1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/mmap.c 4 * 5 * Written by obz. 6 * 7 * Address space accounting code <alan@lxorguk.ukuu.org.uk> 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/kernel.h> 13 #include <linux/slab.h> 14 #include <linux/backing-dev.h> 15 #include <linux/mm.h> 16 #include <linux/mm_inline.h> 17 #include <linux/vmacache.h> 18 #include <linux/shm.h> 19 #include <linux/mman.h> 20 #include <linux/pagemap.h> 21 #include <linux/swap.h> 22 #include <linux/syscalls.h> 23 #include <linux/capability.h> 24 #include <linux/init.h> 25 #include <linux/file.h> 26 #include <linux/fs.h> 27 #include <linux/personality.h> 28 #include <linux/security.h> 29 #include <linux/hugetlb.h> 30 #include <linux/shmem_fs.h> 31 #include <linux/profile.h> 32 #include <linux/export.h> 33 #include <linux/mount.h> 34 #include <linux/mempolicy.h> 35 #include <linux/rmap.h> 36 #include <linux/mmu_notifier.h> 37 #include <linux/mmdebug.h> 38 #include <linux/perf_event.h> 39 #include <linux/audit.h> 40 #include <linux/khugepaged.h> 41 #include <linux/uprobes.h> 42 #include <linux/rbtree_augmented.h> 43 #include <linux/notifier.h> 44 #include <linux/memory.h> 45 #include <linux/printk.h> 46 #include <linux/userfaultfd_k.h> 47 #include <linux/moduleparam.h> 48 #include <linux/pkeys.h> 49 #include <linux/oom.h> 50 #include <linux/sched/mm.h> 51 52 #include <linux/uaccess.h> 53 #include <asm/cacheflush.h> 54 #include <asm/tlb.h> 55 #include <asm/mmu_context.h> 56 57 #define CREATE_TRACE_POINTS 58 #include <trace/events/mmap.h> 59 60 #include "internal.h" 61 62 #ifndef arch_mmap_check 63 #define arch_mmap_check(addr, len, flags) (0) 64 #endif 65 66 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 67 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN; 68 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX; 69 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS; 70 #endif 71 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 72 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN; 73 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX; 74 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS; 75 #endif 76 77 static bool ignore_rlimit_data; 78 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644); 79 80 static void unmap_region(struct mm_struct *mm, 81 struct vm_area_struct *vma, struct vm_area_struct *prev, 82 unsigned long start, unsigned long end); 83 84 /* description of effects of mapping type and prot in current implementation. 85 * this is due to the limited x86 page protection hardware. The expected 86 * behavior is in parens: 87 * 88 * map_type prot 89 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC 90 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes 91 * w: (no) no w: (no) no w: (yes) yes w: (no) no 92 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 93 * 94 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes 95 * w: (no) no w: (no) no w: (copy) copy w: (no) no 96 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 97 * 98 * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and 99 * MAP_PRIVATE (with Enhanced PAN supported): 100 * r: (no) no 101 * w: (no) no 102 * x: (yes) yes 103 */ 104 pgprot_t protection_map[16] __ro_after_init = { 105 [VM_NONE] = __P000, 106 [VM_READ] = __P001, 107 [VM_WRITE] = __P010, 108 [VM_WRITE | VM_READ] = __P011, 109 [VM_EXEC] = __P100, 110 [VM_EXEC | VM_READ] = __P101, 111 [VM_EXEC | VM_WRITE] = __P110, 112 [VM_EXEC | VM_WRITE | VM_READ] = __P111, 113 [VM_SHARED] = __S000, 114 [VM_SHARED | VM_READ] = __S001, 115 [VM_SHARED | VM_WRITE] = __S010, 116 [VM_SHARED | VM_WRITE | VM_READ] = __S011, 117 [VM_SHARED | VM_EXEC] = __S100, 118 [VM_SHARED | VM_EXEC | VM_READ] = __S101, 119 [VM_SHARED | VM_EXEC | VM_WRITE] = __S110, 120 [VM_SHARED | VM_EXEC | VM_WRITE | VM_READ] = __S111 121 }; 122 123 #ifndef CONFIG_ARCH_HAS_VM_GET_PAGE_PROT 124 pgprot_t vm_get_page_prot(unsigned long vm_flags) 125 { 126 return protection_map[vm_flags & (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]; 127 } 128 EXPORT_SYMBOL(vm_get_page_prot); 129 #endif /* CONFIG_ARCH_HAS_VM_GET_PAGE_PROT */ 130 131 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags) 132 { 133 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags)); 134 } 135 136 /* Update vma->vm_page_prot to reflect vma->vm_flags. */ 137 void vma_set_page_prot(struct vm_area_struct *vma) 138 { 139 unsigned long vm_flags = vma->vm_flags; 140 pgprot_t vm_page_prot; 141 142 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags); 143 if (vma_wants_writenotify(vma, vm_page_prot)) { 144 vm_flags &= ~VM_SHARED; 145 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags); 146 } 147 /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */ 148 WRITE_ONCE(vma->vm_page_prot, vm_page_prot); 149 } 150 151 /* 152 * Requires inode->i_mapping->i_mmap_rwsem 153 */ 154 static void __remove_shared_vm_struct(struct vm_area_struct *vma, 155 struct file *file, struct address_space *mapping) 156 { 157 if (vma->vm_flags & VM_SHARED) 158 mapping_unmap_writable(mapping); 159 160 flush_dcache_mmap_lock(mapping); 161 vma_interval_tree_remove(vma, &mapping->i_mmap); 162 flush_dcache_mmap_unlock(mapping); 163 } 164 165 /* 166 * Unlink a file-based vm structure from its interval tree, to hide 167 * vma from rmap and vmtruncate before freeing its page tables. 168 */ 169 void unlink_file_vma(struct vm_area_struct *vma) 170 { 171 struct file *file = vma->vm_file; 172 173 if (file) { 174 struct address_space *mapping = file->f_mapping; 175 i_mmap_lock_write(mapping); 176 __remove_shared_vm_struct(vma, file, mapping); 177 i_mmap_unlock_write(mapping); 178 } 179 } 180 181 /* 182 * Close a vm structure and free it, returning the next. 183 */ 184 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma) 185 { 186 struct vm_area_struct *next = vma->vm_next; 187 188 might_sleep(); 189 if (vma->vm_ops && vma->vm_ops->close) 190 vma->vm_ops->close(vma); 191 if (vma->vm_file) 192 fput(vma->vm_file); 193 mpol_put(vma_policy(vma)); 194 vm_area_free(vma); 195 return next; 196 } 197 198 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags, 199 struct list_head *uf); 200 SYSCALL_DEFINE1(brk, unsigned long, brk) 201 { 202 unsigned long newbrk, oldbrk, origbrk; 203 struct mm_struct *mm = current->mm; 204 struct vm_area_struct *next; 205 unsigned long min_brk; 206 bool populate; 207 bool downgraded = false; 208 LIST_HEAD(uf); 209 210 if (mmap_write_lock_killable(mm)) 211 return -EINTR; 212 213 origbrk = mm->brk; 214 215 #ifdef CONFIG_COMPAT_BRK 216 /* 217 * CONFIG_COMPAT_BRK can still be overridden by setting 218 * randomize_va_space to 2, which will still cause mm->start_brk 219 * to be arbitrarily shifted 220 */ 221 if (current->brk_randomized) 222 min_brk = mm->start_brk; 223 else 224 min_brk = mm->end_data; 225 #else 226 min_brk = mm->start_brk; 227 #endif 228 if (brk < min_brk) 229 goto out; 230 231 /* 232 * Check against rlimit here. If this check is done later after the test 233 * of oldbrk with newbrk then it can escape the test and let the data 234 * segment grow beyond its set limit the in case where the limit is 235 * not page aligned -Ram Gupta 236 */ 237 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk, 238 mm->end_data, mm->start_data)) 239 goto out; 240 241 newbrk = PAGE_ALIGN(brk); 242 oldbrk = PAGE_ALIGN(mm->brk); 243 if (oldbrk == newbrk) { 244 mm->brk = brk; 245 goto success; 246 } 247 248 /* 249 * Always allow shrinking brk. 250 * __do_munmap() may downgrade mmap_lock to read. 251 */ 252 if (brk <= mm->brk) { 253 int ret; 254 255 /* 256 * mm->brk must to be protected by write mmap_lock so update it 257 * before downgrading mmap_lock. When __do_munmap() fails, 258 * mm->brk will be restored from origbrk. 259 */ 260 mm->brk = brk; 261 ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true); 262 if (ret < 0) { 263 mm->brk = origbrk; 264 goto out; 265 } else if (ret == 1) { 266 downgraded = true; 267 } 268 goto success; 269 } 270 271 /* Check against existing mmap mappings. */ 272 next = find_vma(mm, oldbrk); 273 if (next && newbrk + PAGE_SIZE > vm_start_gap(next)) 274 goto out; 275 276 /* Ok, looks good - let it rip. */ 277 if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0) 278 goto out; 279 mm->brk = brk; 280 281 success: 282 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0; 283 if (downgraded) 284 mmap_read_unlock(mm); 285 else 286 mmap_write_unlock(mm); 287 userfaultfd_unmap_complete(mm, &uf); 288 if (populate) 289 mm_populate(oldbrk, newbrk - oldbrk); 290 return brk; 291 292 out: 293 mmap_write_unlock(mm); 294 return origbrk; 295 } 296 297 static inline unsigned long vma_compute_gap(struct vm_area_struct *vma) 298 { 299 unsigned long gap, prev_end; 300 301 /* 302 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we 303 * allow two stack_guard_gaps between them here, and when choosing 304 * an unmapped area; whereas when expanding we only require one. 305 * That's a little inconsistent, but keeps the code here simpler. 306 */ 307 gap = vm_start_gap(vma); 308 if (vma->vm_prev) { 309 prev_end = vm_end_gap(vma->vm_prev); 310 if (gap > prev_end) 311 gap -= prev_end; 312 else 313 gap = 0; 314 } 315 return gap; 316 } 317 318 #ifdef CONFIG_DEBUG_VM_RB 319 static unsigned long vma_compute_subtree_gap(struct vm_area_struct *vma) 320 { 321 unsigned long max = vma_compute_gap(vma), subtree_gap; 322 if (vma->vm_rb.rb_left) { 323 subtree_gap = rb_entry(vma->vm_rb.rb_left, 324 struct vm_area_struct, vm_rb)->rb_subtree_gap; 325 if (subtree_gap > max) 326 max = subtree_gap; 327 } 328 if (vma->vm_rb.rb_right) { 329 subtree_gap = rb_entry(vma->vm_rb.rb_right, 330 struct vm_area_struct, vm_rb)->rb_subtree_gap; 331 if (subtree_gap > max) 332 max = subtree_gap; 333 } 334 return max; 335 } 336 337 static int browse_rb(struct mm_struct *mm) 338 { 339 struct rb_root *root = &mm->mm_rb; 340 int i = 0, j, bug = 0; 341 struct rb_node *nd, *pn = NULL; 342 unsigned long prev = 0, pend = 0; 343 344 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 345 struct vm_area_struct *vma; 346 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 347 if (vma->vm_start < prev) { 348 pr_emerg("vm_start %lx < prev %lx\n", 349 vma->vm_start, prev); 350 bug = 1; 351 } 352 if (vma->vm_start < pend) { 353 pr_emerg("vm_start %lx < pend %lx\n", 354 vma->vm_start, pend); 355 bug = 1; 356 } 357 if (vma->vm_start > vma->vm_end) { 358 pr_emerg("vm_start %lx > vm_end %lx\n", 359 vma->vm_start, vma->vm_end); 360 bug = 1; 361 } 362 spin_lock(&mm->page_table_lock); 363 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) { 364 pr_emerg("free gap %lx, correct %lx\n", 365 vma->rb_subtree_gap, 366 vma_compute_subtree_gap(vma)); 367 bug = 1; 368 } 369 spin_unlock(&mm->page_table_lock); 370 i++; 371 pn = nd; 372 prev = vma->vm_start; 373 pend = vma->vm_end; 374 } 375 j = 0; 376 for (nd = pn; nd; nd = rb_prev(nd)) 377 j++; 378 if (i != j) { 379 pr_emerg("backwards %d, forwards %d\n", j, i); 380 bug = 1; 381 } 382 return bug ? -1 : i; 383 } 384 385 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore) 386 { 387 struct rb_node *nd; 388 389 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 390 struct vm_area_struct *vma; 391 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 392 VM_BUG_ON_VMA(vma != ignore && 393 vma->rb_subtree_gap != vma_compute_subtree_gap(vma), 394 vma); 395 } 396 } 397 398 static void validate_mm(struct mm_struct *mm) 399 { 400 int bug = 0; 401 int i = 0; 402 unsigned long highest_address = 0; 403 struct vm_area_struct *vma = mm->mmap; 404 405 while (vma) { 406 struct anon_vma *anon_vma = vma->anon_vma; 407 struct anon_vma_chain *avc; 408 409 if (anon_vma) { 410 anon_vma_lock_read(anon_vma); 411 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 412 anon_vma_interval_tree_verify(avc); 413 anon_vma_unlock_read(anon_vma); 414 } 415 416 highest_address = vm_end_gap(vma); 417 vma = vma->vm_next; 418 i++; 419 } 420 if (i != mm->map_count) { 421 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i); 422 bug = 1; 423 } 424 if (highest_address != mm->highest_vm_end) { 425 pr_emerg("mm->highest_vm_end %lx, found %lx\n", 426 mm->highest_vm_end, highest_address); 427 bug = 1; 428 } 429 i = browse_rb(mm); 430 if (i != mm->map_count) { 431 if (i != -1) 432 pr_emerg("map_count %d rb %d\n", mm->map_count, i); 433 bug = 1; 434 } 435 VM_BUG_ON_MM(bug, mm); 436 } 437 #else 438 #define validate_mm_rb(root, ignore) do { } while (0) 439 #define validate_mm(mm) do { } while (0) 440 #endif 441 442 RB_DECLARE_CALLBACKS_MAX(static, vma_gap_callbacks, 443 struct vm_area_struct, vm_rb, 444 unsigned long, rb_subtree_gap, vma_compute_gap) 445 446 /* 447 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or 448 * vma->vm_prev->vm_end values changed, without modifying the vma's position 449 * in the rbtree. 450 */ 451 static void vma_gap_update(struct vm_area_struct *vma) 452 { 453 /* 454 * As it turns out, RB_DECLARE_CALLBACKS_MAX() already created 455 * a callback function that does exactly what we want. 456 */ 457 vma_gap_callbacks_propagate(&vma->vm_rb, NULL); 458 } 459 460 static inline void vma_rb_insert(struct vm_area_struct *vma, 461 struct rb_root *root) 462 { 463 /* All rb_subtree_gap values must be consistent prior to insertion */ 464 validate_mm_rb(root, NULL); 465 466 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks); 467 } 468 469 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root) 470 { 471 /* 472 * Note rb_erase_augmented is a fairly large inline function, 473 * so make sure we instantiate it only once with our desired 474 * augmented rbtree callbacks. 475 */ 476 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks); 477 } 478 479 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma, 480 struct rb_root *root, 481 struct vm_area_struct *ignore) 482 { 483 /* 484 * All rb_subtree_gap values must be consistent prior to erase, 485 * with the possible exception of 486 * 487 * a. the "next" vma being erased if next->vm_start was reduced in 488 * __vma_adjust() -> __vma_unlink() 489 * b. the vma being erased in detach_vmas_to_be_unmapped() -> 490 * vma_rb_erase() 491 */ 492 validate_mm_rb(root, ignore); 493 494 __vma_rb_erase(vma, root); 495 } 496 497 static __always_inline void vma_rb_erase(struct vm_area_struct *vma, 498 struct rb_root *root) 499 { 500 vma_rb_erase_ignore(vma, root, vma); 501 } 502 503 /* 504 * vma has some anon_vma assigned, and is already inserted on that 505 * anon_vma's interval trees. 506 * 507 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the 508 * vma must be removed from the anon_vma's interval trees using 509 * anon_vma_interval_tree_pre_update_vma(). 510 * 511 * After the update, the vma will be reinserted using 512 * anon_vma_interval_tree_post_update_vma(). 513 * 514 * The entire update must be protected by exclusive mmap_lock and by 515 * the root anon_vma's mutex. 516 */ 517 static inline void 518 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma) 519 { 520 struct anon_vma_chain *avc; 521 522 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 523 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root); 524 } 525 526 static inline void 527 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma) 528 { 529 struct anon_vma_chain *avc; 530 531 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 532 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root); 533 } 534 535 static int find_vma_links(struct mm_struct *mm, unsigned long addr, 536 unsigned long end, struct vm_area_struct **pprev, 537 struct rb_node ***rb_link, struct rb_node **rb_parent) 538 { 539 struct rb_node **__rb_link, *__rb_parent, *rb_prev; 540 541 mmap_assert_locked(mm); 542 __rb_link = &mm->mm_rb.rb_node; 543 rb_prev = __rb_parent = NULL; 544 545 while (*__rb_link) { 546 struct vm_area_struct *vma_tmp; 547 548 __rb_parent = *__rb_link; 549 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb); 550 551 if (vma_tmp->vm_end > addr) { 552 /* Fail if an existing vma overlaps the area */ 553 if (vma_tmp->vm_start < end) 554 return -ENOMEM; 555 __rb_link = &__rb_parent->rb_left; 556 } else { 557 rb_prev = __rb_parent; 558 __rb_link = &__rb_parent->rb_right; 559 } 560 } 561 562 *pprev = NULL; 563 if (rb_prev) 564 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); 565 *rb_link = __rb_link; 566 *rb_parent = __rb_parent; 567 return 0; 568 } 569 570 /* 571 * vma_next() - Get the next VMA. 572 * @mm: The mm_struct. 573 * @vma: The current vma. 574 * 575 * If @vma is NULL, return the first vma in the mm. 576 * 577 * Returns: The next VMA after @vma. 578 */ 579 static inline struct vm_area_struct *vma_next(struct mm_struct *mm, 580 struct vm_area_struct *vma) 581 { 582 if (!vma) 583 return mm->mmap; 584 585 return vma->vm_next; 586 } 587 588 /* 589 * munmap_vma_range() - munmap VMAs that overlap a range. 590 * @mm: The mm struct 591 * @start: The start of the range. 592 * @len: The length of the range. 593 * @pprev: pointer to the pointer that will be set to previous vm_area_struct 594 * @rb_link: the rb_node 595 * @rb_parent: the parent rb_node 596 * 597 * Find all the vm_area_struct that overlap from @start to 598 * @end and munmap them. Set @pprev to the previous vm_area_struct. 599 * 600 * Returns: -ENOMEM on munmap failure or 0 on success. 601 */ 602 static inline int 603 munmap_vma_range(struct mm_struct *mm, unsigned long start, unsigned long len, 604 struct vm_area_struct **pprev, struct rb_node ***link, 605 struct rb_node **parent, struct list_head *uf) 606 { 607 608 while (find_vma_links(mm, start, start + len, pprev, link, parent)) 609 if (do_munmap(mm, start, len, uf)) 610 return -ENOMEM; 611 612 return 0; 613 } 614 static unsigned long count_vma_pages_range(struct mm_struct *mm, 615 unsigned long addr, unsigned long end) 616 { 617 unsigned long nr_pages = 0; 618 struct vm_area_struct *vma; 619 620 /* Find first overlapping mapping */ 621 vma = find_vma_intersection(mm, addr, end); 622 if (!vma) 623 return 0; 624 625 nr_pages = (min(end, vma->vm_end) - 626 max(addr, vma->vm_start)) >> PAGE_SHIFT; 627 628 /* Iterate over the rest of the overlaps */ 629 for (vma = vma->vm_next; vma; vma = vma->vm_next) { 630 unsigned long overlap_len; 631 632 if (vma->vm_start > end) 633 break; 634 635 overlap_len = min(end, vma->vm_end) - vma->vm_start; 636 nr_pages += overlap_len >> PAGE_SHIFT; 637 } 638 639 return nr_pages; 640 } 641 642 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma, 643 struct rb_node **rb_link, struct rb_node *rb_parent) 644 { 645 /* Update tracking information for the gap following the new vma. */ 646 if (vma->vm_next) 647 vma_gap_update(vma->vm_next); 648 else 649 mm->highest_vm_end = vm_end_gap(vma); 650 651 /* 652 * vma->vm_prev wasn't known when we followed the rbtree to find the 653 * correct insertion point for that vma. As a result, we could not 654 * update the vma vm_rb parents rb_subtree_gap values on the way down. 655 * So, we first insert the vma with a zero rb_subtree_gap value 656 * (to be consistent with what we did on the way down), and then 657 * immediately update the gap to the correct value. Finally we 658 * rebalance the rbtree after all augmented values have been set. 659 */ 660 rb_link_node(&vma->vm_rb, rb_parent, rb_link); 661 vma->rb_subtree_gap = 0; 662 vma_gap_update(vma); 663 vma_rb_insert(vma, &mm->mm_rb); 664 } 665 666 static void __vma_link_file(struct vm_area_struct *vma) 667 { 668 struct file *file; 669 670 file = vma->vm_file; 671 if (file) { 672 struct address_space *mapping = file->f_mapping; 673 674 if (vma->vm_flags & VM_SHARED) 675 mapping_allow_writable(mapping); 676 677 flush_dcache_mmap_lock(mapping); 678 vma_interval_tree_insert(vma, &mapping->i_mmap); 679 flush_dcache_mmap_unlock(mapping); 680 } 681 } 682 683 static void 684 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 685 struct vm_area_struct *prev, struct rb_node **rb_link, 686 struct rb_node *rb_parent) 687 { 688 __vma_link_list(mm, vma, prev); 689 __vma_link_rb(mm, vma, rb_link, rb_parent); 690 } 691 692 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 693 struct vm_area_struct *prev, struct rb_node **rb_link, 694 struct rb_node *rb_parent) 695 { 696 struct address_space *mapping = NULL; 697 698 if (vma->vm_file) { 699 mapping = vma->vm_file->f_mapping; 700 i_mmap_lock_write(mapping); 701 } 702 703 __vma_link(mm, vma, prev, rb_link, rb_parent); 704 __vma_link_file(vma); 705 706 if (mapping) 707 i_mmap_unlock_write(mapping); 708 709 mm->map_count++; 710 validate_mm(mm); 711 } 712 713 /* 714 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the 715 * mm's list and rbtree. It has already been inserted into the interval tree. 716 */ 717 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 718 { 719 struct vm_area_struct *prev; 720 struct rb_node **rb_link, *rb_parent; 721 722 if (find_vma_links(mm, vma->vm_start, vma->vm_end, 723 &prev, &rb_link, &rb_parent)) 724 BUG(); 725 __vma_link(mm, vma, prev, rb_link, rb_parent); 726 mm->map_count++; 727 } 728 729 static __always_inline void __vma_unlink(struct mm_struct *mm, 730 struct vm_area_struct *vma, 731 struct vm_area_struct *ignore) 732 { 733 vma_rb_erase_ignore(vma, &mm->mm_rb, ignore); 734 __vma_unlink_list(mm, vma); 735 /* Kill the cache */ 736 vmacache_invalidate(mm); 737 } 738 739 /* 740 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that 741 * is already present in an i_mmap tree without adjusting the tree. 742 * The following helper function should be used when such adjustments 743 * are necessary. The "insert" vma (if any) is to be inserted 744 * before we drop the necessary locks. 745 */ 746 int __vma_adjust(struct vm_area_struct *vma, unsigned long start, 747 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, 748 struct vm_area_struct *expand) 749 { 750 struct mm_struct *mm = vma->vm_mm; 751 struct vm_area_struct *next = vma->vm_next, *orig_vma = vma; 752 struct address_space *mapping = NULL; 753 struct rb_root_cached *root = NULL; 754 struct anon_vma *anon_vma = NULL; 755 struct file *file = vma->vm_file; 756 bool start_changed = false, end_changed = false; 757 long adjust_next = 0; 758 int remove_next = 0; 759 760 if (next && !insert) { 761 struct vm_area_struct *exporter = NULL, *importer = NULL; 762 763 if (end >= next->vm_end) { 764 /* 765 * vma expands, overlapping all the next, and 766 * perhaps the one after too (mprotect case 6). 767 * The only other cases that gets here are 768 * case 1, case 7 and case 8. 769 */ 770 if (next == expand) { 771 /* 772 * The only case where we don't expand "vma" 773 * and we expand "next" instead is case 8. 774 */ 775 VM_WARN_ON(end != next->vm_end); 776 /* 777 * remove_next == 3 means we're 778 * removing "vma" and that to do so we 779 * swapped "vma" and "next". 780 */ 781 remove_next = 3; 782 VM_WARN_ON(file != next->vm_file); 783 swap(vma, next); 784 } else { 785 VM_WARN_ON(expand != vma); 786 /* 787 * case 1, 6, 7, remove_next == 2 is case 6, 788 * remove_next == 1 is case 1 or 7. 789 */ 790 remove_next = 1 + (end > next->vm_end); 791 VM_WARN_ON(remove_next == 2 && 792 end != next->vm_next->vm_end); 793 /* trim end to next, for case 6 first pass */ 794 end = next->vm_end; 795 } 796 797 exporter = next; 798 importer = vma; 799 800 /* 801 * If next doesn't have anon_vma, import from vma after 802 * next, if the vma overlaps with it. 803 */ 804 if (remove_next == 2 && !next->anon_vma) 805 exporter = next->vm_next; 806 807 } else if (end > next->vm_start) { 808 /* 809 * vma expands, overlapping part of the next: 810 * mprotect case 5 shifting the boundary up. 811 */ 812 adjust_next = (end - next->vm_start); 813 exporter = next; 814 importer = vma; 815 VM_WARN_ON(expand != importer); 816 } else if (end < vma->vm_end) { 817 /* 818 * vma shrinks, and !insert tells it's not 819 * split_vma inserting another: so it must be 820 * mprotect case 4 shifting the boundary down. 821 */ 822 adjust_next = -(vma->vm_end - end); 823 exporter = vma; 824 importer = next; 825 VM_WARN_ON(expand != importer); 826 } 827 828 /* 829 * Easily overlooked: when mprotect shifts the boundary, 830 * make sure the expanding vma has anon_vma set if the 831 * shrinking vma had, to cover any anon pages imported. 832 */ 833 if (exporter && exporter->anon_vma && !importer->anon_vma) { 834 int error; 835 836 importer->anon_vma = exporter->anon_vma; 837 error = anon_vma_clone(importer, exporter); 838 if (error) 839 return error; 840 } 841 } 842 again: 843 vma_adjust_trans_huge(orig_vma, start, end, adjust_next); 844 845 if (file) { 846 mapping = file->f_mapping; 847 root = &mapping->i_mmap; 848 uprobe_munmap(vma, vma->vm_start, vma->vm_end); 849 850 if (adjust_next) 851 uprobe_munmap(next, next->vm_start, next->vm_end); 852 853 i_mmap_lock_write(mapping); 854 if (insert) { 855 /* 856 * Put into interval tree now, so instantiated pages 857 * are visible to arm/parisc __flush_dcache_page 858 * throughout; but we cannot insert into address 859 * space until vma start or end is updated. 860 */ 861 __vma_link_file(insert); 862 } 863 } 864 865 anon_vma = vma->anon_vma; 866 if (!anon_vma && adjust_next) 867 anon_vma = next->anon_vma; 868 if (anon_vma) { 869 VM_WARN_ON(adjust_next && next->anon_vma && 870 anon_vma != next->anon_vma); 871 anon_vma_lock_write(anon_vma); 872 anon_vma_interval_tree_pre_update_vma(vma); 873 if (adjust_next) 874 anon_vma_interval_tree_pre_update_vma(next); 875 } 876 877 if (file) { 878 flush_dcache_mmap_lock(mapping); 879 vma_interval_tree_remove(vma, root); 880 if (adjust_next) 881 vma_interval_tree_remove(next, root); 882 } 883 884 if (start != vma->vm_start) { 885 vma->vm_start = start; 886 start_changed = true; 887 } 888 if (end != vma->vm_end) { 889 vma->vm_end = end; 890 end_changed = true; 891 } 892 vma->vm_pgoff = pgoff; 893 if (adjust_next) { 894 next->vm_start += adjust_next; 895 next->vm_pgoff += adjust_next >> PAGE_SHIFT; 896 } 897 898 if (file) { 899 if (adjust_next) 900 vma_interval_tree_insert(next, root); 901 vma_interval_tree_insert(vma, root); 902 flush_dcache_mmap_unlock(mapping); 903 } 904 905 if (remove_next) { 906 /* 907 * vma_merge has merged next into vma, and needs 908 * us to remove next before dropping the locks. 909 */ 910 if (remove_next != 3) 911 __vma_unlink(mm, next, next); 912 else 913 /* 914 * vma is not before next if they've been 915 * swapped. 916 * 917 * pre-swap() next->vm_start was reduced so 918 * tell validate_mm_rb to ignore pre-swap() 919 * "next" (which is stored in post-swap() 920 * "vma"). 921 */ 922 __vma_unlink(mm, next, vma); 923 if (file) 924 __remove_shared_vm_struct(next, file, mapping); 925 } else if (insert) { 926 /* 927 * split_vma has split insert from vma, and needs 928 * us to insert it before dropping the locks 929 * (it may either follow vma or precede it). 930 */ 931 __insert_vm_struct(mm, insert); 932 } else { 933 if (start_changed) 934 vma_gap_update(vma); 935 if (end_changed) { 936 if (!next) 937 mm->highest_vm_end = vm_end_gap(vma); 938 else if (!adjust_next) 939 vma_gap_update(next); 940 } 941 } 942 943 if (anon_vma) { 944 anon_vma_interval_tree_post_update_vma(vma); 945 if (adjust_next) 946 anon_vma_interval_tree_post_update_vma(next); 947 anon_vma_unlock_write(anon_vma); 948 } 949 950 if (file) { 951 i_mmap_unlock_write(mapping); 952 uprobe_mmap(vma); 953 954 if (adjust_next) 955 uprobe_mmap(next); 956 } 957 958 if (remove_next) { 959 if (file) { 960 uprobe_munmap(next, next->vm_start, next->vm_end); 961 fput(file); 962 } 963 if (next->anon_vma) 964 anon_vma_merge(vma, next); 965 mm->map_count--; 966 mpol_put(vma_policy(next)); 967 vm_area_free(next); 968 /* 969 * In mprotect's case 6 (see comments on vma_merge), 970 * we must remove another next too. It would clutter 971 * up the code too much to do both in one go. 972 */ 973 if (remove_next != 3) { 974 /* 975 * If "next" was removed and vma->vm_end was 976 * expanded (up) over it, in turn 977 * "next->vm_prev->vm_end" changed and the 978 * "vma->vm_next" gap must be updated. 979 */ 980 next = vma->vm_next; 981 } else { 982 /* 983 * For the scope of the comment "next" and 984 * "vma" considered pre-swap(): if "vma" was 985 * removed, next->vm_start was expanded (down) 986 * over it and the "next" gap must be updated. 987 * Because of the swap() the post-swap() "vma" 988 * actually points to pre-swap() "next" 989 * (post-swap() "next" as opposed is now a 990 * dangling pointer). 991 */ 992 next = vma; 993 } 994 if (remove_next == 2) { 995 remove_next = 1; 996 end = next->vm_end; 997 goto again; 998 } 999 else if (next) 1000 vma_gap_update(next); 1001 else { 1002 /* 1003 * If remove_next == 2 we obviously can't 1004 * reach this path. 1005 * 1006 * If remove_next == 3 we can't reach this 1007 * path because pre-swap() next is always not 1008 * NULL. pre-swap() "next" is not being 1009 * removed and its next->vm_end is not altered 1010 * (and furthermore "end" already matches 1011 * next->vm_end in remove_next == 3). 1012 * 1013 * We reach this only in the remove_next == 1 1014 * case if the "next" vma that was removed was 1015 * the highest vma of the mm. However in such 1016 * case next->vm_end == "end" and the extended 1017 * "vma" has vma->vm_end == next->vm_end so 1018 * mm->highest_vm_end doesn't need any update 1019 * in remove_next == 1 case. 1020 */ 1021 VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma)); 1022 } 1023 } 1024 if (insert && file) 1025 uprobe_mmap(insert); 1026 1027 validate_mm(mm); 1028 1029 return 0; 1030 } 1031 1032 /* 1033 * If the vma has a ->close operation then the driver probably needs to release 1034 * per-vma resources, so we don't attempt to merge those. 1035 */ 1036 static inline int is_mergeable_vma(struct vm_area_struct *vma, 1037 struct file *file, unsigned long vm_flags, 1038 struct vm_userfaultfd_ctx vm_userfaultfd_ctx, 1039 struct anon_vma_name *anon_name) 1040 { 1041 /* 1042 * VM_SOFTDIRTY should not prevent from VMA merging, if we 1043 * match the flags but dirty bit -- the caller should mark 1044 * merged VMA as dirty. If dirty bit won't be excluded from 1045 * comparison, we increase pressure on the memory system forcing 1046 * the kernel to generate new VMAs when old one could be 1047 * extended instead. 1048 */ 1049 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY) 1050 return 0; 1051 if (vma->vm_file != file) 1052 return 0; 1053 if (vma->vm_ops && vma->vm_ops->close) 1054 return 0; 1055 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx)) 1056 return 0; 1057 if (!anon_vma_name_eq(anon_vma_name(vma), anon_name)) 1058 return 0; 1059 return 1; 1060 } 1061 1062 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1, 1063 struct anon_vma *anon_vma2, 1064 struct vm_area_struct *vma) 1065 { 1066 /* 1067 * The list_is_singular() test is to avoid merging VMA cloned from 1068 * parents. This can improve scalability caused by anon_vma lock. 1069 */ 1070 if ((!anon_vma1 || !anon_vma2) && (!vma || 1071 list_is_singular(&vma->anon_vma_chain))) 1072 return 1; 1073 return anon_vma1 == anon_vma2; 1074 } 1075 1076 /* 1077 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 1078 * in front of (at a lower virtual address and file offset than) the vma. 1079 * 1080 * We cannot merge two vmas if they have differently assigned (non-NULL) 1081 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 1082 * 1083 * We don't check here for the merged mmap wrapping around the end of pagecache 1084 * indices (16TB on ia32) because do_mmap() does not permit mmap's which 1085 * wrap, nor mmaps which cover the final page at index -1UL. 1086 */ 1087 static int 1088 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags, 1089 struct anon_vma *anon_vma, struct file *file, 1090 pgoff_t vm_pgoff, 1091 struct vm_userfaultfd_ctx vm_userfaultfd_ctx, 1092 struct anon_vma_name *anon_name) 1093 { 1094 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name) && 1095 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 1096 if (vma->vm_pgoff == vm_pgoff) 1097 return 1; 1098 } 1099 return 0; 1100 } 1101 1102 /* 1103 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 1104 * beyond (at a higher virtual address and file offset than) the vma. 1105 * 1106 * We cannot merge two vmas if they have differently assigned (non-NULL) 1107 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 1108 */ 1109 static int 1110 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags, 1111 struct anon_vma *anon_vma, struct file *file, 1112 pgoff_t vm_pgoff, 1113 struct vm_userfaultfd_ctx vm_userfaultfd_ctx, 1114 struct anon_vma_name *anon_name) 1115 { 1116 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name) && 1117 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 1118 pgoff_t vm_pglen; 1119 vm_pglen = vma_pages(vma); 1120 if (vma->vm_pgoff + vm_pglen == vm_pgoff) 1121 return 1; 1122 } 1123 return 0; 1124 } 1125 1126 /* 1127 * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name), 1128 * figure out whether that can be merged with its predecessor or its 1129 * successor. Or both (it neatly fills a hole). 1130 * 1131 * In most cases - when called for mmap, brk or mremap - [addr,end) is 1132 * certain not to be mapped by the time vma_merge is called; but when 1133 * called for mprotect, it is certain to be already mapped (either at 1134 * an offset within prev, or at the start of next), and the flags of 1135 * this area are about to be changed to vm_flags - and the no-change 1136 * case has already been eliminated. 1137 * 1138 * The following mprotect cases have to be considered, where AAAA is 1139 * the area passed down from mprotect_fixup, never extending beyond one 1140 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after: 1141 * 1142 * AAAA AAAA AAAA 1143 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN 1144 * cannot merge might become might become 1145 * PPNNNNNNNNNN PPPPPPPPPPNN 1146 * mmap, brk or case 4 below case 5 below 1147 * mremap move: 1148 * AAAA AAAA 1149 * PPPP NNNN PPPPNNNNXXXX 1150 * might become might become 1151 * PPPPPPPPPPPP 1 or PPPPPPPPPPPP 6 or 1152 * PPPPPPPPNNNN 2 or PPPPPPPPXXXX 7 or 1153 * PPPPNNNNNNNN 3 PPPPXXXXXXXX 8 1154 * 1155 * It is important for case 8 that the vma NNNN overlapping the 1156 * region AAAA is never going to extended over XXXX. Instead XXXX must 1157 * be extended in region AAAA and NNNN must be removed. This way in 1158 * all cases where vma_merge succeeds, the moment vma_adjust drops the 1159 * rmap_locks, the properties of the merged vma will be already 1160 * correct for the whole merged range. Some of those properties like 1161 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must 1162 * be correct for the whole merged range immediately after the 1163 * rmap_locks are released. Otherwise if XXXX would be removed and 1164 * NNNN would be extended over the XXXX range, remove_migration_ptes 1165 * or other rmap walkers (if working on addresses beyond the "end" 1166 * parameter) may establish ptes with the wrong permissions of NNNN 1167 * instead of the right permissions of XXXX. 1168 */ 1169 struct vm_area_struct *vma_merge(struct mm_struct *mm, 1170 struct vm_area_struct *prev, unsigned long addr, 1171 unsigned long end, unsigned long vm_flags, 1172 struct anon_vma *anon_vma, struct file *file, 1173 pgoff_t pgoff, struct mempolicy *policy, 1174 struct vm_userfaultfd_ctx vm_userfaultfd_ctx, 1175 struct anon_vma_name *anon_name) 1176 { 1177 pgoff_t pglen = (end - addr) >> PAGE_SHIFT; 1178 struct vm_area_struct *area, *next; 1179 int err; 1180 1181 /* 1182 * We later require that vma->vm_flags == vm_flags, 1183 * so this tests vma->vm_flags & VM_SPECIAL, too. 1184 */ 1185 if (vm_flags & VM_SPECIAL) 1186 return NULL; 1187 1188 next = vma_next(mm, prev); 1189 area = next; 1190 if (area && area->vm_end == end) /* cases 6, 7, 8 */ 1191 next = next->vm_next; 1192 1193 /* verify some invariant that must be enforced by the caller */ 1194 VM_WARN_ON(prev && addr <= prev->vm_start); 1195 VM_WARN_ON(area && end > area->vm_end); 1196 VM_WARN_ON(addr >= end); 1197 1198 /* 1199 * Can it merge with the predecessor? 1200 */ 1201 if (prev && prev->vm_end == addr && 1202 mpol_equal(vma_policy(prev), policy) && 1203 can_vma_merge_after(prev, vm_flags, 1204 anon_vma, file, pgoff, 1205 vm_userfaultfd_ctx, anon_name)) { 1206 /* 1207 * OK, it can. Can we now merge in the successor as well? 1208 */ 1209 if (next && end == next->vm_start && 1210 mpol_equal(policy, vma_policy(next)) && 1211 can_vma_merge_before(next, vm_flags, 1212 anon_vma, file, 1213 pgoff+pglen, 1214 vm_userfaultfd_ctx, anon_name) && 1215 is_mergeable_anon_vma(prev->anon_vma, 1216 next->anon_vma, NULL)) { 1217 /* cases 1, 6 */ 1218 err = __vma_adjust(prev, prev->vm_start, 1219 next->vm_end, prev->vm_pgoff, NULL, 1220 prev); 1221 } else /* cases 2, 5, 7 */ 1222 err = __vma_adjust(prev, prev->vm_start, 1223 end, prev->vm_pgoff, NULL, prev); 1224 if (err) 1225 return NULL; 1226 khugepaged_enter_vma(prev, vm_flags); 1227 return prev; 1228 } 1229 1230 /* 1231 * Can this new request be merged in front of next? 1232 */ 1233 if (next && end == next->vm_start && 1234 mpol_equal(policy, vma_policy(next)) && 1235 can_vma_merge_before(next, vm_flags, 1236 anon_vma, file, pgoff+pglen, 1237 vm_userfaultfd_ctx, anon_name)) { 1238 if (prev && addr < prev->vm_end) /* case 4 */ 1239 err = __vma_adjust(prev, prev->vm_start, 1240 addr, prev->vm_pgoff, NULL, next); 1241 else { /* cases 3, 8 */ 1242 err = __vma_adjust(area, addr, next->vm_end, 1243 next->vm_pgoff - pglen, NULL, next); 1244 /* 1245 * In case 3 area is already equal to next and 1246 * this is a noop, but in case 8 "area" has 1247 * been removed and next was expanded over it. 1248 */ 1249 area = next; 1250 } 1251 if (err) 1252 return NULL; 1253 khugepaged_enter_vma(area, vm_flags); 1254 return area; 1255 } 1256 1257 return NULL; 1258 } 1259 1260 /* 1261 * Rough compatibility check to quickly see if it's even worth looking 1262 * at sharing an anon_vma. 1263 * 1264 * They need to have the same vm_file, and the flags can only differ 1265 * in things that mprotect may change. 1266 * 1267 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that 1268 * we can merge the two vma's. For example, we refuse to merge a vma if 1269 * there is a vm_ops->close() function, because that indicates that the 1270 * driver is doing some kind of reference counting. But that doesn't 1271 * really matter for the anon_vma sharing case. 1272 */ 1273 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b) 1274 { 1275 return a->vm_end == b->vm_start && 1276 mpol_equal(vma_policy(a), vma_policy(b)) && 1277 a->vm_file == b->vm_file && 1278 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) && 1279 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT); 1280 } 1281 1282 /* 1283 * Do some basic sanity checking to see if we can re-use the anon_vma 1284 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be 1285 * the same as 'old', the other will be the new one that is trying 1286 * to share the anon_vma. 1287 * 1288 * NOTE! This runs with mmap_lock held for reading, so it is possible that 1289 * the anon_vma of 'old' is concurrently in the process of being set up 1290 * by another page fault trying to merge _that_. But that's ok: if it 1291 * is being set up, that automatically means that it will be a singleton 1292 * acceptable for merging, so we can do all of this optimistically. But 1293 * we do that READ_ONCE() to make sure that we never re-load the pointer. 1294 * 1295 * IOW: that the "list_is_singular()" test on the anon_vma_chain only 1296 * matters for the 'stable anon_vma' case (ie the thing we want to avoid 1297 * is to return an anon_vma that is "complex" due to having gone through 1298 * a fork). 1299 * 1300 * We also make sure that the two vma's are compatible (adjacent, 1301 * and with the same memory policies). That's all stable, even with just 1302 * a read lock on the mmap_lock. 1303 */ 1304 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b) 1305 { 1306 if (anon_vma_compatible(a, b)) { 1307 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma); 1308 1309 if (anon_vma && list_is_singular(&old->anon_vma_chain)) 1310 return anon_vma; 1311 } 1312 return NULL; 1313 } 1314 1315 /* 1316 * find_mergeable_anon_vma is used by anon_vma_prepare, to check 1317 * neighbouring vmas for a suitable anon_vma, before it goes off 1318 * to allocate a new anon_vma. It checks because a repetitive 1319 * sequence of mprotects and faults may otherwise lead to distinct 1320 * anon_vmas being allocated, preventing vma merge in subsequent 1321 * mprotect. 1322 */ 1323 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) 1324 { 1325 struct anon_vma *anon_vma = NULL; 1326 1327 /* Try next first. */ 1328 if (vma->vm_next) { 1329 anon_vma = reusable_anon_vma(vma->vm_next, vma, vma->vm_next); 1330 if (anon_vma) 1331 return anon_vma; 1332 } 1333 1334 /* Try prev next. */ 1335 if (vma->vm_prev) 1336 anon_vma = reusable_anon_vma(vma->vm_prev, vma->vm_prev, vma); 1337 1338 /* 1339 * We might reach here with anon_vma == NULL if we can't find 1340 * any reusable anon_vma. 1341 * There's no absolute need to look only at touching neighbours: 1342 * we could search further afield for "compatible" anon_vmas. 1343 * But it would probably just be a waste of time searching, 1344 * or lead to too many vmas hanging off the same anon_vma. 1345 * We're trying to allow mprotect remerging later on, 1346 * not trying to minimize memory used for anon_vmas. 1347 */ 1348 return anon_vma; 1349 } 1350 1351 /* 1352 * If a hint addr is less than mmap_min_addr change hint to be as 1353 * low as possible but still greater than mmap_min_addr 1354 */ 1355 static inline unsigned long round_hint_to_min(unsigned long hint) 1356 { 1357 hint &= PAGE_MASK; 1358 if (((void *)hint != NULL) && 1359 (hint < mmap_min_addr)) 1360 return PAGE_ALIGN(mmap_min_addr); 1361 return hint; 1362 } 1363 1364 int mlock_future_check(struct mm_struct *mm, unsigned long flags, 1365 unsigned long len) 1366 { 1367 unsigned long locked, lock_limit; 1368 1369 /* mlock MCL_FUTURE? */ 1370 if (flags & VM_LOCKED) { 1371 locked = len >> PAGE_SHIFT; 1372 locked += mm->locked_vm; 1373 lock_limit = rlimit(RLIMIT_MEMLOCK); 1374 lock_limit >>= PAGE_SHIFT; 1375 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 1376 return -EAGAIN; 1377 } 1378 return 0; 1379 } 1380 1381 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode) 1382 { 1383 if (S_ISREG(inode->i_mode)) 1384 return MAX_LFS_FILESIZE; 1385 1386 if (S_ISBLK(inode->i_mode)) 1387 return MAX_LFS_FILESIZE; 1388 1389 if (S_ISSOCK(inode->i_mode)) 1390 return MAX_LFS_FILESIZE; 1391 1392 /* Special "we do even unsigned file positions" case */ 1393 if (file->f_mode & FMODE_UNSIGNED_OFFSET) 1394 return 0; 1395 1396 /* Yes, random drivers might want more. But I'm tired of buggy drivers */ 1397 return ULONG_MAX; 1398 } 1399 1400 static inline bool file_mmap_ok(struct file *file, struct inode *inode, 1401 unsigned long pgoff, unsigned long len) 1402 { 1403 u64 maxsize = file_mmap_size_max(file, inode); 1404 1405 if (maxsize && len > maxsize) 1406 return false; 1407 maxsize -= len; 1408 if (pgoff > maxsize >> PAGE_SHIFT) 1409 return false; 1410 return true; 1411 } 1412 1413 /* 1414 * The caller must write-lock current->mm->mmap_lock. 1415 */ 1416 unsigned long do_mmap(struct file *file, unsigned long addr, 1417 unsigned long len, unsigned long prot, 1418 unsigned long flags, unsigned long pgoff, 1419 unsigned long *populate, struct list_head *uf) 1420 { 1421 struct mm_struct *mm = current->mm; 1422 vm_flags_t vm_flags; 1423 int pkey = 0; 1424 1425 *populate = 0; 1426 1427 if (!len) 1428 return -EINVAL; 1429 1430 /* 1431 * Does the application expect PROT_READ to imply PROT_EXEC? 1432 * 1433 * (the exception is when the underlying filesystem is noexec 1434 * mounted, in which case we dont add PROT_EXEC.) 1435 */ 1436 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC)) 1437 if (!(file && path_noexec(&file->f_path))) 1438 prot |= PROT_EXEC; 1439 1440 /* force arch specific MAP_FIXED handling in get_unmapped_area */ 1441 if (flags & MAP_FIXED_NOREPLACE) 1442 flags |= MAP_FIXED; 1443 1444 if (!(flags & MAP_FIXED)) 1445 addr = round_hint_to_min(addr); 1446 1447 /* Careful about overflows.. */ 1448 len = PAGE_ALIGN(len); 1449 if (!len) 1450 return -ENOMEM; 1451 1452 /* offset overflow? */ 1453 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff) 1454 return -EOVERFLOW; 1455 1456 /* Too many mappings? */ 1457 if (mm->map_count > sysctl_max_map_count) 1458 return -ENOMEM; 1459 1460 /* Obtain the address to map to. we verify (or select) it and ensure 1461 * that it represents a valid section of the address space. 1462 */ 1463 addr = get_unmapped_area(file, addr, len, pgoff, flags); 1464 if (IS_ERR_VALUE(addr)) 1465 return addr; 1466 1467 if (flags & MAP_FIXED_NOREPLACE) { 1468 if (find_vma_intersection(mm, addr, addr + len)) 1469 return -EEXIST; 1470 } 1471 1472 if (prot == PROT_EXEC) { 1473 pkey = execute_only_pkey(mm); 1474 if (pkey < 0) 1475 pkey = 0; 1476 } 1477 1478 /* Do simple checking here so the lower-level routines won't have 1479 * to. we assume access permissions have been handled by the open 1480 * of the memory object, so we don't do any here. 1481 */ 1482 vm_flags = calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) | 1483 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 1484 1485 if (flags & MAP_LOCKED) 1486 if (!can_do_mlock()) 1487 return -EPERM; 1488 1489 if (mlock_future_check(mm, vm_flags, len)) 1490 return -EAGAIN; 1491 1492 if (file) { 1493 struct inode *inode = file_inode(file); 1494 unsigned long flags_mask; 1495 1496 if (!file_mmap_ok(file, inode, pgoff, len)) 1497 return -EOVERFLOW; 1498 1499 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags; 1500 1501 switch (flags & MAP_TYPE) { 1502 case MAP_SHARED: 1503 /* 1504 * Force use of MAP_SHARED_VALIDATE with non-legacy 1505 * flags. E.g. MAP_SYNC is dangerous to use with 1506 * MAP_SHARED as you don't know which consistency model 1507 * you will get. We silently ignore unsupported flags 1508 * with MAP_SHARED to preserve backward compatibility. 1509 */ 1510 flags &= LEGACY_MAP_MASK; 1511 fallthrough; 1512 case MAP_SHARED_VALIDATE: 1513 if (flags & ~flags_mask) 1514 return -EOPNOTSUPP; 1515 if (prot & PROT_WRITE) { 1516 if (!(file->f_mode & FMODE_WRITE)) 1517 return -EACCES; 1518 if (IS_SWAPFILE(file->f_mapping->host)) 1519 return -ETXTBSY; 1520 } 1521 1522 /* 1523 * Make sure we don't allow writing to an append-only 1524 * file.. 1525 */ 1526 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE)) 1527 return -EACCES; 1528 1529 vm_flags |= VM_SHARED | VM_MAYSHARE; 1530 if (!(file->f_mode & FMODE_WRITE)) 1531 vm_flags &= ~(VM_MAYWRITE | VM_SHARED); 1532 fallthrough; 1533 case MAP_PRIVATE: 1534 if (!(file->f_mode & FMODE_READ)) 1535 return -EACCES; 1536 if (path_noexec(&file->f_path)) { 1537 if (vm_flags & VM_EXEC) 1538 return -EPERM; 1539 vm_flags &= ~VM_MAYEXEC; 1540 } 1541 1542 if (!file->f_op->mmap) 1543 return -ENODEV; 1544 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1545 return -EINVAL; 1546 break; 1547 1548 default: 1549 return -EINVAL; 1550 } 1551 } else { 1552 switch (flags & MAP_TYPE) { 1553 case MAP_SHARED: 1554 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1555 return -EINVAL; 1556 /* 1557 * Ignore pgoff. 1558 */ 1559 pgoff = 0; 1560 vm_flags |= VM_SHARED | VM_MAYSHARE; 1561 break; 1562 case MAP_PRIVATE: 1563 /* 1564 * Set pgoff according to addr for anon_vma. 1565 */ 1566 pgoff = addr >> PAGE_SHIFT; 1567 break; 1568 default: 1569 return -EINVAL; 1570 } 1571 } 1572 1573 /* 1574 * Set 'VM_NORESERVE' if we should not account for the 1575 * memory use of this mapping. 1576 */ 1577 if (flags & MAP_NORESERVE) { 1578 /* We honor MAP_NORESERVE if allowed to overcommit */ 1579 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER) 1580 vm_flags |= VM_NORESERVE; 1581 1582 /* hugetlb applies strict overcommit unless MAP_NORESERVE */ 1583 if (file && is_file_hugepages(file)) 1584 vm_flags |= VM_NORESERVE; 1585 } 1586 1587 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf); 1588 if (!IS_ERR_VALUE(addr) && 1589 ((vm_flags & VM_LOCKED) || 1590 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE)) 1591 *populate = len; 1592 return addr; 1593 } 1594 1595 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len, 1596 unsigned long prot, unsigned long flags, 1597 unsigned long fd, unsigned long pgoff) 1598 { 1599 struct file *file = NULL; 1600 unsigned long retval; 1601 1602 if (!(flags & MAP_ANONYMOUS)) { 1603 audit_mmap_fd(fd, flags); 1604 file = fget(fd); 1605 if (!file) 1606 return -EBADF; 1607 if (is_file_hugepages(file)) { 1608 len = ALIGN(len, huge_page_size(hstate_file(file))); 1609 } else if (unlikely(flags & MAP_HUGETLB)) { 1610 retval = -EINVAL; 1611 goto out_fput; 1612 } 1613 } else if (flags & MAP_HUGETLB) { 1614 struct hstate *hs; 1615 1616 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 1617 if (!hs) 1618 return -EINVAL; 1619 1620 len = ALIGN(len, huge_page_size(hs)); 1621 /* 1622 * VM_NORESERVE is used because the reservations will be 1623 * taken when vm_ops->mmap() is called 1624 */ 1625 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, 1626 VM_NORESERVE, 1627 HUGETLB_ANONHUGE_INODE, 1628 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 1629 if (IS_ERR(file)) 1630 return PTR_ERR(file); 1631 } 1632 1633 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1634 out_fput: 1635 if (file) 1636 fput(file); 1637 return retval; 1638 } 1639 1640 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1641 unsigned long, prot, unsigned long, flags, 1642 unsigned long, fd, unsigned long, pgoff) 1643 { 1644 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff); 1645 } 1646 1647 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1648 struct mmap_arg_struct { 1649 unsigned long addr; 1650 unsigned long len; 1651 unsigned long prot; 1652 unsigned long flags; 1653 unsigned long fd; 1654 unsigned long offset; 1655 }; 1656 1657 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1658 { 1659 struct mmap_arg_struct a; 1660 1661 if (copy_from_user(&a, arg, sizeof(a))) 1662 return -EFAULT; 1663 if (offset_in_page(a.offset)) 1664 return -EINVAL; 1665 1666 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1667 a.offset >> PAGE_SHIFT); 1668 } 1669 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1670 1671 /* 1672 * Some shared mappings will want the pages marked read-only 1673 * to track write events. If so, we'll downgrade vm_page_prot 1674 * to the private version (using protection_map[] without the 1675 * VM_SHARED bit). 1676 */ 1677 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot) 1678 { 1679 vm_flags_t vm_flags = vma->vm_flags; 1680 const struct vm_operations_struct *vm_ops = vma->vm_ops; 1681 1682 /* If it was private or non-writable, the write bit is already clear */ 1683 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED))) 1684 return 0; 1685 1686 /* The backer wishes to know when pages are first written to? */ 1687 if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite)) 1688 return 1; 1689 1690 /* The open routine did something to the protections that pgprot_modify 1691 * won't preserve? */ 1692 if (pgprot_val(vm_page_prot) != 1693 pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags))) 1694 return 0; 1695 1696 /* Do we need to track softdirty? */ 1697 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY)) 1698 return 1; 1699 1700 /* Specialty mapping? */ 1701 if (vm_flags & VM_PFNMAP) 1702 return 0; 1703 1704 /* Can the mapping track the dirty pages? */ 1705 return vma->vm_file && vma->vm_file->f_mapping && 1706 mapping_can_writeback(vma->vm_file->f_mapping); 1707 } 1708 1709 /* 1710 * We account for memory if it's a private writeable mapping, 1711 * not hugepages and VM_NORESERVE wasn't set. 1712 */ 1713 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags) 1714 { 1715 /* 1716 * hugetlb has its own accounting separate from the core VM 1717 * VM_HUGETLB may not be set yet so we cannot check for that flag. 1718 */ 1719 if (file && is_file_hugepages(file)) 1720 return 0; 1721 1722 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE; 1723 } 1724 1725 unsigned long mmap_region(struct file *file, unsigned long addr, 1726 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 1727 struct list_head *uf) 1728 { 1729 struct mm_struct *mm = current->mm; 1730 struct vm_area_struct *vma, *prev, *merge; 1731 int error; 1732 struct rb_node **rb_link, *rb_parent; 1733 unsigned long charged = 0; 1734 1735 /* Check against address space limit. */ 1736 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) { 1737 unsigned long nr_pages; 1738 1739 /* 1740 * MAP_FIXED may remove pages of mappings that intersects with 1741 * requested mapping. Account for the pages it would unmap. 1742 */ 1743 nr_pages = count_vma_pages_range(mm, addr, addr + len); 1744 1745 if (!may_expand_vm(mm, vm_flags, 1746 (len >> PAGE_SHIFT) - nr_pages)) 1747 return -ENOMEM; 1748 } 1749 1750 /* Clear old maps, set up prev, rb_link, rb_parent, and uf */ 1751 if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf)) 1752 return -ENOMEM; 1753 /* 1754 * Private writable mapping: check memory availability 1755 */ 1756 if (accountable_mapping(file, vm_flags)) { 1757 charged = len >> PAGE_SHIFT; 1758 if (security_vm_enough_memory_mm(mm, charged)) 1759 return -ENOMEM; 1760 vm_flags |= VM_ACCOUNT; 1761 } 1762 1763 /* 1764 * Can we just expand an old mapping? 1765 */ 1766 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, 1767 NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX, NULL); 1768 if (vma) 1769 goto out; 1770 1771 /* 1772 * Determine the object being mapped and call the appropriate 1773 * specific mapper. the address has already been validated, but 1774 * not unmapped, but the maps are removed from the list. 1775 */ 1776 vma = vm_area_alloc(mm); 1777 if (!vma) { 1778 error = -ENOMEM; 1779 goto unacct_error; 1780 } 1781 1782 vma->vm_start = addr; 1783 vma->vm_end = addr + len; 1784 vma->vm_flags = vm_flags; 1785 vma->vm_page_prot = vm_get_page_prot(vm_flags); 1786 vma->vm_pgoff = pgoff; 1787 1788 if (file) { 1789 if (vm_flags & VM_SHARED) { 1790 error = mapping_map_writable(file->f_mapping); 1791 if (error) 1792 goto free_vma; 1793 } 1794 1795 vma->vm_file = get_file(file); 1796 error = call_mmap(file, vma); 1797 if (error) 1798 goto unmap_and_free_vma; 1799 1800 /* Can addr have changed?? 1801 * 1802 * Answer: Yes, several device drivers can do it in their 1803 * f_op->mmap method. -DaveM 1804 * Bug: If addr is changed, prev, rb_link, rb_parent should 1805 * be updated for vma_link() 1806 */ 1807 WARN_ON_ONCE(addr != vma->vm_start); 1808 1809 addr = vma->vm_start; 1810 1811 /* If vm_flags changed after call_mmap(), we should try merge vma again 1812 * as we may succeed this time. 1813 */ 1814 if (unlikely(vm_flags != vma->vm_flags && prev)) { 1815 merge = vma_merge(mm, prev, vma->vm_start, vma->vm_end, vma->vm_flags, 1816 NULL, vma->vm_file, vma->vm_pgoff, NULL, NULL_VM_UFFD_CTX, NULL); 1817 if (merge) { 1818 /* ->mmap() can change vma->vm_file and fput the original file. So 1819 * fput the vma->vm_file here or we would add an extra fput for file 1820 * and cause general protection fault ultimately. 1821 */ 1822 fput(vma->vm_file); 1823 vm_area_free(vma); 1824 vma = merge; 1825 /* Update vm_flags to pick up the change. */ 1826 vm_flags = vma->vm_flags; 1827 goto unmap_writable; 1828 } 1829 } 1830 1831 vm_flags = vma->vm_flags; 1832 } else if (vm_flags & VM_SHARED) { 1833 error = shmem_zero_setup(vma); 1834 if (error) 1835 goto free_vma; 1836 } else { 1837 vma_set_anonymous(vma); 1838 } 1839 1840 /* Allow architectures to sanity-check the vm_flags */ 1841 if (!arch_validate_flags(vma->vm_flags)) { 1842 error = -EINVAL; 1843 if (file) 1844 goto unmap_and_free_vma; 1845 else 1846 goto free_vma; 1847 } 1848 1849 vma_link(mm, vma, prev, rb_link, rb_parent); 1850 1851 /* 1852 * vma_merge() calls khugepaged_enter_vma() either, the below 1853 * call covers the non-merge case. 1854 */ 1855 khugepaged_enter_vma(vma, vma->vm_flags); 1856 1857 /* Once vma denies write, undo our temporary denial count */ 1858 unmap_writable: 1859 if (file && vm_flags & VM_SHARED) 1860 mapping_unmap_writable(file->f_mapping); 1861 file = vma->vm_file; 1862 out: 1863 perf_event_mmap(vma); 1864 1865 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT); 1866 if (vm_flags & VM_LOCKED) { 1867 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) || 1868 is_vm_hugetlb_page(vma) || 1869 vma == get_gate_vma(current->mm)) 1870 vma->vm_flags &= VM_LOCKED_CLEAR_MASK; 1871 else 1872 mm->locked_vm += (len >> PAGE_SHIFT); 1873 } 1874 1875 if (file) 1876 uprobe_mmap(vma); 1877 1878 /* 1879 * New (or expanded) vma always get soft dirty status. 1880 * Otherwise user-space soft-dirty page tracker won't 1881 * be able to distinguish situation when vma area unmapped, 1882 * then new mapped in-place (which must be aimed as 1883 * a completely new data area). 1884 */ 1885 vma->vm_flags |= VM_SOFTDIRTY; 1886 1887 vma_set_page_prot(vma); 1888 1889 return addr; 1890 1891 unmap_and_free_vma: 1892 fput(vma->vm_file); 1893 vma->vm_file = NULL; 1894 1895 /* Undo any partial mapping done by a device driver. */ 1896 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end); 1897 charged = 0; 1898 if (vm_flags & VM_SHARED) 1899 mapping_unmap_writable(file->f_mapping); 1900 free_vma: 1901 vm_area_free(vma); 1902 unacct_error: 1903 if (charged) 1904 vm_unacct_memory(charged); 1905 return error; 1906 } 1907 1908 static unsigned long unmapped_area(struct vm_unmapped_area_info *info) 1909 { 1910 /* 1911 * We implement the search by looking for an rbtree node that 1912 * immediately follows a suitable gap. That is, 1913 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length; 1914 * - gap_end = vma->vm_start >= info->low_limit + length; 1915 * - gap_end - gap_start >= length 1916 */ 1917 1918 struct mm_struct *mm = current->mm; 1919 struct vm_area_struct *vma; 1920 unsigned long length, low_limit, high_limit, gap_start, gap_end; 1921 1922 /* Adjust search length to account for worst case alignment overhead */ 1923 length = info->length + info->align_mask; 1924 if (length < info->length) 1925 return -ENOMEM; 1926 1927 /* Adjust search limits by the desired length */ 1928 if (info->high_limit < length) 1929 return -ENOMEM; 1930 high_limit = info->high_limit - length; 1931 1932 if (info->low_limit > high_limit) 1933 return -ENOMEM; 1934 low_limit = info->low_limit + length; 1935 1936 /* Check if rbtree root looks promising */ 1937 if (RB_EMPTY_ROOT(&mm->mm_rb)) 1938 goto check_highest; 1939 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb); 1940 if (vma->rb_subtree_gap < length) 1941 goto check_highest; 1942 1943 while (true) { 1944 /* Visit left subtree if it looks promising */ 1945 gap_end = vm_start_gap(vma); 1946 if (gap_end >= low_limit && vma->vm_rb.rb_left) { 1947 struct vm_area_struct *left = 1948 rb_entry(vma->vm_rb.rb_left, 1949 struct vm_area_struct, vm_rb); 1950 if (left->rb_subtree_gap >= length) { 1951 vma = left; 1952 continue; 1953 } 1954 } 1955 1956 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0; 1957 check_current: 1958 /* Check if current node has a suitable gap */ 1959 if (gap_start > high_limit) 1960 return -ENOMEM; 1961 if (gap_end >= low_limit && 1962 gap_end > gap_start && gap_end - gap_start >= length) 1963 goto found; 1964 1965 /* Visit right subtree if it looks promising */ 1966 if (vma->vm_rb.rb_right) { 1967 struct vm_area_struct *right = 1968 rb_entry(vma->vm_rb.rb_right, 1969 struct vm_area_struct, vm_rb); 1970 if (right->rb_subtree_gap >= length) { 1971 vma = right; 1972 continue; 1973 } 1974 } 1975 1976 /* Go back up the rbtree to find next candidate node */ 1977 while (true) { 1978 struct rb_node *prev = &vma->vm_rb; 1979 if (!rb_parent(prev)) 1980 goto check_highest; 1981 vma = rb_entry(rb_parent(prev), 1982 struct vm_area_struct, vm_rb); 1983 if (prev == vma->vm_rb.rb_left) { 1984 gap_start = vm_end_gap(vma->vm_prev); 1985 gap_end = vm_start_gap(vma); 1986 goto check_current; 1987 } 1988 } 1989 } 1990 1991 check_highest: 1992 /* Check highest gap, which does not precede any rbtree node */ 1993 gap_start = mm->highest_vm_end; 1994 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */ 1995 if (gap_start > high_limit) 1996 return -ENOMEM; 1997 1998 found: 1999 /* We found a suitable gap. Clip it with the original low_limit. */ 2000 if (gap_start < info->low_limit) 2001 gap_start = info->low_limit; 2002 2003 /* Adjust gap address to the desired alignment */ 2004 gap_start += (info->align_offset - gap_start) & info->align_mask; 2005 2006 VM_BUG_ON(gap_start + info->length > info->high_limit); 2007 VM_BUG_ON(gap_start + info->length > gap_end); 2008 return gap_start; 2009 } 2010 2011 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info) 2012 { 2013 struct mm_struct *mm = current->mm; 2014 struct vm_area_struct *vma; 2015 unsigned long length, low_limit, high_limit, gap_start, gap_end; 2016 2017 /* Adjust search length to account for worst case alignment overhead */ 2018 length = info->length + info->align_mask; 2019 if (length < info->length) 2020 return -ENOMEM; 2021 2022 /* 2023 * Adjust search limits by the desired length. 2024 * See implementation comment at top of unmapped_area(). 2025 */ 2026 gap_end = info->high_limit; 2027 if (gap_end < length) 2028 return -ENOMEM; 2029 high_limit = gap_end - length; 2030 2031 if (info->low_limit > high_limit) 2032 return -ENOMEM; 2033 low_limit = info->low_limit + length; 2034 2035 /* Check highest gap, which does not precede any rbtree node */ 2036 gap_start = mm->highest_vm_end; 2037 if (gap_start <= high_limit) 2038 goto found_highest; 2039 2040 /* Check if rbtree root looks promising */ 2041 if (RB_EMPTY_ROOT(&mm->mm_rb)) 2042 return -ENOMEM; 2043 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb); 2044 if (vma->rb_subtree_gap < length) 2045 return -ENOMEM; 2046 2047 while (true) { 2048 /* Visit right subtree if it looks promising */ 2049 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0; 2050 if (gap_start <= high_limit && vma->vm_rb.rb_right) { 2051 struct vm_area_struct *right = 2052 rb_entry(vma->vm_rb.rb_right, 2053 struct vm_area_struct, vm_rb); 2054 if (right->rb_subtree_gap >= length) { 2055 vma = right; 2056 continue; 2057 } 2058 } 2059 2060 check_current: 2061 /* Check if current node has a suitable gap */ 2062 gap_end = vm_start_gap(vma); 2063 if (gap_end < low_limit) 2064 return -ENOMEM; 2065 if (gap_start <= high_limit && 2066 gap_end > gap_start && gap_end - gap_start >= length) 2067 goto found; 2068 2069 /* Visit left subtree if it looks promising */ 2070 if (vma->vm_rb.rb_left) { 2071 struct vm_area_struct *left = 2072 rb_entry(vma->vm_rb.rb_left, 2073 struct vm_area_struct, vm_rb); 2074 if (left->rb_subtree_gap >= length) { 2075 vma = left; 2076 continue; 2077 } 2078 } 2079 2080 /* Go back up the rbtree to find next candidate node */ 2081 while (true) { 2082 struct rb_node *prev = &vma->vm_rb; 2083 if (!rb_parent(prev)) 2084 return -ENOMEM; 2085 vma = rb_entry(rb_parent(prev), 2086 struct vm_area_struct, vm_rb); 2087 if (prev == vma->vm_rb.rb_right) { 2088 gap_start = vma->vm_prev ? 2089 vm_end_gap(vma->vm_prev) : 0; 2090 goto check_current; 2091 } 2092 } 2093 } 2094 2095 found: 2096 /* We found a suitable gap. Clip it with the original high_limit. */ 2097 if (gap_end > info->high_limit) 2098 gap_end = info->high_limit; 2099 2100 found_highest: 2101 /* Compute highest gap address at the desired alignment */ 2102 gap_end -= info->length; 2103 gap_end -= (gap_end - info->align_offset) & info->align_mask; 2104 2105 VM_BUG_ON(gap_end < info->low_limit); 2106 VM_BUG_ON(gap_end < gap_start); 2107 return gap_end; 2108 } 2109 2110 /* 2111 * Search for an unmapped address range. 2112 * 2113 * We are looking for a range that: 2114 * - does not intersect with any VMA; 2115 * - is contained within the [low_limit, high_limit) interval; 2116 * - is at least the desired size. 2117 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) 2118 */ 2119 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info) 2120 { 2121 unsigned long addr; 2122 2123 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN) 2124 addr = unmapped_area_topdown(info); 2125 else 2126 addr = unmapped_area(info); 2127 2128 trace_vm_unmapped_area(addr, info); 2129 return addr; 2130 } 2131 2132 /* Get an address range which is currently unmapped. 2133 * For shmat() with addr=0. 2134 * 2135 * Ugly calling convention alert: 2136 * Return value with the low bits set means error value, 2137 * ie 2138 * if (ret & ~PAGE_MASK) 2139 * error = ret; 2140 * 2141 * This function "knows" that -ENOMEM has the bits set. 2142 */ 2143 unsigned long 2144 generic_get_unmapped_area(struct file *filp, unsigned long addr, 2145 unsigned long len, unsigned long pgoff, 2146 unsigned long flags) 2147 { 2148 struct mm_struct *mm = current->mm; 2149 struct vm_area_struct *vma, *prev; 2150 struct vm_unmapped_area_info info; 2151 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags); 2152 2153 if (len > mmap_end - mmap_min_addr) 2154 return -ENOMEM; 2155 2156 if (flags & MAP_FIXED) 2157 return addr; 2158 2159 if (addr) { 2160 addr = PAGE_ALIGN(addr); 2161 vma = find_vma_prev(mm, addr, &prev); 2162 if (mmap_end - len >= addr && addr >= mmap_min_addr && 2163 (!vma || addr + len <= vm_start_gap(vma)) && 2164 (!prev || addr >= vm_end_gap(prev))) 2165 return addr; 2166 } 2167 2168 info.flags = 0; 2169 info.length = len; 2170 info.low_limit = mm->mmap_base; 2171 info.high_limit = mmap_end; 2172 info.align_mask = 0; 2173 info.align_offset = 0; 2174 return vm_unmapped_area(&info); 2175 } 2176 2177 #ifndef HAVE_ARCH_UNMAPPED_AREA 2178 unsigned long 2179 arch_get_unmapped_area(struct file *filp, unsigned long addr, 2180 unsigned long len, unsigned long pgoff, 2181 unsigned long flags) 2182 { 2183 return generic_get_unmapped_area(filp, addr, len, pgoff, flags); 2184 } 2185 #endif 2186 2187 /* 2188 * This mmap-allocator allocates new areas top-down from below the 2189 * stack's low limit (the base): 2190 */ 2191 unsigned long 2192 generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 2193 unsigned long len, unsigned long pgoff, 2194 unsigned long flags) 2195 { 2196 struct vm_area_struct *vma, *prev; 2197 struct mm_struct *mm = current->mm; 2198 struct vm_unmapped_area_info info; 2199 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags); 2200 2201 /* requested length too big for entire address space */ 2202 if (len > mmap_end - mmap_min_addr) 2203 return -ENOMEM; 2204 2205 if (flags & MAP_FIXED) 2206 return addr; 2207 2208 /* requesting a specific address */ 2209 if (addr) { 2210 addr = PAGE_ALIGN(addr); 2211 vma = find_vma_prev(mm, addr, &prev); 2212 if (mmap_end - len >= addr && addr >= mmap_min_addr && 2213 (!vma || addr + len <= vm_start_gap(vma)) && 2214 (!prev || addr >= vm_end_gap(prev))) 2215 return addr; 2216 } 2217 2218 info.flags = VM_UNMAPPED_AREA_TOPDOWN; 2219 info.length = len; 2220 info.low_limit = max(PAGE_SIZE, mmap_min_addr); 2221 info.high_limit = arch_get_mmap_base(addr, mm->mmap_base); 2222 info.align_mask = 0; 2223 info.align_offset = 0; 2224 addr = vm_unmapped_area(&info); 2225 2226 /* 2227 * A failed mmap() very likely causes application failure, 2228 * so fall back to the bottom-up function here. This scenario 2229 * can happen with large stack limits and large mmap() 2230 * allocations. 2231 */ 2232 if (offset_in_page(addr)) { 2233 VM_BUG_ON(addr != -ENOMEM); 2234 info.flags = 0; 2235 info.low_limit = TASK_UNMAPPED_BASE; 2236 info.high_limit = mmap_end; 2237 addr = vm_unmapped_area(&info); 2238 } 2239 2240 return addr; 2241 } 2242 2243 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 2244 unsigned long 2245 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 2246 unsigned long len, unsigned long pgoff, 2247 unsigned long flags) 2248 { 2249 return generic_get_unmapped_area_topdown(filp, addr, len, pgoff, flags); 2250 } 2251 #endif 2252 2253 unsigned long 2254 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 2255 unsigned long pgoff, unsigned long flags) 2256 { 2257 unsigned long (*get_area)(struct file *, unsigned long, 2258 unsigned long, unsigned long, unsigned long); 2259 2260 unsigned long error = arch_mmap_check(addr, len, flags); 2261 if (error) 2262 return error; 2263 2264 /* Careful about overflows.. */ 2265 if (len > TASK_SIZE) 2266 return -ENOMEM; 2267 2268 get_area = current->mm->get_unmapped_area; 2269 if (file) { 2270 if (file->f_op->get_unmapped_area) 2271 get_area = file->f_op->get_unmapped_area; 2272 } else if (flags & MAP_SHARED) { 2273 /* 2274 * mmap_region() will call shmem_zero_setup() to create a file, 2275 * so use shmem's get_unmapped_area in case it can be huge. 2276 * do_mmap() will clear pgoff, so match alignment. 2277 */ 2278 pgoff = 0; 2279 get_area = shmem_get_unmapped_area; 2280 } 2281 2282 addr = get_area(file, addr, len, pgoff, flags); 2283 if (IS_ERR_VALUE(addr)) 2284 return addr; 2285 2286 if (addr > TASK_SIZE - len) 2287 return -ENOMEM; 2288 if (offset_in_page(addr)) 2289 return -EINVAL; 2290 2291 error = security_mmap_addr(addr); 2292 return error ? error : addr; 2293 } 2294 2295 EXPORT_SYMBOL(get_unmapped_area); 2296 2297 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2298 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 2299 { 2300 struct rb_node *rb_node; 2301 struct vm_area_struct *vma; 2302 2303 mmap_assert_locked(mm); 2304 /* Check the cache first. */ 2305 vma = vmacache_find(mm, addr); 2306 if (likely(vma)) 2307 return vma; 2308 2309 rb_node = mm->mm_rb.rb_node; 2310 2311 while (rb_node) { 2312 struct vm_area_struct *tmp; 2313 2314 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb); 2315 2316 if (tmp->vm_end > addr) { 2317 vma = tmp; 2318 if (tmp->vm_start <= addr) 2319 break; 2320 rb_node = rb_node->rb_left; 2321 } else 2322 rb_node = rb_node->rb_right; 2323 } 2324 2325 if (vma) 2326 vmacache_update(addr, vma); 2327 return vma; 2328 } 2329 2330 EXPORT_SYMBOL(find_vma); 2331 2332 /* 2333 * Same as find_vma, but also return a pointer to the previous VMA in *pprev. 2334 */ 2335 struct vm_area_struct * 2336 find_vma_prev(struct mm_struct *mm, unsigned long addr, 2337 struct vm_area_struct **pprev) 2338 { 2339 struct vm_area_struct *vma; 2340 2341 vma = find_vma(mm, addr); 2342 if (vma) { 2343 *pprev = vma->vm_prev; 2344 } else { 2345 struct rb_node *rb_node = rb_last(&mm->mm_rb); 2346 2347 *pprev = rb_node ? rb_entry(rb_node, struct vm_area_struct, vm_rb) : NULL; 2348 } 2349 return vma; 2350 } 2351 2352 /* 2353 * Verify that the stack growth is acceptable and 2354 * update accounting. This is shared with both the 2355 * grow-up and grow-down cases. 2356 */ 2357 static int acct_stack_growth(struct vm_area_struct *vma, 2358 unsigned long size, unsigned long grow) 2359 { 2360 struct mm_struct *mm = vma->vm_mm; 2361 unsigned long new_start; 2362 2363 /* address space limit tests */ 2364 if (!may_expand_vm(mm, vma->vm_flags, grow)) 2365 return -ENOMEM; 2366 2367 /* Stack limit test */ 2368 if (size > rlimit(RLIMIT_STACK)) 2369 return -ENOMEM; 2370 2371 /* mlock limit tests */ 2372 if (mlock_future_check(mm, vma->vm_flags, grow << PAGE_SHIFT)) 2373 return -ENOMEM; 2374 2375 /* Check to ensure the stack will not grow into a hugetlb-only region */ 2376 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : 2377 vma->vm_end - size; 2378 if (is_hugepage_only_range(vma->vm_mm, new_start, size)) 2379 return -EFAULT; 2380 2381 /* 2382 * Overcommit.. This must be the final test, as it will 2383 * update security statistics. 2384 */ 2385 if (security_vm_enough_memory_mm(mm, grow)) 2386 return -ENOMEM; 2387 2388 return 0; 2389 } 2390 2391 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64) 2392 /* 2393 * PA-RISC uses this for its stack; IA64 for its Register Backing Store. 2394 * vma is the last one with address > vma->vm_end. Have to extend vma. 2395 */ 2396 int expand_upwards(struct vm_area_struct *vma, unsigned long address) 2397 { 2398 struct mm_struct *mm = vma->vm_mm; 2399 struct vm_area_struct *next; 2400 unsigned long gap_addr; 2401 int error = 0; 2402 2403 if (!(vma->vm_flags & VM_GROWSUP)) 2404 return -EFAULT; 2405 2406 /* Guard against exceeding limits of the address space. */ 2407 address &= PAGE_MASK; 2408 if (address >= (TASK_SIZE & PAGE_MASK)) 2409 return -ENOMEM; 2410 address += PAGE_SIZE; 2411 2412 /* Enforce stack_guard_gap */ 2413 gap_addr = address + stack_guard_gap; 2414 2415 /* Guard against overflow */ 2416 if (gap_addr < address || gap_addr > TASK_SIZE) 2417 gap_addr = TASK_SIZE; 2418 2419 next = vma->vm_next; 2420 if (next && next->vm_start < gap_addr && vma_is_accessible(next)) { 2421 if (!(next->vm_flags & VM_GROWSUP)) 2422 return -ENOMEM; 2423 /* Check that both stack segments have the same anon_vma? */ 2424 } 2425 2426 /* We must make sure the anon_vma is allocated. */ 2427 if (unlikely(anon_vma_prepare(vma))) 2428 return -ENOMEM; 2429 2430 /* 2431 * vma->vm_start/vm_end cannot change under us because the caller 2432 * is required to hold the mmap_lock in read mode. We need the 2433 * anon_vma lock to serialize against concurrent expand_stacks. 2434 */ 2435 anon_vma_lock_write(vma->anon_vma); 2436 2437 /* Somebody else might have raced and expanded it already */ 2438 if (address > vma->vm_end) { 2439 unsigned long size, grow; 2440 2441 size = address - vma->vm_start; 2442 grow = (address - vma->vm_end) >> PAGE_SHIFT; 2443 2444 error = -ENOMEM; 2445 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) { 2446 error = acct_stack_growth(vma, size, grow); 2447 if (!error) { 2448 /* 2449 * vma_gap_update() doesn't support concurrent 2450 * updates, but we only hold a shared mmap_lock 2451 * lock here, so we need to protect against 2452 * concurrent vma expansions. 2453 * anon_vma_lock_write() doesn't help here, as 2454 * we don't guarantee that all growable vmas 2455 * in a mm share the same root anon vma. 2456 * So, we reuse mm->page_table_lock to guard 2457 * against concurrent vma expansions. 2458 */ 2459 spin_lock(&mm->page_table_lock); 2460 if (vma->vm_flags & VM_LOCKED) 2461 mm->locked_vm += grow; 2462 vm_stat_account(mm, vma->vm_flags, grow); 2463 anon_vma_interval_tree_pre_update_vma(vma); 2464 vma->vm_end = address; 2465 anon_vma_interval_tree_post_update_vma(vma); 2466 if (vma->vm_next) 2467 vma_gap_update(vma->vm_next); 2468 else 2469 mm->highest_vm_end = vm_end_gap(vma); 2470 spin_unlock(&mm->page_table_lock); 2471 2472 perf_event_mmap(vma); 2473 } 2474 } 2475 } 2476 anon_vma_unlock_write(vma->anon_vma); 2477 khugepaged_enter_vma(vma, vma->vm_flags); 2478 validate_mm(mm); 2479 return error; 2480 } 2481 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */ 2482 2483 /* 2484 * vma is the first one with address < vma->vm_start. Have to extend vma. 2485 */ 2486 int expand_downwards(struct vm_area_struct *vma, 2487 unsigned long address) 2488 { 2489 struct mm_struct *mm = vma->vm_mm; 2490 struct vm_area_struct *prev; 2491 int error = 0; 2492 2493 address &= PAGE_MASK; 2494 if (address < mmap_min_addr) 2495 return -EPERM; 2496 2497 /* Enforce stack_guard_gap */ 2498 prev = vma->vm_prev; 2499 /* Check that both stack segments have the same anon_vma? */ 2500 if (prev && !(prev->vm_flags & VM_GROWSDOWN) && 2501 vma_is_accessible(prev)) { 2502 if (address - prev->vm_end < stack_guard_gap) 2503 return -ENOMEM; 2504 } 2505 2506 /* We must make sure the anon_vma is allocated. */ 2507 if (unlikely(anon_vma_prepare(vma))) 2508 return -ENOMEM; 2509 2510 /* 2511 * vma->vm_start/vm_end cannot change under us because the caller 2512 * is required to hold the mmap_lock in read mode. We need the 2513 * anon_vma lock to serialize against concurrent expand_stacks. 2514 */ 2515 anon_vma_lock_write(vma->anon_vma); 2516 2517 /* Somebody else might have raced and expanded it already */ 2518 if (address < vma->vm_start) { 2519 unsigned long size, grow; 2520 2521 size = vma->vm_end - address; 2522 grow = (vma->vm_start - address) >> PAGE_SHIFT; 2523 2524 error = -ENOMEM; 2525 if (grow <= vma->vm_pgoff) { 2526 error = acct_stack_growth(vma, size, grow); 2527 if (!error) { 2528 /* 2529 * vma_gap_update() doesn't support concurrent 2530 * updates, but we only hold a shared mmap_lock 2531 * lock here, so we need to protect against 2532 * concurrent vma expansions. 2533 * anon_vma_lock_write() doesn't help here, as 2534 * we don't guarantee that all growable vmas 2535 * in a mm share the same root anon vma. 2536 * So, we reuse mm->page_table_lock to guard 2537 * against concurrent vma expansions. 2538 */ 2539 spin_lock(&mm->page_table_lock); 2540 if (vma->vm_flags & VM_LOCKED) 2541 mm->locked_vm += grow; 2542 vm_stat_account(mm, vma->vm_flags, grow); 2543 anon_vma_interval_tree_pre_update_vma(vma); 2544 vma->vm_start = address; 2545 vma->vm_pgoff -= grow; 2546 anon_vma_interval_tree_post_update_vma(vma); 2547 vma_gap_update(vma); 2548 spin_unlock(&mm->page_table_lock); 2549 2550 perf_event_mmap(vma); 2551 } 2552 } 2553 } 2554 anon_vma_unlock_write(vma->anon_vma); 2555 khugepaged_enter_vma(vma, vma->vm_flags); 2556 validate_mm(mm); 2557 return error; 2558 } 2559 2560 /* enforced gap between the expanding stack and other mappings. */ 2561 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT; 2562 2563 static int __init cmdline_parse_stack_guard_gap(char *p) 2564 { 2565 unsigned long val; 2566 char *endptr; 2567 2568 val = simple_strtoul(p, &endptr, 10); 2569 if (!*endptr) 2570 stack_guard_gap = val << PAGE_SHIFT; 2571 2572 return 1; 2573 } 2574 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap); 2575 2576 #ifdef CONFIG_STACK_GROWSUP 2577 int expand_stack(struct vm_area_struct *vma, unsigned long address) 2578 { 2579 return expand_upwards(vma, address); 2580 } 2581 2582 struct vm_area_struct * 2583 find_extend_vma(struct mm_struct *mm, unsigned long addr) 2584 { 2585 struct vm_area_struct *vma, *prev; 2586 2587 addr &= PAGE_MASK; 2588 vma = find_vma_prev(mm, addr, &prev); 2589 if (vma && (vma->vm_start <= addr)) 2590 return vma; 2591 /* don't alter vm_end if the coredump is running */ 2592 if (!prev || expand_stack(prev, addr)) 2593 return NULL; 2594 if (prev->vm_flags & VM_LOCKED) 2595 populate_vma_page_range(prev, addr, prev->vm_end, NULL); 2596 return prev; 2597 } 2598 #else 2599 int expand_stack(struct vm_area_struct *vma, unsigned long address) 2600 { 2601 return expand_downwards(vma, address); 2602 } 2603 2604 struct vm_area_struct * 2605 find_extend_vma(struct mm_struct *mm, unsigned long addr) 2606 { 2607 struct vm_area_struct *vma; 2608 unsigned long start; 2609 2610 addr &= PAGE_MASK; 2611 vma = find_vma(mm, addr); 2612 if (!vma) 2613 return NULL; 2614 if (vma->vm_start <= addr) 2615 return vma; 2616 if (!(vma->vm_flags & VM_GROWSDOWN)) 2617 return NULL; 2618 start = vma->vm_start; 2619 if (expand_stack(vma, addr)) 2620 return NULL; 2621 if (vma->vm_flags & VM_LOCKED) 2622 populate_vma_page_range(vma, addr, start, NULL); 2623 return vma; 2624 } 2625 #endif 2626 2627 EXPORT_SYMBOL_GPL(find_extend_vma); 2628 2629 /* 2630 * Ok - we have the memory areas we should free on the vma list, 2631 * so release them, and do the vma updates. 2632 * 2633 * Called with the mm semaphore held. 2634 */ 2635 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma) 2636 { 2637 unsigned long nr_accounted = 0; 2638 2639 /* Update high watermark before we lower total_vm */ 2640 update_hiwater_vm(mm); 2641 do { 2642 long nrpages = vma_pages(vma); 2643 2644 if (vma->vm_flags & VM_ACCOUNT) 2645 nr_accounted += nrpages; 2646 vm_stat_account(mm, vma->vm_flags, -nrpages); 2647 vma = remove_vma(vma); 2648 } while (vma); 2649 vm_unacct_memory(nr_accounted); 2650 validate_mm(mm); 2651 } 2652 2653 /* 2654 * Get rid of page table information in the indicated region. 2655 * 2656 * Called with the mm semaphore held. 2657 */ 2658 static void unmap_region(struct mm_struct *mm, 2659 struct vm_area_struct *vma, struct vm_area_struct *prev, 2660 unsigned long start, unsigned long end) 2661 { 2662 struct vm_area_struct *next = vma_next(mm, prev); 2663 struct mmu_gather tlb; 2664 2665 lru_add_drain(); 2666 tlb_gather_mmu(&tlb, mm); 2667 update_hiwater_rss(mm); 2668 unmap_vmas(&tlb, vma, start, end); 2669 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS, 2670 next ? next->vm_start : USER_PGTABLES_CEILING); 2671 tlb_finish_mmu(&tlb); 2672 } 2673 2674 /* 2675 * Create a list of vma's touched by the unmap, removing them from the mm's 2676 * vma list as we go.. 2677 */ 2678 static bool 2679 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma, 2680 struct vm_area_struct *prev, unsigned long end) 2681 { 2682 struct vm_area_struct **insertion_point; 2683 struct vm_area_struct *tail_vma = NULL; 2684 2685 insertion_point = (prev ? &prev->vm_next : &mm->mmap); 2686 vma->vm_prev = NULL; 2687 do { 2688 vma_rb_erase(vma, &mm->mm_rb); 2689 if (vma->vm_flags & VM_LOCKED) 2690 mm->locked_vm -= vma_pages(vma); 2691 mm->map_count--; 2692 tail_vma = vma; 2693 vma = vma->vm_next; 2694 } while (vma && vma->vm_start < end); 2695 *insertion_point = vma; 2696 if (vma) { 2697 vma->vm_prev = prev; 2698 vma_gap_update(vma); 2699 } else 2700 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0; 2701 tail_vma->vm_next = NULL; 2702 2703 /* Kill the cache */ 2704 vmacache_invalidate(mm); 2705 2706 /* 2707 * Do not downgrade mmap_lock if we are next to VM_GROWSDOWN or 2708 * VM_GROWSUP VMA. Such VMAs can change their size under 2709 * down_read(mmap_lock) and collide with the VMA we are about to unmap. 2710 */ 2711 if (vma && (vma->vm_flags & VM_GROWSDOWN)) 2712 return false; 2713 if (prev && (prev->vm_flags & VM_GROWSUP)) 2714 return false; 2715 return true; 2716 } 2717 2718 /* 2719 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it 2720 * has already been checked or doesn't make sense to fail. 2721 */ 2722 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 2723 unsigned long addr, int new_below) 2724 { 2725 struct vm_area_struct *new; 2726 int err; 2727 2728 if (vma->vm_ops && vma->vm_ops->may_split) { 2729 err = vma->vm_ops->may_split(vma, addr); 2730 if (err) 2731 return err; 2732 } 2733 2734 new = vm_area_dup(vma); 2735 if (!new) 2736 return -ENOMEM; 2737 2738 if (new_below) 2739 new->vm_end = addr; 2740 else { 2741 new->vm_start = addr; 2742 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); 2743 } 2744 2745 err = vma_dup_policy(vma, new); 2746 if (err) 2747 goto out_free_vma; 2748 2749 err = anon_vma_clone(new, vma); 2750 if (err) 2751 goto out_free_mpol; 2752 2753 if (new->vm_file) 2754 get_file(new->vm_file); 2755 2756 if (new->vm_ops && new->vm_ops->open) 2757 new->vm_ops->open(new); 2758 2759 if (new_below) 2760 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff + 2761 ((addr - new->vm_start) >> PAGE_SHIFT), new); 2762 else 2763 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new); 2764 2765 /* Success. */ 2766 if (!err) 2767 return 0; 2768 2769 /* Clean everything up if vma_adjust failed. */ 2770 if (new->vm_ops && new->vm_ops->close) 2771 new->vm_ops->close(new); 2772 if (new->vm_file) 2773 fput(new->vm_file); 2774 unlink_anon_vmas(new); 2775 out_free_mpol: 2776 mpol_put(vma_policy(new)); 2777 out_free_vma: 2778 vm_area_free(new); 2779 return err; 2780 } 2781 2782 /* 2783 * Split a vma into two pieces at address 'addr', a new vma is allocated 2784 * either for the first part or the tail. 2785 */ 2786 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 2787 unsigned long addr, int new_below) 2788 { 2789 if (mm->map_count >= sysctl_max_map_count) 2790 return -ENOMEM; 2791 2792 return __split_vma(mm, vma, addr, new_below); 2793 } 2794 2795 /* Munmap is split into 2 main parts -- this part which finds 2796 * what needs doing, and the areas themselves, which do the 2797 * work. This now handles partial unmappings. 2798 * Jeremy Fitzhardinge <jeremy@goop.org> 2799 */ 2800 int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len, 2801 struct list_head *uf, bool downgrade) 2802 { 2803 unsigned long end; 2804 struct vm_area_struct *vma, *prev, *last; 2805 2806 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start) 2807 return -EINVAL; 2808 2809 len = PAGE_ALIGN(len); 2810 end = start + len; 2811 if (len == 0) 2812 return -EINVAL; 2813 2814 /* 2815 * arch_unmap() might do unmaps itself. It must be called 2816 * and finish any rbtree manipulation before this code 2817 * runs and also starts to manipulate the rbtree. 2818 */ 2819 arch_unmap(mm, start, end); 2820 2821 /* Find the first overlapping VMA where start < vma->vm_end */ 2822 vma = find_vma_intersection(mm, start, end); 2823 if (!vma) 2824 return 0; 2825 prev = vma->vm_prev; 2826 2827 /* 2828 * If we need to split any vma, do it now to save pain later. 2829 * 2830 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially 2831 * unmapped vm_area_struct will remain in use: so lower split_vma 2832 * places tmp vma above, and higher split_vma places tmp vma below. 2833 */ 2834 if (start > vma->vm_start) { 2835 int error; 2836 2837 /* 2838 * Make sure that map_count on return from munmap() will 2839 * not exceed its limit; but let map_count go just above 2840 * its limit temporarily, to help free resources as expected. 2841 */ 2842 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count) 2843 return -ENOMEM; 2844 2845 error = __split_vma(mm, vma, start, 0); 2846 if (error) 2847 return error; 2848 prev = vma; 2849 } 2850 2851 /* Does it split the last one? */ 2852 last = find_vma(mm, end); 2853 if (last && end > last->vm_start) { 2854 int error = __split_vma(mm, last, end, 1); 2855 if (error) 2856 return error; 2857 } 2858 vma = vma_next(mm, prev); 2859 2860 if (unlikely(uf)) { 2861 /* 2862 * If userfaultfd_unmap_prep returns an error the vmas 2863 * will remain split, but userland will get a 2864 * highly unexpected error anyway. This is no 2865 * different than the case where the first of the two 2866 * __split_vma fails, but we don't undo the first 2867 * split, despite we could. This is unlikely enough 2868 * failure that it's not worth optimizing it for. 2869 */ 2870 int error = userfaultfd_unmap_prep(vma, start, end, uf); 2871 if (error) 2872 return error; 2873 } 2874 2875 /* Detach vmas from rbtree */ 2876 if (!detach_vmas_to_be_unmapped(mm, vma, prev, end)) 2877 downgrade = false; 2878 2879 if (downgrade) 2880 mmap_write_downgrade(mm); 2881 2882 unmap_region(mm, vma, prev, start, end); 2883 2884 /* Fix up all other VM information */ 2885 remove_vma_list(mm, vma); 2886 2887 return downgrade ? 1 : 0; 2888 } 2889 2890 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, 2891 struct list_head *uf) 2892 { 2893 return __do_munmap(mm, start, len, uf, false); 2894 } 2895 2896 static int __vm_munmap(unsigned long start, size_t len, bool downgrade) 2897 { 2898 int ret; 2899 struct mm_struct *mm = current->mm; 2900 LIST_HEAD(uf); 2901 2902 if (mmap_write_lock_killable(mm)) 2903 return -EINTR; 2904 2905 ret = __do_munmap(mm, start, len, &uf, downgrade); 2906 /* 2907 * Returning 1 indicates mmap_lock is downgraded. 2908 * But 1 is not legal return value of vm_munmap() and munmap(), reset 2909 * it to 0 before return. 2910 */ 2911 if (ret == 1) { 2912 mmap_read_unlock(mm); 2913 ret = 0; 2914 } else 2915 mmap_write_unlock(mm); 2916 2917 userfaultfd_unmap_complete(mm, &uf); 2918 return ret; 2919 } 2920 2921 int vm_munmap(unsigned long start, size_t len) 2922 { 2923 return __vm_munmap(start, len, false); 2924 } 2925 EXPORT_SYMBOL(vm_munmap); 2926 2927 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 2928 { 2929 addr = untagged_addr(addr); 2930 return __vm_munmap(addr, len, true); 2931 } 2932 2933 2934 /* 2935 * Emulation of deprecated remap_file_pages() syscall. 2936 */ 2937 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size, 2938 unsigned long, prot, unsigned long, pgoff, unsigned long, flags) 2939 { 2940 2941 struct mm_struct *mm = current->mm; 2942 struct vm_area_struct *vma; 2943 unsigned long populate = 0; 2944 unsigned long ret = -EINVAL; 2945 struct file *file; 2946 2947 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n", 2948 current->comm, current->pid); 2949 2950 if (prot) 2951 return ret; 2952 start = start & PAGE_MASK; 2953 size = size & PAGE_MASK; 2954 2955 if (start + size <= start) 2956 return ret; 2957 2958 /* Does pgoff wrap? */ 2959 if (pgoff + (size >> PAGE_SHIFT) < pgoff) 2960 return ret; 2961 2962 if (mmap_write_lock_killable(mm)) 2963 return -EINTR; 2964 2965 vma = vma_lookup(mm, start); 2966 2967 if (!vma || !(vma->vm_flags & VM_SHARED)) 2968 goto out; 2969 2970 if (start + size > vma->vm_end) { 2971 struct vm_area_struct *next; 2972 2973 for (next = vma->vm_next; next; next = next->vm_next) { 2974 /* hole between vmas ? */ 2975 if (next->vm_start != next->vm_prev->vm_end) 2976 goto out; 2977 2978 if (next->vm_file != vma->vm_file) 2979 goto out; 2980 2981 if (next->vm_flags != vma->vm_flags) 2982 goto out; 2983 2984 if (start + size <= next->vm_end) 2985 break; 2986 } 2987 2988 if (!next) 2989 goto out; 2990 } 2991 2992 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0; 2993 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0; 2994 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0; 2995 2996 flags &= MAP_NONBLOCK; 2997 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE; 2998 if (vma->vm_flags & VM_LOCKED) 2999 flags |= MAP_LOCKED; 3000 3001 file = get_file(vma->vm_file); 3002 ret = do_mmap(vma->vm_file, start, size, 3003 prot, flags, pgoff, &populate, NULL); 3004 fput(file); 3005 out: 3006 mmap_write_unlock(mm); 3007 if (populate) 3008 mm_populate(ret, populate); 3009 if (!IS_ERR_VALUE(ret)) 3010 ret = 0; 3011 return ret; 3012 } 3013 3014 /* 3015 * this is really a simplified "do_mmap". it only handles 3016 * anonymous maps. eventually we may be able to do some 3017 * brk-specific accounting here. 3018 */ 3019 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf) 3020 { 3021 struct mm_struct *mm = current->mm; 3022 struct vm_area_struct *vma, *prev; 3023 struct rb_node **rb_link, *rb_parent; 3024 pgoff_t pgoff = addr >> PAGE_SHIFT; 3025 int error; 3026 unsigned long mapped_addr; 3027 3028 /* Until we need other flags, refuse anything except VM_EXEC. */ 3029 if ((flags & (~VM_EXEC)) != 0) 3030 return -EINVAL; 3031 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; 3032 3033 mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED); 3034 if (IS_ERR_VALUE(mapped_addr)) 3035 return mapped_addr; 3036 3037 error = mlock_future_check(mm, mm->def_flags, len); 3038 if (error) 3039 return error; 3040 3041 /* Clear old maps, set up prev, rb_link, rb_parent, and uf */ 3042 if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf)) 3043 return -ENOMEM; 3044 3045 /* Check against address space limits *after* clearing old maps... */ 3046 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT)) 3047 return -ENOMEM; 3048 3049 if (mm->map_count > sysctl_max_map_count) 3050 return -ENOMEM; 3051 3052 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT)) 3053 return -ENOMEM; 3054 3055 /* Can we just expand an old private anonymous mapping? */ 3056 vma = vma_merge(mm, prev, addr, addr + len, flags, 3057 NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX, NULL); 3058 if (vma) 3059 goto out; 3060 3061 /* 3062 * create a vma struct for an anonymous mapping 3063 */ 3064 vma = vm_area_alloc(mm); 3065 if (!vma) { 3066 vm_unacct_memory(len >> PAGE_SHIFT); 3067 return -ENOMEM; 3068 } 3069 3070 vma_set_anonymous(vma); 3071 vma->vm_start = addr; 3072 vma->vm_end = addr + len; 3073 vma->vm_pgoff = pgoff; 3074 vma->vm_flags = flags; 3075 vma->vm_page_prot = vm_get_page_prot(flags); 3076 vma_link(mm, vma, prev, rb_link, rb_parent); 3077 out: 3078 perf_event_mmap(vma); 3079 mm->total_vm += len >> PAGE_SHIFT; 3080 mm->data_vm += len >> PAGE_SHIFT; 3081 if (flags & VM_LOCKED) 3082 mm->locked_vm += (len >> PAGE_SHIFT); 3083 vma->vm_flags |= VM_SOFTDIRTY; 3084 return 0; 3085 } 3086 3087 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags) 3088 { 3089 struct mm_struct *mm = current->mm; 3090 unsigned long len; 3091 int ret; 3092 bool populate; 3093 LIST_HEAD(uf); 3094 3095 len = PAGE_ALIGN(request); 3096 if (len < request) 3097 return -ENOMEM; 3098 if (!len) 3099 return 0; 3100 3101 if (mmap_write_lock_killable(mm)) 3102 return -EINTR; 3103 3104 ret = do_brk_flags(addr, len, flags, &uf); 3105 populate = ((mm->def_flags & VM_LOCKED) != 0); 3106 mmap_write_unlock(mm); 3107 userfaultfd_unmap_complete(mm, &uf); 3108 if (populate && !ret) 3109 mm_populate(addr, len); 3110 return ret; 3111 } 3112 EXPORT_SYMBOL(vm_brk_flags); 3113 3114 int vm_brk(unsigned long addr, unsigned long len) 3115 { 3116 return vm_brk_flags(addr, len, 0); 3117 } 3118 EXPORT_SYMBOL(vm_brk); 3119 3120 /* Release all mmaps. */ 3121 void exit_mmap(struct mm_struct *mm) 3122 { 3123 struct mmu_gather tlb; 3124 struct vm_area_struct *vma; 3125 unsigned long nr_accounted = 0; 3126 3127 /* mm's last user has gone, and its about to be pulled down */ 3128 mmu_notifier_release(mm); 3129 3130 if (unlikely(mm_is_oom_victim(mm))) { 3131 /* 3132 * Manually reap the mm to free as much memory as possible. 3133 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard 3134 * this mm from further consideration. Taking mm->mmap_lock for 3135 * write after setting MMF_OOM_SKIP will guarantee that the oom 3136 * reaper will not run on this mm again after mmap_lock is 3137 * dropped. 3138 * 3139 * Nothing can be holding mm->mmap_lock here and the above call 3140 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in 3141 * __oom_reap_task_mm() will not block. 3142 */ 3143 (void)__oom_reap_task_mm(mm); 3144 set_bit(MMF_OOM_SKIP, &mm->flags); 3145 } 3146 3147 mmap_write_lock(mm); 3148 arch_exit_mmap(mm); 3149 3150 vma = mm->mmap; 3151 if (!vma) { 3152 /* Can happen if dup_mmap() received an OOM */ 3153 mmap_write_unlock(mm); 3154 return; 3155 } 3156 3157 lru_add_drain(); 3158 flush_cache_mm(mm); 3159 tlb_gather_mmu_fullmm(&tlb, mm); 3160 /* update_hiwater_rss(mm) here? but nobody should be looking */ 3161 /* Use -1 here to ensure all VMAs in the mm are unmapped */ 3162 unmap_vmas(&tlb, vma, 0, -1); 3163 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING); 3164 tlb_finish_mmu(&tlb); 3165 3166 /* Walk the list again, actually closing and freeing it. */ 3167 while (vma) { 3168 if (vma->vm_flags & VM_ACCOUNT) 3169 nr_accounted += vma_pages(vma); 3170 vma = remove_vma(vma); 3171 cond_resched(); 3172 } 3173 mm->mmap = NULL; 3174 mmap_write_unlock(mm); 3175 vm_unacct_memory(nr_accounted); 3176 } 3177 3178 /* Insert vm structure into process list sorted by address 3179 * and into the inode's i_mmap tree. If vm_file is non-NULL 3180 * then i_mmap_rwsem is taken here. 3181 */ 3182 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 3183 { 3184 struct vm_area_struct *prev; 3185 struct rb_node **rb_link, *rb_parent; 3186 3187 if (find_vma_links(mm, vma->vm_start, vma->vm_end, 3188 &prev, &rb_link, &rb_parent)) 3189 return -ENOMEM; 3190 if ((vma->vm_flags & VM_ACCOUNT) && 3191 security_vm_enough_memory_mm(mm, vma_pages(vma))) 3192 return -ENOMEM; 3193 3194 /* 3195 * The vm_pgoff of a purely anonymous vma should be irrelevant 3196 * until its first write fault, when page's anon_vma and index 3197 * are set. But now set the vm_pgoff it will almost certainly 3198 * end up with (unless mremap moves it elsewhere before that 3199 * first wfault), so /proc/pid/maps tells a consistent story. 3200 * 3201 * By setting it to reflect the virtual start address of the 3202 * vma, merges and splits can happen in a seamless way, just 3203 * using the existing file pgoff checks and manipulations. 3204 * Similarly in do_mmap and in do_brk_flags. 3205 */ 3206 if (vma_is_anonymous(vma)) { 3207 BUG_ON(vma->anon_vma); 3208 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; 3209 } 3210 3211 vma_link(mm, vma, prev, rb_link, rb_parent); 3212 return 0; 3213 } 3214 3215 /* 3216 * Copy the vma structure to a new location in the same mm, 3217 * prior to moving page table entries, to effect an mremap move. 3218 */ 3219 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 3220 unsigned long addr, unsigned long len, pgoff_t pgoff, 3221 bool *need_rmap_locks) 3222 { 3223 struct vm_area_struct *vma = *vmap; 3224 unsigned long vma_start = vma->vm_start; 3225 struct mm_struct *mm = vma->vm_mm; 3226 struct vm_area_struct *new_vma, *prev; 3227 struct rb_node **rb_link, *rb_parent; 3228 bool faulted_in_anon_vma = true; 3229 3230 /* 3231 * If anonymous vma has not yet been faulted, update new pgoff 3232 * to match new location, to increase its chance of merging. 3233 */ 3234 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) { 3235 pgoff = addr >> PAGE_SHIFT; 3236 faulted_in_anon_vma = false; 3237 } 3238 3239 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) 3240 return NULL; /* should never get here */ 3241 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags, 3242 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma), 3243 vma->vm_userfaultfd_ctx, anon_vma_name(vma)); 3244 if (new_vma) { 3245 /* 3246 * Source vma may have been merged into new_vma 3247 */ 3248 if (unlikely(vma_start >= new_vma->vm_start && 3249 vma_start < new_vma->vm_end)) { 3250 /* 3251 * The only way we can get a vma_merge with 3252 * self during an mremap is if the vma hasn't 3253 * been faulted in yet and we were allowed to 3254 * reset the dst vma->vm_pgoff to the 3255 * destination address of the mremap to allow 3256 * the merge to happen. mremap must change the 3257 * vm_pgoff linearity between src and dst vmas 3258 * (in turn preventing a vma_merge) to be 3259 * safe. It is only safe to keep the vm_pgoff 3260 * linear if there are no pages mapped yet. 3261 */ 3262 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma); 3263 *vmap = vma = new_vma; 3264 } 3265 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff); 3266 } else { 3267 new_vma = vm_area_dup(vma); 3268 if (!new_vma) 3269 goto out; 3270 new_vma->vm_start = addr; 3271 new_vma->vm_end = addr + len; 3272 new_vma->vm_pgoff = pgoff; 3273 if (vma_dup_policy(vma, new_vma)) 3274 goto out_free_vma; 3275 if (anon_vma_clone(new_vma, vma)) 3276 goto out_free_mempol; 3277 if (new_vma->vm_file) 3278 get_file(new_vma->vm_file); 3279 if (new_vma->vm_ops && new_vma->vm_ops->open) 3280 new_vma->vm_ops->open(new_vma); 3281 vma_link(mm, new_vma, prev, rb_link, rb_parent); 3282 *need_rmap_locks = false; 3283 } 3284 return new_vma; 3285 3286 out_free_mempol: 3287 mpol_put(vma_policy(new_vma)); 3288 out_free_vma: 3289 vm_area_free(new_vma); 3290 out: 3291 return NULL; 3292 } 3293 3294 /* 3295 * Return true if the calling process may expand its vm space by the passed 3296 * number of pages 3297 */ 3298 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages) 3299 { 3300 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT) 3301 return false; 3302 3303 if (is_data_mapping(flags) && 3304 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) { 3305 /* Workaround for Valgrind */ 3306 if (rlimit(RLIMIT_DATA) == 0 && 3307 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT) 3308 return true; 3309 3310 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n", 3311 current->comm, current->pid, 3312 (mm->data_vm + npages) << PAGE_SHIFT, 3313 rlimit(RLIMIT_DATA), 3314 ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data"); 3315 3316 if (!ignore_rlimit_data) 3317 return false; 3318 } 3319 3320 return true; 3321 } 3322 3323 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages) 3324 { 3325 WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages); 3326 3327 if (is_exec_mapping(flags)) 3328 mm->exec_vm += npages; 3329 else if (is_stack_mapping(flags)) 3330 mm->stack_vm += npages; 3331 else if (is_data_mapping(flags)) 3332 mm->data_vm += npages; 3333 } 3334 3335 static vm_fault_t special_mapping_fault(struct vm_fault *vmf); 3336 3337 /* 3338 * Having a close hook prevents vma merging regardless of flags. 3339 */ 3340 static void special_mapping_close(struct vm_area_struct *vma) 3341 { 3342 } 3343 3344 static const char *special_mapping_name(struct vm_area_struct *vma) 3345 { 3346 return ((struct vm_special_mapping *)vma->vm_private_data)->name; 3347 } 3348 3349 static int special_mapping_mremap(struct vm_area_struct *new_vma) 3350 { 3351 struct vm_special_mapping *sm = new_vma->vm_private_data; 3352 3353 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm)) 3354 return -EFAULT; 3355 3356 if (sm->mremap) 3357 return sm->mremap(sm, new_vma); 3358 3359 return 0; 3360 } 3361 3362 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr) 3363 { 3364 /* 3365 * Forbid splitting special mappings - kernel has expectations over 3366 * the number of pages in mapping. Together with VM_DONTEXPAND 3367 * the size of vma should stay the same over the special mapping's 3368 * lifetime. 3369 */ 3370 return -EINVAL; 3371 } 3372 3373 static const struct vm_operations_struct special_mapping_vmops = { 3374 .close = special_mapping_close, 3375 .fault = special_mapping_fault, 3376 .mremap = special_mapping_mremap, 3377 .name = special_mapping_name, 3378 /* vDSO code relies that VVAR can't be accessed remotely */ 3379 .access = NULL, 3380 .may_split = special_mapping_split, 3381 }; 3382 3383 static const struct vm_operations_struct legacy_special_mapping_vmops = { 3384 .close = special_mapping_close, 3385 .fault = special_mapping_fault, 3386 }; 3387 3388 static vm_fault_t special_mapping_fault(struct vm_fault *vmf) 3389 { 3390 struct vm_area_struct *vma = vmf->vma; 3391 pgoff_t pgoff; 3392 struct page **pages; 3393 3394 if (vma->vm_ops == &legacy_special_mapping_vmops) { 3395 pages = vma->vm_private_data; 3396 } else { 3397 struct vm_special_mapping *sm = vma->vm_private_data; 3398 3399 if (sm->fault) 3400 return sm->fault(sm, vmf->vma, vmf); 3401 3402 pages = sm->pages; 3403 } 3404 3405 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages) 3406 pgoff--; 3407 3408 if (*pages) { 3409 struct page *page = *pages; 3410 get_page(page); 3411 vmf->page = page; 3412 return 0; 3413 } 3414 3415 return VM_FAULT_SIGBUS; 3416 } 3417 3418 static struct vm_area_struct *__install_special_mapping( 3419 struct mm_struct *mm, 3420 unsigned long addr, unsigned long len, 3421 unsigned long vm_flags, void *priv, 3422 const struct vm_operations_struct *ops) 3423 { 3424 int ret; 3425 struct vm_area_struct *vma; 3426 3427 vma = vm_area_alloc(mm); 3428 if (unlikely(vma == NULL)) 3429 return ERR_PTR(-ENOMEM); 3430 3431 vma->vm_start = addr; 3432 vma->vm_end = addr + len; 3433 3434 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY; 3435 vma->vm_flags &= VM_LOCKED_CLEAR_MASK; 3436 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 3437 3438 vma->vm_ops = ops; 3439 vma->vm_private_data = priv; 3440 3441 ret = insert_vm_struct(mm, vma); 3442 if (ret) 3443 goto out; 3444 3445 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT); 3446 3447 perf_event_mmap(vma); 3448 3449 return vma; 3450 3451 out: 3452 vm_area_free(vma); 3453 return ERR_PTR(ret); 3454 } 3455 3456 bool vma_is_special_mapping(const struct vm_area_struct *vma, 3457 const struct vm_special_mapping *sm) 3458 { 3459 return vma->vm_private_data == sm && 3460 (vma->vm_ops == &special_mapping_vmops || 3461 vma->vm_ops == &legacy_special_mapping_vmops); 3462 } 3463 3464 /* 3465 * Called with mm->mmap_lock held for writing. 3466 * Insert a new vma covering the given region, with the given flags. 3467 * Its pages are supplied by the given array of struct page *. 3468 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated. 3469 * The region past the last page supplied will always produce SIGBUS. 3470 * The array pointer and the pages it points to are assumed to stay alive 3471 * for as long as this mapping might exist. 3472 */ 3473 struct vm_area_struct *_install_special_mapping( 3474 struct mm_struct *mm, 3475 unsigned long addr, unsigned long len, 3476 unsigned long vm_flags, const struct vm_special_mapping *spec) 3477 { 3478 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec, 3479 &special_mapping_vmops); 3480 } 3481 3482 int install_special_mapping(struct mm_struct *mm, 3483 unsigned long addr, unsigned long len, 3484 unsigned long vm_flags, struct page **pages) 3485 { 3486 struct vm_area_struct *vma = __install_special_mapping( 3487 mm, addr, len, vm_flags, (void *)pages, 3488 &legacy_special_mapping_vmops); 3489 3490 return PTR_ERR_OR_ZERO(vma); 3491 } 3492 3493 static DEFINE_MUTEX(mm_all_locks_mutex); 3494 3495 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) 3496 { 3497 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 3498 /* 3499 * The LSB of head.next can't change from under us 3500 * because we hold the mm_all_locks_mutex. 3501 */ 3502 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock); 3503 /* 3504 * We can safely modify head.next after taking the 3505 * anon_vma->root->rwsem. If some other vma in this mm shares 3506 * the same anon_vma we won't take it again. 3507 * 3508 * No need of atomic instructions here, head.next 3509 * can't change from under us thanks to the 3510 * anon_vma->root->rwsem. 3511 */ 3512 if (__test_and_set_bit(0, (unsigned long *) 3513 &anon_vma->root->rb_root.rb_root.rb_node)) 3514 BUG(); 3515 } 3516 } 3517 3518 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) 3519 { 3520 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3521 /* 3522 * AS_MM_ALL_LOCKS can't change from under us because 3523 * we hold the mm_all_locks_mutex. 3524 * 3525 * Operations on ->flags have to be atomic because 3526 * even if AS_MM_ALL_LOCKS is stable thanks to the 3527 * mm_all_locks_mutex, there may be other cpus 3528 * changing other bitflags in parallel to us. 3529 */ 3530 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) 3531 BUG(); 3532 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock); 3533 } 3534 } 3535 3536 /* 3537 * This operation locks against the VM for all pte/vma/mm related 3538 * operations that could ever happen on a certain mm. This includes 3539 * vmtruncate, try_to_unmap, and all page faults. 3540 * 3541 * The caller must take the mmap_lock in write mode before calling 3542 * mm_take_all_locks(). The caller isn't allowed to release the 3543 * mmap_lock until mm_drop_all_locks() returns. 3544 * 3545 * mmap_lock in write mode is required in order to block all operations 3546 * that could modify pagetables and free pages without need of 3547 * altering the vma layout. It's also needed in write mode to avoid new 3548 * anon_vmas to be associated with existing vmas. 3549 * 3550 * A single task can't take more than one mm_take_all_locks() in a row 3551 * or it would deadlock. 3552 * 3553 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in 3554 * mapping->flags avoid to take the same lock twice, if more than one 3555 * vma in this mm is backed by the same anon_vma or address_space. 3556 * 3557 * We take locks in following order, accordingly to comment at beginning 3558 * of mm/rmap.c: 3559 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for 3560 * hugetlb mapping); 3561 * - all i_mmap_rwsem locks; 3562 * - all anon_vma->rwseml 3563 * 3564 * We can take all locks within these types randomly because the VM code 3565 * doesn't nest them and we protected from parallel mm_take_all_locks() by 3566 * mm_all_locks_mutex. 3567 * 3568 * mm_take_all_locks() and mm_drop_all_locks are expensive operations 3569 * that may have to take thousand of locks. 3570 * 3571 * mm_take_all_locks() can fail if it's interrupted by signals. 3572 */ 3573 int mm_take_all_locks(struct mm_struct *mm) 3574 { 3575 struct vm_area_struct *vma; 3576 struct anon_vma_chain *avc; 3577 3578 mmap_assert_write_locked(mm); 3579 3580 mutex_lock(&mm_all_locks_mutex); 3581 3582 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3583 if (signal_pending(current)) 3584 goto out_unlock; 3585 if (vma->vm_file && vma->vm_file->f_mapping && 3586 is_vm_hugetlb_page(vma)) 3587 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3588 } 3589 3590 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3591 if (signal_pending(current)) 3592 goto out_unlock; 3593 if (vma->vm_file && vma->vm_file->f_mapping && 3594 !is_vm_hugetlb_page(vma)) 3595 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3596 } 3597 3598 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3599 if (signal_pending(current)) 3600 goto out_unlock; 3601 if (vma->anon_vma) 3602 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3603 vm_lock_anon_vma(mm, avc->anon_vma); 3604 } 3605 3606 return 0; 3607 3608 out_unlock: 3609 mm_drop_all_locks(mm); 3610 return -EINTR; 3611 } 3612 3613 static void vm_unlock_anon_vma(struct anon_vma *anon_vma) 3614 { 3615 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 3616 /* 3617 * The LSB of head.next can't change to 0 from under 3618 * us because we hold the mm_all_locks_mutex. 3619 * 3620 * We must however clear the bitflag before unlocking 3621 * the vma so the users using the anon_vma->rb_root will 3622 * never see our bitflag. 3623 * 3624 * No need of atomic instructions here, head.next 3625 * can't change from under us until we release the 3626 * anon_vma->root->rwsem. 3627 */ 3628 if (!__test_and_clear_bit(0, (unsigned long *) 3629 &anon_vma->root->rb_root.rb_root.rb_node)) 3630 BUG(); 3631 anon_vma_unlock_write(anon_vma); 3632 } 3633 } 3634 3635 static void vm_unlock_mapping(struct address_space *mapping) 3636 { 3637 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3638 /* 3639 * AS_MM_ALL_LOCKS can't change to 0 from under us 3640 * because we hold the mm_all_locks_mutex. 3641 */ 3642 i_mmap_unlock_write(mapping); 3643 if (!test_and_clear_bit(AS_MM_ALL_LOCKS, 3644 &mapping->flags)) 3645 BUG(); 3646 } 3647 } 3648 3649 /* 3650 * The mmap_lock cannot be released by the caller until 3651 * mm_drop_all_locks() returns. 3652 */ 3653 void mm_drop_all_locks(struct mm_struct *mm) 3654 { 3655 struct vm_area_struct *vma; 3656 struct anon_vma_chain *avc; 3657 3658 mmap_assert_write_locked(mm); 3659 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); 3660 3661 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3662 if (vma->anon_vma) 3663 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3664 vm_unlock_anon_vma(avc->anon_vma); 3665 if (vma->vm_file && vma->vm_file->f_mapping) 3666 vm_unlock_mapping(vma->vm_file->f_mapping); 3667 } 3668 3669 mutex_unlock(&mm_all_locks_mutex); 3670 } 3671 3672 /* 3673 * initialise the percpu counter for VM 3674 */ 3675 void __init mmap_init(void) 3676 { 3677 int ret; 3678 3679 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL); 3680 VM_BUG_ON(ret); 3681 } 3682 3683 /* 3684 * Initialise sysctl_user_reserve_kbytes. 3685 * 3686 * This is intended to prevent a user from starting a single memory hogging 3687 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER 3688 * mode. 3689 * 3690 * The default value is min(3% of free memory, 128MB) 3691 * 128MB is enough to recover with sshd/login, bash, and top/kill. 3692 */ 3693 static int init_user_reserve(void) 3694 { 3695 unsigned long free_kbytes; 3696 3697 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3698 3699 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17); 3700 return 0; 3701 } 3702 subsys_initcall(init_user_reserve); 3703 3704 /* 3705 * Initialise sysctl_admin_reserve_kbytes. 3706 * 3707 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin 3708 * to log in and kill a memory hogging process. 3709 * 3710 * Systems with more than 256MB will reserve 8MB, enough to recover 3711 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will 3712 * only reserve 3% of free pages by default. 3713 */ 3714 static int init_admin_reserve(void) 3715 { 3716 unsigned long free_kbytes; 3717 3718 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3719 3720 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13); 3721 return 0; 3722 } 3723 subsys_initcall(init_admin_reserve); 3724 3725 /* 3726 * Reinititalise user and admin reserves if memory is added or removed. 3727 * 3728 * The default user reserve max is 128MB, and the default max for the 3729 * admin reserve is 8MB. These are usually, but not always, enough to 3730 * enable recovery from a memory hogging process using login/sshd, a shell, 3731 * and tools like top. It may make sense to increase or even disable the 3732 * reserve depending on the existence of swap or variations in the recovery 3733 * tools. So, the admin may have changed them. 3734 * 3735 * If memory is added and the reserves have been eliminated or increased above 3736 * the default max, then we'll trust the admin. 3737 * 3738 * If memory is removed and there isn't enough free memory, then we 3739 * need to reset the reserves. 3740 * 3741 * Otherwise keep the reserve set by the admin. 3742 */ 3743 static int reserve_mem_notifier(struct notifier_block *nb, 3744 unsigned long action, void *data) 3745 { 3746 unsigned long tmp, free_kbytes; 3747 3748 switch (action) { 3749 case MEM_ONLINE: 3750 /* Default max is 128MB. Leave alone if modified by operator. */ 3751 tmp = sysctl_user_reserve_kbytes; 3752 if (0 < tmp && tmp < (1UL << 17)) 3753 init_user_reserve(); 3754 3755 /* Default max is 8MB. Leave alone if modified by operator. */ 3756 tmp = sysctl_admin_reserve_kbytes; 3757 if (0 < tmp && tmp < (1UL << 13)) 3758 init_admin_reserve(); 3759 3760 break; 3761 case MEM_OFFLINE: 3762 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3763 3764 if (sysctl_user_reserve_kbytes > free_kbytes) { 3765 init_user_reserve(); 3766 pr_info("vm.user_reserve_kbytes reset to %lu\n", 3767 sysctl_user_reserve_kbytes); 3768 } 3769 3770 if (sysctl_admin_reserve_kbytes > free_kbytes) { 3771 init_admin_reserve(); 3772 pr_info("vm.admin_reserve_kbytes reset to %lu\n", 3773 sysctl_admin_reserve_kbytes); 3774 } 3775 break; 3776 default: 3777 break; 3778 } 3779 return NOTIFY_OK; 3780 } 3781 3782 static struct notifier_block reserve_mem_nb = { 3783 .notifier_call = reserve_mem_notifier, 3784 }; 3785 3786 static int __meminit init_reserve_notifier(void) 3787 { 3788 if (register_hotmemory_notifier(&reserve_mem_nb)) 3789 pr_err("Failed registering memory add/remove notifier for admin reserve\n"); 3790 3791 return 0; 3792 } 3793 subsys_initcall(init_reserve_notifier); 3794