1 /* 2 * mm/mmap.c 3 * 4 * Written by obz. 5 * 6 * Address space accounting code <alan@redhat.com> 7 */ 8 9 #include <linux/slab.h> 10 #include <linux/backing-dev.h> 11 #include <linux/mm.h> 12 #include <linux/shm.h> 13 #include <linux/mman.h> 14 #include <linux/pagemap.h> 15 #include <linux/swap.h> 16 #include <linux/syscalls.h> 17 #include <linux/capability.h> 18 #include <linux/init.h> 19 #include <linux/file.h> 20 #include <linux/fs.h> 21 #include <linux/personality.h> 22 #include <linux/security.h> 23 #include <linux/hugetlb.h> 24 #include <linux/profile.h> 25 #include <linux/module.h> 26 #include <linux/mount.h> 27 #include <linux/mempolicy.h> 28 #include <linux/rmap.h> 29 #include <linux/mmu_notifier.h> 30 31 #include <asm/uaccess.h> 32 #include <asm/cacheflush.h> 33 #include <asm/tlb.h> 34 #include <asm/mmu_context.h> 35 36 #include "internal.h" 37 38 #ifndef arch_mmap_check 39 #define arch_mmap_check(addr, len, flags) (0) 40 #endif 41 42 #ifndef arch_rebalance_pgtables 43 #define arch_rebalance_pgtables(addr, len) (addr) 44 #endif 45 46 static void unmap_region(struct mm_struct *mm, 47 struct vm_area_struct *vma, struct vm_area_struct *prev, 48 unsigned long start, unsigned long end); 49 50 /* 51 * WARNING: the debugging will use recursive algorithms so never enable this 52 * unless you know what you are doing. 53 */ 54 #undef DEBUG_MM_RB 55 56 /* description of effects of mapping type and prot in current implementation. 57 * this is due to the limited x86 page protection hardware. The expected 58 * behavior is in parens: 59 * 60 * map_type prot 61 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC 62 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes 63 * w: (no) no w: (no) no w: (yes) yes w: (no) no 64 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 65 * 66 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes 67 * w: (no) no w: (no) no w: (copy) copy w: (no) no 68 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 69 * 70 */ 71 pgprot_t protection_map[16] = { 72 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111, 73 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111 74 }; 75 76 pgprot_t vm_get_page_prot(unsigned long vm_flags) 77 { 78 return __pgprot(pgprot_val(protection_map[vm_flags & 79 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) | 80 pgprot_val(arch_vm_get_page_prot(vm_flags))); 81 } 82 EXPORT_SYMBOL(vm_get_page_prot); 83 84 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */ 85 int sysctl_overcommit_ratio = 50; /* default is 50% */ 86 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT; 87 atomic_long_t vm_committed_space = ATOMIC_LONG_INIT(0); 88 89 /* 90 * Check that a process has enough memory to allocate a new virtual 91 * mapping. 0 means there is enough memory for the allocation to 92 * succeed and -ENOMEM implies there is not. 93 * 94 * We currently support three overcommit policies, which are set via the 95 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting 96 * 97 * Strict overcommit modes added 2002 Feb 26 by Alan Cox. 98 * Additional code 2002 Jul 20 by Robert Love. 99 * 100 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise. 101 * 102 * Note this is a helper function intended to be used by LSMs which 103 * wish to use this logic. 104 */ 105 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin) 106 { 107 unsigned long free, allowed; 108 109 vm_acct_memory(pages); 110 111 /* 112 * Sometimes we want to use more memory than we have 113 */ 114 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS) 115 return 0; 116 117 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) { 118 unsigned long n; 119 120 free = global_page_state(NR_FILE_PAGES); 121 free += nr_swap_pages; 122 123 /* 124 * Any slabs which are created with the 125 * SLAB_RECLAIM_ACCOUNT flag claim to have contents 126 * which are reclaimable, under pressure. The dentry 127 * cache and most inode caches should fall into this 128 */ 129 free += global_page_state(NR_SLAB_RECLAIMABLE); 130 131 /* 132 * Leave the last 3% for root 133 */ 134 if (!cap_sys_admin) 135 free -= free / 32; 136 137 if (free > pages) 138 return 0; 139 140 /* 141 * nr_free_pages() is very expensive on large systems, 142 * only call if we're about to fail. 143 */ 144 n = nr_free_pages(); 145 146 /* 147 * Leave reserved pages. The pages are not for anonymous pages. 148 */ 149 if (n <= totalreserve_pages) 150 goto error; 151 else 152 n -= totalreserve_pages; 153 154 /* 155 * Leave the last 3% for root 156 */ 157 if (!cap_sys_admin) 158 n -= n / 32; 159 free += n; 160 161 if (free > pages) 162 return 0; 163 164 goto error; 165 } 166 167 allowed = (totalram_pages - hugetlb_total_pages()) 168 * sysctl_overcommit_ratio / 100; 169 /* 170 * Leave the last 3% for root 171 */ 172 if (!cap_sys_admin) 173 allowed -= allowed / 32; 174 allowed += total_swap_pages; 175 176 /* Don't let a single process grow too big: 177 leave 3% of the size of this process for other processes */ 178 allowed -= mm->total_vm / 32; 179 180 /* 181 * cast `allowed' as a signed long because vm_committed_space 182 * sometimes has a negative value 183 */ 184 if (atomic_long_read(&vm_committed_space) < (long)allowed) 185 return 0; 186 error: 187 vm_unacct_memory(pages); 188 189 return -ENOMEM; 190 } 191 192 /* 193 * Requires inode->i_mapping->i_mmap_lock 194 */ 195 static void __remove_shared_vm_struct(struct vm_area_struct *vma, 196 struct file *file, struct address_space *mapping) 197 { 198 if (vma->vm_flags & VM_DENYWRITE) 199 atomic_inc(&file->f_path.dentry->d_inode->i_writecount); 200 if (vma->vm_flags & VM_SHARED) 201 mapping->i_mmap_writable--; 202 203 flush_dcache_mmap_lock(mapping); 204 if (unlikely(vma->vm_flags & VM_NONLINEAR)) 205 list_del_init(&vma->shared.vm_set.list); 206 else 207 vma_prio_tree_remove(vma, &mapping->i_mmap); 208 flush_dcache_mmap_unlock(mapping); 209 } 210 211 /* 212 * Unlink a file-based vm structure from its prio_tree, to hide 213 * vma from rmap and vmtruncate before freeing its page tables. 214 */ 215 void unlink_file_vma(struct vm_area_struct *vma) 216 { 217 struct file *file = vma->vm_file; 218 219 if (file) { 220 struct address_space *mapping = file->f_mapping; 221 spin_lock(&mapping->i_mmap_lock); 222 __remove_shared_vm_struct(vma, file, mapping); 223 spin_unlock(&mapping->i_mmap_lock); 224 } 225 } 226 227 /* 228 * Close a vm structure and free it, returning the next. 229 */ 230 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma) 231 { 232 struct vm_area_struct *next = vma->vm_next; 233 234 might_sleep(); 235 if (vma->vm_ops && vma->vm_ops->close) 236 vma->vm_ops->close(vma); 237 if (vma->vm_file) { 238 fput(vma->vm_file); 239 if (vma->vm_flags & VM_EXECUTABLE) 240 removed_exe_file_vma(vma->vm_mm); 241 } 242 mpol_put(vma_policy(vma)); 243 kmem_cache_free(vm_area_cachep, vma); 244 return next; 245 } 246 247 asmlinkage unsigned long sys_brk(unsigned long brk) 248 { 249 unsigned long rlim, retval; 250 unsigned long newbrk, oldbrk; 251 struct mm_struct *mm = current->mm; 252 unsigned long min_brk; 253 254 down_write(&mm->mmap_sem); 255 256 #ifdef CONFIG_COMPAT_BRK 257 min_brk = mm->end_code; 258 #else 259 min_brk = mm->start_brk; 260 #endif 261 if (brk < min_brk) 262 goto out; 263 264 /* 265 * Check against rlimit here. If this check is done later after the test 266 * of oldbrk with newbrk then it can escape the test and let the data 267 * segment grow beyond its set limit the in case where the limit is 268 * not page aligned -Ram Gupta 269 */ 270 rlim = current->signal->rlim[RLIMIT_DATA].rlim_cur; 271 if (rlim < RLIM_INFINITY && (brk - mm->start_brk) + 272 (mm->end_data - mm->start_data) > rlim) 273 goto out; 274 275 newbrk = PAGE_ALIGN(brk); 276 oldbrk = PAGE_ALIGN(mm->brk); 277 if (oldbrk == newbrk) 278 goto set_brk; 279 280 /* Always allow shrinking brk. */ 281 if (brk <= mm->brk) { 282 if (!do_munmap(mm, newbrk, oldbrk-newbrk)) 283 goto set_brk; 284 goto out; 285 } 286 287 /* Check against existing mmap mappings. */ 288 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE)) 289 goto out; 290 291 /* Ok, looks good - let it rip. */ 292 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk) 293 goto out; 294 set_brk: 295 mm->brk = brk; 296 out: 297 retval = mm->brk; 298 up_write(&mm->mmap_sem); 299 return retval; 300 } 301 302 #ifdef DEBUG_MM_RB 303 static int browse_rb(struct rb_root *root) 304 { 305 int i = 0, j; 306 struct rb_node *nd, *pn = NULL; 307 unsigned long prev = 0, pend = 0; 308 309 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 310 struct vm_area_struct *vma; 311 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 312 if (vma->vm_start < prev) 313 printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1; 314 if (vma->vm_start < pend) 315 printk("vm_start %lx pend %lx\n", vma->vm_start, pend); 316 if (vma->vm_start > vma->vm_end) 317 printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start); 318 i++; 319 pn = nd; 320 prev = vma->vm_start; 321 pend = vma->vm_end; 322 } 323 j = 0; 324 for (nd = pn; nd; nd = rb_prev(nd)) { 325 j++; 326 } 327 if (i != j) 328 printk("backwards %d, forwards %d\n", j, i), i = 0; 329 return i; 330 } 331 332 void validate_mm(struct mm_struct *mm) 333 { 334 int bug = 0; 335 int i = 0; 336 struct vm_area_struct *tmp = mm->mmap; 337 while (tmp) { 338 tmp = tmp->vm_next; 339 i++; 340 } 341 if (i != mm->map_count) 342 printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1; 343 i = browse_rb(&mm->mm_rb); 344 if (i != mm->map_count) 345 printk("map_count %d rb %d\n", mm->map_count, i), bug = 1; 346 BUG_ON(bug); 347 } 348 #else 349 #define validate_mm(mm) do { } while (0) 350 #endif 351 352 static struct vm_area_struct * 353 find_vma_prepare(struct mm_struct *mm, unsigned long addr, 354 struct vm_area_struct **pprev, struct rb_node ***rb_link, 355 struct rb_node ** rb_parent) 356 { 357 struct vm_area_struct * vma; 358 struct rb_node ** __rb_link, * __rb_parent, * rb_prev; 359 360 __rb_link = &mm->mm_rb.rb_node; 361 rb_prev = __rb_parent = NULL; 362 vma = NULL; 363 364 while (*__rb_link) { 365 struct vm_area_struct *vma_tmp; 366 367 __rb_parent = *__rb_link; 368 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb); 369 370 if (vma_tmp->vm_end > addr) { 371 vma = vma_tmp; 372 if (vma_tmp->vm_start <= addr) 373 break; 374 __rb_link = &__rb_parent->rb_left; 375 } else { 376 rb_prev = __rb_parent; 377 __rb_link = &__rb_parent->rb_right; 378 } 379 } 380 381 *pprev = NULL; 382 if (rb_prev) 383 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); 384 *rb_link = __rb_link; 385 *rb_parent = __rb_parent; 386 return vma; 387 } 388 389 static inline void 390 __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma, 391 struct vm_area_struct *prev, struct rb_node *rb_parent) 392 { 393 if (prev) { 394 vma->vm_next = prev->vm_next; 395 prev->vm_next = vma; 396 } else { 397 mm->mmap = vma; 398 if (rb_parent) 399 vma->vm_next = rb_entry(rb_parent, 400 struct vm_area_struct, vm_rb); 401 else 402 vma->vm_next = NULL; 403 } 404 } 405 406 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma, 407 struct rb_node **rb_link, struct rb_node *rb_parent) 408 { 409 rb_link_node(&vma->vm_rb, rb_parent, rb_link); 410 rb_insert_color(&vma->vm_rb, &mm->mm_rb); 411 } 412 413 static inline void __vma_link_file(struct vm_area_struct *vma) 414 { 415 struct file * file; 416 417 file = vma->vm_file; 418 if (file) { 419 struct address_space *mapping = file->f_mapping; 420 421 if (vma->vm_flags & VM_DENYWRITE) 422 atomic_dec(&file->f_path.dentry->d_inode->i_writecount); 423 if (vma->vm_flags & VM_SHARED) 424 mapping->i_mmap_writable++; 425 426 flush_dcache_mmap_lock(mapping); 427 if (unlikely(vma->vm_flags & VM_NONLINEAR)) 428 vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear); 429 else 430 vma_prio_tree_insert(vma, &mapping->i_mmap); 431 flush_dcache_mmap_unlock(mapping); 432 } 433 } 434 435 static void 436 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 437 struct vm_area_struct *prev, struct rb_node **rb_link, 438 struct rb_node *rb_parent) 439 { 440 __vma_link_list(mm, vma, prev, rb_parent); 441 __vma_link_rb(mm, vma, rb_link, rb_parent); 442 __anon_vma_link(vma); 443 } 444 445 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 446 struct vm_area_struct *prev, struct rb_node **rb_link, 447 struct rb_node *rb_parent) 448 { 449 struct address_space *mapping = NULL; 450 451 if (vma->vm_file) 452 mapping = vma->vm_file->f_mapping; 453 454 if (mapping) { 455 spin_lock(&mapping->i_mmap_lock); 456 vma->vm_truncate_count = mapping->truncate_count; 457 } 458 anon_vma_lock(vma); 459 460 __vma_link(mm, vma, prev, rb_link, rb_parent); 461 __vma_link_file(vma); 462 463 anon_vma_unlock(vma); 464 if (mapping) 465 spin_unlock(&mapping->i_mmap_lock); 466 467 mm->map_count++; 468 validate_mm(mm); 469 } 470 471 /* 472 * Helper for vma_adjust in the split_vma insert case: 473 * insert vm structure into list and rbtree and anon_vma, 474 * but it has already been inserted into prio_tree earlier. 475 */ 476 static void 477 __insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma) 478 { 479 struct vm_area_struct * __vma, * prev; 480 struct rb_node ** rb_link, * rb_parent; 481 482 __vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent); 483 BUG_ON(__vma && __vma->vm_start < vma->vm_end); 484 __vma_link(mm, vma, prev, rb_link, rb_parent); 485 mm->map_count++; 486 } 487 488 static inline void 489 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma, 490 struct vm_area_struct *prev) 491 { 492 prev->vm_next = vma->vm_next; 493 rb_erase(&vma->vm_rb, &mm->mm_rb); 494 if (mm->mmap_cache == vma) 495 mm->mmap_cache = prev; 496 } 497 498 /* 499 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that 500 * is already present in an i_mmap tree without adjusting the tree. 501 * The following helper function should be used when such adjustments 502 * are necessary. The "insert" vma (if any) is to be inserted 503 * before we drop the necessary locks. 504 */ 505 void vma_adjust(struct vm_area_struct *vma, unsigned long start, 506 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 507 { 508 struct mm_struct *mm = vma->vm_mm; 509 struct vm_area_struct *next = vma->vm_next; 510 struct vm_area_struct *importer = NULL; 511 struct address_space *mapping = NULL; 512 struct prio_tree_root *root = NULL; 513 struct file *file = vma->vm_file; 514 struct anon_vma *anon_vma = NULL; 515 long adjust_next = 0; 516 int remove_next = 0; 517 518 if (next && !insert) { 519 if (end >= next->vm_end) { 520 /* 521 * vma expands, overlapping all the next, and 522 * perhaps the one after too (mprotect case 6). 523 */ 524 again: remove_next = 1 + (end > next->vm_end); 525 end = next->vm_end; 526 anon_vma = next->anon_vma; 527 importer = vma; 528 } else if (end > next->vm_start) { 529 /* 530 * vma expands, overlapping part of the next: 531 * mprotect case 5 shifting the boundary up. 532 */ 533 adjust_next = (end - next->vm_start) >> PAGE_SHIFT; 534 anon_vma = next->anon_vma; 535 importer = vma; 536 } else if (end < vma->vm_end) { 537 /* 538 * vma shrinks, and !insert tells it's not 539 * split_vma inserting another: so it must be 540 * mprotect case 4 shifting the boundary down. 541 */ 542 adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT); 543 anon_vma = next->anon_vma; 544 importer = next; 545 } 546 } 547 548 if (file) { 549 mapping = file->f_mapping; 550 if (!(vma->vm_flags & VM_NONLINEAR)) 551 root = &mapping->i_mmap; 552 spin_lock(&mapping->i_mmap_lock); 553 if (importer && 554 vma->vm_truncate_count != next->vm_truncate_count) { 555 /* 556 * unmap_mapping_range might be in progress: 557 * ensure that the expanding vma is rescanned. 558 */ 559 importer->vm_truncate_count = 0; 560 } 561 if (insert) { 562 insert->vm_truncate_count = vma->vm_truncate_count; 563 /* 564 * Put into prio_tree now, so instantiated pages 565 * are visible to arm/parisc __flush_dcache_page 566 * throughout; but we cannot insert into address 567 * space until vma start or end is updated. 568 */ 569 __vma_link_file(insert); 570 } 571 } 572 573 /* 574 * When changing only vma->vm_end, we don't really need 575 * anon_vma lock: but is that case worth optimizing out? 576 */ 577 if (vma->anon_vma) 578 anon_vma = vma->anon_vma; 579 if (anon_vma) { 580 spin_lock(&anon_vma->lock); 581 /* 582 * Easily overlooked: when mprotect shifts the boundary, 583 * make sure the expanding vma has anon_vma set if the 584 * shrinking vma had, to cover any anon pages imported. 585 */ 586 if (importer && !importer->anon_vma) { 587 importer->anon_vma = anon_vma; 588 __anon_vma_link(importer); 589 } 590 } 591 592 if (root) { 593 flush_dcache_mmap_lock(mapping); 594 vma_prio_tree_remove(vma, root); 595 if (adjust_next) 596 vma_prio_tree_remove(next, root); 597 } 598 599 vma->vm_start = start; 600 vma->vm_end = end; 601 vma->vm_pgoff = pgoff; 602 if (adjust_next) { 603 next->vm_start += adjust_next << PAGE_SHIFT; 604 next->vm_pgoff += adjust_next; 605 } 606 607 if (root) { 608 if (adjust_next) 609 vma_prio_tree_insert(next, root); 610 vma_prio_tree_insert(vma, root); 611 flush_dcache_mmap_unlock(mapping); 612 } 613 614 if (remove_next) { 615 /* 616 * vma_merge has merged next into vma, and needs 617 * us to remove next before dropping the locks. 618 */ 619 __vma_unlink(mm, next, vma); 620 if (file) 621 __remove_shared_vm_struct(next, file, mapping); 622 if (next->anon_vma) 623 __anon_vma_merge(vma, next); 624 } else if (insert) { 625 /* 626 * split_vma has split insert from vma, and needs 627 * us to insert it before dropping the locks 628 * (it may either follow vma or precede it). 629 */ 630 __insert_vm_struct(mm, insert); 631 } 632 633 if (anon_vma) 634 spin_unlock(&anon_vma->lock); 635 if (mapping) 636 spin_unlock(&mapping->i_mmap_lock); 637 638 if (remove_next) { 639 if (file) { 640 fput(file); 641 if (next->vm_flags & VM_EXECUTABLE) 642 removed_exe_file_vma(mm); 643 } 644 mm->map_count--; 645 mpol_put(vma_policy(next)); 646 kmem_cache_free(vm_area_cachep, next); 647 /* 648 * In mprotect's case 6 (see comments on vma_merge), 649 * we must remove another next too. It would clutter 650 * up the code too much to do both in one go. 651 */ 652 if (remove_next == 2) { 653 next = vma->vm_next; 654 goto again; 655 } 656 } 657 658 validate_mm(mm); 659 } 660 661 /* 662 * If the vma has a ->close operation then the driver probably needs to release 663 * per-vma resources, so we don't attempt to merge those. 664 */ 665 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP) 666 667 static inline int is_mergeable_vma(struct vm_area_struct *vma, 668 struct file *file, unsigned long vm_flags) 669 { 670 if (vma->vm_flags != vm_flags) 671 return 0; 672 if (vma->vm_file != file) 673 return 0; 674 if (vma->vm_ops && vma->vm_ops->close) 675 return 0; 676 return 1; 677 } 678 679 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1, 680 struct anon_vma *anon_vma2) 681 { 682 return !anon_vma1 || !anon_vma2 || (anon_vma1 == anon_vma2); 683 } 684 685 /* 686 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 687 * in front of (at a lower virtual address and file offset than) the vma. 688 * 689 * We cannot merge two vmas if they have differently assigned (non-NULL) 690 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 691 * 692 * We don't check here for the merged mmap wrapping around the end of pagecache 693 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which 694 * wrap, nor mmaps which cover the final page at index -1UL. 695 */ 696 static int 697 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags, 698 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff) 699 { 700 if (is_mergeable_vma(vma, file, vm_flags) && 701 is_mergeable_anon_vma(anon_vma, vma->anon_vma)) { 702 if (vma->vm_pgoff == vm_pgoff) 703 return 1; 704 } 705 return 0; 706 } 707 708 /* 709 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 710 * beyond (at a higher virtual address and file offset than) the vma. 711 * 712 * We cannot merge two vmas if they have differently assigned (non-NULL) 713 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 714 */ 715 static int 716 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags, 717 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff) 718 { 719 if (is_mergeable_vma(vma, file, vm_flags) && 720 is_mergeable_anon_vma(anon_vma, vma->anon_vma)) { 721 pgoff_t vm_pglen; 722 vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 723 if (vma->vm_pgoff + vm_pglen == vm_pgoff) 724 return 1; 725 } 726 return 0; 727 } 728 729 /* 730 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out 731 * whether that can be merged with its predecessor or its successor. 732 * Or both (it neatly fills a hole). 733 * 734 * In most cases - when called for mmap, brk or mremap - [addr,end) is 735 * certain not to be mapped by the time vma_merge is called; but when 736 * called for mprotect, it is certain to be already mapped (either at 737 * an offset within prev, or at the start of next), and the flags of 738 * this area are about to be changed to vm_flags - and the no-change 739 * case has already been eliminated. 740 * 741 * The following mprotect cases have to be considered, where AAAA is 742 * the area passed down from mprotect_fixup, never extending beyond one 743 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after: 744 * 745 * AAAA AAAA AAAA AAAA 746 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX 747 * cannot merge might become might become might become 748 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or 749 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or 750 * mremap move: PPPPNNNNNNNN 8 751 * AAAA 752 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN 753 * might become case 1 below case 2 below case 3 below 754 * 755 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX: 756 * mprotect_fixup updates vm_flags & vm_page_prot on successful return. 757 */ 758 struct vm_area_struct *vma_merge(struct mm_struct *mm, 759 struct vm_area_struct *prev, unsigned long addr, 760 unsigned long end, unsigned long vm_flags, 761 struct anon_vma *anon_vma, struct file *file, 762 pgoff_t pgoff, struct mempolicy *policy) 763 { 764 pgoff_t pglen = (end - addr) >> PAGE_SHIFT; 765 struct vm_area_struct *area, *next; 766 767 /* 768 * We later require that vma->vm_flags == vm_flags, 769 * so this tests vma->vm_flags & VM_SPECIAL, too. 770 */ 771 if (vm_flags & VM_SPECIAL) 772 return NULL; 773 774 if (prev) 775 next = prev->vm_next; 776 else 777 next = mm->mmap; 778 area = next; 779 if (next && next->vm_end == end) /* cases 6, 7, 8 */ 780 next = next->vm_next; 781 782 /* 783 * Can it merge with the predecessor? 784 */ 785 if (prev && prev->vm_end == addr && 786 mpol_equal(vma_policy(prev), policy) && 787 can_vma_merge_after(prev, vm_flags, 788 anon_vma, file, pgoff)) { 789 /* 790 * OK, it can. Can we now merge in the successor as well? 791 */ 792 if (next && end == next->vm_start && 793 mpol_equal(policy, vma_policy(next)) && 794 can_vma_merge_before(next, vm_flags, 795 anon_vma, file, pgoff+pglen) && 796 is_mergeable_anon_vma(prev->anon_vma, 797 next->anon_vma)) { 798 /* cases 1, 6 */ 799 vma_adjust(prev, prev->vm_start, 800 next->vm_end, prev->vm_pgoff, NULL); 801 } else /* cases 2, 5, 7 */ 802 vma_adjust(prev, prev->vm_start, 803 end, prev->vm_pgoff, NULL); 804 return prev; 805 } 806 807 /* 808 * Can this new request be merged in front of next? 809 */ 810 if (next && end == next->vm_start && 811 mpol_equal(policy, vma_policy(next)) && 812 can_vma_merge_before(next, vm_flags, 813 anon_vma, file, pgoff+pglen)) { 814 if (prev && addr < prev->vm_end) /* case 4 */ 815 vma_adjust(prev, prev->vm_start, 816 addr, prev->vm_pgoff, NULL); 817 else /* cases 3, 8 */ 818 vma_adjust(area, addr, next->vm_end, 819 next->vm_pgoff - pglen, NULL); 820 return area; 821 } 822 823 return NULL; 824 } 825 826 /* 827 * find_mergeable_anon_vma is used by anon_vma_prepare, to check 828 * neighbouring vmas for a suitable anon_vma, before it goes off 829 * to allocate a new anon_vma. It checks because a repetitive 830 * sequence of mprotects and faults may otherwise lead to distinct 831 * anon_vmas being allocated, preventing vma merge in subsequent 832 * mprotect. 833 */ 834 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) 835 { 836 struct vm_area_struct *near; 837 unsigned long vm_flags; 838 839 near = vma->vm_next; 840 if (!near) 841 goto try_prev; 842 843 /* 844 * Since only mprotect tries to remerge vmas, match flags 845 * which might be mprotected into each other later on. 846 * Neither mlock nor madvise tries to remerge at present, 847 * so leave their flags as obstructing a merge. 848 */ 849 vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC); 850 vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC); 851 852 if (near->anon_vma && vma->vm_end == near->vm_start && 853 mpol_equal(vma_policy(vma), vma_policy(near)) && 854 can_vma_merge_before(near, vm_flags, 855 NULL, vma->vm_file, vma->vm_pgoff + 856 ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT))) 857 return near->anon_vma; 858 try_prev: 859 /* 860 * It is potentially slow to have to call find_vma_prev here. 861 * But it's only on the first write fault on the vma, not 862 * every time, and we could devise a way to avoid it later 863 * (e.g. stash info in next's anon_vma_node when assigning 864 * an anon_vma, or when trying vma_merge). Another time. 865 */ 866 BUG_ON(find_vma_prev(vma->vm_mm, vma->vm_start, &near) != vma); 867 if (!near) 868 goto none; 869 870 vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC); 871 vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC); 872 873 if (near->anon_vma && near->vm_end == vma->vm_start && 874 mpol_equal(vma_policy(near), vma_policy(vma)) && 875 can_vma_merge_after(near, vm_flags, 876 NULL, vma->vm_file, vma->vm_pgoff)) 877 return near->anon_vma; 878 none: 879 /* 880 * There's no absolute need to look only at touching neighbours: 881 * we could search further afield for "compatible" anon_vmas. 882 * But it would probably just be a waste of time searching, 883 * or lead to too many vmas hanging off the same anon_vma. 884 * We're trying to allow mprotect remerging later on, 885 * not trying to minimize memory used for anon_vmas. 886 */ 887 return NULL; 888 } 889 890 #ifdef CONFIG_PROC_FS 891 void vm_stat_account(struct mm_struct *mm, unsigned long flags, 892 struct file *file, long pages) 893 { 894 const unsigned long stack_flags 895 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN); 896 897 if (file) { 898 mm->shared_vm += pages; 899 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC) 900 mm->exec_vm += pages; 901 } else if (flags & stack_flags) 902 mm->stack_vm += pages; 903 if (flags & (VM_RESERVED|VM_IO)) 904 mm->reserved_vm += pages; 905 } 906 #endif /* CONFIG_PROC_FS */ 907 908 /* 909 * The caller must hold down_write(current->mm->mmap_sem). 910 */ 911 912 unsigned long do_mmap_pgoff(struct file * file, unsigned long addr, 913 unsigned long len, unsigned long prot, 914 unsigned long flags, unsigned long pgoff) 915 { 916 struct mm_struct * mm = current->mm; 917 struct inode *inode; 918 unsigned int vm_flags; 919 int error; 920 int accountable = 1; 921 unsigned long reqprot = prot; 922 923 /* 924 * Does the application expect PROT_READ to imply PROT_EXEC? 925 * 926 * (the exception is when the underlying filesystem is noexec 927 * mounted, in which case we dont add PROT_EXEC.) 928 */ 929 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC)) 930 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC))) 931 prot |= PROT_EXEC; 932 933 if (!len) 934 return -EINVAL; 935 936 if (!(flags & MAP_FIXED)) 937 addr = round_hint_to_min(addr); 938 939 error = arch_mmap_check(addr, len, flags); 940 if (error) 941 return error; 942 943 /* Careful about overflows.. */ 944 len = PAGE_ALIGN(len); 945 if (!len || len > TASK_SIZE) 946 return -ENOMEM; 947 948 /* offset overflow? */ 949 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff) 950 return -EOVERFLOW; 951 952 /* Too many mappings? */ 953 if (mm->map_count > sysctl_max_map_count) 954 return -ENOMEM; 955 956 /* Obtain the address to map to. we verify (or select) it and ensure 957 * that it represents a valid section of the address space. 958 */ 959 addr = get_unmapped_area(file, addr, len, pgoff, flags); 960 if (addr & ~PAGE_MASK) 961 return addr; 962 963 /* Do simple checking here so the lower-level routines won't have 964 * to. we assume access permissions have been handled by the open 965 * of the memory object, so we don't do any here. 966 */ 967 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) | 968 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 969 970 if (flags & MAP_LOCKED) { 971 if (!can_do_mlock()) 972 return -EPERM; 973 vm_flags |= VM_LOCKED; 974 } 975 /* mlock MCL_FUTURE? */ 976 if (vm_flags & VM_LOCKED) { 977 unsigned long locked, lock_limit; 978 locked = len >> PAGE_SHIFT; 979 locked += mm->locked_vm; 980 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur; 981 lock_limit >>= PAGE_SHIFT; 982 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 983 return -EAGAIN; 984 } 985 986 inode = file ? file->f_path.dentry->d_inode : NULL; 987 988 if (file) { 989 switch (flags & MAP_TYPE) { 990 case MAP_SHARED: 991 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE)) 992 return -EACCES; 993 994 /* 995 * Make sure we don't allow writing to an append-only 996 * file.. 997 */ 998 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE)) 999 return -EACCES; 1000 1001 /* 1002 * Make sure there are no mandatory locks on the file. 1003 */ 1004 if (locks_verify_locked(inode)) 1005 return -EAGAIN; 1006 1007 vm_flags |= VM_SHARED | VM_MAYSHARE; 1008 if (!(file->f_mode & FMODE_WRITE)) 1009 vm_flags &= ~(VM_MAYWRITE | VM_SHARED); 1010 1011 /* fall through */ 1012 case MAP_PRIVATE: 1013 if (!(file->f_mode & FMODE_READ)) 1014 return -EACCES; 1015 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) { 1016 if (vm_flags & VM_EXEC) 1017 return -EPERM; 1018 vm_flags &= ~VM_MAYEXEC; 1019 } 1020 if (is_file_hugepages(file)) 1021 accountable = 0; 1022 1023 if (!file->f_op || !file->f_op->mmap) 1024 return -ENODEV; 1025 break; 1026 1027 default: 1028 return -EINVAL; 1029 } 1030 } else { 1031 switch (flags & MAP_TYPE) { 1032 case MAP_SHARED: 1033 /* 1034 * Ignore pgoff. 1035 */ 1036 pgoff = 0; 1037 vm_flags |= VM_SHARED | VM_MAYSHARE; 1038 break; 1039 case MAP_PRIVATE: 1040 /* 1041 * Set pgoff according to addr for anon_vma. 1042 */ 1043 pgoff = addr >> PAGE_SHIFT; 1044 break; 1045 default: 1046 return -EINVAL; 1047 } 1048 } 1049 1050 error = security_file_mmap(file, reqprot, prot, flags, addr, 0); 1051 if (error) 1052 return error; 1053 1054 return mmap_region(file, addr, len, flags, vm_flags, pgoff, 1055 accountable); 1056 } 1057 EXPORT_SYMBOL(do_mmap_pgoff); 1058 1059 /* 1060 * Some shared mappigns will want the pages marked read-only 1061 * to track write events. If so, we'll downgrade vm_page_prot 1062 * to the private version (using protection_map[] without the 1063 * VM_SHARED bit). 1064 */ 1065 int vma_wants_writenotify(struct vm_area_struct *vma) 1066 { 1067 unsigned int vm_flags = vma->vm_flags; 1068 1069 /* If it was private or non-writable, the write bit is already clear */ 1070 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED))) 1071 return 0; 1072 1073 /* The backer wishes to know when pages are first written to? */ 1074 if (vma->vm_ops && vma->vm_ops->page_mkwrite) 1075 return 1; 1076 1077 /* The open routine did something to the protections already? */ 1078 if (pgprot_val(vma->vm_page_prot) != 1079 pgprot_val(vm_get_page_prot(vm_flags))) 1080 return 0; 1081 1082 /* Specialty mapping? */ 1083 if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE)) 1084 return 0; 1085 1086 /* Can the mapping track the dirty pages? */ 1087 return vma->vm_file && vma->vm_file->f_mapping && 1088 mapping_cap_account_dirty(vma->vm_file->f_mapping); 1089 } 1090 1091 unsigned long mmap_region(struct file *file, unsigned long addr, 1092 unsigned long len, unsigned long flags, 1093 unsigned int vm_flags, unsigned long pgoff, 1094 int accountable) 1095 { 1096 struct mm_struct *mm = current->mm; 1097 struct vm_area_struct *vma, *prev; 1098 int correct_wcount = 0; 1099 int error; 1100 struct rb_node **rb_link, *rb_parent; 1101 unsigned long charged = 0; 1102 struct inode *inode = file ? file->f_path.dentry->d_inode : NULL; 1103 1104 /* Clear old maps */ 1105 error = -ENOMEM; 1106 munmap_back: 1107 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent); 1108 if (vma && vma->vm_start < addr + len) { 1109 if (do_munmap(mm, addr, len)) 1110 return -ENOMEM; 1111 goto munmap_back; 1112 } 1113 1114 /* Check against address space limit. */ 1115 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) 1116 return -ENOMEM; 1117 1118 if (flags & MAP_NORESERVE) 1119 vm_flags |= VM_NORESERVE; 1120 1121 if (accountable && (!(flags & MAP_NORESERVE) || 1122 sysctl_overcommit_memory == OVERCOMMIT_NEVER)) { 1123 if (vm_flags & VM_SHARED) { 1124 /* Check memory availability in shmem_file_setup? */ 1125 vm_flags |= VM_ACCOUNT; 1126 } else if (vm_flags & VM_WRITE) { 1127 /* 1128 * Private writable mapping: check memory availability 1129 */ 1130 charged = len >> PAGE_SHIFT; 1131 if (security_vm_enough_memory(charged)) 1132 return -ENOMEM; 1133 vm_flags |= VM_ACCOUNT; 1134 } 1135 } 1136 1137 /* 1138 * Can we just expand an old private anonymous mapping? 1139 * The VM_SHARED test is necessary because shmem_zero_setup 1140 * will create the file object for a shared anonymous map below. 1141 */ 1142 if (!file && !(vm_flags & VM_SHARED) && 1143 vma_merge(mm, prev, addr, addr + len, vm_flags, 1144 NULL, NULL, pgoff, NULL)) 1145 goto out; 1146 1147 /* 1148 * Determine the object being mapped and call the appropriate 1149 * specific mapper. the address has already been validated, but 1150 * not unmapped, but the maps are removed from the list. 1151 */ 1152 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 1153 if (!vma) { 1154 error = -ENOMEM; 1155 goto unacct_error; 1156 } 1157 1158 vma->vm_mm = mm; 1159 vma->vm_start = addr; 1160 vma->vm_end = addr + len; 1161 vma->vm_flags = vm_flags; 1162 vma->vm_page_prot = vm_get_page_prot(vm_flags); 1163 vma->vm_pgoff = pgoff; 1164 1165 if (file) { 1166 error = -EINVAL; 1167 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1168 goto free_vma; 1169 if (vm_flags & VM_DENYWRITE) { 1170 error = deny_write_access(file); 1171 if (error) 1172 goto free_vma; 1173 correct_wcount = 1; 1174 } 1175 vma->vm_file = file; 1176 get_file(file); 1177 error = file->f_op->mmap(file, vma); 1178 if (error) 1179 goto unmap_and_free_vma; 1180 if (vm_flags & VM_EXECUTABLE) 1181 added_exe_file_vma(mm); 1182 } else if (vm_flags & VM_SHARED) { 1183 error = shmem_zero_setup(vma); 1184 if (error) 1185 goto free_vma; 1186 } 1187 1188 /* We set VM_ACCOUNT in a shared mapping's vm_flags, to inform 1189 * shmem_zero_setup (perhaps called through /dev/zero's ->mmap) 1190 * that memory reservation must be checked; but that reservation 1191 * belongs to shared memory object, not to vma: so now clear it. 1192 */ 1193 if ((vm_flags & (VM_SHARED|VM_ACCOUNT)) == (VM_SHARED|VM_ACCOUNT)) 1194 vma->vm_flags &= ~VM_ACCOUNT; 1195 1196 /* Can addr have changed?? 1197 * 1198 * Answer: Yes, several device drivers can do it in their 1199 * f_op->mmap method. -DaveM 1200 */ 1201 addr = vma->vm_start; 1202 pgoff = vma->vm_pgoff; 1203 vm_flags = vma->vm_flags; 1204 1205 if (vma_wants_writenotify(vma)) 1206 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED); 1207 1208 if (file && vma_merge(mm, prev, addr, vma->vm_end, 1209 vma->vm_flags, NULL, file, pgoff, vma_policy(vma))) { 1210 mpol_put(vma_policy(vma)); 1211 kmem_cache_free(vm_area_cachep, vma); 1212 fput(file); 1213 if (vm_flags & VM_EXECUTABLE) 1214 removed_exe_file_vma(mm); 1215 } else { 1216 vma_link(mm, vma, prev, rb_link, rb_parent); 1217 file = vma->vm_file; 1218 } 1219 1220 /* Once vma denies write, undo our temporary denial count */ 1221 if (correct_wcount) 1222 atomic_inc(&inode->i_writecount); 1223 out: 1224 mm->total_vm += len >> PAGE_SHIFT; 1225 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT); 1226 if (vm_flags & VM_LOCKED) { 1227 mm->locked_vm += len >> PAGE_SHIFT; 1228 make_pages_present(addr, addr + len); 1229 } 1230 if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK)) 1231 make_pages_present(addr, addr + len); 1232 return addr; 1233 1234 unmap_and_free_vma: 1235 if (correct_wcount) 1236 atomic_inc(&inode->i_writecount); 1237 vma->vm_file = NULL; 1238 fput(file); 1239 1240 /* Undo any partial mapping done by a device driver. */ 1241 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end); 1242 charged = 0; 1243 free_vma: 1244 kmem_cache_free(vm_area_cachep, vma); 1245 unacct_error: 1246 if (charged) 1247 vm_unacct_memory(charged); 1248 return error; 1249 } 1250 1251 /* Get an address range which is currently unmapped. 1252 * For shmat() with addr=0. 1253 * 1254 * Ugly calling convention alert: 1255 * Return value with the low bits set means error value, 1256 * ie 1257 * if (ret & ~PAGE_MASK) 1258 * error = ret; 1259 * 1260 * This function "knows" that -ENOMEM has the bits set. 1261 */ 1262 #ifndef HAVE_ARCH_UNMAPPED_AREA 1263 unsigned long 1264 arch_get_unmapped_area(struct file *filp, unsigned long addr, 1265 unsigned long len, unsigned long pgoff, unsigned long flags) 1266 { 1267 struct mm_struct *mm = current->mm; 1268 struct vm_area_struct *vma; 1269 unsigned long start_addr; 1270 1271 if (len > TASK_SIZE) 1272 return -ENOMEM; 1273 1274 if (flags & MAP_FIXED) 1275 return addr; 1276 1277 if (addr) { 1278 addr = PAGE_ALIGN(addr); 1279 vma = find_vma(mm, addr); 1280 if (TASK_SIZE - len >= addr && 1281 (!vma || addr + len <= vma->vm_start)) 1282 return addr; 1283 } 1284 if (len > mm->cached_hole_size) { 1285 start_addr = addr = mm->free_area_cache; 1286 } else { 1287 start_addr = addr = TASK_UNMAPPED_BASE; 1288 mm->cached_hole_size = 0; 1289 } 1290 1291 full_search: 1292 for (vma = find_vma(mm, addr); ; vma = vma->vm_next) { 1293 /* At this point: (!vma || addr < vma->vm_end). */ 1294 if (TASK_SIZE - len < addr) { 1295 /* 1296 * Start a new search - just in case we missed 1297 * some holes. 1298 */ 1299 if (start_addr != TASK_UNMAPPED_BASE) { 1300 addr = TASK_UNMAPPED_BASE; 1301 start_addr = addr; 1302 mm->cached_hole_size = 0; 1303 goto full_search; 1304 } 1305 return -ENOMEM; 1306 } 1307 if (!vma || addr + len <= vma->vm_start) { 1308 /* 1309 * Remember the place where we stopped the search: 1310 */ 1311 mm->free_area_cache = addr + len; 1312 return addr; 1313 } 1314 if (addr + mm->cached_hole_size < vma->vm_start) 1315 mm->cached_hole_size = vma->vm_start - addr; 1316 addr = vma->vm_end; 1317 } 1318 } 1319 #endif 1320 1321 void arch_unmap_area(struct mm_struct *mm, unsigned long addr) 1322 { 1323 /* 1324 * Is this a new hole at the lowest possible address? 1325 */ 1326 if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) { 1327 mm->free_area_cache = addr; 1328 mm->cached_hole_size = ~0UL; 1329 } 1330 } 1331 1332 /* 1333 * This mmap-allocator allocates new areas top-down from below the 1334 * stack's low limit (the base): 1335 */ 1336 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 1337 unsigned long 1338 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0, 1339 const unsigned long len, const unsigned long pgoff, 1340 const unsigned long flags) 1341 { 1342 struct vm_area_struct *vma; 1343 struct mm_struct *mm = current->mm; 1344 unsigned long addr = addr0; 1345 1346 /* requested length too big for entire address space */ 1347 if (len > TASK_SIZE) 1348 return -ENOMEM; 1349 1350 if (flags & MAP_FIXED) 1351 return addr; 1352 1353 /* requesting a specific address */ 1354 if (addr) { 1355 addr = PAGE_ALIGN(addr); 1356 vma = find_vma(mm, addr); 1357 if (TASK_SIZE - len >= addr && 1358 (!vma || addr + len <= vma->vm_start)) 1359 return addr; 1360 } 1361 1362 /* check if free_area_cache is useful for us */ 1363 if (len <= mm->cached_hole_size) { 1364 mm->cached_hole_size = 0; 1365 mm->free_area_cache = mm->mmap_base; 1366 } 1367 1368 /* either no address requested or can't fit in requested address hole */ 1369 addr = mm->free_area_cache; 1370 1371 /* make sure it can fit in the remaining address space */ 1372 if (addr > len) { 1373 vma = find_vma(mm, addr-len); 1374 if (!vma || addr <= vma->vm_start) 1375 /* remember the address as a hint for next time */ 1376 return (mm->free_area_cache = addr-len); 1377 } 1378 1379 if (mm->mmap_base < len) 1380 goto bottomup; 1381 1382 addr = mm->mmap_base-len; 1383 1384 do { 1385 /* 1386 * Lookup failure means no vma is above this address, 1387 * else if new region fits below vma->vm_start, 1388 * return with success: 1389 */ 1390 vma = find_vma(mm, addr); 1391 if (!vma || addr+len <= vma->vm_start) 1392 /* remember the address as a hint for next time */ 1393 return (mm->free_area_cache = addr); 1394 1395 /* remember the largest hole we saw so far */ 1396 if (addr + mm->cached_hole_size < vma->vm_start) 1397 mm->cached_hole_size = vma->vm_start - addr; 1398 1399 /* try just below the current vma->vm_start */ 1400 addr = vma->vm_start-len; 1401 } while (len < vma->vm_start); 1402 1403 bottomup: 1404 /* 1405 * A failed mmap() very likely causes application failure, 1406 * so fall back to the bottom-up function here. This scenario 1407 * can happen with large stack limits and large mmap() 1408 * allocations. 1409 */ 1410 mm->cached_hole_size = ~0UL; 1411 mm->free_area_cache = TASK_UNMAPPED_BASE; 1412 addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags); 1413 /* 1414 * Restore the topdown base: 1415 */ 1416 mm->free_area_cache = mm->mmap_base; 1417 mm->cached_hole_size = ~0UL; 1418 1419 return addr; 1420 } 1421 #endif 1422 1423 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr) 1424 { 1425 /* 1426 * Is this a new hole at the highest possible address? 1427 */ 1428 if (addr > mm->free_area_cache) 1429 mm->free_area_cache = addr; 1430 1431 /* dont allow allocations above current base */ 1432 if (mm->free_area_cache > mm->mmap_base) 1433 mm->free_area_cache = mm->mmap_base; 1434 } 1435 1436 unsigned long 1437 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 1438 unsigned long pgoff, unsigned long flags) 1439 { 1440 unsigned long (*get_area)(struct file *, unsigned long, 1441 unsigned long, unsigned long, unsigned long); 1442 1443 get_area = current->mm->get_unmapped_area; 1444 if (file && file->f_op && file->f_op->get_unmapped_area) 1445 get_area = file->f_op->get_unmapped_area; 1446 addr = get_area(file, addr, len, pgoff, flags); 1447 if (IS_ERR_VALUE(addr)) 1448 return addr; 1449 1450 if (addr > TASK_SIZE - len) 1451 return -ENOMEM; 1452 if (addr & ~PAGE_MASK) 1453 return -EINVAL; 1454 1455 return arch_rebalance_pgtables(addr, len); 1456 } 1457 1458 EXPORT_SYMBOL(get_unmapped_area); 1459 1460 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 1461 struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr) 1462 { 1463 struct vm_area_struct *vma = NULL; 1464 1465 if (mm) { 1466 /* Check the cache first. */ 1467 /* (Cache hit rate is typically around 35%.) */ 1468 vma = mm->mmap_cache; 1469 if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) { 1470 struct rb_node * rb_node; 1471 1472 rb_node = mm->mm_rb.rb_node; 1473 vma = NULL; 1474 1475 while (rb_node) { 1476 struct vm_area_struct * vma_tmp; 1477 1478 vma_tmp = rb_entry(rb_node, 1479 struct vm_area_struct, vm_rb); 1480 1481 if (vma_tmp->vm_end > addr) { 1482 vma = vma_tmp; 1483 if (vma_tmp->vm_start <= addr) 1484 break; 1485 rb_node = rb_node->rb_left; 1486 } else 1487 rb_node = rb_node->rb_right; 1488 } 1489 if (vma) 1490 mm->mmap_cache = vma; 1491 } 1492 } 1493 return vma; 1494 } 1495 1496 EXPORT_SYMBOL(find_vma); 1497 1498 /* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */ 1499 struct vm_area_struct * 1500 find_vma_prev(struct mm_struct *mm, unsigned long addr, 1501 struct vm_area_struct **pprev) 1502 { 1503 struct vm_area_struct *vma = NULL, *prev = NULL; 1504 struct rb_node * rb_node; 1505 if (!mm) 1506 goto out; 1507 1508 /* Guard against addr being lower than the first VMA */ 1509 vma = mm->mmap; 1510 1511 /* Go through the RB tree quickly. */ 1512 rb_node = mm->mm_rb.rb_node; 1513 1514 while (rb_node) { 1515 struct vm_area_struct *vma_tmp; 1516 vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb); 1517 1518 if (addr < vma_tmp->vm_end) { 1519 rb_node = rb_node->rb_left; 1520 } else { 1521 prev = vma_tmp; 1522 if (!prev->vm_next || (addr < prev->vm_next->vm_end)) 1523 break; 1524 rb_node = rb_node->rb_right; 1525 } 1526 } 1527 1528 out: 1529 *pprev = prev; 1530 return prev ? prev->vm_next : vma; 1531 } 1532 1533 /* 1534 * Verify that the stack growth is acceptable and 1535 * update accounting. This is shared with both the 1536 * grow-up and grow-down cases. 1537 */ 1538 static int acct_stack_growth(struct vm_area_struct * vma, unsigned long size, unsigned long grow) 1539 { 1540 struct mm_struct *mm = vma->vm_mm; 1541 struct rlimit *rlim = current->signal->rlim; 1542 unsigned long new_start; 1543 1544 /* address space limit tests */ 1545 if (!may_expand_vm(mm, grow)) 1546 return -ENOMEM; 1547 1548 /* Stack limit test */ 1549 if (size > rlim[RLIMIT_STACK].rlim_cur) 1550 return -ENOMEM; 1551 1552 /* mlock limit tests */ 1553 if (vma->vm_flags & VM_LOCKED) { 1554 unsigned long locked; 1555 unsigned long limit; 1556 locked = mm->locked_vm + grow; 1557 limit = rlim[RLIMIT_MEMLOCK].rlim_cur >> PAGE_SHIFT; 1558 if (locked > limit && !capable(CAP_IPC_LOCK)) 1559 return -ENOMEM; 1560 } 1561 1562 /* Check to ensure the stack will not grow into a hugetlb-only region */ 1563 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : 1564 vma->vm_end - size; 1565 if (is_hugepage_only_range(vma->vm_mm, new_start, size)) 1566 return -EFAULT; 1567 1568 /* 1569 * Overcommit.. This must be the final test, as it will 1570 * update security statistics. 1571 */ 1572 if (security_vm_enough_memory(grow)) 1573 return -ENOMEM; 1574 1575 /* Ok, everything looks good - let it rip */ 1576 mm->total_vm += grow; 1577 if (vma->vm_flags & VM_LOCKED) 1578 mm->locked_vm += grow; 1579 vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow); 1580 return 0; 1581 } 1582 1583 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64) 1584 /* 1585 * PA-RISC uses this for its stack; IA64 for its Register Backing Store. 1586 * vma is the last one with address > vma->vm_end. Have to extend vma. 1587 */ 1588 #ifndef CONFIG_IA64 1589 static inline 1590 #endif 1591 int expand_upwards(struct vm_area_struct *vma, unsigned long address) 1592 { 1593 int error; 1594 1595 if (!(vma->vm_flags & VM_GROWSUP)) 1596 return -EFAULT; 1597 1598 /* 1599 * We must make sure the anon_vma is allocated 1600 * so that the anon_vma locking is not a noop. 1601 */ 1602 if (unlikely(anon_vma_prepare(vma))) 1603 return -ENOMEM; 1604 anon_vma_lock(vma); 1605 1606 /* 1607 * vma->vm_start/vm_end cannot change under us because the caller 1608 * is required to hold the mmap_sem in read mode. We need the 1609 * anon_vma lock to serialize against concurrent expand_stacks. 1610 * Also guard against wrapping around to address 0. 1611 */ 1612 if (address < PAGE_ALIGN(address+4)) 1613 address = PAGE_ALIGN(address+4); 1614 else { 1615 anon_vma_unlock(vma); 1616 return -ENOMEM; 1617 } 1618 error = 0; 1619 1620 /* Somebody else might have raced and expanded it already */ 1621 if (address > vma->vm_end) { 1622 unsigned long size, grow; 1623 1624 size = address - vma->vm_start; 1625 grow = (address - vma->vm_end) >> PAGE_SHIFT; 1626 1627 error = acct_stack_growth(vma, size, grow); 1628 if (!error) 1629 vma->vm_end = address; 1630 } 1631 anon_vma_unlock(vma); 1632 return error; 1633 } 1634 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */ 1635 1636 /* 1637 * vma is the first one with address < vma->vm_start. Have to extend vma. 1638 */ 1639 static inline int expand_downwards(struct vm_area_struct *vma, 1640 unsigned long address) 1641 { 1642 int error; 1643 1644 /* 1645 * We must make sure the anon_vma is allocated 1646 * so that the anon_vma locking is not a noop. 1647 */ 1648 if (unlikely(anon_vma_prepare(vma))) 1649 return -ENOMEM; 1650 1651 address &= PAGE_MASK; 1652 error = security_file_mmap(NULL, 0, 0, 0, address, 1); 1653 if (error) 1654 return error; 1655 1656 anon_vma_lock(vma); 1657 1658 /* 1659 * vma->vm_start/vm_end cannot change under us because the caller 1660 * is required to hold the mmap_sem in read mode. We need the 1661 * anon_vma lock to serialize against concurrent expand_stacks. 1662 */ 1663 1664 /* Somebody else might have raced and expanded it already */ 1665 if (address < vma->vm_start) { 1666 unsigned long size, grow; 1667 1668 size = vma->vm_end - address; 1669 grow = (vma->vm_start - address) >> PAGE_SHIFT; 1670 1671 error = acct_stack_growth(vma, size, grow); 1672 if (!error) { 1673 vma->vm_start = address; 1674 vma->vm_pgoff -= grow; 1675 } 1676 } 1677 anon_vma_unlock(vma); 1678 return error; 1679 } 1680 1681 int expand_stack_downwards(struct vm_area_struct *vma, unsigned long address) 1682 { 1683 return expand_downwards(vma, address); 1684 } 1685 1686 #ifdef CONFIG_STACK_GROWSUP 1687 int expand_stack(struct vm_area_struct *vma, unsigned long address) 1688 { 1689 return expand_upwards(vma, address); 1690 } 1691 1692 struct vm_area_struct * 1693 find_extend_vma(struct mm_struct *mm, unsigned long addr) 1694 { 1695 struct vm_area_struct *vma, *prev; 1696 1697 addr &= PAGE_MASK; 1698 vma = find_vma_prev(mm, addr, &prev); 1699 if (vma && (vma->vm_start <= addr)) 1700 return vma; 1701 if (!prev || expand_stack(prev, addr)) 1702 return NULL; 1703 if (prev->vm_flags & VM_LOCKED) 1704 make_pages_present(addr, prev->vm_end); 1705 return prev; 1706 } 1707 #else 1708 int expand_stack(struct vm_area_struct *vma, unsigned long address) 1709 { 1710 return expand_downwards(vma, address); 1711 } 1712 1713 struct vm_area_struct * 1714 find_extend_vma(struct mm_struct * mm, unsigned long addr) 1715 { 1716 struct vm_area_struct * vma; 1717 unsigned long start; 1718 1719 addr &= PAGE_MASK; 1720 vma = find_vma(mm,addr); 1721 if (!vma) 1722 return NULL; 1723 if (vma->vm_start <= addr) 1724 return vma; 1725 if (!(vma->vm_flags & VM_GROWSDOWN)) 1726 return NULL; 1727 start = vma->vm_start; 1728 if (expand_stack(vma, addr)) 1729 return NULL; 1730 if (vma->vm_flags & VM_LOCKED) 1731 make_pages_present(addr, start); 1732 return vma; 1733 } 1734 #endif 1735 1736 /* 1737 * Ok - we have the memory areas we should free on the vma list, 1738 * so release them, and do the vma updates. 1739 * 1740 * Called with the mm semaphore held. 1741 */ 1742 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma) 1743 { 1744 /* Update high watermark before we lower total_vm */ 1745 update_hiwater_vm(mm); 1746 do { 1747 long nrpages = vma_pages(vma); 1748 1749 mm->total_vm -= nrpages; 1750 if (vma->vm_flags & VM_LOCKED) 1751 mm->locked_vm -= nrpages; 1752 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages); 1753 vma = remove_vma(vma); 1754 } while (vma); 1755 validate_mm(mm); 1756 } 1757 1758 /* 1759 * Get rid of page table information in the indicated region. 1760 * 1761 * Called with the mm semaphore held. 1762 */ 1763 static void unmap_region(struct mm_struct *mm, 1764 struct vm_area_struct *vma, struct vm_area_struct *prev, 1765 unsigned long start, unsigned long end) 1766 { 1767 struct vm_area_struct *next = prev? prev->vm_next: mm->mmap; 1768 struct mmu_gather *tlb; 1769 unsigned long nr_accounted = 0; 1770 1771 lru_add_drain(); 1772 tlb = tlb_gather_mmu(mm, 0); 1773 update_hiwater_rss(mm); 1774 unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL); 1775 vm_unacct_memory(nr_accounted); 1776 free_pgtables(tlb, vma, prev? prev->vm_end: FIRST_USER_ADDRESS, 1777 next? next->vm_start: 0); 1778 tlb_finish_mmu(tlb, start, end); 1779 } 1780 1781 /* 1782 * Create a list of vma's touched by the unmap, removing them from the mm's 1783 * vma list as we go.. 1784 */ 1785 static void 1786 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma, 1787 struct vm_area_struct *prev, unsigned long end) 1788 { 1789 struct vm_area_struct **insertion_point; 1790 struct vm_area_struct *tail_vma = NULL; 1791 unsigned long addr; 1792 1793 insertion_point = (prev ? &prev->vm_next : &mm->mmap); 1794 do { 1795 rb_erase(&vma->vm_rb, &mm->mm_rb); 1796 mm->map_count--; 1797 tail_vma = vma; 1798 vma = vma->vm_next; 1799 } while (vma && vma->vm_start < end); 1800 *insertion_point = vma; 1801 tail_vma->vm_next = NULL; 1802 if (mm->unmap_area == arch_unmap_area) 1803 addr = prev ? prev->vm_end : mm->mmap_base; 1804 else 1805 addr = vma ? vma->vm_start : mm->mmap_base; 1806 mm->unmap_area(mm, addr); 1807 mm->mmap_cache = NULL; /* Kill the cache. */ 1808 } 1809 1810 /* 1811 * Split a vma into two pieces at address 'addr', a new vma is allocated 1812 * either for the first part or the tail. 1813 */ 1814 int split_vma(struct mm_struct * mm, struct vm_area_struct * vma, 1815 unsigned long addr, int new_below) 1816 { 1817 struct mempolicy *pol; 1818 struct vm_area_struct *new; 1819 1820 if (is_vm_hugetlb_page(vma) && (addr & 1821 ~(huge_page_mask(hstate_vma(vma))))) 1822 return -EINVAL; 1823 1824 if (mm->map_count >= sysctl_max_map_count) 1825 return -ENOMEM; 1826 1827 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 1828 if (!new) 1829 return -ENOMEM; 1830 1831 /* most fields are the same, copy all, and then fixup */ 1832 *new = *vma; 1833 1834 if (new_below) 1835 new->vm_end = addr; 1836 else { 1837 new->vm_start = addr; 1838 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); 1839 } 1840 1841 pol = mpol_dup(vma_policy(vma)); 1842 if (IS_ERR(pol)) { 1843 kmem_cache_free(vm_area_cachep, new); 1844 return PTR_ERR(pol); 1845 } 1846 vma_set_policy(new, pol); 1847 1848 if (new->vm_file) { 1849 get_file(new->vm_file); 1850 if (vma->vm_flags & VM_EXECUTABLE) 1851 added_exe_file_vma(mm); 1852 } 1853 1854 if (new->vm_ops && new->vm_ops->open) 1855 new->vm_ops->open(new); 1856 1857 if (new_below) 1858 vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff + 1859 ((addr - new->vm_start) >> PAGE_SHIFT), new); 1860 else 1861 vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new); 1862 1863 return 0; 1864 } 1865 1866 /* Munmap is split into 2 main parts -- this part which finds 1867 * what needs doing, and the areas themselves, which do the 1868 * work. This now handles partial unmappings. 1869 * Jeremy Fitzhardinge <jeremy@goop.org> 1870 */ 1871 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len) 1872 { 1873 unsigned long end; 1874 struct vm_area_struct *vma, *prev, *last; 1875 1876 if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start) 1877 return -EINVAL; 1878 1879 if ((len = PAGE_ALIGN(len)) == 0) 1880 return -EINVAL; 1881 1882 /* Find the first overlapping VMA */ 1883 vma = find_vma_prev(mm, start, &prev); 1884 if (!vma) 1885 return 0; 1886 /* we have start < vma->vm_end */ 1887 1888 /* if it doesn't overlap, we have nothing.. */ 1889 end = start + len; 1890 if (vma->vm_start >= end) 1891 return 0; 1892 1893 /* 1894 * If we need to split any vma, do it now to save pain later. 1895 * 1896 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially 1897 * unmapped vm_area_struct will remain in use: so lower split_vma 1898 * places tmp vma above, and higher split_vma places tmp vma below. 1899 */ 1900 if (start > vma->vm_start) { 1901 int error = split_vma(mm, vma, start, 0); 1902 if (error) 1903 return error; 1904 prev = vma; 1905 } 1906 1907 /* Does it split the last one? */ 1908 last = find_vma(mm, end); 1909 if (last && end > last->vm_start) { 1910 int error = split_vma(mm, last, end, 1); 1911 if (error) 1912 return error; 1913 } 1914 vma = prev? prev->vm_next: mm->mmap; 1915 1916 /* 1917 * Remove the vma's, and unmap the actual pages 1918 */ 1919 detach_vmas_to_be_unmapped(mm, vma, prev, end); 1920 unmap_region(mm, vma, prev, start, end); 1921 1922 /* Fix up all other VM information */ 1923 remove_vma_list(mm, vma); 1924 1925 return 0; 1926 } 1927 1928 EXPORT_SYMBOL(do_munmap); 1929 1930 asmlinkage long sys_munmap(unsigned long addr, size_t len) 1931 { 1932 int ret; 1933 struct mm_struct *mm = current->mm; 1934 1935 profile_munmap(addr); 1936 1937 down_write(&mm->mmap_sem); 1938 ret = do_munmap(mm, addr, len); 1939 up_write(&mm->mmap_sem); 1940 return ret; 1941 } 1942 1943 static inline void verify_mm_writelocked(struct mm_struct *mm) 1944 { 1945 #ifdef CONFIG_DEBUG_VM 1946 if (unlikely(down_read_trylock(&mm->mmap_sem))) { 1947 WARN_ON(1); 1948 up_read(&mm->mmap_sem); 1949 } 1950 #endif 1951 } 1952 1953 /* 1954 * this is really a simplified "do_mmap". it only handles 1955 * anonymous maps. eventually we may be able to do some 1956 * brk-specific accounting here. 1957 */ 1958 unsigned long do_brk(unsigned long addr, unsigned long len) 1959 { 1960 struct mm_struct * mm = current->mm; 1961 struct vm_area_struct * vma, * prev; 1962 unsigned long flags; 1963 struct rb_node ** rb_link, * rb_parent; 1964 pgoff_t pgoff = addr >> PAGE_SHIFT; 1965 int error; 1966 1967 len = PAGE_ALIGN(len); 1968 if (!len) 1969 return addr; 1970 1971 if ((addr + len) > TASK_SIZE || (addr + len) < addr) 1972 return -EINVAL; 1973 1974 if (is_hugepage_only_range(mm, addr, len)) 1975 return -EINVAL; 1976 1977 error = security_file_mmap(NULL, 0, 0, 0, addr, 1); 1978 if (error) 1979 return error; 1980 1981 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; 1982 1983 error = arch_mmap_check(addr, len, flags); 1984 if (error) 1985 return error; 1986 1987 /* 1988 * mlock MCL_FUTURE? 1989 */ 1990 if (mm->def_flags & VM_LOCKED) { 1991 unsigned long locked, lock_limit; 1992 locked = len >> PAGE_SHIFT; 1993 locked += mm->locked_vm; 1994 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur; 1995 lock_limit >>= PAGE_SHIFT; 1996 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 1997 return -EAGAIN; 1998 } 1999 2000 /* 2001 * mm->mmap_sem is required to protect against another thread 2002 * changing the mappings in case we sleep. 2003 */ 2004 verify_mm_writelocked(mm); 2005 2006 /* 2007 * Clear old maps. this also does some error checking for us 2008 */ 2009 munmap_back: 2010 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent); 2011 if (vma && vma->vm_start < addr + len) { 2012 if (do_munmap(mm, addr, len)) 2013 return -ENOMEM; 2014 goto munmap_back; 2015 } 2016 2017 /* Check against address space limits *after* clearing old maps... */ 2018 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) 2019 return -ENOMEM; 2020 2021 if (mm->map_count > sysctl_max_map_count) 2022 return -ENOMEM; 2023 2024 if (security_vm_enough_memory(len >> PAGE_SHIFT)) 2025 return -ENOMEM; 2026 2027 /* Can we just expand an old private anonymous mapping? */ 2028 if (vma_merge(mm, prev, addr, addr + len, flags, 2029 NULL, NULL, pgoff, NULL)) 2030 goto out; 2031 2032 /* 2033 * create a vma struct for an anonymous mapping 2034 */ 2035 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 2036 if (!vma) { 2037 vm_unacct_memory(len >> PAGE_SHIFT); 2038 return -ENOMEM; 2039 } 2040 2041 vma->vm_mm = mm; 2042 vma->vm_start = addr; 2043 vma->vm_end = addr + len; 2044 vma->vm_pgoff = pgoff; 2045 vma->vm_flags = flags; 2046 vma->vm_page_prot = vm_get_page_prot(flags); 2047 vma_link(mm, vma, prev, rb_link, rb_parent); 2048 out: 2049 mm->total_vm += len >> PAGE_SHIFT; 2050 if (flags & VM_LOCKED) { 2051 mm->locked_vm += len >> PAGE_SHIFT; 2052 make_pages_present(addr, addr + len); 2053 } 2054 return addr; 2055 } 2056 2057 EXPORT_SYMBOL(do_brk); 2058 2059 /* Release all mmaps. */ 2060 void exit_mmap(struct mm_struct *mm) 2061 { 2062 struct mmu_gather *tlb; 2063 struct vm_area_struct *vma = mm->mmap; 2064 unsigned long nr_accounted = 0; 2065 unsigned long end; 2066 2067 /* mm's last user has gone, and its about to be pulled down */ 2068 arch_exit_mmap(mm); 2069 mmu_notifier_release(mm); 2070 2071 lru_add_drain(); 2072 flush_cache_mm(mm); 2073 tlb = tlb_gather_mmu(mm, 1); 2074 /* Don't update_hiwater_rss(mm) here, do_exit already did */ 2075 /* Use -1 here to ensure all VMAs in the mm are unmapped */ 2076 end = unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL); 2077 vm_unacct_memory(nr_accounted); 2078 free_pgtables(tlb, vma, FIRST_USER_ADDRESS, 0); 2079 tlb_finish_mmu(tlb, 0, end); 2080 2081 /* 2082 * Walk the list again, actually closing and freeing it, 2083 * with preemption enabled, without holding any MM locks. 2084 */ 2085 while (vma) 2086 vma = remove_vma(vma); 2087 2088 BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT); 2089 } 2090 2091 /* Insert vm structure into process list sorted by address 2092 * and into the inode's i_mmap tree. If vm_file is non-NULL 2093 * then i_mmap_lock is taken here. 2094 */ 2095 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma) 2096 { 2097 struct vm_area_struct * __vma, * prev; 2098 struct rb_node ** rb_link, * rb_parent; 2099 2100 /* 2101 * The vm_pgoff of a purely anonymous vma should be irrelevant 2102 * until its first write fault, when page's anon_vma and index 2103 * are set. But now set the vm_pgoff it will almost certainly 2104 * end up with (unless mremap moves it elsewhere before that 2105 * first wfault), so /proc/pid/maps tells a consistent story. 2106 * 2107 * By setting it to reflect the virtual start address of the 2108 * vma, merges and splits can happen in a seamless way, just 2109 * using the existing file pgoff checks and manipulations. 2110 * Similarly in do_mmap_pgoff and in do_brk. 2111 */ 2112 if (!vma->vm_file) { 2113 BUG_ON(vma->anon_vma); 2114 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; 2115 } 2116 __vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent); 2117 if (__vma && __vma->vm_start < vma->vm_end) 2118 return -ENOMEM; 2119 if ((vma->vm_flags & VM_ACCOUNT) && 2120 security_vm_enough_memory_mm(mm, vma_pages(vma))) 2121 return -ENOMEM; 2122 vma_link(mm, vma, prev, rb_link, rb_parent); 2123 return 0; 2124 } 2125 2126 /* 2127 * Copy the vma structure to a new location in the same mm, 2128 * prior to moving page table entries, to effect an mremap move. 2129 */ 2130 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 2131 unsigned long addr, unsigned long len, pgoff_t pgoff) 2132 { 2133 struct vm_area_struct *vma = *vmap; 2134 unsigned long vma_start = vma->vm_start; 2135 struct mm_struct *mm = vma->vm_mm; 2136 struct vm_area_struct *new_vma, *prev; 2137 struct rb_node **rb_link, *rb_parent; 2138 struct mempolicy *pol; 2139 2140 /* 2141 * If anonymous vma has not yet been faulted, update new pgoff 2142 * to match new location, to increase its chance of merging. 2143 */ 2144 if (!vma->vm_file && !vma->anon_vma) 2145 pgoff = addr >> PAGE_SHIFT; 2146 2147 find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent); 2148 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags, 2149 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma)); 2150 if (new_vma) { 2151 /* 2152 * Source vma may have been merged into new_vma 2153 */ 2154 if (vma_start >= new_vma->vm_start && 2155 vma_start < new_vma->vm_end) 2156 *vmap = new_vma; 2157 } else { 2158 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 2159 if (new_vma) { 2160 *new_vma = *vma; 2161 pol = mpol_dup(vma_policy(vma)); 2162 if (IS_ERR(pol)) { 2163 kmem_cache_free(vm_area_cachep, new_vma); 2164 return NULL; 2165 } 2166 vma_set_policy(new_vma, pol); 2167 new_vma->vm_start = addr; 2168 new_vma->vm_end = addr + len; 2169 new_vma->vm_pgoff = pgoff; 2170 if (new_vma->vm_file) { 2171 get_file(new_vma->vm_file); 2172 if (vma->vm_flags & VM_EXECUTABLE) 2173 added_exe_file_vma(mm); 2174 } 2175 if (new_vma->vm_ops && new_vma->vm_ops->open) 2176 new_vma->vm_ops->open(new_vma); 2177 vma_link(mm, new_vma, prev, rb_link, rb_parent); 2178 } 2179 } 2180 return new_vma; 2181 } 2182 2183 /* 2184 * Return true if the calling process may expand its vm space by the passed 2185 * number of pages 2186 */ 2187 int may_expand_vm(struct mm_struct *mm, unsigned long npages) 2188 { 2189 unsigned long cur = mm->total_vm; /* pages */ 2190 unsigned long lim; 2191 2192 lim = current->signal->rlim[RLIMIT_AS].rlim_cur >> PAGE_SHIFT; 2193 2194 if (cur + npages > lim) 2195 return 0; 2196 return 1; 2197 } 2198 2199 2200 static int special_mapping_fault(struct vm_area_struct *vma, 2201 struct vm_fault *vmf) 2202 { 2203 pgoff_t pgoff; 2204 struct page **pages; 2205 2206 /* 2207 * special mappings have no vm_file, and in that case, the mm 2208 * uses vm_pgoff internally. So we have to subtract it from here. 2209 * We are allowed to do this because we are the mm; do not copy 2210 * this code into drivers! 2211 */ 2212 pgoff = vmf->pgoff - vma->vm_pgoff; 2213 2214 for (pages = vma->vm_private_data; pgoff && *pages; ++pages) 2215 pgoff--; 2216 2217 if (*pages) { 2218 struct page *page = *pages; 2219 get_page(page); 2220 vmf->page = page; 2221 return 0; 2222 } 2223 2224 return VM_FAULT_SIGBUS; 2225 } 2226 2227 /* 2228 * Having a close hook prevents vma merging regardless of flags. 2229 */ 2230 static void special_mapping_close(struct vm_area_struct *vma) 2231 { 2232 } 2233 2234 static struct vm_operations_struct special_mapping_vmops = { 2235 .close = special_mapping_close, 2236 .fault = special_mapping_fault, 2237 }; 2238 2239 /* 2240 * Called with mm->mmap_sem held for writing. 2241 * Insert a new vma covering the given region, with the given flags. 2242 * Its pages are supplied by the given array of struct page *. 2243 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated. 2244 * The region past the last page supplied will always produce SIGBUS. 2245 * The array pointer and the pages it points to are assumed to stay alive 2246 * for as long as this mapping might exist. 2247 */ 2248 int install_special_mapping(struct mm_struct *mm, 2249 unsigned long addr, unsigned long len, 2250 unsigned long vm_flags, struct page **pages) 2251 { 2252 struct vm_area_struct *vma; 2253 2254 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 2255 if (unlikely(vma == NULL)) 2256 return -ENOMEM; 2257 2258 vma->vm_mm = mm; 2259 vma->vm_start = addr; 2260 vma->vm_end = addr + len; 2261 2262 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND; 2263 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2264 2265 vma->vm_ops = &special_mapping_vmops; 2266 vma->vm_private_data = pages; 2267 2268 if (unlikely(insert_vm_struct(mm, vma))) { 2269 kmem_cache_free(vm_area_cachep, vma); 2270 return -ENOMEM; 2271 } 2272 2273 mm->total_vm += len >> PAGE_SHIFT; 2274 2275 return 0; 2276 } 2277 2278 static DEFINE_MUTEX(mm_all_locks_mutex); 2279 2280 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) 2281 { 2282 if (!test_bit(0, (unsigned long *) &anon_vma->head.next)) { 2283 /* 2284 * The LSB of head.next can't change from under us 2285 * because we hold the mm_all_locks_mutex. 2286 */ 2287 spin_lock_nest_lock(&anon_vma->lock, &mm->mmap_sem); 2288 /* 2289 * We can safely modify head.next after taking the 2290 * anon_vma->lock. If some other vma in this mm shares 2291 * the same anon_vma we won't take it again. 2292 * 2293 * No need of atomic instructions here, head.next 2294 * can't change from under us thanks to the 2295 * anon_vma->lock. 2296 */ 2297 if (__test_and_set_bit(0, (unsigned long *) 2298 &anon_vma->head.next)) 2299 BUG(); 2300 } 2301 } 2302 2303 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) 2304 { 2305 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 2306 /* 2307 * AS_MM_ALL_LOCKS can't change from under us because 2308 * we hold the mm_all_locks_mutex. 2309 * 2310 * Operations on ->flags have to be atomic because 2311 * even if AS_MM_ALL_LOCKS is stable thanks to the 2312 * mm_all_locks_mutex, there may be other cpus 2313 * changing other bitflags in parallel to us. 2314 */ 2315 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) 2316 BUG(); 2317 spin_lock_nest_lock(&mapping->i_mmap_lock, &mm->mmap_sem); 2318 } 2319 } 2320 2321 /* 2322 * This operation locks against the VM for all pte/vma/mm related 2323 * operations that could ever happen on a certain mm. This includes 2324 * vmtruncate, try_to_unmap, and all page faults. 2325 * 2326 * The caller must take the mmap_sem in write mode before calling 2327 * mm_take_all_locks(). The caller isn't allowed to release the 2328 * mmap_sem until mm_drop_all_locks() returns. 2329 * 2330 * mmap_sem in write mode is required in order to block all operations 2331 * that could modify pagetables and free pages without need of 2332 * altering the vma layout (for example populate_range() with 2333 * nonlinear vmas). It's also needed in write mode to avoid new 2334 * anon_vmas to be associated with existing vmas. 2335 * 2336 * A single task can't take more than one mm_take_all_locks() in a row 2337 * or it would deadlock. 2338 * 2339 * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in 2340 * mapping->flags avoid to take the same lock twice, if more than one 2341 * vma in this mm is backed by the same anon_vma or address_space. 2342 * 2343 * We can take all the locks in random order because the VM code 2344 * taking i_mmap_lock or anon_vma->lock outside the mmap_sem never 2345 * takes more than one of them in a row. Secondly we're protected 2346 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex. 2347 * 2348 * mm_take_all_locks() and mm_drop_all_locks are expensive operations 2349 * that may have to take thousand of locks. 2350 * 2351 * mm_take_all_locks() can fail if it's interrupted by signals. 2352 */ 2353 int mm_take_all_locks(struct mm_struct *mm) 2354 { 2355 struct vm_area_struct *vma; 2356 int ret = -EINTR; 2357 2358 BUG_ON(down_read_trylock(&mm->mmap_sem)); 2359 2360 mutex_lock(&mm_all_locks_mutex); 2361 2362 for (vma = mm->mmap; vma; vma = vma->vm_next) { 2363 if (signal_pending(current)) 2364 goto out_unlock; 2365 if (vma->vm_file && vma->vm_file->f_mapping) 2366 vm_lock_mapping(mm, vma->vm_file->f_mapping); 2367 } 2368 2369 for (vma = mm->mmap; vma; vma = vma->vm_next) { 2370 if (signal_pending(current)) 2371 goto out_unlock; 2372 if (vma->anon_vma) 2373 vm_lock_anon_vma(mm, vma->anon_vma); 2374 } 2375 2376 ret = 0; 2377 2378 out_unlock: 2379 if (ret) 2380 mm_drop_all_locks(mm); 2381 2382 return ret; 2383 } 2384 2385 static void vm_unlock_anon_vma(struct anon_vma *anon_vma) 2386 { 2387 if (test_bit(0, (unsigned long *) &anon_vma->head.next)) { 2388 /* 2389 * The LSB of head.next can't change to 0 from under 2390 * us because we hold the mm_all_locks_mutex. 2391 * 2392 * We must however clear the bitflag before unlocking 2393 * the vma so the users using the anon_vma->head will 2394 * never see our bitflag. 2395 * 2396 * No need of atomic instructions here, head.next 2397 * can't change from under us until we release the 2398 * anon_vma->lock. 2399 */ 2400 if (!__test_and_clear_bit(0, (unsigned long *) 2401 &anon_vma->head.next)) 2402 BUG(); 2403 spin_unlock(&anon_vma->lock); 2404 } 2405 } 2406 2407 static void vm_unlock_mapping(struct address_space *mapping) 2408 { 2409 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 2410 /* 2411 * AS_MM_ALL_LOCKS can't change to 0 from under us 2412 * because we hold the mm_all_locks_mutex. 2413 */ 2414 spin_unlock(&mapping->i_mmap_lock); 2415 if (!test_and_clear_bit(AS_MM_ALL_LOCKS, 2416 &mapping->flags)) 2417 BUG(); 2418 } 2419 } 2420 2421 /* 2422 * The mmap_sem cannot be released by the caller until 2423 * mm_drop_all_locks() returns. 2424 */ 2425 void mm_drop_all_locks(struct mm_struct *mm) 2426 { 2427 struct vm_area_struct *vma; 2428 2429 BUG_ON(down_read_trylock(&mm->mmap_sem)); 2430 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); 2431 2432 for (vma = mm->mmap; vma; vma = vma->vm_next) { 2433 if (vma->anon_vma) 2434 vm_unlock_anon_vma(vma->anon_vma); 2435 if (vma->vm_file && vma->vm_file->f_mapping) 2436 vm_unlock_mapping(vma->vm_file->f_mapping); 2437 } 2438 2439 mutex_unlock(&mm_all_locks_mutex); 2440 } 2441