1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/mmap.c 4 * 5 * Written by obz. 6 * 7 * Address space accounting code <alan@lxorguk.ukuu.org.uk> 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/kernel.h> 13 #include <linux/slab.h> 14 #include <linux/backing-dev.h> 15 #include <linux/mm.h> 16 #include <linux/vmacache.h> 17 #include <linux/shm.h> 18 #include <linux/mman.h> 19 #include <linux/pagemap.h> 20 #include <linux/swap.h> 21 #include <linux/syscalls.h> 22 #include <linux/capability.h> 23 #include <linux/init.h> 24 #include <linux/file.h> 25 #include <linux/fs.h> 26 #include <linux/personality.h> 27 #include <linux/security.h> 28 #include <linux/hugetlb.h> 29 #include <linux/shmem_fs.h> 30 #include <linux/profile.h> 31 #include <linux/export.h> 32 #include <linux/mount.h> 33 #include <linux/mempolicy.h> 34 #include <linux/rmap.h> 35 #include <linux/mmu_notifier.h> 36 #include <linux/mmdebug.h> 37 #include <linux/perf_event.h> 38 #include <linux/audit.h> 39 #include <linux/khugepaged.h> 40 #include <linux/uprobes.h> 41 #include <linux/rbtree_augmented.h> 42 #include <linux/notifier.h> 43 #include <linux/memory.h> 44 #include <linux/printk.h> 45 #include <linux/userfaultfd_k.h> 46 #include <linux/moduleparam.h> 47 #include <linux/pkeys.h> 48 #include <linux/oom.h> 49 #include <linux/sched/mm.h> 50 51 #include <linux/uaccess.h> 52 #include <asm/cacheflush.h> 53 #include <asm/tlb.h> 54 #include <asm/mmu_context.h> 55 56 #define CREATE_TRACE_POINTS 57 #include <trace/events/mmap.h> 58 59 #include "internal.h" 60 61 #ifndef arch_mmap_check 62 #define arch_mmap_check(addr, len, flags) (0) 63 #endif 64 65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 66 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN; 67 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX; 68 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS; 69 #endif 70 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 71 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN; 72 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX; 73 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS; 74 #endif 75 76 static bool ignore_rlimit_data; 77 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644); 78 79 static void unmap_region(struct mm_struct *mm, 80 struct vm_area_struct *vma, struct vm_area_struct *prev, 81 unsigned long start, unsigned long end); 82 83 /* description of effects of mapping type and prot in current implementation. 84 * this is due to the limited x86 page protection hardware. The expected 85 * behavior is in parens: 86 * 87 * map_type prot 88 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC 89 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes 90 * w: (no) no w: (no) no w: (yes) yes w: (no) no 91 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 92 * 93 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes 94 * w: (no) no w: (no) no w: (copy) copy w: (no) no 95 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 96 * 97 * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and 98 * MAP_PRIVATE (with Enhanced PAN supported): 99 * r: (no) no 100 * w: (no) no 101 * x: (yes) yes 102 */ 103 pgprot_t protection_map[16] __ro_after_init = { 104 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111, 105 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111 106 }; 107 108 #ifndef CONFIG_ARCH_HAS_FILTER_PGPROT 109 static inline pgprot_t arch_filter_pgprot(pgprot_t prot) 110 { 111 return prot; 112 } 113 #endif 114 115 pgprot_t vm_get_page_prot(unsigned long vm_flags) 116 { 117 pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags & 118 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) | 119 pgprot_val(arch_vm_get_page_prot(vm_flags))); 120 121 return arch_filter_pgprot(ret); 122 } 123 EXPORT_SYMBOL(vm_get_page_prot); 124 125 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags) 126 { 127 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags)); 128 } 129 130 /* Update vma->vm_page_prot to reflect vma->vm_flags. */ 131 void vma_set_page_prot(struct vm_area_struct *vma) 132 { 133 unsigned long vm_flags = vma->vm_flags; 134 pgprot_t vm_page_prot; 135 136 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags); 137 if (vma_wants_writenotify(vma, vm_page_prot)) { 138 vm_flags &= ~VM_SHARED; 139 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags); 140 } 141 /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */ 142 WRITE_ONCE(vma->vm_page_prot, vm_page_prot); 143 } 144 145 /* 146 * Requires inode->i_mapping->i_mmap_rwsem 147 */ 148 static void __remove_shared_vm_struct(struct vm_area_struct *vma, 149 struct file *file, struct address_space *mapping) 150 { 151 if (vma->vm_flags & VM_DENYWRITE) 152 allow_write_access(file); 153 if (vma->vm_flags & VM_SHARED) 154 mapping_unmap_writable(mapping); 155 156 flush_dcache_mmap_lock(mapping); 157 vma_interval_tree_remove(vma, &mapping->i_mmap); 158 flush_dcache_mmap_unlock(mapping); 159 } 160 161 /* 162 * Unlink a file-based vm structure from its interval tree, to hide 163 * vma from rmap and vmtruncate before freeing its page tables. 164 */ 165 void unlink_file_vma(struct vm_area_struct *vma) 166 { 167 struct file *file = vma->vm_file; 168 169 if (file) { 170 struct address_space *mapping = file->f_mapping; 171 i_mmap_lock_write(mapping); 172 __remove_shared_vm_struct(vma, file, mapping); 173 i_mmap_unlock_write(mapping); 174 } 175 } 176 177 /* 178 * Close a vm structure and free it, returning the next. 179 */ 180 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma) 181 { 182 struct vm_area_struct *next = vma->vm_next; 183 184 might_sleep(); 185 if (vma->vm_ops && vma->vm_ops->close) 186 vma->vm_ops->close(vma); 187 if (vma->vm_file) 188 fput(vma->vm_file); 189 mpol_put(vma_policy(vma)); 190 vm_area_free(vma); 191 return next; 192 } 193 194 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags, 195 struct list_head *uf); 196 SYSCALL_DEFINE1(brk, unsigned long, brk) 197 { 198 unsigned long newbrk, oldbrk, origbrk; 199 struct mm_struct *mm = current->mm; 200 struct vm_area_struct *next; 201 unsigned long min_brk; 202 bool populate; 203 bool downgraded = false; 204 LIST_HEAD(uf); 205 206 if (mmap_write_lock_killable(mm)) 207 return -EINTR; 208 209 origbrk = mm->brk; 210 211 #ifdef CONFIG_COMPAT_BRK 212 /* 213 * CONFIG_COMPAT_BRK can still be overridden by setting 214 * randomize_va_space to 2, which will still cause mm->start_brk 215 * to be arbitrarily shifted 216 */ 217 if (current->brk_randomized) 218 min_brk = mm->start_brk; 219 else 220 min_brk = mm->end_data; 221 #else 222 min_brk = mm->start_brk; 223 #endif 224 if (brk < min_brk) 225 goto out; 226 227 /* 228 * Check against rlimit here. If this check is done later after the test 229 * of oldbrk with newbrk then it can escape the test and let the data 230 * segment grow beyond its set limit the in case where the limit is 231 * not page aligned -Ram Gupta 232 */ 233 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk, 234 mm->end_data, mm->start_data)) 235 goto out; 236 237 newbrk = PAGE_ALIGN(brk); 238 oldbrk = PAGE_ALIGN(mm->brk); 239 if (oldbrk == newbrk) { 240 mm->brk = brk; 241 goto success; 242 } 243 244 /* 245 * Always allow shrinking brk. 246 * __do_munmap() may downgrade mmap_lock to read. 247 */ 248 if (brk <= mm->brk) { 249 int ret; 250 251 /* 252 * mm->brk must to be protected by write mmap_lock so update it 253 * before downgrading mmap_lock. When __do_munmap() fails, 254 * mm->brk will be restored from origbrk. 255 */ 256 mm->brk = brk; 257 ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true); 258 if (ret < 0) { 259 mm->brk = origbrk; 260 goto out; 261 } else if (ret == 1) { 262 downgraded = true; 263 } 264 goto success; 265 } 266 267 /* Check against existing mmap mappings. */ 268 next = find_vma(mm, oldbrk); 269 if (next && newbrk + PAGE_SIZE > vm_start_gap(next)) 270 goto out; 271 272 /* Ok, looks good - let it rip. */ 273 if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0) 274 goto out; 275 mm->brk = brk; 276 277 success: 278 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0; 279 if (downgraded) 280 mmap_read_unlock(mm); 281 else 282 mmap_write_unlock(mm); 283 userfaultfd_unmap_complete(mm, &uf); 284 if (populate) 285 mm_populate(oldbrk, newbrk - oldbrk); 286 return brk; 287 288 out: 289 mmap_write_unlock(mm); 290 return origbrk; 291 } 292 293 static inline unsigned long vma_compute_gap(struct vm_area_struct *vma) 294 { 295 unsigned long gap, prev_end; 296 297 /* 298 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we 299 * allow two stack_guard_gaps between them here, and when choosing 300 * an unmapped area; whereas when expanding we only require one. 301 * That's a little inconsistent, but keeps the code here simpler. 302 */ 303 gap = vm_start_gap(vma); 304 if (vma->vm_prev) { 305 prev_end = vm_end_gap(vma->vm_prev); 306 if (gap > prev_end) 307 gap -= prev_end; 308 else 309 gap = 0; 310 } 311 return gap; 312 } 313 314 #ifdef CONFIG_DEBUG_VM_RB 315 static unsigned long vma_compute_subtree_gap(struct vm_area_struct *vma) 316 { 317 unsigned long max = vma_compute_gap(vma), subtree_gap; 318 if (vma->vm_rb.rb_left) { 319 subtree_gap = rb_entry(vma->vm_rb.rb_left, 320 struct vm_area_struct, vm_rb)->rb_subtree_gap; 321 if (subtree_gap > max) 322 max = subtree_gap; 323 } 324 if (vma->vm_rb.rb_right) { 325 subtree_gap = rb_entry(vma->vm_rb.rb_right, 326 struct vm_area_struct, vm_rb)->rb_subtree_gap; 327 if (subtree_gap > max) 328 max = subtree_gap; 329 } 330 return max; 331 } 332 333 static int browse_rb(struct mm_struct *mm) 334 { 335 struct rb_root *root = &mm->mm_rb; 336 int i = 0, j, bug = 0; 337 struct rb_node *nd, *pn = NULL; 338 unsigned long prev = 0, pend = 0; 339 340 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 341 struct vm_area_struct *vma; 342 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 343 if (vma->vm_start < prev) { 344 pr_emerg("vm_start %lx < prev %lx\n", 345 vma->vm_start, prev); 346 bug = 1; 347 } 348 if (vma->vm_start < pend) { 349 pr_emerg("vm_start %lx < pend %lx\n", 350 vma->vm_start, pend); 351 bug = 1; 352 } 353 if (vma->vm_start > vma->vm_end) { 354 pr_emerg("vm_start %lx > vm_end %lx\n", 355 vma->vm_start, vma->vm_end); 356 bug = 1; 357 } 358 spin_lock(&mm->page_table_lock); 359 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) { 360 pr_emerg("free gap %lx, correct %lx\n", 361 vma->rb_subtree_gap, 362 vma_compute_subtree_gap(vma)); 363 bug = 1; 364 } 365 spin_unlock(&mm->page_table_lock); 366 i++; 367 pn = nd; 368 prev = vma->vm_start; 369 pend = vma->vm_end; 370 } 371 j = 0; 372 for (nd = pn; nd; nd = rb_prev(nd)) 373 j++; 374 if (i != j) { 375 pr_emerg("backwards %d, forwards %d\n", j, i); 376 bug = 1; 377 } 378 return bug ? -1 : i; 379 } 380 381 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore) 382 { 383 struct rb_node *nd; 384 385 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 386 struct vm_area_struct *vma; 387 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 388 VM_BUG_ON_VMA(vma != ignore && 389 vma->rb_subtree_gap != vma_compute_subtree_gap(vma), 390 vma); 391 } 392 } 393 394 static void validate_mm(struct mm_struct *mm) 395 { 396 int bug = 0; 397 int i = 0; 398 unsigned long highest_address = 0; 399 struct vm_area_struct *vma = mm->mmap; 400 401 while (vma) { 402 struct anon_vma *anon_vma = vma->anon_vma; 403 struct anon_vma_chain *avc; 404 405 if (anon_vma) { 406 anon_vma_lock_read(anon_vma); 407 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 408 anon_vma_interval_tree_verify(avc); 409 anon_vma_unlock_read(anon_vma); 410 } 411 412 highest_address = vm_end_gap(vma); 413 vma = vma->vm_next; 414 i++; 415 } 416 if (i != mm->map_count) { 417 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i); 418 bug = 1; 419 } 420 if (highest_address != mm->highest_vm_end) { 421 pr_emerg("mm->highest_vm_end %lx, found %lx\n", 422 mm->highest_vm_end, highest_address); 423 bug = 1; 424 } 425 i = browse_rb(mm); 426 if (i != mm->map_count) { 427 if (i != -1) 428 pr_emerg("map_count %d rb %d\n", mm->map_count, i); 429 bug = 1; 430 } 431 VM_BUG_ON_MM(bug, mm); 432 } 433 #else 434 #define validate_mm_rb(root, ignore) do { } while (0) 435 #define validate_mm(mm) do { } while (0) 436 #endif 437 438 RB_DECLARE_CALLBACKS_MAX(static, vma_gap_callbacks, 439 struct vm_area_struct, vm_rb, 440 unsigned long, rb_subtree_gap, vma_compute_gap) 441 442 /* 443 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or 444 * vma->vm_prev->vm_end values changed, without modifying the vma's position 445 * in the rbtree. 446 */ 447 static void vma_gap_update(struct vm_area_struct *vma) 448 { 449 /* 450 * As it turns out, RB_DECLARE_CALLBACKS_MAX() already created 451 * a callback function that does exactly what we want. 452 */ 453 vma_gap_callbacks_propagate(&vma->vm_rb, NULL); 454 } 455 456 static inline void vma_rb_insert(struct vm_area_struct *vma, 457 struct rb_root *root) 458 { 459 /* All rb_subtree_gap values must be consistent prior to insertion */ 460 validate_mm_rb(root, NULL); 461 462 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks); 463 } 464 465 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root) 466 { 467 /* 468 * Note rb_erase_augmented is a fairly large inline function, 469 * so make sure we instantiate it only once with our desired 470 * augmented rbtree callbacks. 471 */ 472 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks); 473 } 474 475 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma, 476 struct rb_root *root, 477 struct vm_area_struct *ignore) 478 { 479 /* 480 * All rb_subtree_gap values must be consistent prior to erase, 481 * with the possible exception of 482 * 483 * a. the "next" vma being erased if next->vm_start was reduced in 484 * __vma_adjust() -> __vma_unlink() 485 * b. the vma being erased in detach_vmas_to_be_unmapped() -> 486 * vma_rb_erase() 487 */ 488 validate_mm_rb(root, ignore); 489 490 __vma_rb_erase(vma, root); 491 } 492 493 static __always_inline void vma_rb_erase(struct vm_area_struct *vma, 494 struct rb_root *root) 495 { 496 vma_rb_erase_ignore(vma, root, vma); 497 } 498 499 /* 500 * vma has some anon_vma assigned, and is already inserted on that 501 * anon_vma's interval trees. 502 * 503 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the 504 * vma must be removed from the anon_vma's interval trees using 505 * anon_vma_interval_tree_pre_update_vma(). 506 * 507 * After the update, the vma will be reinserted using 508 * anon_vma_interval_tree_post_update_vma(). 509 * 510 * The entire update must be protected by exclusive mmap_lock and by 511 * the root anon_vma's mutex. 512 */ 513 static inline void 514 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma) 515 { 516 struct anon_vma_chain *avc; 517 518 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 519 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root); 520 } 521 522 static inline void 523 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma) 524 { 525 struct anon_vma_chain *avc; 526 527 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 528 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root); 529 } 530 531 static int find_vma_links(struct mm_struct *mm, unsigned long addr, 532 unsigned long end, struct vm_area_struct **pprev, 533 struct rb_node ***rb_link, struct rb_node **rb_parent) 534 { 535 struct rb_node **__rb_link, *__rb_parent, *rb_prev; 536 537 __rb_link = &mm->mm_rb.rb_node; 538 rb_prev = __rb_parent = NULL; 539 540 while (*__rb_link) { 541 struct vm_area_struct *vma_tmp; 542 543 __rb_parent = *__rb_link; 544 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb); 545 546 if (vma_tmp->vm_end > addr) { 547 /* Fail if an existing vma overlaps the area */ 548 if (vma_tmp->vm_start < end) 549 return -ENOMEM; 550 __rb_link = &__rb_parent->rb_left; 551 } else { 552 rb_prev = __rb_parent; 553 __rb_link = &__rb_parent->rb_right; 554 } 555 } 556 557 *pprev = NULL; 558 if (rb_prev) 559 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); 560 *rb_link = __rb_link; 561 *rb_parent = __rb_parent; 562 return 0; 563 } 564 565 /* 566 * vma_next() - Get the next VMA. 567 * @mm: The mm_struct. 568 * @vma: The current vma. 569 * 570 * If @vma is NULL, return the first vma in the mm. 571 * 572 * Returns: The next VMA after @vma. 573 */ 574 static inline struct vm_area_struct *vma_next(struct mm_struct *mm, 575 struct vm_area_struct *vma) 576 { 577 if (!vma) 578 return mm->mmap; 579 580 return vma->vm_next; 581 } 582 583 /* 584 * munmap_vma_range() - munmap VMAs that overlap a range. 585 * @mm: The mm struct 586 * @start: The start of the range. 587 * @len: The length of the range. 588 * @pprev: pointer to the pointer that will be set to previous vm_area_struct 589 * @rb_link: the rb_node 590 * @rb_parent: the parent rb_node 591 * 592 * Find all the vm_area_struct that overlap from @start to 593 * @end and munmap them. Set @pprev to the previous vm_area_struct. 594 * 595 * Returns: -ENOMEM on munmap failure or 0 on success. 596 */ 597 static inline int 598 munmap_vma_range(struct mm_struct *mm, unsigned long start, unsigned long len, 599 struct vm_area_struct **pprev, struct rb_node ***link, 600 struct rb_node **parent, struct list_head *uf) 601 { 602 603 while (find_vma_links(mm, start, start + len, pprev, link, parent)) 604 if (do_munmap(mm, start, len, uf)) 605 return -ENOMEM; 606 607 return 0; 608 } 609 static unsigned long count_vma_pages_range(struct mm_struct *mm, 610 unsigned long addr, unsigned long end) 611 { 612 unsigned long nr_pages = 0; 613 struct vm_area_struct *vma; 614 615 /* Find first overlapping mapping */ 616 vma = find_vma_intersection(mm, addr, end); 617 if (!vma) 618 return 0; 619 620 nr_pages = (min(end, vma->vm_end) - 621 max(addr, vma->vm_start)) >> PAGE_SHIFT; 622 623 /* Iterate over the rest of the overlaps */ 624 for (vma = vma->vm_next; vma; vma = vma->vm_next) { 625 unsigned long overlap_len; 626 627 if (vma->vm_start > end) 628 break; 629 630 overlap_len = min(end, vma->vm_end) - vma->vm_start; 631 nr_pages += overlap_len >> PAGE_SHIFT; 632 } 633 634 return nr_pages; 635 } 636 637 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma, 638 struct rb_node **rb_link, struct rb_node *rb_parent) 639 { 640 /* Update tracking information for the gap following the new vma. */ 641 if (vma->vm_next) 642 vma_gap_update(vma->vm_next); 643 else 644 mm->highest_vm_end = vm_end_gap(vma); 645 646 /* 647 * vma->vm_prev wasn't known when we followed the rbtree to find the 648 * correct insertion point for that vma. As a result, we could not 649 * update the vma vm_rb parents rb_subtree_gap values on the way down. 650 * So, we first insert the vma with a zero rb_subtree_gap value 651 * (to be consistent with what we did on the way down), and then 652 * immediately update the gap to the correct value. Finally we 653 * rebalance the rbtree after all augmented values have been set. 654 */ 655 rb_link_node(&vma->vm_rb, rb_parent, rb_link); 656 vma->rb_subtree_gap = 0; 657 vma_gap_update(vma); 658 vma_rb_insert(vma, &mm->mm_rb); 659 } 660 661 static void __vma_link_file(struct vm_area_struct *vma) 662 { 663 struct file *file; 664 665 file = vma->vm_file; 666 if (file) { 667 struct address_space *mapping = file->f_mapping; 668 669 if (vma->vm_flags & VM_DENYWRITE) 670 put_write_access(file_inode(file)); 671 if (vma->vm_flags & VM_SHARED) 672 mapping_allow_writable(mapping); 673 674 flush_dcache_mmap_lock(mapping); 675 vma_interval_tree_insert(vma, &mapping->i_mmap); 676 flush_dcache_mmap_unlock(mapping); 677 } 678 } 679 680 static void 681 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 682 struct vm_area_struct *prev, struct rb_node **rb_link, 683 struct rb_node *rb_parent) 684 { 685 __vma_link_list(mm, vma, prev); 686 __vma_link_rb(mm, vma, rb_link, rb_parent); 687 } 688 689 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 690 struct vm_area_struct *prev, struct rb_node **rb_link, 691 struct rb_node *rb_parent) 692 { 693 struct address_space *mapping = NULL; 694 695 if (vma->vm_file) { 696 mapping = vma->vm_file->f_mapping; 697 i_mmap_lock_write(mapping); 698 } 699 700 __vma_link(mm, vma, prev, rb_link, rb_parent); 701 __vma_link_file(vma); 702 703 if (mapping) 704 i_mmap_unlock_write(mapping); 705 706 mm->map_count++; 707 validate_mm(mm); 708 } 709 710 /* 711 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the 712 * mm's list and rbtree. It has already been inserted into the interval tree. 713 */ 714 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 715 { 716 struct vm_area_struct *prev; 717 struct rb_node **rb_link, *rb_parent; 718 719 if (find_vma_links(mm, vma->vm_start, vma->vm_end, 720 &prev, &rb_link, &rb_parent)) 721 BUG(); 722 __vma_link(mm, vma, prev, rb_link, rb_parent); 723 mm->map_count++; 724 } 725 726 static __always_inline void __vma_unlink(struct mm_struct *mm, 727 struct vm_area_struct *vma, 728 struct vm_area_struct *ignore) 729 { 730 vma_rb_erase_ignore(vma, &mm->mm_rb, ignore); 731 __vma_unlink_list(mm, vma); 732 /* Kill the cache */ 733 vmacache_invalidate(mm); 734 } 735 736 /* 737 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that 738 * is already present in an i_mmap tree without adjusting the tree. 739 * The following helper function should be used when such adjustments 740 * are necessary. The "insert" vma (if any) is to be inserted 741 * before we drop the necessary locks. 742 */ 743 int __vma_adjust(struct vm_area_struct *vma, unsigned long start, 744 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, 745 struct vm_area_struct *expand) 746 { 747 struct mm_struct *mm = vma->vm_mm; 748 struct vm_area_struct *next = vma->vm_next, *orig_vma = vma; 749 struct address_space *mapping = NULL; 750 struct rb_root_cached *root = NULL; 751 struct anon_vma *anon_vma = NULL; 752 struct file *file = vma->vm_file; 753 bool start_changed = false, end_changed = false; 754 long adjust_next = 0; 755 int remove_next = 0; 756 757 if (next && !insert) { 758 struct vm_area_struct *exporter = NULL, *importer = NULL; 759 760 if (end >= next->vm_end) { 761 /* 762 * vma expands, overlapping all the next, and 763 * perhaps the one after too (mprotect case 6). 764 * The only other cases that gets here are 765 * case 1, case 7 and case 8. 766 */ 767 if (next == expand) { 768 /* 769 * The only case where we don't expand "vma" 770 * and we expand "next" instead is case 8. 771 */ 772 VM_WARN_ON(end != next->vm_end); 773 /* 774 * remove_next == 3 means we're 775 * removing "vma" and that to do so we 776 * swapped "vma" and "next". 777 */ 778 remove_next = 3; 779 VM_WARN_ON(file != next->vm_file); 780 swap(vma, next); 781 } else { 782 VM_WARN_ON(expand != vma); 783 /* 784 * case 1, 6, 7, remove_next == 2 is case 6, 785 * remove_next == 1 is case 1 or 7. 786 */ 787 remove_next = 1 + (end > next->vm_end); 788 VM_WARN_ON(remove_next == 2 && 789 end != next->vm_next->vm_end); 790 /* trim end to next, for case 6 first pass */ 791 end = next->vm_end; 792 } 793 794 exporter = next; 795 importer = vma; 796 797 /* 798 * If next doesn't have anon_vma, import from vma after 799 * next, if the vma overlaps with it. 800 */ 801 if (remove_next == 2 && !next->anon_vma) 802 exporter = next->vm_next; 803 804 } else if (end > next->vm_start) { 805 /* 806 * vma expands, overlapping part of the next: 807 * mprotect case 5 shifting the boundary up. 808 */ 809 adjust_next = (end - next->vm_start); 810 exporter = next; 811 importer = vma; 812 VM_WARN_ON(expand != importer); 813 } else if (end < vma->vm_end) { 814 /* 815 * vma shrinks, and !insert tells it's not 816 * split_vma inserting another: so it must be 817 * mprotect case 4 shifting the boundary down. 818 */ 819 adjust_next = -(vma->vm_end - end); 820 exporter = vma; 821 importer = next; 822 VM_WARN_ON(expand != importer); 823 } 824 825 /* 826 * Easily overlooked: when mprotect shifts the boundary, 827 * make sure the expanding vma has anon_vma set if the 828 * shrinking vma had, to cover any anon pages imported. 829 */ 830 if (exporter && exporter->anon_vma && !importer->anon_vma) { 831 int error; 832 833 importer->anon_vma = exporter->anon_vma; 834 error = anon_vma_clone(importer, exporter); 835 if (error) 836 return error; 837 } 838 } 839 again: 840 vma_adjust_trans_huge(orig_vma, start, end, adjust_next); 841 842 if (file) { 843 mapping = file->f_mapping; 844 root = &mapping->i_mmap; 845 uprobe_munmap(vma, vma->vm_start, vma->vm_end); 846 847 if (adjust_next) 848 uprobe_munmap(next, next->vm_start, next->vm_end); 849 850 i_mmap_lock_write(mapping); 851 if (insert) { 852 /* 853 * Put into interval tree now, so instantiated pages 854 * are visible to arm/parisc __flush_dcache_page 855 * throughout; but we cannot insert into address 856 * space until vma start or end is updated. 857 */ 858 __vma_link_file(insert); 859 } 860 } 861 862 anon_vma = vma->anon_vma; 863 if (!anon_vma && adjust_next) 864 anon_vma = next->anon_vma; 865 if (anon_vma) { 866 VM_WARN_ON(adjust_next && next->anon_vma && 867 anon_vma != next->anon_vma); 868 anon_vma_lock_write(anon_vma); 869 anon_vma_interval_tree_pre_update_vma(vma); 870 if (adjust_next) 871 anon_vma_interval_tree_pre_update_vma(next); 872 } 873 874 if (file) { 875 flush_dcache_mmap_lock(mapping); 876 vma_interval_tree_remove(vma, root); 877 if (adjust_next) 878 vma_interval_tree_remove(next, root); 879 } 880 881 if (start != vma->vm_start) { 882 vma->vm_start = start; 883 start_changed = true; 884 } 885 if (end != vma->vm_end) { 886 vma->vm_end = end; 887 end_changed = true; 888 } 889 vma->vm_pgoff = pgoff; 890 if (adjust_next) { 891 next->vm_start += adjust_next; 892 next->vm_pgoff += adjust_next >> PAGE_SHIFT; 893 } 894 895 if (file) { 896 if (adjust_next) 897 vma_interval_tree_insert(next, root); 898 vma_interval_tree_insert(vma, root); 899 flush_dcache_mmap_unlock(mapping); 900 } 901 902 if (remove_next) { 903 /* 904 * vma_merge has merged next into vma, and needs 905 * us to remove next before dropping the locks. 906 */ 907 if (remove_next != 3) 908 __vma_unlink(mm, next, next); 909 else 910 /* 911 * vma is not before next if they've been 912 * swapped. 913 * 914 * pre-swap() next->vm_start was reduced so 915 * tell validate_mm_rb to ignore pre-swap() 916 * "next" (which is stored in post-swap() 917 * "vma"). 918 */ 919 __vma_unlink(mm, next, vma); 920 if (file) 921 __remove_shared_vm_struct(next, file, mapping); 922 } else if (insert) { 923 /* 924 * split_vma has split insert from vma, and needs 925 * us to insert it before dropping the locks 926 * (it may either follow vma or precede it). 927 */ 928 __insert_vm_struct(mm, insert); 929 } else { 930 if (start_changed) 931 vma_gap_update(vma); 932 if (end_changed) { 933 if (!next) 934 mm->highest_vm_end = vm_end_gap(vma); 935 else if (!adjust_next) 936 vma_gap_update(next); 937 } 938 } 939 940 if (anon_vma) { 941 anon_vma_interval_tree_post_update_vma(vma); 942 if (adjust_next) 943 anon_vma_interval_tree_post_update_vma(next); 944 anon_vma_unlock_write(anon_vma); 945 } 946 947 if (file) { 948 i_mmap_unlock_write(mapping); 949 uprobe_mmap(vma); 950 951 if (adjust_next) 952 uprobe_mmap(next); 953 } 954 955 if (remove_next) { 956 if (file) { 957 uprobe_munmap(next, next->vm_start, next->vm_end); 958 fput(file); 959 } 960 if (next->anon_vma) 961 anon_vma_merge(vma, next); 962 mm->map_count--; 963 mpol_put(vma_policy(next)); 964 vm_area_free(next); 965 /* 966 * In mprotect's case 6 (see comments on vma_merge), 967 * we must remove another next too. It would clutter 968 * up the code too much to do both in one go. 969 */ 970 if (remove_next != 3) { 971 /* 972 * If "next" was removed and vma->vm_end was 973 * expanded (up) over it, in turn 974 * "next->vm_prev->vm_end" changed and the 975 * "vma->vm_next" gap must be updated. 976 */ 977 next = vma->vm_next; 978 } else { 979 /* 980 * For the scope of the comment "next" and 981 * "vma" considered pre-swap(): if "vma" was 982 * removed, next->vm_start was expanded (down) 983 * over it and the "next" gap must be updated. 984 * Because of the swap() the post-swap() "vma" 985 * actually points to pre-swap() "next" 986 * (post-swap() "next" as opposed is now a 987 * dangling pointer). 988 */ 989 next = vma; 990 } 991 if (remove_next == 2) { 992 remove_next = 1; 993 end = next->vm_end; 994 goto again; 995 } 996 else if (next) 997 vma_gap_update(next); 998 else { 999 /* 1000 * If remove_next == 2 we obviously can't 1001 * reach this path. 1002 * 1003 * If remove_next == 3 we can't reach this 1004 * path because pre-swap() next is always not 1005 * NULL. pre-swap() "next" is not being 1006 * removed and its next->vm_end is not altered 1007 * (and furthermore "end" already matches 1008 * next->vm_end in remove_next == 3). 1009 * 1010 * We reach this only in the remove_next == 1 1011 * case if the "next" vma that was removed was 1012 * the highest vma of the mm. However in such 1013 * case next->vm_end == "end" and the extended 1014 * "vma" has vma->vm_end == next->vm_end so 1015 * mm->highest_vm_end doesn't need any update 1016 * in remove_next == 1 case. 1017 */ 1018 VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma)); 1019 } 1020 } 1021 if (insert && file) 1022 uprobe_mmap(insert); 1023 1024 validate_mm(mm); 1025 1026 return 0; 1027 } 1028 1029 /* 1030 * If the vma has a ->close operation then the driver probably needs to release 1031 * per-vma resources, so we don't attempt to merge those. 1032 */ 1033 static inline int is_mergeable_vma(struct vm_area_struct *vma, 1034 struct file *file, unsigned long vm_flags, 1035 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 1036 { 1037 /* 1038 * VM_SOFTDIRTY should not prevent from VMA merging, if we 1039 * match the flags but dirty bit -- the caller should mark 1040 * merged VMA as dirty. If dirty bit won't be excluded from 1041 * comparison, we increase pressure on the memory system forcing 1042 * the kernel to generate new VMAs when old one could be 1043 * extended instead. 1044 */ 1045 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY) 1046 return 0; 1047 if (vma->vm_file != file) 1048 return 0; 1049 if (vma->vm_ops && vma->vm_ops->close) 1050 return 0; 1051 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx)) 1052 return 0; 1053 return 1; 1054 } 1055 1056 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1, 1057 struct anon_vma *anon_vma2, 1058 struct vm_area_struct *vma) 1059 { 1060 /* 1061 * The list_is_singular() test is to avoid merging VMA cloned from 1062 * parents. This can improve scalability caused by anon_vma lock. 1063 */ 1064 if ((!anon_vma1 || !anon_vma2) && (!vma || 1065 list_is_singular(&vma->anon_vma_chain))) 1066 return 1; 1067 return anon_vma1 == anon_vma2; 1068 } 1069 1070 /* 1071 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 1072 * in front of (at a lower virtual address and file offset than) the vma. 1073 * 1074 * We cannot merge two vmas if they have differently assigned (non-NULL) 1075 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 1076 * 1077 * We don't check here for the merged mmap wrapping around the end of pagecache 1078 * indices (16TB on ia32) because do_mmap() does not permit mmap's which 1079 * wrap, nor mmaps which cover the final page at index -1UL. 1080 */ 1081 static int 1082 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags, 1083 struct anon_vma *anon_vma, struct file *file, 1084 pgoff_t vm_pgoff, 1085 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 1086 { 1087 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) && 1088 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 1089 if (vma->vm_pgoff == vm_pgoff) 1090 return 1; 1091 } 1092 return 0; 1093 } 1094 1095 /* 1096 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 1097 * beyond (at a higher virtual address and file offset than) the vma. 1098 * 1099 * We cannot merge two vmas if they have differently assigned (non-NULL) 1100 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 1101 */ 1102 static int 1103 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags, 1104 struct anon_vma *anon_vma, struct file *file, 1105 pgoff_t vm_pgoff, 1106 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 1107 { 1108 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) && 1109 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 1110 pgoff_t vm_pglen; 1111 vm_pglen = vma_pages(vma); 1112 if (vma->vm_pgoff + vm_pglen == vm_pgoff) 1113 return 1; 1114 } 1115 return 0; 1116 } 1117 1118 /* 1119 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out 1120 * whether that can be merged with its predecessor or its successor. 1121 * Or both (it neatly fills a hole). 1122 * 1123 * In most cases - when called for mmap, brk or mremap - [addr,end) is 1124 * certain not to be mapped by the time vma_merge is called; but when 1125 * called for mprotect, it is certain to be already mapped (either at 1126 * an offset within prev, or at the start of next), and the flags of 1127 * this area are about to be changed to vm_flags - and the no-change 1128 * case has already been eliminated. 1129 * 1130 * The following mprotect cases have to be considered, where AAAA is 1131 * the area passed down from mprotect_fixup, never extending beyond one 1132 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after: 1133 * 1134 * AAAA AAAA AAAA 1135 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN 1136 * cannot merge might become might become 1137 * PPNNNNNNNNNN PPPPPPPPPPNN 1138 * mmap, brk or case 4 below case 5 below 1139 * mremap move: 1140 * AAAA AAAA 1141 * PPPP NNNN PPPPNNNNXXXX 1142 * might become might become 1143 * PPPPPPPPPPPP 1 or PPPPPPPPPPPP 6 or 1144 * PPPPPPPPNNNN 2 or PPPPPPPPXXXX 7 or 1145 * PPPPNNNNNNNN 3 PPPPXXXXXXXX 8 1146 * 1147 * It is important for case 8 that the vma NNNN overlapping the 1148 * region AAAA is never going to extended over XXXX. Instead XXXX must 1149 * be extended in region AAAA and NNNN must be removed. This way in 1150 * all cases where vma_merge succeeds, the moment vma_adjust drops the 1151 * rmap_locks, the properties of the merged vma will be already 1152 * correct for the whole merged range. Some of those properties like 1153 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must 1154 * be correct for the whole merged range immediately after the 1155 * rmap_locks are released. Otherwise if XXXX would be removed and 1156 * NNNN would be extended over the XXXX range, remove_migration_ptes 1157 * or other rmap walkers (if working on addresses beyond the "end" 1158 * parameter) may establish ptes with the wrong permissions of NNNN 1159 * instead of the right permissions of XXXX. 1160 */ 1161 struct vm_area_struct *vma_merge(struct mm_struct *mm, 1162 struct vm_area_struct *prev, unsigned long addr, 1163 unsigned long end, unsigned long vm_flags, 1164 struct anon_vma *anon_vma, struct file *file, 1165 pgoff_t pgoff, struct mempolicy *policy, 1166 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 1167 { 1168 pgoff_t pglen = (end - addr) >> PAGE_SHIFT; 1169 struct vm_area_struct *area, *next; 1170 int err; 1171 1172 /* 1173 * We later require that vma->vm_flags == vm_flags, 1174 * so this tests vma->vm_flags & VM_SPECIAL, too. 1175 */ 1176 if (vm_flags & VM_SPECIAL) 1177 return NULL; 1178 1179 next = vma_next(mm, prev); 1180 area = next; 1181 if (area && area->vm_end == end) /* cases 6, 7, 8 */ 1182 next = next->vm_next; 1183 1184 /* verify some invariant that must be enforced by the caller */ 1185 VM_WARN_ON(prev && addr <= prev->vm_start); 1186 VM_WARN_ON(area && end > area->vm_end); 1187 VM_WARN_ON(addr >= end); 1188 1189 /* 1190 * Can it merge with the predecessor? 1191 */ 1192 if (prev && prev->vm_end == addr && 1193 mpol_equal(vma_policy(prev), policy) && 1194 can_vma_merge_after(prev, vm_flags, 1195 anon_vma, file, pgoff, 1196 vm_userfaultfd_ctx)) { 1197 /* 1198 * OK, it can. Can we now merge in the successor as well? 1199 */ 1200 if (next && end == next->vm_start && 1201 mpol_equal(policy, vma_policy(next)) && 1202 can_vma_merge_before(next, vm_flags, 1203 anon_vma, file, 1204 pgoff+pglen, 1205 vm_userfaultfd_ctx) && 1206 is_mergeable_anon_vma(prev->anon_vma, 1207 next->anon_vma, NULL)) { 1208 /* cases 1, 6 */ 1209 err = __vma_adjust(prev, prev->vm_start, 1210 next->vm_end, prev->vm_pgoff, NULL, 1211 prev); 1212 } else /* cases 2, 5, 7 */ 1213 err = __vma_adjust(prev, prev->vm_start, 1214 end, prev->vm_pgoff, NULL, prev); 1215 if (err) 1216 return NULL; 1217 khugepaged_enter_vma_merge(prev, vm_flags); 1218 return prev; 1219 } 1220 1221 /* 1222 * Can this new request be merged in front of next? 1223 */ 1224 if (next && end == next->vm_start && 1225 mpol_equal(policy, vma_policy(next)) && 1226 can_vma_merge_before(next, vm_flags, 1227 anon_vma, file, pgoff+pglen, 1228 vm_userfaultfd_ctx)) { 1229 if (prev && addr < prev->vm_end) /* case 4 */ 1230 err = __vma_adjust(prev, prev->vm_start, 1231 addr, prev->vm_pgoff, NULL, next); 1232 else { /* cases 3, 8 */ 1233 err = __vma_adjust(area, addr, next->vm_end, 1234 next->vm_pgoff - pglen, NULL, next); 1235 /* 1236 * In case 3 area is already equal to next and 1237 * this is a noop, but in case 8 "area" has 1238 * been removed and next was expanded over it. 1239 */ 1240 area = next; 1241 } 1242 if (err) 1243 return NULL; 1244 khugepaged_enter_vma_merge(area, vm_flags); 1245 return area; 1246 } 1247 1248 return NULL; 1249 } 1250 1251 /* 1252 * Rough compatibility check to quickly see if it's even worth looking 1253 * at sharing an anon_vma. 1254 * 1255 * They need to have the same vm_file, and the flags can only differ 1256 * in things that mprotect may change. 1257 * 1258 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that 1259 * we can merge the two vma's. For example, we refuse to merge a vma if 1260 * there is a vm_ops->close() function, because that indicates that the 1261 * driver is doing some kind of reference counting. But that doesn't 1262 * really matter for the anon_vma sharing case. 1263 */ 1264 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b) 1265 { 1266 return a->vm_end == b->vm_start && 1267 mpol_equal(vma_policy(a), vma_policy(b)) && 1268 a->vm_file == b->vm_file && 1269 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) && 1270 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT); 1271 } 1272 1273 /* 1274 * Do some basic sanity checking to see if we can re-use the anon_vma 1275 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be 1276 * the same as 'old', the other will be the new one that is trying 1277 * to share the anon_vma. 1278 * 1279 * NOTE! This runs with mm_sem held for reading, so it is possible that 1280 * the anon_vma of 'old' is concurrently in the process of being set up 1281 * by another page fault trying to merge _that_. But that's ok: if it 1282 * is being set up, that automatically means that it will be a singleton 1283 * acceptable for merging, so we can do all of this optimistically. But 1284 * we do that READ_ONCE() to make sure that we never re-load the pointer. 1285 * 1286 * IOW: that the "list_is_singular()" test on the anon_vma_chain only 1287 * matters for the 'stable anon_vma' case (ie the thing we want to avoid 1288 * is to return an anon_vma that is "complex" due to having gone through 1289 * a fork). 1290 * 1291 * We also make sure that the two vma's are compatible (adjacent, 1292 * and with the same memory policies). That's all stable, even with just 1293 * a read lock on the mm_sem. 1294 */ 1295 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b) 1296 { 1297 if (anon_vma_compatible(a, b)) { 1298 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma); 1299 1300 if (anon_vma && list_is_singular(&old->anon_vma_chain)) 1301 return anon_vma; 1302 } 1303 return NULL; 1304 } 1305 1306 /* 1307 * find_mergeable_anon_vma is used by anon_vma_prepare, to check 1308 * neighbouring vmas for a suitable anon_vma, before it goes off 1309 * to allocate a new anon_vma. It checks because a repetitive 1310 * sequence of mprotects and faults may otherwise lead to distinct 1311 * anon_vmas being allocated, preventing vma merge in subsequent 1312 * mprotect. 1313 */ 1314 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) 1315 { 1316 struct anon_vma *anon_vma = NULL; 1317 1318 /* Try next first. */ 1319 if (vma->vm_next) { 1320 anon_vma = reusable_anon_vma(vma->vm_next, vma, vma->vm_next); 1321 if (anon_vma) 1322 return anon_vma; 1323 } 1324 1325 /* Try prev next. */ 1326 if (vma->vm_prev) 1327 anon_vma = reusable_anon_vma(vma->vm_prev, vma->vm_prev, vma); 1328 1329 /* 1330 * We might reach here with anon_vma == NULL if we can't find 1331 * any reusable anon_vma. 1332 * There's no absolute need to look only at touching neighbours: 1333 * we could search further afield for "compatible" anon_vmas. 1334 * But it would probably just be a waste of time searching, 1335 * or lead to too many vmas hanging off the same anon_vma. 1336 * We're trying to allow mprotect remerging later on, 1337 * not trying to minimize memory used for anon_vmas. 1338 */ 1339 return anon_vma; 1340 } 1341 1342 /* 1343 * If a hint addr is less than mmap_min_addr change hint to be as 1344 * low as possible but still greater than mmap_min_addr 1345 */ 1346 static inline unsigned long round_hint_to_min(unsigned long hint) 1347 { 1348 hint &= PAGE_MASK; 1349 if (((void *)hint != NULL) && 1350 (hint < mmap_min_addr)) 1351 return PAGE_ALIGN(mmap_min_addr); 1352 return hint; 1353 } 1354 1355 static inline int mlock_future_check(struct mm_struct *mm, 1356 unsigned long flags, 1357 unsigned long len) 1358 { 1359 unsigned long locked, lock_limit; 1360 1361 /* mlock MCL_FUTURE? */ 1362 if (flags & VM_LOCKED) { 1363 locked = len >> PAGE_SHIFT; 1364 locked += mm->locked_vm; 1365 lock_limit = rlimit(RLIMIT_MEMLOCK); 1366 lock_limit >>= PAGE_SHIFT; 1367 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 1368 return -EAGAIN; 1369 } 1370 return 0; 1371 } 1372 1373 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode) 1374 { 1375 if (S_ISREG(inode->i_mode)) 1376 return MAX_LFS_FILESIZE; 1377 1378 if (S_ISBLK(inode->i_mode)) 1379 return MAX_LFS_FILESIZE; 1380 1381 if (S_ISSOCK(inode->i_mode)) 1382 return MAX_LFS_FILESIZE; 1383 1384 /* Special "we do even unsigned file positions" case */ 1385 if (file->f_mode & FMODE_UNSIGNED_OFFSET) 1386 return 0; 1387 1388 /* Yes, random drivers might want more. But I'm tired of buggy drivers */ 1389 return ULONG_MAX; 1390 } 1391 1392 static inline bool file_mmap_ok(struct file *file, struct inode *inode, 1393 unsigned long pgoff, unsigned long len) 1394 { 1395 u64 maxsize = file_mmap_size_max(file, inode); 1396 1397 if (maxsize && len > maxsize) 1398 return false; 1399 maxsize -= len; 1400 if (pgoff > maxsize >> PAGE_SHIFT) 1401 return false; 1402 return true; 1403 } 1404 1405 /* 1406 * The caller must write-lock current->mm->mmap_lock. 1407 */ 1408 unsigned long do_mmap(struct file *file, unsigned long addr, 1409 unsigned long len, unsigned long prot, 1410 unsigned long flags, unsigned long pgoff, 1411 unsigned long *populate, struct list_head *uf) 1412 { 1413 struct mm_struct *mm = current->mm; 1414 vm_flags_t vm_flags; 1415 int pkey = 0; 1416 1417 *populate = 0; 1418 1419 if (!len) 1420 return -EINVAL; 1421 1422 /* 1423 * Does the application expect PROT_READ to imply PROT_EXEC? 1424 * 1425 * (the exception is when the underlying filesystem is noexec 1426 * mounted, in which case we dont add PROT_EXEC.) 1427 */ 1428 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC)) 1429 if (!(file && path_noexec(&file->f_path))) 1430 prot |= PROT_EXEC; 1431 1432 /* force arch specific MAP_FIXED handling in get_unmapped_area */ 1433 if (flags & MAP_FIXED_NOREPLACE) 1434 flags |= MAP_FIXED; 1435 1436 if (!(flags & MAP_FIXED)) 1437 addr = round_hint_to_min(addr); 1438 1439 /* Careful about overflows.. */ 1440 len = PAGE_ALIGN(len); 1441 if (!len) 1442 return -ENOMEM; 1443 1444 /* offset overflow? */ 1445 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff) 1446 return -EOVERFLOW; 1447 1448 /* Too many mappings? */ 1449 if (mm->map_count > sysctl_max_map_count) 1450 return -ENOMEM; 1451 1452 /* Obtain the address to map to. we verify (or select) it and ensure 1453 * that it represents a valid section of the address space. 1454 */ 1455 addr = get_unmapped_area(file, addr, len, pgoff, flags); 1456 if (IS_ERR_VALUE(addr)) 1457 return addr; 1458 1459 if (flags & MAP_FIXED_NOREPLACE) { 1460 struct vm_area_struct *vma = find_vma(mm, addr); 1461 1462 if (vma && vma->vm_start < addr + len) 1463 return -EEXIST; 1464 } 1465 1466 if (prot == PROT_EXEC) { 1467 pkey = execute_only_pkey(mm); 1468 if (pkey < 0) 1469 pkey = 0; 1470 } 1471 1472 /* Do simple checking here so the lower-level routines won't have 1473 * to. we assume access permissions have been handled by the open 1474 * of the memory object, so we don't do any here. 1475 */ 1476 vm_flags = calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) | 1477 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 1478 1479 if (flags & MAP_LOCKED) 1480 if (!can_do_mlock()) 1481 return -EPERM; 1482 1483 if (mlock_future_check(mm, vm_flags, len)) 1484 return -EAGAIN; 1485 1486 if (file) { 1487 struct inode *inode = file_inode(file); 1488 unsigned long flags_mask; 1489 1490 if (!file_mmap_ok(file, inode, pgoff, len)) 1491 return -EOVERFLOW; 1492 1493 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags; 1494 1495 switch (flags & MAP_TYPE) { 1496 case MAP_SHARED: 1497 /* 1498 * Force use of MAP_SHARED_VALIDATE with non-legacy 1499 * flags. E.g. MAP_SYNC is dangerous to use with 1500 * MAP_SHARED as you don't know which consistency model 1501 * you will get. We silently ignore unsupported flags 1502 * with MAP_SHARED to preserve backward compatibility. 1503 */ 1504 flags &= LEGACY_MAP_MASK; 1505 fallthrough; 1506 case MAP_SHARED_VALIDATE: 1507 if (flags & ~flags_mask) 1508 return -EOPNOTSUPP; 1509 if (prot & PROT_WRITE) { 1510 if (!(file->f_mode & FMODE_WRITE)) 1511 return -EACCES; 1512 if (IS_SWAPFILE(file->f_mapping->host)) 1513 return -ETXTBSY; 1514 } 1515 1516 /* 1517 * Make sure we don't allow writing to an append-only 1518 * file.. 1519 */ 1520 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE)) 1521 return -EACCES; 1522 1523 /* 1524 * Make sure there are no mandatory locks on the file. 1525 */ 1526 if (locks_verify_locked(file)) 1527 return -EAGAIN; 1528 1529 vm_flags |= VM_SHARED | VM_MAYSHARE; 1530 if (!(file->f_mode & FMODE_WRITE)) 1531 vm_flags &= ~(VM_MAYWRITE | VM_SHARED); 1532 fallthrough; 1533 case MAP_PRIVATE: 1534 if (!(file->f_mode & FMODE_READ)) 1535 return -EACCES; 1536 if (path_noexec(&file->f_path)) { 1537 if (vm_flags & VM_EXEC) 1538 return -EPERM; 1539 vm_flags &= ~VM_MAYEXEC; 1540 } 1541 1542 if (!file->f_op->mmap) 1543 return -ENODEV; 1544 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1545 return -EINVAL; 1546 break; 1547 1548 default: 1549 return -EINVAL; 1550 } 1551 } else { 1552 switch (flags & MAP_TYPE) { 1553 case MAP_SHARED: 1554 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1555 return -EINVAL; 1556 /* 1557 * Ignore pgoff. 1558 */ 1559 pgoff = 0; 1560 vm_flags |= VM_SHARED | VM_MAYSHARE; 1561 break; 1562 case MAP_PRIVATE: 1563 /* 1564 * Set pgoff according to addr for anon_vma. 1565 */ 1566 pgoff = addr >> PAGE_SHIFT; 1567 break; 1568 default: 1569 return -EINVAL; 1570 } 1571 } 1572 1573 /* 1574 * Set 'VM_NORESERVE' if we should not account for the 1575 * memory use of this mapping. 1576 */ 1577 if (flags & MAP_NORESERVE) { 1578 /* We honor MAP_NORESERVE if allowed to overcommit */ 1579 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER) 1580 vm_flags |= VM_NORESERVE; 1581 1582 /* hugetlb applies strict overcommit unless MAP_NORESERVE */ 1583 if (file && is_file_hugepages(file)) 1584 vm_flags |= VM_NORESERVE; 1585 } 1586 1587 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf); 1588 if (!IS_ERR_VALUE(addr) && 1589 ((vm_flags & VM_LOCKED) || 1590 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE)) 1591 *populate = len; 1592 return addr; 1593 } 1594 1595 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len, 1596 unsigned long prot, unsigned long flags, 1597 unsigned long fd, unsigned long pgoff) 1598 { 1599 struct file *file = NULL; 1600 unsigned long retval; 1601 1602 if (!(flags & MAP_ANONYMOUS)) { 1603 audit_mmap_fd(fd, flags); 1604 file = fget(fd); 1605 if (!file) 1606 return -EBADF; 1607 if (is_file_hugepages(file)) { 1608 len = ALIGN(len, huge_page_size(hstate_file(file))); 1609 } else if (unlikely(flags & MAP_HUGETLB)) { 1610 retval = -EINVAL; 1611 goto out_fput; 1612 } 1613 } else if (flags & MAP_HUGETLB) { 1614 struct user_struct *user = NULL; 1615 struct hstate *hs; 1616 1617 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 1618 if (!hs) 1619 return -EINVAL; 1620 1621 len = ALIGN(len, huge_page_size(hs)); 1622 /* 1623 * VM_NORESERVE is used because the reservations will be 1624 * taken when vm_ops->mmap() is called 1625 * A dummy user value is used because we are not locking 1626 * memory so no accounting is necessary 1627 */ 1628 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, 1629 VM_NORESERVE, 1630 &user, HUGETLB_ANONHUGE_INODE, 1631 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 1632 if (IS_ERR(file)) 1633 return PTR_ERR(file); 1634 } 1635 1636 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE); 1637 1638 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1639 out_fput: 1640 if (file) 1641 fput(file); 1642 return retval; 1643 } 1644 1645 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1646 unsigned long, prot, unsigned long, flags, 1647 unsigned long, fd, unsigned long, pgoff) 1648 { 1649 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff); 1650 } 1651 1652 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1653 struct mmap_arg_struct { 1654 unsigned long addr; 1655 unsigned long len; 1656 unsigned long prot; 1657 unsigned long flags; 1658 unsigned long fd; 1659 unsigned long offset; 1660 }; 1661 1662 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1663 { 1664 struct mmap_arg_struct a; 1665 1666 if (copy_from_user(&a, arg, sizeof(a))) 1667 return -EFAULT; 1668 if (offset_in_page(a.offset)) 1669 return -EINVAL; 1670 1671 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1672 a.offset >> PAGE_SHIFT); 1673 } 1674 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1675 1676 /* 1677 * Some shared mappings will want the pages marked read-only 1678 * to track write events. If so, we'll downgrade vm_page_prot 1679 * to the private version (using protection_map[] without the 1680 * VM_SHARED bit). 1681 */ 1682 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot) 1683 { 1684 vm_flags_t vm_flags = vma->vm_flags; 1685 const struct vm_operations_struct *vm_ops = vma->vm_ops; 1686 1687 /* If it was private or non-writable, the write bit is already clear */ 1688 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED))) 1689 return 0; 1690 1691 /* The backer wishes to know when pages are first written to? */ 1692 if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite)) 1693 return 1; 1694 1695 /* The open routine did something to the protections that pgprot_modify 1696 * won't preserve? */ 1697 if (pgprot_val(vm_page_prot) != 1698 pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags))) 1699 return 0; 1700 1701 /* Do we need to track softdirty? */ 1702 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY)) 1703 return 1; 1704 1705 /* Specialty mapping? */ 1706 if (vm_flags & VM_PFNMAP) 1707 return 0; 1708 1709 /* Can the mapping track the dirty pages? */ 1710 return vma->vm_file && vma->vm_file->f_mapping && 1711 mapping_can_writeback(vma->vm_file->f_mapping); 1712 } 1713 1714 /* 1715 * We account for memory if it's a private writeable mapping, 1716 * not hugepages and VM_NORESERVE wasn't set. 1717 */ 1718 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags) 1719 { 1720 /* 1721 * hugetlb has its own accounting separate from the core VM 1722 * VM_HUGETLB may not be set yet so we cannot check for that flag. 1723 */ 1724 if (file && is_file_hugepages(file)) 1725 return 0; 1726 1727 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE; 1728 } 1729 1730 unsigned long mmap_region(struct file *file, unsigned long addr, 1731 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 1732 struct list_head *uf) 1733 { 1734 struct mm_struct *mm = current->mm; 1735 struct vm_area_struct *vma, *prev, *merge; 1736 int error; 1737 struct rb_node **rb_link, *rb_parent; 1738 unsigned long charged = 0; 1739 1740 /* Check against address space limit. */ 1741 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) { 1742 unsigned long nr_pages; 1743 1744 /* 1745 * MAP_FIXED may remove pages of mappings that intersects with 1746 * requested mapping. Account for the pages it would unmap. 1747 */ 1748 nr_pages = count_vma_pages_range(mm, addr, addr + len); 1749 1750 if (!may_expand_vm(mm, vm_flags, 1751 (len >> PAGE_SHIFT) - nr_pages)) 1752 return -ENOMEM; 1753 } 1754 1755 /* Clear old maps, set up prev, rb_link, rb_parent, and uf */ 1756 if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf)) 1757 return -ENOMEM; 1758 /* 1759 * Private writable mapping: check memory availability 1760 */ 1761 if (accountable_mapping(file, vm_flags)) { 1762 charged = len >> PAGE_SHIFT; 1763 if (security_vm_enough_memory_mm(mm, charged)) 1764 return -ENOMEM; 1765 vm_flags |= VM_ACCOUNT; 1766 } 1767 1768 /* 1769 * Can we just expand an old mapping? 1770 */ 1771 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, 1772 NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX); 1773 if (vma) 1774 goto out; 1775 1776 /* 1777 * Determine the object being mapped and call the appropriate 1778 * specific mapper. the address has already been validated, but 1779 * not unmapped, but the maps are removed from the list. 1780 */ 1781 vma = vm_area_alloc(mm); 1782 if (!vma) { 1783 error = -ENOMEM; 1784 goto unacct_error; 1785 } 1786 1787 vma->vm_start = addr; 1788 vma->vm_end = addr + len; 1789 vma->vm_flags = vm_flags; 1790 vma->vm_page_prot = vm_get_page_prot(vm_flags); 1791 vma->vm_pgoff = pgoff; 1792 1793 if (file) { 1794 if (vm_flags & VM_DENYWRITE) { 1795 error = deny_write_access(file); 1796 if (error) 1797 goto free_vma; 1798 } 1799 if (vm_flags & VM_SHARED) { 1800 error = mapping_map_writable(file->f_mapping); 1801 if (error) 1802 goto allow_write_and_free_vma; 1803 } 1804 1805 /* ->mmap() can change vma->vm_file, but must guarantee that 1806 * vma_link() below can deny write-access if VM_DENYWRITE is set 1807 * and map writably if VM_SHARED is set. This usually means the 1808 * new file must not have been exposed to user-space, yet. 1809 */ 1810 vma->vm_file = get_file(file); 1811 error = call_mmap(file, vma); 1812 if (error) 1813 goto unmap_and_free_vma; 1814 1815 /* Can addr have changed?? 1816 * 1817 * Answer: Yes, several device drivers can do it in their 1818 * f_op->mmap method. -DaveM 1819 * Bug: If addr is changed, prev, rb_link, rb_parent should 1820 * be updated for vma_link() 1821 */ 1822 WARN_ON_ONCE(addr != vma->vm_start); 1823 1824 addr = vma->vm_start; 1825 1826 /* If vm_flags changed after call_mmap(), we should try merge vma again 1827 * as we may succeed this time. 1828 */ 1829 if (unlikely(vm_flags != vma->vm_flags && prev)) { 1830 merge = vma_merge(mm, prev, vma->vm_start, vma->vm_end, vma->vm_flags, 1831 NULL, vma->vm_file, vma->vm_pgoff, NULL, NULL_VM_UFFD_CTX); 1832 if (merge) { 1833 /* ->mmap() can change vma->vm_file and fput the original file. So 1834 * fput the vma->vm_file here or we would add an extra fput for file 1835 * and cause general protection fault ultimately. 1836 */ 1837 fput(vma->vm_file); 1838 vm_area_free(vma); 1839 vma = merge; 1840 /* Update vm_flags to pick up the change. */ 1841 vm_flags = vma->vm_flags; 1842 goto unmap_writable; 1843 } 1844 } 1845 1846 vm_flags = vma->vm_flags; 1847 } else if (vm_flags & VM_SHARED) { 1848 error = shmem_zero_setup(vma); 1849 if (error) 1850 goto free_vma; 1851 } else { 1852 vma_set_anonymous(vma); 1853 } 1854 1855 /* Allow architectures to sanity-check the vm_flags */ 1856 if (!arch_validate_flags(vma->vm_flags)) { 1857 error = -EINVAL; 1858 if (file) 1859 goto unmap_and_free_vma; 1860 else 1861 goto free_vma; 1862 } 1863 1864 vma_link(mm, vma, prev, rb_link, rb_parent); 1865 /* Once vma denies write, undo our temporary denial count */ 1866 if (file) { 1867 unmap_writable: 1868 if (vm_flags & VM_SHARED) 1869 mapping_unmap_writable(file->f_mapping); 1870 if (vm_flags & VM_DENYWRITE) 1871 allow_write_access(file); 1872 } 1873 file = vma->vm_file; 1874 out: 1875 perf_event_mmap(vma); 1876 1877 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT); 1878 if (vm_flags & VM_LOCKED) { 1879 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) || 1880 is_vm_hugetlb_page(vma) || 1881 vma == get_gate_vma(current->mm)) 1882 vma->vm_flags &= VM_LOCKED_CLEAR_MASK; 1883 else 1884 mm->locked_vm += (len >> PAGE_SHIFT); 1885 } 1886 1887 if (file) 1888 uprobe_mmap(vma); 1889 1890 /* 1891 * New (or expanded) vma always get soft dirty status. 1892 * Otherwise user-space soft-dirty page tracker won't 1893 * be able to distinguish situation when vma area unmapped, 1894 * then new mapped in-place (which must be aimed as 1895 * a completely new data area). 1896 */ 1897 vma->vm_flags |= VM_SOFTDIRTY; 1898 1899 vma_set_page_prot(vma); 1900 1901 return addr; 1902 1903 unmap_and_free_vma: 1904 fput(vma->vm_file); 1905 vma->vm_file = NULL; 1906 1907 /* Undo any partial mapping done by a device driver. */ 1908 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end); 1909 charged = 0; 1910 if (vm_flags & VM_SHARED) 1911 mapping_unmap_writable(file->f_mapping); 1912 allow_write_and_free_vma: 1913 if (vm_flags & VM_DENYWRITE) 1914 allow_write_access(file); 1915 free_vma: 1916 vm_area_free(vma); 1917 unacct_error: 1918 if (charged) 1919 vm_unacct_memory(charged); 1920 return error; 1921 } 1922 1923 static unsigned long unmapped_area(struct vm_unmapped_area_info *info) 1924 { 1925 /* 1926 * We implement the search by looking for an rbtree node that 1927 * immediately follows a suitable gap. That is, 1928 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length; 1929 * - gap_end = vma->vm_start >= info->low_limit + length; 1930 * - gap_end - gap_start >= length 1931 */ 1932 1933 struct mm_struct *mm = current->mm; 1934 struct vm_area_struct *vma; 1935 unsigned long length, low_limit, high_limit, gap_start, gap_end; 1936 1937 /* Adjust search length to account for worst case alignment overhead */ 1938 length = info->length + info->align_mask; 1939 if (length < info->length) 1940 return -ENOMEM; 1941 1942 /* Adjust search limits by the desired length */ 1943 if (info->high_limit < length) 1944 return -ENOMEM; 1945 high_limit = info->high_limit - length; 1946 1947 if (info->low_limit > high_limit) 1948 return -ENOMEM; 1949 low_limit = info->low_limit + length; 1950 1951 /* Check if rbtree root looks promising */ 1952 if (RB_EMPTY_ROOT(&mm->mm_rb)) 1953 goto check_highest; 1954 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb); 1955 if (vma->rb_subtree_gap < length) 1956 goto check_highest; 1957 1958 while (true) { 1959 /* Visit left subtree if it looks promising */ 1960 gap_end = vm_start_gap(vma); 1961 if (gap_end >= low_limit && vma->vm_rb.rb_left) { 1962 struct vm_area_struct *left = 1963 rb_entry(vma->vm_rb.rb_left, 1964 struct vm_area_struct, vm_rb); 1965 if (left->rb_subtree_gap >= length) { 1966 vma = left; 1967 continue; 1968 } 1969 } 1970 1971 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0; 1972 check_current: 1973 /* Check if current node has a suitable gap */ 1974 if (gap_start > high_limit) 1975 return -ENOMEM; 1976 if (gap_end >= low_limit && 1977 gap_end > gap_start && gap_end - gap_start >= length) 1978 goto found; 1979 1980 /* Visit right subtree if it looks promising */ 1981 if (vma->vm_rb.rb_right) { 1982 struct vm_area_struct *right = 1983 rb_entry(vma->vm_rb.rb_right, 1984 struct vm_area_struct, vm_rb); 1985 if (right->rb_subtree_gap >= length) { 1986 vma = right; 1987 continue; 1988 } 1989 } 1990 1991 /* Go back up the rbtree to find next candidate node */ 1992 while (true) { 1993 struct rb_node *prev = &vma->vm_rb; 1994 if (!rb_parent(prev)) 1995 goto check_highest; 1996 vma = rb_entry(rb_parent(prev), 1997 struct vm_area_struct, vm_rb); 1998 if (prev == vma->vm_rb.rb_left) { 1999 gap_start = vm_end_gap(vma->vm_prev); 2000 gap_end = vm_start_gap(vma); 2001 goto check_current; 2002 } 2003 } 2004 } 2005 2006 check_highest: 2007 /* Check highest gap, which does not precede any rbtree node */ 2008 gap_start = mm->highest_vm_end; 2009 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */ 2010 if (gap_start > high_limit) 2011 return -ENOMEM; 2012 2013 found: 2014 /* We found a suitable gap. Clip it with the original low_limit. */ 2015 if (gap_start < info->low_limit) 2016 gap_start = info->low_limit; 2017 2018 /* Adjust gap address to the desired alignment */ 2019 gap_start += (info->align_offset - gap_start) & info->align_mask; 2020 2021 VM_BUG_ON(gap_start + info->length > info->high_limit); 2022 VM_BUG_ON(gap_start + info->length > gap_end); 2023 return gap_start; 2024 } 2025 2026 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info) 2027 { 2028 struct mm_struct *mm = current->mm; 2029 struct vm_area_struct *vma; 2030 unsigned long length, low_limit, high_limit, gap_start, gap_end; 2031 2032 /* Adjust search length to account for worst case alignment overhead */ 2033 length = info->length + info->align_mask; 2034 if (length < info->length) 2035 return -ENOMEM; 2036 2037 /* 2038 * Adjust search limits by the desired length. 2039 * See implementation comment at top of unmapped_area(). 2040 */ 2041 gap_end = info->high_limit; 2042 if (gap_end < length) 2043 return -ENOMEM; 2044 high_limit = gap_end - length; 2045 2046 if (info->low_limit > high_limit) 2047 return -ENOMEM; 2048 low_limit = info->low_limit + length; 2049 2050 /* Check highest gap, which does not precede any rbtree node */ 2051 gap_start = mm->highest_vm_end; 2052 if (gap_start <= high_limit) 2053 goto found_highest; 2054 2055 /* Check if rbtree root looks promising */ 2056 if (RB_EMPTY_ROOT(&mm->mm_rb)) 2057 return -ENOMEM; 2058 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb); 2059 if (vma->rb_subtree_gap < length) 2060 return -ENOMEM; 2061 2062 while (true) { 2063 /* Visit right subtree if it looks promising */ 2064 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0; 2065 if (gap_start <= high_limit && vma->vm_rb.rb_right) { 2066 struct vm_area_struct *right = 2067 rb_entry(vma->vm_rb.rb_right, 2068 struct vm_area_struct, vm_rb); 2069 if (right->rb_subtree_gap >= length) { 2070 vma = right; 2071 continue; 2072 } 2073 } 2074 2075 check_current: 2076 /* Check if current node has a suitable gap */ 2077 gap_end = vm_start_gap(vma); 2078 if (gap_end < low_limit) 2079 return -ENOMEM; 2080 if (gap_start <= high_limit && 2081 gap_end > gap_start && gap_end - gap_start >= length) 2082 goto found; 2083 2084 /* Visit left subtree if it looks promising */ 2085 if (vma->vm_rb.rb_left) { 2086 struct vm_area_struct *left = 2087 rb_entry(vma->vm_rb.rb_left, 2088 struct vm_area_struct, vm_rb); 2089 if (left->rb_subtree_gap >= length) { 2090 vma = left; 2091 continue; 2092 } 2093 } 2094 2095 /* Go back up the rbtree to find next candidate node */ 2096 while (true) { 2097 struct rb_node *prev = &vma->vm_rb; 2098 if (!rb_parent(prev)) 2099 return -ENOMEM; 2100 vma = rb_entry(rb_parent(prev), 2101 struct vm_area_struct, vm_rb); 2102 if (prev == vma->vm_rb.rb_right) { 2103 gap_start = vma->vm_prev ? 2104 vm_end_gap(vma->vm_prev) : 0; 2105 goto check_current; 2106 } 2107 } 2108 } 2109 2110 found: 2111 /* We found a suitable gap. Clip it with the original high_limit. */ 2112 if (gap_end > info->high_limit) 2113 gap_end = info->high_limit; 2114 2115 found_highest: 2116 /* Compute highest gap address at the desired alignment */ 2117 gap_end -= info->length; 2118 gap_end -= (gap_end - info->align_offset) & info->align_mask; 2119 2120 VM_BUG_ON(gap_end < info->low_limit); 2121 VM_BUG_ON(gap_end < gap_start); 2122 return gap_end; 2123 } 2124 2125 /* 2126 * Search for an unmapped address range. 2127 * 2128 * We are looking for a range that: 2129 * - does not intersect with any VMA; 2130 * - is contained within the [low_limit, high_limit) interval; 2131 * - is at least the desired size. 2132 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) 2133 */ 2134 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info) 2135 { 2136 unsigned long addr; 2137 2138 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN) 2139 addr = unmapped_area_topdown(info); 2140 else 2141 addr = unmapped_area(info); 2142 2143 trace_vm_unmapped_area(addr, info); 2144 return addr; 2145 } 2146 2147 #ifndef arch_get_mmap_end 2148 #define arch_get_mmap_end(addr) (TASK_SIZE) 2149 #endif 2150 2151 #ifndef arch_get_mmap_base 2152 #define arch_get_mmap_base(addr, base) (base) 2153 #endif 2154 2155 /* Get an address range which is currently unmapped. 2156 * For shmat() with addr=0. 2157 * 2158 * Ugly calling convention alert: 2159 * Return value with the low bits set means error value, 2160 * ie 2161 * if (ret & ~PAGE_MASK) 2162 * error = ret; 2163 * 2164 * This function "knows" that -ENOMEM has the bits set. 2165 */ 2166 #ifndef HAVE_ARCH_UNMAPPED_AREA 2167 unsigned long 2168 arch_get_unmapped_area(struct file *filp, unsigned long addr, 2169 unsigned long len, unsigned long pgoff, unsigned long flags) 2170 { 2171 struct mm_struct *mm = current->mm; 2172 struct vm_area_struct *vma, *prev; 2173 struct vm_unmapped_area_info info; 2174 const unsigned long mmap_end = arch_get_mmap_end(addr); 2175 2176 if (len > mmap_end - mmap_min_addr) 2177 return -ENOMEM; 2178 2179 if (flags & MAP_FIXED) 2180 return addr; 2181 2182 if (addr) { 2183 addr = PAGE_ALIGN(addr); 2184 vma = find_vma_prev(mm, addr, &prev); 2185 if (mmap_end - len >= addr && addr >= mmap_min_addr && 2186 (!vma || addr + len <= vm_start_gap(vma)) && 2187 (!prev || addr >= vm_end_gap(prev))) 2188 return addr; 2189 } 2190 2191 info.flags = 0; 2192 info.length = len; 2193 info.low_limit = mm->mmap_base; 2194 info.high_limit = mmap_end; 2195 info.align_mask = 0; 2196 info.align_offset = 0; 2197 return vm_unmapped_area(&info); 2198 } 2199 #endif 2200 2201 /* 2202 * This mmap-allocator allocates new areas top-down from below the 2203 * stack's low limit (the base): 2204 */ 2205 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 2206 unsigned long 2207 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 2208 unsigned long len, unsigned long pgoff, 2209 unsigned long flags) 2210 { 2211 struct vm_area_struct *vma, *prev; 2212 struct mm_struct *mm = current->mm; 2213 struct vm_unmapped_area_info info; 2214 const unsigned long mmap_end = arch_get_mmap_end(addr); 2215 2216 /* requested length too big for entire address space */ 2217 if (len > mmap_end - mmap_min_addr) 2218 return -ENOMEM; 2219 2220 if (flags & MAP_FIXED) 2221 return addr; 2222 2223 /* requesting a specific address */ 2224 if (addr) { 2225 addr = PAGE_ALIGN(addr); 2226 vma = find_vma_prev(mm, addr, &prev); 2227 if (mmap_end - len >= addr && addr >= mmap_min_addr && 2228 (!vma || addr + len <= vm_start_gap(vma)) && 2229 (!prev || addr >= vm_end_gap(prev))) 2230 return addr; 2231 } 2232 2233 info.flags = VM_UNMAPPED_AREA_TOPDOWN; 2234 info.length = len; 2235 info.low_limit = max(PAGE_SIZE, mmap_min_addr); 2236 info.high_limit = arch_get_mmap_base(addr, mm->mmap_base); 2237 info.align_mask = 0; 2238 info.align_offset = 0; 2239 addr = vm_unmapped_area(&info); 2240 2241 /* 2242 * A failed mmap() very likely causes application failure, 2243 * so fall back to the bottom-up function here. This scenario 2244 * can happen with large stack limits and large mmap() 2245 * allocations. 2246 */ 2247 if (offset_in_page(addr)) { 2248 VM_BUG_ON(addr != -ENOMEM); 2249 info.flags = 0; 2250 info.low_limit = TASK_UNMAPPED_BASE; 2251 info.high_limit = mmap_end; 2252 addr = vm_unmapped_area(&info); 2253 } 2254 2255 return addr; 2256 } 2257 #endif 2258 2259 unsigned long 2260 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 2261 unsigned long pgoff, unsigned long flags) 2262 { 2263 unsigned long (*get_area)(struct file *, unsigned long, 2264 unsigned long, unsigned long, unsigned long); 2265 2266 unsigned long error = arch_mmap_check(addr, len, flags); 2267 if (error) 2268 return error; 2269 2270 /* Careful about overflows.. */ 2271 if (len > TASK_SIZE) 2272 return -ENOMEM; 2273 2274 get_area = current->mm->get_unmapped_area; 2275 if (file) { 2276 if (file->f_op->get_unmapped_area) 2277 get_area = file->f_op->get_unmapped_area; 2278 } else if (flags & MAP_SHARED) { 2279 /* 2280 * mmap_region() will call shmem_zero_setup() to create a file, 2281 * so use shmem's get_unmapped_area in case it can be huge. 2282 * do_mmap() will clear pgoff, so match alignment. 2283 */ 2284 pgoff = 0; 2285 get_area = shmem_get_unmapped_area; 2286 } 2287 2288 addr = get_area(file, addr, len, pgoff, flags); 2289 if (IS_ERR_VALUE(addr)) 2290 return addr; 2291 2292 if (addr > TASK_SIZE - len) 2293 return -ENOMEM; 2294 if (offset_in_page(addr)) 2295 return -EINVAL; 2296 2297 error = security_mmap_addr(addr); 2298 return error ? error : addr; 2299 } 2300 2301 EXPORT_SYMBOL(get_unmapped_area); 2302 2303 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2304 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 2305 { 2306 struct rb_node *rb_node; 2307 struct vm_area_struct *vma; 2308 2309 /* Check the cache first. */ 2310 vma = vmacache_find(mm, addr); 2311 if (likely(vma)) 2312 return vma; 2313 2314 rb_node = mm->mm_rb.rb_node; 2315 2316 while (rb_node) { 2317 struct vm_area_struct *tmp; 2318 2319 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb); 2320 2321 if (tmp->vm_end > addr) { 2322 vma = tmp; 2323 if (tmp->vm_start <= addr) 2324 break; 2325 rb_node = rb_node->rb_left; 2326 } else 2327 rb_node = rb_node->rb_right; 2328 } 2329 2330 if (vma) 2331 vmacache_update(addr, vma); 2332 return vma; 2333 } 2334 2335 EXPORT_SYMBOL(find_vma); 2336 2337 /* 2338 * Same as find_vma, but also return a pointer to the previous VMA in *pprev. 2339 */ 2340 struct vm_area_struct * 2341 find_vma_prev(struct mm_struct *mm, unsigned long addr, 2342 struct vm_area_struct **pprev) 2343 { 2344 struct vm_area_struct *vma; 2345 2346 vma = find_vma(mm, addr); 2347 if (vma) { 2348 *pprev = vma->vm_prev; 2349 } else { 2350 struct rb_node *rb_node = rb_last(&mm->mm_rb); 2351 2352 *pprev = rb_node ? rb_entry(rb_node, struct vm_area_struct, vm_rb) : NULL; 2353 } 2354 return vma; 2355 } 2356 2357 /* 2358 * Verify that the stack growth is acceptable and 2359 * update accounting. This is shared with both the 2360 * grow-up and grow-down cases. 2361 */ 2362 static int acct_stack_growth(struct vm_area_struct *vma, 2363 unsigned long size, unsigned long grow) 2364 { 2365 struct mm_struct *mm = vma->vm_mm; 2366 unsigned long new_start; 2367 2368 /* address space limit tests */ 2369 if (!may_expand_vm(mm, vma->vm_flags, grow)) 2370 return -ENOMEM; 2371 2372 /* Stack limit test */ 2373 if (size > rlimit(RLIMIT_STACK)) 2374 return -ENOMEM; 2375 2376 /* mlock limit tests */ 2377 if (vma->vm_flags & VM_LOCKED) { 2378 unsigned long locked; 2379 unsigned long limit; 2380 locked = mm->locked_vm + grow; 2381 limit = rlimit(RLIMIT_MEMLOCK); 2382 limit >>= PAGE_SHIFT; 2383 if (locked > limit && !capable(CAP_IPC_LOCK)) 2384 return -ENOMEM; 2385 } 2386 2387 /* Check to ensure the stack will not grow into a hugetlb-only region */ 2388 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : 2389 vma->vm_end - size; 2390 if (is_hugepage_only_range(vma->vm_mm, new_start, size)) 2391 return -EFAULT; 2392 2393 /* 2394 * Overcommit.. This must be the final test, as it will 2395 * update security statistics. 2396 */ 2397 if (security_vm_enough_memory_mm(mm, grow)) 2398 return -ENOMEM; 2399 2400 return 0; 2401 } 2402 2403 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64) 2404 /* 2405 * PA-RISC uses this for its stack; IA64 for its Register Backing Store. 2406 * vma is the last one with address > vma->vm_end. Have to extend vma. 2407 */ 2408 int expand_upwards(struct vm_area_struct *vma, unsigned long address) 2409 { 2410 struct mm_struct *mm = vma->vm_mm; 2411 struct vm_area_struct *next; 2412 unsigned long gap_addr; 2413 int error = 0; 2414 2415 if (!(vma->vm_flags & VM_GROWSUP)) 2416 return -EFAULT; 2417 2418 /* Guard against exceeding limits of the address space. */ 2419 address &= PAGE_MASK; 2420 if (address >= (TASK_SIZE & PAGE_MASK)) 2421 return -ENOMEM; 2422 address += PAGE_SIZE; 2423 2424 /* Enforce stack_guard_gap */ 2425 gap_addr = address + stack_guard_gap; 2426 2427 /* Guard against overflow */ 2428 if (gap_addr < address || gap_addr > TASK_SIZE) 2429 gap_addr = TASK_SIZE; 2430 2431 next = vma->vm_next; 2432 if (next && next->vm_start < gap_addr && vma_is_accessible(next)) { 2433 if (!(next->vm_flags & VM_GROWSUP)) 2434 return -ENOMEM; 2435 /* Check that both stack segments have the same anon_vma? */ 2436 } 2437 2438 /* We must make sure the anon_vma is allocated. */ 2439 if (unlikely(anon_vma_prepare(vma))) 2440 return -ENOMEM; 2441 2442 /* 2443 * vma->vm_start/vm_end cannot change under us because the caller 2444 * is required to hold the mmap_lock in read mode. We need the 2445 * anon_vma lock to serialize against concurrent expand_stacks. 2446 */ 2447 anon_vma_lock_write(vma->anon_vma); 2448 2449 /* Somebody else might have raced and expanded it already */ 2450 if (address > vma->vm_end) { 2451 unsigned long size, grow; 2452 2453 size = address - vma->vm_start; 2454 grow = (address - vma->vm_end) >> PAGE_SHIFT; 2455 2456 error = -ENOMEM; 2457 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) { 2458 error = acct_stack_growth(vma, size, grow); 2459 if (!error) { 2460 /* 2461 * vma_gap_update() doesn't support concurrent 2462 * updates, but we only hold a shared mmap_lock 2463 * lock here, so we need to protect against 2464 * concurrent vma expansions. 2465 * anon_vma_lock_write() doesn't help here, as 2466 * we don't guarantee that all growable vmas 2467 * in a mm share the same root anon vma. 2468 * So, we reuse mm->page_table_lock to guard 2469 * against concurrent vma expansions. 2470 */ 2471 spin_lock(&mm->page_table_lock); 2472 if (vma->vm_flags & VM_LOCKED) 2473 mm->locked_vm += grow; 2474 vm_stat_account(mm, vma->vm_flags, grow); 2475 anon_vma_interval_tree_pre_update_vma(vma); 2476 vma->vm_end = address; 2477 anon_vma_interval_tree_post_update_vma(vma); 2478 if (vma->vm_next) 2479 vma_gap_update(vma->vm_next); 2480 else 2481 mm->highest_vm_end = vm_end_gap(vma); 2482 spin_unlock(&mm->page_table_lock); 2483 2484 perf_event_mmap(vma); 2485 } 2486 } 2487 } 2488 anon_vma_unlock_write(vma->anon_vma); 2489 khugepaged_enter_vma_merge(vma, vma->vm_flags); 2490 validate_mm(mm); 2491 return error; 2492 } 2493 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */ 2494 2495 /* 2496 * vma is the first one with address < vma->vm_start. Have to extend vma. 2497 */ 2498 int expand_downwards(struct vm_area_struct *vma, 2499 unsigned long address) 2500 { 2501 struct mm_struct *mm = vma->vm_mm; 2502 struct vm_area_struct *prev; 2503 int error = 0; 2504 2505 address &= PAGE_MASK; 2506 if (address < mmap_min_addr) 2507 return -EPERM; 2508 2509 /* Enforce stack_guard_gap */ 2510 prev = vma->vm_prev; 2511 /* Check that both stack segments have the same anon_vma? */ 2512 if (prev && !(prev->vm_flags & VM_GROWSDOWN) && 2513 vma_is_accessible(prev)) { 2514 if (address - prev->vm_end < stack_guard_gap) 2515 return -ENOMEM; 2516 } 2517 2518 /* We must make sure the anon_vma is allocated. */ 2519 if (unlikely(anon_vma_prepare(vma))) 2520 return -ENOMEM; 2521 2522 /* 2523 * vma->vm_start/vm_end cannot change under us because the caller 2524 * is required to hold the mmap_lock in read mode. We need the 2525 * anon_vma lock to serialize against concurrent expand_stacks. 2526 */ 2527 anon_vma_lock_write(vma->anon_vma); 2528 2529 /* Somebody else might have raced and expanded it already */ 2530 if (address < vma->vm_start) { 2531 unsigned long size, grow; 2532 2533 size = vma->vm_end - address; 2534 grow = (vma->vm_start - address) >> PAGE_SHIFT; 2535 2536 error = -ENOMEM; 2537 if (grow <= vma->vm_pgoff) { 2538 error = acct_stack_growth(vma, size, grow); 2539 if (!error) { 2540 /* 2541 * vma_gap_update() doesn't support concurrent 2542 * updates, but we only hold a shared mmap_lock 2543 * lock here, so we need to protect against 2544 * concurrent vma expansions. 2545 * anon_vma_lock_write() doesn't help here, as 2546 * we don't guarantee that all growable vmas 2547 * in a mm share the same root anon vma. 2548 * So, we reuse mm->page_table_lock to guard 2549 * against concurrent vma expansions. 2550 */ 2551 spin_lock(&mm->page_table_lock); 2552 if (vma->vm_flags & VM_LOCKED) 2553 mm->locked_vm += grow; 2554 vm_stat_account(mm, vma->vm_flags, grow); 2555 anon_vma_interval_tree_pre_update_vma(vma); 2556 vma->vm_start = address; 2557 vma->vm_pgoff -= grow; 2558 anon_vma_interval_tree_post_update_vma(vma); 2559 vma_gap_update(vma); 2560 spin_unlock(&mm->page_table_lock); 2561 2562 perf_event_mmap(vma); 2563 } 2564 } 2565 } 2566 anon_vma_unlock_write(vma->anon_vma); 2567 khugepaged_enter_vma_merge(vma, vma->vm_flags); 2568 validate_mm(mm); 2569 return error; 2570 } 2571 2572 /* enforced gap between the expanding stack and other mappings. */ 2573 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT; 2574 2575 static int __init cmdline_parse_stack_guard_gap(char *p) 2576 { 2577 unsigned long val; 2578 char *endptr; 2579 2580 val = simple_strtoul(p, &endptr, 10); 2581 if (!*endptr) 2582 stack_guard_gap = val << PAGE_SHIFT; 2583 2584 return 0; 2585 } 2586 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap); 2587 2588 #ifdef CONFIG_STACK_GROWSUP 2589 int expand_stack(struct vm_area_struct *vma, unsigned long address) 2590 { 2591 return expand_upwards(vma, address); 2592 } 2593 2594 struct vm_area_struct * 2595 find_extend_vma(struct mm_struct *mm, unsigned long addr) 2596 { 2597 struct vm_area_struct *vma, *prev; 2598 2599 addr &= PAGE_MASK; 2600 vma = find_vma_prev(mm, addr, &prev); 2601 if (vma && (vma->vm_start <= addr)) 2602 return vma; 2603 /* don't alter vm_end if the coredump is running */ 2604 if (!prev || expand_stack(prev, addr)) 2605 return NULL; 2606 if (prev->vm_flags & VM_LOCKED) 2607 populate_vma_page_range(prev, addr, prev->vm_end, NULL); 2608 return prev; 2609 } 2610 #else 2611 int expand_stack(struct vm_area_struct *vma, unsigned long address) 2612 { 2613 return expand_downwards(vma, address); 2614 } 2615 2616 struct vm_area_struct * 2617 find_extend_vma(struct mm_struct *mm, unsigned long addr) 2618 { 2619 struct vm_area_struct *vma; 2620 unsigned long start; 2621 2622 addr &= PAGE_MASK; 2623 vma = find_vma(mm, addr); 2624 if (!vma) 2625 return NULL; 2626 if (vma->vm_start <= addr) 2627 return vma; 2628 if (!(vma->vm_flags & VM_GROWSDOWN)) 2629 return NULL; 2630 start = vma->vm_start; 2631 if (expand_stack(vma, addr)) 2632 return NULL; 2633 if (vma->vm_flags & VM_LOCKED) 2634 populate_vma_page_range(vma, addr, start, NULL); 2635 return vma; 2636 } 2637 #endif 2638 2639 EXPORT_SYMBOL_GPL(find_extend_vma); 2640 2641 /* 2642 * Ok - we have the memory areas we should free on the vma list, 2643 * so release them, and do the vma updates. 2644 * 2645 * Called with the mm semaphore held. 2646 */ 2647 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma) 2648 { 2649 unsigned long nr_accounted = 0; 2650 2651 /* Update high watermark before we lower total_vm */ 2652 update_hiwater_vm(mm); 2653 do { 2654 long nrpages = vma_pages(vma); 2655 2656 if (vma->vm_flags & VM_ACCOUNT) 2657 nr_accounted += nrpages; 2658 vm_stat_account(mm, vma->vm_flags, -nrpages); 2659 vma = remove_vma(vma); 2660 } while (vma); 2661 vm_unacct_memory(nr_accounted); 2662 validate_mm(mm); 2663 } 2664 2665 /* 2666 * Get rid of page table information in the indicated region. 2667 * 2668 * Called with the mm semaphore held. 2669 */ 2670 static void unmap_region(struct mm_struct *mm, 2671 struct vm_area_struct *vma, struct vm_area_struct *prev, 2672 unsigned long start, unsigned long end) 2673 { 2674 struct vm_area_struct *next = vma_next(mm, prev); 2675 struct mmu_gather tlb; 2676 2677 lru_add_drain(); 2678 tlb_gather_mmu(&tlb, mm); 2679 update_hiwater_rss(mm); 2680 unmap_vmas(&tlb, vma, start, end); 2681 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS, 2682 next ? next->vm_start : USER_PGTABLES_CEILING); 2683 tlb_finish_mmu(&tlb); 2684 } 2685 2686 /* 2687 * Create a list of vma's touched by the unmap, removing them from the mm's 2688 * vma list as we go.. 2689 */ 2690 static bool 2691 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma, 2692 struct vm_area_struct *prev, unsigned long end) 2693 { 2694 struct vm_area_struct **insertion_point; 2695 struct vm_area_struct *tail_vma = NULL; 2696 2697 insertion_point = (prev ? &prev->vm_next : &mm->mmap); 2698 vma->vm_prev = NULL; 2699 do { 2700 vma_rb_erase(vma, &mm->mm_rb); 2701 mm->map_count--; 2702 tail_vma = vma; 2703 vma = vma->vm_next; 2704 } while (vma && vma->vm_start < end); 2705 *insertion_point = vma; 2706 if (vma) { 2707 vma->vm_prev = prev; 2708 vma_gap_update(vma); 2709 } else 2710 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0; 2711 tail_vma->vm_next = NULL; 2712 2713 /* Kill the cache */ 2714 vmacache_invalidate(mm); 2715 2716 /* 2717 * Do not downgrade mmap_lock if we are next to VM_GROWSDOWN or 2718 * VM_GROWSUP VMA. Such VMAs can change their size under 2719 * down_read(mmap_lock) and collide with the VMA we are about to unmap. 2720 */ 2721 if (vma && (vma->vm_flags & VM_GROWSDOWN)) 2722 return false; 2723 if (prev && (prev->vm_flags & VM_GROWSUP)) 2724 return false; 2725 return true; 2726 } 2727 2728 /* 2729 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it 2730 * has already been checked or doesn't make sense to fail. 2731 */ 2732 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 2733 unsigned long addr, int new_below) 2734 { 2735 struct vm_area_struct *new; 2736 int err; 2737 2738 if (vma->vm_ops && vma->vm_ops->may_split) { 2739 err = vma->vm_ops->may_split(vma, addr); 2740 if (err) 2741 return err; 2742 } 2743 2744 new = vm_area_dup(vma); 2745 if (!new) 2746 return -ENOMEM; 2747 2748 if (new_below) 2749 new->vm_end = addr; 2750 else { 2751 new->vm_start = addr; 2752 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); 2753 } 2754 2755 err = vma_dup_policy(vma, new); 2756 if (err) 2757 goto out_free_vma; 2758 2759 err = anon_vma_clone(new, vma); 2760 if (err) 2761 goto out_free_mpol; 2762 2763 if (new->vm_file) 2764 get_file(new->vm_file); 2765 2766 if (new->vm_ops && new->vm_ops->open) 2767 new->vm_ops->open(new); 2768 2769 if (new_below) 2770 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff + 2771 ((addr - new->vm_start) >> PAGE_SHIFT), new); 2772 else 2773 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new); 2774 2775 /* Success. */ 2776 if (!err) 2777 return 0; 2778 2779 /* Clean everything up if vma_adjust failed. */ 2780 if (new->vm_ops && new->vm_ops->close) 2781 new->vm_ops->close(new); 2782 if (new->vm_file) 2783 fput(new->vm_file); 2784 unlink_anon_vmas(new); 2785 out_free_mpol: 2786 mpol_put(vma_policy(new)); 2787 out_free_vma: 2788 vm_area_free(new); 2789 return err; 2790 } 2791 2792 /* 2793 * Split a vma into two pieces at address 'addr', a new vma is allocated 2794 * either for the first part or the tail. 2795 */ 2796 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 2797 unsigned long addr, int new_below) 2798 { 2799 if (mm->map_count >= sysctl_max_map_count) 2800 return -ENOMEM; 2801 2802 return __split_vma(mm, vma, addr, new_below); 2803 } 2804 2805 /* Munmap is split into 2 main parts -- this part which finds 2806 * what needs doing, and the areas themselves, which do the 2807 * work. This now handles partial unmappings. 2808 * Jeremy Fitzhardinge <jeremy@goop.org> 2809 */ 2810 int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len, 2811 struct list_head *uf, bool downgrade) 2812 { 2813 unsigned long end; 2814 struct vm_area_struct *vma, *prev, *last; 2815 2816 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start) 2817 return -EINVAL; 2818 2819 len = PAGE_ALIGN(len); 2820 end = start + len; 2821 if (len == 0) 2822 return -EINVAL; 2823 2824 /* 2825 * arch_unmap() might do unmaps itself. It must be called 2826 * and finish any rbtree manipulation before this code 2827 * runs and also starts to manipulate the rbtree. 2828 */ 2829 arch_unmap(mm, start, end); 2830 2831 /* Find the first overlapping VMA */ 2832 vma = find_vma(mm, start); 2833 if (!vma) 2834 return 0; 2835 prev = vma->vm_prev; 2836 /* we have start < vma->vm_end */ 2837 2838 /* if it doesn't overlap, we have nothing.. */ 2839 if (vma->vm_start >= end) 2840 return 0; 2841 2842 /* 2843 * If we need to split any vma, do it now to save pain later. 2844 * 2845 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially 2846 * unmapped vm_area_struct will remain in use: so lower split_vma 2847 * places tmp vma above, and higher split_vma places tmp vma below. 2848 */ 2849 if (start > vma->vm_start) { 2850 int error; 2851 2852 /* 2853 * Make sure that map_count on return from munmap() will 2854 * not exceed its limit; but let map_count go just above 2855 * its limit temporarily, to help free resources as expected. 2856 */ 2857 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count) 2858 return -ENOMEM; 2859 2860 error = __split_vma(mm, vma, start, 0); 2861 if (error) 2862 return error; 2863 prev = vma; 2864 } 2865 2866 /* Does it split the last one? */ 2867 last = find_vma(mm, end); 2868 if (last && end > last->vm_start) { 2869 int error = __split_vma(mm, last, end, 1); 2870 if (error) 2871 return error; 2872 } 2873 vma = vma_next(mm, prev); 2874 2875 if (unlikely(uf)) { 2876 /* 2877 * If userfaultfd_unmap_prep returns an error the vmas 2878 * will remain split, but userland will get a 2879 * highly unexpected error anyway. This is no 2880 * different than the case where the first of the two 2881 * __split_vma fails, but we don't undo the first 2882 * split, despite we could. This is unlikely enough 2883 * failure that it's not worth optimizing it for. 2884 */ 2885 int error = userfaultfd_unmap_prep(vma, start, end, uf); 2886 if (error) 2887 return error; 2888 } 2889 2890 /* 2891 * unlock any mlock()ed ranges before detaching vmas 2892 */ 2893 if (mm->locked_vm) { 2894 struct vm_area_struct *tmp = vma; 2895 while (tmp && tmp->vm_start < end) { 2896 if (tmp->vm_flags & VM_LOCKED) { 2897 mm->locked_vm -= vma_pages(tmp); 2898 munlock_vma_pages_all(tmp); 2899 } 2900 2901 tmp = tmp->vm_next; 2902 } 2903 } 2904 2905 /* Detach vmas from rbtree */ 2906 if (!detach_vmas_to_be_unmapped(mm, vma, prev, end)) 2907 downgrade = false; 2908 2909 if (downgrade) 2910 mmap_write_downgrade(mm); 2911 2912 unmap_region(mm, vma, prev, start, end); 2913 2914 /* Fix up all other VM information */ 2915 remove_vma_list(mm, vma); 2916 2917 return downgrade ? 1 : 0; 2918 } 2919 2920 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, 2921 struct list_head *uf) 2922 { 2923 return __do_munmap(mm, start, len, uf, false); 2924 } 2925 2926 static int __vm_munmap(unsigned long start, size_t len, bool downgrade) 2927 { 2928 int ret; 2929 struct mm_struct *mm = current->mm; 2930 LIST_HEAD(uf); 2931 2932 if (mmap_write_lock_killable(mm)) 2933 return -EINTR; 2934 2935 ret = __do_munmap(mm, start, len, &uf, downgrade); 2936 /* 2937 * Returning 1 indicates mmap_lock is downgraded. 2938 * But 1 is not legal return value of vm_munmap() and munmap(), reset 2939 * it to 0 before return. 2940 */ 2941 if (ret == 1) { 2942 mmap_read_unlock(mm); 2943 ret = 0; 2944 } else 2945 mmap_write_unlock(mm); 2946 2947 userfaultfd_unmap_complete(mm, &uf); 2948 return ret; 2949 } 2950 2951 int vm_munmap(unsigned long start, size_t len) 2952 { 2953 return __vm_munmap(start, len, false); 2954 } 2955 EXPORT_SYMBOL(vm_munmap); 2956 2957 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 2958 { 2959 addr = untagged_addr(addr); 2960 profile_munmap(addr); 2961 return __vm_munmap(addr, len, true); 2962 } 2963 2964 2965 /* 2966 * Emulation of deprecated remap_file_pages() syscall. 2967 */ 2968 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size, 2969 unsigned long, prot, unsigned long, pgoff, unsigned long, flags) 2970 { 2971 2972 struct mm_struct *mm = current->mm; 2973 struct vm_area_struct *vma; 2974 unsigned long populate = 0; 2975 unsigned long ret = -EINVAL; 2976 struct file *file; 2977 2978 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n", 2979 current->comm, current->pid); 2980 2981 if (prot) 2982 return ret; 2983 start = start & PAGE_MASK; 2984 size = size & PAGE_MASK; 2985 2986 if (start + size <= start) 2987 return ret; 2988 2989 /* Does pgoff wrap? */ 2990 if (pgoff + (size >> PAGE_SHIFT) < pgoff) 2991 return ret; 2992 2993 if (mmap_write_lock_killable(mm)) 2994 return -EINTR; 2995 2996 vma = find_vma(mm, start); 2997 2998 if (!vma || !(vma->vm_flags & VM_SHARED)) 2999 goto out; 3000 3001 if (start < vma->vm_start) 3002 goto out; 3003 3004 if (start + size > vma->vm_end) { 3005 struct vm_area_struct *next; 3006 3007 for (next = vma->vm_next; next; next = next->vm_next) { 3008 /* hole between vmas ? */ 3009 if (next->vm_start != next->vm_prev->vm_end) 3010 goto out; 3011 3012 if (next->vm_file != vma->vm_file) 3013 goto out; 3014 3015 if (next->vm_flags != vma->vm_flags) 3016 goto out; 3017 3018 if (start + size <= next->vm_end) 3019 break; 3020 } 3021 3022 if (!next) 3023 goto out; 3024 } 3025 3026 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0; 3027 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0; 3028 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0; 3029 3030 flags &= MAP_NONBLOCK; 3031 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE; 3032 if (vma->vm_flags & VM_LOCKED) 3033 flags |= MAP_LOCKED; 3034 3035 file = get_file(vma->vm_file); 3036 ret = do_mmap(vma->vm_file, start, size, 3037 prot, flags, pgoff, &populate, NULL); 3038 fput(file); 3039 out: 3040 mmap_write_unlock(mm); 3041 if (populate) 3042 mm_populate(ret, populate); 3043 if (!IS_ERR_VALUE(ret)) 3044 ret = 0; 3045 return ret; 3046 } 3047 3048 /* 3049 * this is really a simplified "do_mmap". it only handles 3050 * anonymous maps. eventually we may be able to do some 3051 * brk-specific accounting here. 3052 */ 3053 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf) 3054 { 3055 struct mm_struct *mm = current->mm; 3056 struct vm_area_struct *vma, *prev; 3057 struct rb_node **rb_link, *rb_parent; 3058 pgoff_t pgoff = addr >> PAGE_SHIFT; 3059 int error; 3060 unsigned long mapped_addr; 3061 3062 /* Until we need other flags, refuse anything except VM_EXEC. */ 3063 if ((flags & (~VM_EXEC)) != 0) 3064 return -EINVAL; 3065 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; 3066 3067 mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED); 3068 if (IS_ERR_VALUE(mapped_addr)) 3069 return mapped_addr; 3070 3071 error = mlock_future_check(mm, mm->def_flags, len); 3072 if (error) 3073 return error; 3074 3075 /* Clear old maps, set up prev, rb_link, rb_parent, and uf */ 3076 if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf)) 3077 return -ENOMEM; 3078 3079 /* Check against address space limits *after* clearing old maps... */ 3080 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT)) 3081 return -ENOMEM; 3082 3083 if (mm->map_count > sysctl_max_map_count) 3084 return -ENOMEM; 3085 3086 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT)) 3087 return -ENOMEM; 3088 3089 /* Can we just expand an old private anonymous mapping? */ 3090 vma = vma_merge(mm, prev, addr, addr + len, flags, 3091 NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX); 3092 if (vma) 3093 goto out; 3094 3095 /* 3096 * create a vma struct for an anonymous mapping 3097 */ 3098 vma = vm_area_alloc(mm); 3099 if (!vma) { 3100 vm_unacct_memory(len >> PAGE_SHIFT); 3101 return -ENOMEM; 3102 } 3103 3104 vma_set_anonymous(vma); 3105 vma->vm_start = addr; 3106 vma->vm_end = addr + len; 3107 vma->vm_pgoff = pgoff; 3108 vma->vm_flags = flags; 3109 vma->vm_page_prot = vm_get_page_prot(flags); 3110 vma_link(mm, vma, prev, rb_link, rb_parent); 3111 out: 3112 perf_event_mmap(vma); 3113 mm->total_vm += len >> PAGE_SHIFT; 3114 mm->data_vm += len >> PAGE_SHIFT; 3115 if (flags & VM_LOCKED) 3116 mm->locked_vm += (len >> PAGE_SHIFT); 3117 vma->vm_flags |= VM_SOFTDIRTY; 3118 return 0; 3119 } 3120 3121 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags) 3122 { 3123 struct mm_struct *mm = current->mm; 3124 unsigned long len; 3125 int ret; 3126 bool populate; 3127 LIST_HEAD(uf); 3128 3129 len = PAGE_ALIGN(request); 3130 if (len < request) 3131 return -ENOMEM; 3132 if (!len) 3133 return 0; 3134 3135 if (mmap_write_lock_killable(mm)) 3136 return -EINTR; 3137 3138 ret = do_brk_flags(addr, len, flags, &uf); 3139 populate = ((mm->def_flags & VM_LOCKED) != 0); 3140 mmap_write_unlock(mm); 3141 userfaultfd_unmap_complete(mm, &uf); 3142 if (populate && !ret) 3143 mm_populate(addr, len); 3144 return ret; 3145 } 3146 EXPORT_SYMBOL(vm_brk_flags); 3147 3148 int vm_brk(unsigned long addr, unsigned long len) 3149 { 3150 return vm_brk_flags(addr, len, 0); 3151 } 3152 EXPORT_SYMBOL(vm_brk); 3153 3154 /* Release all mmaps. */ 3155 void exit_mmap(struct mm_struct *mm) 3156 { 3157 struct mmu_gather tlb; 3158 struct vm_area_struct *vma; 3159 unsigned long nr_accounted = 0; 3160 3161 /* mm's last user has gone, and its about to be pulled down */ 3162 mmu_notifier_release(mm); 3163 3164 if (unlikely(mm_is_oom_victim(mm))) { 3165 /* 3166 * Manually reap the mm to free as much memory as possible. 3167 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard 3168 * this mm from further consideration. Taking mm->mmap_lock for 3169 * write after setting MMF_OOM_SKIP will guarantee that the oom 3170 * reaper will not run on this mm again after mmap_lock is 3171 * dropped. 3172 * 3173 * Nothing can be holding mm->mmap_lock here and the above call 3174 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in 3175 * __oom_reap_task_mm() will not block. 3176 * 3177 * This needs to be done before calling munlock_vma_pages_all(), 3178 * which clears VM_LOCKED, otherwise the oom reaper cannot 3179 * reliably test it. 3180 */ 3181 (void)__oom_reap_task_mm(mm); 3182 3183 set_bit(MMF_OOM_SKIP, &mm->flags); 3184 mmap_write_lock(mm); 3185 mmap_write_unlock(mm); 3186 } 3187 3188 if (mm->locked_vm) { 3189 vma = mm->mmap; 3190 while (vma) { 3191 if (vma->vm_flags & VM_LOCKED) 3192 munlock_vma_pages_all(vma); 3193 vma = vma->vm_next; 3194 } 3195 } 3196 3197 arch_exit_mmap(mm); 3198 3199 vma = mm->mmap; 3200 if (!vma) /* Can happen if dup_mmap() received an OOM */ 3201 return; 3202 3203 lru_add_drain(); 3204 flush_cache_mm(mm); 3205 tlb_gather_mmu_fullmm(&tlb, mm); 3206 /* update_hiwater_rss(mm) here? but nobody should be looking */ 3207 /* Use -1 here to ensure all VMAs in the mm are unmapped */ 3208 unmap_vmas(&tlb, vma, 0, -1); 3209 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING); 3210 tlb_finish_mmu(&tlb); 3211 3212 /* 3213 * Walk the list again, actually closing and freeing it, 3214 * with preemption enabled, without holding any MM locks. 3215 */ 3216 while (vma) { 3217 if (vma->vm_flags & VM_ACCOUNT) 3218 nr_accounted += vma_pages(vma); 3219 vma = remove_vma(vma); 3220 cond_resched(); 3221 } 3222 vm_unacct_memory(nr_accounted); 3223 } 3224 3225 /* Insert vm structure into process list sorted by address 3226 * and into the inode's i_mmap tree. If vm_file is non-NULL 3227 * then i_mmap_rwsem is taken here. 3228 */ 3229 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 3230 { 3231 struct vm_area_struct *prev; 3232 struct rb_node **rb_link, *rb_parent; 3233 3234 if (find_vma_links(mm, vma->vm_start, vma->vm_end, 3235 &prev, &rb_link, &rb_parent)) 3236 return -ENOMEM; 3237 if ((vma->vm_flags & VM_ACCOUNT) && 3238 security_vm_enough_memory_mm(mm, vma_pages(vma))) 3239 return -ENOMEM; 3240 3241 /* 3242 * The vm_pgoff of a purely anonymous vma should be irrelevant 3243 * until its first write fault, when page's anon_vma and index 3244 * are set. But now set the vm_pgoff it will almost certainly 3245 * end up with (unless mremap moves it elsewhere before that 3246 * first wfault), so /proc/pid/maps tells a consistent story. 3247 * 3248 * By setting it to reflect the virtual start address of the 3249 * vma, merges and splits can happen in a seamless way, just 3250 * using the existing file pgoff checks and manipulations. 3251 * Similarly in do_mmap and in do_brk_flags. 3252 */ 3253 if (vma_is_anonymous(vma)) { 3254 BUG_ON(vma->anon_vma); 3255 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; 3256 } 3257 3258 vma_link(mm, vma, prev, rb_link, rb_parent); 3259 return 0; 3260 } 3261 3262 /* 3263 * Copy the vma structure to a new location in the same mm, 3264 * prior to moving page table entries, to effect an mremap move. 3265 */ 3266 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 3267 unsigned long addr, unsigned long len, pgoff_t pgoff, 3268 bool *need_rmap_locks) 3269 { 3270 struct vm_area_struct *vma = *vmap; 3271 unsigned long vma_start = vma->vm_start; 3272 struct mm_struct *mm = vma->vm_mm; 3273 struct vm_area_struct *new_vma, *prev; 3274 struct rb_node **rb_link, *rb_parent; 3275 bool faulted_in_anon_vma = true; 3276 3277 /* 3278 * If anonymous vma has not yet been faulted, update new pgoff 3279 * to match new location, to increase its chance of merging. 3280 */ 3281 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) { 3282 pgoff = addr >> PAGE_SHIFT; 3283 faulted_in_anon_vma = false; 3284 } 3285 3286 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) 3287 return NULL; /* should never get here */ 3288 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags, 3289 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma), 3290 vma->vm_userfaultfd_ctx); 3291 if (new_vma) { 3292 /* 3293 * Source vma may have been merged into new_vma 3294 */ 3295 if (unlikely(vma_start >= new_vma->vm_start && 3296 vma_start < new_vma->vm_end)) { 3297 /* 3298 * The only way we can get a vma_merge with 3299 * self during an mremap is if the vma hasn't 3300 * been faulted in yet and we were allowed to 3301 * reset the dst vma->vm_pgoff to the 3302 * destination address of the mremap to allow 3303 * the merge to happen. mremap must change the 3304 * vm_pgoff linearity between src and dst vmas 3305 * (in turn preventing a vma_merge) to be 3306 * safe. It is only safe to keep the vm_pgoff 3307 * linear if there are no pages mapped yet. 3308 */ 3309 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma); 3310 *vmap = vma = new_vma; 3311 } 3312 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff); 3313 } else { 3314 new_vma = vm_area_dup(vma); 3315 if (!new_vma) 3316 goto out; 3317 new_vma->vm_start = addr; 3318 new_vma->vm_end = addr + len; 3319 new_vma->vm_pgoff = pgoff; 3320 if (vma_dup_policy(vma, new_vma)) 3321 goto out_free_vma; 3322 if (anon_vma_clone(new_vma, vma)) 3323 goto out_free_mempol; 3324 if (new_vma->vm_file) 3325 get_file(new_vma->vm_file); 3326 if (new_vma->vm_ops && new_vma->vm_ops->open) 3327 new_vma->vm_ops->open(new_vma); 3328 vma_link(mm, new_vma, prev, rb_link, rb_parent); 3329 *need_rmap_locks = false; 3330 } 3331 return new_vma; 3332 3333 out_free_mempol: 3334 mpol_put(vma_policy(new_vma)); 3335 out_free_vma: 3336 vm_area_free(new_vma); 3337 out: 3338 return NULL; 3339 } 3340 3341 /* 3342 * Return true if the calling process may expand its vm space by the passed 3343 * number of pages 3344 */ 3345 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages) 3346 { 3347 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT) 3348 return false; 3349 3350 if (is_data_mapping(flags) && 3351 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) { 3352 /* Workaround for Valgrind */ 3353 if (rlimit(RLIMIT_DATA) == 0 && 3354 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT) 3355 return true; 3356 3357 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n", 3358 current->comm, current->pid, 3359 (mm->data_vm + npages) << PAGE_SHIFT, 3360 rlimit(RLIMIT_DATA), 3361 ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data"); 3362 3363 if (!ignore_rlimit_data) 3364 return false; 3365 } 3366 3367 return true; 3368 } 3369 3370 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages) 3371 { 3372 mm->total_vm += npages; 3373 3374 if (is_exec_mapping(flags)) 3375 mm->exec_vm += npages; 3376 else if (is_stack_mapping(flags)) 3377 mm->stack_vm += npages; 3378 else if (is_data_mapping(flags)) 3379 mm->data_vm += npages; 3380 } 3381 3382 static vm_fault_t special_mapping_fault(struct vm_fault *vmf); 3383 3384 /* 3385 * Having a close hook prevents vma merging regardless of flags. 3386 */ 3387 static void special_mapping_close(struct vm_area_struct *vma) 3388 { 3389 } 3390 3391 static const char *special_mapping_name(struct vm_area_struct *vma) 3392 { 3393 return ((struct vm_special_mapping *)vma->vm_private_data)->name; 3394 } 3395 3396 static int special_mapping_mremap(struct vm_area_struct *new_vma) 3397 { 3398 struct vm_special_mapping *sm = new_vma->vm_private_data; 3399 3400 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm)) 3401 return -EFAULT; 3402 3403 if (sm->mremap) 3404 return sm->mremap(sm, new_vma); 3405 3406 return 0; 3407 } 3408 3409 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr) 3410 { 3411 /* 3412 * Forbid splitting special mappings - kernel has expectations over 3413 * the number of pages in mapping. Together with VM_DONTEXPAND 3414 * the size of vma should stay the same over the special mapping's 3415 * lifetime. 3416 */ 3417 return -EINVAL; 3418 } 3419 3420 static const struct vm_operations_struct special_mapping_vmops = { 3421 .close = special_mapping_close, 3422 .fault = special_mapping_fault, 3423 .mremap = special_mapping_mremap, 3424 .name = special_mapping_name, 3425 /* vDSO code relies that VVAR can't be accessed remotely */ 3426 .access = NULL, 3427 .may_split = special_mapping_split, 3428 }; 3429 3430 static const struct vm_operations_struct legacy_special_mapping_vmops = { 3431 .close = special_mapping_close, 3432 .fault = special_mapping_fault, 3433 }; 3434 3435 static vm_fault_t special_mapping_fault(struct vm_fault *vmf) 3436 { 3437 struct vm_area_struct *vma = vmf->vma; 3438 pgoff_t pgoff; 3439 struct page **pages; 3440 3441 if (vma->vm_ops == &legacy_special_mapping_vmops) { 3442 pages = vma->vm_private_data; 3443 } else { 3444 struct vm_special_mapping *sm = vma->vm_private_data; 3445 3446 if (sm->fault) 3447 return sm->fault(sm, vmf->vma, vmf); 3448 3449 pages = sm->pages; 3450 } 3451 3452 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages) 3453 pgoff--; 3454 3455 if (*pages) { 3456 struct page *page = *pages; 3457 get_page(page); 3458 vmf->page = page; 3459 return 0; 3460 } 3461 3462 return VM_FAULT_SIGBUS; 3463 } 3464 3465 static struct vm_area_struct *__install_special_mapping( 3466 struct mm_struct *mm, 3467 unsigned long addr, unsigned long len, 3468 unsigned long vm_flags, void *priv, 3469 const struct vm_operations_struct *ops) 3470 { 3471 int ret; 3472 struct vm_area_struct *vma; 3473 3474 vma = vm_area_alloc(mm); 3475 if (unlikely(vma == NULL)) 3476 return ERR_PTR(-ENOMEM); 3477 3478 vma->vm_start = addr; 3479 vma->vm_end = addr + len; 3480 3481 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY; 3482 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 3483 3484 vma->vm_ops = ops; 3485 vma->vm_private_data = priv; 3486 3487 ret = insert_vm_struct(mm, vma); 3488 if (ret) 3489 goto out; 3490 3491 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT); 3492 3493 perf_event_mmap(vma); 3494 3495 return vma; 3496 3497 out: 3498 vm_area_free(vma); 3499 return ERR_PTR(ret); 3500 } 3501 3502 bool vma_is_special_mapping(const struct vm_area_struct *vma, 3503 const struct vm_special_mapping *sm) 3504 { 3505 return vma->vm_private_data == sm && 3506 (vma->vm_ops == &special_mapping_vmops || 3507 vma->vm_ops == &legacy_special_mapping_vmops); 3508 } 3509 3510 /* 3511 * Called with mm->mmap_lock held for writing. 3512 * Insert a new vma covering the given region, with the given flags. 3513 * Its pages are supplied by the given array of struct page *. 3514 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated. 3515 * The region past the last page supplied will always produce SIGBUS. 3516 * The array pointer and the pages it points to are assumed to stay alive 3517 * for as long as this mapping might exist. 3518 */ 3519 struct vm_area_struct *_install_special_mapping( 3520 struct mm_struct *mm, 3521 unsigned long addr, unsigned long len, 3522 unsigned long vm_flags, const struct vm_special_mapping *spec) 3523 { 3524 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec, 3525 &special_mapping_vmops); 3526 } 3527 3528 int install_special_mapping(struct mm_struct *mm, 3529 unsigned long addr, unsigned long len, 3530 unsigned long vm_flags, struct page **pages) 3531 { 3532 struct vm_area_struct *vma = __install_special_mapping( 3533 mm, addr, len, vm_flags, (void *)pages, 3534 &legacy_special_mapping_vmops); 3535 3536 return PTR_ERR_OR_ZERO(vma); 3537 } 3538 3539 static DEFINE_MUTEX(mm_all_locks_mutex); 3540 3541 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) 3542 { 3543 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 3544 /* 3545 * The LSB of head.next can't change from under us 3546 * because we hold the mm_all_locks_mutex. 3547 */ 3548 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock); 3549 /* 3550 * We can safely modify head.next after taking the 3551 * anon_vma->root->rwsem. If some other vma in this mm shares 3552 * the same anon_vma we won't take it again. 3553 * 3554 * No need of atomic instructions here, head.next 3555 * can't change from under us thanks to the 3556 * anon_vma->root->rwsem. 3557 */ 3558 if (__test_and_set_bit(0, (unsigned long *) 3559 &anon_vma->root->rb_root.rb_root.rb_node)) 3560 BUG(); 3561 } 3562 } 3563 3564 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) 3565 { 3566 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3567 /* 3568 * AS_MM_ALL_LOCKS can't change from under us because 3569 * we hold the mm_all_locks_mutex. 3570 * 3571 * Operations on ->flags have to be atomic because 3572 * even if AS_MM_ALL_LOCKS is stable thanks to the 3573 * mm_all_locks_mutex, there may be other cpus 3574 * changing other bitflags in parallel to us. 3575 */ 3576 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) 3577 BUG(); 3578 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock); 3579 } 3580 } 3581 3582 /* 3583 * This operation locks against the VM for all pte/vma/mm related 3584 * operations that could ever happen on a certain mm. This includes 3585 * vmtruncate, try_to_unmap, and all page faults. 3586 * 3587 * The caller must take the mmap_lock in write mode before calling 3588 * mm_take_all_locks(). The caller isn't allowed to release the 3589 * mmap_lock until mm_drop_all_locks() returns. 3590 * 3591 * mmap_lock in write mode is required in order to block all operations 3592 * that could modify pagetables and free pages without need of 3593 * altering the vma layout. It's also needed in write mode to avoid new 3594 * anon_vmas to be associated with existing vmas. 3595 * 3596 * A single task can't take more than one mm_take_all_locks() in a row 3597 * or it would deadlock. 3598 * 3599 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in 3600 * mapping->flags avoid to take the same lock twice, if more than one 3601 * vma in this mm is backed by the same anon_vma or address_space. 3602 * 3603 * We take locks in following order, accordingly to comment at beginning 3604 * of mm/rmap.c: 3605 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for 3606 * hugetlb mapping); 3607 * - all i_mmap_rwsem locks; 3608 * - all anon_vma->rwseml 3609 * 3610 * We can take all locks within these types randomly because the VM code 3611 * doesn't nest them and we protected from parallel mm_take_all_locks() by 3612 * mm_all_locks_mutex. 3613 * 3614 * mm_take_all_locks() and mm_drop_all_locks are expensive operations 3615 * that may have to take thousand of locks. 3616 * 3617 * mm_take_all_locks() can fail if it's interrupted by signals. 3618 */ 3619 int mm_take_all_locks(struct mm_struct *mm) 3620 { 3621 struct vm_area_struct *vma; 3622 struct anon_vma_chain *avc; 3623 3624 BUG_ON(mmap_read_trylock(mm)); 3625 3626 mutex_lock(&mm_all_locks_mutex); 3627 3628 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3629 if (signal_pending(current)) 3630 goto out_unlock; 3631 if (vma->vm_file && vma->vm_file->f_mapping && 3632 is_vm_hugetlb_page(vma)) 3633 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3634 } 3635 3636 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3637 if (signal_pending(current)) 3638 goto out_unlock; 3639 if (vma->vm_file && vma->vm_file->f_mapping && 3640 !is_vm_hugetlb_page(vma)) 3641 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3642 } 3643 3644 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3645 if (signal_pending(current)) 3646 goto out_unlock; 3647 if (vma->anon_vma) 3648 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3649 vm_lock_anon_vma(mm, avc->anon_vma); 3650 } 3651 3652 return 0; 3653 3654 out_unlock: 3655 mm_drop_all_locks(mm); 3656 return -EINTR; 3657 } 3658 3659 static void vm_unlock_anon_vma(struct anon_vma *anon_vma) 3660 { 3661 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 3662 /* 3663 * The LSB of head.next can't change to 0 from under 3664 * us because we hold the mm_all_locks_mutex. 3665 * 3666 * We must however clear the bitflag before unlocking 3667 * the vma so the users using the anon_vma->rb_root will 3668 * never see our bitflag. 3669 * 3670 * No need of atomic instructions here, head.next 3671 * can't change from under us until we release the 3672 * anon_vma->root->rwsem. 3673 */ 3674 if (!__test_and_clear_bit(0, (unsigned long *) 3675 &anon_vma->root->rb_root.rb_root.rb_node)) 3676 BUG(); 3677 anon_vma_unlock_write(anon_vma); 3678 } 3679 } 3680 3681 static void vm_unlock_mapping(struct address_space *mapping) 3682 { 3683 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3684 /* 3685 * AS_MM_ALL_LOCKS can't change to 0 from under us 3686 * because we hold the mm_all_locks_mutex. 3687 */ 3688 i_mmap_unlock_write(mapping); 3689 if (!test_and_clear_bit(AS_MM_ALL_LOCKS, 3690 &mapping->flags)) 3691 BUG(); 3692 } 3693 } 3694 3695 /* 3696 * The mmap_lock cannot be released by the caller until 3697 * mm_drop_all_locks() returns. 3698 */ 3699 void mm_drop_all_locks(struct mm_struct *mm) 3700 { 3701 struct vm_area_struct *vma; 3702 struct anon_vma_chain *avc; 3703 3704 BUG_ON(mmap_read_trylock(mm)); 3705 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); 3706 3707 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3708 if (vma->anon_vma) 3709 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3710 vm_unlock_anon_vma(avc->anon_vma); 3711 if (vma->vm_file && vma->vm_file->f_mapping) 3712 vm_unlock_mapping(vma->vm_file->f_mapping); 3713 } 3714 3715 mutex_unlock(&mm_all_locks_mutex); 3716 } 3717 3718 /* 3719 * initialise the percpu counter for VM 3720 */ 3721 void __init mmap_init(void) 3722 { 3723 int ret; 3724 3725 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL); 3726 VM_BUG_ON(ret); 3727 } 3728 3729 /* 3730 * Initialise sysctl_user_reserve_kbytes. 3731 * 3732 * This is intended to prevent a user from starting a single memory hogging 3733 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER 3734 * mode. 3735 * 3736 * The default value is min(3% of free memory, 128MB) 3737 * 128MB is enough to recover with sshd/login, bash, and top/kill. 3738 */ 3739 static int init_user_reserve(void) 3740 { 3741 unsigned long free_kbytes; 3742 3743 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3744 3745 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17); 3746 return 0; 3747 } 3748 subsys_initcall(init_user_reserve); 3749 3750 /* 3751 * Initialise sysctl_admin_reserve_kbytes. 3752 * 3753 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin 3754 * to log in and kill a memory hogging process. 3755 * 3756 * Systems with more than 256MB will reserve 8MB, enough to recover 3757 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will 3758 * only reserve 3% of free pages by default. 3759 */ 3760 static int init_admin_reserve(void) 3761 { 3762 unsigned long free_kbytes; 3763 3764 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3765 3766 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13); 3767 return 0; 3768 } 3769 subsys_initcall(init_admin_reserve); 3770 3771 /* 3772 * Reinititalise user and admin reserves if memory is added or removed. 3773 * 3774 * The default user reserve max is 128MB, and the default max for the 3775 * admin reserve is 8MB. These are usually, but not always, enough to 3776 * enable recovery from a memory hogging process using login/sshd, a shell, 3777 * and tools like top. It may make sense to increase or even disable the 3778 * reserve depending on the existence of swap or variations in the recovery 3779 * tools. So, the admin may have changed them. 3780 * 3781 * If memory is added and the reserves have been eliminated or increased above 3782 * the default max, then we'll trust the admin. 3783 * 3784 * If memory is removed and there isn't enough free memory, then we 3785 * need to reset the reserves. 3786 * 3787 * Otherwise keep the reserve set by the admin. 3788 */ 3789 static int reserve_mem_notifier(struct notifier_block *nb, 3790 unsigned long action, void *data) 3791 { 3792 unsigned long tmp, free_kbytes; 3793 3794 switch (action) { 3795 case MEM_ONLINE: 3796 /* Default max is 128MB. Leave alone if modified by operator. */ 3797 tmp = sysctl_user_reserve_kbytes; 3798 if (0 < tmp && tmp < (1UL << 17)) 3799 init_user_reserve(); 3800 3801 /* Default max is 8MB. Leave alone if modified by operator. */ 3802 tmp = sysctl_admin_reserve_kbytes; 3803 if (0 < tmp && tmp < (1UL << 13)) 3804 init_admin_reserve(); 3805 3806 break; 3807 case MEM_OFFLINE: 3808 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3809 3810 if (sysctl_user_reserve_kbytes > free_kbytes) { 3811 init_user_reserve(); 3812 pr_info("vm.user_reserve_kbytes reset to %lu\n", 3813 sysctl_user_reserve_kbytes); 3814 } 3815 3816 if (sysctl_admin_reserve_kbytes > free_kbytes) { 3817 init_admin_reserve(); 3818 pr_info("vm.admin_reserve_kbytes reset to %lu\n", 3819 sysctl_admin_reserve_kbytes); 3820 } 3821 break; 3822 default: 3823 break; 3824 } 3825 return NOTIFY_OK; 3826 } 3827 3828 static struct notifier_block reserve_mem_nb = { 3829 .notifier_call = reserve_mem_notifier, 3830 }; 3831 3832 static int __meminit init_reserve_notifier(void) 3833 { 3834 if (register_hotmemory_notifier(&reserve_mem_nb)) 3835 pr_err("Failed registering memory add/remove notifier for admin reserve\n"); 3836 3837 return 0; 3838 } 3839 subsys_initcall(init_reserve_notifier); 3840