1 /* 2 * mm/mmap.c 3 * 4 * Written by obz. 5 * 6 * Address space accounting code <alan@lxorguk.ukuu.org.uk> 7 */ 8 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/kernel.h> 12 #include <linux/slab.h> 13 #include <linux/backing-dev.h> 14 #include <linux/mm.h> 15 #include <linux/vmacache.h> 16 #include <linux/shm.h> 17 #include <linux/mman.h> 18 #include <linux/pagemap.h> 19 #include <linux/swap.h> 20 #include <linux/syscalls.h> 21 #include <linux/capability.h> 22 #include <linux/init.h> 23 #include <linux/file.h> 24 #include <linux/fs.h> 25 #include <linux/personality.h> 26 #include <linux/security.h> 27 #include <linux/hugetlb.h> 28 #include <linux/shmem_fs.h> 29 #include <linux/profile.h> 30 #include <linux/export.h> 31 #include <linux/mount.h> 32 #include <linux/mempolicy.h> 33 #include <linux/rmap.h> 34 #include <linux/mmu_notifier.h> 35 #include <linux/mmdebug.h> 36 #include <linux/perf_event.h> 37 #include <linux/audit.h> 38 #include <linux/khugepaged.h> 39 #include <linux/uprobes.h> 40 #include <linux/rbtree_augmented.h> 41 #include <linux/notifier.h> 42 #include <linux/memory.h> 43 #include <linux/printk.h> 44 #include <linux/userfaultfd_k.h> 45 #include <linux/moduleparam.h> 46 #include <linux/pkeys.h> 47 #include <linux/oom.h> 48 49 #include <linux/uaccess.h> 50 #include <asm/cacheflush.h> 51 #include <asm/tlb.h> 52 #include <asm/mmu_context.h> 53 54 #include "internal.h" 55 56 #ifndef arch_mmap_check 57 #define arch_mmap_check(addr, len, flags) (0) 58 #endif 59 60 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 61 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN; 62 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX; 63 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS; 64 #endif 65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 66 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN; 67 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX; 68 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS; 69 #endif 70 71 static bool ignore_rlimit_data; 72 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644); 73 74 static void unmap_region(struct mm_struct *mm, 75 struct vm_area_struct *vma, struct vm_area_struct *prev, 76 unsigned long start, unsigned long end); 77 78 /* description of effects of mapping type and prot in current implementation. 79 * this is due to the limited x86 page protection hardware. The expected 80 * behavior is in parens: 81 * 82 * map_type prot 83 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC 84 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes 85 * w: (no) no w: (no) no w: (yes) yes w: (no) no 86 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 87 * 88 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes 89 * w: (no) no w: (no) no w: (copy) copy w: (no) no 90 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 91 * 92 * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and 93 * MAP_PRIVATE: 94 * r: (no) no 95 * w: (no) no 96 * x: (yes) yes 97 */ 98 pgprot_t protection_map[16] __ro_after_init = { 99 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111, 100 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111 101 }; 102 103 pgprot_t vm_get_page_prot(unsigned long vm_flags) 104 { 105 return __pgprot(pgprot_val(protection_map[vm_flags & 106 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) | 107 pgprot_val(arch_vm_get_page_prot(vm_flags))); 108 } 109 EXPORT_SYMBOL(vm_get_page_prot); 110 111 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags) 112 { 113 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags)); 114 } 115 116 /* Update vma->vm_page_prot to reflect vma->vm_flags. */ 117 void vma_set_page_prot(struct vm_area_struct *vma) 118 { 119 unsigned long vm_flags = vma->vm_flags; 120 pgprot_t vm_page_prot; 121 122 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags); 123 if (vma_wants_writenotify(vma, vm_page_prot)) { 124 vm_flags &= ~VM_SHARED; 125 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags); 126 } 127 /* remove_protection_ptes reads vma->vm_page_prot without mmap_sem */ 128 WRITE_ONCE(vma->vm_page_prot, vm_page_prot); 129 } 130 131 /* 132 * Requires inode->i_mapping->i_mmap_rwsem 133 */ 134 static void __remove_shared_vm_struct(struct vm_area_struct *vma, 135 struct file *file, struct address_space *mapping) 136 { 137 if (vma->vm_flags & VM_DENYWRITE) 138 atomic_inc(&file_inode(file)->i_writecount); 139 if (vma->vm_flags & VM_SHARED) 140 mapping_unmap_writable(mapping); 141 142 flush_dcache_mmap_lock(mapping); 143 vma_interval_tree_remove(vma, &mapping->i_mmap); 144 flush_dcache_mmap_unlock(mapping); 145 } 146 147 /* 148 * Unlink a file-based vm structure from its interval tree, to hide 149 * vma from rmap and vmtruncate before freeing its page tables. 150 */ 151 void unlink_file_vma(struct vm_area_struct *vma) 152 { 153 struct file *file = vma->vm_file; 154 155 if (file) { 156 struct address_space *mapping = file->f_mapping; 157 i_mmap_lock_write(mapping); 158 __remove_shared_vm_struct(vma, file, mapping); 159 i_mmap_unlock_write(mapping); 160 } 161 } 162 163 /* 164 * Close a vm structure and free it, returning the next. 165 */ 166 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma) 167 { 168 struct vm_area_struct *next = vma->vm_next; 169 170 might_sleep(); 171 if (vma->vm_ops && vma->vm_ops->close) 172 vma->vm_ops->close(vma); 173 if (vma->vm_file) 174 fput(vma->vm_file); 175 mpol_put(vma_policy(vma)); 176 kmem_cache_free(vm_area_cachep, vma); 177 return next; 178 } 179 180 static int do_brk(unsigned long addr, unsigned long len, struct list_head *uf); 181 182 SYSCALL_DEFINE1(brk, unsigned long, brk) 183 { 184 unsigned long retval; 185 unsigned long newbrk, oldbrk; 186 struct mm_struct *mm = current->mm; 187 struct vm_area_struct *next; 188 unsigned long min_brk; 189 bool populate; 190 LIST_HEAD(uf); 191 192 if (down_write_killable(&mm->mmap_sem)) 193 return -EINTR; 194 195 #ifdef CONFIG_COMPAT_BRK 196 /* 197 * CONFIG_COMPAT_BRK can still be overridden by setting 198 * randomize_va_space to 2, which will still cause mm->start_brk 199 * to be arbitrarily shifted 200 */ 201 if (current->brk_randomized) 202 min_brk = mm->start_brk; 203 else 204 min_brk = mm->end_data; 205 #else 206 min_brk = mm->start_brk; 207 #endif 208 if (brk < min_brk) 209 goto out; 210 211 /* 212 * Check against rlimit here. If this check is done later after the test 213 * of oldbrk with newbrk then it can escape the test and let the data 214 * segment grow beyond its set limit the in case where the limit is 215 * not page aligned -Ram Gupta 216 */ 217 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk, 218 mm->end_data, mm->start_data)) 219 goto out; 220 221 newbrk = PAGE_ALIGN(brk); 222 oldbrk = PAGE_ALIGN(mm->brk); 223 if (oldbrk == newbrk) 224 goto set_brk; 225 226 /* Always allow shrinking brk. */ 227 if (brk <= mm->brk) { 228 if (!do_munmap(mm, newbrk, oldbrk-newbrk, &uf)) 229 goto set_brk; 230 goto out; 231 } 232 233 /* Check against existing mmap mappings. */ 234 next = find_vma(mm, oldbrk); 235 if (next && newbrk + PAGE_SIZE > vm_start_gap(next)) 236 goto out; 237 238 /* Ok, looks good - let it rip. */ 239 if (do_brk(oldbrk, newbrk-oldbrk, &uf) < 0) 240 goto out; 241 242 set_brk: 243 mm->brk = brk; 244 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0; 245 up_write(&mm->mmap_sem); 246 userfaultfd_unmap_complete(mm, &uf); 247 if (populate) 248 mm_populate(oldbrk, newbrk - oldbrk); 249 return brk; 250 251 out: 252 retval = mm->brk; 253 up_write(&mm->mmap_sem); 254 return retval; 255 } 256 257 static long vma_compute_subtree_gap(struct vm_area_struct *vma) 258 { 259 unsigned long max, prev_end, subtree_gap; 260 261 /* 262 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we 263 * allow two stack_guard_gaps between them here, and when choosing 264 * an unmapped area; whereas when expanding we only require one. 265 * That's a little inconsistent, but keeps the code here simpler. 266 */ 267 max = vm_start_gap(vma); 268 if (vma->vm_prev) { 269 prev_end = vm_end_gap(vma->vm_prev); 270 if (max > prev_end) 271 max -= prev_end; 272 else 273 max = 0; 274 } 275 if (vma->vm_rb.rb_left) { 276 subtree_gap = rb_entry(vma->vm_rb.rb_left, 277 struct vm_area_struct, vm_rb)->rb_subtree_gap; 278 if (subtree_gap > max) 279 max = subtree_gap; 280 } 281 if (vma->vm_rb.rb_right) { 282 subtree_gap = rb_entry(vma->vm_rb.rb_right, 283 struct vm_area_struct, vm_rb)->rb_subtree_gap; 284 if (subtree_gap > max) 285 max = subtree_gap; 286 } 287 return max; 288 } 289 290 #ifdef CONFIG_DEBUG_VM_RB 291 static int browse_rb(struct mm_struct *mm) 292 { 293 struct rb_root *root = &mm->mm_rb; 294 int i = 0, j, bug = 0; 295 struct rb_node *nd, *pn = NULL; 296 unsigned long prev = 0, pend = 0; 297 298 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 299 struct vm_area_struct *vma; 300 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 301 if (vma->vm_start < prev) { 302 pr_emerg("vm_start %lx < prev %lx\n", 303 vma->vm_start, prev); 304 bug = 1; 305 } 306 if (vma->vm_start < pend) { 307 pr_emerg("vm_start %lx < pend %lx\n", 308 vma->vm_start, pend); 309 bug = 1; 310 } 311 if (vma->vm_start > vma->vm_end) { 312 pr_emerg("vm_start %lx > vm_end %lx\n", 313 vma->vm_start, vma->vm_end); 314 bug = 1; 315 } 316 spin_lock(&mm->page_table_lock); 317 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) { 318 pr_emerg("free gap %lx, correct %lx\n", 319 vma->rb_subtree_gap, 320 vma_compute_subtree_gap(vma)); 321 bug = 1; 322 } 323 spin_unlock(&mm->page_table_lock); 324 i++; 325 pn = nd; 326 prev = vma->vm_start; 327 pend = vma->vm_end; 328 } 329 j = 0; 330 for (nd = pn; nd; nd = rb_prev(nd)) 331 j++; 332 if (i != j) { 333 pr_emerg("backwards %d, forwards %d\n", j, i); 334 bug = 1; 335 } 336 return bug ? -1 : i; 337 } 338 339 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore) 340 { 341 struct rb_node *nd; 342 343 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 344 struct vm_area_struct *vma; 345 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 346 VM_BUG_ON_VMA(vma != ignore && 347 vma->rb_subtree_gap != vma_compute_subtree_gap(vma), 348 vma); 349 } 350 } 351 352 static void validate_mm(struct mm_struct *mm) 353 { 354 int bug = 0; 355 int i = 0; 356 unsigned long highest_address = 0; 357 struct vm_area_struct *vma = mm->mmap; 358 359 while (vma) { 360 struct anon_vma *anon_vma = vma->anon_vma; 361 struct anon_vma_chain *avc; 362 363 if (anon_vma) { 364 anon_vma_lock_read(anon_vma); 365 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 366 anon_vma_interval_tree_verify(avc); 367 anon_vma_unlock_read(anon_vma); 368 } 369 370 highest_address = vm_end_gap(vma); 371 vma = vma->vm_next; 372 i++; 373 } 374 if (i != mm->map_count) { 375 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i); 376 bug = 1; 377 } 378 if (highest_address != mm->highest_vm_end) { 379 pr_emerg("mm->highest_vm_end %lx, found %lx\n", 380 mm->highest_vm_end, highest_address); 381 bug = 1; 382 } 383 i = browse_rb(mm); 384 if (i != mm->map_count) { 385 if (i != -1) 386 pr_emerg("map_count %d rb %d\n", mm->map_count, i); 387 bug = 1; 388 } 389 VM_BUG_ON_MM(bug, mm); 390 } 391 #else 392 #define validate_mm_rb(root, ignore) do { } while (0) 393 #define validate_mm(mm) do { } while (0) 394 #endif 395 396 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb, 397 unsigned long, rb_subtree_gap, vma_compute_subtree_gap) 398 399 /* 400 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or 401 * vma->vm_prev->vm_end values changed, without modifying the vma's position 402 * in the rbtree. 403 */ 404 static void vma_gap_update(struct vm_area_struct *vma) 405 { 406 /* 407 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback 408 * function that does exacltly what we want. 409 */ 410 vma_gap_callbacks_propagate(&vma->vm_rb, NULL); 411 } 412 413 static inline void vma_rb_insert(struct vm_area_struct *vma, 414 struct rb_root *root) 415 { 416 /* All rb_subtree_gap values must be consistent prior to insertion */ 417 validate_mm_rb(root, NULL); 418 419 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks); 420 } 421 422 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root) 423 { 424 /* 425 * Note rb_erase_augmented is a fairly large inline function, 426 * so make sure we instantiate it only once with our desired 427 * augmented rbtree callbacks. 428 */ 429 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks); 430 } 431 432 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma, 433 struct rb_root *root, 434 struct vm_area_struct *ignore) 435 { 436 /* 437 * All rb_subtree_gap values must be consistent prior to erase, 438 * with the possible exception of the "next" vma being erased if 439 * next->vm_start was reduced. 440 */ 441 validate_mm_rb(root, ignore); 442 443 __vma_rb_erase(vma, root); 444 } 445 446 static __always_inline void vma_rb_erase(struct vm_area_struct *vma, 447 struct rb_root *root) 448 { 449 /* 450 * All rb_subtree_gap values must be consistent prior to erase, 451 * with the possible exception of the vma being erased. 452 */ 453 validate_mm_rb(root, vma); 454 455 __vma_rb_erase(vma, root); 456 } 457 458 /* 459 * vma has some anon_vma assigned, and is already inserted on that 460 * anon_vma's interval trees. 461 * 462 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the 463 * vma must be removed from the anon_vma's interval trees using 464 * anon_vma_interval_tree_pre_update_vma(). 465 * 466 * After the update, the vma will be reinserted using 467 * anon_vma_interval_tree_post_update_vma(). 468 * 469 * The entire update must be protected by exclusive mmap_sem and by 470 * the root anon_vma's mutex. 471 */ 472 static inline void 473 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma) 474 { 475 struct anon_vma_chain *avc; 476 477 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 478 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root); 479 } 480 481 static inline void 482 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma) 483 { 484 struct anon_vma_chain *avc; 485 486 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 487 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root); 488 } 489 490 static int find_vma_links(struct mm_struct *mm, unsigned long addr, 491 unsigned long end, struct vm_area_struct **pprev, 492 struct rb_node ***rb_link, struct rb_node **rb_parent) 493 { 494 struct rb_node **__rb_link, *__rb_parent, *rb_prev; 495 496 __rb_link = &mm->mm_rb.rb_node; 497 rb_prev = __rb_parent = NULL; 498 499 while (*__rb_link) { 500 struct vm_area_struct *vma_tmp; 501 502 __rb_parent = *__rb_link; 503 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb); 504 505 if (vma_tmp->vm_end > addr) { 506 /* Fail if an existing vma overlaps the area */ 507 if (vma_tmp->vm_start < end) 508 return -ENOMEM; 509 __rb_link = &__rb_parent->rb_left; 510 } else { 511 rb_prev = __rb_parent; 512 __rb_link = &__rb_parent->rb_right; 513 } 514 } 515 516 *pprev = NULL; 517 if (rb_prev) 518 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); 519 *rb_link = __rb_link; 520 *rb_parent = __rb_parent; 521 return 0; 522 } 523 524 static unsigned long count_vma_pages_range(struct mm_struct *mm, 525 unsigned long addr, unsigned long end) 526 { 527 unsigned long nr_pages = 0; 528 struct vm_area_struct *vma; 529 530 /* Find first overlaping mapping */ 531 vma = find_vma_intersection(mm, addr, end); 532 if (!vma) 533 return 0; 534 535 nr_pages = (min(end, vma->vm_end) - 536 max(addr, vma->vm_start)) >> PAGE_SHIFT; 537 538 /* Iterate over the rest of the overlaps */ 539 for (vma = vma->vm_next; vma; vma = vma->vm_next) { 540 unsigned long overlap_len; 541 542 if (vma->vm_start > end) 543 break; 544 545 overlap_len = min(end, vma->vm_end) - vma->vm_start; 546 nr_pages += overlap_len >> PAGE_SHIFT; 547 } 548 549 return nr_pages; 550 } 551 552 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma, 553 struct rb_node **rb_link, struct rb_node *rb_parent) 554 { 555 /* Update tracking information for the gap following the new vma. */ 556 if (vma->vm_next) 557 vma_gap_update(vma->vm_next); 558 else 559 mm->highest_vm_end = vm_end_gap(vma); 560 561 /* 562 * vma->vm_prev wasn't known when we followed the rbtree to find the 563 * correct insertion point for that vma. As a result, we could not 564 * update the vma vm_rb parents rb_subtree_gap values on the way down. 565 * So, we first insert the vma with a zero rb_subtree_gap value 566 * (to be consistent with what we did on the way down), and then 567 * immediately update the gap to the correct value. Finally we 568 * rebalance the rbtree after all augmented values have been set. 569 */ 570 rb_link_node(&vma->vm_rb, rb_parent, rb_link); 571 vma->rb_subtree_gap = 0; 572 vma_gap_update(vma); 573 vma_rb_insert(vma, &mm->mm_rb); 574 } 575 576 static void __vma_link_file(struct vm_area_struct *vma) 577 { 578 struct file *file; 579 580 file = vma->vm_file; 581 if (file) { 582 struct address_space *mapping = file->f_mapping; 583 584 if (vma->vm_flags & VM_DENYWRITE) 585 atomic_dec(&file_inode(file)->i_writecount); 586 if (vma->vm_flags & VM_SHARED) 587 atomic_inc(&mapping->i_mmap_writable); 588 589 flush_dcache_mmap_lock(mapping); 590 vma_interval_tree_insert(vma, &mapping->i_mmap); 591 flush_dcache_mmap_unlock(mapping); 592 } 593 } 594 595 static void 596 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 597 struct vm_area_struct *prev, struct rb_node **rb_link, 598 struct rb_node *rb_parent) 599 { 600 __vma_link_list(mm, vma, prev, rb_parent); 601 __vma_link_rb(mm, vma, rb_link, rb_parent); 602 } 603 604 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 605 struct vm_area_struct *prev, struct rb_node **rb_link, 606 struct rb_node *rb_parent) 607 { 608 struct address_space *mapping = NULL; 609 610 if (vma->vm_file) { 611 mapping = vma->vm_file->f_mapping; 612 i_mmap_lock_write(mapping); 613 } 614 615 __vma_link(mm, vma, prev, rb_link, rb_parent); 616 __vma_link_file(vma); 617 618 if (mapping) 619 i_mmap_unlock_write(mapping); 620 621 mm->map_count++; 622 validate_mm(mm); 623 } 624 625 /* 626 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the 627 * mm's list and rbtree. It has already been inserted into the interval tree. 628 */ 629 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 630 { 631 struct vm_area_struct *prev; 632 struct rb_node **rb_link, *rb_parent; 633 634 if (find_vma_links(mm, vma->vm_start, vma->vm_end, 635 &prev, &rb_link, &rb_parent)) 636 BUG(); 637 __vma_link(mm, vma, prev, rb_link, rb_parent); 638 mm->map_count++; 639 } 640 641 static __always_inline void __vma_unlink_common(struct mm_struct *mm, 642 struct vm_area_struct *vma, 643 struct vm_area_struct *prev, 644 bool has_prev, 645 struct vm_area_struct *ignore) 646 { 647 struct vm_area_struct *next; 648 649 vma_rb_erase_ignore(vma, &mm->mm_rb, ignore); 650 next = vma->vm_next; 651 if (has_prev) 652 prev->vm_next = next; 653 else { 654 prev = vma->vm_prev; 655 if (prev) 656 prev->vm_next = next; 657 else 658 mm->mmap = next; 659 } 660 if (next) 661 next->vm_prev = prev; 662 663 /* Kill the cache */ 664 vmacache_invalidate(mm); 665 } 666 667 static inline void __vma_unlink_prev(struct mm_struct *mm, 668 struct vm_area_struct *vma, 669 struct vm_area_struct *prev) 670 { 671 __vma_unlink_common(mm, vma, prev, true, vma); 672 } 673 674 /* 675 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that 676 * is already present in an i_mmap tree without adjusting the tree. 677 * The following helper function should be used when such adjustments 678 * are necessary. The "insert" vma (if any) is to be inserted 679 * before we drop the necessary locks. 680 */ 681 int __vma_adjust(struct vm_area_struct *vma, unsigned long start, 682 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, 683 struct vm_area_struct *expand) 684 { 685 struct mm_struct *mm = vma->vm_mm; 686 struct vm_area_struct *next = vma->vm_next, *orig_vma = vma; 687 struct address_space *mapping = NULL; 688 struct rb_root_cached *root = NULL; 689 struct anon_vma *anon_vma = NULL; 690 struct file *file = vma->vm_file; 691 bool start_changed = false, end_changed = false; 692 long adjust_next = 0; 693 int remove_next = 0; 694 695 if (next && !insert) { 696 struct vm_area_struct *exporter = NULL, *importer = NULL; 697 698 if (end >= next->vm_end) { 699 /* 700 * vma expands, overlapping all the next, and 701 * perhaps the one after too (mprotect case 6). 702 * The only other cases that gets here are 703 * case 1, case 7 and case 8. 704 */ 705 if (next == expand) { 706 /* 707 * The only case where we don't expand "vma" 708 * and we expand "next" instead is case 8. 709 */ 710 VM_WARN_ON(end != next->vm_end); 711 /* 712 * remove_next == 3 means we're 713 * removing "vma" and that to do so we 714 * swapped "vma" and "next". 715 */ 716 remove_next = 3; 717 VM_WARN_ON(file != next->vm_file); 718 swap(vma, next); 719 } else { 720 VM_WARN_ON(expand != vma); 721 /* 722 * case 1, 6, 7, remove_next == 2 is case 6, 723 * remove_next == 1 is case 1 or 7. 724 */ 725 remove_next = 1 + (end > next->vm_end); 726 VM_WARN_ON(remove_next == 2 && 727 end != next->vm_next->vm_end); 728 VM_WARN_ON(remove_next == 1 && 729 end != next->vm_end); 730 /* trim end to next, for case 6 first pass */ 731 end = next->vm_end; 732 } 733 734 exporter = next; 735 importer = vma; 736 737 /* 738 * If next doesn't have anon_vma, import from vma after 739 * next, if the vma overlaps with it. 740 */ 741 if (remove_next == 2 && !next->anon_vma) 742 exporter = next->vm_next; 743 744 } else if (end > next->vm_start) { 745 /* 746 * vma expands, overlapping part of the next: 747 * mprotect case 5 shifting the boundary up. 748 */ 749 adjust_next = (end - next->vm_start) >> PAGE_SHIFT; 750 exporter = next; 751 importer = vma; 752 VM_WARN_ON(expand != importer); 753 } else if (end < vma->vm_end) { 754 /* 755 * vma shrinks, and !insert tells it's not 756 * split_vma inserting another: so it must be 757 * mprotect case 4 shifting the boundary down. 758 */ 759 adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT); 760 exporter = vma; 761 importer = next; 762 VM_WARN_ON(expand != importer); 763 } 764 765 /* 766 * Easily overlooked: when mprotect shifts the boundary, 767 * make sure the expanding vma has anon_vma set if the 768 * shrinking vma had, to cover any anon pages imported. 769 */ 770 if (exporter && exporter->anon_vma && !importer->anon_vma) { 771 int error; 772 773 importer->anon_vma = exporter->anon_vma; 774 error = anon_vma_clone(importer, exporter); 775 if (error) 776 return error; 777 } 778 } 779 again: 780 vma_adjust_trans_huge(orig_vma, start, end, adjust_next); 781 782 if (file) { 783 mapping = file->f_mapping; 784 root = &mapping->i_mmap; 785 uprobe_munmap(vma, vma->vm_start, vma->vm_end); 786 787 if (adjust_next) 788 uprobe_munmap(next, next->vm_start, next->vm_end); 789 790 i_mmap_lock_write(mapping); 791 if (insert) { 792 /* 793 * Put into interval tree now, so instantiated pages 794 * are visible to arm/parisc __flush_dcache_page 795 * throughout; but we cannot insert into address 796 * space until vma start or end is updated. 797 */ 798 __vma_link_file(insert); 799 } 800 } 801 802 anon_vma = vma->anon_vma; 803 if (!anon_vma && adjust_next) 804 anon_vma = next->anon_vma; 805 if (anon_vma) { 806 VM_WARN_ON(adjust_next && next->anon_vma && 807 anon_vma != next->anon_vma); 808 anon_vma_lock_write(anon_vma); 809 anon_vma_interval_tree_pre_update_vma(vma); 810 if (adjust_next) 811 anon_vma_interval_tree_pre_update_vma(next); 812 } 813 814 if (root) { 815 flush_dcache_mmap_lock(mapping); 816 vma_interval_tree_remove(vma, root); 817 if (adjust_next) 818 vma_interval_tree_remove(next, root); 819 } 820 821 if (start != vma->vm_start) { 822 vma->vm_start = start; 823 start_changed = true; 824 } 825 if (end != vma->vm_end) { 826 vma->vm_end = end; 827 end_changed = true; 828 } 829 vma->vm_pgoff = pgoff; 830 if (adjust_next) { 831 next->vm_start += adjust_next << PAGE_SHIFT; 832 next->vm_pgoff += adjust_next; 833 } 834 835 if (root) { 836 if (adjust_next) 837 vma_interval_tree_insert(next, root); 838 vma_interval_tree_insert(vma, root); 839 flush_dcache_mmap_unlock(mapping); 840 } 841 842 if (remove_next) { 843 /* 844 * vma_merge has merged next into vma, and needs 845 * us to remove next before dropping the locks. 846 */ 847 if (remove_next != 3) 848 __vma_unlink_prev(mm, next, vma); 849 else 850 /* 851 * vma is not before next if they've been 852 * swapped. 853 * 854 * pre-swap() next->vm_start was reduced so 855 * tell validate_mm_rb to ignore pre-swap() 856 * "next" (which is stored in post-swap() 857 * "vma"). 858 */ 859 __vma_unlink_common(mm, next, NULL, false, vma); 860 if (file) 861 __remove_shared_vm_struct(next, file, mapping); 862 } else if (insert) { 863 /* 864 * split_vma has split insert from vma, and needs 865 * us to insert it before dropping the locks 866 * (it may either follow vma or precede it). 867 */ 868 __insert_vm_struct(mm, insert); 869 } else { 870 if (start_changed) 871 vma_gap_update(vma); 872 if (end_changed) { 873 if (!next) 874 mm->highest_vm_end = vm_end_gap(vma); 875 else if (!adjust_next) 876 vma_gap_update(next); 877 } 878 } 879 880 if (anon_vma) { 881 anon_vma_interval_tree_post_update_vma(vma); 882 if (adjust_next) 883 anon_vma_interval_tree_post_update_vma(next); 884 anon_vma_unlock_write(anon_vma); 885 } 886 if (mapping) 887 i_mmap_unlock_write(mapping); 888 889 if (root) { 890 uprobe_mmap(vma); 891 892 if (adjust_next) 893 uprobe_mmap(next); 894 } 895 896 if (remove_next) { 897 if (file) { 898 uprobe_munmap(next, next->vm_start, next->vm_end); 899 fput(file); 900 } 901 if (next->anon_vma) 902 anon_vma_merge(vma, next); 903 mm->map_count--; 904 mpol_put(vma_policy(next)); 905 kmem_cache_free(vm_area_cachep, next); 906 /* 907 * In mprotect's case 6 (see comments on vma_merge), 908 * we must remove another next too. It would clutter 909 * up the code too much to do both in one go. 910 */ 911 if (remove_next != 3) { 912 /* 913 * If "next" was removed and vma->vm_end was 914 * expanded (up) over it, in turn 915 * "next->vm_prev->vm_end" changed and the 916 * "vma->vm_next" gap must be updated. 917 */ 918 next = vma->vm_next; 919 } else { 920 /* 921 * For the scope of the comment "next" and 922 * "vma" considered pre-swap(): if "vma" was 923 * removed, next->vm_start was expanded (down) 924 * over it and the "next" gap must be updated. 925 * Because of the swap() the post-swap() "vma" 926 * actually points to pre-swap() "next" 927 * (post-swap() "next" as opposed is now a 928 * dangling pointer). 929 */ 930 next = vma; 931 } 932 if (remove_next == 2) { 933 remove_next = 1; 934 end = next->vm_end; 935 goto again; 936 } 937 else if (next) 938 vma_gap_update(next); 939 else { 940 /* 941 * If remove_next == 2 we obviously can't 942 * reach this path. 943 * 944 * If remove_next == 3 we can't reach this 945 * path because pre-swap() next is always not 946 * NULL. pre-swap() "next" is not being 947 * removed and its next->vm_end is not altered 948 * (and furthermore "end" already matches 949 * next->vm_end in remove_next == 3). 950 * 951 * We reach this only in the remove_next == 1 952 * case if the "next" vma that was removed was 953 * the highest vma of the mm. However in such 954 * case next->vm_end == "end" and the extended 955 * "vma" has vma->vm_end == next->vm_end so 956 * mm->highest_vm_end doesn't need any update 957 * in remove_next == 1 case. 958 */ 959 VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma)); 960 } 961 } 962 if (insert && file) 963 uprobe_mmap(insert); 964 965 validate_mm(mm); 966 967 return 0; 968 } 969 970 /* 971 * If the vma has a ->close operation then the driver probably needs to release 972 * per-vma resources, so we don't attempt to merge those. 973 */ 974 static inline int is_mergeable_vma(struct vm_area_struct *vma, 975 struct file *file, unsigned long vm_flags, 976 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 977 { 978 /* 979 * VM_SOFTDIRTY should not prevent from VMA merging, if we 980 * match the flags but dirty bit -- the caller should mark 981 * merged VMA as dirty. If dirty bit won't be excluded from 982 * comparison, we increase pressue on the memory system forcing 983 * the kernel to generate new VMAs when old one could be 984 * extended instead. 985 */ 986 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY) 987 return 0; 988 if (vma->vm_file != file) 989 return 0; 990 if (vma->vm_ops && vma->vm_ops->close) 991 return 0; 992 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx)) 993 return 0; 994 return 1; 995 } 996 997 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1, 998 struct anon_vma *anon_vma2, 999 struct vm_area_struct *vma) 1000 { 1001 /* 1002 * The list_is_singular() test is to avoid merging VMA cloned from 1003 * parents. This can improve scalability caused by anon_vma lock. 1004 */ 1005 if ((!anon_vma1 || !anon_vma2) && (!vma || 1006 list_is_singular(&vma->anon_vma_chain))) 1007 return 1; 1008 return anon_vma1 == anon_vma2; 1009 } 1010 1011 /* 1012 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 1013 * in front of (at a lower virtual address and file offset than) the vma. 1014 * 1015 * We cannot merge two vmas if they have differently assigned (non-NULL) 1016 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 1017 * 1018 * We don't check here for the merged mmap wrapping around the end of pagecache 1019 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which 1020 * wrap, nor mmaps which cover the final page at index -1UL. 1021 */ 1022 static int 1023 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags, 1024 struct anon_vma *anon_vma, struct file *file, 1025 pgoff_t vm_pgoff, 1026 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 1027 { 1028 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) && 1029 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 1030 if (vma->vm_pgoff == vm_pgoff) 1031 return 1; 1032 } 1033 return 0; 1034 } 1035 1036 /* 1037 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 1038 * beyond (at a higher virtual address and file offset than) the vma. 1039 * 1040 * We cannot merge two vmas if they have differently assigned (non-NULL) 1041 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 1042 */ 1043 static int 1044 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags, 1045 struct anon_vma *anon_vma, struct file *file, 1046 pgoff_t vm_pgoff, 1047 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 1048 { 1049 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) && 1050 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 1051 pgoff_t vm_pglen; 1052 vm_pglen = vma_pages(vma); 1053 if (vma->vm_pgoff + vm_pglen == vm_pgoff) 1054 return 1; 1055 } 1056 return 0; 1057 } 1058 1059 /* 1060 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out 1061 * whether that can be merged with its predecessor or its successor. 1062 * Or both (it neatly fills a hole). 1063 * 1064 * In most cases - when called for mmap, brk or mremap - [addr,end) is 1065 * certain not to be mapped by the time vma_merge is called; but when 1066 * called for mprotect, it is certain to be already mapped (either at 1067 * an offset within prev, or at the start of next), and the flags of 1068 * this area are about to be changed to vm_flags - and the no-change 1069 * case has already been eliminated. 1070 * 1071 * The following mprotect cases have to be considered, where AAAA is 1072 * the area passed down from mprotect_fixup, never extending beyond one 1073 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after: 1074 * 1075 * AAAA AAAA AAAA AAAA 1076 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX 1077 * cannot merge might become might become might become 1078 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or 1079 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or 1080 * mremap move: PPPPXXXXXXXX 8 1081 * AAAA 1082 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN 1083 * might become case 1 below case 2 below case 3 below 1084 * 1085 * It is important for case 8 that the the vma NNNN overlapping the 1086 * region AAAA is never going to extended over XXXX. Instead XXXX must 1087 * be extended in region AAAA and NNNN must be removed. This way in 1088 * all cases where vma_merge succeeds, the moment vma_adjust drops the 1089 * rmap_locks, the properties of the merged vma will be already 1090 * correct for the whole merged range. Some of those properties like 1091 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must 1092 * be correct for the whole merged range immediately after the 1093 * rmap_locks are released. Otherwise if XXXX would be removed and 1094 * NNNN would be extended over the XXXX range, remove_migration_ptes 1095 * or other rmap walkers (if working on addresses beyond the "end" 1096 * parameter) may establish ptes with the wrong permissions of NNNN 1097 * instead of the right permissions of XXXX. 1098 */ 1099 struct vm_area_struct *vma_merge(struct mm_struct *mm, 1100 struct vm_area_struct *prev, unsigned long addr, 1101 unsigned long end, unsigned long vm_flags, 1102 struct anon_vma *anon_vma, struct file *file, 1103 pgoff_t pgoff, struct mempolicy *policy, 1104 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 1105 { 1106 pgoff_t pglen = (end - addr) >> PAGE_SHIFT; 1107 struct vm_area_struct *area, *next; 1108 int err; 1109 1110 /* 1111 * We later require that vma->vm_flags == vm_flags, 1112 * so this tests vma->vm_flags & VM_SPECIAL, too. 1113 */ 1114 if (vm_flags & VM_SPECIAL) 1115 return NULL; 1116 1117 if (prev) 1118 next = prev->vm_next; 1119 else 1120 next = mm->mmap; 1121 area = next; 1122 if (area && area->vm_end == end) /* cases 6, 7, 8 */ 1123 next = next->vm_next; 1124 1125 /* verify some invariant that must be enforced by the caller */ 1126 VM_WARN_ON(prev && addr <= prev->vm_start); 1127 VM_WARN_ON(area && end > area->vm_end); 1128 VM_WARN_ON(addr >= end); 1129 1130 /* 1131 * Can it merge with the predecessor? 1132 */ 1133 if (prev && prev->vm_end == addr && 1134 mpol_equal(vma_policy(prev), policy) && 1135 can_vma_merge_after(prev, vm_flags, 1136 anon_vma, file, pgoff, 1137 vm_userfaultfd_ctx)) { 1138 /* 1139 * OK, it can. Can we now merge in the successor as well? 1140 */ 1141 if (next && end == next->vm_start && 1142 mpol_equal(policy, vma_policy(next)) && 1143 can_vma_merge_before(next, vm_flags, 1144 anon_vma, file, 1145 pgoff+pglen, 1146 vm_userfaultfd_ctx) && 1147 is_mergeable_anon_vma(prev->anon_vma, 1148 next->anon_vma, NULL)) { 1149 /* cases 1, 6 */ 1150 err = __vma_adjust(prev, prev->vm_start, 1151 next->vm_end, prev->vm_pgoff, NULL, 1152 prev); 1153 } else /* cases 2, 5, 7 */ 1154 err = __vma_adjust(prev, prev->vm_start, 1155 end, prev->vm_pgoff, NULL, prev); 1156 if (err) 1157 return NULL; 1158 khugepaged_enter_vma_merge(prev, vm_flags); 1159 return prev; 1160 } 1161 1162 /* 1163 * Can this new request be merged in front of next? 1164 */ 1165 if (next && end == next->vm_start && 1166 mpol_equal(policy, vma_policy(next)) && 1167 can_vma_merge_before(next, vm_flags, 1168 anon_vma, file, pgoff+pglen, 1169 vm_userfaultfd_ctx)) { 1170 if (prev && addr < prev->vm_end) /* case 4 */ 1171 err = __vma_adjust(prev, prev->vm_start, 1172 addr, prev->vm_pgoff, NULL, next); 1173 else { /* cases 3, 8 */ 1174 err = __vma_adjust(area, addr, next->vm_end, 1175 next->vm_pgoff - pglen, NULL, next); 1176 /* 1177 * In case 3 area is already equal to next and 1178 * this is a noop, but in case 8 "area" has 1179 * been removed and next was expanded over it. 1180 */ 1181 area = next; 1182 } 1183 if (err) 1184 return NULL; 1185 khugepaged_enter_vma_merge(area, vm_flags); 1186 return area; 1187 } 1188 1189 return NULL; 1190 } 1191 1192 /* 1193 * Rough compatbility check to quickly see if it's even worth looking 1194 * at sharing an anon_vma. 1195 * 1196 * They need to have the same vm_file, and the flags can only differ 1197 * in things that mprotect may change. 1198 * 1199 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that 1200 * we can merge the two vma's. For example, we refuse to merge a vma if 1201 * there is a vm_ops->close() function, because that indicates that the 1202 * driver is doing some kind of reference counting. But that doesn't 1203 * really matter for the anon_vma sharing case. 1204 */ 1205 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b) 1206 { 1207 return a->vm_end == b->vm_start && 1208 mpol_equal(vma_policy(a), vma_policy(b)) && 1209 a->vm_file == b->vm_file && 1210 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) && 1211 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT); 1212 } 1213 1214 /* 1215 * Do some basic sanity checking to see if we can re-use the anon_vma 1216 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be 1217 * the same as 'old', the other will be the new one that is trying 1218 * to share the anon_vma. 1219 * 1220 * NOTE! This runs with mm_sem held for reading, so it is possible that 1221 * the anon_vma of 'old' is concurrently in the process of being set up 1222 * by another page fault trying to merge _that_. But that's ok: if it 1223 * is being set up, that automatically means that it will be a singleton 1224 * acceptable for merging, so we can do all of this optimistically. But 1225 * we do that READ_ONCE() to make sure that we never re-load the pointer. 1226 * 1227 * IOW: that the "list_is_singular()" test on the anon_vma_chain only 1228 * matters for the 'stable anon_vma' case (ie the thing we want to avoid 1229 * is to return an anon_vma that is "complex" due to having gone through 1230 * a fork). 1231 * 1232 * We also make sure that the two vma's are compatible (adjacent, 1233 * and with the same memory policies). That's all stable, even with just 1234 * a read lock on the mm_sem. 1235 */ 1236 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b) 1237 { 1238 if (anon_vma_compatible(a, b)) { 1239 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma); 1240 1241 if (anon_vma && list_is_singular(&old->anon_vma_chain)) 1242 return anon_vma; 1243 } 1244 return NULL; 1245 } 1246 1247 /* 1248 * find_mergeable_anon_vma is used by anon_vma_prepare, to check 1249 * neighbouring vmas for a suitable anon_vma, before it goes off 1250 * to allocate a new anon_vma. It checks because a repetitive 1251 * sequence of mprotects and faults may otherwise lead to distinct 1252 * anon_vmas being allocated, preventing vma merge in subsequent 1253 * mprotect. 1254 */ 1255 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) 1256 { 1257 struct anon_vma *anon_vma; 1258 struct vm_area_struct *near; 1259 1260 near = vma->vm_next; 1261 if (!near) 1262 goto try_prev; 1263 1264 anon_vma = reusable_anon_vma(near, vma, near); 1265 if (anon_vma) 1266 return anon_vma; 1267 try_prev: 1268 near = vma->vm_prev; 1269 if (!near) 1270 goto none; 1271 1272 anon_vma = reusable_anon_vma(near, near, vma); 1273 if (anon_vma) 1274 return anon_vma; 1275 none: 1276 /* 1277 * There's no absolute need to look only at touching neighbours: 1278 * we could search further afield for "compatible" anon_vmas. 1279 * But it would probably just be a waste of time searching, 1280 * or lead to too many vmas hanging off the same anon_vma. 1281 * We're trying to allow mprotect remerging later on, 1282 * not trying to minimize memory used for anon_vmas. 1283 */ 1284 return NULL; 1285 } 1286 1287 /* 1288 * If a hint addr is less than mmap_min_addr change hint to be as 1289 * low as possible but still greater than mmap_min_addr 1290 */ 1291 static inline unsigned long round_hint_to_min(unsigned long hint) 1292 { 1293 hint &= PAGE_MASK; 1294 if (((void *)hint != NULL) && 1295 (hint < mmap_min_addr)) 1296 return PAGE_ALIGN(mmap_min_addr); 1297 return hint; 1298 } 1299 1300 static inline int mlock_future_check(struct mm_struct *mm, 1301 unsigned long flags, 1302 unsigned long len) 1303 { 1304 unsigned long locked, lock_limit; 1305 1306 /* mlock MCL_FUTURE? */ 1307 if (flags & VM_LOCKED) { 1308 locked = len >> PAGE_SHIFT; 1309 locked += mm->locked_vm; 1310 lock_limit = rlimit(RLIMIT_MEMLOCK); 1311 lock_limit >>= PAGE_SHIFT; 1312 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 1313 return -EAGAIN; 1314 } 1315 return 0; 1316 } 1317 1318 /* 1319 * The caller must hold down_write(¤t->mm->mmap_sem). 1320 */ 1321 unsigned long do_mmap(struct file *file, unsigned long addr, 1322 unsigned long len, unsigned long prot, 1323 unsigned long flags, vm_flags_t vm_flags, 1324 unsigned long pgoff, unsigned long *populate, 1325 struct list_head *uf) 1326 { 1327 struct mm_struct *mm = current->mm; 1328 int pkey = 0; 1329 1330 *populate = 0; 1331 1332 if (!len) 1333 return -EINVAL; 1334 1335 /* 1336 * Does the application expect PROT_READ to imply PROT_EXEC? 1337 * 1338 * (the exception is when the underlying filesystem is noexec 1339 * mounted, in which case we dont add PROT_EXEC.) 1340 */ 1341 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC)) 1342 if (!(file && path_noexec(&file->f_path))) 1343 prot |= PROT_EXEC; 1344 1345 if (!(flags & MAP_FIXED)) 1346 addr = round_hint_to_min(addr); 1347 1348 /* Careful about overflows.. */ 1349 len = PAGE_ALIGN(len); 1350 if (!len) 1351 return -ENOMEM; 1352 1353 /* offset overflow? */ 1354 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff) 1355 return -EOVERFLOW; 1356 1357 /* Too many mappings? */ 1358 if (mm->map_count > sysctl_max_map_count) 1359 return -ENOMEM; 1360 1361 /* Obtain the address to map to. we verify (or select) it and ensure 1362 * that it represents a valid section of the address space. 1363 */ 1364 addr = get_unmapped_area(file, addr, len, pgoff, flags); 1365 if (offset_in_page(addr)) 1366 return addr; 1367 1368 if (prot == PROT_EXEC) { 1369 pkey = execute_only_pkey(mm); 1370 if (pkey < 0) 1371 pkey = 0; 1372 } 1373 1374 /* Do simple checking here so the lower-level routines won't have 1375 * to. we assume access permissions have been handled by the open 1376 * of the memory object, so we don't do any here. 1377 */ 1378 vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) | 1379 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 1380 1381 if (flags & MAP_LOCKED) 1382 if (!can_do_mlock()) 1383 return -EPERM; 1384 1385 if (mlock_future_check(mm, vm_flags, len)) 1386 return -EAGAIN; 1387 1388 if (file) { 1389 struct inode *inode = file_inode(file); 1390 unsigned long flags_mask; 1391 1392 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags; 1393 1394 switch (flags & MAP_TYPE) { 1395 case MAP_SHARED: 1396 /* 1397 * Force use of MAP_SHARED_VALIDATE with non-legacy 1398 * flags. E.g. MAP_SYNC is dangerous to use with 1399 * MAP_SHARED as you don't know which consistency model 1400 * you will get. We silently ignore unsupported flags 1401 * with MAP_SHARED to preserve backward compatibility. 1402 */ 1403 flags &= LEGACY_MAP_MASK; 1404 /* fall through */ 1405 case MAP_SHARED_VALIDATE: 1406 if (flags & ~flags_mask) 1407 return -EOPNOTSUPP; 1408 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE)) 1409 return -EACCES; 1410 1411 /* 1412 * Make sure we don't allow writing to an append-only 1413 * file.. 1414 */ 1415 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE)) 1416 return -EACCES; 1417 1418 /* 1419 * Make sure there are no mandatory locks on the file. 1420 */ 1421 if (locks_verify_locked(file)) 1422 return -EAGAIN; 1423 1424 vm_flags |= VM_SHARED | VM_MAYSHARE; 1425 if (!(file->f_mode & FMODE_WRITE)) 1426 vm_flags &= ~(VM_MAYWRITE | VM_SHARED); 1427 1428 /* fall through */ 1429 case MAP_PRIVATE: 1430 if (!(file->f_mode & FMODE_READ)) 1431 return -EACCES; 1432 if (path_noexec(&file->f_path)) { 1433 if (vm_flags & VM_EXEC) 1434 return -EPERM; 1435 vm_flags &= ~VM_MAYEXEC; 1436 } 1437 1438 if (!file->f_op->mmap) 1439 return -ENODEV; 1440 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1441 return -EINVAL; 1442 break; 1443 1444 default: 1445 return -EINVAL; 1446 } 1447 } else { 1448 switch (flags & MAP_TYPE) { 1449 case MAP_SHARED: 1450 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1451 return -EINVAL; 1452 /* 1453 * Ignore pgoff. 1454 */ 1455 pgoff = 0; 1456 vm_flags |= VM_SHARED | VM_MAYSHARE; 1457 break; 1458 case MAP_PRIVATE: 1459 /* 1460 * Set pgoff according to addr for anon_vma. 1461 */ 1462 pgoff = addr >> PAGE_SHIFT; 1463 break; 1464 default: 1465 return -EINVAL; 1466 } 1467 } 1468 1469 /* 1470 * Set 'VM_NORESERVE' if we should not account for the 1471 * memory use of this mapping. 1472 */ 1473 if (flags & MAP_NORESERVE) { 1474 /* We honor MAP_NORESERVE if allowed to overcommit */ 1475 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER) 1476 vm_flags |= VM_NORESERVE; 1477 1478 /* hugetlb applies strict overcommit unless MAP_NORESERVE */ 1479 if (file && is_file_hugepages(file)) 1480 vm_flags |= VM_NORESERVE; 1481 } 1482 1483 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf); 1484 if (!IS_ERR_VALUE(addr) && 1485 ((vm_flags & VM_LOCKED) || 1486 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE)) 1487 *populate = len; 1488 return addr; 1489 } 1490 1491 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1492 unsigned long, prot, unsigned long, flags, 1493 unsigned long, fd, unsigned long, pgoff) 1494 { 1495 struct file *file = NULL; 1496 unsigned long retval; 1497 1498 if (!(flags & MAP_ANONYMOUS)) { 1499 audit_mmap_fd(fd, flags); 1500 file = fget(fd); 1501 if (!file) 1502 return -EBADF; 1503 if (is_file_hugepages(file)) 1504 len = ALIGN(len, huge_page_size(hstate_file(file))); 1505 retval = -EINVAL; 1506 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file))) 1507 goto out_fput; 1508 } else if (flags & MAP_HUGETLB) { 1509 struct user_struct *user = NULL; 1510 struct hstate *hs; 1511 1512 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 1513 if (!hs) 1514 return -EINVAL; 1515 1516 len = ALIGN(len, huge_page_size(hs)); 1517 /* 1518 * VM_NORESERVE is used because the reservations will be 1519 * taken when vm_ops->mmap() is called 1520 * A dummy user value is used because we are not locking 1521 * memory so no accounting is necessary 1522 */ 1523 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, 1524 VM_NORESERVE, 1525 &user, HUGETLB_ANONHUGE_INODE, 1526 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 1527 if (IS_ERR(file)) 1528 return PTR_ERR(file); 1529 } 1530 1531 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE); 1532 1533 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1534 out_fput: 1535 if (file) 1536 fput(file); 1537 return retval; 1538 } 1539 1540 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1541 struct mmap_arg_struct { 1542 unsigned long addr; 1543 unsigned long len; 1544 unsigned long prot; 1545 unsigned long flags; 1546 unsigned long fd; 1547 unsigned long offset; 1548 }; 1549 1550 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1551 { 1552 struct mmap_arg_struct a; 1553 1554 if (copy_from_user(&a, arg, sizeof(a))) 1555 return -EFAULT; 1556 if (offset_in_page(a.offset)) 1557 return -EINVAL; 1558 1559 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1560 a.offset >> PAGE_SHIFT); 1561 } 1562 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1563 1564 /* 1565 * Some shared mappigns will want the pages marked read-only 1566 * to track write events. If so, we'll downgrade vm_page_prot 1567 * to the private version (using protection_map[] without the 1568 * VM_SHARED bit). 1569 */ 1570 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot) 1571 { 1572 vm_flags_t vm_flags = vma->vm_flags; 1573 const struct vm_operations_struct *vm_ops = vma->vm_ops; 1574 1575 /* If it was private or non-writable, the write bit is already clear */ 1576 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED))) 1577 return 0; 1578 1579 /* The backer wishes to know when pages are first written to? */ 1580 if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite)) 1581 return 1; 1582 1583 /* The open routine did something to the protections that pgprot_modify 1584 * won't preserve? */ 1585 if (pgprot_val(vm_page_prot) != 1586 pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags))) 1587 return 0; 1588 1589 /* Do we need to track softdirty? */ 1590 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY)) 1591 return 1; 1592 1593 /* Specialty mapping? */ 1594 if (vm_flags & VM_PFNMAP) 1595 return 0; 1596 1597 /* Can the mapping track the dirty pages? */ 1598 return vma->vm_file && vma->vm_file->f_mapping && 1599 mapping_cap_account_dirty(vma->vm_file->f_mapping); 1600 } 1601 1602 /* 1603 * We account for memory if it's a private writeable mapping, 1604 * not hugepages and VM_NORESERVE wasn't set. 1605 */ 1606 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags) 1607 { 1608 /* 1609 * hugetlb has its own accounting separate from the core VM 1610 * VM_HUGETLB may not be set yet so we cannot check for that flag. 1611 */ 1612 if (file && is_file_hugepages(file)) 1613 return 0; 1614 1615 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE; 1616 } 1617 1618 unsigned long mmap_region(struct file *file, unsigned long addr, 1619 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 1620 struct list_head *uf) 1621 { 1622 struct mm_struct *mm = current->mm; 1623 struct vm_area_struct *vma, *prev; 1624 int error; 1625 struct rb_node **rb_link, *rb_parent; 1626 unsigned long charged = 0; 1627 1628 /* Check against address space limit. */ 1629 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) { 1630 unsigned long nr_pages; 1631 1632 /* 1633 * MAP_FIXED may remove pages of mappings that intersects with 1634 * requested mapping. Account for the pages it would unmap. 1635 */ 1636 nr_pages = count_vma_pages_range(mm, addr, addr + len); 1637 1638 if (!may_expand_vm(mm, vm_flags, 1639 (len >> PAGE_SHIFT) - nr_pages)) 1640 return -ENOMEM; 1641 } 1642 1643 /* Clear old maps */ 1644 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link, 1645 &rb_parent)) { 1646 if (do_munmap(mm, addr, len, uf)) 1647 return -ENOMEM; 1648 } 1649 1650 /* 1651 * Private writable mapping: check memory availability 1652 */ 1653 if (accountable_mapping(file, vm_flags)) { 1654 charged = len >> PAGE_SHIFT; 1655 if (security_vm_enough_memory_mm(mm, charged)) 1656 return -ENOMEM; 1657 vm_flags |= VM_ACCOUNT; 1658 } 1659 1660 /* 1661 * Can we just expand an old mapping? 1662 */ 1663 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, 1664 NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX); 1665 if (vma) 1666 goto out; 1667 1668 /* 1669 * Determine the object being mapped and call the appropriate 1670 * specific mapper. the address has already been validated, but 1671 * not unmapped, but the maps are removed from the list. 1672 */ 1673 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 1674 if (!vma) { 1675 error = -ENOMEM; 1676 goto unacct_error; 1677 } 1678 1679 vma->vm_mm = mm; 1680 vma->vm_start = addr; 1681 vma->vm_end = addr + len; 1682 vma->vm_flags = vm_flags; 1683 vma->vm_page_prot = vm_get_page_prot(vm_flags); 1684 vma->vm_pgoff = pgoff; 1685 INIT_LIST_HEAD(&vma->anon_vma_chain); 1686 1687 if (file) { 1688 if (vm_flags & VM_DENYWRITE) { 1689 error = deny_write_access(file); 1690 if (error) 1691 goto free_vma; 1692 } 1693 if (vm_flags & VM_SHARED) { 1694 error = mapping_map_writable(file->f_mapping); 1695 if (error) 1696 goto allow_write_and_free_vma; 1697 } 1698 1699 /* ->mmap() can change vma->vm_file, but must guarantee that 1700 * vma_link() below can deny write-access if VM_DENYWRITE is set 1701 * and map writably if VM_SHARED is set. This usually means the 1702 * new file must not have been exposed to user-space, yet. 1703 */ 1704 vma->vm_file = get_file(file); 1705 error = call_mmap(file, vma); 1706 if (error) 1707 goto unmap_and_free_vma; 1708 1709 /* Can addr have changed?? 1710 * 1711 * Answer: Yes, several device drivers can do it in their 1712 * f_op->mmap method. -DaveM 1713 * Bug: If addr is changed, prev, rb_link, rb_parent should 1714 * be updated for vma_link() 1715 */ 1716 WARN_ON_ONCE(addr != vma->vm_start); 1717 1718 addr = vma->vm_start; 1719 vm_flags = vma->vm_flags; 1720 } else if (vm_flags & VM_SHARED) { 1721 error = shmem_zero_setup(vma); 1722 if (error) 1723 goto free_vma; 1724 } 1725 1726 vma_link(mm, vma, prev, rb_link, rb_parent); 1727 /* Once vma denies write, undo our temporary denial count */ 1728 if (file) { 1729 if (vm_flags & VM_SHARED) 1730 mapping_unmap_writable(file->f_mapping); 1731 if (vm_flags & VM_DENYWRITE) 1732 allow_write_access(file); 1733 } 1734 file = vma->vm_file; 1735 out: 1736 perf_event_mmap(vma); 1737 1738 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT); 1739 if (vm_flags & VM_LOCKED) { 1740 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) || 1741 vma == get_gate_vma(current->mm))) 1742 mm->locked_vm += (len >> PAGE_SHIFT); 1743 else 1744 vma->vm_flags &= VM_LOCKED_CLEAR_MASK; 1745 } 1746 1747 if (file) 1748 uprobe_mmap(vma); 1749 1750 /* 1751 * New (or expanded) vma always get soft dirty status. 1752 * Otherwise user-space soft-dirty page tracker won't 1753 * be able to distinguish situation when vma area unmapped, 1754 * then new mapped in-place (which must be aimed as 1755 * a completely new data area). 1756 */ 1757 vma->vm_flags |= VM_SOFTDIRTY; 1758 1759 vma_set_page_prot(vma); 1760 1761 return addr; 1762 1763 unmap_and_free_vma: 1764 vma->vm_file = NULL; 1765 fput(file); 1766 1767 /* Undo any partial mapping done by a device driver. */ 1768 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end); 1769 charged = 0; 1770 if (vm_flags & VM_SHARED) 1771 mapping_unmap_writable(file->f_mapping); 1772 allow_write_and_free_vma: 1773 if (vm_flags & VM_DENYWRITE) 1774 allow_write_access(file); 1775 free_vma: 1776 kmem_cache_free(vm_area_cachep, vma); 1777 unacct_error: 1778 if (charged) 1779 vm_unacct_memory(charged); 1780 return error; 1781 } 1782 1783 unsigned long unmapped_area(struct vm_unmapped_area_info *info) 1784 { 1785 /* 1786 * We implement the search by looking for an rbtree node that 1787 * immediately follows a suitable gap. That is, 1788 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length; 1789 * - gap_end = vma->vm_start >= info->low_limit + length; 1790 * - gap_end - gap_start >= length 1791 */ 1792 1793 struct mm_struct *mm = current->mm; 1794 struct vm_area_struct *vma; 1795 unsigned long length, low_limit, high_limit, gap_start, gap_end; 1796 1797 /* Adjust search length to account for worst case alignment overhead */ 1798 length = info->length + info->align_mask; 1799 if (length < info->length) 1800 return -ENOMEM; 1801 1802 /* Adjust search limits by the desired length */ 1803 if (info->high_limit < length) 1804 return -ENOMEM; 1805 high_limit = info->high_limit - length; 1806 1807 if (info->low_limit > high_limit) 1808 return -ENOMEM; 1809 low_limit = info->low_limit + length; 1810 1811 /* Check if rbtree root looks promising */ 1812 if (RB_EMPTY_ROOT(&mm->mm_rb)) 1813 goto check_highest; 1814 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb); 1815 if (vma->rb_subtree_gap < length) 1816 goto check_highest; 1817 1818 while (true) { 1819 /* Visit left subtree if it looks promising */ 1820 gap_end = vm_start_gap(vma); 1821 if (gap_end >= low_limit && vma->vm_rb.rb_left) { 1822 struct vm_area_struct *left = 1823 rb_entry(vma->vm_rb.rb_left, 1824 struct vm_area_struct, vm_rb); 1825 if (left->rb_subtree_gap >= length) { 1826 vma = left; 1827 continue; 1828 } 1829 } 1830 1831 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0; 1832 check_current: 1833 /* Check if current node has a suitable gap */ 1834 if (gap_start > high_limit) 1835 return -ENOMEM; 1836 if (gap_end >= low_limit && 1837 gap_end > gap_start && gap_end - gap_start >= length) 1838 goto found; 1839 1840 /* Visit right subtree if it looks promising */ 1841 if (vma->vm_rb.rb_right) { 1842 struct vm_area_struct *right = 1843 rb_entry(vma->vm_rb.rb_right, 1844 struct vm_area_struct, vm_rb); 1845 if (right->rb_subtree_gap >= length) { 1846 vma = right; 1847 continue; 1848 } 1849 } 1850 1851 /* Go back up the rbtree to find next candidate node */ 1852 while (true) { 1853 struct rb_node *prev = &vma->vm_rb; 1854 if (!rb_parent(prev)) 1855 goto check_highest; 1856 vma = rb_entry(rb_parent(prev), 1857 struct vm_area_struct, vm_rb); 1858 if (prev == vma->vm_rb.rb_left) { 1859 gap_start = vm_end_gap(vma->vm_prev); 1860 gap_end = vm_start_gap(vma); 1861 goto check_current; 1862 } 1863 } 1864 } 1865 1866 check_highest: 1867 /* Check highest gap, which does not precede any rbtree node */ 1868 gap_start = mm->highest_vm_end; 1869 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */ 1870 if (gap_start > high_limit) 1871 return -ENOMEM; 1872 1873 found: 1874 /* We found a suitable gap. Clip it with the original low_limit. */ 1875 if (gap_start < info->low_limit) 1876 gap_start = info->low_limit; 1877 1878 /* Adjust gap address to the desired alignment */ 1879 gap_start += (info->align_offset - gap_start) & info->align_mask; 1880 1881 VM_BUG_ON(gap_start + info->length > info->high_limit); 1882 VM_BUG_ON(gap_start + info->length > gap_end); 1883 return gap_start; 1884 } 1885 1886 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info) 1887 { 1888 struct mm_struct *mm = current->mm; 1889 struct vm_area_struct *vma; 1890 unsigned long length, low_limit, high_limit, gap_start, gap_end; 1891 1892 /* Adjust search length to account for worst case alignment overhead */ 1893 length = info->length + info->align_mask; 1894 if (length < info->length) 1895 return -ENOMEM; 1896 1897 /* 1898 * Adjust search limits by the desired length. 1899 * See implementation comment at top of unmapped_area(). 1900 */ 1901 gap_end = info->high_limit; 1902 if (gap_end < length) 1903 return -ENOMEM; 1904 high_limit = gap_end - length; 1905 1906 if (info->low_limit > high_limit) 1907 return -ENOMEM; 1908 low_limit = info->low_limit + length; 1909 1910 /* Check highest gap, which does not precede any rbtree node */ 1911 gap_start = mm->highest_vm_end; 1912 if (gap_start <= high_limit) 1913 goto found_highest; 1914 1915 /* Check if rbtree root looks promising */ 1916 if (RB_EMPTY_ROOT(&mm->mm_rb)) 1917 return -ENOMEM; 1918 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb); 1919 if (vma->rb_subtree_gap < length) 1920 return -ENOMEM; 1921 1922 while (true) { 1923 /* Visit right subtree if it looks promising */ 1924 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0; 1925 if (gap_start <= high_limit && vma->vm_rb.rb_right) { 1926 struct vm_area_struct *right = 1927 rb_entry(vma->vm_rb.rb_right, 1928 struct vm_area_struct, vm_rb); 1929 if (right->rb_subtree_gap >= length) { 1930 vma = right; 1931 continue; 1932 } 1933 } 1934 1935 check_current: 1936 /* Check if current node has a suitable gap */ 1937 gap_end = vm_start_gap(vma); 1938 if (gap_end < low_limit) 1939 return -ENOMEM; 1940 if (gap_start <= high_limit && 1941 gap_end > gap_start && gap_end - gap_start >= length) 1942 goto found; 1943 1944 /* Visit left subtree if it looks promising */ 1945 if (vma->vm_rb.rb_left) { 1946 struct vm_area_struct *left = 1947 rb_entry(vma->vm_rb.rb_left, 1948 struct vm_area_struct, vm_rb); 1949 if (left->rb_subtree_gap >= length) { 1950 vma = left; 1951 continue; 1952 } 1953 } 1954 1955 /* Go back up the rbtree to find next candidate node */ 1956 while (true) { 1957 struct rb_node *prev = &vma->vm_rb; 1958 if (!rb_parent(prev)) 1959 return -ENOMEM; 1960 vma = rb_entry(rb_parent(prev), 1961 struct vm_area_struct, vm_rb); 1962 if (prev == vma->vm_rb.rb_right) { 1963 gap_start = vma->vm_prev ? 1964 vm_end_gap(vma->vm_prev) : 0; 1965 goto check_current; 1966 } 1967 } 1968 } 1969 1970 found: 1971 /* We found a suitable gap. Clip it with the original high_limit. */ 1972 if (gap_end > info->high_limit) 1973 gap_end = info->high_limit; 1974 1975 found_highest: 1976 /* Compute highest gap address at the desired alignment */ 1977 gap_end -= info->length; 1978 gap_end -= (gap_end - info->align_offset) & info->align_mask; 1979 1980 VM_BUG_ON(gap_end < info->low_limit); 1981 VM_BUG_ON(gap_end < gap_start); 1982 return gap_end; 1983 } 1984 1985 /* Get an address range which is currently unmapped. 1986 * For shmat() with addr=0. 1987 * 1988 * Ugly calling convention alert: 1989 * Return value with the low bits set means error value, 1990 * ie 1991 * if (ret & ~PAGE_MASK) 1992 * error = ret; 1993 * 1994 * This function "knows" that -ENOMEM has the bits set. 1995 */ 1996 #ifndef HAVE_ARCH_UNMAPPED_AREA 1997 unsigned long 1998 arch_get_unmapped_area(struct file *filp, unsigned long addr, 1999 unsigned long len, unsigned long pgoff, unsigned long flags) 2000 { 2001 struct mm_struct *mm = current->mm; 2002 struct vm_area_struct *vma, *prev; 2003 struct vm_unmapped_area_info info; 2004 2005 if (len > TASK_SIZE - mmap_min_addr) 2006 return -ENOMEM; 2007 2008 if (flags & MAP_FIXED) 2009 return addr; 2010 2011 if (addr) { 2012 addr = PAGE_ALIGN(addr); 2013 vma = find_vma_prev(mm, addr, &prev); 2014 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr && 2015 (!vma || addr + len <= vm_start_gap(vma)) && 2016 (!prev || addr >= vm_end_gap(prev))) 2017 return addr; 2018 } 2019 2020 info.flags = 0; 2021 info.length = len; 2022 info.low_limit = mm->mmap_base; 2023 info.high_limit = TASK_SIZE; 2024 info.align_mask = 0; 2025 return vm_unmapped_area(&info); 2026 } 2027 #endif 2028 2029 /* 2030 * This mmap-allocator allocates new areas top-down from below the 2031 * stack's low limit (the base): 2032 */ 2033 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 2034 unsigned long 2035 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0, 2036 const unsigned long len, const unsigned long pgoff, 2037 const unsigned long flags) 2038 { 2039 struct vm_area_struct *vma, *prev; 2040 struct mm_struct *mm = current->mm; 2041 unsigned long addr = addr0; 2042 struct vm_unmapped_area_info info; 2043 2044 /* requested length too big for entire address space */ 2045 if (len > TASK_SIZE - mmap_min_addr) 2046 return -ENOMEM; 2047 2048 if (flags & MAP_FIXED) 2049 return addr; 2050 2051 /* requesting a specific address */ 2052 if (addr) { 2053 addr = PAGE_ALIGN(addr); 2054 vma = find_vma_prev(mm, addr, &prev); 2055 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr && 2056 (!vma || addr + len <= vm_start_gap(vma)) && 2057 (!prev || addr >= vm_end_gap(prev))) 2058 return addr; 2059 } 2060 2061 info.flags = VM_UNMAPPED_AREA_TOPDOWN; 2062 info.length = len; 2063 info.low_limit = max(PAGE_SIZE, mmap_min_addr); 2064 info.high_limit = mm->mmap_base; 2065 info.align_mask = 0; 2066 addr = vm_unmapped_area(&info); 2067 2068 /* 2069 * A failed mmap() very likely causes application failure, 2070 * so fall back to the bottom-up function here. This scenario 2071 * can happen with large stack limits and large mmap() 2072 * allocations. 2073 */ 2074 if (offset_in_page(addr)) { 2075 VM_BUG_ON(addr != -ENOMEM); 2076 info.flags = 0; 2077 info.low_limit = TASK_UNMAPPED_BASE; 2078 info.high_limit = TASK_SIZE; 2079 addr = vm_unmapped_area(&info); 2080 } 2081 2082 return addr; 2083 } 2084 #endif 2085 2086 unsigned long 2087 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 2088 unsigned long pgoff, unsigned long flags) 2089 { 2090 unsigned long (*get_area)(struct file *, unsigned long, 2091 unsigned long, unsigned long, unsigned long); 2092 2093 unsigned long error = arch_mmap_check(addr, len, flags); 2094 if (error) 2095 return error; 2096 2097 /* Careful about overflows.. */ 2098 if (len > TASK_SIZE) 2099 return -ENOMEM; 2100 2101 get_area = current->mm->get_unmapped_area; 2102 if (file) { 2103 if (file->f_op->get_unmapped_area) 2104 get_area = file->f_op->get_unmapped_area; 2105 } else if (flags & MAP_SHARED) { 2106 /* 2107 * mmap_region() will call shmem_zero_setup() to create a file, 2108 * so use shmem's get_unmapped_area in case it can be huge. 2109 * do_mmap_pgoff() will clear pgoff, so match alignment. 2110 */ 2111 pgoff = 0; 2112 get_area = shmem_get_unmapped_area; 2113 } 2114 2115 addr = get_area(file, addr, len, pgoff, flags); 2116 if (IS_ERR_VALUE(addr)) 2117 return addr; 2118 2119 if (addr > TASK_SIZE - len) 2120 return -ENOMEM; 2121 if (offset_in_page(addr)) 2122 return -EINVAL; 2123 2124 error = security_mmap_addr(addr); 2125 return error ? error : addr; 2126 } 2127 2128 EXPORT_SYMBOL(get_unmapped_area); 2129 2130 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2131 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 2132 { 2133 struct rb_node *rb_node; 2134 struct vm_area_struct *vma; 2135 2136 /* Check the cache first. */ 2137 vma = vmacache_find(mm, addr); 2138 if (likely(vma)) 2139 return vma; 2140 2141 rb_node = mm->mm_rb.rb_node; 2142 2143 while (rb_node) { 2144 struct vm_area_struct *tmp; 2145 2146 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb); 2147 2148 if (tmp->vm_end > addr) { 2149 vma = tmp; 2150 if (tmp->vm_start <= addr) 2151 break; 2152 rb_node = rb_node->rb_left; 2153 } else 2154 rb_node = rb_node->rb_right; 2155 } 2156 2157 if (vma) 2158 vmacache_update(addr, vma); 2159 return vma; 2160 } 2161 2162 EXPORT_SYMBOL(find_vma); 2163 2164 /* 2165 * Same as find_vma, but also return a pointer to the previous VMA in *pprev. 2166 */ 2167 struct vm_area_struct * 2168 find_vma_prev(struct mm_struct *mm, unsigned long addr, 2169 struct vm_area_struct **pprev) 2170 { 2171 struct vm_area_struct *vma; 2172 2173 vma = find_vma(mm, addr); 2174 if (vma) { 2175 *pprev = vma->vm_prev; 2176 } else { 2177 struct rb_node *rb_node = mm->mm_rb.rb_node; 2178 *pprev = NULL; 2179 while (rb_node) { 2180 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb); 2181 rb_node = rb_node->rb_right; 2182 } 2183 } 2184 return vma; 2185 } 2186 2187 /* 2188 * Verify that the stack growth is acceptable and 2189 * update accounting. This is shared with both the 2190 * grow-up and grow-down cases. 2191 */ 2192 static int acct_stack_growth(struct vm_area_struct *vma, 2193 unsigned long size, unsigned long grow) 2194 { 2195 struct mm_struct *mm = vma->vm_mm; 2196 unsigned long new_start; 2197 2198 /* address space limit tests */ 2199 if (!may_expand_vm(mm, vma->vm_flags, grow)) 2200 return -ENOMEM; 2201 2202 /* Stack limit test */ 2203 if (size > rlimit(RLIMIT_STACK)) 2204 return -ENOMEM; 2205 2206 /* mlock limit tests */ 2207 if (vma->vm_flags & VM_LOCKED) { 2208 unsigned long locked; 2209 unsigned long limit; 2210 locked = mm->locked_vm + grow; 2211 limit = rlimit(RLIMIT_MEMLOCK); 2212 limit >>= PAGE_SHIFT; 2213 if (locked > limit && !capable(CAP_IPC_LOCK)) 2214 return -ENOMEM; 2215 } 2216 2217 /* Check to ensure the stack will not grow into a hugetlb-only region */ 2218 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : 2219 vma->vm_end - size; 2220 if (is_hugepage_only_range(vma->vm_mm, new_start, size)) 2221 return -EFAULT; 2222 2223 /* 2224 * Overcommit.. This must be the final test, as it will 2225 * update security statistics. 2226 */ 2227 if (security_vm_enough_memory_mm(mm, grow)) 2228 return -ENOMEM; 2229 2230 return 0; 2231 } 2232 2233 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64) 2234 /* 2235 * PA-RISC uses this for its stack; IA64 for its Register Backing Store. 2236 * vma is the last one with address > vma->vm_end. Have to extend vma. 2237 */ 2238 int expand_upwards(struct vm_area_struct *vma, unsigned long address) 2239 { 2240 struct mm_struct *mm = vma->vm_mm; 2241 struct vm_area_struct *next; 2242 unsigned long gap_addr; 2243 int error = 0; 2244 2245 if (!(vma->vm_flags & VM_GROWSUP)) 2246 return -EFAULT; 2247 2248 /* Guard against exceeding limits of the address space. */ 2249 address &= PAGE_MASK; 2250 if (address >= (TASK_SIZE & PAGE_MASK)) 2251 return -ENOMEM; 2252 address += PAGE_SIZE; 2253 2254 /* Enforce stack_guard_gap */ 2255 gap_addr = address + stack_guard_gap; 2256 2257 /* Guard against overflow */ 2258 if (gap_addr < address || gap_addr > TASK_SIZE) 2259 gap_addr = TASK_SIZE; 2260 2261 next = vma->vm_next; 2262 if (next && next->vm_start < gap_addr && 2263 (next->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) { 2264 if (!(next->vm_flags & VM_GROWSUP)) 2265 return -ENOMEM; 2266 /* Check that both stack segments have the same anon_vma? */ 2267 } 2268 2269 /* We must make sure the anon_vma is allocated. */ 2270 if (unlikely(anon_vma_prepare(vma))) 2271 return -ENOMEM; 2272 2273 /* 2274 * vma->vm_start/vm_end cannot change under us because the caller 2275 * is required to hold the mmap_sem in read mode. We need the 2276 * anon_vma lock to serialize against concurrent expand_stacks. 2277 */ 2278 anon_vma_lock_write(vma->anon_vma); 2279 2280 /* Somebody else might have raced and expanded it already */ 2281 if (address > vma->vm_end) { 2282 unsigned long size, grow; 2283 2284 size = address - vma->vm_start; 2285 grow = (address - vma->vm_end) >> PAGE_SHIFT; 2286 2287 error = -ENOMEM; 2288 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) { 2289 error = acct_stack_growth(vma, size, grow); 2290 if (!error) { 2291 /* 2292 * vma_gap_update() doesn't support concurrent 2293 * updates, but we only hold a shared mmap_sem 2294 * lock here, so we need to protect against 2295 * concurrent vma expansions. 2296 * anon_vma_lock_write() doesn't help here, as 2297 * we don't guarantee that all growable vmas 2298 * in a mm share the same root anon vma. 2299 * So, we reuse mm->page_table_lock to guard 2300 * against concurrent vma expansions. 2301 */ 2302 spin_lock(&mm->page_table_lock); 2303 if (vma->vm_flags & VM_LOCKED) 2304 mm->locked_vm += grow; 2305 vm_stat_account(mm, vma->vm_flags, grow); 2306 anon_vma_interval_tree_pre_update_vma(vma); 2307 vma->vm_end = address; 2308 anon_vma_interval_tree_post_update_vma(vma); 2309 if (vma->vm_next) 2310 vma_gap_update(vma->vm_next); 2311 else 2312 mm->highest_vm_end = vm_end_gap(vma); 2313 spin_unlock(&mm->page_table_lock); 2314 2315 perf_event_mmap(vma); 2316 } 2317 } 2318 } 2319 anon_vma_unlock_write(vma->anon_vma); 2320 khugepaged_enter_vma_merge(vma, vma->vm_flags); 2321 validate_mm(mm); 2322 return error; 2323 } 2324 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */ 2325 2326 /* 2327 * vma is the first one with address < vma->vm_start. Have to extend vma. 2328 */ 2329 int expand_downwards(struct vm_area_struct *vma, 2330 unsigned long address) 2331 { 2332 struct mm_struct *mm = vma->vm_mm; 2333 struct vm_area_struct *prev; 2334 int error; 2335 2336 address &= PAGE_MASK; 2337 error = security_mmap_addr(address); 2338 if (error) 2339 return error; 2340 2341 /* Enforce stack_guard_gap */ 2342 prev = vma->vm_prev; 2343 /* Check that both stack segments have the same anon_vma? */ 2344 if (prev && !(prev->vm_flags & VM_GROWSDOWN) && 2345 (prev->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) { 2346 if (address - prev->vm_end < stack_guard_gap) 2347 return -ENOMEM; 2348 } 2349 2350 /* We must make sure the anon_vma is allocated. */ 2351 if (unlikely(anon_vma_prepare(vma))) 2352 return -ENOMEM; 2353 2354 /* 2355 * vma->vm_start/vm_end cannot change under us because the caller 2356 * is required to hold the mmap_sem in read mode. We need the 2357 * anon_vma lock to serialize against concurrent expand_stacks. 2358 */ 2359 anon_vma_lock_write(vma->anon_vma); 2360 2361 /* Somebody else might have raced and expanded it already */ 2362 if (address < vma->vm_start) { 2363 unsigned long size, grow; 2364 2365 size = vma->vm_end - address; 2366 grow = (vma->vm_start - address) >> PAGE_SHIFT; 2367 2368 error = -ENOMEM; 2369 if (grow <= vma->vm_pgoff) { 2370 error = acct_stack_growth(vma, size, grow); 2371 if (!error) { 2372 /* 2373 * vma_gap_update() doesn't support concurrent 2374 * updates, but we only hold a shared mmap_sem 2375 * lock here, so we need to protect against 2376 * concurrent vma expansions. 2377 * anon_vma_lock_write() doesn't help here, as 2378 * we don't guarantee that all growable vmas 2379 * in a mm share the same root anon vma. 2380 * So, we reuse mm->page_table_lock to guard 2381 * against concurrent vma expansions. 2382 */ 2383 spin_lock(&mm->page_table_lock); 2384 if (vma->vm_flags & VM_LOCKED) 2385 mm->locked_vm += grow; 2386 vm_stat_account(mm, vma->vm_flags, grow); 2387 anon_vma_interval_tree_pre_update_vma(vma); 2388 vma->vm_start = address; 2389 vma->vm_pgoff -= grow; 2390 anon_vma_interval_tree_post_update_vma(vma); 2391 vma_gap_update(vma); 2392 spin_unlock(&mm->page_table_lock); 2393 2394 perf_event_mmap(vma); 2395 } 2396 } 2397 } 2398 anon_vma_unlock_write(vma->anon_vma); 2399 khugepaged_enter_vma_merge(vma, vma->vm_flags); 2400 validate_mm(mm); 2401 return error; 2402 } 2403 2404 /* enforced gap between the expanding stack and other mappings. */ 2405 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT; 2406 2407 static int __init cmdline_parse_stack_guard_gap(char *p) 2408 { 2409 unsigned long val; 2410 char *endptr; 2411 2412 val = simple_strtoul(p, &endptr, 10); 2413 if (!*endptr) 2414 stack_guard_gap = val << PAGE_SHIFT; 2415 2416 return 0; 2417 } 2418 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap); 2419 2420 #ifdef CONFIG_STACK_GROWSUP 2421 int expand_stack(struct vm_area_struct *vma, unsigned long address) 2422 { 2423 return expand_upwards(vma, address); 2424 } 2425 2426 struct vm_area_struct * 2427 find_extend_vma(struct mm_struct *mm, unsigned long addr) 2428 { 2429 struct vm_area_struct *vma, *prev; 2430 2431 addr &= PAGE_MASK; 2432 vma = find_vma_prev(mm, addr, &prev); 2433 if (vma && (vma->vm_start <= addr)) 2434 return vma; 2435 if (!prev || expand_stack(prev, addr)) 2436 return NULL; 2437 if (prev->vm_flags & VM_LOCKED) 2438 populate_vma_page_range(prev, addr, prev->vm_end, NULL); 2439 return prev; 2440 } 2441 #else 2442 int expand_stack(struct vm_area_struct *vma, unsigned long address) 2443 { 2444 return expand_downwards(vma, address); 2445 } 2446 2447 struct vm_area_struct * 2448 find_extend_vma(struct mm_struct *mm, unsigned long addr) 2449 { 2450 struct vm_area_struct *vma; 2451 unsigned long start; 2452 2453 addr &= PAGE_MASK; 2454 vma = find_vma(mm, addr); 2455 if (!vma) 2456 return NULL; 2457 if (vma->vm_start <= addr) 2458 return vma; 2459 if (!(vma->vm_flags & VM_GROWSDOWN)) 2460 return NULL; 2461 start = vma->vm_start; 2462 if (expand_stack(vma, addr)) 2463 return NULL; 2464 if (vma->vm_flags & VM_LOCKED) 2465 populate_vma_page_range(vma, addr, start, NULL); 2466 return vma; 2467 } 2468 #endif 2469 2470 EXPORT_SYMBOL_GPL(find_extend_vma); 2471 2472 /* 2473 * Ok - we have the memory areas we should free on the vma list, 2474 * so release them, and do the vma updates. 2475 * 2476 * Called with the mm semaphore held. 2477 */ 2478 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma) 2479 { 2480 unsigned long nr_accounted = 0; 2481 2482 /* Update high watermark before we lower total_vm */ 2483 update_hiwater_vm(mm); 2484 do { 2485 long nrpages = vma_pages(vma); 2486 2487 if (vma->vm_flags & VM_ACCOUNT) 2488 nr_accounted += nrpages; 2489 vm_stat_account(mm, vma->vm_flags, -nrpages); 2490 vma = remove_vma(vma); 2491 } while (vma); 2492 vm_unacct_memory(nr_accounted); 2493 validate_mm(mm); 2494 } 2495 2496 /* 2497 * Get rid of page table information in the indicated region. 2498 * 2499 * Called with the mm semaphore held. 2500 */ 2501 static void unmap_region(struct mm_struct *mm, 2502 struct vm_area_struct *vma, struct vm_area_struct *prev, 2503 unsigned long start, unsigned long end) 2504 { 2505 struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap; 2506 struct mmu_gather tlb; 2507 2508 lru_add_drain(); 2509 tlb_gather_mmu(&tlb, mm, start, end); 2510 update_hiwater_rss(mm); 2511 unmap_vmas(&tlb, vma, start, end); 2512 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS, 2513 next ? next->vm_start : USER_PGTABLES_CEILING); 2514 tlb_finish_mmu(&tlb, start, end); 2515 } 2516 2517 /* 2518 * Create a list of vma's touched by the unmap, removing them from the mm's 2519 * vma list as we go.. 2520 */ 2521 static void 2522 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma, 2523 struct vm_area_struct *prev, unsigned long end) 2524 { 2525 struct vm_area_struct **insertion_point; 2526 struct vm_area_struct *tail_vma = NULL; 2527 2528 insertion_point = (prev ? &prev->vm_next : &mm->mmap); 2529 vma->vm_prev = NULL; 2530 do { 2531 vma_rb_erase(vma, &mm->mm_rb); 2532 mm->map_count--; 2533 tail_vma = vma; 2534 vma = vma->vm_next; 2535 } while (vma && vma->vm_start < end); 2536 *insertion_point = vma; 2537 if (vma) { 2538 vma->vm_prev = prev; 2539 vma_gap_update(vma); 2540 } else 2541 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0; 2542 tail_vma->vm_next = NULL; 2543 2544 /* Kill the cache */ 2545 vmacache_invalidate(mm); 2546 } 2547 2548 /* 2549 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it 2550 * has already been checked or doesn't make sense to fail. 2551 */ 2552 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 2553 unsigned long addr, int new_below) 2554 { 2555 struct vm_area_struct *new; 2556 int err; 2557 2558 if (vma->vm_ops && vma->vm_ops->split) { 2559 err = vma->vm_ops->split(vma, addr); 2560 if (err) 2561 return err; 2562 } 2563 2564 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 2565 if (!new) 2566 return -ENOMEM; 2567 2568 /* most fields are the same, copy all, and then fixup */ 2569 *new = *vma; 2570 2571 INIT_LIST_HEAD(&new->anon_vma_chain); 2572 2573 if (new_below) 2574 new->vm_end = addr; 2575 else { 2576 new->vm_start = addr; 2577 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); 2578 } 2579 2580 err = vma_dup_policy(vma, new); 2581 if (err) 2582 goto out_free_vma; 2583 2584 err = anon_vma_clone(new, vma); 2585 if (err) 2586 goto out_free_mpol; 2587 2588 if (new->vm_file) 2589 get_file(new->vm_file); 2590 2591 if (new->vm_ops && new->vm_ops->open) 2592 new->vm_ops->open(new); 2593 2594 if (new_below) 2595 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff + 2596 ((addr - new->vm_start) >> PAGE_SHIFT), new); 2597 else 2598 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new); 2599 2600 /* Success. */ 2601 if (!err) 2602 return 0; 2603 2604 /* Clean everything up if vma_adjust failed. */ 2605 if (new->vm_ops && new->vm_ops->close) 2606 new->vm_ops->close(new); 2607 if (new->vm_file) 2608 fput(new->vm_file); 2609 unlink_anon_vmas(new); 2610 out_free_mpol: 2611 mpol_put(vma_policy(new)); 2612 out_free_vma: 2613 kmem_cache_free(vm_area_cachep, new); 2614 return err; 2615 } 2616 2617 /* 2618 * Split a vma into two pieces at address 'addr', a new vma is allocated 2619 * either for the first part or the tail. 2620 */ 2621 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 2622 unsigned long addr, int new_below) 2623 { 2624 if (mm->map_count >= sysctl_max_map_count) 2625 return -ENOMEM; 2626 2627 return __split_vma(mm, vma, addr, new_below); 2628 } 2629 2630 /* Munmap is split into 2 main parts -- this part which finds 2631 * what needs doing, and the areas themselves, which do the 2632 * work. This now handles partial unmappings. 2633 * Jeremy Fitzhardinge <jeremy@goop.org> 2634 */ 2635 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, 2636 struct list_head *uf) 2637 { 2638 unsigned long end; 2639 struct vm_area_struct *vma, *prev, *last; 2640 2641 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start) 2642 return -EINVAL; 2643 2644 len = PAGE_ALIGN(len); 2645 if (len == 0) 2646 return -EINVAL; 2647 2648 /* Find the first overlapping VMA */ 2649 vma = find_vma(mm, start); 2650 if (!vma) 2651 return 0; 2652 prev = vma->vm_prev; 2653 /* we have start < vma->vm_end */ 2654 2655 /* if it doesn't overlap, we have nothing.. */ 2656 end = start + len; 2657 if (vma->vm_start >= end) 2658 return 0; 2659 2660 /* 2661 * If we need to split any vma, do it now to save pain later. 2662 * 2663 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially 2664 * unmapped vm_area_struct will remain in use: so lower split_vma 2665 * places tmp vma above, and higher split_vma places tmp vma below. 2666 */ 2667 if (start > vma->vm_start) { 2668 int error; 2669 2670 /* 2671 * Make sure that map_count on return from munmap() will 2672 * not exceed its limit; but let map_count go just above 2673 * its limit temporarily, to help free resources as expected. 2674 */ 2675 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count) 2676 return -ENOMEM; 2677 2678 error = __split_vma(mm, vma, start, 0); 2679 if (error) 2680 return error; 2681 prev = vma; 2682 } 2683 2684 /* Does it split the last one? */ 2685 last = find_vma(mm, end); 2686 if (last && end > last->vm_start) { 2687 int error = __split_vma(mm, last, end, 1); 2688 if (error) 2689 return error; 2690 } 2691 vma = prev ? prev->vm_next : mm->mmap; 2692 2693 if (unlikely(uf)) { 2694 /* 2695 * If userfaultfd_unmap_prep returns an error the vmas 2696 * will remain splitted, but userland will get a 2697 * highly unexpected error anyway. This is no 2698 * different than the case where the first of the two 2699 * __split_vma fails, but we don't undo the first 2700 * split, despite we could. This is unlikely enough 2701 * failure that it's not worth optimizing it for. 2702 */ 2703 int error = userfaultfd_unmap_prep(vma, start, end, uf); 2704 if (error) 2705 return error; 2706 } 2707 2708 /* 2709 * unlock any mlock()ed ranges before detaching vmas 2710 */ 2711 if (mm->locked_vm) { 2712 struct vm_area_struct *tmp = vma; 2713 while (tmp && tmp->vm_start < end) { 2714 if (tmp->vm_flags & VM_LOCKED) { 2715 mm->locked_vm -= vma_pages(tmp); 2716 munlock_vma_pages_all(tmp); 2717 } 2718 tmp = tmp->vm_next; 2719 } 2720 } 2721 2722 /* 2723 * Remove the vma's, and unmap the actual pages 2724 */ 2725 detach_vmas_to_be_unmapped(mm, vma, prev, end); 2726 unmap_region(mm, vma, prev, start, end); 2727 2728 arch_unmap(mm, vma, start, end); 2729 2730 /* Fix up all other VM information */ 2731 remove_vma_list(mm, vma); 2732 2733 return 0; 2734 } 2735 2736 int vm_munmap(unsigned long start, size_t len) 2737 { 2738 int ret; 2739 struct mm_struct *mm = current->mm; 2740 LIST_HEAD(uf); 2741 2742 if (down_write_killable(&mm->mmap_sem)) 2743 return -EINTR; 2744 2745 ret = do_munmap(mm, start, len, &uf); 2746 up_write(&mm->mmap_sem); 2747 userfaultfd_unmap_complete(mm, &uf); 2748 return ret; 2749 } 2750 EXPORT_SYMBOL(vm_munmap); 2751 2752 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 2753 { 2754 profile_munmap(addr); 2755 return vm_munmap(addr, len); 2756 } 2757 2758 2759 /* 2760 * Emulation of deprecated remap_file_pages() syscall. 2761 */ 2762 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size, 2763 unsigned long, prot, unsigned long, pgoff, unsigned long, flags) 2764 { 2765 2766 struct mm_struct *mm = current->mm; 2767 struct vm_area_struct *vma; 2768 unsigned long populate = 0; 2769 unsigned long ret = -EINVAL; 2770 struct file *file; 2771 2772 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.txt.\n", 2773 current->comm, current->pid); 2774 2775 if (prot) 2776 return ret; 2777 start = start & PAGE_MASK; 2778 size = size & PAGE_MASK; 2779 2780 if (start + size <= start) 2781 return ret; 2782 2783 /* Does pgoff wrap? */ 2784 if (pgoff + (size >> PAGE_SHIFT) < pgoff) 2785 return ret; 2786 2787 if (down_write_killable(&mm->mmap_sem)) 2788 return -EINTR; 2789 2790 vma = find_vma(mm, start); 2791 2792 if (!vma || !(vma->vm_flags & VM_SHARED)) 2793 goto out; 2794 2795 if (start < vma->vm_start) 2796 goto out; 2797 2798 if (start + size > vma->vm_end) { 2799 struct vm_area_struct *next; 2800 2801 for (next = vma->vm_next; next; next = next->vm_next) { 2802 /* hole between vmas ? */ 2803 if (next->vm_start != next->vm_prev->vm_end) 2804 goto out; 2805 2806 if (next->vm_file != vma->vm_file) 2807 goto out; 2808 2809 if (next->vm_flags != vma->vm_flags) 2810 goto out; 2811 2812 if (start + size <= next->vm_end) 2813 break; 2814 } 2815 2816 if (!next) 2817 goto out; 2818 } 2819 2820 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0; 2821 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0; 2822 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0; 2823 2824 flags &= MAP_NONBLOCK; 2825 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE; 2826 if (vma->vm_flags & VM_LOCKED) { 2827 struct vm_area_struct *tmp; 2828 flags |= MAP_LOCKED; 2829 2830 /* drop PG_Mlocked flag for over-mapped range */ 2831 for (tmp = vma; tmp->vm_start >= start + size; 2832 tmp = tmp->vm_next) { 2833 /* 2834 * Split pmd and munlock page on the border 2835 * of the range. 2836 */ 2837 vma_adjust_trans_huge(tmp, start, start + size, 0); 2838 2839 munlock_vma_pages_range(tmp, 2840 max(tmp->vm_start, start), 2841 min(tmp->vm_end, start + size)); 2842 } 2843 } 2844 2845 file = get_file(vma->vm_file); 2846 ret = do_mmap_pgoff(vma->vm_file, start, size, 2847 prot, flags, pgoff, &populate, NULL); 2848 fput(file); 2849 out: 2850 up_write(&mm->mmap_sem); 2851 if (populate) 2852 mm_populate(ret, populate); 2853 if (!IS_ERR_VALUE(ret)) 2854 ret = 0; 2855 return ret; 2856 } 2857 2858 static inline void verify_mm_writelocked(struct mm_struct *mm) 2859 { 2860 #ifdef CONFIG_DEBUG_VM 2861 if (unlikely(down_read_trylock(&mm->mmap_sem))) { 2862 WARN_ON(1); 2863 up_read(&mm->mmap_sem); 2864 } 2865 #endif 2866 } 2867 2868 /* 2869 * this is really a simplified "do_mmap". it only handles 2870 * anonymous maps. eventually we may be able to do some 2871 * brk-specific accounting here. 2872 */ 2873 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags, struct list_head *uf) 2874 { 2875 struct mm_struct *mm = current->mm; 2876 struct vm_area_struct *vma, *prev; 2877 unsigned long len; 2878 struct rb_node **rb_link, *rb_parent; 2879 pgoff_t pgoff = addr >> PAGE_SHIFT; 2880 int error; 2881 2882 len = PAGE_ALIGN(request); 2883 if (len < request) 2884 return -ENOMEM; 2885 if (!len) 2886 return 0; 2887 2888 /* Until we need other flags, refuse anything except VM_EXEC. */ 2889 if ((flags & (~VM_EXEC)) != 0) 2890 return -EINVAL; 2891 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; 2892 2893 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED); 2894 if (offset_in_page(error)) 2895 return error; 2896 2897 error = mlock_future_check(mm, mm->def_flags, len); 2898 if (error) 2899 return error; 2900 2901 /* 2902 * mm->mmap_sem is required to protect against another thread 2903 * changing the mappings in case we sleep. 2904 */ 2905 verify_mm_writelocked(mm); 2906 2907 /* 2908 * Clear old maps. this also does some error checking for us 2909 */ 2910 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link, 2911 &rb_parent)) { 2912 if (do_munmap(mm, addr, len, uf)) 2913 return -ENOMEM; 2914 } 2915 2916 /* Check against address space limits *after* clearing old maps... */ 2917 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT)) 2918 return -ENOMEM; 2919 2920 if (mm->map_count > sysctl_max_map_count) 2921 return -ENOMEM; 2922 2923 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT)) 2924 return -ENOMEM; 2925 2926 /* Can we just expand an old private anonymous mapping? */ 2927 vma = vma_merge(mm, prev, addr, addr + len, flags, 2928 NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX); 2929 if (vma) 2930 goto out; 2931 2932 /* 2933 * create a vma struct for an anonymous mapping 2934 */ 2935 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 2936 if (!vma) { 2937 vm_unacct_memory(len >> PAGE_SHIFT); 2938 return -ENOMEM; 2939 } 2940 2941 INIT_LIST_HEAD(&vma->anon_vma_chain); 2942 vma->vm_mm = mm; 2943 vma->vm_start = addr; 2944 vma->vm_end = addr + len; 2945 vma->vm_pgoff = pgoff; 2946 vma->vm_flags = flags; 2947 vma->vm_page_prot = vm_get_page_prot(flags); 2948 vma_link(mm, vma, prev, rb_link, rb_parent); 2949 out: 2950 perf_event_mmap(vma); 2951 mm->total_vm += len >> PAGE_SHIFT; 2952 mm->data_vm += len >> PAGE_SHIFT; 2953 if (flags & VM_LOCKED) 2954 mm->locked_vm += (len >> PAGE_SHIFT); 2955 vma->vm_flags |= VM_SOFTDIRTY; 2956 return 0; 2957 } 2958 2959 static int do_brk(unsigned long addr, unsigned long len, struct list_head *uf) 2960 { 2961 return do_brk_flags(addr, len, 0, uf); 2962 } 2963 2964 int vm_brk_flags(unsigned long addr, unsigned long len, unsigned long flags) 2965 { 2966 struct mm_struct *mm = current->mm; 2967 int ret; 2968 bool populate; 2969 LIST_HEAD(uf); 2970 2971 if (down_write_killable(&mm->mmap_sem)) 2972 return -EINTR; 2973 2974 ret = do_brk_flags(addr, len, flags, &uf); 2975 populate = ((mm->def_flags & VM_LOCKED) != 0); 2976 up_write(&mm->mmap_sem); 2977 userfaultfd_unmap_complete(mm, &uf); 2978 if (populate && !ret) 2979 mm_populate(addr, len); 2980 return ret; 2981 } 2982 EXPORT_SYMBOL(vm_brk_flags); 2983 2984 int vm_brk(unsigned long addr, unsigned long len) 2985 { 2986 return vm_brk_flags(addr, len, 0); 2987 } 2988 EXPORT_SYMBOL(vm_brk); 2989 2990 /* Release all mmaps. */ 2991 void exit_mmap(struct mm_struct *mm) 2992 { 2993 struct mmu_gather tlb; 2994 struct vm_area_struct *vma; 2995 unsigned long nr_accounted = 0; 2996 2997 /* mm's last user has gone, and its about to be pulled down */ 2998 mmu_notifier_release(mm); 2999 3000 if (mm->locked_vm) { 3001 vma = mm->mmap; 3002 while (vma) { 3003 if (vma->vm_flags & VM_LOCKED) 3004 munlock_vma_pages_all(vma); 3005 vma = vma->vm_next; 3006 } 3007 } 3008 3009 arch_exit_mmap(mm); 3010 3011 vma = mm->mmap; 3012 if (!vma) /* Can happen if dup_mmap() received an OOM */ 3013 return; 3014 3015 lru_add_drain(); 3016 flush_cache_mm(mm); 3017 tlb_gather_mmu(&tlb, mm, 0, -1); 3018 /* update_hiwater_rss(mm) here? but nobody should be looking */ 3019 /* Use -1 here to ensure all VMAs in the mm are unmapped */ 3020 unmap_vmas(&tlb, vma, 0, -1); 3021 3022 if (unlikely(mm_is_oom_victim(mm))) { 3023 /* 3024 * Wait for oom_reap_task() to stop working on this 3025 * mm. Because MMF_OOM_SKIP is already set before 3026 * calling down_read(), oom_reap_task() will not run 3027 * on this "mm" post up_write(). 3028 * 3029 * mm_is_oom_victim() cannot be set from under us 3030 * either because victim->mm is already set to NULL 3031 * under task_lock before calling mmput and oom_mm is 3032 * set not NULL by the OOM killer only if victim->mm 3033 * is found not NULL while holding the task_lock. 3034 */ 3035 set_bit(MMF_OOM_SKIP, &mm->flags); 3036 down_write(&mm->mmap_sem); 3037 up_write(&mm->mmap_sem); 3038 } 3039 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING); 3040 tlb_finish_mmu(&tlb, 0, -1); 3041 3042 /* 3043 * Walk the list again, actually closing and freeing it, 3044 * with preemption enabled, without holding any MM locks. 3045 */ 3046 while (vma) { 3047 if (vma->vm_flags & VM_ACCOUNT) 3048 nr_accounted += vma_pages(vma); 3049 vma = remove_vma(vma); 3050 } 3051 vm_unacct_memory(nr_accounted); 3052 } 3053 3054 /* Insert vm structure into process list sorted by address 3055 * and into the inode's i_mmap tree. If vm_file is non-NULL 3056 * then i_mmap_rwsem is taken here. 3057 */ 3058 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 3059 { 3060 struct vm_area_struct *prev; 3061 struct rb_node **rb_link, *rb_parent; 3062 3063 if (find_vma_links(mm, vma->vm_start, vma->vm_end, 3064 &prev, &rb_link, &rb_parent)) 3065 return -ENOMEM; 3066 if ((vma->vm_flags & VM_ACCOUNT) && 3067 security_vm_enough_memory_mm(mm, vma_pages(vma))) 3068 return -ENOMEM; 3069 3070 /* 3071 * The vm_pgoff of a purely anonymous vma should be irrelevant 3072 * until its first write fault, when page's anon_vma and index 3073 * are set. But now set the vm_pgoff it will almost certainly 3074 * end up with (unless mremap moves it elsewhere before that 3075 * first wfault), so /proc/pid/maps tells a consistent story. 3076 * 3077 * By setting it to reflect the virtual start address of the 3078 * vma, merges and splits can happen in a seamless way, just 3079 * using the existing file pgoff checks and manipulations. 3080 * Similarly in do_mmap_pgoff and in do_brk. 3081 */ 3082 if (vma_is_anonymous(vma)) { 3083 BUG_ON(vma->anon_vma); 3084 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; 3085 } 3086 3087 vma_link(mm, vma, prev, rb_link, rb_parent); 3088 return 0; 3089 } 3090 3091 /* 3092 * Copy the vma structure to a new location in the same mm, 3093 * prior to moving page table entries, to effect an mremap move. 3094 */ 3095 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 3096 unsigned long addr, unsigned long len, pgoff_t pgoff, 3097 bool *need_rmap_locks) 3098 { 3099 struct vm_area_struct *vma = *vmap; 3100 unsigned long vma_start = vma->vm_start; 3101 struct mm_struct *mm = vma->vm_mm; 3102 struct vm_area_struct *new_vma, *prev; 3103 struct rb_node **rb_link, *rb_parent; 3104 bool faulted_in_anon_vma = true; 3105 3106 /* 3107 * If anonymous vma has not yet been faulted, update new pgoff 3108 * to match new location, to increase its chance of merging. 3109 */ 3110 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) { 3111 pgoff = addr >> PAGE_SHIFT; 3112 faulted_in_anon_vma = false; 3113 } 3114 3115 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) 3116 return NULL; /* should never get here */ 3117 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags, 3118 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma), 3119 vma->vm_userfaultfd_ctx); 3120 if (new_vma) { 3121 /* 3122 * Source vma may have been merged into new_vma 3123 */ 3124 if (unlikely(vma_start >= new_vma->vm_start && 3125 vma_start < new_vma->vm_end)) { 3126 /* 3127 * The only way we can get a vma_merge with 3128 * self during an mremap is if the vma hasn't 3129 * been faulted in yet and we were allowed to 3130 * reset the dst vma->vm_pgoff to the 3131 * destination address of the mremap to allow 3132 * the merge to happen. mremap must change the 3133 * vm_pgoff linearity between src and dst vmas 3134 * (in turn preventing a vma_merge) to be 3135 * safe. It is only safe to keep the vm_pgoff 3136 * linear if there are no pages mapped yet. 3137 */ 3138 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma); 3139 *vmap = vma = new_vma; 3140 } 3141 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff); 3142 } else { 3143 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 3144 if (!new_vma) 3145 goto out; 3146 *new_vma = *vma; 3147 new_vma->vm_start = addr; 3148 new_vma->vm_end = addr + len; 3149 new_vma->vm_pgoff = pgoff; 3150 if (vma_dup_policy(vma, new_vma)) 3151 goto out_free_vma; 3152 INIT_LIST_HEAD(&new_vma->anon_vma_chain); 3153 if (anon_vma_clone(new_vma, vma)) 3154 goto out_free_mempol; 3155 if (new_vma->vm_file) 3156 get_file(new_vma->vm_file); 3157 if (new_vma->vm_ops && new_vma->vm_ops->open) 3158 new_vma->vm_ops->open(new_vma); 3159 vma_link(mm, new_vma, prev, rb_link, rb_parent); 3160 *need_rmap_locks = false; 3161 } 3162 return new_vma; 3163 3164 out_free_mempol: 3165 mpol_put(vma_policy(new_vma)); 3166 out_free_vma: 3167 kmem_cache_free(vm_area_cachep, new_vma); 3168 out: 3169 return NULL; 3170 } 3171 3172 /* 3173 * Return true if the calling process may expand its vm space by the passed 3174 * number of pages 3175 */ 3176 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages) 3177 { 3178 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT) 3179 return false; 3180 3181 if (is_data_mapping(flags) && 3182 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) { 3183 /* Workaround for Valgrind */ 3184 if (rlimit(RLIMIT_DATA) == 0 && 3185 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT) 3186 return true; 3187 if (!ignore_rlimit_data) { 3188 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits or use boot option ignore_rlimit_data.\n", 3189 current->comm, current->pid, 3190 (mm->data_vm + npages) << PAGE_SHIFT, 3191 rlimit(RLIMIT_DATA)); 3192 return false; 3193 } 3194 } 3195 3196 return true; 3197 } 3198 3199 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages) 3200 { 3201 mm->total_vm += npages; 3202 3203 if (is_exec_mapping(flags)) 3204 mm->exec_vm += npages; 3205 else if (is_stack_mapping(flags)) 3206 mm->stack_vm += npages; 3207 else if (is_data_mapping(flags)) 3208 mm->data_vm += npages; 3209 } 3210 3211 static int special_mapping_fault(struct vm_fault *vmf); 3212 3213 /* 3214 * Having a close hook prevents vma merging regardless of flags. 3215 */ 3216 static void special_mapping_close(struct vm_area_struct *vma) 3217 { 3218 } 3219 3220 static const char *special_mapping_name(struct vm_area_struct *vma) 3221 { 3222 return ((struct vm_special_mapping *)vma->vm_private_data)->name; 3223 } 3224 3225 static int special_mapping_mremap(struct vm_area_struct *new_vma) 3226 { 3227 struct vm_special_mapping *sm = new_vma->vm_private_data; 3228 3229 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm)) 3230 return -EFAULT; 3231 3232 if (sm->mremap) 3233 return sm->mremap(sm, new_vma); 3234 3235 return 0; 3236 } 3237 3238 static const struct vm_operations_struct special_mapping_vmops = { 3239 .close = special_mapping_close, 3240 .fault = special_mapping_fault, 3241 .mremap = special_mapping_mremap, 3242 .name = special_mapping_name, 3243 }; 3244 3245 static const struct vm_operations_struct legacy_special_mapping_vmops = { 3246 .close = special_mapping_close, 3247 .fault = special_mapping_fault, 3248 }; 3249 3250 static int special_mapping_fault(struct vm_fault *vmf) 3251 { 3252 struct vm_area_struct *vma = vmf->vma; 3253 pgoff_t pgoff; 3254 struct page **pages; 3255 3256 if (vma->vm_ops == &legacy_special_mapping_vmops) { 3257 pages = vma->vm_private_data; 3258 } else { 3259 struct vm_special_mapping *sm = vma->vm_private_data; 3260 3261 if (sm->fault) 3262 return sm->fault(sm, vmf->vma, vmf); 3263 3264 pages = sm->pages; 3265 } 3266 3267 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages) 3268 pgoff--; 3269 3270 if (*pages) { 3271 struct page *page = *pages; 3272 get_page(page); 3273 vmf->page = page; 3274 return 0; 3275 } 3276 3277 return VM_FAULT_SIGBUS; 3278 } 3279 3280 static struct vm_area_struct *__install_special_mapping( 3281 struct mm_struct *mm, 3282 unsigned long addr, unsigned long len, 3283 unsigned long vm_flags, void *priv, 3284 const struct vm_operations_struct *ops) 3285 { 3286 int ret; 3287 struct vm_area_struct *vma; 3288 3289 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 3290 if (unlikely(vma == NULL)) 3291 return ERR_PTR(-ENOMEM); 3292 3293 INIT_LIST_HEAD(&vma->anon_vma_chain); 3294 vma->vm_mm = mm; 3295 vma->vm_start = addr; 3296 vma->vm_end = addr + len; 3297 3298 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY; 3299 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 3300 3301 vma->vm_ops = ops; 3302 vma->vm_private_data = priv; 3303 3304 ret = insert_vm_struct(mm, vma); 3305 if (ret) 3306 goto out; 3307 3308 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT); 3309 3310 perf_event_mmap(vma); 3311 3312 return vma; 3313 3314 out: 3315 kmem_cache_free(vm_area_cachep, vma); 3316 return ERR_PTR(ret); 3317 } 3318 3319 bool vma_is_special_mapping(const struct vm_area_struct *vma, 3320 const struct vm_special_mapping *sm) 3321 { 3322 return vma->vm_private_data == sm && 3323 (vma->vm_ops == &special_mapping_vmops || 3324 vma->vm_ops == &legacy_special_mapping_vmops); 3325 } 3326 3327 /* 3328 * Called with mm->mmap_sem held for writing. 3329 * Insert a new vma covering the given region, with the given flags. 3330 * Its pages are supplied by the given array of struct page *. 3331 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated. 3332 * The region past the last page supplied will always produce SIGBUS. 3333 * The array pointer and the pages it points to are assumed to stay alive 3334 * for as long as this mapping might exist. 3335 */ 3336 struct vm_area_struct *_install_special_mapping( 3337 struct mm_struct *mm, 3338 unsigned long addr, unsigned long len, 3339 unsigned long vm_flags, const struct vm_special_mapping *spec) 3340 { 3341 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec, 3342 &special_mapping_vmops); 3343 } 3344 3345 int install_special_mapping(struct mm_struct *mm, 3346 unsigned long addr, unsigned long len, 3347 unsigned long vm_flags, struct page **pages) 3348 { 3349 struct vm_area_struct *vma = __install_special_mapping( 3350 mm, addr, len, vm_flags, (void *)pages, 3351 &legacy_special_mapping_vmops); 3352 3353 return PTR_ERR_OR_ZERO(vma); 3354 } 3355 3356 static DEFINE_MUTEX(mm_all_locks_mutex); 3357 3358 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) 3359 { 3360 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 3361 /* 3362 * The LSB of head.next can't change from under us 3363 * because we hold the mm_all_locks_mutex. 3364 */ 3365 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem); 3366 /* 3367 * We can safely modify head.next after taking the 3368 * anon_vma->root->rwsem. If some other vma in this mm shares 3369 * the same anon_vma we won't take it again. 3370 * 3371 * No need of atomic instructions here, head.next 3372 * can't change from under us thanks to the 3373 * anon_vma->root->rwsem. 3374 */ 3375 if (__test_and_set_bit(0, (unsigned long *) 3376 &anon_vma->root->rb_root.rb_root.rb_node)) 3377 BUG(); 3378 } 3379 } 3380 3381 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) 3382 { 3383 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3384 /* 3385 * AS_MM_ALL_LOCKS can't change from under us because 3386 * we hold the mm_all_locks_mutex. 3387 * 3388 * Operations on ->flags have to be atomic because 3389 * even if AS_MM_ALL_LOCKS is stable thanks to the 3390 * mm_all_locks_mutex, there may be other cpus 3391 * changing other bitflags in parallel to us. 3392 */ 3393 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) 3394 BUG(); 3395 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem); 3396 } 3397 } 3398 3399 /* 3400 * This operation locks against the VM for all pte/vma/mm related 3401 * operations that could ever happen on a certain mm. This includes 3402 * vmtruncate, try_to_unmap, and all page faults. 3403 * 3404 * The caller must take the mmap_sem in write mode before calling 3405 * mm_take_all_locks(). The caller isn't allowed to release the 3406 * mmap_sem until mm_drop_all_locks() returns. 3407 * 3408 * mmap_sem in write mode is required in order to block all operations 3409 * that could modify pagetables and free pages without need of 3410 * altering the vma layout. It's also needed in write mode to avoid new 3411 * anon_vmas to be associated with existing vmas. 3412 * 3413 * A single task can't take more than one mm_take_all_locks() in a row 3414 * or it would deadlock. 3415 * 3416 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in 3417 * mapping->flags avoid to take the same lock twice, if more than one 3418 * vma in this mm is backed by the same anon_vma or address_space. 3419 * 3420 * We take locks in following order, accordingly to comment at beginning 3421 * of mm/rmap.c: 3422 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for 3423 * hugetlb mapping); 3424 * - all i_mmap_rwsem locks; 3425 * - all anon_vma->rwseml 3426 * 3427 * We can take all locks within these types randomly because the VM code 3428 * doesn't nest them and we protected from parallel mm_take_all_locks() by 3429 * mm_all_locks_mutex. 3430 * 3431 * mm_take_all_locks() and mm_drop_all_locks are expensive operations 3432 * that may have to take thousand of locks. 3433 * 3434 * mm_take_all_locks() can fail if it's interrupted by signals. 3435 */ 3436 int mm_take_all_locks(struct mm_struct *mm) 3437 { 3438 struct vm_area_struct *vma; 3439 struct anon_vma_chain *avc; 3440 3441 BUG_ON(down_read_trylock(&mm->mmap_sem)); 3442 3443 mutex_lock(&mm_all_locks_mutex); 3444 3445 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3446 if (signal_pending(current)) 3447 goto out_unlock; 3448 if (vma->vm_file && vma->vm_file->f_mapping && 3449 is_vm_hugetlb_page(vma)) 3450 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3451 } 3452 3453 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3454 if (signal_pending(current)) 3455 goto out_unlock; 3456 if (vma->vm_file && vma->vm_file->f_mapping && 3457 !is_vm_hugetlb_page(vma)) 3458 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3459 } 3460 3461 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3462 if (signal_pending(current)) 3463 goto out_unlock; 3464 if (vma->anon_vma) 3465 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3466 vm_lock_anon_vma(mm, avc->anon_vma); 3467 } 3468 3469 return 0; 3470 3471 out_unlock: 3472 mm_drop_all_locks(mm); 3473 return -EINTR; 3474 } 3475 3476 static void vm_unlock_anon_vma(struct anon_vma *anon_vma) 3477 { 3478 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 3479 /* 3480 * The LSB of head.next can't change to 0 from under 3481 * us because we hold the mm_all_locks_mutex. 3482 * 3483 * We must however clear the bitflag before unlocking 3484 * the vma so the users using the anon_vma->rb_root will 3485 * never see our bitflag. 3486 * 3487 * No need of atomic instructions here, head.next 3488 * can't change from under us until we release the 3489 * anon_vma->root->rwsem. 3490 */ 3491 if (!__test_and_clear_bit(0, (unsigned long *) 3492 &anon_vma->root->rb_root.rb_root.rb_node)) 3493 BUG(); 3494 anon_vma_unlock_write(anon_vma); 3495 } 3496 } 3497 3498 static void vm_unlock_mapping(struct address_space *mapping) 3499 { 3500 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3501 /* 3502 * AS_MM_ALL_LOCKS can't change to 0 from under us 3503 * because we hold the mm_all_locks_mutex. 3504 */ 3505 i_mmap_unlock_write(mapping); 3506 if (!test_and_clear_bit(AS_MM_ALL_LOCKS, 3507 &mapping->flags)) 3508 BUG(); 3509 } 3510 } 3511 3512 /* 3513 * The mmap_sem cannot be released by the caller until 3514 * mm_drop_all_locks() returns. 3515 */ 3516 void mm_drop_all_locks(struct mm_struct *mm) 3517 { 3518 struct vm_area_struct *vma; 3519 struct anon_vma_chain *avc; 3520 3521 BUG_ON(down_read_trylock(&mm->mmap_sem)); 3522 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); 3523 3524 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3525 if (vma->anon_vma) 3526 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3527 vm_unlock_anon_vma(avc->anon_vma); 3528 if (vma->vm_file && vma->vm_file->f_mapping) 3529 vm_unlock_mapping(vma->vm_file->f_mapping); 3530 } 3531 3532 mutex_unlock(&mm_all_locks_mutex); 3533 } 3534 3535 /* 3536 * initialise the percpu counter for VM 3537 */ 3538 void __init mmap_init(void) 3539 { 3540 int ret; 3541 3542 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL); 3543 VM_BUG_ON(ret); 3544 } 3545 3546 /* 3547 * Initialise sysctl_user_reserve_kbytes. 3548 * 3549 * This is intended to prevent a user from starting a single memory hogging 3550 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER 3551 * mode. 3552 * 3553 * The default value is min(3% of free memory, 128MB) 3554 * 128MB is enough to recover with sshd/login, bash, and top/kill. 3555 */ 3556 static int init_user_reserve(void) 3557 { 3558 unsigned long free_kbytes; 3559 3560 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3561 3562 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17); 3563 return 0; 3564 } 3565 subsys_initcall(init_user_reserve); 3566 3567 /* 3568 * Initialise sysctl_admin_reserve_kbytes. 3569 * 3570 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin 3571 * to log in and kill a memory hogging process. 3572 * 3573 * Systems with more than 256MB will reserve 8MB, enough to recover 3574 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will 3575 * only reserve 3% of free pages by default. 3576 */ 3577 static int init_admin_reserve(void) 3578 { 3579 unsigned long free_kbytes; 3580 3581 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3582 3583 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13); 3584 return 0; 3585 } 3586 subsys_initcall(init_admin_reserve); 3587 3588 /* 3589 * Reinititalise user and admin reserves if memory is added or removed. 3590 * 3591 * The default user reserve max is 128MB, and the default max for the 3592 * admin reserve is 8MB. These are usually, but not always, enough to 3593 * enable recovery from a memory hogging process using login/sshd, a shell, 3594 * and tools like top. It may make sense to increase or even disable the 3595 * reserve depending on the existence of swap or variations in the recovery 3596 * tools. So, the admin may have changed them. 3597 * 3598 * If memory is added and the reserves have been eliminated or increased above 3599 * the default max, then we'll trust the admin. 3600 * 3601 * If memory is removed and there isn't enough free memory, then we 3602 * need to reset the reserves. 3603 * 3604 * Otherwise keep the reserve set by the admin. 3605 */ 3606 static int reserve_mem_notifier(struct notifier_block *nb, 3607 unsigned long action, void *data) 3608 { 3609 unsigned long tmp, free_kbytes; 3610 3611 switch (action) { 3612 case MEM_ONLINE: 3613 /* Default max is 128MB. Leave alone if modified by operator. */ 3614 tmp = sysctl_user_reserve_kbytes; 3615 if (0 < tmp && tmp < (1UL << 17)) 3616 init_user_reserve(); 3617 3618 /* Default max is 8MB. Leave alone if modified by operator. */ 3619 tmp = sysctl_admin_reserve_kbytes; 3620 if (0 < tmp && tmp < (1UL << 13)) 3621 init_admin_reserve(); 3622 3623 break; 3624 case MEM_OFFLINE: 3625 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3626 3627 if (sysctl_user_reserve_kbytes > free_kbytes) { 3628 init_user_reserve(); 3629 pr_info("vm.user_reserve_kbytes reset to %lu\n", 3630 sysctl_user_reserve_kbytes); 3631 } 3632 3633 if (sysctl_admin_reserve_kbytes > free_kbytes) { 3634 init_admin_reserve(); 3635 pr_info("vm.admin_reserve_kbytes reset to %lu\n", 3636 sysctl_admin_reserve_kbytes); 3637 } 3638 break; 3639 default: 3640 break; 3641 } 3642 return NOTIFY_OK; 3643 } 3644 3645 static struct notifier_block reserve_mem_nb = { 3646 .notifier_call = reserve_mem_notifier, 3647 }; 3648 3649 static int __meminit init_reserve_notifier(void) 3650 { 3651 if (register_hotmemory_notifier(&reserve_mem_nb)) 3652 pr_err("Failed registering memory add/remove notifier for admin reserve\n"); 3653 3654 return 0; 3655 } 3656 subsys_initcall(init_reserve_notifier); 3657