xref: /linux/mm/mmap.c (revision a5766f11cfd3a0c03450d99c8fe548c2940be884)
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code	<alan@redhat.com>
7  */
8 
9 #include <linux/slab.h>
10 #include <linux/backing-dev.h>
11 #include <linux/mm.h>
12 #include <linux/shm.h>
13 #include <linux/mman.h>
14 #include <linux/pagemap.h>
15 #include <linux/swap.h>
16 #include <linux/syscalls.h>
17 #include <linux/capability.h>
18 #include <linux/init.h>
19 #include <linux/file.h>
20 #include <linux/fs.h>
21 #include <linux/personality.h>
22 #include <linux/security.h>
23 #include <linux/hugetlb.h>
24 #include <linux/profile.h>
25 #include <linux/module.h>
26 #include <linux/mount.h>
27 #include <linux/mempolicy.h>
28 #include <linux/rmap.h>
29 #include <linux/mmu_notifier.h>
30 
31 #include <asm/uaccess.h>
32 #include <asm/cacheflush.h>
33 #include <asm/tlb.h>
34 #include <asm/mmu_context.h>
35 
36 #include "internal.h"
37 
38 #ifndef arch_mmap_check
39 #define arch_mmap_check(addr, len, flags)	(0)
40 #endif
41 
42 #ifndef arch_rebalance_pgtables
43 #define arch_rebalance_pgtables(addr, len)		(addr)
44 #endif
45 
46 static void unmap_region(struct mm_struct *mm,
47 		struct vm_area_struct *vma, struct vm_area_struct *prev,
48 		unsigned long start, unsigned long end);
49 
50 /*
51  * WARNING: the debugging will use recursive algorithms so never enable this
52  * unless you know what you are doing.
53  */
54 #undef DEBUG_MM_RB
55 
56 /* description of effects of mapping type and prot in current implementation.
57  * this is due to the limited x86 page protection hardware.  The expected
58  * behavior is in parens:
59  *
60  * map_type	prot
61  *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
62  * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
63  *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
64  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
65  *
66  * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
67  *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
68  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
69  *
70  */
71 pgprot_t protection_map[16] = {
72 	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
73 	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
74 };
75 
76 pgprot_t vm_get_page_prot(unsigned long vm_flags)
77 {
78 	return __pgprot(pgprot_val(protection_map[vm_flags &
79 				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
80 			pgprot_val(arch_vm_get_page_prot(vm_flags)));
81 }
82 EXPORT_SYMBOL(vm_get_page_prot);
83 
84 int sysctl_overcommit_memory = OVERCOMMIT_GUESS;  /* heuristic overcommit */
85 int sysctl_overcommit_ratio = 50;	/* default is 50% */
86 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
87 atomic_long_t vm_committed_space = ATOMIC_LONG_INIT(0);
88 
89 /*
90  * Check that a process has enough memory to allocate a new virtual
91  * mapping. 0 means there is enough memory for the allocation to
92  * succeed and -ENOMEM implies there is not.
93  *
94  * We currently support three overcommit policies, which are set via the
95  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
96  *
97  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
98  * Additional code 2002 Jul 20 by Robert Love.
99  *
100  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
101  *
102  * Note this is a helper function intended to be used by LSMs which
103  * wish to use this logic.
104  */
105 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
106 {
107 	unsigned long free, allowed;
108 
109 	vm_acct_memory(pages);
110 
111 	/*
112 	 * Sometimes we want to use more memory than we have
113 	 */
114 	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
115 		return 0;
116 
117 	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
118 		unsigned long n;
119 
120 		free = global_page_state(NR_FILE_PAGES);
121 		free += nr_swap_pages;
122 
123 		/*
124 		 * Any slabs which are created with the
125 		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
126 		 * which are reclaimable, under pressure.  The dentry
127 		 * cache and most inode caches should fall into this
128 		 */
129 		free += global_page_state(NR_SLAB_RECLAIMABLE);
130 
131 		/*
132 		 * Leave the last 3% for root
133 		 */
134 		if (!cap_sys_admin)
135 			free -= free / 32;
136 
137 		if (free > pages)
138 			return 0;
139 
140 		/*
141 		 * nr_free_pages() is very expensive on large systems,
142 		 * only call if we're about to fail.
143 		 */
144 		n = nr_free_pages();
145 
146 		/*
147 		 * Leave reserved pages. The pages are not for anonymous pages.
148 		 */
149 		if (n <= totalreserve_pages)
150 			goto error;
151 		else
152 			n -= totalreserve_pages;
153 
154 		/*
155 		 * Leave the last 3% for root
156 		 */
157 		if (!cap_sys_admin)
158 			n -= n / 32;
159 		free += n;
160 
161 		if (free > pages)
162 			return 0;
163 
164 		goto error;
165 	}
166 
167 	allowed = (totalram_pages - hugetlb_total_pages())
168 	       	* sysctl_overcommit_ratio / 100;
169 	/*
170 	 * Leave the last 3% for root
171 	 */
172 	if (!cap_sys_admin)
173 		allowed -= allowed / 32;
174 	allowed += total_swap_pages;
175 
176 	/* Don't let a single process grow too big:
177 	   leave 3% of the size of this process for other processes */
178 	allowed -= mm->total_vm / 32;
179 
180 	/*
181 	 * cast `allowed' as a signed long because vm_committed_space
182 	 * sometimes has a negative value
183 	 */
184 	if (atomic_long_read(&vm_committed_space) < (long)allowed)
185 		return 0;
186 error:
187 	vm_unacct_memory(pages);
188 
189 	return -ENOMEM;
190 }
191 
192 /*
193  * Requires inode->i_mapping->i_mmap_lock
194  */
195 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
196 		struct file *file, struct address_space *mapping)
197 {
198 	if (vma->vm_flags & VM_DENYWRITE)
199 		atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
200 	if (vma->vm_flags & VM_SHARED)
201 		mapping->i_mmap_writable--;
202 
203 	flush_dcache_mmap_lock(mapping);
204 	if (unlikely(vma->vm_flags & VM_NONLINEAR))
205 		list_del_init(&vma->shared.vm_set.list);
206 	else
207 		vma_prio_tree_remove(vma, &mapping->i_mmap);
208 	flush_dcache_mmap_unlock(mapping);
209 }
210 
211 /*
212  * Unlink a file-based vm structure from its prio_tree, to hide
213  * vma from rmap and vmtruncate before freeing its page tables.
214  */
215 void unlink_file_vma(struct vm_area_struct *vma)
216 {
217 	struct file *file = vma->vm_file;
218 
219 	if (file) {
220 		struct address_space *mapping = file->f_mapping;
221 		spin_lock(&mapping->i_mmap_lock);
222 		__remove_shared_vm_struct(vma, file, mapping);
223 		spin_unlock(&mapping->i_mmap_lock);
224 	}
225 }
226 
227 /*
228  * Close a vm structure and free it, returning the next.
229  */
230 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
231 {
232 	struct vm_area_struct *next = vma->vm_next;
233 
234 	might_sleep();
235 	if (vma->vm_ops && vma->vm_ops->close)
236 		vma->vm_ops->close(vma);
237 	if (vma->vm_file) {
238 		fput(vma->vm_file);
239 		if (vma->vm_flags & VM_EXECUTABLE)
240 			removed_exe_file_vma(vma->vm_mm);
241 	}
242 	mpol_put(vma_policy(vma));
243 	kmem_cache_free(vm_area_cachep, vma);
244 	return next;
245 }
246 
247 asmlinkage unsigned long sys_brk(unsigned long brk)
248 {
249 	unsigned long rlim, retval;
250 	unsigned long newbrk, oldbrk;
251 	struct mm_struct *mm = current->mm;
252 	unsigned long min_brk;
253 
254 	down_write(&mm->mmap_sem);
255 
256 #ifdef CONFIG_COMPAT_BRK
257 	min_brk = mm->end_code;
258 #else
259 	min_brk = mm->start_brk;
260 #endif
261 	if (brk < min_brk)
262 		goto out;
263 
264 	/*
265 	 * Check against rlimit here. If this check is done later after the test
266 	 * of oldbrk with newbrk then it can escape the test and let the data
267 	 * segment grow beyond its set limit the in case where the limit is
268 	 * not page aligned -Ram Gupta
269 	 */
270 	rlim = current->signal->rlim[RLIMIT_DATA].rlim_cur;
271 	if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
272 			(mm->end_data - mm->start_data) > rlim)
273 		goto out;
274 
275 	newbrk = PAGE_ALIGN(brk);
276 	oldbrk = PAGE_ALIGN(mm->brk);
277 	if (oldbrk == newbrk)
278 		goto set_brk;
279 
280 	/* Always allow shrinking brk. */
281 	if (brk <= mm->brk) {
282 		if (!do_munmap(mm, newbrk, oldbrk-newbrk))
283 			goto set_brk;
284 		goto out;
285 	}
286 
287 	/* Check against existing mmap mappings. */
288 	if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
289 		goto out;
290 
291 	/* Ok, looks good - let it rip. */
292 	if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
293 		goto out;
294 set_brk:
295 	mm->brk = brk;
296 out:
297 	retval = mm->brk;
298 	up_write(&mm->mmap_sem);
299 	return retval;
300 }
301 
302 #ifdef DEBUG_MM_RB
303 static int browse_rb(struct rb_root *root)
304 {
305 	int i = 0, j;
306 	struct rb_node *nd, *pn = NULL;
307 	unsigned long prev = 0, pend = 0;
308 
309 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
310 		struct vm_area_struct *vma;
311 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
312 		if (vma->vm_start < prev)
313 			printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
314 		if (vma->vm_start < pend)
315 			printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
316 		if (vma->vm_start > vma->vm_end)
317 			printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
318 		i++;
319 		pn = nd;
320 		prev = vma->vm_start;
321 		pend = vma->vm_end;
322 	}
323 	j = 0;
324 	for (nd = pn; nd; nd = rb_prev(nd)) {
325 		j++;
326 	}
327 	if (i != j)
328 		printk("backwards %d, forwards %d\n", j, i), i = 0;
329 	return i;
330 }
331 
332 void validate_mm(struct mm_struct *mm)
333 {
334 	int bug = 0;
335 	int i = 0;
336 	struct vm_area_struct *tmp = mm->mmap;
337 	while (tmp) {
338 		tmp = tmp->vm_next;
339 		i++;
340 	}
341 	if (i != mm->map_count)
342 		printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
343 	i = browse_rb(&mm->mm_rb);
344 	if (i != mm->map_count)
345 		printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
346 	BUG_ON(bug);
347 }
348 #else
349 #define validate_mm(mm) do { } while (0)
350 #endif
351 
352 static struct vm_area_struct *
353 find_vma_prepare(struct mm_struct *mm, unsigned long addr,
354 		struct vm_area_struct **pprev, struct rb_node ***rb_link,
355 		struct rb_node ** rb_parent)
356 {
357 	struct vm_area_struct * vma;
358 	struct rb_node ** __rb_link, * __rb_parent, * rb_prev;
359 
360 	__rb_link = &mm->mm_rb.rb_node;
361 	rb_prev = __rb_parent = NULL;
362 	vma = NULL;
363 
364 	while (*__rb_link) {
365 		struct vm_area_struct *vma_tmp;
366 
367 		__rb_parent = *__rb_link;
368 		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
369 
370 		if (vma_tmp->vm_end > addr) {
371 			vma = vma_tmp;
372 			if (vma_tmp->vm_start <= addr)
373 				break;
374 			__rb_link = &__rb_parent->rb_left;
375 		} else {
376 			rb_prev = __rb_parent;
377 			__rb_link = &__rb_parent->rb_right;
378 		}
379 	}
380 
381 	*pprev = NULL;
382 	if (rb_prev)
383 		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
384 	*rb_link = __rb_link;
385 	*rb_parent = __rb_parent;
386 	return vma;
387 }
388 
389 static inline void
390 __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
391 		struct vm_area_struct *prev, struct rb_node *rb_parent)
392 {
393 	if (prev) {
394 		vma->vm_next = prev->vm_next;
395 		prev->vm_next = vma;
396 	} else {
397 		mm->mmap = vma;
398 		if (rb_parent)
399 			vma->vm_next = rb_entry(rb_parent,
400 					struct vm_area_struct, vm_rb);
401 		else
402 			vma->vm_next = NULL;
403 	}
404 }
405 
406 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
407 		struct rb_node **rb_link, struct rb_node *rb_parent)
408 {
409 	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
410 	rb_insert_color(&vma->vm_rb, &mm->mm_rb);
411 }
412 
413 static inline void __vma_link_file(struct vm_area_struct *vma)
414 {
415 	struct file * file;
416 
417 	file = vma->vm_file;
418 	if (file) {
419 		struct address_space *mapping = file->f_mapping;
420 
421 		if (vma->vm_flags & VM_DENYWRITE)
422 			atomic_dec(&file->f_path.dentry->d_inode->i_writecount);
423 		if (vma->vm_flags & VM_SHARED)
424 			mapping->i_mmap_writable++;
425 
426 		flush_dcache_mmap_lock(mapping);
427 		if (unlikely(vma->vm_flags & VM_NONLINEAR))
428 			vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
429 		else
430 			vma_prio_tree_insert(vma, &mapping->i_mmap);
431 		flush_dcache_mmap_unlock(mapping);
432 	}
433 }
434 
435 static void
436 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
437 	struct vm_area_struct *prev, struct rb_node **rb_link,
438 	struct rb_node *rb_parent)
439 {
440 	__vma_link_list(mm, vma, prev, rb_parent);
441 	__vma_link_rb(mm, vma, rb_link, rb_parent);
442 	__anon_vma_link(vma);
443 }
444 
445 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
446 			struct vm_area_struct *prev, struct rb_node **rb_link,
447 			struct rb_node *rb_parent)
448 {
449 	struct address_space *mapping = NULL;
450 
451 	if (vma->vm_file)
452 		mapping = vma->vm_file->f_mapping;
453 
454 	if (mapping) {
455 		spin_lock(&mapping->i_mmap_lock);
456 		vma->vm_truncate_count = mapping->truncate_count;
457 	}
458 	anon_vma_lock(vma);
459 
460 	__vma_link(mm, vma, prev, rb_link, rb_parent);
461 	__vma_link_file(vma);
462 
463 	anon_vma_unlock(vma);
464 	if (mapping)
465 		spin_unlock(&mapping->i_mmap_lock);
466 
467 	mm->map_count++;
468 	validate_mm(mm);
469 }
470 
471 /*
472  * Helper for vma_adjust in the split_vma insert case:
473  * insert vm structure into list and rbtree and anon_vma,
474  * but it has already been inserted into prio_tree earlier.
475  */
476 static void
477 __insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
478 {
479 	struct vm_area_struct * __vma, * prev;
480 	struct rb_node ** rb_link, * rb_parent;
481 
482 	__vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent);
483 	BUG_ON(__vma && __vma->vm_start < vma->vm_end);
484 	__vma_link(mm, vma, prev, rb_link, rb_parent);
485 	mm->map_count++;
486 }
487 
488 static inline void
489 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
490 		struct vm_area_struct *prev)
491 {
492 	prev->vm_next = vma->vm_next;
493 	rb_erase(&vma->vm_rb, &mm->mm_rb);
494 	if (mm->mmap_cache == vma)
495 		mm->mmap_cache = prev;
496 }
497 
498 /*
499  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
500  * is already present in an i_mmap tree without adjusting the tree.
501  * The following helper function should be used when such adjustments
502  * are necessary.  The "insert" vma (if any) is to be inserted
503  * before we drop the necessary locks.
504  */
505 void vma_adjust(struct vm_area_struct *vma, unsigned long start,
506 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
507 {
508 	struct mm_struct *mm = vma->vm_mm;
509 	struct vm_area_struct *next = vma->vm_next;
510 	struct vm_area_struct *importer = NULL;
511 	struct address_space *mapping = NULL;
512 	struct prio_tree_root *root = NULL;
513 	struct file *file = vma->vm_file;
514 	struct anon_vma *anon_vma = NULL;
515 	long adjust_next = 0;
516 	int remove_next = 0;
517 
518 	if (next && !insert) {
519 		if (end >= next->vm_end) {
520 			/*
521 			 * vma expands, overlapping all the next, and
522 			 * perhaps the one after too (mprotect case 6).
523 			 */
524 again:			remove_next = 1 + (end > next->vm_end);
525 			end = next->vm_end;
526 			anon_vma = next->anon_vma;
527 			importer = vma;
528 		} else if (end > next->vm_start) {
529 			/*
530 			 * vma expands, overlapping part of the next:
531 			 * mprotect case 5 shifting the boundary up.
532 			 */
533 			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
534 			anon_vma = next->anon_vma;
535 			importer = vma;
536 		} else if (end < vma->vm_end) {
537 			/*
538 			 * vma shrinks, and !insert tells it's not
539 			 * split_vma inserting another: so it must be
540 			 * mprotect case 4 shifting the boundary down.
541 			 */
542 			adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
543 			anon_vma = next->anon_vma;
544 			importer = next;
545 		}
546 	}
547 
548 	if (file) {
549 		mapping = file->f_mapping;
550 		if (!(vma->vm_flags & VM_NONLINEAR))
551 			root = &mapping->i_mmap;
552 		spin_lock(&mapping->i_mmap_lock);
553 		if (importer &&
554 		    vma->vm_truncate_count != next->vm_truncate_count) {
555 			/*
556 			 * unmap_mapping_range might be in progress:
557 			 * ensure that the expanding vma is rescanned.
558 			 */
559 			importer->vm_truncate_count = 0;
560 		}
561 		if (insert) {
562 			insert->vm_truncate_count = vma->vm_truncate_count;
563 			/*
564 			 * Put into prio_tree now, so instantiated pages
565 			 * are visible to arm/parisc __flush_dcache_page
566 			 * throughout; but we cannot insert into address
567 			 * space until vma start or end is updated.
568 			 */
569 			__vma_link_file(insert);
570 		}
571 	}
572 
573 	/*
574 	 * When changing only vma->vm_end, we don't really need
575 	 * anon_vma lock: but is that case worth optimizing out?
576 	 */
577 	if (vma->anon_vma)
578 		anon_vma = vma->anon_vma;
579 	if (anon_vma) {
580 		spin_lock(&anon_vma->lock);
581 		/*
582 		 * Easily overlooked: when mprotect shifts the boundary,
583 		 * make sure the expanding vma has anon_vma set if the
584 		 * shrinking vma had, to cover any anon pages imported.
585 		 */
586 		if (importer && !importer->anon_vma) {
587 			importer->anon_vma = anon_vma;
588 			__anon_vma_link(importer);
589 		}
590 	}
591 
592 	if (root) {
593 		flush_dcache_mmap_lock(mapping);
594 		vma_prio_tree_remove(vma, root);
595 		if (adjust_next)
596 			vma_prio_tree_remove(next, root);
597 	}
598 
599 	vma->vm_start = start;
600 	vma->vm_end = end;
601 	vma->vm_pgoff = pgoff;
602 	if (adjust_next) {
603 		next->vm_start += adjust_next << PAGE_SHIFT;
604 		next->vm_pgoff += adjust_next;
605 	}
606 
607 	if (root) {
608 		if (adjust_next)
609 			vma_prio_tree_insert(next, root);
610 		vma_prio_tree_insert(vma, root);
611 		flush_dcache_mmap_unlock(mapping);
612 	}
613 
614 	if (remove_next) {
615 		/*
616 		 * vma_merge has merged next into vma, and needs
617 		 * us to remove next before dropping the locks.
618 		 */
619 		__vma_unlink(mm, next, vma);
620 		if (file)
621 			__remove_shared_vm_struct(next, file, mapping);
622 		if (next->anon_vma)
623 			__anon_vma_merge(vma, next);
624 	} else if (insert) {
625 		/*
626 		 * split_vma has split insert from vma, and needs
627 		 * us to insert it before dropping the locks
628 		 * (it may either follow vma or precede it).
629 		 */
630 		__insert_vm_struct(mm, insert);
631 	}
632 
633 	if (anon_vma)
634 		spin_unlock(&anon_vma->lock);
635 	if (mapping)
636 		spin_unlock(&mapping->i_mmap_lock);
637 
638 	if (remove_next) {
639 		if (file) {
640 			fput(file);
641 			if (next->vm_flags & VM_EXECUTABLE)
642 				removed_exe_file_vma(mm);
643 		}
644 		mm->map_count--;
645 		mpol_put(vma_policy(next));
646 		kmem_cache_free(vm_area_cachep, next);
647 		/*
648 		 * In mprotect's case 6 (see comments on vma_merge),
649 		 * we must remove another next too. It would clutter
650 		 * up the code too much to do both in one go.
651 		 */
652 		if (remove_next == 2) {
653 			next = vma->vm_next;
654 			goto again;
655 		}
656 	}
657 
658 	validate_mm(mm);
659 }
660 
661 /*
662  * If the vma has a ->close operation then the driver probably needs to release
663  * per-vma resources, so we don't attempt to merge those.
664  */
665 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP)
666 
667 static inline int is_mergeable_vma(struct vm_area_struct *vma,
668 			struct file *file, unsigned long vm_flags)
669 {
670 	if (vma->vm_flags != vm_flags)
671 		return 0;
672 	if (vma->vm_file != file)
673 		return 0;
674 	if (vma->vm_ops && vma->vm_ops->close)
675 		return 0;
676 	return 1;
677 }
678 
679 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
680 					struct anon_vma *anon_vma2)
681 {
682 	return !anon_vma1 || !anon_vma2 || (anon_vma1 == anon_vma2);
683 }
684 
685 /*
686  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
687  * in front of (at a lower virtual address and file offset than) the vma.
688  *
689  * We cannot merge two vmas if they have differently assigned (non-NULL)
690  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
691  *
692  * We don't check here for the merged mmap wrapping around the end of pagecache
693  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
694  * wrap, nor mmaps which cover the final page at index -1UL.
695  */
696 static int
697 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
698 	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
699 {
700 	if (is_mergeable_vma(vma, file, vm_flags) &&
701 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
702 		if (vma->vm_pgoff == vm_pgoff)
703 			return 1;
704 	}
705 	return 0;
706 }
707 
708 /*
709  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
710  * beyond (at a higher virtual address and file offset than) the vma.
711  *
712  * We cannot merge two vmas if they have differently assigned (non-NULL)
713  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
714  */
715 static int
716 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
717 	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
718 {
719 	if (is_mergeable_vma(vma, file, vm_flags) &&
720 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
721 		pgoff_t vm_pglen;
722 		vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
723 		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
724 			return 1;
725 	}
726 	return 0;
727 }
728 
729 /*
730  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
731  * whether that can be merged with its predecessor or its successor.
732  * Or both (it neatly fills a hole).
733  *
734  * In most cases - when called for mmap, brk or mremap - [addr,end) is
735  * certain not to be mapped by the time vma_merge is called; but when
736  * called for mprotect, it is certain to be already mapped (either at
737  * an offset within prev, or at the start of next), and the flags of
738  * this area are about to be changed to vm_flags - and the no-change
739  * case has already been eliminated.
740  *
741  * The following mprotect cases have to be considered, where AAAA is
742  * the area passed down from mprotect_fixup, never extending beyond one
743  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
744  *
745  *     AAAA             AAAA                AAAA          AAAA
746  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
747  *    cannot merge    might become    might become    might become
748  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
749  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
750  *    mremap move:                                    PPPPNNNNNNNN 8
751  *        AAAA
752  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
753  *    might become    case 1 below    case 2 below    case 3 below
754  *
755  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
756  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
757  */
758 struct vm_area_struct *vma_merge(struct mm_struct *mm,
759 			struct vm_area_struct *prev, unsigned long addr,
760 			unsigned long end, unsigned long vm_flags,
761 		     	struct anon_vma *anon_vma, struct file *file,
762 			pgoff_t pgoff, struct mempolicy *policy)
763 {
764 	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
765 	struct vm_area_struct *area, *next;
766 
767 	/*
768 	 * We later require that vma->vm_flags == vm_flags,
769 	 * so this tests vma->vm_flags & VM_SPECIAL, too.
770 	 */
771 	if (vm_flags & VM_SPECIAL)
772 		return NULL;
773 
774 	if (prev)
775 		next = prev->vm_next;
776 	else
777 		next = mm->mmap;
778 	area = next;
779 	if (next && next->vm_end == end)		/* cases 6, 7, 8 */
780 		next = next->vm_next;
781 
782 	/*
783 	 * Can it merge with the predecessor?
784 	 */
785 	if (prev && prev->vm_end == addr &&
786   			mpol_equal(vma_policy(prev), policy) &&
787 			can_vma_merge_after(prev, vm_flags,
788 						anon_vma, file, pgoff)) {
789 		/*
790 		 * OK, it can.  Can we now merge in the successor as well?
791 		 */
792 		if (next && end == next->vm_start &&
793 				mpol_equal(policy, vma_policy(next)) &&
794 				can_vma_merge_before(next, vm_flags,
795 					anon_vma, file, pgoff+pglen) &&
796 				is_mergeable_anon_vma(prev->anon_vma,
797 						      next->anon_vma)) {
798 							/* cases 1, 6 */
799 			vma_adjust(prev, prev->vm_start,
800 				next->vm_end, prev->vm_pgoff, NULL);
801 		} else					/* cases 2, 5, 7 */
802 			vma_adjust(prev, prev->vm_start,
803 				end, prev->vm_pgoff, NULL);
804 		return prev;
805 	}
806 
807 	/*
808 	 * Can this new request be merged in front of next?
809 	 */
810 	if (next && end == next->vm_start &&
811  			mpol_equal(policy, vma_policy(next)) &&
812 			can_vma_merge_before(next, vm_flags,
813 					anon_vma, file, pgoff+pglen)) {
814 		if (prev && addr < prev->vm_end)	/* case 4 */
815 			vma_adjust(prev, prev->vm_start,
816 				addr, prev->vm_pgoff, NULL);
817 		else					/* cases 3, 8 */
818 			vma_adjust(area, addr, next->vm_end,
819 				next->vm_pgoff - pglen, NULL);
820 		return area;
821 	}
822 
823 	return NULL;
824 }
825 
826 /*
827  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
828  * neighbouring vmas for a suitable anon_vma, before it goes off
829  * to allocate a new anon_vma.  It checks because a repetitive
830  * sequence of mprotects and faults may otherwise lead to distinct
831  * anon_vmas being allocated, preventing vma merge in subsequent
832  * mprotect.
833  */
834 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
835 {
836 	struct vm_area_struct *near;
837 	unsigned long vm_flags;
838 
839 	near = vma->vm_next;
840 	if (!near)
841 		goto try_prev;
842 
843 	/*
844 	 * Since only mprotect tries to remerge vmas, match flags
845 	 * which might be mprotected into each other later on.
846 	 * Neither mlock nor madvise tries to remerge at present,
847 	 * so leave their flags as obstructing a merge.
848 	 */
849 	vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
850 	vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
851 
852 	if (near->anon_vma && vma->vm_end == near->vm_start &&
853  			mpol_equal(vma_policy(vma), vma_policy(near)) &&
854 			can_vma_merge_before(near, vm_flags,
855 				NULL, vma->vm_file, vma->vm_pgoff +
856 				((vma->vm_end - vma->vm_start) >> PAGE_SHIFT)))
857 		return near->anon_vma;
858 try_prev:
859 	/*
860 	 * It is potentially slow to have to call find_vma_prev here.
861 	 * But it's only on the first write fault on the vma, not
862 	 * every time, and we could devise a way to avoid it later
863 	 * (e.g. stash info in next's anon_vma_node when assigning
864 	 * an anon_vma, or when trying vma_merge).  Another time.
865 	 */
866 	BUG_ON(find_vma_prev(vma->vm_mm, vma->vm_start, &near) != vma);
867 	if (!near)
868 		goto none;
869 
870 	vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
871 	vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
872 
873 	if (near->anon_vma && near->vm_end == vma->vm_start &&
874   			mpol_equal(vma_policy(near), vma_policy(vma)) &&
875 			can_vma_merge_after(near, vm_flags,
876 				NULL, vma->vm_file, vma->vm_pgoff))
877 		return near->anon_vma;
878 none:
879 	/*
880 	 * There's no absolute need to look only at touching neighbours:
881 	 * we could search further afield for "compatible" anon_vmas.
882 	 * But it would probably just be a waste of time searching,
883 	 * or lead to too many vmas hanging off the same anon_vma.
884 	 * We're trying to allow mprotect remerging later on,
885 	 * not trying to minimize memory used for anon_vmas.
886 	 */
887 	return NULL;
888 }
889 
890 #ifdef CONFIG_PROC_FS
891 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
892 						struct file *file, long pages)
893 {
894 	const unsigned long stack_flags
895 		= VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
896 
897 	if (file) {
898 		mm->shared_vm += pages;
899 		if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
900 			mm->exec_vm += pages;
901 	} else if (flags & stack_flags)
902 		mm->stack_vm += pages;
903 	if (flags & (VM_RESERVED|VM_IO))
904 		mm->reserved_vm += pages;
905 }
906 #endif /* CONFIG_PROC_FS */
907 
908 /*
909  * The caller must hold down_write(current->mm->mmap_sem).
910  */
911 
912 unsigned long do_mmap_pgoff(struct file * file, unsigned long addr,
913 			unsigned long len, unsigned long prot,
914 			unsigned long flags, unsigned long pgoff)
915 {
916 	struct mm_struct * mm = current->mm;
917 	struct inode *inode;
918 	unsigned int vm_flags;
919 	int error;
920 	int accountable = 1;
921 	unsigned long reqprot = prot;
922 
923 	/*
924 	 * Does the application expect PROT_READ to imply PROT_EXEC?
925 	 *
926 	 * (the exception is when the underlying filesystem is noexec
927 	 *  mounted, in which case we dont add PROT_EXEC.)
928 	 */
929 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
930 		if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
931 			prot |= PROT_EXEC;
932 
933 	if (!len)
934 		return -EINVAL;
935 
936 	if (!(flags & MAP_FIXED))
937 		addr = round_hint_to_min(addr);
938 
939 	error = arch_mmap_check(addr, len, flags);
940 	if (error)
941 		return error;
942 
943 	/* Careful about overflows.. */
944 	len = PAGE_ALIGN(len);
945 	if (!len || len > TASK_SIZE)
946 		return -ENOMEM;
947 
948 	/* offset overflow? */
949 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
950                return -EOVERFLOW;
951 
952 	/* Too many mappings? */
953 	if (mm->map_count > sysctl_max_map_count)
954 		return -ENOMEM;
955 
956 	/* Obtain the address to map to. we verify (or select) it and ensure
957 	 * that it represents a valid section of the address space.
958 	 */
959 	addr = get_unmapped_area(file, addr, len, pgoff, flags);
960 	if (addr & ~PAGE_MASK)
961 		return addr;
962 
963 	/* Do simple checking here so the lower-level routines won't have
964 	 * to. we assume access permissions have been handled by the open
965 	 * of the memory object, so we don't do any here.
966 	 */
967 	vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
968 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
969 
970 	if (flags & MAP_LOCKED) {
971 		if (!can_do_mlock())
972 			return -EPERM;
973 		vm_flags |= VM_LOCKED;
974 	}
975 	/* mlock MCL_FUTURE? */
976 	if (vm_flags & VM_LOCKED) {
977 		unsigned long locked, lock_limit;
978 		locked = len >> PAGE_SHIFT;
979 		locked += mm->locked_vm;
980 		lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
981 		lock_limit >>= PAGE_SHIFT;
982 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
983 			return -EAGAIN;
984 	}
985 
986 	inode = file ? file->f_path.dentry->d_inode : NULL;
987 
988 	if (file) {
989 		switch (flags & MAP_TYPE) {
990 		case MAP_SHARED:
991 			if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
992 				return -EACCES;
993 
994 			/*
995 			 * Make sure we don't allow writing to an append-only
996 			 * file..
997 			 */
998 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
999 				return -EACCES;
1000 
1001 			/*
1002 			 * Make sure there are no mandatory locks on the file.
1003 			 */
1004 			if (locks_verify_locked(inode))
1005 				return -EAGAIN;
1006 
1007 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1008 			if (!(file->f_mode & FMODE_WRITE))
1009 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1010 
1011 			/* fall through */
1012 		case MAP_PRIVATE:
1013 			if (!(file->f_mode & FMODE_READ))
1014 				return -EACCES;
1015 			if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1016 				if (vm_flags & VM_EXEC)
1017 					return -EPERM;
1018 				vm_flags &= ~VM_MAYEXEC;
1019 			}
1020 			if (is_file_hugepages(file))
1021 				accountable = 0;
1022 
1023 			if (!file->f_op || !file->f_op->mmap)
1024 				return -ENODEV;
1025 			break;
1026 
1027 		default:
1028 			return -EINVAL;
1029 		}
1030 	} else {
1031 		switch (flags & MAP_TYPE) {
1032 		case MAP_SHARED:
1033 			/*
1034 			 * Ignore pgoff.
1035 			 */
1036 			pgoff = 0;
1037 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1038 			break;
1039 		case MAP_PRIVATE:
1040 			/*
1041 			 * Set pgoff according to addr for anon_vma.
1042 			 */
1043 			pgoff = addr >> PAGE_SHIFT;
1044 			break;
1045 		default:
1046 			return -EINVAL;
1047 		}
1048 	}
1049 
1050 	error = security_file_mmap(file, reqprot, prot, flags, addr, 0);
1051 	if (error)
1052 		return error;
1053 
1054 	return mmap_region(file, addr, len, flags, vm_flags, pgoff,
1055 			   accountable);
1056 }
1057 EXPORT_SYMBOL(do_mmap_pgoff);
1058 
1059 /*
1060  * Some shared mappigns will want the pages marked read-only
1061  * to track write events. If so, we'll downgrade vm_page_prot
1062  * to the private version (using protection_map[] without the
1063  * VM_SHARED bit).
1064  */
1065 int vma_wants_writenotify(struct vm_area_struct *vma)
1066 {
1067 	unsigned int vm_flags = vma->vm_flags;
1068 
1069 	/* If it was private or non-writable, the write bit is already clear */
1070 	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1071 		return 0;
1072 
1073 	/* The backer wishes to know when pages are first written to? */
1074 	if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1075 		return 1;
1076 
1077 	/* The open routine did something to the protections already? */
1078 	if (pgprot_val(vma->vm_page_prot) !=
1079 	    pgprot_val(vm_get_page_prot(vm_flags)))
1080 		return 0;
1081 
1082 	/* Specialty mapping? */
1083 	if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE))
1084 		return 0;
1085 
1086 	/* Can the mapping track the dirty pages? */
1087 	return vma->vm_file && vma->vm_file->f_mapping &&
1088 		mapping_cap_account_dirty(vma->vm_file->f_mapping);
1089 }
1090 
1091 unsigned long mmap_region(struct file *file, unsigned long addr,
1092 			  unsigned long len, unsigned long flags,
1093 			  unsigned int vm_flags, unsigned long pgoff,
1094 			  int accountable)
1095 {
1096 	struct mm_struct *mm = current->mm;
1097 	struct vm_area_struct *vma, *prev;
1098 	int correct_wcount = 0;
1099 	int error;
1100 	struct rb_node **rb_link, *rb_parent;
1101 	unsigned long charged = 0;
1102 	struct inode *inode =  file ? file->f_path.dentry->d_inode : NULL;
1103 
1104 	/* Clear old maps */
1105 	error = -ENOMEM;
1106 munmap_back:
1107 	vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1108 	if (vma && vma->vm_start < addr + len) {
1109 		if (do_munmap(mm, addr, len))
1110 			return -ENOMEM;
1111 		goto munmap_back;
1112 	}
1113 
1114 	/* Check against address space limit. */
1115 	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1116 		return -ENOMEM;
1117 
1118 	if (flags & MAP_NORESERVE)
1119 		vm_flags |= VM_NORESERVE;
1120 
1121 	if (accountable && (!(flags & MAP_NORESERVE) ||
1122 			    sysctl_overcommit_memory == OVERCOMMIT_NEVER)) {
1123 		if (vm_flags & VM_SHARED) {
1124 			/* Check memory availability in shmem_file_setup? */
1125 			vm_flags |= VM_ACCOUNT;
1126 		} else if (vm_flags & VM_WRITE) {
1127 			/*
1128 			 * Private writable mapping: check memory availability
1129 			 */
1130 			charged = len >> PAGE_SHIFT;
1131 			if (security_vm_enough_memory(charged))
1132 				return -ENOMEM;
1133 			vm_flags |= VM_ACCOUNT;
1134 		}
1135 	}
1136 
1137 	/*
1138 	 * Can we just expand an old private anonymous mapping?
1139 	 * The VM_SHARED test is necessary because shmem_zero_setup
1140 	 * will create the file object for a shared anonymous map below.
1141 	 */
1142 	if (!file && !(vm_flags & VM_SHARED) &&
1143 	    vma_merge(mm, prev, addr, addr + len, vm_flags,
1144 					NULL, NULL, pgoff, NULL))
1145 		goto out;
1146 
1147 	/*
1148 	 * Determine the object being mapped and call the appropriate
1149 	 * specific mapper. the address has already been validated, but
1150 	 * not unmapped, but the maps are removed from the list.
1151 	 */
1152 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1153 	if (!vma) {
1154 		error = -ENOMEM;
1155 		goto unacct_error;
1156 	}
1157 
1158 	vma->vm_mm = mm;
1159 	vma->vm_start = addr;
1160 	vma->vm_end = addr + len;
1161 	vma->vm_flags = vm_flags;
1162 	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1163 	vma->vm_pgoff = pgoff;
1164 
1165 	if (file) {
1166 		error = -EINVAL;
1167 		if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1168 			goto free_vma;
1169 		if (vm_flags & VM_DENYWRITE) {
1170 			error = deny_write_access(file);
1171 			if (error)
1172 				goto free_vma;
1173 			correct_wcount = 1;
1174 		}
1175 		vma->vm_file = file;
1176 		get_file(file);
1177 		error = file->f_op->mmap(file, vma);
1178 		if (error)
1179 			goto unmap_and_free_vma;
1180 		if (vm_flags & VM_EXECUTABLE)
1181 			added_exe_file_vma(mm);
1182 	} else if (vm_flags & VM_SHARED) {
1183 		error = shmem_zero_setup(vma);
1184 		if (error)
1185 			goto free_vma;
1186 	}
1187 
1188 	/* We set VM_ACCOUNT in a shared mapping's vm_flags, to inform
1189 	 * shmem_zero_setup (perhaps called through /dev/zero's ->mmap)
1190 	 * that memory reservation must be checked; but that reservation
1191 	 * belongs to shared memory object, not to vma: so now clear it.
1192 	 */
1193 	if ((vm_flags & (VM_SHARED|VM_ACCOUNT)) == (VM_SHARED|VM_ACCOUNT))
1194 		vma->vm_flags &= ~VM_ACCOUNT;
1195 
1196 	/* Can addr have changed??
1197 	 *
1198 	 * Answer: Yes, several device drivers can do it in their
1199 	 *         f_op->mmap method. -DaveM
1200 	 */
1201 	addr = vma->vm_start;
1202 	pgoff = vma->vm_pgoff;
1203 	vm_flags = vma->vm_flags;
1204 
1205 	if (vma_wants_writenotify(vma))
1206 		vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1207 
1208 	if (file && vma_merge(mm, prev, addr, vma->vm_end,
1209 			vma->vm_flags, NULL, file, pgoff, vma_policy(vma))) {
1210 		mpol_put(vma_policy(vma));
1211 		kmem_cache_free(vm_area_cachep, vma);
1212 		fput(file);
1213 		if (vm_flags & VM_EXECUTABLE)
1214 			removed_exe_file_vma(mm);
1215 	} else {
1216 		vma_link(mm, vma, prev, rb_link, rb_parent);
1217 		file = vma->vm_file;
1218 	}
1219 
1220 	/* Once vma denies write, undo our temporary denial count */
1221 	if (correct_wcount)
1222 		atomic_inc(&inode->i_writecount);
1223 out:
1224 	mm->total_vm += len >> PAGE_SHIFT;
1225 	vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1226 	if (vm_flags & VM_LOCKED) {
1227 		mm->locked_vm += len >> PAGE_SHIFT;
1228 		make_pages_present(addr, addr + len);
1229 	}
1230 	if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK))
1231 		make_pages_present(addr, addr + len);
1232 	return addr;
1233 
1234 unmap_and_free_vma:
1235 	if (correct_wcount)
1236 		atomic_inc(&inode->i_writecount);
1237 	vma->vm_file = NULL;
1238 	fput(file);
1239 
1240 	/* Undo any partial mapping done by a device driver. */
1241 	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1242 	charged = 0;
1243 free_vma:
1244 	kmem_cache_free(vm_area_cachep, vma);
1245 unacct_error:
1246 	if (charged)
1247 		vm_unacct_memory(charged);
1248 	return error;
1249 }
1250 
1251 /* Get an address range which is currently unmapped.
1252  * For shmat() with addr=0.
1253  *
1254  * Ugly calling convention alert:
1255  * Return value with the low bits set means error value,
1256  * ie
1257  *	if (ret & ~PAGE_MASK)
1258  *		error = ret;
1259  *
1260  * This function "knows" that -ENOMEM has the bits set.
1261  */
1262 #ifndef HAVE_ARCH_UNMAPPED_AREA
1263 unsigned long
1264 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1265 		unsigned long len, unsigned long pgoff, unsigned long flags)
1266 {
1267 	struct mm_struct *mm = current->mm;
1268 	struct vm_area_struct *vma;
1269 	unsigned long start_addr;
1270 
1271 	if (len > TASK_SIZE)
1272 		return -ENOMEM;
1273 
1274 	if (flags & MAP_FIXED)
1275 		return addr;
1276 
1277 	if (addr) {
1278 		addr = PAGE_ALIGN(addr);
1279 		vma = find_vma(mm, addr);
1280 		if (TASK_SIZE - len >= addr &&
1281 		    (!vma || addr + len <= vma->vm_start))
1282 			return addr;
1283 	}
1284 	if (len > mm->cached_hole_size) {
1285 	        start_addr = addr = mm->free_area_cache;
1286 	} else {
1287 	        start_addr = addr = TASK_UNMAPPED_BASE;
1288 	        mm->cached_hole_size = 0;
1289 	}
1290 
1291 full_search:
1292 	for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1293 		/* At this point:  (!vma || addr < vma->vm_end). */
1294 		if (TASK_SIZE - len < addr) {
1295 			/*
1296 			 * Start a new search - just in case we missed
1297 			 * some holes.
1298 			 */
1299 			if (start_addr != TASK_UNMAPPED_BASE) {
1300 				addr = TASK_UNMAPPED_BASE;
1301 			        start_addr = addr;
1302 				mm->cached_hole_size = 0;
1303 				goto full_search;
1304 			}
1305 			return -ENOMEM;
1306 		}
1307 		if (!vma || addr + len <= vma->vm_start) {
1308 			/*
1309 			 * Remember the place where we stopped the search:
1310 			 */
1311 			mm->free_area_cache = addr + len;
1312 			return addr;
1313 		}
1314 		if (addr + mm->cached_hole_size < vma->vm_start)
1315 		        mm->cached_hole_size = vma->vm_start - addr;
1316 		addr = vma->vm_end;
1317 	}
1318 }
1319 #endif
1320 
1321 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1322 {
1323 	/*
1324 	 * Is this a new hole at the lowest possible address?
1325 	 */
1326 	if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) {
1327 		mm->free_area_cache = addr;
1328 		mm->cached_hole_size = ~0UL;
1329 	}
1330 }
1331 
1332 /*
1333  * This mmap-allocator allocates new areas top-down from below the
1334  * stack's low limit (the base):
1335  */
1336 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1337 unsigned long
1338 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1339 			  const unsigned long len, const unsigned long pgoff,
1340 			  const unsigned long flags)
1341 {
1342 	struct vm_area_struct *vma;
1343 	struct mm_struct *mm = current->mm;
1344 	unsigned long addr = addr0;
1345 
1346 	/* requested length too big for entire address space */
1347 	if (len > TASK_SIZE)
1348 		return -ENOMEM;
1349 
1350 	if (flags & MAP_FIXED)
1351 		return addr;
1352 
1353 	/* requesting a specific address */
1354 	if (addr) {
1355 		addr = PAGE_ALIGN(addr);
1356 		vma = find_vma(mm, addr);
1357 		if (TASK_SIZE - len >= addr &&
1358 				(!vma || addr + len <= vma->vm_start))
1359 			return addr;
1360 	}
1361 
1362 	/* check if free_area_cache is useful for us */
1363 	if (len <= mm->cached_hole_size) {
1364  	        mm->cached_hole_size = 0;
1365  		mm->free_area_cache = mm->mmap_base;
1366  	}
1367 
1368 	/* either no address requested or can't fit in requested address hole */
1369 	addr = mm->free_area_cache;
1370 
1371 	/* make sure it can fit in the remaining address space */
1372 	if (addr > len) {
1373 		vma = find_vma(mm, addr-len);
1374 		if (!vma || addr <= vma->vm_start)
1375 			/* remember the address as a hint for next time */
1376 			return (mm->free_area_cache = addr-len);
1377 	}
1378 
1379 	if (mm->mmap_base < len)
1380 		goto bottomup;
1381 
1382 	addr = mm->mmap_base-len;
1383 
1384 	do {
1385 		/*
1386 		 * Lookup failure means no vma is above this address,
1387 		 * else if new region fits below vma->vm_start,
1388 		 * return with success:
1389 		 */
1390 		vma = find_vma(mm, addr);
1391 		if (!vma || addr+len <= vma->vm_start)
1392 			/* remember the address as a hint for next time */
1393 			return (mm->free_area_cache = addr);
1394 
1395  		/* remember the largest hole we saw so far */
1396  		if (addr + mm->cached_hole_size < vma->vm_start)
1397  		        mm->cached_hole_size = vma->vm_start - addr;
1398 
1399 		/* try just below the current vma->vm_start */
1400 		addr = vma->vm_start-len;
1401 	} while (len < vma->vm_start);
1402 
1403 bottomup:
1404 	/*
1405 	 * A failed mmap() very likely causes application failure,
1406 	 * so fall back to the bottom-up function here. This scenario
1407 	 * can happen with large stack limits and large mmap()
1408 	 * allocations.
1409 	 */
1410 	mm->cached_hole_size = ~0UL;
1411   	mm->free_area_cache = TASK_UNMAPPED_BASE;
1412 	addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1413 	/*
1414 	 * Restore the topdown base:
1415 	 */
1416 	mm->free_area_cache = mm->mmap_base;
1417 	mm->cached_hole_size = ~0UL;
1418 
1419 	return addr;
1420 }
1421 #endif
1422 
1423 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1424 {
1425 	/*
1426 	 * Is this a new hole at the highest possible address?
1427 	 */
1428 	if (addr > mm->free_area_cache)
1429 		mm->free_area_cache = addr;
1430 
1431 	/* dont allow allocations above current base */
1432 	if (mm->free_area_cache > mm->mmap_base)
1433 		mm->free_area_cache = mm->mmap_base;
1434 }
1435 
1436 unsigned long
1437 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1438 		unsigned long pgoff, unsigned long flags)
1439 {
1440 	unsigned long (*get_area)(struct file *, unsigned long,
1441 				  unsigned long, unsigned long, unsigned long);
1442 
1443 	get_area = current->mm->get_unmapped_area;
1444 	if (file && file->f_op && file->f_op->get_unmapped_area)
1445 		get_area = file->f_op->get_unmapped_area;
1446 	addr = get_area(file, addr, len, pgoff, flags);
1447 	if (IS_ERR_VALUE(addr))
1448 		return addr;
1449 
1450 	if (addr > TASK_SIZE - len)
1451 		return -ENOMEM;
1452 	if (addr & ~PAGE_MASK)
1453 		return -EINVAL;
1454 
1455 	return arch_rebalance_pgtables(addr, len);
1456 }
1457 
1458 EXPORT_SYMBOL(get_unmapped_area);
1459 
1460 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1461 struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr)
1462 {
1463 	struct vm_area_struct *vma = NULL;
1464 
1465 	if (mm) {
1466 		/* Check the cache first. */
1467 		/* (Cache hit rate is typically around 35%.) */
1468 		vma = mm->mmap_cache;
1469 		if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1470 			struct rb_node * rb_node;
1471 
1472 			rb_node = mm->mm_rb.rb_node;
1473 			vma = NULL;
1474 
1475 			while (rb_node) {
1476 				struct vm_area_struct * vma_tmp;
1477 
1478 				vma_tmp = rb_entry(rb_node,
1479 						struct vm_area_struct, vm_rb);
1480 
1481 				if (vma_tmp->vm_end > addr) {
1482 					vma = vma_tmp;
1483 					if (vma_tmp->vm_start <= addr)
1484 						break;
1485 					rb_node = rb_node->rb_left;
1486 				} else
1487 					rb_node = rb_node->rb_right;
1488 			}
1489 			if (vma)
1490 				mm->mmap_cache = vma;
1491 		}
1492 	}
1493 	return vma;
1494 }
1495 
1496 EXPORT_SYMBOL(find_vma);
1497 
1498 /* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */
1499 struct vm_area_struct *
1500 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1501 			struct vm_area_struct **pprev)
1502 {
1503 	struct vm_area_struct *vma = NULL, *prev = NULL;
1504 	struct rb_node * rb_node;
1505 	if (!mm)
1506 		goto out;
1507 
1508 	/* Guard against addr being lower than the first VMA */
1509 	vma = mm->mmap;
1510 
1511 	/* Go through the RB tree quickly. */
1512 	rb_node = mm->mm_rb.rb_node;
1513 
1514 	while (rb_node) {
1515 		struct vm_area_struct *vma_tmp;
1516 		vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1517 
1518 		if (addr < vma_tmp->vm_end) {
1519 			rb_node = rb_node->rb_left;
1520 		} else {
1521 			prev = vma_tmp;
1522 			if (!prev->vm_next || (addr < prev->vm_next->vm_end))
1523 				break;
1524 			rb_node = rb_node->rb_right;
1525 		}
1526 	}
1527 
1528 out:
1529 	*pprev = prev;
1530 	return prev ? prev->vm_next : vma;
1531 }
1532 
1533 /*
1534  * Verify that the stack growth is acceptable and
1535  * update accounting. This is shared with both the
1536  * grow-up and grow-down cases.
1537  */
1538 static int acct_stack_growth(struct vm_area_struct * vma, unsigned long size, unsigned long grow)
1539 {
1540 	struct mm_struct *mm = vma->vm_mm;
1541 	struct rlimit *rlim = current->signal->rlim;
1542 	unsigned long new_start;
1543 
1544 	/* address space limit tests */
1545 	if (!may_expand_vm(mm, grow))
1546 		return -ENOMEM;
1547 
1548 	/* Stack limit test */
1549 	if (size > rlim[RLIMIT_STACK].rlim_cur)
1550 		return -ENOMEM;
1551 
1552 	/* mlock limit tests */
1553 	if (vma->vm_flags & VM_LOCKED) {
1554 		unsigned long locked;
1555 		unsigned long limit;
1556 		locked = mm->locked_vm + grow;
1557 		limit = rlim[RLIMIT_MEMLOCK].rlim_cur >> PAGE_SHIFT;
1558 		if (locked > limit && !capable(CAP_IPC_LOCK))
1559 			return -ENOMEM;
1560 	}
1561 
1562 	/* Check to ensure the stack will not grow into a hugetlb-only region */
1563 	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1564 			vma->vm_end - size;
1565 	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1566 		return -EFAULT;
1567 
1568 	/*
1569 	 * Overcommit..  This must be the final test, as it will
1570 	 * update security statistics.
1571 	 */
1572 	if (security_vm_enough_memory(grow))
1573 		return -ENOMEM;
1574 
1575 	/* Ok, everything looks good - let it rip */
1576 	mm->total_vm += grow;
1577 	if (vma->vm_flags & VM_LOCKED)
1578 		mm->locked_vm += grow;
1579 	vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1580 	return 0;
1581 }
1582 
1583 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1584 /*
1585  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1586  * vma is the last one with address > vma->vm_end.  Have to extend vma.
1587  */
1588 #ifndef CONFIG_IA64
1589 static inline
1590 #endif
1591 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1592 {
1593 	int error;
1594 
1595 	if (!(vma->vm_flags & VM_GROWSUP))
1596 		return -EFAULT;
1597 
1598 	/*
1599 	 * We must make sure the anon_vma is allocated
1600 	 * so that the anon_vma locking is not a noop.
1601 	 */
1602 	if (unlikely(anon_vma_prepare(vma)))
1603 		return -ENOMEM;
1604 	anon_vma_lock(vma);
1605 
1606 	/*
1607 	 * vma->vm_start/vm_end cannot change under us because the caller
1608 	 * is required to hold the mmap_sem in read mode.  We need the
1609 	 * anon_vma lock to serialize against concurrent expand_stacks.
1610 	 * Also guard against wrapping around to address 0.
1611 	 */
1612 	if (address < PAGE_ALIGN(address+4))
1613 		address = PAGE_ALIGN(address+4);
1614 	else {
1615 		anon_vma_unlock(vma);
1616 		return -ENOMEM;
1617 	}
1618 	error = 0;
1619 
1620 	/* Somebody else might have raced and expanded it already */
1621 	if (address > vma->vm_end) {
1622 		unsigned long size, grow;
1623 
1624 		size = address - vma->vm_start;
1625 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
1626 
1627 		error = acct_stack_growth(vma, size, grow);
1628 		if (!error)
1629 			vma->vm_end = address;
1630 	}
1631 	anon_vma_unlock(vma);
1632 	return error;
1633 }
1634 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1635 
1636 /*
1637  * vma is the first one with address < vma->vm_start.  Have to extend vma.
1638  */
1639 static inline int expand_downwards(struct vm_area_struct *vma,
1640 				   unsigned long address)
1641 {
1642 	int error;
1643 
1644 	/*
1645 	 * We must make sure the anon_vma is allocated
1646 	 * so that the anon_vma locking is not a noop.
1647 	 */
1648 	if (unlikely(anon_vma_prepare(vma)))
1649 		return -ENOMEM;
1650 
1651 	address &= PAGE_MASK;
1652 	error = security_file_mmap(NULL, 0, 0, 0, address, 1);
1653 	if (error)
1654 		return error;
1655 
1656 	anon_vma_lock(vma);
1657 
1658 	/*
1659 	 * vma->vm_start/vm_end cannot change under us because the caller
1660 	 * is required to hold the mmap_sem in read mode.  We need the
1661 	 * anon_vma lock to serialize against concurrent expand_stacks.
1662 	 */
1663 
1664 	/* Somebody else might have raced and expanded it already */
1665 	if (address < vma->vm_start) {
1666 		unsigned long size, grow;
1667 
1668 		size = vma->vm_end - address;
1669 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
1670 
1671 		error = acct_stack_growth(vma, size, grow);
1672 		if (!error) {
1673 			vma->vm_start = address;
1674 			vma->vm_pgoff -= grow;
1675 		}
1676 	}
1677 	anon_vma_unlock(vma);
1678 	return error;
1679 }
1680 
1681 int expand_stack_downwards(struct vm_area_struct *vma, unsigned long address)
1682 {
1683 	return expand_downwards(vma, address);
1684 }
1685 
1686 #ifdef CONFIG_STACK_GROWSUP
1687 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1688 {
1689 	return expand_upwards(vma, address);
1690 }
1691 
1692 struct vm_area_struct *
1693 find_extend_vma(struct mm_struct *mm, unsigned long addr)
1694 {
1695 	struct vm_area_struct *vma, *prev;
1696 
1697 	addr &= PAGE_MASK;
1698 	vma = find_vma_prev(mm, addr, &prev);
1699 	if (vma && (vma->vm_start <= addr))
1700 		return vma;
1701 	if (!prev || expand_stack(prev, addr))
1702 		return NULL;
1703 	if (prev->vm_flags & VM_LOCKED)
1704 		make_pages_present(addr, prev->vm_end);
1705 	return prev;
1706 }
1707 #else
1708 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1709 {
1710 	return expand_downwards(vma, address);
1711 }
1712 
1713 struct vm_area_struct *
1714 find_extend_vma(struct mm_struct * mm, unsigned long addr)
1715 {
1716 	struct vm_area_struct * vma;
1717 	unsigned long start;
1718 
1719 	addr &= PAGE_MASK;
1720 	vma = find_vma(mm,addr);
1721 	if (!vma)
1722 		return NULL;
1723 	if (vma->vm_start <= addr)
1724 		return vma;
1725 	if (!(vma->vm_flags & VM_GROWSDOWN))
1726 		return NULL;
1727 	start = vma->vm_start;
1728 	if (expand_stack(vma, addr))
1729 		return NULL;
1730 	if (vma->vm_flags & VM_LOCKED)
1731 		make_pages_present(addr, start);
1732 	return vma;
1733 }
1734 #endif
1735 
1736 /*
1737  * Ok - we have the memory areas we should free on the vma list,
1738  * so release them, and do the vma updates.
1739  *
1740  * Called with the mm semaphore held.
1741  */
1742 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1743 {
1744 	/* Update high watermark before we lower total_vm */
1745 	update_hiwater_vm(mm);
1746 	do {
1747 		long nrpages = vma_pages(vma);
1748 
1749 		mm->total_vm -= nrpages;
1750 		if (vma->vm_flags & VM_LOCKED)
1751 			mm->locked_vm -= nrpages;
1752 		vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
1753 		vma = remove_vma(vma);
1754 	} while (vma);
1755 	validate_mm(mm);
1756 }
1757 
1758 /*
1759  * Get rid of page table information in the indicated region.
1760  *
1761  * Called with the mm semaphore held.
1762  */
1763 static void unmap_region(struct mm_struct *mm,
1764 		struct vm_area_struct *vma, struct vm_area_struct *prev,
1765 		unsigned long start, unsigned long end)
1766 {
1767 	struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1768 	struct mmu_gather *tlb;
1769 	unsigned long nr_accounted = 0;
1770 
1771 	lru_add_drain();
1772 	tlb = tlb_gather_mmu(mm, 0);
1773 	update_hiwater_rss(mm);
1774 	unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL);
1775 	vm_unacct_memory(nr_accounted);
1776 	free_pgtables(tlb, vma, prev? prev->vm_end: FIRST_USER_ADDRESS,
1777 				 next? next->vm_start: 0);
1778 	tlb_finish_mmu(tlb, start, end);
1779 }
1780 
1781 /*
1782  * Create a list of vma's touched by the unmap, removing them from the mm's
1783  * vma list as we go..
1784  */
1785 static void
1786 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1787 	struct vm_area_struct *prev, unsigned long end)
1788 {
1789 	struct vm_area_struct **insertion_point;
1790 	struct vm_area_struct *tail_vma = NULL;
1791 	unsigned long addr;
1792 
1793 	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1794 	do {
1795 		rb_erase(&vma->vm_rb, &mm->mm_rb);
1796 		mm->map_count--;
1797 		tail_vma = vma;
1798 		vma = vma->vm_next;
1799 	} while (vma && vma->vm_start < end);
1800 	*insertion_point = vma;
1801 	tail_vma->vm_next = NULL;
1802 	if (mm->unmap_area == arch_unmap_area)
1803 		addr = prev ? prev->vm_end : mm->mmap_base;
1804 	else
1805 		addr = vma ?  vma->vm_start : mm->mmap_base;
1806 	mm->unmap_area(mm, addr);
1807 	mm->mmap_cache = NULL;		/* Kill the cache. */
1808 }
1809 
1810 /*
1811  * Split a vma into two pieces at address 'addr', a new vma is allocated
1812  * either for the first part or the tail.
1813  */
1814 int split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1815 	      unsigned long addr, int new_below)
1816 {
1817 	struct mempolicy *pol;
1818 	struct vm_area_struct *new;
1819 
1820 	if (is_vm_hugetlb_page(vma) && (addr &
1821 					~(huge_page_mask(hstate_vma(vma)))))
1822 		return -EINVAL;
1823 
1824 	if (mm->map_count >= sysctl_max_map_count)
1825 		return -ENOMEM;
1826 
1827 	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1828 	if (!new)
1829 		return -ENOMEM;
1830 
1831 	/* most fields are the same, copy all, and then fixup */
1832 	*new = *vma;
1833 
1834 	if (new_below)
1835 		new->vm_end = addr;
1836 	else {
1837 		new->vm_start = addr;
1838 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
1839 	}
1840 
1841 	pol = mpol_dup(vma_policy(vma));
1842 	if (IS_ERR(pol)) {
1843 		kmem_cache_free(vm_area_cachep, new);
1844 		return PTR_ERR(pol);
1845 	}
1846 	vma_set_policy(new, pol);
1847 
1848 	if (new->vm_file) {
1849 		get_file(new->vm_file);
1850 		if (vma->vm_flags & VM_EXECUTABLE)
1851 			added_exe_file_vma(mm);
1852 	}
1853 
1854 	if (new->vm_ops && new->vm_ops->open)
1855 		new->vm_ops->open(new);
1856 
1857 	if (new_below)
1858 		vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
1859 			((addr - new->vm_start) >> PAGE_SHIFT), new);
1860 	else
1861 		vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
1862 
1863 	return 0;
1864 }
1865 
1866 /* Munmap is split into 2 main parts -- this part which finds
1867  * what needs doing, and the areas themselves, which do the
1868  * work.  This now handles partial unmappings.
1869  * Jeremy Fitzhardinge <jeremy@goop.org>
1870  */
1871 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1872 {
1873 	unsigned long end;
1874 	struct vm_area_struct *vma, *prev, *last;
1875 
1876 	if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
1877 		return -EINVAL;
1878 
1879 	if ((len = PAGE_ALIGN(len)) == 0)
1880 		return -EINVAL;
1881 
1882 	/* Find the first overlapping VMA */
1883 	vma = find_vma_prev(mm, start, &prev);
1884 	if (!vma)
1885 		return 0;
1886 	/* we have  start < vma->vm_end  */
1887 
1888 	/* if it doesn't overlap, we have nothing.. */
1889 	end = start + len;
1890 	if (vma->vm_start >= end)
1891 		return 0;
1892 
1893 	/*
1894 	 * If we need to split any vma, do it now to save pain later.
1895 	 *
1896 	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
1897 	 * unmapped vm_area_struct will remain in use: so lower split_vma
1898 	 * places tmp vma above, and higher split_vma places tmp vma below.
1899 	 */
1900 	if (start > vma->vm_start) {
1901 		int error = split_vma(mm, vma, start, 0);
1902 		if (error)
1903 			return error;
1904 		prev = vma;
1905 	}
1906 
1907 	/* Does it split the last one? */
1908 	last = find_vma(mm, end);
1909 	if (last && end > last->vm_start) {
1910 		int error = split_vma(mm, last, end, 1);
1911 		if (error)
1912 			return error;
1913 	}
1914 	vma = prev? prev->vm_next: mm->mmap;
1915 
1916 	/*
1917 	 * Remove the vma's, and unmap the actual pages
1918 	 */
1919 	detach_vmas_to_be_unmapped(mm, vma, prev, end);
1920 	unmap_region(mm, vma, prev, start, end);
1921 
1922 	/* Fix up all other VM information */
1923 	remove_vma_list(mm, vma);
1924 
1925 	return 0;
1926 }
1927 
1928 EXPORT_SYMBOL(do_munmap);
1929 
1930 asmlinkage long sys_munmap(unsigned long addr, size_t len)
1931 {
1932 	int ret;
1933 	struct mm_struct *mm = current->mm;
1934 
1935 	profile_munmap(addr);
1936 
1937 	down_write(&mm->mmap_sem);
1938 	ret = do_munmap(mm, addr, len);
1939 	up_write(&mm->mmap_sem);
1940 	return ret;
1941 }
1942 
1943 static inline void verify_mm_writelocked(struct mm_struct *mm)
1944 {
1945 #ifdef CONFIG_DEBUG_VM
1946 	if (unlikely(down_read_trylock(&mm->mmap_sem))) {
1947 		WARN_ON(1);
1948 		up_read(&mm->mmap_sem);
1949 	}
1950 #endif
1951 }
1952 
1953 /*
1954  *  this is really a simplified "do_mmap".  it only handles
1955  *  anonymous maps.  eventually we may be able to do some
1956  *  brk-specific accounting here.
1957  */
1958 unsigned long do_brk(unsigned long addr, unsigned long len)
1959 {
1960 	struct mm_struct * mm = current->mm;
1961 	struct vm_area_struct * vma, * prev;
1962 	unsigned long flags;
1963 	struct rb_node ** rb_link, * rb_parent;
1964 	pgoff_t pgoff = addr >> PAGE_SHIFT;
1965 	int error;
1966 
1967 	len = PAGE_ALIGN(len);
1968 	if (!len)
1969 		return addr;
1970 
1971 	if ((addr + len) > TASK_SIZE || (addr + len) < addr)
1972 		return -EINVAL;
1973 
1974 	if (is_hugepage_only_range(mm, addr, len))
1975 		return -EINVAL;
1976 
1977 	error = security_file_mmap(NULL, 0, 0, 0, addr, 1);
1978 	if (error)
1979 		return error;
1980 
1981 	flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
1982 
1983 	error = arch_mmap_check(addr, len, flags);
1984 	if (error)
1985 		return error;
1986 
1987 	/*
1988 	 * mlock MCL_FUTURE?
1989 	 */
1990 	if (mm->def_flags & VM_LOCKED) {
1991 		unsigned long locked, lock_limit;
1992 		locked = len >> PAGE_SHIFT;
1993 		locked += mm->locked_vm;
1994 		lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
1995 		lock_limit >>= PAGE_SHIFT;
1996 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1997 			return -EAGAIN;
1998 	}
1999 
2000 	/*
2001 	 * mm->mmap_sem is required to protect against another thread
2002 	 * changing the mappings in case we sleep.
2003 	 */
2004 	verify_mm_writelocked(mm);
2005 
2006 	/*
2007 	 * Clear old maps.  this also does some error checking for us
2008 	 */
2009  munmap_back:
2010 	vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2011 	if (vma && vma->vm_start < addr + len) {
2012 		if (do_munmap(mm, addr, len))
2013 			return -ENOMEM;
2014 		goto munmap_back;
2015 	}
2016 
2017 	/* Check against address space limits *after* clearing old maps... */
2018 	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2019 		return -ENOMEM;
2020 
2021 	if (mm->map_count > sysctl_max_map_count)
2022 		return -ENOMEM;
2023 
2024 	if (security_vm_enough_memory(len >> PAGE_SHIFT))
2025 		return -ENOMEM;
2026 
2027 	/* Can we just expand an old private anonymous mapping? */
2028 	if (vma_merge(mm, prev, addr, addr + len, flags,
2029 					NULL, NULL, pgoff, NULL))
2030 		goto out;
2031 
2032 	/*
2033 	 * create a vma struct for an anonymous mapping
2034 	 */
2035 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2036 	if (!vma) {
2037 		vm_unacct_memory(len >> PAGE_SHIFT);
2038 		return -ENOMEM;
2039 	}
2040 
2041 	vma->vm_mm = mm;
2042 	vma->vm_start = addr;
2043 	vma->vm_end = addr + len;
2044 	vma->vm_pgoff = pgoff;
2045 	vma->vm_flags = flags;
2046 	vma->vm_page_prot = vm_get_page_prot(flags);
2047 	vma_link(mm, vma, prev, rb_link, rb_parent);
2048 out:
2049 	mm->total_vm += len >> PAGE_SHIFT;
2050 	if (flags & VM_LOCKED) {
2051 		mm->locked_vm += len >> PAGE_SHIFT;
2052 		make_pages_present(addr, addr + len);
2053 	}
2054 	return addr;
2055 }
2056 
2057 EXPORT_SYMBOL(do_brk);
2058 
2059 /* Release all mmaps. */
2060 void exit_mmap(struct mm_struct *mm)
2061 {
2062 	struct mmu_gather *tlb;
2063 	struct vm_area_struct *vma = mm->mmap;
2064 	unsigned long nr_accounted = 0;
2065 	unsigned long end;
2066 
2067 	/* mm's last user has gone, and its about to be pulled down */
2068 	arch_exit_mmap(mm);
2069 	mmu_notifier_release(mm);
2070 
2071 	lru_add_drain();
2072 	flush_cache_mm(mm);
2073 	tlb = tlb_gather_mmu(mm, 1);
2074 	/* Don't update_hiwater_rss(mm) here, do_exit already did */
2075 	/* Use -1 here to ensure all VMAs in the mm are unmapped */
2076 	end = unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL);
2077 	vm_unacct_memory(nr_accounted);
2078 	free_pgtables(tlb, vma, FIRST_USER_ADDRESS, 0);
2079 	tlb_finish_mmu(tlb, 0, end);
2080 
2081 	/*
2082 	 * Walk the list again, actually closing and freeing it,
2083 	 * with preemption enabled, without holding any MM locks.
2084 	 */
2085 	while (vma)
2086 		vma = remove_vma(vma);
2087 
2088 	BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2089 }
2090 
2091 /* Insert vm structure into process list sorted by address
2092  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2093  * then i_mmap_lock is taken here.
2094  */
2095 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
2096 {
2097 	struct vm_area_struct * __vma, * prev;
2098 	struct rb_node ** rb_link, * rb_parent;
2099 
2100 	/*
2101 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
2102 	 * until its first write fault, when page's anon_vma and index
2103 	 * are set.  But now set the vm_pgoff it will almost certainly
2104 	 * end up with (unless mremap moves it elsewhere before that
2105 	 * first wfault), so /proc/pid/maps tells a consistent story.
2106 	 *
2107 	 * By setting it to reflect the virtual start address of the
2108 	 * vma, merges and splits can happen in a seamless way, just
2109 	 * using the existing file pgoff checks and manipulations.
2110 	 * Similarly in do_mmap_pgoff and in do_brk.
2111 	 */
2112 	if (!vma->vm_file) {
2113 		BUG_ON(vma->anon_vma);
2114 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2115 	}
2116 	__vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent);
2117 	if (__vma && __vma->vm_start < vma->vm_end)
2118 		return -ENOMEM;
2119 	if ((vma->vm_flags & VM_ACCOUNT) &&
2120 	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
2121 		return -ENOMEM;
2122 	vma_link(mm, vma, prev, rb_link, rb_parent);
2123 	return 0;
2124 }
2125 
2126 /*
2127  * Copy the vma structure to a new location in the same mm,
2128  * prior to moving page table entries, to effect an mremap move.
2129  */
2130 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2131 	unsigned long addr, unsigned long len, pgoff_t pgoff)
2132 {
2133 	struct vm_area_struct *vma = *vmap;
2134 	unsigned long vma_start = vma->vm_start;
2135 	struct mm_struct *mm = vma->vm_mm;
2136 	struct vm_area_struct *new_vma, *prev;
2137 	struct rb_node **rb_link, *rb_parent;
2138 	struct mempolicy *pol;
2139 
2140 	/*
2141 	 * If anonymous vma has not yet been faulted, update new pgoff
2142 	 * to match new location, to increase its chance of merging.
2143 	 */
2144 	if (!vma->vm_file && !vma->anon_vma)
2145 		pgoff = addr >> PAGE_SHIFT;
2146 
2147 	find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2148 	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2149 			vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2150 	if (new_vma) {
2151 		/*
2152 		 * Source vma may have been merged into new_vma
2153 		 */
2154 		if (vma_start >= new_vma->vm_start &&
2155 		    vma_start < new_vma->vm_end)
2156 			*vmap = new_vma;
2157 	} else {
2158 		new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2159 		if (new_vma) {
2160 			*new_vma = *vma;
2161 			pol = mpol_dup(vma_policy(vma));
2162 			if (IS_ERR(pol)) {
2163 				kmem_cache_free(vm_area_cachep, new_vma);
2164 				return NULL;
2165 			}
2166 			vma_set_policy(new_vma, pol);
2167 			new_vma->vm_start = addr;
2168 			new_vma->vm_end = addr + len;
2169 			new_vma->vm_pgoff = pgoff;
2170 			if (new_vma->vm_file) {
2171 				get_file(new_vma->vm_file);
2172 				if (vma->vm_flags & VM_EXECUTABLE)
2173 					added_exe_file_vma(mm);
2174 			}
2175 			if (new_vma->vm_ops && new_vma->vm_ops->open)
2176 				new_vma->vm_ops->open(new_vma);
2177 			vma_link(mm, new_vma, prev, rb_link, rb_parent);
2178 		}
2179 	}
2180 	return new_vma;
2181 }
2182 
2183 /*
2184  * Return true if the calling process may expand its vm space by the passed
2185  * number of pages
2186  */
2187 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2188 {
2189 	unsigned long cur = mm->total_vm;	/* pages */
2190 	unsigned long lim;
2191 
2192 	lim = current->signal->rlim[RLIMIT_AS].rlim_cur >> PAGE_SHIFT;
2193 
2194 	if (cur + npages > lim)
2195 		return 0;
2196 	return 1;
2197 }
2198 
2199 
2200 static int special_mapping_fault(struct vm_area_struct *vma,
2201 				struct vm_fault *vmf)
2202 {
2203 	pgoff_t pgoff;
2204 	struct page **pages;
2205 
2206 	/*
2207 	 * special mappings have no vm_file, and in that case, the mm
2208 	 * uses vm_pgoff internally. So we have to subtract it from here.
2209 	 * We are allowed to do this because we are the mm; do not copy
2210 	 * this code into drivers!
2211 	 */
2212 	pgoff = vmf->pgoff - vma->vm_pgoff;
2213 
2214 	for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2215 		pgoff--;
2216 
2217 	if (*pages) {
2218 		struct page *page = *pages;
2219 		get_page(page);
2220 		vmf->page = page;
2221 		return 0;
2222 	}
2223 
2224 	return VM_FAULT_SIGBUS;
2225 }
2226 
2227 /*
2228  * Having a close hook prevents vma merging regardless of flags.
2229  */
2230 static void special_mapping_close(struct vm_area_struct *vma)
2231 {
2232 }
2233 
2234 static struct vm_operations_struct special_mapping_vmops = {
2235 	.close = special_mapping_close,
2236 	.fault = special_mapping_fault,
2237 };
2238 
2239 /*
2240  * Called with mm->mmap_sem held for writing.
2241  * Insert a new vma covering the given region, with the given flags.
2242  * Its pages are supplied by the given array of struct page *.
2243  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2244  * The region past the last page supplied will always produce SIGBUS.
2245  * The array pointer and the pages it points to are assumed to stay alive
2246  * for as long as this mapping might exist.
2247  */
2248 int install_special_mapping(struct mm_struct *mm,
2249 			    unsigned long addr, unsigned long len,
2250 			    unsigned long vm_flags, struct page **pages)
2251 {
2252 	struct vm_area_struct *vma;
2253 
2254 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2255 	if (unlikely(vma == NULL))
2256 		return -ENOMEM;
2257 
2258 	vma->vm_mm = mm;
2259 	vma->vm_start = addr;
2260 	vma->vm_end = addr + len;
2261 
2262 	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
2263 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2264 
2265 	vma->vm_ops = &special_mapping_vmops;
2266 	vma->vm_private_data = pages;
2267 
2268 	if (unlikely(insert_vm_struct(mm, vma))) {
2269 		kmem_cache_free(vm_area_cachep, vma);
2270 		return -ENOMEM;
2271 	}
2272 
2273 	mm->total_vm += len >> PAGE_SHIFT;
2274 
2275 	return 0;
2276 }
2277 
2278 static DEFINE_MUTEX(mm_all_locks_mutex);
2279 
2280 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2281 {
2282 	if (!test_bit(0, (unsigned long *) &anon_vma->head.next)) {
2283 		/*
2284 		 * The LSB of head.next can't change from under us
2285 		 * because we hold the mm_all_locks_mutex.
2286 		 */
2287 		spin_lock_nest_lock(&anon_vma->lock, &mm->mmap_sem);
2288 		/*
2289 		 * We can safely modify head.next after taking the
2290 		 * anon_vma->lock. If some other vma in this mm shares
2291 		 * the same anon_vma we won't take it again.
2292 		 *
2293 		 * No need of atomic instructions here, head.next
2294 		 * can't change from under us thanks to the
2295 		 * anon_vma->lock.
2296 		 */
2297 		if (__test_and_set_bit(0, (unsigned long *)
2298 				       &anon_vma->head.next))
2299 			BUG();
2300 	}
2301 }
2302 
2303 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2304 {
2305 	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2306 		/*
2307 		 * AS_MM_ALL_LOCKS can't change from under us because
2308 		 * we hold the mm_all_locks_mutex.
2309 		 *
2310 		 * Operations on ->flags have to be atomic because
2311 		 * even if AS_MM_ALL_LOCKS is stable thanks to the
2312 		 * mm_all_locks_mutex, there may be other cpus
2313 		 * changing other bitflags in parallel to us.
2314 		 */
2315 		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2316 			BUG();
2317 		spin_lock_nest_lock(&mapping->i_mmap_lock, &mm->mmap_sem);
2318 	}
2319 }
2320 
2321 /*
2322  * This operation locks against the VM for all pte/vma/mm related
2323  * operations that could ever happen on a certain mm. This includes
2324  * vmtruncate, try_to_unmap, and all page faults.
2325  *
2326  * The caller must take the mmap_sem in write mode before calling
2327  * mm_take_all_locks(). The caller isn't allowed to release the
2328  * mmap_sem until mm_drop_all_locks() returns.
2329  *
2330  * mmap_sem in write mode is required in order to block all operations
2331  * that could modify pagetables and free pages without need of
2332  * altering the vma layout (for example populate_range() with
2333  * nonlinear vmas). It's also needed in write mode to avoid new
2334  * anon_vmas to be associated with existing vmas.
2335  *
2336  * A single task can't take more than one mm_take_all_locks() in a row
2337  * or it would deadlock.
2338  *
2339  * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in
2340  * mapping->flags avoid to take the same lock twice, if more than one
2341  * vma in this mm is backed by the same anon_vma or address_space.
2342  *
2343  * We can take all the locks in random order because the VM code
2344  * taking i_mmap_lock or anon_vma->lock outside the mmap_sem never
2345  * takes more than one of them in a row. Secondly we're protected
2346  * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
2347  *
2348  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2349  * that may have to take thousand of locks.
2350  *
2351  * mm_take_all_locks() can fail if it's interrupted by signals.
2352  */
2353 int mm_take_all_locks(struct mm_struct *mm)
2354 {
2355 	struct vm_area_struct *vma;
2356 	int ret = -EINTR;
2357 
2358 	BUG_ON(down_read_trylock(&mm->mmap_sem));
2359 
2360 	mutex_lock(&mm_all_locks_mutex);
2361 
2362 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2363 		if (signal_pending(current))
2364 			goto out_unlock;
2365 		if (vma->vm_file && vma->vm_file->f_mapping)
2366 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
2367 	}
2368 
2369 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2370 		if (signal_pending(current))
2371 			goto out_unlock;
2372 		if (vma->anon_vma)
2373 			vm_lock_anon_vma(mm, vma->anon_vma);
2374 	}
2375 
2376 	ret = 0;
2377 
2378 out_unlock:
2379 	if (ret)
2380 		mm_drop_all_locks(mm);
2381 
2382 	return ret;
2383 }
2384 
2385 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2386 {
2387 	if (test_bit(0, (unsigned long *) &anon_vma->head.next)) {
2388 		/*
2389 		 * The LSB of head.next can't change to 0 from under
2390 		 * us because we hold the mm_all_locks_mutex.
2391 		 *
2392 		 * We must however clear the bitflag before unlocking
2393 		 * the vma so the users using the anon_vma->head will
2394 		 * never see our bitflag.
2395 		 *
2396 		 * No need of atomic instructions here, head.next
2397 		 * can't change from under us until we release the
2398 		 * anon_vma->lock.
2399 		 */
2400 		if (!__test_and_clear_bit(0, (unsigned long *)
2401 					  &anon_vma->head.next))
2402 			BUG();
2403 		spin_unlock(&anon_vma->lock);
2404 	}
2405 }
2406 
2407 static void vm_unlock_mapping(struct address_space *mapping)
2408 {
2409 	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2410 		/*
2411 		 * AS_MM_ALL_LOCKS can't change to 0 from under us
2412 		 * because we hold the mm_all_locks_mutex.
2413 		 */
2414 		spin_unlock(&mapping->i_mmap_lock);
2415 		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
2416 					&mapping->flags))
2417 			BUG();
2418 	}
2419 }
2420 
2421 /*
2422  * The mmap_sem cannot be released by the caller until
2423  * mm_drop_all_locks() returns.
2424  */
2425 void mm_drop_all_locks(struct mm_struct *mm)
2426 {
2427 	struct vm_area_struct *vma;
2428 
2429 	BUG_ON(down_read_trylock(&mm->mmap_sem));
2430 	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
2431 
2432 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2433 		if (vma->anon_vma)
2434 			vm_unlock_anon_vma(vma->anon_vma);
2435 		if (vma->vm_file && vma->vm_file->f_mapping)
2436 			vm_unlock_mapping(vma->vm_file->f_mapping);
2437 	}
2438 
2439 	mutex_unlock(&mm_all_locks_mutex);
2440 }
2441