xref: /linux/mm/mmap.c (revision a885a6b2d37eaaae08323583bdb1928c8a2935fc)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/mmap.c
4  *
5  * Written by obz.
6  *
7  * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/mm_inline.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
47 #include <linux/oom.h>
48 #include <linux/sched/mm.h>
49 #include <linux/ksm.h>
50 
51 #include <linux/uaccess.h>
52 #include <asm/cacheflush.h>
53 #include <asm/tlb.h>
54 #include <asm/mmu_context.h>
55 
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/mmap.h>
58 
59 #include "internal.h"
60 
61 #ifndef arch_mmap_check
62 #define arch_mmap_check(addr, len, flags)	(0)
63 #endif
64 
65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
66 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
67 int mmap_rnd_bits_max __ro_after_init = CONFIG_ARCH_MMAP_RND_BITS_MAX;
68 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
69 #endif
70 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
71 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
72 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
73 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
74 #endif
75 
76 static bool ignore_rlimit_data;
77 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
78 
79 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
80 void vma_set_page_prot(struct vm_area_struct *vma)
81 {
82 	unsigned long vm_flags = vma->vm_flags;
83 	pgprot_t vm_page_prot;
84 
85 	vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
86 	if (vma_wants_writenotify(vma, vm_page_prot)) {
87 		vm_flags &= ~VM_SHARED;
88 		vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
89 	}
90 	/* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
91 	WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
92 }
93 
94 /*
95  * check_brk_limits() - Use platform specific check of range & verify mlock
96  * limits.
97  * @addr: The address to check
98  * @len: The size of increase.
99  *
100  * Return: 0 on success.
101  */
102 static int check_brk_limits(unsigned long addr, unsigned long len)
103 {
104 	unsigned long mapped_addr;
105 
106 	mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
107 	if (IS_ERR_VALUE(mapped_addr))
108 		return mapped_addr;
109 
110 	return mlock_future_ok(current->mm, current->mm->def_flags, len)
111 		? 0 : -EAGAIN;
112 }
113 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *brkvma,
114 		unsigned long addr, unsigned long request, unsigned long flags);
115 SYSCALL_DEFINE1(brk, unsigned long, brk)
116 {
117 	unsigned long newbrk, oldbrk, origbrk;
118 	struct mm_struct *mm = current->mm;
119 	struct vm_area_struct *brkvma, *next = NULL;
120 	unsigned long min_brk;
121 	bool populate = false;
122 	LIST_HEAD(uf);
123 	struct vma_iterator vmi;
124 
125 	if (mmap_write_lock_killable(mm))
126 		return -EINTR;
127 
128 	origbrk = mm->brk;
129 
130 #ifdef CONFIG_COMPAT_BRK
131 	/*
132 	 * CONFIG_COMPAT_BRK can still be overridden by setting
133 	 * randomize_va_space to 2, which will still cause mm->start_brk
134 	 * to be arbitrarily shifted
135 	 */
136 	if (current->brk_randomized)
137 		min_brk = mm->start_brk;
138 	else
139 		min_brk = mm->end_data;
140 #else
141 	min_brk = mm->start_brk;
142 #endif
143 	if (brk < min_brk)
144 		goto out;
145 
146 	/*
147 	 * Check against rlimit here. If this check is done later after the test
148 	 * of oldbrk with newbrk then it can escape the test and let the data
149 	 * segment grow beyond its set limit the in case where the limit is
150 	 * not page aligned -Ram Gupta
151 	 */
152 	if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
153 			      mm->end_data, mm->start_data))
154 		goto out;
155 
156 	newbrk = PAGE_ALIGN(brk);
157 	oldbrk = PAGE_ALIGN(mm->brk);
158 	if (oldbrk == newbrk) {
159 		mm->brk = brk;
160 		goto success;
161 	}
162 
163 	/* Always allow shrinking brk. */
164 	if (brk <= mm->brk) {
165 		/* Search one past newbrk */
166 		vma_iter_init(&vmi, mm, newbrk);
167 		brkvma = vma_find(&vmi, oldbrk);
168 		if (!brkvma || brkvma->vm_start >= oldbrk)
169 			goto out; /* mapping intersects with an existing non-brk vma. */
170 		/*
171 		 * mm->brk must be protected by write mmap_lock.
172 		 * do_vmi_align_munmap() will drop the lock on success,  so
173 		 * update it before calling do_vma_munmap().
174 		 */
175 		mm->brk = brk;
176 		if (do_vmi_align_munmap(&vmi, brkvma, mm, newbrk, oldbrk, &uf,
177 					/* unlock = */ true))
178 			goto out;
179 
180 		goto success_unlocked;
181 	}
182 
183 	if (check_brk_limits(oldbrk, newbrk - oldbrk))
184 		goto out;
185 
186 	/*
187 	 * Only check if the next VMA is within the stack_guard_gap of the
188 	 * expansion area
189 	 */
190 	vma_iter_init(&vmi, mm, oldbrk);
191 	next = vma_find(&vmi, newbrk + PAGE_SIZE + stack_guard_gap);
192 	if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
193 		goto out;
194 
195 	brkvma = vma_prev_limit(&vmi, mm->start_brk);
196 	/* Ok, looks good - let it rip. */
197 	if (do_brk_flags(&vmi, brkvma, oldbrk, newbrk - oldbrk, 0) < 0)
198 		goto out;
199 
200 	mm->brk = brk;
201 	if (mm->def_flags & VM_LOCKED)
202 		populate = true;
203 
204 success:
205 	mmap_write_unlock(mm);
206 success_unlocked:
207 	userfaultfd_unmap_complete(mm, &uf);
208 	if (populate)
209 		mm_populate(oldbrk, newbrk - oldbrk);
210 	return brk;
211 
212 out:
213 	mm->brk = origbrk;
214 	mmap_write_unlock(mm);
215 	return origbrk;
216 }
217 
218 /*
219  * If a hint addr is less than mmap_min_addr change hint to be as
220  * low as possible but still greater than mmap_min_addr
221  */
222 static inline unsigned long round_hint_to_min(unsigned long hint)
223 {
224 	hint &= PAGE_MASK;
225 	if (((void *)hint != NULL) &&
226 	    (hint < mmap_min_addr))
227 		return PAGE_ALIGN(mmap_min_addr);
228 	return hint;
229 }
230 
231 bool mlock_future_ok(struct mm_struct *mm, unsigned long flags,
232 			unsigned long bytes)
233 {
234 	unsigned long locked_pages, limit_pages;
235 
236 	if (!(flags & VM_LOCKED) || capable(CAP_IPC_LOCK))
237 		return true;
238 
239 	locked_pages = bytes >> PAGE_SHIFT;
240 	locked_pages += mm->locked_vm;
241 
242 	limit_pages = rlimit(RLIMIT_MEMLOCK);
243 	limit_pages >>= PAGE_SHIFT;
244 
245 	return locked_pages <= limit_pages;
246 }
247 
248 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
249 {
250 	if (S_ISREG(inode->i_mode))
251 		return MAX_LFS_FILESIZE;
252 
253 	if (S_ISBLK(inode->i_mode))
254 		return MAX_LFS_FILESIZE;
255 
256 	if (S_ISSOCK(inode->i_mode))
257 		return MAX_LFS_FILESIZE;
258 
259 	/* Special "we do even unsigned file positions" case */
260 	if (file->f_op->fop_flags & FOP_UNSIGNED_OFFSET)
261 		return 0;
262 
263 	/* Yes, random drivers might want more. But I'm tired of buggy drivers */
264 	return ULONG_MAX;
265 }
266 
267 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
268 				unsigned long pgoff, unsigned long len)
269 {
270 	u64 maxsize = file_mmap_size_max(file, inode);
271 
272 	if (maxsize && len > maxsize)
273 		return false;
274 	maxsize -= len;
275 	if (pgoff > maxsize >> PAGE_SHIFT)
276 		return false;
277 	return true;
278 }
279 
280 /*
281  * The caller must write-lock current->mm->mmap_lock.
282  */
283 unsigned long do_mmap(struct file *file, unsigned long addr,
284 			unsigned long len, unsigned long prot,
285 			unsigned long flags, vm_flags_t vm_flags,
286 			unsigned long pgoff, unsigned long *populate,
287 			struct list_head *uf)
288 {
289 	struct mm_struct *mm = current->mm;
290 	int pkey = 0;
291 
292 	*populate = 0;
293 
294 	if (!len)
295 		return -EINVAL;
296 
297 	/*
298 	 * Does the application expect PROT_READ to imply PROT_EXEC?
299 	 *
300 	 * (the exception is when the underlying filesystem is noexec
301 	 *  mounted, in which case we don't add PROT_EXEC.)
302 	 */
303 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
304 		if (!(file && path_noexec(&file->f_path)))
305 			prot |= PROT_EXEC;
306 
307 	/* force arch specific MAP_FIXED handling in get_unmapped_area */
308 	if (flags & MAP_FIXED_NOREPLACE)
309 		flags |= MAP_FIXED;
310 
311 	if (!(flags & MAP_FIXED))
312 		addr = round_hint_to_min(addr);
313 
314 	/* Careful about overflows.. */
315 	len = PAGE_ALIGN(len);
316 	if (!len)
317 		return -ENOMEM;
318 
319 	/* offset overflow? */
320 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
321 		return -EOVERFLOW;
322 
323 	/* Too many mappings? */
324 	if (mm->map_count > sysctl_max_map_count)
325 		return -ENOMEM;
326 
327 	/*
328 	 * addr is returned from get_unmapped_area,
329 	 * There are two cases:
330 	 * 1> MAP_FIXED == false
331 	 *	unallocated memory, no need to check sealing.
332 	 * 1> MAP_FIXED == true
333 	 *	sealing is checked inside mmap_region when
334 	 *	do_vmi_munmap is called.
335 	 */
336 
337 	if (prot == PROT_EXEC) {
338 		pkey = execute_only_pkey(mm);
339 		if (pkey < 0)
340 			pkey = 0;
341 	}
342 
343 	/* Do simple checking here so the lower-level routines won't have
344 	 * to. we assume access permissions have been handled by the open
345 	 * of the memory object, so we don't do any here.
346 	 */
347 	vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
348 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
349 
350 	/* Obtain the address to map to. we verify (or select) it and ensure
351 	 * that it represents a valid section of the address space.
352 	 */
353 	addr = __get_unmapped_area(file, addr, len, pgoff, flags, vm_flags);
354 	if (IS_ERR_VALUE(addr))
355 		return addr;
356 
357 	if (flags & MAP_FIXED_NOREPLACE) {
358 		if (find_vma_intersection(mm, addr, addr + len))
359 			return -EEXIST;
360 	}
361 
362 	if (flags & MAP_LOCKED)
363 		if (!can_do_mlock())
364 			return -EPERM;
365 
366 	if (!mlock_future_ok(mm, vm_flags, len))
367 		return -EAGAIN;
368 
369 	if (file) {
370 		struct inode *inode = file_inode(file);
371 		unsigned long flags_mask;
372 
373 		if (!file_mmap_ok(file, inode, pgoff, len))
374 			return -EOVERFLOW;
375 
376 		flags_mask = LEGACY_MAP_MASK;
377 		if (file->f_op->fop_flags & FOP_MMAP_SYNC)
378 			flags_mask |= MAP_SYNC;
379 
380 		switch (flags & MAP_TYPE) {
381 		case MAP_SHARED:
382 			/*
383 			 * Force use of MAP_SHARED_VALIDATE with non-legacy
384 			 * flags. E.g. MAP_SYNC is dangerous to use with
385 			 * MAP_SHARED as you don't know which consistency model
386 			 * you will get. We silently ignore unsupported flags
387 			 * with MAP_SHARED to preserve backward compatibility.
388 			 */
389 			flags &= LEGACY_MAP_MASK;
390 			fallthrough;
391 		case MAP_SHARED_VALIDATE:
392 			if (flags & ~flags_mask)
393 				return -EOPNOTSUPP;
394 			if (prot & PROT_WRITE) {
395 				if (!(file->f_mode & FMODE_WRITE))
396 					return -EACCES;
397 				if (IS_SWAPFILE(file->f_mapping->host))
398 					return -ETXTBSY;
399 			}
400 
401 			/*
402 			 * Make sure we don't allow writing to an append-only
403 			 * file..
404 			 */
405 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
406 				return -EACCES;
407 
408 			vm_flags |= VM_SHARED | VM_MAYSHARE;
409 			if (!(file->f_mode & FMODE_WRITE))
410 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
411 			fallthrough;
412 		case MAP_PRIVATE:
413 			if (!(file->f_mode & FMODE_READ))
414 				return -EACCES;
415 			if (path_noexec(&file->f_path)) {
416 				if (vm_flags & VM_EXEC)
417 					return -EPERM;
418 				vm_flags &= ~VM_MAYEXEC;
419 			}
420 
421 			if (!file->f_op->mmap)
422 				return -ENODEV;
423 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
424 				return -EINVAL;
425 			break;
426 
427 		default:
428 			return -EINVAL;
429 		}
430 	} else {
431 		switch (flags & MAP_TYPE) {
432 		case MAP_SHARED:
433 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
434 				return -EINVAL;
435 			/*
436 			 * Ignore pgoff.
437 			 */
438 			pgoff = 0;
439 			vm_flags |= VM_SHARED | VM_MAYSHARE;
440 			break;
441 		case MAP_DROPPABLE:
442 			if (VM_DROPPABLE == VM_NONE)
443 				return -ENOTSUPP;
444 			/*
445 			 * A locked or stack area makes no sense to be droppable.
446 			 *
447 			 * Also, since droppable pages can just go away at any time
448 			 * it makes no sense to copy them on fork or dump them.
449 			 *
450 			 * And don't attempt to combine with hugetlb for now.
451 			 */
452 			if (flags & (MAP_LOCKED | MAP_HUGETLB))
453 			        return -EINVAL;
454 			if (vm_flags & (VM_GROWSDOWN | VM_GROWSUP))
455 			        return -EINVAL;
456 
457 			vm_flags |= VM_DROPPABLE;
458 
459 			/*
460 			 * If the pages can be dropped, then it doesn't make
461 			 * sense to reserve them.
462 			 */
463 			vm_flags |= VM_NORESERVE;
464 
465 			/*
466 			 * Likewise, they're volatile enough that they
467 			 * shouldn't survive forks or coredumps.
468 			 */
469 			vm_flags |= VM_WIPEONFORK | VM_DONTDUMP;
470 			fallthrough;
471 		case MAP_PRIVATE:
472 			/*
473 			 * Set pgoff according to addr for anon_vma.
474 			 */
475 			pgoff = addr >> PAGE_SHIFT;
476 			break;
477 		default:
478 			return -EINVAL;
479 		}
480 	}
481 
482 	/*
483 	 * Set 'VM_NORESERVE' if we should not account for the
484 	 * memory use of this mapping.
485 	 */
486 	if (flags & MAP_NORESERVE) {
487 		/* We honor MAP_NORESERVE if allowed to overcommit */
488 		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
489 			vm_flags |= VM_NORESERVE;
490 
491 		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
492 		if (file && is_file_hugepages(file))
493 			vm_flags |= VM_NORESERVE;
494 	}
495 
496 	addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
497 	if (!IS_ERR_VALUE(addr) &&
498 	    ((vm_flags & VM_LOCKED) ||
499 	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
500 		*populate = len;
501 	return addr;
502 }
503 
504 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
505 			      unsigned long prot, unsigned long flags,
506 			      unsigned long fd, unsigned long pgoff)
507 {
508 	struct file *file = NULL;
509 	unsigned long retval;
510 
511 	if (!(flags & MAP_ANONYMOUS)) {
512 		audit_mmap_fd(fd, flags);
513 		file = fget(fd);
514 		if (!file)
515 			return -EBADF;
516 		if (is_file_hugepages(file)) {
517 			len = ALIGN(len, huge_page_size(hstate_file(file)));
518 		} else if (unlikely(flags & MAP_HUGETLB)) {
519 			retval = -EINVAL;
520 			goto out_fput;
521 		}
522 	} else if (flags & MAP_HUGETLB) {
523 		struct hstate *hs;
524 
525 		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
526 		if (!hs)
527 			return -EINVAL;
528 
529 		len = ALIGN(len, huge_page_size(hs));
530 		/*
531 		 * VM_NORESERVE is used because the reservations will be
532 		 * taken when vm_ops->mmap() is called
533 		 */
534 		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
535 				VM_NORESERVE,
536 				HUGETLB_ANONHUGE_INODE,
537 				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
538 		if (IS_ERR(file))
539 			return PTR_ERR(file);
540 	}
541 
542 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
543 out_fput:
544 	if (file)
545 		fput(file);
546 	return retval;
547 }
548 
549 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
550 		unsigned long, prot, unsigned long, flags,
551 		unsigned long, fd, unsigned long, pgoff)
552 {
553 	return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
554 }
555 
556 #ifdef __ARCH_WANT_SYS_OLD_MMAP
557 struct mmap_arg_struct {
558 	unsigned long addr;
559 	unsigned long len;
560 	unsigned long prot;
561 	unsigned long flags;
562 	unsigned long fd;
563 	unsigned long offset;
564 };
565 
566 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
567 {
568 	struct mmap_arg_struct a;
569 
570 	if (copy_from_user(&a, arg, sizeof(a)))
571 		return -EFAULT;
572 	if (offset_in_page(a.offset))
573 		return -EINVAL;
574 
575 	return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
576 			       a.offset >> PAGE_SHIFT);
577 }
578 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
579 
580 /*
581  * We account for memory if it's a private writeable mapping,
582  * not hugepages and VM_NORESERVE wasn't set.
583  */
584 static inline bool accountable_mapping(struct file *file, vm_flags_t vm_flags)
585 {
586 	/*
587 	 * hugetlb has its own accounting separate from the core VM
588 	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
589 	 */
590 	if (file && is_file_hugepages(file))
591 		return false;
592 
593 	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
594 }
595 
596 /**
597  * unmapped_area() - Find an area between the low_limit and the high_limit with
598  * the correct alignment and offset, all from @info. Note: current->mm is used
599  * for the search.
600  *
601  * @info: The unmapped area information including the range [low_limit -
602  * high_limit), the alignment offset and mask.
603  *
604  * Return: A memory address or -ENOMEM.
605  */
606 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
607 {
608 	unsigned long length, gap;
609 	unsigned long low_limit, high_limit;
610 	struct vm_area_struct *tmp;
611 	VMA_ITERATOR(vmi, current->mm, 0);
612 
613 	/* Adjust search length to account for worst case alignment overhead */
614 	length = info->length + info->align_mask + info->start_gap;
615 	if (length < info->length)
616 		return -ENOMEM;
617 
618 	low_limit = info->low_limit;
619 	if (low_limit < mmap_min_addr)
620 		low_limit = mmap_min_addr;
621 	high_limit = info->high_limit;
622 retry:
623 	if (vma_iter_area_lowest(&vmi, low_limit, high_limit, length))
624 		return -ENOMEM;
625 
626 	/*
627 	 * Adjust for the gap first so it doesn't interfere with the
628 	 * later alignment. The first step is the minimum needed to
629 	 * fulill the start gap, the next steps is the minimum to align
630 	 * that. It is the minimum needed to fulill both.
631 	 */
632 	gap = vma_iter_addr(&vmi) + info->start_gap;
633 	gap += (info->align_offset - gap) & info->align_mask;
634 	tmp = vma_next(&vmi);
635 	if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
636 		if (vm_start_gap(tmp) < gap + length - 1) {
637 			low_limit = tmp->vm_end;
638 			vma_iter_reset(&vmi);
639 			goto retry;
640 		}
641 	} else {
642 		tmp = vma_prev(&vmi);
643 		if (tmp && vm_end_gap(tmp) > gap) {
644 			low_limit = vm_end_gap(tmp);
645 			vma_iter_reset(&vmi);
646 			goto retry;
647 		}
648 	}
649 
650 	return gap;
651 }
652 
653 /**
654  * unmapped_area_topdown() - Find an area between the low_limit and the
655  * high_limit with the correct alignment and offset at the highest available
656  * address, all from @info. Note: current->mm is used for the search.
657  *
658  * @info: The unmapped area information including the range [low_limit -
659  * high_limit), the alignment offset and mask.
660  *
661  * Return: A memory address or -ENOMEM.
662  */
663 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
664 {
665 	unsigned long length, gap, gap_end;
666 	unsigned long low_limit, high_limit;
667 	struct vm_area_struct *tmp;
668 	VMA_ITERATOR(vmi, current->mm, 0);
669 
670 	/* Adjust search length to account for worst case alignment overhead */
671 	length = info->length + info->align_mask + info->start_gap;
672 	if (length < info->length)
673 		return -ENOMEM;
674 
675 	low_limit = info->low_limit;
676 	if (low_limit < mmap_min_addr)
677 		low_limit = mmap_min_addr;
678 	high_limit = info->high_limit;
679 retry:
680 	if (vma_iter_area_highest(&vmi, low_limit, high_limit, length))
681 		return -ENOMEM;
682 
683 	gap = vma_iter_end(&vmi) - info->length;
684 	gap -= (gap - info->align_offset) & info->align_mask;
685 	gap_end = vma_iter_end(&vmi);
686 	tmp = vma_next(&vmi);
687 	if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
688 		if (vm_start_gap(tmp) < gap_end) {
689 			high_limit = vm_start_gap(tmp);
690 			vma_iter_reset(&vmi);
691 			goto retry;
692 		}
693 	} else {
694 		tmp = vma_prev(&vmi);
695 		if (tmp && vm_end_gap(tmp) > gap) {
696 			high_limit = tmp->vm_start;
697 			vma_iter_reset(&vmi);
698 			goto retry;
699 		}
700 	}
701 
702 	return gap;
703 }
704 
705 /*
706  * Determine if the allocation needs to ensure that there is no
707  * existing mapping within it's guard gaps, for use as start_gap.
708  */
709 static inline unsigned long stack_guard_placement(vm_flags_t vm_flags)
710 {
711 	if (vm_flags & VM_SHADOW_STACK)
712 		return PAGE_SIZE;
713 
714 	return 0;
715 }
716 
717 /*
718  * Search for an unmapped address range.
719  *
720  * We are looking for a range that:
721  * - does not intersect with any VMA;
722  * - is contained within the [low_limit, high_limit) interval;
723  * - is at least the desired size.
724  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
725  */
726 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
727 {
728 	unsigned long addr;
729 
730 	if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
731 		addr = unmapped_area_topdown(info);
732 	else
733 		addr = unmapped_area(info);
734 
735 	trace_vm_unmapped_area(addr, info);
736 	return addr;
737 }
738 
739 /* Get an address range which is currently unmapped.
740  * For shmat() with addr=0.
741  *
742  * Ugly calling convention alert:
743  * Return value with the low bits set means error value,
744  * ie
745  *	if (ret & ~PAGE_MASK)
746  *		error = ret;
747  *
748  * This function "knows" that -ENOMEM has the bits set.
749  */
750 unsigned long
751 generic_get_unmapped_area(struct file *filp, unsigned long addr,
752 			  unsigned long len, unsigned long pgoff,
753 			  unsigned long flags, vm_flags_t vm_flags)
754 {
755 	struct mm_struct *mm = current->mm;
756 	struct vm_area_struct *vma, *prev;
757 	struct vm_unmapped_area_info info = {};
758 	const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
759 
760 	if (len > mmap_end - mmap_min_addr)
761 		return -ENOMEM;
762 
763 	if (flags & MAP_FIXED)
764 		return addr;
765 
766 	if (addr) {
767 		addr = PAGE_ALIGN(addr);
768 		vma = find_vma_prev(mm, addr, &prev);
769 		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
770 		    (!vma || addr + len <= vm_start_gap(vma)) &&
771 		    (!prev || addr >= vm_end_gap(prev)))
772 			return addr;
773 	}
774 
775 	info.length = len;
776 	info.low_limit = mm->mmap_base;
777 	info.high_limit = mmap_end;
778 	info.start_gap = stack_guard_placement(vm_flags);
779 	return vm_unmapped_area(&info);
780 }
781 
782 #ifndef HAVE_ARCH_UNMAPPED_AREA
783 unsigned long
784 arch_get_unmapped_area(struct file *filp, unsigned long addr,
785 		       unsigned long len, unsigned long pgoff,
786 		       unsigned long flags, vm_flags_t vm_flags)
787 {
788 	return generic_get_unmapped_area(filp, addr, len, pgoff, flags,
789 					 vm_flags);
790 }
791 #endif
792 
793 /*
794  * This mmap-allocator allocates new areas top-down from below the
795  * stack's low limit (the base):
796  */
797 unsigned long
798 generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
799 				  unsigned long len, unsigned long pgoff,
800 				  unsigned long flags, vm_flags_t vm_flags)
801 {
802 	struct vm_area_struct *vma, *prev;
803 	struct mm_struct *mm = current->mm;
804 	struct vm_unmapped_area_info info = {};
805 	const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
806 
807 	/* requested length too big for entire address space */
808 	if (len > mmap_end - mmap_min_addr)
809 		return -ENOMEM;
810 
811 	if (flags & MAP_FIXED)
812 		return addr;
813 
814 	/* requesting a specific address */
815 	if (addr) {
816 		addr = PAGE_ALIGN(addr);
817 		vma = find_vma_prev(mm, addr, &prev);
818 		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
819 				(!vma || addr + len <= vm_start_gap(vma)) &&
820 				(!prev || addr >= vm_end_gap(prev)))
821 			return addr;
822 	}
823 
824 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
825 	info.length = len;
826 	info.low_limit = PAGE_SIZE;
827 	info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
828 	info.start_gap = stack_guard_placement(vm_flags);
829 	addr = vm_unmapped_area(&info);
830 
831 	/*
832 	 * A failed mmap() very likely causes application failure,
833 	 * so fall back to the bottom-up function here. This scenario
834 	 * can happen with large stack limits and large mmap()
835 	 * allocations.
836 	 */
837 	if (offset_in_page(addr)) {
838 		VM_BUG_ON(addr != -ENOMEM);
839 		info.flags = 0;
840 		info.low_limit = TASK_UNMAPPED_BASE;
841 		info.high_limit = mmap_end;
842 		addr = vm_unmapped_area(&info);
843 	}
844 
845 	return addr;
846 }
847 
848 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
849 unsigned long
850 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
851 			       unsigned long len, unsigned long pgoff,
852 			       unsigned long flags, vm_flags_t vm_flags)
853 {
854 	return generic_get_unmapped_area_topdown(filp, addr, len, pgoff, flags,
855 						 vm_flags);
856 }
857 #endif
858 
859 unsigned long mm_get_unmapped_area_vmflags(struct mm_struct *mm, struct file *filp,
860 					   unsigned long addr, unsigned long len,
861 					   unsigned long pgoff, unsigned long flags,
862 					   vm_flags_t vm_flags)
863 {
864 	if (test_bit(MMF_TOPDOWN, &mm->flags))
865 		return arch_get_unmapped_area_topdown(filp, addr, len, pgoff,
866 						      flags, vm_flags);
867 	return arch_get_unmapped_area(filp, addr, len, pgoff, flags, vm_flags);
868 }
869 
870 unsigned long
871 __get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
872 		unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags)
873 {
874 	unsigned long (*get_area)(struct file *, unsigned long,
875 				  unsigned long, unsigned long, unsigned long)
876 				  = NULL;
877 
878 	unsigned long error = arch_mmap_check(addr, len, flags);
879 	if (error)
880 		return error;
881 
882 	/* Careful about overflows.. */
883 	if (len > TASK_SIZE)
884 		return -ENOMEM;
885 
886 	if (file) {
887 		if (file->f_op->get_unmapped_area)
888 			get_area = file->f_op->get_unmapped_area;
889 	} else if (flags & MAP_SHARED) {
890 		/*
891 		 * mmap_region() will call shmem_zero_setup() to create a file,
892 		 * so use shmem's get_unmapped_area in case it can be huge.
893 		 */
894 		get_area = shmem_get_unmapped_area;
895 	}
896 
897 	/* Always treat pgoff as zero for anonymous memory. */
898 	if (!file)
899 		pgoff = 0;
900 
901 	if (get_area) {
902 		addr = get_area(file, addr, len, pgoff, flags);
903 	} else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)
904 		   && IS_ALIGNED(len, PMD_SIZE)) {
905 		/* Ensures that larger anonymous mappings are THP aligned. */
906 		addr = thp_get_unmapped_area_vmflags(file, addr, len,
907 						     pgoff, flags, vm_flags);
908 	} else {
909 		addr = mm_get_unmapped_area_vmflags(current->mm, file, addr, len,
910 						    pgoff, flags, vm_flags);
911 	}
912 	if (IS_ERR_VALUE(addr))
913 		return addr;
914 
915 	if (addr > TASK_SIZE - len)
916 		return -ENOMEM;
917 	if (offset_in_page(addr))
918 		return -EINVAL;
919 
920 	error = security_mmap_addr(addr);
921 	return error ? error : addr;
922 }
923 
924 unsigned long
925 mm_get_unmapped_area(struct mm_struct *mm, struct file *file,
926 		     unsigned long addr, unsigned long len,
927 		     unsigned long pgoff, unsigned long flags)
928 {
929 	if (test_bit(MMF_TOPDOWN, &mm->flags))
930 		return arch_get_unmapped_area_topdown(file, addr, len, pgoff, flags, 0);
931 	return arch_get_unmapped_area(file, addr, len, pgoff, flags, 0);
932 }
933 EXPORT_SYMBOL(mm_get_unmapped_area);
934 
935 /**
936  * find_vma_intersection() - Look up the first VMA which intersects the interval
937  * @mm: The process address space.
938  * @start_addr: The inclusive start user address.
939  * @end_addr: The exclusive end user address.
940  *
941  * Returns: The first VMA within the provided range, %NULL otherwise.  Assumes
942  * start_addr < end_addr.
943  */
944 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
945 					     unsigned long start_addr,
946 					     unsigned long end_addr)
947 {
948 	unsigned long index = start_addr;
949 
950 	mmap_assert_locked(mm);
951 	return mt_find(&mm->mm_mt, &index, end_addr - 1);
952 }
953 EXPORT_SYMBOL(find_vma_intersection);
954 
955 /**
956  * find_vma() - Find the VMA for a given address, or the next VMA.
957  * @mm: The mm_struct to check
958  * @addr: The address
959  *
960  * Returns: The VMA associated with addr, or the next VMA.
961  * May return %NULL in the case of no VMA at addr or above.
962  */
963 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
964 {
965 	unsigned long index = addr;
966 
967 	mmap_assert_locked(mm);
968 	return mt_find(&mm->mm_mt, &index, ULONG_MAX);
969 }
970 EXPORT_SYMBOL(find_vma);
971 
972 /**
973  * find_vma_prev() - Find the VMA for a given address, or the next vma and
974  * set %pprev to the previous VMA, if any.
975  * @mm: The mm_struct to check
976  * @addr: The address
977  * @pprev: The pointer to set to the previous VMA
978  *
979  * Note that RCU lock is missing here since the external mmap_lock() is used
980  * instead.
981  *
982  * Returns: The VMA associated with @addr, or the next vma.
983  * May return %NULL in the case of no vma at addr or above.
984  */
985 struct vm_area_struct *
986 find_vma_prev(struct mm_struct *mm, unsigned long addr,
987 			struct vm_area_struct **pprev)
988 {
989 	struct vm_area_struct *vma;
990 	VMA_ITERATOR(vmi, mm, addr);
991 
992 	vma = vma_iter_load(&vmi);
993 	*pprev = vma_prev(&vmi);
994 	if (!vma)
995 		vma = vma_next(&vmi);
996 	return vma;
997 }
998 
999 /*
1000  * Verify that the stack growth is acceptable and
1001  * update accounting. This is shared with both the
1002  * grow-up and grow-down cases.
1003  */
1004 static int acct_stack_growth(struct vm_area_struct *vma,
1005 			     unsigned long size, unsigned long grow)
1006 {
1007 	struct mm_struct *mm = vma->vm_mm;
1008 	unsigned long new_start;
1009 
1010 	/* address space limit tests */
1011 	if (!may_expand_vm(mm, vma->vm_flags, grow))
1012 		return -ENOMEM;
1013 
1014 	/* Stack limit test */
1015 	if (size > rlimit(RLIMIT_STACK))
1016 		return -ENOMEM;
1017 
1018 	/* mlock limit tests */
1019 	if (!mlock_future_ok(mm, vma->vm_flags, grow << PAGE_SHIFT))
1020 		return -ENOMEM;
1021 
1022 	/* Check to ensure the stack will not grow into a hugetlb-only region */
1023 	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1024 			vma->vm_end - size;
1025 	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1026 		return -EFAULT;
1027 
1028 	/*
1029 	 * Overcommit..  This must be the final test, as it will
1030 	 * update security statistics.
1031 	 */
1032 	if (security_vm_enough_memory_mm(mm, grow))
1033 		return -ENOMEM;
1034 
1035 	return 0;
1036 }
1037 
1038 #if defined(CONFIG_STACK_GROWSUP)
1039 /*
1040  * PA-RISC uses this for its stack.
1041  * vma is the last one with address > vma->vm_end.  Have to extend vma.
1042  */
1043 static int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1044 {
1045 	struct mm_struct *mm = vma->vm_mm;
1046 	struct vm_area_struct *next;
1047 	unsigned long gap_addr;
1048 	int error = 0;
1049 	VMA_ITERATOR(vmi, mm, vma->vm_start);
1050 
1051 	if (!(vma->vm_flags & VM_GROWSUP))
1052 		return -EFAULT;
1053 
1054 	/* Guard against exceeding limits of the address space. */
1055 	address &= PAGE_MASK;
1056 	if (address >= (TASK_SIZE & PAGE_MASK))
1057 		return -ENOMEM;
1058 	address += PAGE_SIZE;
1059 
1060 	/* Enforce stack_guard_gap */
1061 	gap_addr = address + stack_guard_gap;
1062 
1063 	/* Guard against overflow */
1064 	if (gap_addr < address || gap_addr > TASK_SIZE)
1065 		gap_addr = TASK_SIZE;
1066 
1067 	next = find_vma_intersection(mm, vma->vm_end, gap_addr);
1068 	if (next && vma_is_accessible(next)) {
1069 		if (!(next->vm_flags & VM_GROWSUP))
1070 			return -ENOMEM;
1071 		/* Check that both stack segments have the same anon_vma? */
1072 	}
1073 
1074 	if (next)
1075 		vma_iter_prev_range_limit(&vmi, address);
1076 
1077 	vma_iter_config(&vmi, vma->vm_start, address);
1078 	if (vma_iter_prealloc(&vmi, vma))
1079 		return -ENOMEM;
1080 
1081 	/* We must make sure the anon_vma is allocated. */
1082 	if (unlikely(anon_vma_prepare(vma))) {
1083 		vma_iter_free(&vmi);
1084 		return -ENOMEM;
1085 	}
1086 
1087 	/* Lock the VMA before expanding to prevent concurrent page faults */
1088 	vma_start_write(vma);
1089 	/*
1090 	 * vma->vm_start/vm_end cannot change under us because the caller
1091 	 * is required to hold the mmap_lock in read mode.  We need the
1092 	 * anon_vma lock to serialize against concurrent expand_stacks.
1093 	 */
1094 	anon_vma_lock_write(vma->anon_vma);
1095 
1096 	/* Somebody else might have raced and expanded it already */
1097 	if (address > vma->vm_end) {
1098 		unsigned long size, grow;
1099 
1100 		size = address - vma->vm_start;
1101 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
1102 
1103 		error = -ENOMEM;
1104 		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
1105 			error = acct_stack_growth(vma, size, grow);
1106 			if (!error) {
1107 				/*
1108 				 * We only hold a shared mmap_lock lock here, so
1109 				 * we need to protect against concurrent vma
1110 				 * expansions.  anon_vma_lock_write() doesn't
1111 				 * help here, as we don't guarantee that all
1112 				 * growable vmas in a mm share the same root
1113 				 * anon vma.  So, we reuse mm->page_table_lock
1114 				 * to guard against concurrent vma expansions.
1115 				 */
1116 				spin_lock(&mm->page_table_lock);
1117 				if (vma->vm_flags & VM_LOCKED)
1118 					mm->locked_vm += grow;
1119 				vm_stat_account(mm, vma->vm_flags, grow);
1120 				anon_vma_interval_tree_pre_update_vma(vma);
1121 				vma->vm_end = address;
1122 				/* Overwrite old entry in mtree. */
1123 				vma_iter_store(&vmi, vma);
1124 				anon_vma_interval_tree_post_update_vma(vma);
1125 				spin_unlock(&mm->page_table_lock);
1126 
1127 				perf_event_mmap(vma);
1128 			}
1129 		}
1130 	}
1131 	anon_vma_unlock_write(vma->anon_vma);
1132 	vma_iter_free(&vmi);
1133 	validate_mm(mm);
1134 	return error;
1135 }
1136 #endif /* CONFIG_STACK_GROWSUP */
1137 
1138 /*
1139  * vma is the first one with address < vma->vm_start.  Have to extend vma.
1140  * mmap_lock held for writing.
1141  */
1142 int expand_downwards(struct vm_area_struct *vma, unsigned long address)
1143 {
1144 	struct mm_struct *mm = vma->vm_mm;
1145 	struct vm_area_struct *prev;
1146 	int error = 0;
1147 	VMA_ITERATOR(vmi, mm, vma->vm_start);
1148 
1149 	if (!(vma->vm_flags & VM_GROWSDOWN))
1150 		return -EFAULT;
1151 
1152 	address &= PAGE_MASK;
1153 	if (address < mmap_min_addr || address < FIRST_USER_ADDRESS)
1154 		return -EPERM;
1155 
1156 	/* Enforce stack_guard_gap */
1157 	prev = vma_prev(&vmi);
1158 	/* Check that both stack segments have the same anon_vma? */
1159 	if (prev) {
1160 		if (!(prev->vm_flags & VM_GROWSDOWN) &&
1161 		    vma_is_accessible(prev) &&
1162 		    (address - prev->vm_end < stack_guard_gap))
1163 			return -ENOMEM;
1164 	}
1165 
1166 	if (prev)
1167 		vma_iter_next_range_limit(&vmi, vma->vm_start);
1168 
1169 	vma_iter_config(&vmi, address, vma->vm_end);
1170 	if (vma_iter_prealloc(&vmi, vma))
1171 		return -ENOMEM;
1172 
1173 	/* We must make sure the anon_vma is allocated. */
1174 	if (unlikely(anon_vma_prepare(vma))) {
1175 		vma_iter_free(&vmi);
1176 		return -ENOMEM;
1177 	}
1178 
1179 	/* Lock the VMA before expanding to prevent concurrent page faults */
1180 	vma_start_write(vma);
1181 	/*
1182 	 * vma->vm_start/vm_end cannot change under us because the caller
1183 	 * is required to hold the mmap_lock in read mode.  We need the
1184 	 * anon_vma lock to serialize against concurrent expand_stacks.
1185 	 */
1186 	anon_vma_lock_write(vma->anon_vma);
1187 
1188 	/* Somebody else might have raced and expanded it already */
1189 	if (address < vma->vm_start) {
1190 		unsigned long size, grow;
1191 
1192 		size = vma->vm_end - address;
1193 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
1194 
1195 		error = -ENOMEM;
1196 		if (grow <= vma->vm_pgoff) {
1197 			error = acct_stack_growth(vma, size, grow);
1198 			if (!error) {
1199 				/*
1200 				 * We only hold a shared mmap_lock lock here, so
1201 				 * we need to protect against concurrent vma
1202 				 * expansions.  anon_vma_lock_write() doesn't
1203 				 * help here, as we don't guarantee that all
1204 				 * growable vmas in a mm share the same root
1205 				 * anon vma.  So, we reuse mm->page_table_lock
1206 				 * to guard against concurrent vma expansions.
1207 				 */
1208 				spin_lock(&mm->page_table_lock);
1209 				if (vma->vm_flags & VM_LOCKED)
1210 					mm->locked_vm += grow;
1211 				vm_stat_account(mm, vma->vm_flags, grow);
1212 				anon_vma_interval_tree_pre_update_vma(vma);
1213 				vma->vm_start = address;
1214 				vma->vm_pgoff -= grow;
1215 				/* Overwrite old entry in mtree. */
1216 				vma_iter_store(&vmi, vma);
1217 				anon_vma_interval_tree_post_update_vma(vma);
1218 				spin_unlock(&mm->page_table_lock);
1219 
1220 				perf_event_mmap(vma);
1221 			}
1222 		}
1223 	}
1224 	anon_vma_unlock_write(vma->anon_vma);
1225 	vma_iter_free(&vmi);
1226 	validate_mm(mm);
1227 	return error;
1228 }
1229 
1230 /* enforced gap between the expanding stack and other mappings. */
1231 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
1232 
1233 static int __init cmdline_parse_stack_guard_gap(char *p)
1234 {
1235 	unsigned long val;
1236 	char *endptr;
1237 
1238 	val = simple_strtoul(p, &endptr, 10);
1239 	if (!*endptr)
1240 		stack_guard_gap = val << PAGE_SHIFT;
1241 
1242 	return 1;
1243 }
1244 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
1245 
1246 #ifdef CONFIG_STACK_GROWSUP
1247 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
1248 {
1249 	return expand_upwards(vma, address);
1250 }
1251 
1252 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
1253 {
1254 	struct vm_area_struct *vma, *prev;
1255 
1256 	addr &= PAGE_MASK;
1257 	vma = find_vma_prev(mm, addr, &prev);
1258 	if (vma && (vma->vm_start <= addr))
1259 		return vma;
1260 	if (!prev)
1261 		return NULL;
1262 	if (expand_stack_locked(prev, addr))
1263 		return NULL;
1264 	if (prev->vm_flags & VM_LOCKED)
1265 		populate_vma_page_range(prev, addr, prev->vm_end, NULL);
1266 	return prev;
1267 }
1268 #else
1269 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
1270 {
1271 	return expand_downwards(vma, address);
1272 }
1273 
1274 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
1275 {
1276 	struct vm_area_struct *vma;
1277 	unsigned long start;
1278 
1279 	addr &= PAGE_MASK;
1280 	vma = find_vma(mm, addr);
1281 	if (!vma)
1282 		return NULL;
1283 	if (vma->vm_start <= addr)
1284 		return vma;
1285 	start = vma->vm_start;
1286 	if (expand_stack_locked(vma, addr))
1287 		return NULL;
1288 	if (vma->vm_flags & VM_LOCKED)
1289 		populate_vma_page_range(vma, addr, start, NULL);
1290 	return vma;
1291 }
1292 #endif
1293 
1294 #if defined(CONFIG_STACK_GROWSUP)
1295 
1296 #define vma_expand_up(vma,addr) expand_upwards(vma, addr)
1297 #define vma_expand_down(vma, addr) (-EFAULT)
1298 
1299 #else
1300 
1301 #define vma_expand_up(vma,addr) (-EFAULT)
1302 #define vma_expand_down(vma, addr) expand_downwards(vma, addr)
1303 
1304 #endif
1305 
1306 /*
1307  * expand_stack(): legacy interface for page faulting. Don't use unless
1308  * you have to.
1309  *
1310  * This is called with the mm locked for reading, drops the lock, takes
1311  * the lock for writing, tries to look up a vma again, expands it if
1312  * necessary, and downgrades the lock to reading again.
1313  *
1314  * If no vma is found or it can't be expanded, it returns NULL and has
1315  * dropped the lock.
1316  */
1317 struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr)
1318 {
1319 	struct vm_area_struct *vma, *prev;
1320 
1321 	mmap_read_unlock(mm);
1322 	if (mmap_write_lock_killable(mm))
1323 		return NULL;
1324 
1325 	vma = find_vma_prev(mm, addr, &prev);
1326 	if (vma && vma->vm_start <= addr)
1327 		goto success;
1328 
1329 	if (prev && !vma_expand_up(prev, addr)) {
1330 		vma = prev;
1331 		goto success;
1332 	}
1333 
1334 	if (vma && !vma_expand_down(vma, addr))
1335 		goto success;
1336 
1337 	mmap_write_unlock(mm);
1338 	return NULL;
1339 
1340 success:
1341 	mmap_write_downgrade(mm);
1342 	return vma;
1343 }
1344 
1345 /* do_munmap() - Wrapper function for non-maple tree aware do_munmap() calls.
1346  * @mm: The mm_struct
1347  * @start: The start address to munmap
1348  * @len: The length to be munmapped.
1349  * @uf: The userfaultfd list_head
1350  *
1351  * Return: 0 on success, error otherwise.
1352  */
1353 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
1354 	      struct list_head *uf)
1355 {
1356 	VMA_ITERATOR(vmi, mm, start);
1357 
1358 	return do_vmi_munmap(&vmi, mm, start, len, uf, false);
1359 }
1360 
1361 unsigned long mmap_region(struct file *file, unsigned long addr,
1362 		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1363 		struct list_head *uf)
1364 {
1365 	struct mm_struct *mm = current->mm;
1366 	struct vm_area_struct *vma = NULL;
1367 	pgoff_t pglen = PHYS_PFN(len);
1368 	struct vm_area_struct *merge;
1369 	unsigned long charged = 0;
1370 	struct vma_munmap_struct vms;
1371 	struct ma_state mas_detach;
1372 	struct maple_tree mt_detach;
1373 	unsigned long end = addr + len;
1374 	bool writable_file_mapping = false;
1375 	int error;
1376 	VMA_ITERATOR(vmi, mm, addr);
1377 	VMG_STATE(vmg, mm, &vmi, addr, end, vm_flags, pgoff);
1378 
1379 	vmg.file = file;
1380 	/* Find the first overlapping VMA */
1381 	vma = vma_find(&vmi, end);
1382 	init_vma_munmap(&vms, &vmi, vma, addr, end, uf, /* unlock = */ false);
1383 	if (vma) {
1384 		mt_init_flags(&mt_detach, vmi.mas.tree->ma_flags & MT_FLAGS_LOCK_MASK);
1385 		mt_on_stack(mt_detach);
1386 		mas_init(&mas_detach, &mt_detach, /* addr = */ 0);
1387 		/* Prepare to unmap any existing mapping in the area */
1388 		error = vms_gather_munmap_vmas(&vms, &mas_detach);
1389 		if (error)
1390 			goto gather_failed;
1391 
1392 		vmg.next = vms.next;
1393 		vmg.prev = vms.prev;
1394 		vma = NULL;
1395 	} else {
1396 		vmg.next = vma_iter_next_rewind(&vmi, &vmg.prev);
1397 	}
1398 
1399 	/* Check against address space limit. */
1400 	if (!may_expand_vm(mm, vm_flags, pglen - vms.nr_pages)) {
1401 		error = -ENOMEM;
1402 		goto abort_munmap;
1403 	}
1404 
1405 	/*
1406 	 * Private writable mapping: check memory availability
1407 	 */
1408 	if (accountable_mapping(file, vm_flags)) {
1409 		charged = pglen;
1410 		charged -= vms.nr_accounted;
1411 		if (charged) {
1412 			error = security_vm_enough_memory_mm(mm, charged);
1413 			if (error)
1414 				goto abort_munmap;
1415 		}
1416 
1417 		vms.nr_accounted = 0;
1418 		vm_flags |= VM_ACCOUNT;
1419 		vmg.flags = vm_flags;
1420 	}
1421 
1422 	/*
1423 	 * clear PTEs while the vma is still in the tree so that rmap
1424 	 * cannot race with the freeing later in the truncate scenario.
1425 	 * This is also needed for call_mmap(), which is why vm_ops
1426 	 * close function is called.
1427 	 */
1428 	vms_clean_up_area(&vms, &mas_detach);
1429 	vma = vma_merge_new_range(&vmg);
1430 	if (vma)
1431 		goto expanded;
1432 	/*
1433 	 * Determine the object being mapped and call the appropriate
1434 	 * specific mapper. the address has already been validated, but
1435 	 * not unmapped, but the maps are removed from the list.
1436 	 */
1437 	vma = vm_area_alloc(mm);
1438 	if (!vma) {
1439 		error = -ENOMEM;
1440 		goto unacct_error;
1441 	}
1442 
1443 	vma_iter_config(&vmi, addr, end);
1444 	vma_set_range(vma, addr, end, pgoff);
1445 	vm_flags_init(vma, vm_flags);
1446 	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1447 
1448 	if (file) {
1449 		vma->vm_file = get_file(file);
1450 		error = call_mmap(file, vma);
1451 		if (error)
1452 			goto unmap_and_free_vma;
1453 
1454 		if (vma_is_shared_maywrite(vma)) {
1455 			error = mapping_map_writable(file->f_mapping);
1456 			if (error)
1457 				goto close_and_free_vma;
1458 
1459 			writable_file_mapping = true;
1460 		}
1461 
1462 		/*
1463 		 * Expansion is handled above, merging is handled below.
1464 		 * Drivers should not alter the address of the VMA.
1465 		 */
1466 		if (WARN_ON((addr != vma->vm_start))) {
1467 			error = -EINVAL;
1468 			goto close_and_free_vma;
1469 		}
1470 
1471 		vma_iter_config(&vmi, addr, end);
1472 		/*
1473 		 * If vm_flags changed after call_mmap(), we should try merge
1474 		 * vma again as we may succeed this time.
1475 		 */
1476 		if (unlikely(vm_flags != vma->vm_flags && vmg.prev)) {
1477 			vmg.flags = vma->vm_flags;
1478 			/* If this fails, state is reset ready for a reattempt. */
1479 			merge = vma_merge_new_range(&vmg);
1480 
1481 			if (merge) {
1482 				/*
1483 				 * ->mmap() can change vma->vm_file and fput
1484 				 * the original file. So fput the vma->vm_file
1485 				 * here or we would add an extra fput for file
1486 				 * and cause general protection fault
1487 				 * ultimately.
1488 				 */
1489 				fput(vma->vm_file);
1490 				vm_area_free(vma);
1491 				vma = merge;
1492 				/* Update vm_flags to pick up the change. */
1493 				vm_flags = vma->vm_flags;
1494 				goto unmap_writable;
1495 			}
1496 			vma_iter_config(&vmi, addr, end);
1497 		}
1498 
1499 		vm_flags = vma->vm_flags;
1500 	} else if (vm_flags & VM_SHARED) {
1501 		error = shmem_zero_setup(vma);
1502 		if (error)
1503 			goto free_vma;
1504 	} else {
1505 		vma_set_anonymous(vma);
1506 	}
1507 
1508 	if (map_deny_write_exec(vma, vma->vm_flags)) {
1509 		error = -EACCES;
1510 		goto close_and_free_vma;
1511 	}
1512 
1513 	/* Allow architectures to sanity-check the vm_flags */
1514 	if (!arch_validate_flags(vma->vm_flags)) {
1515 		error = -EINVAL;
1516 		goto close_and_free_vma;
1517 	}
1518 
1519 	if (vma_iter_prealloc(&vmi, vma)) {
1520 		error = -ENOMEM;
1521 		goto close_and_free_vma;
1522 	}
1523 
1524 	/* Lock the VMA since it is modified after insertion into VMA tree */
1525 	vma_start_write(vma);
1526 	vma_iter_store(&vmi, vma);
1527 	mm->map_count++;
1528 	vma_link_file(vma);
1529 
1530 	/*
1531 	 * vma_merge_new_range() calls khugepaged_enter_vma() too, the below
1532 	 * call covers the non-merge case.
1533 	 */
1534 	khugepaged_enter_vma(vma, vma->vm_flags);
1535 
1536 	/* Once vma denies write, undo our temporary denial count */
1537 unmap_writable:
1538 	if (writable_file_mapping)
1539 		mapping_unmap_writable(file->f_mapping);
1540 	file = vma->vm_file;
1541 	ksm_add_vma(vma);
1542 expanded:
1543 	perf_event_mmap(vma);
1544 
1545 	/* Unmap any existing mapping in the area */
1546 	vms_complete_munmap_vmas(&vms, &mas_detach);
1547 
1548 	vm_stat_account(mm, vm_flags, pglen);
1549 	if (vm_flags & VM_LOCKED) {
1550 		if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
1551 					is_vm_hugetlb_page(vma) ||
1552 					vma == get_gate_vma(current->mm))
1553 			vm_flags_clear(vma, VM_LOCKED_MASK);
1554 		else
1555 			mm->locked_vm += pglen;
1556 	}
1557 
1558 	if (file)
1559 		uprobe_mmap(vma);
1560 
1561 	/*
1562 	 * New (or expanded) vma always get soft dirty status.
1563 	 * Otherwise user-space soft-dirty page tracker won't
1564 	 * be able to distinguish situation when vma area unmapped,
1565 	 * then new mapped in-place (which must be aimed as
1566 	 * a completely new data area).
1567 	 */
1568 	vm_flags_set(vma, VM_SOFTDIRTY);
1569 
1570 	vma_set_page_prot(vma);
1571 
1572 	validate_mm(mm);
1573 	return addr;
1574 
1575 close_and_free_vma:
1576 	if (file && !vms.closed_vm_ops && vma->vm_ops && vma->vm_ops->close)
1577 		vma->vm_ops->close(vma);
1578 
1579 	if (file || vma->vm_file) {
1580 unmap_and_free_vma:
1581 		fput(vma->vm_file);
1582 		vma->vm_file = NULL;
1583 
1584 		vma_iter_set(&vmi, vma->vm_end);
1585 		/* Undo any partial mapping done by a device driver. */
1586 		unmap_region(&vmi.mas, vma, vmg.prev, vmg.next);
1587 	}
1588 	if (writable_file_mapping)
1589 		mapping_unmap_writable(file->f_mapping);
1590 free_vma:
1591 	vm_area_free(vma);
1592 unacct_error:
1593 	if (charged)
1594 		vm_unacct_memory(charged);
1595 
1596 abort_munmap:
1597 	vms_abort_munmap_vmas(&vms, &mas_detach);
1598 gather_failed:
1599 	validate_mm(mm);
1600 	return error;
1601 }
1602 
1603 static int __vm_munmap(unsigned long start, size_t len, bool unlock)
1604 {
1605 	int ret;
1606 	struct mm_struct *mm = current->mm;
1607 	LIST_HEAD(uf);
1608 	VMA_ITERATOR(vmi, mm, start);
1609 
1610 	if (mmap_write_lock_killable(mm))
1611 		return -EINTR;
1612 
1613 	ret = do_vmi_munmap(&vmi, mm, start, len, &uf, unlock);
1614 	if (ret || !unlock)
1615 		mmap_write_unlock(mm);
1616 
1617 	userfaultfd_unmap_complete(mm, &uf);
1618 	return ret;
1619 }
1620 
1621 int vm_munmap(unsigned long start, size_t len)
1622 {
1623 	return __vm_munmap(start, len, false);
1624 }
1625 EXPORT_SYMBOL(vm_munmap);
1626 
1627 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1628 {
1629 	addr = untagged_addr(addr);
1630 	return __vm_munmap(addr, len, true);
1631 }
1632 
1633 
1634 /*
1635  * Emulation of deprecated remap_file_pages() syscall.
1636  */
1637 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
1638 		unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
1639 {
1640 
1641 	struct mm_struct *mm = current->mm;
1642 	struct vm_area_struct *vma;
1643 	unsigned long populate = 0;
1644 	unsigned long ret = -EINVAL;
1645 	struct file *file;
1646 	vm_flags_t vm_flags;
1647 
1648 	pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/mm/remap_file_pages.rst.\n",
1649 		     current->comm, current->pid);
1650 
1651 	if (prot)
1652 		return ret;
1653 	start = start & PAGE_MASK;
1654 	size = size & PAGE_MASK;
1655 
1656 	if (start + size <= start)
1657 		return ret;
1658 
1659 	/* Does pgoff wrap? */
1660 	if (pgoff + (size >> PAGE_SHIFT) < pgoff)
1661 		return ret;
1662 
1663 	if (mmap_read_lock_killable(mm))
1664 		return -EINTR;
1665 
1666 	/*
1667 	 * Look up VMA under read lock first so we can perform the security
1668 	 * without holding locks (which can be problematic). We reacquire a
1669 	 * write lock later and check nothing changed underneath us.
1670 	 */
1671 	vma = vma_lookup(mm, start);
1672 
1673 	if (!vma || !(vma->vm_flags & VM_SHARED)) {
1674 		mmap_read_unlock(mm);
1675 		return -EINVAL;
1676 	}
1677 
1678 	prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
1679 	prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
1680 	prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
1681 
1682 	flags &= MAP_NONBLOCK;
1683 	flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
1684 	if (vma->vm_flags & VM_LOCKED)
1685 		flags |= MAP_LOCKED;
1686 
1687 	/* Save vm_flags used to calculate prot and flags, and recheck later. */
1688 	vm_flags = vma->vm_flags;
1689 	file = get_file(vma->vm_file);
1690 
1691 	mmap_read_unlock(mm);
1692 
1693 	/* Call outside mmap_lock to be consistent with other callers. */
1694 	ret = security_mmap_file(file, prot, flags);
1695 	if (ret) {
1696 		fput(file);
1697 		return ret;
1698 	}
1699 
1700 	ret = -EINVAL;
1701 
1702 	/* OK security check passed, take write lock + let it rip. */
1703 	if (mmap_write_lock_killable(mm)) {
1704 		fput(file);
1705 		return -EINTR;
1706 	}
1707 
1708 	vma = vma_lookup(mm, start);
1709 
1710 	if (!vma)
1711 		goto out;
1712 
1713 	/* Make sure things didn't change under us. */
1714 	if (vma->vm_flags != vm_flags)
1715 		goto out;
1716 	if (vma->vm_file != file)
1717 		goto out;
1718 
1719 	if (start + size > vma->vm_end) {
1720 		VMA_ITERATOR(vmi, mm, vma->vm_end);
1721 		struct vm_area_struct *next, *prev = vma;
1722 
1723 		for_each_vma_range(vmi, next, start + size) {
1724 			/* hole between vmas ? */
1725 			if (next->vm_start != prev->vm_end)
1726 				goto out;
1727 
1728 			if (next->vm_file != vma->vm_file)
1729 				goto out;
1730 
1731 			if (next->vm_flags != vma->vm_flags)
1732 				goto out;
1733 
1734 			if (start + size <= next->vm_end)
1735 				break;
1736 
1737 			prev = next;
1738 		}
1739 
1740 		if (!next)
1741 			goto out;
1742 	}
1743 
1744 	ret = do_mmap(vma->vm_file, start, size,
1745 			prot, flags, 0, pgoff, &populate, NULL);
1746 out:
1747 	mmap_write_unlock(mm);
1748 	fput(file);
1749 	if (populate)
1750 		mm_populate(ret, populate);
1751 	if (!IS_ERR_VALUE(ret))
1752 		ret = 0;
1753 	return ret;
1754 }
1755 
1756 /*
1757  * do_brk_flags() - Increase the brk vma if the flags match.
1758  * @vmi: The vma iterator
1759  * @addr: The start address
1760  * @len: The length of the increase
1761  * @vma: The vma,
1762  * @flags: The VMA Flags
1763  *
1764  * Extend the brk VMA from addr to addr + len.  If the VMA is NULL or the flags
1765  * do not match then create a new anonymous VMA.  Eventually we may be able to
1766  * do some brk-specific accounting here.
1767  */
1768 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma,
1769 		unsigned long addr, unsigned long len, unsigned long flags)
1770 {
1771 	struct mm_struct *mm = current->mm;
1772 
1773 	/*
1774 	 * Check against address space limits by the changed size
1775 	 * Note: This happens *after* clearing old mappings in some code paths.
1776 	 */
1777 	flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
1778 	if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
1779 		return -ENOMEM;
1780 
1781 	if (mm->map_count > sysctl_max_map_count)
1782 		return -ENOMEM;
1783 
1784 	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
1785 		return -ENOMEM;
1786 
1787 	/*
1788 	 * Expand the existing vma if possible; Note that singular lists do not
1789 	 * occur after forking, so the expand will only happen on new VMAs.
1790 	 */
1791 	if (vma && vma->vm_end == addr) {
1792 		VMG_STATE(vmg, mm, vmi, addr, addr + len, flags, PHYS_PFN(addr));
1793 
1794 		vmg.prev = vma;
1795 		/* vmi is positioned at prev, which this mode expects. */
1796 		vmg.merge_flags = VMG_FLAG_JUST_EXPAND;
1797 
1798 		if (vma_merge_new_range(&vmg))
1799 			goto out;
1800 		else if (vmg_nomem(&vmg))
1801 			goto unacct_fail;
1802 	}
1803 
1804 	if (vma)
1805 		vma_iter_next_range(vmi);
1806 	/* create a vma struct for an anonymous mapping */
1807 	vma = vm_area_alloc(mm);
1808 	if (!vma)
1809 		goto unacct_fail;
1810 
1811 	vma_set_anonymous(vma);
1812 	vma_set_range(vma, addr, addr + len, addr >> PAGE_SHIFT);
1813 	vm_flags_init(vma, flags);
1814 	vma->vm_page_prot = vm_get_page_prot(flags);
1815 	vma_start_write(vma);
1816 	if (vma_iter_store_gfp(vmi, vma, GFP_KERNEL))
1817 		goto mas_store_fail;
1818 
1819 	mm->map_count++;
1820 	validate_mm(mm);
1821 	ksm_add_vma(vma);
1822 out:
1823 	perf_event_mmap(vma);
1824 	mm->total_vm += len >> PAGE_SHIFT;
1825 	mm->data_vm += len >> PAGE_SHIFT;
1826 	if (flags & VM_LOCKED)
1827 		mm->locked_vm += (len >> PAGE_SHIFT);
1828 	vm_flags_set(vma, VM_SOFTDIRTY);
1829 	return 0;
1830 
1831 mas_store_fail:
1832 	vm_area_free(vma);
1833 unacct_fail:
1834 	vm_unacct_memory(len >> PAGE_SHIFT);
1835 	return -ENOMEM;
1836 }
1837 
1838 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
1839 {
1840 	struct mm_struct *mm = current->mm;
1841 	struct vm_area_struct *vma = NULL;
1842 	unsigned long len;
1843 	int ret;
1844 	bool populate;
1845 	LIST_HEAD(uf);
1846 	VMA_ITERATOR(vmi, mm, addr);
1847 
1848 	len = PAGE_ALIGN(request);
1849 	if (len < request)
1850 		return -ENOMEM;
1851 	if (!len)
1852 		return 0;
1853 
1854 	/* Until we need other flags, refuse anything except VM_EXEC. */
1855 	if ((flags & (~VM_EXEC)) != 0)
1856 		return -EINVAL;
1857 
1858 	if (mmap_write_lock_killable(mm))
1859 		return -EINTR;
1860 
1861 	ret = check_brk_limits(addr, len);
1862 	if (ret)
1863 		goto limits_failed;
1864 
1865 	ret = do_vmi_munmap(&vmi, mm, addr, len, &uf, 0);
1866 	if (ret)
1867 		goto munmap_failed;
1868 
1869 	vma = vma_prev(&vmi);
1870 	ret = do_brk_flags(&vmi, vma, addr, len, flags);
1871 	populate = ((mm->def_flags & VM_LOCKED) != 0);
1872 	mmap_write_unlock(mm);
1873 	userfaultfd_unmap_complete(mm, &uf);
1874 	if (populate && !ret)
1875 		mm_populate(addr, len);
1876 	return ret;
1877 
1878 munmap_failed:
1879 limits_failed:
1880 	mmap_write_unlock(mm);
1881 	return ret;
1882 }
1883 EXPORT_SYMBOL(vm_brk_flags);
1884 
1885 /* Release all mmaps. */
1886 void exit_mmap(struct mm_struct *mm)
1887 {
1888 	struct mmu_gather tlb;
1889 	struct vm_area_struct *vma;
1890 	unsigned long nr_accounted = 0;
1891 	VMA_ITERATOR(vmi, mm, 0);
1892 	int count = 0;
1893 
1894 	/* mm's last user has gone, and its about to be pulled down */
1895 	mmu_notifier_release(mm);
1896 
1897 	mmap_read_lock(mm);
1898 	arch_exit_mmap(mm);
1899 
1900 	vma = vma_next(&vmi);
1901 	if (!vma || unlikely(xa_is_zero(vma))) {
1902 		/* Can happen if dup_mmap() received an OOM */
1903 		mmap_read_unlock(mm);
1904 		mmap_write_lock(mm);
1905 		goto destroy;
1906 	}
1907 
1908 	lru_add_drain();
1909 	flush_cache_mm(mm);
1910 	tlb_gather_mmu_fullmm(&tlb, mm);
1911 	/* update_hiwater_rss(mm) here? but nobody should be looking */
1912 	/* Use ULONG_MAX here to ensure all VMAs in the mm are unmapped */
1913 	unmap_vmas(&tlb, &vmi.mas, vma, 0, ULONG_MAX, ULONG_MAX, false);
1914 	mmap_read_unlock(mm);
1915 
1916 	/*
1917 	 * Set MMF_OOM_SKIP to hide this task from the oom killer/reaper
1918 	 * because the memory has been already freed.
1919 	 */
1920 	set_bit(MMF_OOM_SKIP, &mm->flags);
1921 	mmap_write_lock(mm);
1922 	mt_clear_in_rcu(&mm->mm_mt);
1923 	vma_iter_set(&vmi, vma->vm_end);
1924 	free_pgtables(&tlb, &vmi.mas, vma, FIRST_USER_ADDRESS,
1925 		      USER_PGTABLES_CEILING, true);
1926 	tlb_finish_mmu(&tlb);
1927 
1928 	/*
1929 	 * Walk the list again, actually closing and freeing it, with preemption
1930 	 * enabled, without holding any MM locks besides the unreachable
1931 	 * mmap_write_lock.
1932 	 */
1933 	vma_iter_set(&vmi, vma->vm_end);
1934 	do {
1935 		if (vma->vm_flags & VM_ACCOUNT)
1936 			nr_accounted += vma_pages(vma);
1937 		remove_vma(vma, /* unreachable = */ true, /* closed = */ false);
1938 		count++;
1939 		cond_resched();
1940 		vma = vma_next(&vmi);
1941 	} while (vma && likely(!xa_is_zero(vma)));
1942 
1943 	BUG_ON(count != mm->map_count);
1944 
1945 	trace_exit_mmap(mm);
1946 destroy:
1947 	__mt_destroy(&mm->mm_mt);
1948 	mmap_write_unlock(mm);
1949 	vm_unacct_memory(nr_accounted);
1950 }
1951 
1952 /* Insert vm structure into process list sorted by address
1953  * and into the inode's i_mmap tree.  If vm_file is non-NULL
1954  * then i_mmap_rwsem is taken here.
1955  */
1956 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
1957 {
1958 	unsigned long charged = vma_pages(vma);
1959 
1960 
1961 	if (find_vma_intersection(mm, vma->vm_start, vma->vm_end))
1962 		return -ENOMEM;
1963 
1964 	if ((vma->vm_flags & VM_ACCOUNT) &&
1965 	     security_vm_enough_memory_mm(mm, charged))
1966 		return -ENOMEM;
1967 
1968 	/*
1969 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
1970 	 * until its first write fault, when page's anon_vma and index
1971 	 * are set.  But now set the vm_pgoff it will almost certainly
1972 	 * end up with (unless mremap moves it elsewhere before that
1973 	 * first wfault), so /proc/pid/maps tells a consistent story.
1974 	 *
1975 	 * By setting it to reflect the virtual start address of the
1976 	 * vma, merges and splits can happen in a seamless way, just
1977 	 * using the existing file pgoff checks and manipulations.
1978 	 * Similarly in do_mmap and in do_brk_flags.
1979 	 */
1980 	if (vma_is_anonymous(vma)) {
1981 		BUG_ON(vma->anon_vma);
1982 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
1983 	}
1984 
1985 	if (vma_link(mm, vma)) {
1986 		if (vma->vm_flags & VM_ACCOUNT)
1987 			vm_unacct_memory(charged);
1988 		return -ENOMEM;
1989 	}
1990 
1991 	return 0;
1992 }
1993 
1994 /*
1995  * Return true if the calling process may expand its vm space by the passed
1996  * number of pages
1997  */
1998 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
1999 {
2000 	if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
2001 		return false;
2002 
2003 	if (is_data_mapping(flags) &&
2004 	    mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
2005 		/* Workaround for Valgrind */
2006 		if (rlimit(RLIMIT_DATA) == 0 &&
2007 		    mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
2008 			return true;
2009 
2010 		pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
2011 			     current->comm, current->pid,
2012 			     (mm->data_vm + npages) << PAGE_SHIFT,
2013 			     rlimit(RLIMIT_DATA),
2014 			     ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
2015 
2016 		if (!ignore_rlimit_data)
2017 			return false;
2018 	}
2019 
2020 	return true;
2021 }
2022 
2023 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
2024 {
2025 	WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages);
2026 
2027 	if (is_exec_mapping(flags))
2028 		mm->exec_vm += npages;
2029 	else if (is_stack_mapping(flags))
2030 		mm->stack_vm += npages;
2031 	else if (is_data_mapping(flags))
2032 		mm->data_vm += npages;
2033 }
2034 
2035 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
2036 
2037 /*
2038  * Close hook, called for unmap() and on the old vma for mremap().
2039  *
2040  * Having a close hook prevents vma merging regardless of flags.
2041  */
2042 static void special_mapping_close(struct vm_area_struct *vma)
2043 {
2044 	const struct vm_special_mapping *sm = vma->vm_private_data;
2045 
2046 	if (sm->close)
2047 		sm->close(sm, vma);
2048 }
2049 
2050 static const char *special_mapping_name(struct vm_area_struct *vma)
2051 {
2052 	return ((struct vm_special_mapping *)vma->vm_private_data)->name;
2053 }
2054 
2055 static int special_mapping_mremap(struct vm_area_struct *new_vma)
2056 {
2057 	struct vm_special_mapping *sm = new_vma->vm_private_data;
2058 
2059 	if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
2060 		return -EFAULT;
2061 
2062 	if (sm->mremap)
2063 		return sm->mremap(sm, new_vma);
2064 
2065 	return 0;
2066 }
2067 
2068 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
2069 {
2070 	/*
2071 	 * Forbid splitting special mappings - kernel has expectations over
2072 	 * the number of pages in mapping. Together with VM_DONTEXPAND
2073 	 * the size of vma should stay the same over the special mapping's
2074 	 * lifetime.
2075 	 */
2076 	return -EINVAL;
2077 }
2078 
2079 static const struct vm_operations_struct special_mapping_vmops = {
2080 	.close = special_mapping_close,
2081 	.fault = special_mapping_fault,
2082 	.mremap = special_mapping_mremap,
2083 	.name = special_mapping_name,
2084 	/* vDSO code relies that VVAR can't be accessed remotely */
2085 	.access = NULL,
2086 	.may_split = special_mapping_split,
2087 };
2088 
2089 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
2090 {
2091 	struct vm_area_struct *vma = vmf->vma;
2092 	pgoff_t pgoff;
2093 	struct page **pages;
2094 	struct vm_special_mapping *sm = vma->vm_private_data;
2095 
2096 	if (sm->fault)
2097 		return sm->fault(sm, vmf->vma, vmf);
2098 
2099 	pages = sm->pages;
2100 
2101 	for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
2102 		pgoff--;
2103 
2104 	if (*pages) {
2105 		struct page *page = *pages;
2106 		get_page(page);
2107 		vmf->page = page;
2108 		return 0;
2109 	}
2110 
2111 	return VM_FAULT_SIGBUS;
2112 }
2113 
2114 static struct vm_area_struct *__install_special_mapping(
2115 	struct mm_struct *mm,
2116 	unsigned long addr, unsigned long len,
2117 	unsigned long vm_flags, void *priv,
2118 	const struct vm_operations_struct *ops)
2119 {
2120 	int ret;
2121 	struct vm_area_struct *vma;
2122 
2123 	vma = vm_area_alloc(mm);
2124 	if (unlikely(vma == NULL))
2125 		return ERR_PTR(-ENOMEM);
2126 
2127 	vma_set_range(vma, addr, addr + len, 0);
2128 	vm_flags_init(vma, (vm_flags | mm->def_flags |
2129 		      VM_DONTEXPAND | VM_SOFTDIRTY) & ~VM_LOCKED_MASK);
2130 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2131 
2132 	vma->vm_ops = ops;
2133 	vma->vm_private_data = priv;
2134 
2135 	ret = insert_vm_struct(mm, vma);
2136 	if (ret)
2137 		goto out;
2138 
2139 	vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
2140 
2141 	perf_event_mmap(vma);
2142 
2143 	return vma;
2144 
2145 out:
2146 	vm_area_free(vma);
2147 	return ERR_PTR(ret);
2148 }
2149 
2150 bool vma_is_special_mapping(const struct vm_area_struct *vma,
2151 	const struct vm_special_mapping *sm)
2152 {
2153 	return vma->vm_private_data == sm &&
2154 		vma->vm_ops == &special_mapping_vmops;
2155 }
2156 
2157 /*
2158  * Called with mm->mmap_lock held for writing.
2159  * Insert a new vma covering the given region, with the given flags.
2160  * Its pages are supplied by the given array of struct page *.
2161  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2162  * The region past the last page supplied will always produce SIGBUS.
2163  * The array pointer and the pages it points to are assumed to stay alive
2164  * for as long as this mapping might exist.
2165  */
2166 struct vm_area_struct *_install_special_mapping(
2167 	struct mm_struct *mm,
2168 	unsigned long addr, unsigned long len,
2169 	unsigned long vm_flags, const struct vm_special_mapping *spec)
2170 {
2171 	return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
2172 					&special_mapping_vmops);
2173 }
2174 
2175 /*
2176  * initialise the percpu counter for VM
2177  */
2178 void __init mmap_init(void)
2179 {
2180 	int ret;
2181 
2182 	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
2183 	VM_BUG_ON(ret);
2184 }
2185 
2186 /*
2187  * Initialise sysctl_user_reserve_kbytes.
2188  *
2189  * This is intended to prevent a user from starting a single memory hogging
2190  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
2191  * mode.
2192  *
2193  * The default value is min(3% of free memory, 128MB)
2194  * 128MB is enough to recover with sshd/login, bash, and top/kill.
2195  */
2196 static int init_user_reserve(void)
2197 {
2198 	unsigned long free_kbytes;
2199 
2200 	free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
2201 
2202 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, SZ_128K);
2203 	return 0;
2204 }
2205 subsys_initcall(init_user_reserve);
2206 
2207 /*
2208  * Initialise sysctl_admin_reserve_kbytes.
2209  *
2210  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
2211  * to log in and kill a memory hogging process.
2212  *
2213  * Systems with more than 256MB will reserve 8MB, enough to recover
2214  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
2215  * only reserve 3% of free pages by default.
2216  */
2217 static int init_admin_reserve(void)
2218 {
2219 	unsigned long free_kbytes;
2220 
2221 	free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
2222 
2223 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, SZ_8K);
2224 	return 0;
2225 }
2226 subsys_initcall(init_admin_reserve);
2227 
2228 /*
2229  * Reinititalise user and admin reserves if memory is added or removed.
2230  *
2231  * The default user reserve max is 128MB, and the default max for the
2232  * admin reserve is 8MB. These are usually, but not always, enough to
2233  * enable recovery from a memory hogging process using login/sshd, a shell,
2234  * and tools like top. It may make sense to increase or even disable the
2235  * reserve depending on the existence of swap or variations in the recovery
2236  * tools. So, the admin may have changed them.
2237  *
2238  * If memory is added and the reserves have been eliminated or increased above
2239  * the default max, then we'll trust the admin.
2240  *
2241  * If memory is removed and there isn't enough free memory, then we
2242  * need to reset the reserves.
2243  *
2244  * Otherwise keep the reserve set by the admin.
2245  */
2246 static int reserve_mem_notifier(struct notifier_block *nb,
2247 			     unsigned long action, void *data)
2248 {
2249 	unsigned long tmp, free_kbytes;
2250 
2251 	switch (action) {
2252 	case MEM_ONLINE:
2253 		/* Default max is 128MB. Leave alone if modified by operator. */
2254 		tmp = sysctl_user_reserve_kbytes;
2255 		if (tmp > 0 && tmp < SZ_128K)
2256 			init_user_reserve();
2257 
2258 		/* Default max is 8MB.  Leave alone if modified by operator. */
2259 		tmp = sysctl_admin_reserve_kbytes;
2260 		if (tmp > 0 && tmp < SZ_8K)
2261 			init_admin_reserve();
2262 
2263 		break;
2264 	case MEM_OFFLINE:
2265 		free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
2266 
2267 		if (sysctl_user_reserve_kbytes > free_kbytes) {
2268 			init_user_reserve();
2269 			pr_info("vm.user_reserve_kbytes reset to %lu\n",
2270 				sysctl_user_reserve_kbytes);
2271 		}
2272 
2273 		if (sysctl_admin_reserve_kbytes > free_kbytes) {
2274 			init_admin_reserve();
2275 			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
2276 				sysctl_admin_reserve_kbytes);
2277 		}
2278 		break;
2279 	default:
2280 		break;
2281 	}
2282 	return NOTIFY_OK;
2283 }
2284 
2285 static int __meminit init_reserve_notifier(void)
2286 {
2287 	if (hotplug_memory_notifier(reserve_mem_notifier, DEFAULT_CALLBACK_PRI))
2288 		pr_err("Failed registering memory add/remove notifier for admin reserve\n");
2289 
2290 	return 0;
2291 }
2292 subsys_initcall(init_reserve_notifier);
2293 
2294 /*
2295  * Relocate a VMA downwards by shift bytes. There cannot be any VMAs between
2296  * this VMA and its relocated range, which will now reside at [vma->vm_start -
2297  * shift, vma->vm_end - shift).
2298  *
2299  * This function is almost certainly NOT what you want for anything other than
2300  * early executable temporary stack relocation.
2301  */
2302 int relocate_vma_down(struct vm_area_struct *vma, unsigned long shift)
2303 {
2304 	/*
2305 	 * The process proceeds as follows:
2306 	 *
2307 	 * 1) Use shift to calculate the new vma endpoints.
2308 	 * 2) Extend vma to cover both the old and new ranges.  This ensures the
2309 	 *    arguments passed to subsequent functions are consistent.
2310 	 * 3) Move vma's page tables to the new range.
2311 	 * 4) Free up any cleared pgd range.
2312 	 * 5) Shrink the vma to cover only the new range.
2313 	 */
2314 
2315 	struct mm_struct *mm = vma->vm_mm;
2316 	unsigned long old_start = vma->vm_start;
2317 	unsigned long old_end = vma->vm_end;
2318 	unsigned long length = old_end - old_start;
2319 	unsigned long new_start = old_start - shift;
2320 	unsigned long new_end = old_end - shift;
2321 	VMA_ITERATOR(vmi, mm, new_start);
2322 	VMG_STATE(vmg, mm, &vmi, new_start, old_end, 0, vma->vm_pgoff);
2323 	struct vm_area_struct *next;
2324 	struct mmu_gather tlb;
2325 
2326 	BUG_ON(new_start > new_end);
2327 
2328 	/*
2329 	 * ensure there are no vmas between where we want to go
2330 	 * and where we are
2331 	 */
2332 	if (vma != vma_next(&vmi))
2333 		return -EFAULT;
2334 
2335 	vma_iter_prev_range(&vmi);
2336 	/*
2337 	 * cover the whole range: [new_start, old_end)
2338 	 */
2339 	vmg.vma = vma;
2340 	if (vma_expand(&vmg))
2341 		return -ENOMEM;
2342 
2343 	/*
2344 	 * move the page tables downwards, on failure we rely on
2345 	 * process cleanup to remove whatever mess we made.
2346 	 */
2347 	if (length != move_page_tables(vma, old_start,
2348 				       vma, new_start, length, false, true))
2349 		return -ENOMEM;
2350 
2351 	lru_add_drain();
2352 	tlb_gather_mmu(&tlb, mm);
2353 	next = vma_next(&vmi);
2354 	if (new_end > old_start) {
2355 		/*
2356 		 * when the old and new regions overlap clear from new_end.
2357 		 */
2358 		free_pgd_range(&tlb, new_end, old_end, new_end,
2359 			next ? next->vm_start : USER_PGTABLES_CEILING);
2360 	} else {
2361 		/*
2362 		 * otherwise, clean from old_start; this is done to not touch
2363 		 * the address space in [new_end, old_start) some architectures
2364 		 * have constraints on va-space that make this illegal (IA64) -
2365 		 * for the others its just a little faster.
2366 		 */
2367 		free_pgd_range(&tlb, old_start, old_end, new_end,
2368 			next ? next->vm_start : USER_PGTABLES_CEILING);
2369 	}
2370 	tlb_finish_mmu(&tlb);
2371 
2372 	vma_prev(&vmi);
2373 	/* Shrink the vma to just the new range */
2374 	return vma_shrink(&vmi, vma, new_start, new_end, vma->vm_pgoff);
2375 }
2376