no pages mapped yet.
3414 			 */
3415 			VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3416 			*vmap = vma = new_vma;
3417 		}
3418 		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3419 	} else {
3420 		new_vma = vm_area_dup(vma);
3421 		if (!new_vma)
3422 			goto out;
3423 		new_vma->vm_start = addr;
3424 		new_vma->vm_end = addr + len;
3425 		new_vma->vm_pgoff = pgoff;
3426 		if (vma_dup_policy(vma, new_vma))
3427 			goto out_free_vma;
3428 		if (anon_vma_clone(new_vma, vma))
3429 			goto out_free_mempol;
3430 		if (new_vma->vm_file)
3431 			get_file(new_vma->vm_file);
3432 		if (new_vma->vm_ops && new_vma->vm_ops->open)
3433 			new_vma->vm_ops->open(new_vma);
3434 		if (vma_link(mm, new_vma))
3435 			goto out_vma_link;
3436 		*need_rmap_locks = false;
3437 	}
3438 	return new_vma;
3439 
3440 out_vma_link:
3441 	if (new_vma->vm_ops && new_vma->vm_ops->close)
3442 		new_vma->vm_ops->close(new_vma);
3443 
3444 	if (new_vma->vm_file)
3445 		fput(new_vma->vm_file);
3446 
3447 	unlink_anon_vmas(new_vma);
3448 out_free_mempol:
3449 	mpol_put(vma_policy(new_vma));
3450 out_free_vma:
3451 	vm_area_free(new_vma);
3452 out:
3453 	return NULL;
3454 }
3455 
3456 /*
3457  * Return true if the calling process may expand its vm space by the passed
3458  * number of pages
3459  */
3460 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3461 {
3462 	if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3463 		return false;
3464 
3465 	if (is_data_mapping(flags) &&
3466 	    mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3467 		/* Workaround for Valgrind */
3468 		if (rlimit(RLIMIT_DATA) == 0 &&
3469 		    mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3470 			return true;
3471 
3472 		pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3473 			     current->comm, current->pid,
3474 			     (mm->data_vm + npages) << PAGE_SHIFT,
3475 			     rlimit(RLIMIT_DATA),
3476 			     ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3477 
3478 		if (!ignore_rlimit_data)
3479 			return false;
3480 	}
3481 
3482 	return true;
3483 }
3484 
3485 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3486 {
3487 	WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages);
3488 
3489 	if (is_exec_mapping(flags))
3490 		mm->exec_vm += npages;
3491 	else if (is_stack_mapping(flags))
3492 		mm->stack_vm += npages;
3493 	else if (is_data_mapping(flags))
3494 		mm->data_vm += npages;
3495 }
3496 
3497 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3498 
3499 /*
3500  * Having a close hook prevents vma merging regardless of flags.
3501  */
3502 static void special_mapping_close(struct vm_area_struct *vma)
3503 {
3504 }
3505 
3506 static const char *special_mapping_name(struct vm_area_struct *vma)
3507 {
3508 	return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3509 }
3510 
3511 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3512 {
3513 	struct vm_special_mapping *sm = new_vma->vm_private_data;
3514 
3515 	if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3516 		return -EFAULT;
3517 
3518 	if (sm->mremap)
3519 		return sm->mremap(sm, new_vma);
3520 
3521 	return 0;
3522 }
3523 
3524 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
3525 {
3526 	/*
3527 	 * Forbid splitting special mappings - kernel has expectations over
3528 	 * the number of pages in mapping. Together with VM_DONTEXPAND
3529 	 * the size of vma should stay the same over the special mapping's
3530 	 * lifetime.
3531 	 */
3532 	return -EINVAL;
3533 }
3534 
3535 static const struct vm_operations_struct special_mapping_vmops = {
3536 	.close = special_mapping_close,
3537 	.fault = special_mapping_fault,
3538 	.mremap = special_mapping_mremap,
3539 	.name = special_mapping_name,
3540 	/* vDSO code relies that VVAR can't be accessed remotely */
3541 	.access = NULL,
3542 	.may_split = special_mapping_split,
3543 };
3544 
3545 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3546 	.close = special_mapping_close,
3547 	.fault = special_mapping_fault,
3548 };
3549 
3550 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3551 {
3552 	struct vm_area_struct *vma = vmf->vma;
3553 	pgoff_t pgoff;
3554 	struct page **pages;
3555 
3556 	if (vma->vm_ops == &legacy_special_mapping_vmops) {
3557 		pages = vma->vm_private_data;
3558 	} else {
3559 		struct vm_special_mapping *sm = vma->vm_private_data;
3560 
3561 		if (sm->fault)
3562 			return sm->fault(sm, vmf->vma, vmf);
3563 
3564 		pages = sm->pages;
3565 	}
3566 
3567 	for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3568 		pgoff--;
3569 
3570 	if (*pages) {
3571 		struct page *page = *pages;
3572 		get_page(page);
3573 		vmf->page = page;
3574 		return 0;
3575 	}
3576 
3577 	return VM_FAULT_SIGBUS;
3578 }
3579 
3580 static struct vm_area_struct *__install_special_mapping(
3581 	struct mm_struct *mm,
3582 	unsigned long addr, unsigned long len,
3583 	unsigned long vm_flags, void *priv,
3584 	const struct vm_operations_struct *ops)
3585 {
3586 	int ret;
3587 	struct vm_area_struct *vma;
3588 
3589 	vma = vm_area_alloc(mm);
3590 	if (unlikely(vma == NULL))
3591 		return ERR_PTR(-ENOMEM);
3592 
3593 	vma->vm_start = addr;
3594 	vma->vm_end = addr + len;
3595 
3596 	vm_flags_init(vma, (vm_flags | mm->def_flags |
3597 		      VM_DONTEXPAND | VM_SOFTDIRTY) & ~VM_LOCKED_MASK);
3598 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3599 
3600 	vma->vm_ops = ops;
3601 	vma->vm_private_data = priv;
3602 
3603 	ret = insert_vm_struct(mm, vma);
3604 	if (ret)
3605 		goto out;
3606 
3607 	vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3608 
3609 	perf_event_mmap(vma);
3610 
3611 	return vma;
3612 
3613 out:
3614 	vm_area_free(vma);
3615 	return ERR_PTR(ret);
3616 }
3617 
3618 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3619 	const struct vm_special_mapping *sm)
3620 {
3621 	return vma->vm_private_data == sm &&
3622 		(vma->vm_ops == &special_mapping_vmops ||
3623 		 vma->vm_ops == &legacy_special_mapping_vmops);
3624 }
3625 
3626 /*
3627  * Called with mm->mmap_lock held for writing.
3628  * Insert a new vma covering the given region, with the given flags.
3629  * Its pages are supplied by the given array of struct page *.
3630  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3631  * The region past the last page supplied will always produce SIGBUS.
3632  * The array pointer and the pages it points to are assumed to stay alive
3633  * for as long as this mapping might exist.
3634  */
3635 struct vm_area_struct *_install_special_mapping(
3636 	struct mm_struct *mm,
3637 	unsigned long addr, unsigned long len,
3638 	unsigned long vm_flags, const struct vm_special_mapping *spec)
3639 {
3640 	return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3641 					&special_mapping_vmops);
3642 }
3643 
3644 int install_special_mapping(struct mm_struct *mm,
3645 			    unsigned long addr, unsigned long len,
3646 			    unsigned long vm_flags, struct page **pages)
3647 {
3648 	struct vm_area_struct *vma = __install_special_mapping(
3649 		mm, addr, len, vm_flags, (void *)pages,
3650 		&legacy_special_mapping_vmops);
3651 
3652 	return PTR_ERR_OR_ZERO(vma);
3653 }
3654 
3655 static DEFINE_MUTEX(mm_all_locks_mutex);
3656 
3657 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3658 {
3659 	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3660 		/*
3661 		 * The LSB of head.next can't change from under us
3662 		 * because we hold the mm_all_locks_mutex.
3663 		 */
3664 		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3665 		/*
3666 		 * We can safely modify head.next after taking the
3667 		 * anon_vma->root->rwsem. If some other vma in this mm shares
3668 		 * the same anon_vma we won't take it again.
3669 		 *
3670 		 * No need of atomic instructions here, head.next
3671 		 * can't change from under us thanks to the
3672 		 * anon_vma->root->rwsem.
3673 		 */
3674 		if (__test_and_set_bit(0, (unsigned long *)
3675 				       &anon_vma->root->rb_root.rb_root.rb_node))
3676 			BUG();
3677 	}
3678 }
3679 
3680 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3681 {
3682 	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3683 		/*
3684 		 * AS_MM_ALL_LOCKS can't change from under us because
3685 		 * we hold the mm_all_locks_mutex.
3686 		 *
3687 		 * Operations on ->flags have to be atomic because
3688 		 * even if AS_MM_ALL_LOCKS is stable thanks to the
3689 		 * mm_all_locks_mutex, there may be other cpus
3690 		 * changing other bitflags in parallel to us.
3691 		 */
3692 		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3693 			BUG();
3694 		down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3695 	}
3696 }
3697 
3698 /*
3699  * This operation locks against the VM for all pte/vma/mm related
3700  * operations that could ever happen on a certain mm. This includes
3701  * vmtruncate, try_to_unmap, and all page faults.
3702  *
3703  * The caller must take the mmap_lock in write mode before calling
3704  * mm_take_all_locks(). The caller isn't allowed to release the
3705  * mmap_lock until mm_drop_all_locks() returns.
3706  *
3707  * mmap_lock in write mode is required in order to block all operations
3708  * that could modify pagetables and free pages without need of
3709  * altering the vma layout. It's also needed in write mode to avoid new
3710  * anon_vmas to be associated with existing vmas.
3711  *
3712  * A single task can't take more than one mm_take_all_locks() in a row
3713  * or it would deadlock.
3714  *
3715  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3716  * mapping->flags avoid to take the same lock twice, if more than one
3717  * vma in this mm is backed by the same anon_vma or address_space.
3718  *
3719  * We take locks in following order, accordingly to comment at beginning
3720  * of mm/rmap.c:
3721  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3722  *     hugetlb mapping);
3723  *   - all vmas marked locked
3724  *   - all i_mmap_rwsem locks;
3725  *   - all anon_vma->rwseml
3726  *
3727  * We can take all locks within these types randomly because the VM code
3728  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3729  * mm_all_locks_mutex.
3730  *
3731  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3732  * that may have to take thousand of locks.
3733  *
3734  * mm_take_all_locks() can fail if it's interrupted by signals.
3735  */
3736 int mm_take_all_locks(struct mm_struct *mm)
3737 {
3738 	struct vm_area_struct *vma;
3739 	struct anon_vma_chain *avc;
3740 	MA_STATE(mas, &mm->mm_mt, 0, 0);
3741 
3742 	mmap_assert_write_locked(mm);
3743 
3744 	mutex_lock(&mm_all_locks_mutex);
3745 
3746 	/*
3747 	 * vma_start_write() does not have a complement in mm_drop_all_locks()
3748 	 * because vma_start_write() is always asymmetrical; it marks a VMA as
3749 	 * being written to until mmap_write_unlock() or mmap_write_downgrade()
3750 	 * is reached.
3751 	 */
3752 	mas_for_each(&mas, vma, ULONG_MAX) {
3753 		if (signal_pending(current))
3754 			goto out_unlock;
3755 		vma_start_write(vma);
3756 	}
3757 
3758 	mas_set(&mas, 0);
3759 	mas_for_each(&mas, vma, ULONG_MAX) {
3760 		if (signal_pending(current))
3761 			goto out_unlock;
3762 		if (vma->vm_file && vma->vm_file->f_mapping &&
3763 				is_vm_hugetlb_page(vma))
3764 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3765 	}
3766 
3767 	mas_set(&mas, 0);
3768 	mas_for_each(&mas, vma, ULONG_MAX) {
3769 		if (signal_pending(current))
3770 			goto out_unlock;
3771 		if (vma->vm_file && vma->vm_file->f_mapping &&
3772 				!is_vm_hugetlb_page(vma))
3773 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3774 	}
3775 
3776 	mas_set(&mas, 0);
3777 	mas_for_each(&mas, vma, ULONG_MAX) {
3778 		if (signal_pending(current))
3779 			goto out_unlock;
3780 		if (vma->anon_vma)
3781 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3782 				vm_lock_anon_vma(mm, avc->anon_vma);
3783 	}
3784 
3785 	return 0;
3786 
3787 out_unlock:
3788 	mm_drop_all_locks(mm);
3789 	return -EINTR;
3790 }
3791 
3792 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3793 {
3794 	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3795 		/*
3796 		 * The LSB of head.next can't change to 0 from under
3797 		 * us because we hold the mm_all_locks_mutex.
3798 		 *
3799 		 * We must however clear the bitflag before unlocking
3800 		 * the vma so the users using the anon_vma->rb_root will
3801 		 * never see our bitflag.
3802 		 *
3803 		 * No need of atomic instructions here, head.next
3804 		 * can't change from under us until we release the
3805 		 * anon_vma->root->rwsem.
3806 		 */
3807 		if (!__test_and_clear_bit(0, (unsigned long *)
3808 					  &anon_vma->root->rb_root.rb_root.rb_node))
3809 			BUG();
3810 		anon_vma_unlock_write(anon_vma);
3811 	}
3812 }
3813 
3814 static void vm_unlock_mapping(struct address_space *mapping)
3815 {
3816 	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3817 		/*
3818 		 * AS_MM_ALL_LOCKS can't change to 0 from under us
3819 		 * because we hold the mm_all_locks_mutex.
3820 		 */
3821 		i_mmap_unlock_write(mapping);
3822 		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3823 					&mapping->flags))
3824 			BUG();
3825 	}
3826 }
3827 
3828 /*
3829  * The mmap_lock cannot be released by the caller until
3830  * mm_drop_all_locks() returns.
3831  */
3832 void mm_drop_all_locks(struct mm_struct *mm)
3833 {
3834 	struct vm_area_struct *vma;
3835 	struct anon_vma_chain *avc;
3836 	MA_STATE(mas, &mm->mm_mt, 0, 0);
3837 
3838 	mmap_assert_write_locked(mm);
3839 	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3840 
3841 	mas_for_each(&mas, vma, ULONG_MAX) {
3842 		if (vma->anon_vma)
3843 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3844 				vm_unlock_anon_vma(avc->anon_vma);
3845 		if (vma->vm_file && vma->vm_file->f_mapping)
3846 			vm_unlock_mapping(vma->vm_file->f_mapping);
3847 	}
3848 
3849 	mutex_unlock(&mm_all_locks_mutex);
3850 }
3851 
3852 /*
3853  * initialise the percpu counter for VM
3854  */
3855 void __init mmap_init(void)
3856 {
3857 	int ret;
3858 
3859 	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3860 	VM_BUG_ON(ret);
3861 }
3862 
3863 /*
3864  * Initialise sysctl_user_reserve_kbytes.
3865  *
3866  * This is intended to prevent a user from starting a single memory hogging
3867  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3868  * mode.
3869  *
3870  * The default value is min(3% of free memory, 128MB)
3871  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3872  */
3873 static int init_user_reserve(void)
3874 {
3875 	unsigned long free_kbytes;
3876 
3877 	free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
3878 
3879 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3880 	return 0;
3881 }
3882 subsys_initcall(init_user_reserve);
3883 
3884 /*
3885  * Initialise sysctl_admin_reserve_kbytes.
3886  *
3887  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3888  * to log in and kill a memory hogging process.
3889  *
3890  * Systems with more than 256MB will reserve 8MB, enough to recover
3891  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3892  * only reserve 3% of free pages by default.
3893  */
3894 static int init_admin_reserve(void)
3895 {
3896 	unsigned long free_kbytes;
3897 
3898 	free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
3899 
3900 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3901 	return 0;
3902 }
3903 subsys_initcall(init_admin_reserve);
3904 
3905 /*
3906  * Reinititalise user and admin reserves if memory is added or removed.
3907  *
3908  * The default user reserve max is 128MB, and the default max for the
3909  * admin reserve is 8MB. These are usually, but not always, enough to
3910  * enable recovery from a memory hogging process using login/sshd, a shell,
3911  * and tools like top. It may make sense to increase or even disable the
3912  * reserve depending on the existence of swap or variations in the recovery
3913  * tools. So, the admin may have changed them.
3914  *
3915  * If memory is added and the reserves have been eliminated or increased above
3916  * the default max, then we'll trust the admin.
3917  *
3918  * If memory is removed and there isn't enough free memory, then we
3919  * need to reset the reserves.
3920  *
3921  * Otherwise keep the reserve set by the admin.
3922  */
3923 static int reserve_mem_notifier(struct notifier_block *nb,
3924 			     unsigned long action, void *data)
3925 {
3926 	unsigned long tmp, free_kbytes;
3927 
3928 	switch (action) {
3929 	case MEM_ONLINE:
3930 		/* Default max is 128MB. Leave alone if modified by operator. */
3931 		tmp = sysctl_user_reserve_kbytes;
3932 		if (0 < tmp && tmp < (1UL << 17))
3933 			init_user_reserve();
3934 
3935 		/* Default max is 8MB.  Leave alone if modified by operator. */
3936 		tmp = sysctl_admin_reserve_kbytes;
3937 		if (0 < tmp && tmp < (1UL << 13))
3938 			init_admin_reserve();
3939 
3940 		break;
3941 	case MEM_OFFLINE:
3942 		free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
3943 
3944 		if (sysctl_user_reserve_kbytes > free_kbytes) {
3945 			init_user_reserve();
3946 			pr_info("vm.user_reserve_kbytes reset to %lu\n",
3947 				sysctl_user_reserve_kbytes);
3948 		}
3949 
3950 		if (sysctl_admin_reserve_kbytes > free_kbytes) {
3951 			init_admin_reserve();
3952 			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3953 				sysctl_admin_reserve_kbytes);
3954 		}
3955 		break;
3956 	default:
3957 		break;
3958 	}
3959 	return NOTIFY_OK;
3960 }
3961 
3962 static int __meminit init_reserve_notifier(void)
3963 {
3964 	if (hotplug_memory_notifier(reserve_mem_notifier, DEFAULT_CALLBACK_PRI))
3965 		pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3966 
3967 	return 0;
3968 }
3969 subsys_initcall(init_reserve_notifier);
3970